xref: /linux/kernel/sched/ext.c (revision 5c2e7736e20d9b348a44cafbfa639fe2653fbc34)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4  *
5  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8  */
9 #define SCX_OP_IDX(op)		(offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10 
11 enum scx_consts {
12 	SCX_SLICE_BYPASS		= SCX_SLICE_DFL / 4,
13 	SCX_DSP_DFL_MAX_BATCH		= 32,
14 	SCX_DSP_MAX_LOOPS		= 32,
15 	SCX_WATCHDOG_MAX_TIMEOUT	= 30 * HZ,
16 
17 	SCX_EXIT_BT_LEN			= 64,
18 	SCX_EXIT_MSG_LEN		= 1024,
19 	SCX_EXIT_DUMP_DFL_LEN		= 32768,
20 
21 	SCX_CPUPERF_ONE			= SCHED_CAPACITY_SCALE,
22 };
23 
24 enum scx_exit_kind {
25 	SCX_EXIT_NONE,
26 	SCX_EXIT_DONE,
27 
28 	SCX_EXIT_UNREG = 64,	/* user-space initiated unregistration */
29 	SCX_EXIT_UNREG_BPF,	/* BPF-initiated unregistration */
30 	SCX_EXIT_UNREG_KERN,	/* kernel-initiated unregistration */
31 	SCX_EXIT_SYSRQ,		/* requested by 'S' sysrq */
32 
33 	SCX_EXIT_ERROR = 1024,	/* runtime error, error msg contains details */
34 	SCX_EXIT_ERROR_BPF,	/* ERROR but triggered through scx_bpf_error() */
35 	SCX_EXIT_ERROR_STALL,	/* watchdog detected stalled runnable tasks */
36 };
37 
38 /*
39  * An exit code can be specified when exiting with scx_bpf_exit() or
40  * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
41  * respectively. The codes are 64bit of the format:
42  *
43  *   Bits: [63  ..  48 47   ..  32 31 .. 0]
44  *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
45  *
46  *   SYS ACT: System-defined exit actions
47  *   SYS RSN: System-defined exit reasons
48  *   USR    : User-defined exit codes and reasons
49  *
50  * Using the above, users may communicate intention and context by ORing system
51  * actions and/or system reasons with a user-defined exit code.
52  */
53 enum scx_exit_code {
54 	/* Reasons */
55 	SCX_ECODE_RSN_HOTPLUG	= 1LLU << 32,
56 
57 	/* Actions */
58 	SCX_ECODE_ACT_RESTART	= 1LLU << 48,
59 };
60 
61 /*
62  * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
63  * being disabled.
64  */
65 struct scx_exit_info {
66 	/* %SCX_EXIT_* - broad category of the exit reason */
67 	enum scx_exit_kind	kind;
68 
69 	/* exit code if gracefully exiting */
70 	s64			exit_code;
71 
72 	/* textual representation of the above */
73 	const char		*reason;
74 
75 	/* backtrace if exiting due to an error */
76 	unsigned long		*bt;
77 	u32			bt_len;
78 
79 	/* informational message */
80 	char			*msg;
81 
82 	/* debug dump */
83 	char			*dump;
84 };
85 
86 /* sched_ext_ops.flags */
87 enum scx_ops_flags {
88 	/*
89 	 * Keep built-in idle tracking even if ops.update_idle() is implemented.
90 	 */
91 	SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
92 
93 	/*
94 	 * By default, if there are no other task to run on the CPU, ext core
95 	 * keeps running the current task even after its slice expires. If this
96 	 * flag is specified, such tasks are passed to ops.enqueue() with
97 	 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
98 	 */
99 	SCX_OPS_ENQ_LAST	= 1LLU << 1,
100 
101 	/*
102 	 * An exiting task may schedule after PF_EXITING is set. In such cases,
103 	 * bpf_task_from_pid() may not be able to find the task and if the BPF
104 	 * scheduler depends on pid lookup for dispatching, the task will be
105 	 * lost leading to various issues including RCU grace period stalls.
106 	 *
107 	 * To mask this problem, by default, unhashed tasks are automatically
108 	 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
109 	 * depend on pid lookups and wants to handle these tasks directly, the
110 	 * following flag can be used.
111 	 */
112 	SCX_OPS_ENQ_EXITING	= 1LLU << 2,
113 
114 	/*
115 	 * If set, only tasks with policy set to SCHED_EXT are attached to
116 	 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
117 	 */
118 	SCX_OPS_SWITCH_PARTIAL	= 1LLU << 3,
119 
120 	/*
121 	 * CPU cgroup support flags
122 	 */
123 	SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16,	/* cpu.weight */
124 
125 	SCX_OPS_ALL_FLAGS	= SCX_OPS_KEEP_BUILTIN_IDLE |
126 				  SCX_OPS_ENQ_LAST |
127 				  SCX_OPS_ENQ_EXITING |
128 				  SCX_OPS_SWITCH_PARTIAL |
129 				  SCX_OPS_HAS_CGROUP_WEIGHT,
130 };
131 
132 /* argument container for ops.init_task() */
133 struct scx_init_task_args {
134 	/*
135 	 * Set if ops.init_task() is being invoked on the fork path, as opposed
136 	 * to the scheduler transition path.
137 	 */
138 	bool			fork;
139 #ifdef CONFIG_EXT_GROUP_SCHED
140 	/* the cgroup the task is joining */
141 	struct cgroup		*cgroup;
142 #endif
143 };
144 
145 /* argument container for ops.exit_task() */
146 struct scx_exit_task_args {
147 	/* Whether the task exited before running on sched_ext. */
148 	bool cancelled;
149 };
150 
151 /* argument container for ops->cgroup_init() */
152 struct scx_cgroup_init_args {
153 	/* the weight of the cgroup [1..10000] */
154 	u32			weight;
155 };
156 
157 enum scx_cpu_preempt_reason {
158 	/* next task is being scheduled by &sched_class_rt */
159 	SCX_CPU_PREEMPT_RT,
160 	/* next task is being scheduled by &sched_class_dl */
161 	SCX_CPU_PREEMPT_DL,
162 	/* next task is being scheduled by &sched_class_stop */
163 	SCX_CPU_PREEMPT_STOP,
164 	/* unknown reason for SCX being preempted */
165 	SCX_CPU_PREEMPT_UNKNOWN,
166 };
167 
168 /*
169  * Argument container for ops->cpu_acquire(). Currently empty, but may be
170  * expanded in the future.
171  */
172 struct scx_cpu_acquire_args {};
173 
174 /* argument container for ops->cpu_release() */
175 struct scx_cpu_release_args {
176 	/* the reason the CPU was preempted */
177 	enum scx_cpu_preempt_reason reason;
178 
179 	/* the task that's going to be scheduled on the CPU */
180 	struct task_struct	*task;
181 };
182 
183 /*
184  * Informational context provided to dump operations.
185  */
186 struct scx_dump_ctx {
187 	enum scx_exit_kind	kind;
188 	s64			exit_code;
189 	const char		*reason;
190 	u64			at_ns;
191 	u64			at_jiffies;
192 };
193 
194 /**
195  * struct sched_ext_ops - Operation table for BPF scheduler implementation
196  *
197  * Userland can implement an arbitrary scheduling policy by implementing and
198  * loading operations in this table.
199  */
200 struct sched_ext_ops {
201 	/**
202 	 * select_cpu - Pick the target CPU for a task which is being woken up
203 	 * @p: task being woken up
204 	 * @prev_cpu: the cpu @p was on before sleeping
205 	 * @wake_flags: SCX_WAKE_*
206 	 *
207 	 * Decision made here isn't final. @p may be moved to any CPU while it
208 	 * is getting dispatched for execution later. However, as @p is not on
209 	 * the rq at this point, getting the eventual execution CPU right here
210 	 * saves a small bit of overhead down the line.
211 	 *
212 	 * If an idle CPU is returned, the CPU is kicked and will try to
213 	 * dispatch. While an explicit custom mechanism can be added,
214 	 * select_cpu() serves as the default way to wake up idle CPUs.
215 	 *
216 	 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
217 	 * is dispatched, the ops.enqueue() callback will be skipped. Finally,
218 	 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
219 	 * local DSQ of whatever CPU is returned by this callback.
220 	 */
221 	s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
222 
223 	/**
224 	 * enqueue - Enqueue a task on the BPF scheduler
225 	 * @p: task being enqueued
226 	 * @enq_flags: %SCX_ENQ_*
227 	 *
228 	 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
229 	 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
230 	 * scheduler owns @p and if it fails to dispatch @p, the task will
231 	 * stall.
232 	 *
233 	 * If @p was dispatched from ops.select_cpu(), this callback is
234 	 * skipped.
235 	 */
236 	void (*enqueue)(struct task_struct *p, u64 enq_flags);
237 
238 	/**
239 	 * dequeue - Remove a task from the BPF scheduler
240 	 * @p: task being dequeued
241 	 * @deq_flags: %SCX_DEQ_*
242 	 *
243 	 * Remove @p from the BPF scheduler. This is usually called to isolate
244 	 * the task while updating its scheduling properties (e.g. priority).
245 	 *
246 	 * The ext core keeps track of whether the BPF side owns a given task or
247 	 * not and can gracefully ignore spurious dispatches from BPF side,
248 	 * which makes it safe to not implement this method. However, depending
249 	 * on the scheduling logic, this can lead to confusing behaviors - e.g.
250 	 * scheduling position not being updated across a priority change.
251 	 */
252 	void (*dequeue)(struct task_struct *p, u64 deq_flags);
253 
254 	/**
255 	 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
256 	 * @cpu: CPU to dispatch tasks for
257 	 * @prev: previous task being switched out
258 	 *
259 	 * Called when a CPU's local dsq is empty. The operation should dispatch
260 	 * one or more tasks from the BPF scheduler into the DSQs using
261 	 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
262 	 * scx_bpf_consume().
263 	 *
264 	 * The maximum number of times scx_bpf_dispatch() can be called without
265 	 * an intervening scx_bpf_consume() is specified by
266 	 * ops.dispatch_max_batch. See the comments on top of the two functions
267 	 * for more details.
268 	 *
269 	 * When not %NULL, @prev is an SCX task with its slice depleted. If
270 	 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
271 	 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
272 	 * ops.dispatch() returns. To keep executing @prev, return without
273 	 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
274 	 */
275 	void (*dispatch)(s32 cpu, struct task_struct *prev);
276 
277 	/**
278 	 * tick - Periodic tick
279 	 * @p: task running currently
280 	 *
281 	 * This operation is called every 1/HZ seconds on CPUs which are
282 	 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
283 	 * immediate dispatch cycle on the CPU.
284 	 */
285 	void (*tick)(struct task_struct *p);
286 
287 	/**
288 	 * runnable - A task is becoming runnable on its associated CPU
289 	 * @p: task becoming runnable
290 	 * @enq_flags: %SCX_ENQ_*
291 	 *
292 	 * This and the following three functions can be used to track a task's
293 	 * execution state transitions. A task becomes ->runnable() on a CPU,
294 	 * and then goes through one or more ->running() and ->stopping() pairs
295 	 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
296 	 * done running on the CPU.
297 	 *
298 	 * @p is becoming runnable on the CPU because it's
299 	 *
300 	 * - waking up (%SCX_ENQ_WAKEUP)
301 	 * - being moved from another CPU
302 	 * - being restored after temporarily taken off the queue for an
303 	 *   attribute change.
304 	 *
305 	 * This and ->enqueue() are related but not coupled. This operation
306 	 * notifies @p's state transition and may not be followed by ->enqueue()
307 	 * e.g. when @p is being dispatched to a remote CPU, or when @p is
308 	 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
309 	 * task may be ->enqueue()'d without being preceded by this operation
310 	 * e.g. after exhausting its slice.
311 	 */
312 	void (*runnable)(struct task_struct *p, u64 enq_flags);
313 
314 	/**
315 	 * running - A task is starting to run on its associated CPU
316 	 * @p: task starting to run
317 	 *
318 	 * See ->runnable() for explanation on the task state notifiers.
319 	 */
320 	void (*running)(struct task_struct *p);
321 
322 	/**
323 	 * stopping - A task is stopping execution
324 	 * @p: task stopping to run
325 	 * @runnable: is task @p still runnable?
326 	 *
327 	 * See ->runnable() for explanation on the task state notifiers. If
328 	 * !@runnable, ->quiescent() will be invoked after this operation
329 	 * returns.
330 	 */
331 	void (*stopping)(struct task_struct *p, bool runnable);
332 
333 	/**
334 	 * quiescent - A task is becoming not runnable on its associated CPU
335 	 * @p: task becoming not runnable
336 	 * @deq_flags: %SCX_DEQ_*
337 	 *
338 	 * See ->runnable() for explanation on the task state notifiers.
339 	 *
340 	 * @p is becoming quiescent on the CPU because it's
341 	 *
342 	 * - sleeping (%SCX_DEQ_SLEEP)
343 	 * - being moved to another CPU
344 	 * - being temporarily taken off the queue for an attribute change
345 	 *   (%SCX_DEQ_SAVE)
346 	 *
347 	 * This and ->dequeue() are related but not coupled. This operation
348 	 * notifies @p's state transition and may not be preceded by ->dequeue()
349 	 * e.g. when @p is being dispatched to a remote CPU.
350 	 */
351 	void (*quiescent)(struct task_struct *p, u64 deq_flags);
352 
353 	/**
354 	 * yield - Yield CPU
355 	 * @from: yielding task
356 	 * @to: optional yield target task
357 	 *
358 	 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
359 	 * The BPF scheduler should ensure that other available tasks are
360 	 * dispatched before the yielding task. Return value is ignored in this
361 	 * case.
362 	 *
363 	 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
364 	 * scheduler can implement the request, return %true; otherwise, %false.
365 	 */
366 	bool (*yield)(struct task_struct *from, struct task_struct *to);
367 
368 	/**
369 	 * core_sched_before - Task ordering for core-sched
370 	 * @a: task A
371 	 * @b: task B
372 	 *
373 	 * Used by core-sched to determine the ordering between two tasks. See
374 	 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
375 	 * core-sched.
376 	 *
377 	 * Both @a and @b are runnable and may or may not currently be queued on
378 	 * the BPF scheduler. Should return %true if @a should run before @b.
379 	 * %false if there's no required ordering or @b should run before @a.
380 	 *
381 	 * If not specified, the default is ordering them according to when they
382 	 * became runnable.
383 	 */
384 	bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
385 
386 	/**
387 	 * set_weight - Set task weight
388 	 * @p: task to set weight for
389 	 * @weight: new weight [1..10000]
390 	 *
391 	 * Update @p's weight to @weight.
392 	 */
393 	void (*set_weight)(struct task_struct *p, u32 weight);
394 
395 	/**
396 	 * set_cpumask - Set CPU affinity
397 	 * @p: task to set CPU affinity for
398 	 * @cpumask: cpumask of cpus that @p can run on
399 	 *
400 	 * Update @p's CPU affinity to @cpumask.
401 	 */
402 	void (*set_cpumask)(struct task_struct *p,
403 			    const struct cpumask *cpumask);
404 
405 	/**
406 	 * update_idle - Update the idle state of a CPU
407 	 * @cpu: CPU to udpate the idle state for
408 	 * @idle: whether entering or exiting the idle state
409 	 *
410 	 * This operation is called when @rq's CPU goes or leaves the idle
411 	 * state. By default, implementing this operation disables the built-in
412 	 * idle CPU tracking and the following helpers become unavailable:
413 	 *
414 	 * - scx_bpf_select_cpu_dfl()
415 	 * - scx_bpf_test_and_clear_cpu_idle()
416 	 * - scx_bpf_pick_idle_cpu()
417 	 *
418 	 * The user also must implement ops.select_cpu() as the default
419 	 * implementation relies on scx_bpf_select_cpu_dfl().
420 	 *
421 	 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
422 	 * tracking.
423 	 */
424 	void (*update_idle)(s32 cpu, bool idle);
425 
426 	/**
427 	 * cpu_acquire - A CPU is becoming available to the BPF scheduler
428 	 * @cpu: The CPU being acquired by the BPF scheduler.
429 	 * @args: Acquire arguments, see the struct definition.
430 	 *
431 	 * A CPU that was previously released from the BPF scheduler is now once
432 	 * again under its control.
433 	 */
434 	void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
435 
436 	/**
437 	 * cpu_release - A CPU is taken away from the BPF scheduler
438 	 * @cpu: The CPU being released by the BPF scheduler.
439 	 * @args: Release arguments, see the struct definition.
440 	 *
441 	 * The specified CPU is no longer under the control of the BPF
442 	 * scheduler. This could be because it was preempted by a higher
443 	 * priority sched_class, though there may be other reasons as well. The
444 	 * caller should consult @args->reason to determine the cause.
445 	 */
446 	void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
447 
448 	/**
449 	 * init_task - Initialize a task to run in a BPF scheduler
450 	 * @p: task to initialize for BPF scheduling
451 	 * @args: init arguments, see the struct definition
452 	 *
453 	 * Either we're loading a BPF scheduler or a new task is being forked.
454 	 * Initialize @p for BPF scheduling. This operation may block and can
455 	 * be used for allocations, and is called exactly once for a task.
456 	 *
457 	 * Return 0 for success, -errno for failure. An error return while
458 	 * loading will abort loading of the BPF scheduler. During a fork, it
459 	 * will abort that specific fork.
460 	 */
461 	s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
462 
463 	/**
464 	 * exit_task - Exit a previously-running task from the system
465 	 * @p: task to exit
466 	 *
467 	 * @p is exiting or the BPF scheduler is being unloaded. Perform any
468 	 * necessary cleanup for @p.
469 	 */
470 	void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
471 
472 	/**
473 	 * enable - Enable BPF scheduling for a task
474 	 * @p: task to enable BPF scheduling for
475 	 *
476 	 * Enable @p for BPF scheduling. enable() is called on @p any time it
477 	 * enters SCX, and is always paired with a matching disable().
478 	 */
479 	void (*enable)(struct task_struct *p);
480 
481 	/**
482 	 * disable - Disable BPF scheduling for a task
483 	 * @p: task to disable BPF scheduling for
484 	 *
485 	 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
486 	 * Disable BPF scheduling for @p. A disable() call is always matched
487 	 * with a prior enable() call.
488 	 */
489 	void (*disable)(struct task_struct *p);
490 
491 	/**
492 	 * dump - Dump BPF scheduler state on error
493 	 * @ctx: debug dump context
494 	 *
495 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
496 	 */
497 	void (*dump)(struct scx_dump_ctx *ctx);
498 
499 	/**
500 	 * dump_cpu - Dump BPF scheduler state for a CPU on error
501 	 * @ctx: debug dump context
502 	 * @cpu: CPU to generate debug dump for
503 	 * @idle: @cpu is currently idle without any runnable tasks
504 	 *
505 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
506 	 * @cpu. If @idle is %true and this operation doesn't produce any
507 	 * output, @cpu is skipped for dump.
508 	 */
509 	void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
510 
511 	/**
512 	 * dump_task - Dump BPF scheduler state for a runnable task on error
513 	 * @ctx: debug dump context
514 	 * @p: runnable task to generate debug dump for
515 	 *
516 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
517 	 * @p.
518 	 */
519 	void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
520 
521 #ifdef CONFIG_EXT_GROUP_SCHED
522 	/**
523 	 * cgroup_init - Initialize a cgroup
524 	 * @cgrp: cgroup being initialized
525 	 * @args: init arguments, see the struct definition
526 	 *
527 	 * Either the BPF scheduler is being loaded or @cgrp created, initialize
528 	 * @cgrp for sched_ext. This operation may block.
529 	 *
530 	 * Return 0 for success, -errno for failure. An error return while
531 	 * loading will abort loading of the BPF scheduler. During cgroup
532 	 * creation, it will abort the specific cgroup creation.
533 	 */
534 	s32 (*cgroup_init)(struct cgroup *cgrp,
535 			   struct scx_cgroup_init_args *args);
536 
537 	/**
538 	 * cgroup_exit - Exit a cgroup
539 	 * @cgrp: cgroup being exited
540 	 *
541 	 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
542 	 * @cgrp for sched_ext. This operation my block.
543 	 */
544 	void (*cgroup_exit)(struct cgroup *cgrp);
545 
546 	/**
547 	 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
548 	 * @p: task being moved
549 	 * @from: cgroup @p is being moved from
550 	 * @to: cgroup @p is being moved to
551 	 *
552 	 * Prepare @p for move from cgroup @from to @to. This operation may
553 	 * block and can be used for allocations.
554 	 *
555 	 * Return 0 for success, -errno for failure. An error return aborts the
556 	 * migration.
557 	 */
558 	s32 (*cgroup_prep_move)(struct task_struct *p,
559 				struct cgroup *from, struct cgroup *to);
560 
561 	/**
562 	 * cgroup_move - Commit cgroup move
563 	 * @p: task being moved
564 	 * @from: cgroup @p is being moved from
565 	 * @to: cgroup @p is being moved to
566 	 *
567 	 * Commit the move. @p is dequeued during this operation.
568 	 */
569 	void (*cgroup_move)(struct task_struct *p,
570 			    struct cgroup *from, struct cgroup *to);
571 
572 	/**
573 	 * cgroup_cancel_move - Cancel cgroup move
574 	 * @p: task whose cgroup move is being canceled
575 	 * @from: cgroup @p was being moved from
576 	 * @to: cgroup @p was being moved to
577 	 *
578 	 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
579 	 * Undo the preparation.
580 	 */
581 	void (*cgroup_cancel_move)(struct task_struct *p,
582 				   struct cgroup *from, struct cgroup *to);
583 
584 	/**
585 	 * cgroup_set_weight - A cgroup's weight is being changed
586 	 * @cgrp: cgroup whose weight is being updated
587 	 * @weight: new weight [1..10000]
588 	 *
589 	 * Update @tg's weight to @weight.
590 	 */
591 	void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
592 #endif	/* CONFIG_CGROUPS */
593 
594 	/*
595 	 * All online ops must come before ops.cpu_online().
596 	 */
597 
598 	/**
599 	 * cpu_online - A CPU became online
600 	 * @cpu: CPU which just came up
601 	 *
602 	 * @cpu just came online. @cpu will not call ops.enqueue() or
603 	 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
604 	 */
605 	void (*cpu_online)(s32 cpu);
606 
607 	/**
608 	 * cpu_offline - A CPU is going offline
609 	 * @cpu: CPU which is going offline
610 	 *
611 	 * @cpu is going offline. @cpu will not call ops.enqueue() or
612 	 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
613 	 */
614 	void (*cpu_offline)(s32 cpu);
615 
616 	/*
617 	 * All CPU hotplug ops must come before ops.init().
618 	 */
619 
620 	/**
621 	 * init - Initialize the BPF scheduler
622 	 */
623 	s32 (*init)(void);
624 
625 	/**
626 	 * exit - Clean up after the BPF scheduler
627 	 * @info: Exit info
628 	 */
629 	void (*exit)(struct scx_exit_info *info);
630 
631 	/**
632 	 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
633 	 */
634 	u32 dispatch_max_batch;
635 
636 	/**
637 	 * flags - %SCX_OPS_* flags
638 	 */
639 	u64 flags;
640 
641 	/**
642 	 * timeout_ms - The maximum amount of time, in milliseconds, that a
643 	 * runnable task should be able to wait before being scheduled. The
644 	 * maximum timeout may not exceed the default timeout of 30 seconds.
645 	 *
646 	 * Defaults to the maximum allowed timeout value of 30 seconds.
647 	 */
648 	u32 timeout_ms;
649 
650 	/**
651 	 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
652 	 * value of 32768 is used.
653 	 */
654 	u32 exit_dump_len;
655 
656 	/**
657 	 * hotplug_seq - A sequence number that may be set by the scheduler to
658 	 * detect when a hotplug event has occurred during the loading process.
659 	 * If 0, no detection occurs. Otherwise, the scheduler will fail to
660 	 * load if the sequence number does not match @scx_hotplug_seq on the
661 	 * enable path.
662 	 */
663 	u64 hotplug_seq;
664 
665 	/**
666 	 * name - BPF scheduler's name
667 	 *
668 	 * Must be a non-zero valid BPF object name including only isalnum(),
669 	 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
670 	 * BPF scheduler is enabled.
671 	 */
672 	char name[SCX_OPS_NAME_LEN];
673 };
674 
675 enum scx_opi {
676 	SCX_OPI_BEGIN			= 0,
677 	SCX_OPI_NORMAL_BEGIN		= 0,
678 	SCX_OPI_NORMAL_END		= SCX_OP_IDX(cpu_online),
679 	SCX_OPI_CPU_HOTPLUG_BEGIN	= SCX_OP_IDX(cpu_online),
680 	SCX_OPI_CPU_HOTPLUG_END		= SCX_OP_IDX(init),
681 	SCX_OPI_END			= SCX_OP_IDX(init),
682 };
683 
684 enum scx_wake_flags {
685 	/* expose select WF_* flags as enums */
686 	SCX_WAKE_FORK		= WF_FORK,
687 	SCX_WAKE_TTWU		= WF_TTWU,
688 	SCX_WAKE_SYNC		= WF_SYNC,
689 };
690 
691 enum scx_enq_flags {
692 	/* expose select ENQUEUE_* flags as enums */
693 	SCX_ENQ_WAKEUP		= ENQUEUE_WAKEUP,
694 	SCX_ENQ_HEAD		= ENQUEUE_HEAD,
695 
696 	/* high 32bits are SCX specific */
697 
698 	/*
699 	 * Set the following to trigger preemption when calling
700 	 * scx_bpf_dispatch() with a local dsq as the target. The slice of the
701 	 * current task is cleared to zero and the CPU is kicked into the
702 	 * scheduling path. Implies %SCX_ENQ_HEAD.
703 	 */
704 	SCX_ENQ_PREEMPT		= 1LLU << 32,
705 
706 	/*
707 	 * The task being enqueued was previously enqueued on the current CPU's
708 	 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
709 	 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
710 	 * invoked in a ->cpu_release() callback, and the task is again
711 	 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
712 	 * task will not be scheduled on the CPU until at least the next invocation
713 	 * of the ->cpu_acquire() callback.
714 	 */
715 	SCX_ENQ_REENQ		= 1LLU << 40,
716 
717 	/*
718 	 * The task being enqueued is the only task available for the cpu. By
719 	 * default, ext core keeps executing such tasks but when
720 	 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
721 	 * %SCX_ENQ_LAST flag set.
722 	 *
723 	 * The BPF scheduler is responsible for triggering a follow-up
724 	 * scheduling event. Otherwise, Execution may stall.
725 	 */
726 	SCX_ENQ_LAST		= 1LLU << 41,
727 
728 	/* high 8 bits are internal */
729 	__SCX_ENQ_INTERNAL_MASK	= 0xffLLU << 56,
730 
731 	SCX_ENQ_CLEAR_OPSS	= 1LLU << 56,
732 	SCX_ENQ_DSQ_PRIQ	= 1LLU << 57,
733 };
734 
735 enum scx_deq_flags {
736 	/* expose select DEQUEUE_* flags as enums */
737 	SCX_DEQ_SLEEP		= DEQUEUE_SLEEP,
738 
739 	/* high 32bits are SCX specific */
740 
741 	/*
742 	 * The generic core-sched layer decided to execute the task even though
743 	 * it hasn't been dispatched yet. Dequeue from the BPF side.
744 	 */
745 	SCX_DEQ_CORE_SCHED_EXEC	= 1LLU << 32,
746 };
747 
748 enum scx_pick_idle_cpu_flags {
749 	SCX_PICK_IDLE_CORE	= 1LLU << 0,	/* pick a CPU whose SMT siblings are also idle */
750 };
751 
752 enum scx_kick_flags {
753 	/*
754 	 * Kick the target CPU if idle. Guarantees that the target CPU goes
755 	 * through at least one full scheduling cycle before going idle. If the
756 	 * target CPU can be determined to be currently not idle and going to go
757 	 * through a scheduling cycle before going idle, noop.
758 	 */
759 	SCX_KICK_IDLE		= 1LLU << 0,
760 
761 	/*
762 	 * Preempt the current task and execute the dispatch path. If the
763 	 * current task of the target CPU is an SCX task, its ->scx.slice is
764 	 * cleared to zero before the scheduling path is invoked so that the
765 	 * task expires and the dispatch path is invoked.
766 	 */
767 	SCX_KICK_PREEMPT	= 1LLU << 1,
768 
769 	/*
770 	 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
771 	 * return after the target CPU finishes picking the next task.
772 	 */
773 	SCX_KICK_WAIT		= 1LLU << 2,
774 };
775 
776 enum scx_tg_flags {
777 	SCX_TG_ONLINE		= 1U << 0,
778 	SCX_TG_INITED		= 1U << 1,
779 };
780 
781 enum scx_ops_enable_state {
782 	SCX_OPS_ENABLING,
783 	SCX_OPS_ENABLED,
784 	SCX_OPS_DISABLING,
785 	SCX_OPS_DISABLED,
786 };
787 
788 static const char *scx_ops_enable_state_str[] = {
789 	[SCX_OPS_ENABLING]	= "enabling",
790 	[SCX_OPS_ENABLED]	= "enabled",
791 	[SCX_OPS_DISABLING]	= "disabling",
792 	[SCX_OPS_DISABLED]	= "disabled",
793 };
794 
795 /*
796  * sched_ext_entity->ops_state
797  *
798  * Used to track the task ownership between the SCX core and the BPF scheduler.
799  * State transitions look as follows:
800  *
801  * NONE -> QUEUEING -> QUEUED -> DISPATCHING
802  *   ^              |                 |
803  *   |              v                 v
804  *   \-------------------------------/
805  *
806  * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
807  * sites for explanations on the conditions being waited upon and why they are
808  * safe. Transitions out of them into NONE or QUEUED must store_release and the
809  * waiters should load_acquire.
810  *
811  * Tracking scx_ops_state enables sched_ext core to reliably determine whether
812  * any given task can be dispatched by the BPF scheduler at all times and thus
813  * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
814  * to try to dispatch any task anytime regardless of its state as the SCX core
815  * can safely reject invalid dispatches.
816  */
817 enum scx_ops_state {
818 	SCX_OPSS_NONE,		/* owned by the SCX core */
819 	SCX_OPSS_QUEUEING,	/* in transit to the BPF scheduler */
820 	SCX_OPSS_QUEUED,	/* owned by the BPF scheduler */
821 	SCX_OPSS_DISPATCHING,	/* in transit back to the SCX core */
822 
823 	/*
824 	 * QSEQ brands each QUEUED instance so that, when dispatch races
825 	 * dequeue/requeue, the dispatcher can tell whether it still has a claim
826 	 * on the task being dispatched.
827 	 *
828 	 * As some 32bit archs can't do 64bit store_release/load_acquire,
829 	 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
830 	 * 32bit machines. The dispatch race window QSEQ protects is very narrow
831 	 * and runs with IRQ disabled. 30 bits should be sufficient.
832 	 */
833 	SCX_OPSS_QSEQ_SHIFT	= 2,
834 };
835 
836 /* Use macros to ensure that the type is unsigned long for the masks */
837 #define SCX_OPSS_STATE_MASK	((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
838 #define SCX_OPSS_QSEQ_MASK	(~SCX_OPSS_STATE_MASK)
839 
840 /*
841  * During exit, a task may schedule after losing its PIDs. When disabling the
842  * BPF scheduler, we need to be able to iterate tasks in every state to
843  * guarantee system safety. Maintain a dedicated task list which contains every
844  * task between its fork and eventual free.
845  */
846 static DEFINE_SPINLOCK(scx_tasks_lock);
847 static LIST_HEAD(scx_tasks);
848 
849 /* ops enable/disable */
850 static struct kthread_worker *scx_ops_helper;
851 static DEFINE_MUTEX(scx_ops_enable_mutex);
852 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
853 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
854 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
855 static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0);
856 static bool scx_ops_init_task_enabled;
857 static bool scx_switching_all;
858 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
859 
860 static struct sched_ext_ops scx_ops;
861 static bool scx_warned_zero_slice;
862 
863 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
864 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
865 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
866 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
867 
868 static struct static_key_false scx_has_op[SCX_OPI_END] =
869 	{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
870 
871 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
872 static struct scx_exit_info *scx_exit_info;
873 
874 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
875 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
876 
877 /*
878  * A monotically increasing sequence number that is incremented every time a
879  * scheduler is enabled. This can be used by to check if any custom sched_ext
880  * scheduler has ever been used in the system.
881  */
882 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
883 
884 /*
885  * The maximum amount of time in jiffies that a task may be runnable without
886  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
887  * scx_ops_error().
888  */
889 static unsigned long scx_watchdog_timeout;
890 
891 /*
892  * The last time the delayed work was run. This delayed work relies on
893  * ksoftirqd being able to run to service timer interrupts, so it's possible
894  * that this work itself could get wedged. To account for this, we check that
895  * it's not stalled in the timer tick, and trigger an error if it is.
896  */
897 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
898 
899 static struct delayed_work scx_watchdog_work;
900 
901 /* idle tracking */
902 #ifdef CONFIG_SMP
903 #ifdef CONFIG_CPUMASK_OFFSTACK
904 #define CL_ALIGNED_IF_ONSTACK
905 #else
906 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
907 #endif
908 
909 static struct {
910 	cpumask_var_t cpu;
911 	cpumask_var_t smt;
912 } idle_masks CL_ALIGNED_IF_ONSTACK;
913 
914 #endif	/* CONFIG_SMP */
915 
916 /* for %SCX_KICK_WAIT */
917 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
918 
919 /*
920  * Direct dispatch marker.
921  *
922  * Non-NULL values are used for direct dispatch from enqueue path. A valid
923  * pointer points to the task currently being enqueued. An ERR_PTR value is used
924  * to indicate that direct dispatch has already happened.
925  */
926 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
927 
928 /*
929  * Dispatch queues.
930  *
931  * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
932  * to avoid live-locking in bypass mode where all tasks are dispatched to
933  * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
934  * sufficient, it can be further split.
935  */
936 static struct scx_dispatch_q **global_dsqs;
937 
938 static const struct rhashtable_params dsq_hash_params = {
939 	.key_len		= 8,
940 	.key_offset		= offsetof(struct scx_dispatch_q, id),
941 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
942 };
943 
944 static struct rhashtable dsq_hash;
945 static LLIST_HEAD(dsqs_to_free);
946 
947 /* dispatch buf */
948 struct scx_dsp_buf_ent {
949 	struct task_struct	*task;
950 	unsigned long		qseq;
951 	u64			dsq_id;
952 	u64			enq_flags;
953 };
954 
955 static u32 scx_dsp_max_batch;
956 
957 struct scx_dsp_ctx {
958 	struct rq		*rq;
959 	u32			cursor;
960 	u32			nr_tasks;
961 	struct scx_dsp_buf_ent	buf[];
962 };
963 
964 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
965 
966 /* string formatting from BPF */
967 struct scx_bstr_buf {
968 	u64			data[MAX_BPRINTF_VARARGS];
969 	char			line[SCX_EXIT_MSG_LEN];
970 };
971 
972 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
973 static struct scx_bstr_buf scx_exit_bstr_buf;
974 
975 /* ops debug dump */
976 struct scx_dump_data {
977 	s32			cpu;
978 	bool			first;
979 	s32			cursor;
980 	struct seq_buf		*s;
981 	const char		*prefix;
982 	struct scx_bstr_buf	buf;
983 };
984 
985 static struct scx_dump_data scx_dump_data = {
986 	.cpu			= -1,
987 };
988 
989 /* /sys/kernel/sched_ext interface */
990 static struct kset *scx_kset;
991 static struct kobject *scx_root_kobj;
992 
993 #define CREATE_TRACE_POINTS
994 #include <trace/events/sched_ext.h>
995 
996 static void process_ddsp_deferred_locals(struct rq *rq);
997 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
998 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
999 					     s64 exit_code,
1000 					     const char *fmt, ...);
1001 
1002 #define scx_ops_error_kind(err, fmt, args...)					\
1003 	scx_ops_exit_kind((err), 0, fmt, ##args)
1004 
1005 #define scx_ops_exit(code, fmt, args...)					\
1006 	scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1007 
1008 #define scx_ops_error(fmt, args...)						\
1009 	scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1010 
1011 #define SCX_HAS_OP(op)	static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1012 
1013 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1014 {
1015 	if (time_after(at, now))
1016 		return jiffies_to_msecs(at - now);
1017 	else
1018 		return -(long)jiffies_to_msecs(now - at);
1019 }
1020 
1021 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
1022 static u32 higher_bits(u32 flags)
1023 {
1024 	return ~((1 << fls(flags)) - 1);
1025 }
1026 
1027 /* return the mask with only the highest bit set */
1028 static u32 highest_bit(u32 flags)
1029 {
1030 	int bit = fls(flags);
1031 	return ((u64)1 << bit) >> 1;
1032 }
1033 
1034 static bool u32_before(u32 a, u32 b)
1035 {
1036 	return (s32)(a - b) < 0;
1037 }
1038 
1039 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1040 {
1041 	return global_dsqs[cpu_to_node(task_cpu(p))];
1042 }
1043 
1044 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1045 {
1046 	return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1047 }
1048 
1049 /*
1050  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1051  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1052  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1053  * whether it's running from an allowed context.
1054  *
1055  * @mask is constant, always inline to cull the mask calculations.
1056  */
1057 static __always_inline void scx_kf_allow(u32 mask)
1058 {
1059 	/* nesting is allowed only in increasing scx_kf_mask order */
1060 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1061 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1062 		  current->scx.kf_mask, mask);
1063 	current->scx.kf_mask |= mask;
1064 	barrier();
1065 }
1066 
1067 static void scx_kf_disallow(u32 mask)
1068 {
1069 	barrier();
1070 	current->scx.kf_mask &= ~mask;
1071 }
1072 
1073 #define SCX_CALL_OP(mask, op, args...)						\
1074 do {										\
1075 	if (mask) {								\
1076 		scx_kf_allow(mask);						\
1077 		scx_ops.op(args);						\
1078 		scx_kf_disallow(mask);						\
1079 	} else {								\
1080 		scx_ops.op(args);						\
1081 	}									\
1082 } while (0)
1083 
1084 #define SCX_CALL_OP_RET(mask, op, args...)					\
1085 ({										\
1086 	__typeof__(scx_ops.op(args)) __ret;					\
1087 	if (mask) {								\
1088 		scx_kf_allow(mask);						\
1089 		__ret = scx_ops.op(args);					\
1090 		scx_kf_disallow(mask);						\
1091 	} else {								\
1092 		__ret = scx_ops.op(args);					\
1093 	}									\
1094 	__ret;									\
1095 })
1096 
1097 /*
1098  * Some kfuncs are allowed only on the tasks that are subjects of the
1099  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1100  * restrictions, the following SCX_CALL_OP_*() variants should be used when
1101  * invoking scx_ops operations that take task arguments. These can only be used
1102  * for non-nesting operations due to the way the tasks are tracked.
1103  *
1104  * kfuncs which can only operate on such tasks can in turn use
1105  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1106  * the specific task.
1107  */
1108 #define SCX_CALL_OP_TASK(mask, op, task, args...)				\
1109 do {										\
1110 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1111 	current->scx.kf_tasks[0] = task;					\
1112 	SCX_CALL_OP(mask, op, task, ##args);					\
1113 	current->scx.kf_tasks[0] = NULL;					\
1114 } while (0)
1115 
1116 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...)				\
1117 ({										\
1118 	__typeof__(scx_ops.op(task, ##args)) __ret;				\
1119 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1120 	current->scx.kf_tasks[0] = task;					\
1121 	__ret = SCX_CALL_OP_RET(mask, op, task, ##args);			\
1122 	current->scx.kf_tasks[0] = NULL;					\
1123 	__ret;									\
1124 })
1125 
1126 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)			\
1127 ({										\
1128 	__typeof__(scx_ops.op(task0, task1, ##args)) __ret;			\
1129 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1130 	current->scx.kf_tasks[0] = task0;					\
1131 	current->scx.kf_tasks[1] = task1;					\
1132 	__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);		\
1133 	current->scx.kf_tasks[0] = NULL;					\
1134 	current->scx.kf_tasks[1] = NULL;					\
1135 	__ret;									\
1136 })
1137 
1138 /* @mask is constant, always inline to cull unnecessary branches */
1139 static __always_inline bool scx_kf_allowed(u32 mask)
1140 {
1141 	if (unlikely(!(current->scx.kf_mask & mask))) {
1142 		scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1143 			      mask, current->scx.kf_mask);
1144 		return false;
1145 	}
1146 
1147 	/*
1148 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1149 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
1150 	 * inside ops.dispatch(). We don't need to check boundaries for any
1151 	 * blocking kfuncs as the verifier ensures they're only called from
1152 	 * sleepable progs.
1153 	 */
1154 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1155 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1156 		scx_ops_error("cpu_release kfunc called from a nested operation");
1157 		return false;
1158 	}
1159 
1160 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1161 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1162 		scx_ops_error("dispatch kfunc called from a nested operation");
1163 		return false;
1164 	}
1165 
1166 	return true;
1167 }
1168 
1169 /* see SCX_CALL_OP_TASK() */
1170 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1171 							struct task_struct *p)
1172 {
1173 	if (!scx_kf_allowed(mask))
1174 		return false;
1175 
1176 	if (unlikely((p != current->scx.kf_tasks[0] &&
1177 		      p != current->scx.kf_tasks[1]))) {
1178 		scx_ops_error("called on a task not being operated on");
1179 		return false;
1180 	}
1181 
1182 	return true;
1183 }
1184 
1185 static bool scx_kf_allowed_if_unlocked(void)
1186 {
1187 	return !current->scx.kf_mask;
1188 }
1189 
1190 /**
1191  * nldsq_next_task - Iterate to the next task in a non-local DSQ
1192  * @dsq: user dsq being interated
1193  * @cur: current position, %NULL to start iteration
1194  * @rev: walk backwards
1195  *
1196  * Returns %NULL when iteration is finished.
1197  */
1198 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1199 					   struct task_struct *cur, bool rev)
1200 {
1201 	struct list_head *list_node;
1202 	struct scx_dsq_list_node *dsq_lnode;
1203 
1204 	lockdep_assert_held(&dsq->lock);
1205 
1206 	if (cur)
1207 		list_node = &cur->scx.dsq_list.node;
1208 	else
1209 		list_node = &dsq->list;
1210 
1211 	/* find the next task, need to skip BPF iteration cursors */
1212 	do {
1213 		if (rev)
1214 			list_node = list_node->prev;
1215 		else
1216 			list_node = list_node->next;
1217 
1218 		if (list_node == &dsq->list)
1219 			return NULL;
1220 
1221 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1222 					 node);
1223 	} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1224 
1225 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1226 }
1227 
1228 #define nldsq_for_each_task(p, dsq)						\
1229 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
1230 	     (p) = nldsq_next_task((dsq), (p), false))
1231 
1232 
1233 /*
1234  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1235  * dispatch order. BPF-visible iterator is opaque and larger to allow future
1236  * changes without breaking backward compatibility. Can be used with
1237  * bpf_for_each(). See bpf_iter_scx_dsq_*().
1238  */
1239 enum scx_dsq_iter_flags {
1240 	/* iterate in the reverse dispatch order */
1241 	SCX_DSQ_ITER_REV		= 1U << 16,
1242 
1243 	__SCX_DSQ_ITER_HAS_SLICE	= 1U << 30,
1244 	__SCX_DSQ_ITER_HAS_VTIME	= 1U << 31,
1245 
1246 	__SCX_DSQ_ITER_USER_FLAGS	= SCX_DSQ_ITER_REV,
1247 	__SCX_DSQ_ITER_ALL_FLAGS	= __SCX_DSQ_ITER_USER_FLAGS |
1248 					  __SCX_DSQ_ITER_HAS_SLICE |
1249 					  __SCX_DSQ_ITER_HAS_VTIME,
1250 };
1251 
1252 struct bpf_iter_scx_dsq_kern {
1253 	struct scx_dsq_list_node	cursor;
1254 	struct scx_dispatch_q		*dsq;
1255 	u64				slice;
1256 	u64				vtime;
1257 } __attribute__((aligned(8)));
1258 
1259 struct bpf_iter_scx_dsq {
1260 	u64				__opaque[6];
1261 } __attribute__((aligned(8)));
1262 
1263 
1264 /*
1265  * SCX task iterator.
1266  */
1267 struct scx_task_iter {
1268 	struct sched_ext_entity		cursor;
1269 	struct task_struct		*locked;
1270 	struct rq			*rq;
1271 	struct rq_flags			rf;
1272 };
1273 
1274 /**
1275  * scx_task_iter_init - Initialize a task iterator
1276  * @iter: iterator to init
1277  *
1278  * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized,
1279  * @iter must eventually be exited with scx_task_iter_exit().
1280  *
1281  * scx_tasks_lock may be released between this and the first next() call or
1282  * between any two next() calls. If scx_tasks_lock is released between two
1283  * next() calls, the caller is responsible for ensuring that the task being
1284  * iterated remains accessible either through RCU read lock or obtaining a
1285  * reference count.
1286  *
1287  * All tasks which existed when the iteration started are guaranteed to be
1288  * visited as long as they still exist.
1289  */
1290 static void scx_task_iter_init(struct scx_task_iter *iter)
1291 {
1292 	lockdep_assert_held(&scx_tasks_lock);
1293 
1294 	BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1295 		     ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1296 
1297 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1298 	list_add(&iter->cursor.tasks_node, &scx_tasks);
1299 	iter->locked = NULL;
1300 }
1301 
1302 /**
1303  * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator
1304  * @iter: iterator to unlock rq for
1305  *
1306  * If @iter is in the middle of a locked iteration, it may be locking the rq of
1307  * the task currently being visited. Unlock the rq if so. This function can be
1308  * safely called anytime during an iteration.
1309  *
1310  * Returns %true if the rq @iter was locking is unlocked. %false if @iter was
1311  * not locking an rq.
1312  */
1313 static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1314 {
1315 	if (iter->locked) {
1316 		task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1317 		iter->locked = NULL;
1318 		return true;
1319 	} else {
1320 		return false;
1321 	}
1322 }
1323 
1324 /**
1325  * scx_task_iter_exit - Exit a task iterator
1326  * @iter: iterator to exit
1327  *
1328  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held.
1329  * If the iterator holds a task's rq lock, that rq lock is released. See
1330  * scx_task_iter_init() for details.
1331  */
1332 static void scx_task_iter_exit(struct scx_task_iter *iter)
1333 {
1334 	lockdep_assert_held(&scx_tasks_lock);
1335 
1336 	scx_task_iter_rq_unlock(iter);
1337 	list_del_init(&iter->cursor.tasks_node);
1338 }
1339 
1340 /**
1341  * scx_task_iter_next - Next task
1342  * @iter: iterator to walk
1343  *
1344  * Visit the next task. See scx_task_iter_init() for details.
1345  */
1346 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1347 {
1348 	struct list_head *cursor = &iter->cursor.tasks_node;
1349 	struct sched_ext_entity *pos;
1350 
1351 	lockdep_assert_held(&scx_tasks_lock);
1352 
1353 	list_for_each_entry(pos, cursor, tasks_node) {
1354 		if (&pos->tasks_node == &scx_tasks)
1355 			return NULL;
1356 		if (!(pos->flags & SCX_TASK_CURSOR)) {
1357 			list_move(cursor, &pos->tasks_node);
1358 			return container_of(pos, struct task_struct, scx);
1359 		}
1360 	}
1361 
1362 	/* can't happen, should always terminate at scx_tasks above */
1363 	BUG();
1364 }
1365 
1366 /**
1367  * scx_task_iter_next_locked - Next non-idle task with its rq locked
1368  * @iter: iterator to walk
1369  * @include_dead: Whether we should include dead tasks in the iteration
1370  *
1371  * Visit the non-idle task with its rq lock held. Allows callers to specify
1372  * whether they would like to filter out dead tasks. See scx_task_iter_init()
1373  * for details.
1374  */
1375 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1376 {
1377 	struct task_struct *p;
1378 
1379 	scx_task_iter_rq_unlock(iter);
1380 
1381 	while ((p = scx_task_iter_next(iter))) {
1382 		/*
1383 		 * scx_task_iter is used to prepare and move tasks into SCX
1384 		 * while loading the BPF scheduler and vice-versa while
1385 		 * unloading. The init_tasks ("swappers") should be excluded
1386 		 * from the iteration because:
1387 		 *
1388 		 * - It's unsafe to use __setschduler_prio() on an init_task to
1389 		 *   determine the sched_class to use as it won't preserve its
1390 		 *   idle_sched_class.
1391 		 *
1392 		 * - ops.init/exit_task() can easily be confused if called with
1393 		 *   init_tasks as they, e.g., share PID 0.
1394 		 *
1395 		 * As init_tasks are never scheduled through SCX, they can be
1396 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1397 		 * doesn't work here:
1398 		 *
1399 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1400 		 *   yet been onlined.
1401 		 *
1402 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1403 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
1404 		 *
1405 		 * Test for idle_sched_class as only init_tasks are on it.
1406 		 */
1407 		if (p->sched_class != &idle_sched_class)
1408 			break;
1409 	}
1410 	if (!p)
1411 		return NULL;
1412 
1413 	iter->rq = task_rq_lock(p, &iter->rf);
1414 	iter->locked = p;
1415 
1416 	return p;
1417 }
1418 
1419 static enum scx_ops_enable_state scx_ops_enable_state(void)
1420 {
1421 	return atomic_read(&scx_ops_enable_state_var);
1422 }
1423 
1424 static enum scx_ops_enable_state
1425 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1426 {
1427 	return atomic_xchg(&scx_ops_enable_state_var, to);
1428 }
1429 
1430 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1431 					enum scx_ops_enable_state from)
1432 {
1433 	int from_v = from;
1434 
1435 	return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1436 }
1437 
1438 static bool scx_rq_bypassing(struct rq *rq)
1439 {
1440 	return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1441 }
1442 
1443 /**
1444  * wait_ops_state - Busy-wait the specified ops state to end
1445  * @p: target task
1446  * @opss: state to wait the end of
1447  *
1448  * Busy-wait for @p to transition out of @opss. This can only be used when the
1449  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1450  * has load_acquire semantics to ensure that the caller can see the updates made
1451  * in the enqueueing and dispatching paths.
1452  */
1453 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1454 {
1455 	do {
1456 		cpu_relax();
1457 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1458 }
1459 
1460 /**
1461  * ops_cpu_valid - Verify a cpu number
1462  * @cpu: cpu number which came from a BPF ops
1463  * @where: extra information reported on error
1464  *
1465  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1466  * Verify that it is in range and one of the possible cpus. If invalid, trigger
1467  * an ops error.
1468  */
1469 static bool ops_cpu_valid(s32 cpu, const char *where)
1470 {
1471 	if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1472 		return true;
1473 	} else {
1474 		scx_ops_error("invalid CPU %d%s%s", cpu,
1475 			      where ? " " : "", where ?: "");
1476 		return false;
1477 	}
1478 }
1479 
1480 /**
1481  * ops_sanitize_err - Sanitize a -errno value
1482  * @ops_name: operation to blame on failure
1483  * @err: -errno value to sanitize
1484  *
1485  * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1486  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1487  * cause misbehaviors. For an example, a large negative return from
1488  * ops.init_task() triggers an oops when passed up the call chain because the
1489  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1490  * handled as a pointer.
1491  */
1492 static int ops_sanitize_err(const char *ops_name, s32 err)
1493 {
1494 	if (err < 0 && err >= -MAX_ERRNO)
1495 		return err;
1496 
1497 	scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1498 	return -EPROTO;
1499 }
1500 
1501 static void run_deferred(struct rq *rq)
1502 {
1503 	process_ddsp_deferred_locals(rq);
1504 }
1505 
1506 #ifdef CONFIG_SMP
1507 static void deferred_bal_cb_workfn(struct rq *rq)
1508 {
1509 	run_deferred(rq);
1510 }
1511 #endif
1512 
1513 static void deferred_irq_workfn(struct irq_work *irq_work)
1514 {
1515 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1516 
1517 	raw_spin_rq_lock(rq);
1518 	run_deferred(rq);
1519 	raw_spin_rq_unlock(rq);
1520 }
1521 
1522 /**
1523  * schedule_deferred - Schedule execution of deferred actions on an rq
1524  * @rq: target rq
1525  *
1526  * Schedule execution of deferred actions on @rq. Must be called with @rq
1527  * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1528  * can unlock @rq to e.g. migrate tasks to other rqs.
1529  */
1530 static void schedule_deferred(struct rq *rq)
1531 {
1532 	lockdep_assert_rq_held(rq);
1533 
1534 #ifdef CONFIG_SMP
1535 	/*
1536 	 * If in the middle of waking up a task, task_woken_scx() will be called
1537 	 * afterwards which will then run the deferred actions, no need to
1538 	 * schedule anything.
1539 	 */
1540 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1541 		return;
1542 
1543 	/*
1544 	 * If in balance, the balance callbacks will be called before rq lock is
1545 	 * released. Schedule one.
1546 	 */
1547 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1548 		queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1549 				       deferred_bal_cb_workfn);
1550 		return;
1551 	}
1552 #endif
1553 	/*
1554 	 * No scheduler hooks available. Queue an irq work. They are executed on
1555 	 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1556 	 * The above WAKEUP and BALANCE paths should cover most of the cases and
1557 	 * the time to IRQ re-enable shouldn't be long.
1558 	 */
1559 	irq_work_queue(&rq->scx.deferred_irq_work);
1560 }
1561 
1562 /**
1563  * touch_core_sched - Update timestamp used for core-sched task ordering
1564  * @rq: rq to read clock from, must be locked
1565  * @p: task to update the timestamp for
1566  *
1567  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1568  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1569  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1570  * exhaustion).
1571  */
1572 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1573 {
1574 	lockdep_assert_rq_held(rq);
1575 
1576 #ifdef CONFIG_SCHED_CORE
1577 	/*
1578 	 * It's okay to update the timestamp spuriously. Use
1579 	 * sched_core_disabled() which is cheaper than enabled().
1580 	 *
1581 	 * As this is used to determine ordering between tasks of sibling CPUs,
1582 	 * it may be better to use per-core dispatch sequence instead.
1583 	 */
1584 	if (!sched_core_disabled())
1585 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1586 #endif
1587 }
1588 
1589 /**
1590  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1591  * @rq: rq to read clock from, must be locked
1592  * @p: task being dispatched
1593  *
1594  * If the BPF scheduler implements custom core-sched ordering via
1595  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1596  * ordering within each local DSQ. This function is called from dispatch paths
1597  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1598  */
1599 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1600 {
1601 	lockdep_assert_rq_held(rq);
1602 
1603 #ifdef CONFIG_SCHED_CORE
1604 	if (SCX_HAS_OP(core_sched_before))
1605 		touch_core_sched(rq, p);
1606 #endif
1607 }
1608 
1609 static void update_curr_scx(struct rq *rq)
1610 {
1611 	struct task_struct *curr = rq->curr;
1612 	s64 delta_exec;
1613 
1614 	delta_exec = update_curr_common(rq);
1615 	if (unlikely(delta_exec <= 0))
1616 		return;
1617 
1618 	if (curr->scx.slice != SCX_SLICE_INF) {
1619 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1620 		if (!curr->scx.slice)
1621 			touch_core_sched(rq, curr);
1622 	}
1623 }
1624 
1625 static bool scx_dsq_priq_less(struct rb_node *node_a,
1626 			      const struct rb_node *node_b)
1627 {
1628 	const struct task_struct *a =
1629 		container_of(node_a, struct task_struct, scx.dsq_priq);
1630 	const struct task_struct *b =
1631 		container_of(node_b, struct task_struct, scx.dsq_priq);
1632 
1633 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1634 }
1635 
1636 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1637 {
1638 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1639 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
1640 }
1641 
1642 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1643 			     u64 enq_flags)
1644 {
1645 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
1646 
1647 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1648 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1649 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
1650 
1651 	if (!is_local) {
1652 		raw_spin_lock(&dsq->lock);
1653 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1654 			scx_ops_error("attempting to dispatch to a destroyed dsq");
1655 			/* fall back to the global dsq */
1656 			raw_spin_unlock(&dsq->lock);
1657 			dsq = find_global_dsq(p);
1658 			raw_spin_lock(&dsq->lock);
1659 		}
1660 	}
1661 
1662 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1663 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1664 		/*
1665 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1666 		 * their FIFO queues. To avoid confusion and accidentally
1667 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1668 		 * disallow any internal DSQ from doing vtime ordering of
1669 		 * tasks.
1670 		 */
1671 		scx_ops_error("cannot use vtime ordering for built-in DSQs");
1672 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1673 	}
1674 
1675 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1676 		struct rb_node *rbp;
1677 
1678 		/*
1679 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1680 		 * linked to both the rbtree and list on PRIQs, this can only be
1681 		 * tested easily when adding the first task.
1682 		 */
1683 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1684 			     nldsq_next_task(dsq, NULL, false)))
1685 			scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1686 				      dsq->id);
1687 
1688 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1689 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1690 
1691 		/*
1692 		 * Find the previous task and insert after it on the list so
1693 		 * that @dsq->list is vtime ordered.
1694 		 */
1695 		rbp = rb_prev(&p->scx.dsq_priq);
1696 		if (rbp) {
1697 			struct task_struct *prev =
1698 				container_of(rbp, struct task_struct,
1699 					     scx.dsq_priq);
1700 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1701 		} else {
1702 			list_add(&p->scx.dsq_list.node, &dsq->list);
1703 		}
1704 	} else {
1705 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1706 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1707 			scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1708 				      dsq->id);
1709 
1710 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1711 			list_add(&p->scx.dsq_list.node, &dsq->list);
1712 		else
1713 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1714 	}
1715 
1716 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
1717 	dsq->seq++;
1718 	p->scx.dsq_seq = dsq->seq;
1719 
1720 	dsq_mod_nr(dsq, 1);
1721 	p->scx.dsq = dsq;
1722 
1723 	/*
1724 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1725 	 * direct dispatch path, but we clear them here because the direct
1726 	 * dispatch verdict may be overridden on the enqueue path during e.g.
1727 	 * bypass.
1728 	 */
1729 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1730 	p->scx.ddsp_enq_flags = 0;
1731 
1732 	/*
1733 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1734 	 * match waiters' load_acquire.
1735 	 */
1736 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1737 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1738 
1739 	if (is_local) {
1740 		struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1741 		bool preempt = false;
1742 
1743 		if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1744 		    rq->curr->sched_class == &ext_sched_class) {
1745 			rq->curr->scx.slice = 0;
1746 			preempt = true;
1747 		}
1748 
1749 		if (preempt || sched_class_above(&ext_sched_class,
1750 						 rq->curr->sched_class))
1751 			resched_curr(rq);
1752 	} else {
1753 		raw_spin_unlock(&dsq->lock);
1754 	}
1755 }
1756 
1757 static void task_unlink_from_dsq(struct task_struct *p,
1758 				 struct scx_dispatch_q *dsq)
1759 {
1760 	WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1761 
1762 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1763 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
1764 		RB_CLEAR_NODE(&p->scx.dsq_priq);
1765 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1766 	}
1767 
1768 	list_del_init(&p->scx.dsq_list.node);
1769 	dsq_mod_nr(dsq, -1);
1770 }
1771 
1772 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1773 {
1774 	struct scx_dispatch_q *dsq = p->scx.dsq;
1775 	bool is_local = dsq == &rq->scx.local_dsq;
1776 
1777 	if (!dsq) {
1778 		/*
1779 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1780 		 * Unlinking is all that's needed to cancel.
1781 		 */
1782 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1783 			list_del_init(&p->scx.dsq_list.node);
1784 
1785 		/*
1786 		 * When dispatching directly from the BPF scheduler to a local
1787 		 * DSQ, the task isn't associated with any DSQ but
1788 		 * @p->scx.holding_cpu may be set under the protection of
1789 		 * %SCX_OPSS_DISPATCHING.
1790 		 */
1791 		if (p->scx.holding_cpu >= 0)
1792 			p->scx.holding_cpu = -1;
1793 
1794 		return;
1795 	}
1796 
1797 	if (!is_local)
1798 		raw_spin_lock(&dsq->lock);
1799 
1800 	/*
1801 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1802 	 * change underneath us.
1803 	*/
1804 	if (p->scx.holding_cpu < 0) {
1805 		/* @p must still be on @dsq, dequeue */
1806 		task_unlink_from_dsq(p, dsq);
1807 	} else {
1808 		/*
1809 		 * We're racing against dispatch_to_local_dsq() which already
1810 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1811 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1812 		 * the race.
1813 		 */
1814 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1815 		p->scx.holding_cpu = -1;
1816 	}
1817 	p->scx.dsq = NULL;
1818 
1819 	if (!is_local)
1820 		raw_spin_unlock(&dsq->lock);
1821 }
1822 
1823 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1824 						    struct task_struct *p)
1825 {
1826 	struct scx_dispatch_q *dsq;
1827 
1828 	if (dsq_id == SCX_DSQ_LOCAL)
1829 		return &rq->scx.local_dsq;
1830 
1831 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1832 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1833 
1834 		if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1835 			return find_global_dsq(p);
1836 
1837 		return &cpu_rq(cpu)->scx.local_dsq;
1838 	}
1839 
1840 	if (dsq_id == SCX_DSQ_GLOBAL)
1841 		dsq = find_global_dsq(p);
1842 	else
1843 		dsq = find_user_dsq(dsq_id);
1844 
1845 	if (unlikely(!dsq)) {
1846 		scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1847 			      dsq_id, p->comm, p->pid);
1848 		return find_global_dsq(p);
1849 	}
1850 
1851 	return dsq;
1852 }
1853 
1854 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1855 				 struct task_struct *p, u64 dsq_id,
1856 				 u64 enq_flags)
1857 {
1858 	/*
1859 	 * Mark that dispatch already happened from ops.select_cpu() or
1860 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1861 	 * which can never match a valid task pointer.
1862 	 */
1863 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1864 
1865 	/* @p must match the task on the enqueue path */
1866 	if (unlikely(p != ddsp_task)) {
1867 		if (IS_ERR(ddsp_task))
1868 			scx_ops_error("%s[%d] already direct-dispatched",
1869 				      p->comm, p->pid);
1870 		else
1871 			scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1872 				      ddsp_task->comm, ddsp_task->pid,
1873 				      p->comm, p->pid);
1874 		return;
1875 	}
1876 
1877 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1878 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1879 
1880 	p->scx.ddsp_dsq_id = dsq_id;
1881 	p->scx.ddsp_enq_flags = enq_flags;
1882 }
1883 
1884 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1885 {
1886 	struct rq *rq = task_rq(p);
1887 	struct scx_dispatch_q *dsq =
1888 		find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1889 
1890 	touch_core_sched_dispatch(rq, p);
1891 
1892 	p->scx.ddsp_enq_flags |= enq_flags;
1893 
1894 	/*
1895 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
1896 	 * double lock a remote rq and enqueue to its local DSQ. For
1897 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1898 	 * the enqueue so that it's executed when @rq can be unlocked.
1899 	 */
1900 	if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1901 		unsigned long opss;
1902 
1903 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1904 
1905 		switch (opss & SCX_OPSS_STATE_MASK) {
1906 		case SCX_OPSS_NONE:
1907 			break;
1908 		case SCX_OPSS_QUEUEING:
1909 			/*
1910 			 * As @p was never passed to the BPF side, _release is
1911 			 * not strictly necessary. Still do it for consistency.
1912 			 */
1913 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1914 			break;
1915 		default:
1916 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1917 				  p->comm, p->pid, opss);
1918 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1919 			break;
1920 		}
1921 
1922 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1923 		list_add_tail(&p->scx.dsq_list.node,
1924 			      &rq->scx.ddsp_deferred_locals);
1925 		schedule_deferred(rq);
1926 		return;
1927 	}
1928 
1929 	dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1930 }
1931 
1932 static bool scx_rq_online(struct rq *rq)
1933 {
1934 	/*
1935 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1936 	 * the online state as seen from the BPF scheduler. cpu_active() test
1937 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1938 	 * stay set until the current scheduling operation is complete even if
1939 	 * we aren't locking @rq.
1940 	 */
1941 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1942 }
1943 
1944 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1945 			    int sticky_cpu)
1946 {
1947 	bool bypassing = scx_rq_bypassing(rq);
1948 	struct task_struct **ddsp_taskp;
1949 	unsigned long qseq;
1950 
1951 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1952 
1953 	/* rq migration */
1954 	if (sticky_cpu == cpu_of(rq))
1955 		goto local_norefill;
1956 
1957 	/*
1958 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1959 	 * is offline and are just running the hotplug path. Don't bother the
1960 	 * BPF scheduler.
1961 	 */
1962 	if (!scx_rq_online(rq))
1963 		goto local;
1964 
1965 	if (bypassing)
1966 		goto global;
1967 
1968 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1969 		goto direct;
1970 
1971 	/* see %SCX_OPS_ENQ_EXITING */
1972 	if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
1973 	    unlikely(p->flags & PF_EXITING))
1974 		goto local;
1975 
1976 	if (!SCX_HAS_OP(enqueue))
1977 		goto global;
1978 
1979 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
1980 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
1981 
1982 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1983 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
1984 
1985 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
1986 	WARN_ON_ONCE(*ddsp_taskp);
1987 	*ddsp_taskp = p;
1988 
1989 	SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
1990 
1991 	*ddsp_taskp = NULL;
1992 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1993 		goto direct;
1994 
1995 	/*
1996 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
1997 	 * dequeue may be waiting. The store_release matches their load_acquire.
1998 	 */
1999 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2000 	return;
2001 
2002 direct:
2003 	direct_dispatch(p, enq_flags);
2004 	return;
2005 
2006 local:
2007 	/*
2008 	 * For task-ordering, slice refill must be treated as implying the end
2009 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2010 	 * higher priority it becomes from scx_prio_less()'s POV.
2011 	 */
2012 	touch_core_sched(rq, p);
2013 	p->scx.slice = SCX_SLICE_DFL;
2014 local_norefill:
2015 	dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2016 	return;
2017 
2018 global:
2019 	touch_core_sched(rq, p);	/* see the comment in local: */
2020 	p->scx.slice = bypassing ? SCX_SLICE_BYPASS : SCX_SLICE_DFL;
2021 	dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2022 }
2023 
2024 static bool task_runnable(const struct task_struct *p)
2025 {
2026 	return !list_empty(&p->scx.runnable_node);
2027 }
2028 
2029 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2030 {
2031 	lockdep_assert_rq_held(rq);
2032 
2033 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2034 		p->scx.runnable_at = jiffies;
2035 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2036 	}
2037 
2038 	/*
2039 	 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2040 	 * appened to the runnable_list.
2041 	 */
2042 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2043 }
2044 
2045 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2046 {
2047 	list_del_init(&p->scx.runnable_node);
2048 	if (reset_runnable_at)
2049 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2050 }
2051 
2052 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2053 {
2054 	int sticky_cpu = p->scx.sticky_cpu;
2055 
2056 	if (enq_flags & ENQUEUE_WAKEUP)
2057 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2058 
2059 	enq_flags |= rq->scx.extra_enq_flags;
2060 
2061 	if (sticky_cpu >= 0)
2062 		p->scx.sticky_cpu = -1;
2063 
2064 	/*
2065 	 * Restoring a running task will be immediately followed by
2066 	 * set_next_task_scx() which expects the task to not be on the BPF
2067 	 * scheduler as tasks can only start running through local DSQs. Force
2068 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2069 	 */
2070 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2071 		sticky_cpu = cpu_of(rq);
2072 
2073 	if (p->scx.flags & SCX_TASK_QUEUED) {
2074 		WARN_ON_ONCE(!task_runnable(p));
2075 		goto out;
2076 	}
2077 
2078 	set_task_runnable(rq, p);
2079 	p->scx.flags |= SCX_TASK_QUEUED;
2080 	rq->scx.nr_running++;
2081 	add_nr_running(rq, 1);
2082 
2083 	if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2084 		SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2085 
2086 	if (enq_flags & SCX_ENQ_WAKEUP)
2087 		touch_core_sched(rq, p);
2088 
2089 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2090 out:
2091 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2092 }
2093 
2094 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2095 {
2096 	unsigned long opss;
2097 
2098 	/* dequeue is always temporary, don't reset runnable_at */
2099 	clr_task_runnable(p, false);
2100 
2101 	/* acquire ensures that we see the preceding updates on QUEUED */
2102 	opss = atomic_long_read_acquire(&p->scx.ops_state);
2103 
2104 	switch (opss & SCX_OPSS_STATE_MASK) {
2105 	case SCX_OPSS_NONE:
2106 		break;
2107 	case SCX_OPSS_QUEUEING:
2108 		/*
2109 		 * QUEUEING is started and finished while holding @p's rq lock.
2110 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2111 		 */
2112 		BUG();
2113 	case SCX_OPSS_QUEUED:
2114 		if (SCX_HAS_OP(dequeue))
2115 			SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2116 
2117 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2118 					    SCX_OPSS_NONE))
2119 			break;
2120 		fallthrough;
2121 	case SCX_OPSS_DISPATCHING:
2122 		/*
2123 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
2124 		 * wait for the transfer to complete so that @p doesn't get
2125 		 * added to its DSQ after dequeueing is complete.
2126 		 *
2127 		 * As we're waiting on DISPATCHING with the rq locked, the
2128 		 * dispatching side shouldn't try to lock the rq while
2129 		 * DISPATCHING is set. See dispatch_to_local_dsq().
2130 		 *
2131 		 * DISPATCHING shouldn't have qseq set and control can reach
2132 		 * here with NONE @opss from the above QUEUED case block.
2133 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2134 		 */
2135 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
2136 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2137 		break;
2138 	}
2139 }
2140 
2141 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2142 {
2143 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2144 		WARN_ON_ONCE(task_runnable(p));
2145 		return true;
2146 	}
2147 
2148 	ops_dequeue(p, deq_flags);
2149 
2150 	/*
2151 	 * A currently running task which is going off @rq first gets dequeued
2152 	 * and then stops running. As we want running <-> stopping transitions
2153 	 * to be contained within runnable <-> quiescent transitions, trigger
2154 	 * ->stopping() early here instead of in put_prev_task_scx().
2155 	 *
2156 	 * @p may go through multiple stopping <-> running transitions between
2157 	 * here and put_prev_task_scx() if task attribute changes occur while
2158 	 * balance_scx() leaves @rq unlocked. However, they don't contain any
2159 	 * information meaningful to the BPF scheduler and can be suppressed by
2160 	 * skipping the callbacks if the task is !QUEUED.
2161 	 */
2162 	if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2163 		update_curr_scx(rq);
2164 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2165 	}
2166 
2167 	if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2168 		SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2169 
2170 	if (deq_flags & SCX_DEQ_SLEEP)
2171 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2172 	else
2173 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2174 
2175 	p->scx.flags &= ~SCX_TASK_QUEUED;
2176 	rq->scx.nr_running--;
2177 	sub_nr_running(rq, 1);
2178 
2179 	dispatch_dequeue(rq, p);
2180 	return true;
2181 }
2182 
2183 static void yield_task_scx(struct rq *rq)
2184 {
2185 	struct task_struct *p = rq->curr;
2186 
2187 	if (SCX_HAS_OP(yield))
2188 		SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2189 	else
2190 		p->scx.slice = 0;
2191 }
2192 
2193 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2194 {
2195 	struct task_struct *from = rq->curr;
2196 
2197 	if (SCX_HAS_OP(yield))
2198 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2199 	else
2200 		return false;
2201 }
2202 
2203 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2204 					 struct scx_dispatch_q *src_dsq,
2205 					 struct rq *dst_rq)
2206 {
2207 	struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2208 
2209 	/* @dsq is locked and @p is on @dst_rq */
2210 	lockdep_assert_held(&src_dsq->lock);
2211 	lockdep_assert_rq_held(dst_rq);
2212 
2213 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2214 
2215 	if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2216 		list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2217 	else
2218 		list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2219 
2220 	dsq_mod_nr(dst_dsq, 1);
2221 	p->scx.dsq = dst_dsq;
2222 }
2223 
2224 #ifdef CONFIG_SMP
2225 /**
2226  * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2227  * @p: task to move
2228  * @enq_flags: %SCX_ENQ_*
2229  * @src_rq: rq to move the task from, locked on entry, released on return
2230  * @dst_rq: rq to move the task into, locked on return
2231  *
2232  * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2233  */
2234 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2235 					  struct rq *src_rq, struct rq *dst_rq)
2236 {
2237 	lockdep_assert_rq_held(src_rq);
2238 
2239 	/* the following marks @p MIGRATING which excludes dequeue */
2240 	deactivate_task(src_rq, p, 0);
2241 	set_task_cpu(p, cpu_of(dst_rq));
2242 	p->scx.sticky_cpu = cpu_of(dst_rq);
2243 
2244 	raw_spin_rq_unlock(src_rq);
2245 	raw_spin_rq_lock(dst_rq);
2246 
2247 	/*
2248 	 * We want to pass scx-specific enq_flags but activate_task() will
2249 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
2250 	 * @rq->scx.extra_enq_flags instead.
2251 	 */
2252 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2253 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2254 	dst_rq->scx.extra_enq_flags = enq_flags;
2255 	activate_task(dst_rq, p, 0);
2256 	dst_rq->scx.extra_enq_flags = 0;
2257 }
2258 
2259 /*
2260  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2261  * differences:
2262  *
2263  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2264  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2265  *   this CPU?".
2266  *
2267  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2268  *   must be allowed to finish on the CPU that it's currently on regardless of
2269  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2270  *   BPF scheduler shouldn't attempt to migrate a task which has migration
2271  *   disabled.
2272  *
2273  * - The BPF scheduler is bypassed while the rq is offline and we can always say
2274  *   no to the BPF scheduler initiated migrations while offline.
2275  */
2276 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2277 				      bool trigger_error)
2278 {
2279 	int cpu = cpu_of(rq);
2280 
2281 	/*
2282 	 * We don't require the BPF scheduler to avoid dispatching to offline
2283 	 * CPUs mostly for convenience but also because CPUs can go offline
2284 	 * between scx_bpf_dispatch() calls and here. Trigger error iff the
2285 	 * picked CPU is outside the allowed mask.
2286 	 */
2287 	if (!task_allowed_on_cpu(p, cpu)) {
2288 		if (trigger_error)
2289 			scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2290 				      cpu_of(rq), p->comm, p->pid);
2291 		return false;
2292 	}
2293 
2294 	if (unlikely(is_migration_disabled(p)))
2295 		return false;
2296 
2297 	if (!scx_rq_online(rq))
2298 		return false;
2299 
2300 	return true;
2301 }
2302 
2303 /**
2304  * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2305  * @p: target task
2306  * @dsq: locked DSQ @p is currently on
2307  * @src_rq: rq @p is currently on, stable with @dsq locked
2308  *
2309  * Called with @dsq locked but no rq's locked. We want to move @p to a different
2310  * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2311  * required when transferring into a local DSQ. Even when transferring into a
2312  * non-local DSQ, it's better to use the same mechanism to protect against
2313  * dequeues and maintain the invariant that @p->scx.dsq can only change while
2314  * @src_rq is locked, which e.g. scx_dump_task() depends on.
2315  *
2316  * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2317  * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2318  * this may race with dequeue, which can't drop the rq lock or fail, do a little
2319  * dancing from our side.
2320  *
2321  * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2322  * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2323  * would be cleared to -1. While other cpus may have updated it to different
2324  * values afterwards, as this operation can't be preempted or recurse, the
2325  * holding_cpu can never become this CPU again before we're done. Thus, we can
2326  * tell whether we lost to dequeue by testing whether the holding_cpu still
2327  * points to this CPU. See dispatch_dequeue() for the counterpart.
2328  *
2329  * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2330  * still valid. %false if lost to dequeue.
2331  */
2332 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2333 				       struct scx_dispatch_q *dsq,
2334 				       struct rq *src_rq)
2335 {
2336 	s32 cpu = raw_smp_processor_id();
2337 
2338 	lockdep_assert_held(&dsq->lock);
2339 
2340 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2341 	task_unlink_from_dsq(p, dsq);
2342 	p->scx.holding_cpu = cpu;
2343 
2344 	raw_spin_unlock(&dsq->lock);
2345 	raw_spin_rq_lock(src_rq);
2346 
2347 	/* task_rq couldn't have changed if we're still the holding cpu */
2348 	return likely(p->scx.holding_cpu == cpu) &&
2349 		!WARN_ON_ONCE(src_rq != task_rq(p));
2350 }
2351 
2352 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2353 				struct scx_dispatch_q *dsq, struct rq *src_rq)
2354 {
2355 	raw_spin_rq_unlock(this_rq);
2356 
2357 	if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2358 		move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2359 		return true;
2360 	} else {
2361 		raw_spin_rq_unlock(src_rq);
2362 		raw_spin_rq_lock(this_rq);
2363 		return false;
2364 	}
2365 }
2366 #else	/* CONFIG_SMP */
2367 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
2368 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
2369 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2370 #endif	/* CONFIG_SMP */
2371 
2372 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2373 {
2374 	struct task_struct *p;
2375 retry:
2376 	/*
2377 	 * The caller can't expect to successfully consume a task if the task's
2378 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
2379 	 * @dsq->list without locking and skip if it seems empty.
2380 	 */
2381 	if (list_empty(&dsq->list))
2382 		return false;
2383 
2384 	raw_spin_lock(&dsq->lock);
2385 
2386 	nldsq_for_each_task(p, dsq) {
2387 		struct rq *task_rq = task_rq(p);
2388 
2389 		if (rq == task_rq) {
2390 			task_unlink_from_dsq(p, dsq);
2391 			move_local_task_to_local_dsq(p, 0, dsq, rq);
2392 			raw_spin_unlock(&dsq->lock);
2393 			return true;
2394 		}
2395 
2396 		if (task_can_run_on_remote_rq(p, rq, false)) {
2397 			if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2398 				return true;
2399 			goto retry;
2400 		}
2401 	}
2402 
2403 	raw_spin_unlock(&dsq->lock);
2404 	return false;
2405 }
2406 
2407 static bool consume_global_dsq(struct rq *rq)
2408 {
2409 	int node = cpu_to_node(cpu_of(rq));
2410 
2411 	return consume_dispatch_q(rq, global_dsqs[node]);
2412 }
2413 
2414 /**
2415  * dispatch_to_local_dsq - Dispatch a task to a local dsq
2416  * @rq: current rq which is locked
2417  * @dst_dsq: destination DSQ
2418  * @p: task to dispatch
2419  * @enq_flags: %SCX_ENQ_*
2420  *
2421  * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2422  * DSQ. This function performs all the synchronization dancing needed because
2423  * local DSQs are protected with rq locks.
2424  *
2425  * The caller must have exclusive ownership of @p (e.g. through
2426  * %SCX_OPSS_DISPATCHING).
2427  */
2428 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2429 				  struct task_struct *p, u64 enq_flags)
2430 {
2431 	struct rq *src_rq = task_rq(p);
2432 	struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2433 
2434 	/*
2435 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
2436 	 * be dequeued, its task_rq and cpus_allowed are stable too.
2437 	 *
2438 	 * If dispatching to @rq that @p is already on, no lock dancing needed.
2439 	 */
2440 	if (rq == src_rq && rq == dst_rq) {
2441 		dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2442 		return;
2443 	}
2444 
2445 #ifdef CONFIG_SMP
2446 	if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2447 		dispatch_enqueue(find_global_dsq(p), p,
2448 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
2449 		return;
2450 	}
2451 
2452 	/*
2453 	 * @p is on a possibly remote @src_rq which we need to lock to move the
2454 	 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2455 	 * on DISPATCHING, so we can't grab @src_rq lock while holding
2456 	 * DISPATCHING.
2457 	 *
2458 	 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2459 	 * we're moving from a DSQ and use the same mechanism - mark the task
2460 	 * under transfer with holding_cpu, release DISPATCHING and then follow
2461 	 * the same protocol. See unlink_dsq_and_lock_src_rq().
2462 	 */
2463 	p->scx.holding_cpu = raw_smp_processor_id();
2464 
2465 	/* store_release ensures that dequeue sees the above */
2466 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2467 
2468 	/* switch to @src_rq lock */
2469 	if (rq != src_rq) {
2470 		raw_spin_rq_unlock(rq);
2471 		raw_spin_rq_lock(src_rq);
2472 	}
2473 
2474 	/* task_rq couldn't have changed if we're still the holding cpu */
2475 	if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2476 	    !WARN_ON_ONCE(src_rq != task_rq(p))) {
2477 		/*
2478 		 * If @p is staying on the same rq, there's no need to go
2479 		 * through the full deactivate/activate cycle. Optimize by
2480 		 * abbreviating move_remote_task_to_local_dsq().
2481 		 */
2482 		if (src_rq == dst_rq) {
2483 			p->scx.holding_cpu = -1;
2484 			dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2485 		} else {
2486 			move_remote_task_to_local_dsq(p, enq_flags,
2487 						      src_rq, dst_rq);
2488 		}
2489 
2490 		/* if the destination CPU is idle, wake it up */
2491 		if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2492 			resched_curr(dst_rq);
2493 	}
2494 
2495 	/* switch back to @rq lock */
2496 	if (rq != dst_rq) {
2497 		raw_spin_rq_unlock(dst_rq);
2498 		raw_spin_rq_lock(rq);
2499 	}
2500 #else	/* CONFIG_SMP */
2501 	BUG();	/* control can not reach here on UP */
2502 #endif	/* CONFIG_SMP */
2503 }
2504 
2505 /**
2506  * finish_dispatch - Asynchronously finish dispatching a task
2507  * @rq: current rq which is locked
2508  * @p: task to finish dispatching
2509  * @qseq_at_dispatch: qseq when @p started getting dispatched
2510  * @dsq_id: destination DSQ ID
2511  * @enq_flags: %SCX_ENQ_*
2512  *
2513  * Dispatching to local DSQs may need to wait for queueing to complete or
2514  * require rq lock dancing. As we don't wanna do either while inside
2515  * ops.dispatch() to avoid locking order inversion, we split dispatching into
2516  * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
2517  * task and its qseq. Once ops.dispatch() returns, this function is called to
2518  * finish up.
2519  *
2520  * There is no guarantee that @p is still valid for dispatching or even that it
2521  * was valid in the first place. Make sure that the task is still owned by the
2522  * BPF scheduler and claim the ownership before dispatching.
2523  */
2524 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2525 			    unsigned long qseq_at_dispatch,
2526 			    u64 dsq_id, u64 enq_flags)
2527 {
2528 	struct scx_dispatch_q *dsq;
2529 	unsigned long opss;
2530 
2531 	touch_core_sched_dispatch(rq, p);
2532 retry:
2533 	/*
2534 	 * No need for _acquire here. @p is accessed only after a successful
2535 	 * try_cmpxchg to DISPATCHING.
2536 	 */
2537 	opss = atomic_long_read(&p->scx.ops_state);
2538 
2539 	switch (opss & SCX_OPSS_STATE_MASK) {
2540 	case SCX_OPSS_DISPATCHING:
2541 	case SCX_OPSS_NONE:
2542 		/* someone else already got to it */
2543 		return;
2544 	case SCX_OPSS_QUEUED:
2545 		/*
2546 		 * If qseq doesn't match, @p has gone through at least one
2547 		 * dispatch/dequeue and re-enqueue cycle between
2548 		 * scx_bpf_dispatch() and here and we have no claim on it.
2549 		 */
2550 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2551 			return;
2552 
2553 		/*
2554 		 * While we know @p is accessible, we don't yet have a claim on
2555 		 * it - the BPF scheduler is allowed to dispatch tasks
2556 		 * spuriously and there can be a racing dequeue attempt. Let's
2557 		 * claim @p by atomically transitioning it from QUEUED to
2558 		 * DISPATCHING.
2559 		 */
2560 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2561 						   SCX_OPSS_DISPATCHING)))
2562 			break;
2563 		goto retry;
2564 	case SCX_OPSS_QUEUEING:
2565 		/*
2566 		 * do_enqueue_task() is in the process of transferring the task
2567 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
2568 		 * holding any kernel or BPF resource that the enqueue path may
2569 		 * depend upon, it's safe to wait.
2570 		 */
2571 		wait_ops_state(p, opss);
2572 		goto retry;
2573 	}
2574 
2575 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2576 
2577 	dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2578 
2579 	if (dsq->id == SCX_DSQ_LOCAL)
2580 		dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2581 	else
2582 		dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2583 }
2584 
2585 static void flush_dispatch_buf(struct rq *rq)
2586 {
2587 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2588 	u32 u;
2589 
2590 	for (u = 0; u < dspc->cursor; u++) {
2591 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2592 
2593 		finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2594 				ent->enq_flags);
2595 	}
2596 
2597 	dspc->nr_tasks += dspc->cursor;
2598 	dspc->cursor = 0;
2599 }
2600 
2601 static int balance_one(struct rq *rq, struct task_struct *prev)
2602 {
2603 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2604 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
2605 	int nr_loops = SCX_DSP_MAX_LOOPS;
2606 
2607 	lockdep_assert_rq_held(rq);
2608 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
2609 	rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2610 
2611 	if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2612 	    unlikely(rq->scx.cpu_released)) {
2613 		/*
2614 		 * If the previous sched_class for the current CPU was not SCX,
2615 		 * notify the BPF scheduler that it again has control of the
2616 		 * core. This callback complements ->cpu_release(), which is
2617 		 * emitted in scx_next_task_picked().
2618 		 */
2619 		if (SCX_HAS_OP(cpu_acquire))
2620 			SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
2621 		rq->scx.cpu_released = false;
2622 	}
2623 
2624 	if (prev_on_scx) {
2625 		update_curr_scx(rq);
2626 
2627 		/*
2628 		 * If @prev is runnable & has slice left, it has priority and
2629 		 * fetching more just increases latency for the fetched tasks.
2630 		 * Tell pick_task_scx() to keep running @prev. If the BPF
2631 		 * scheduler wants to handle this explicitly, it should
2632 		 * implement ->cpu_release().
2633 		 *
2634 		 * See scx_ops_disable_workfn() for the explanation on the
2635 		 * bypassing test.
2636 		 */
2637 		if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2638 		    prev->scx.slice && !scx_rq_bypassing(rq)) {
2639 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2640 			goto has_tasks;
2641 		}
2642 	}
2643 
2644 	/* if there already are tasks to run, nothing to do */
2645 	if (rq->scx.local_dsq.nr)
2646 		goto has_tasks;
2647 
2648 	if (consume_global_dsq(rq))
2649 		goto has_tasks;
2650 
2651 	if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2652 		goto no_tasks;
2653 
2654 	dspc->rq = rq;
2655 
2656 	/*
2657 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2658 	 * the local DSQ might still end up empty after a successful
2659 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2660 	 * produced some tasks, retry. The BPF scheduler may depend on this
2661 	 * looping behavior to simplify its implementation.
2662 	 */
2663 	do {
2664 		dspc->nr_tasks = 0;
2665 
2666 		SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2667 			    prev_on_scx ? prev : NULL);
2668 
2669 		flush_dispatch_buf(rq);
2670 
2671 		if (rq->scx.local_dsq.nr)
2672 			goto has_tasks;
2673 		if (consume_global_dsq(rq))
2674 			goto has_tasks;
2675 
2676 		/*
2677 		 * ops.dispatch() can trap us in this loop by repeatedly
2678 		 * dispatching ineligible tasks. Break out once in a while to
2679 		 * allow the watchdog to run. As IRQ can't be enabled in
2680 		 * balance(), we want to complete this scheduling cycle and then
2681 		 * start a new one. IOW, we want to call resched_curr() on the
2682 		 * next, most likely idle, task, not the current one. Use
2683 		 * scx_bpf_kick_cpu() for deferred kicking.
2684 		 */
2685 		if (unlikely(!--nr_loops)) {
2686 			scx_bpf_kick_cpu(cpu_of(rq), 0);
2687 			break;
2688 		}
2689 	} while (dspc->nr_tasks);
2690 
2691 no_tasks:
2692 	/*
2693 	 * Didn't find another task to run. Keep running @prev unless
2694 	 * %SCX_OPS_ENQ_LAST is in effect.
2695 	 */
2696 	if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2697 	    (!static_branch_unlikely(&scx_ops_enq_last) ||
2698 	     scx_rq_bypassing(rq))) {
2699 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
2700 		goto has_tasks;
2701 	}
2702 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2703 	return false;
2704 
2705 has_tasks:
2706 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2707 	return true;
2708 }
2709 
2710 static int balance_scx(struct rq *rq, struct task_struct *prev,
2711 		       struct rq_flags *rf)
2712 {
2713 	int ret;
2714 
2715 	rq_unpin_lock(rq, rf);
2716 
2717 	ret = balance_one(rq, prev);
2718 
2719 #ifdef CONFIG_SCHED_SMT
2720 	/*
2721 	 * When core-sched is enabled, this ops.balance() call will be followed
2722 	 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2723 	 * siblings too.
2724 	 */
2725 	if (sched_core_enabled(rq)) {
2726 		const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2727 		int scpu;
2728 
2729 		for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2730 			struct rq *srq = cpu_rq(scpu);
2731 			struct task_struct *sprev = srq->curr;
2732 
2733 			WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2734 			update_rq_clock(srq);
2735 			balance_one(srq, sprev);
2736 		}
2737 	}
2738 #endif
2739 	rq_repin_lock(rq, rf);
2740 
2741 	return ret;
2742 }
2743 
2744 static void process_ddsp_deferred_locals(struct rq *rq)
2745 {
2746 	struct task_struct *p;
2747 
2748 	lockdep_assert_rq_held(rq);
2749 
2750 	/*
2751 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
2752 	 * tasks directly dispatched to the local DSQs of other CPUs. See
2753 	 * direct_dispatch(). Keep popping from the head instead of using
2754 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2755 	 * temporarily.
2756 	 */
2757 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2758 				struct task_struct, scx.dsq_list.node))) {
2759 		struct scx_dispatch_q *dsq;
2760 
2761 		list_del_init(&p->scx.dsq_list.node);
2762 
2763 		dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2764 		if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2765 			dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2766 	}
2767 }
2768 
2769 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2770 {
2771 	if (p->scx.flags & SCX_TASK_QUEUED) {
2772 		/*
2773 		 * Core-sched might decide to execute @p before it is
2774 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2775 		 */
2776 		ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2777 		dispatch_dequeue(rq, p);
2778 	}
2779 
2780 	p->se.exec_start = rq_clock_task(rq);
2781 
2782 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2783 	if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2784 		SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2785 
2786 	clr_task_runnable(p, true);
2787 
2788 	/*
2789 	 * @p is getting newly scheduled or got kicked after someone updated its
2790 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2791 	 */
2792 	if ((p->scx.slice == SCX_SLICE_INF) !=
2793 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2794 		if (p->scx.slice == SCX_SLICE_INF)
2795 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2796 		else
2797 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2798 
2799 		sched_update_tick_dependency(rq);
2800 
2801 		/*
2802 		 * For now, let's refresh the load_avgs just when transitioning
2803 		 * in and out of nohz. In the future, we might want to add a
2804 		 * mechanism which calls the following periodically on
2805 		 * tick-stopped CPUs.
2806 		 */
2807 		update_other_load_avgs(rq);
2808 	}
2809 }
2810 
2811 static enum scx_cpu_preempt_reason
2812 preempt_reason_from_class(const struct sched_class *class)
2813 {
2814 #ifdef CONFIG_SMP
2815 	if (class == &stop_sched_class)
2816 		return SCX_CPU_PREEMPT_STOP;
2817 #endif
2818 	if (class == &dl_sched_class)
2819 		return SCX_CPU_PREEMPT_DL;
2820 	if (class == &rt_sched_class)
2821 		return SCX_CPU_PREEMPT_RT;
2822 	return SCX_CPU_PREEMPT_UNKNOWN;
2823 }
2824 
2825 static void switch_class(struct rq *rq, struct task_struct *next)
2826 {
2827 	const struct sched_class *next_class = next->sched_class;
2828 
2829 #ifdef CONFIG_SMP
2830 	/*
2831 	 * Pairs with the smp_load_acquire() issued by a CPU in
2832 	 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2833 	 * resched.
2834 	 */
2835 	smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2836 #endif
2837 	if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2838 		return;
2839 
2840 	/*
2841 	 * The callback is conceptually meant to convey that the CPU is no
2842 	 * longer under the control of SCX. Therefore, don't invoke the callback
2843 	 * if the next class is below SCX (in which case the BPF scheduler has
2844 	 * actively decided not to schedule any tasks on the CPU).
2845 	 */
2846 	if (sched_class_above(&ext_sched_class, next_class))
2847 		return;
2848 
2849 	/*
2850 	 * At this point we know that SCX was preempted by a higher priority
2851 	 * sched_class, so invoke the ->cpu_release() callback if we have not
2852 	 * done so already. We only send the callback once between SCX being
2853 	 * preempted, and it regaining control of the CPU.
2854 	 *
2855 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2856 	 *  next time that balance_scx() is invoked.
2857 	 */
2858 	if (!rq->scx.cpu_released) {
2859 		if (SCX_HAS_OP(cpu_release)) {
2860 			struct scx_cpu_release_args args = {
2861 				.reason = preempt_reason_from_class(next_class),
2862 				.task = next,
2863 			};
2864 
2865 			SCX_CALL_OP(SCX_KF_CPU_RELEASE,
2866 				    cpu_release, cpu_of(rq), &args);
2867 		}
2868 		rq->scx.cpu_released = true;
2869 	}
2870 }
2871 
2872 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2873 			      struct task_struct *next)
2874 {
2875 	update_curr_scx(rq);
2876 
2877 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2878 	if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2879 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
2880 
2881 	if (p->scx.flags & SCX_TASK_QUEUED) {
2882 		set_task_runnable(rq, p);
2883 
2884 		/*
2885 		 * If @p has slice left and is being put, @p is getting
2886 		 * preempted by a higher priority scheduler class or core-sched
2887 		 * forcing a different task. Leave it at the head of the local
2888 		 * DSQ.
2889 		 */
2890 		if (p->scx.slice && !scx_rq_bypassing(rq)) {
2891 			dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
2892 			return;
2893 		}
2894 
2895 		/*
2896 		 * If @p is runnable but we're about to enter a lower
2897 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2898 		 * ops.enqueue() that @p is the only one available for this cpu,
2899 		 * which should trigger an explicit follow-up scheduling event.
2900 		 */
2901 		if (sched_class_above(&ext_sched_class, next->sched_class)) {
2902 			WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
2903 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2904 		} else {
2905 			do_enqueue_task(rq, p, 0, -1);
2906 		}
2907 	}
2908 
2909 	if (next && next->sched_class != &ext_sched_class)
2910 		switch_class(rq, next);
2911 }
2912 
2913 static struct task_struct *first_local_task(struct rq *rq)
2914 {
2915 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
2916 					struct task_struct, scx.dsq_list.node);
2917 }
2918 
2919 static struct task_struct *pick_task_scx(struct rq *rq)
2920 {
2921 	struct task_struct *prev = rq->curr;
2922 	struct task_struct *p;
2923 
2924 	/*
2925 	 * If balance_scx() is telling us to keep running @prev, replenish slice
2926 	 * if necessary and keep running @prev. Otherwise, pop the first one
2927 	 * from the local DSQ.
2928 	 *
2929 	 * WORKAROUND:
2930 	 *
2931 	 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
2932 	 * have gone through balance_scx(). Unfortunately, there currently is a
2933 	 * bug where fair could say yes on balance() but no on pick_task(),
2934 	 * which then ends up calling pick_task_scx() without preceding
2935 	 * balance_scx().
2936 	 *
2937 	 * For now, ignore cases where $prev is not on SCX. This isn't great and
2938 	 * can theoretically lead to stalls. However, for switch_all cases, this
2939 	 * happens only while a BPF scheduler is being loaded or unloaded, and,
2940 	 * for partial cases, fair will likely keep triggering this CPU.
2941 	 *
2942 	 * Once fair is fixed, restore WARN_ON_ONCE().
2943 	 */
2944 	if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
2945 	    prev->sched_class == &ext_sched_class) {
2946 		p = prev;
2947 		if (!p->scx.slice)
2948 			p->scx.slice = SCX_SLICE_DFL;
2949 	} else {
2950 		p = first_local_task(rq);
2951 		if (!p)
2952 			return NULL;
2953 
2954 		if (unlikely(!p->scx.slice)) {
2955 			if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
2956 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n",
2957 						p->comm, p->pid);
2958 				scx_warned_zero_slice = true;
2959 			}
2960 			p->scx.slice = SCX_SLICE_DFL;
2961 		}
2962 	}
2963 
2964 	return p;
2965 }
2966 
2967 #ifdef CONFIG_SCHED_CORE
2968 /**
2969  * scx_prio_less - Task ordering for core-sched
2970  * @a: task A
2971  * @b: task B
2972  *
2973  * Core-sched is implemented as an additional scheduling layer on top of the
2974  * usual sched_class'es and needs to find out the expected task ordering. For
2975  * SCX, core-sched calls this function to interrogate the task ordering.
2976  *
2977  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
2978  * to implement the default task ordering. The older the timestamp, the higher
2979  * prority the task - the global FIFO ordering matching the default scheduling
2980  * behavior.
2981  *
2982  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
2983  * implement FIFO ordering within each local DSQ. See pick_task_scx().
2984  */
2985 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
2986 		   bool in_fi)
2987 {
2988 	/*
2989 	 * The const qualifiers are dropped from task_struct pointers when
2990 	 * calling ops.core_sched_before(). Accesses are controlled by the
2991 	 * verifier.
2992 	 */
2993 	if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
2994 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
2995 					      (struct task_struct *)a,
2996 					      (struct task_struct *)b);
2997 	else
2998 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
2999 }
3000 #endif	/* CONFIG_SCHED_CORE */
3001 
3002 #ifdef CONFIG_SMP
3003 
3004 static bool test_and_clear_cpu_idle(int cpu)
3005 {
3006 #ifdef CONFIG_SCHED_SMT
3007 	/*
3008 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3009 	 * cluster is not wholly idle either way. This also prevents
3010 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3011 	 */
3012 	if (sched_smt_active()) {
3013 		const struct cpumask *smt = cpu_smt_mask(cpu);
3014 
3015 		/*
3016 		 * If offline, @cpu is not its own sibling and
3017 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
3018 		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3019 		 * is eventually cleared.
3020 		 */
3021 		if (cpumask_intersects(smt, idle_masks.smt))
3022 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3023 		else if (cpumask_test_cpu(cpu, idle_masks.smt))
3024 			__cpumask_clear_cpu(cpu, idle_masks.smt);
3025 	}
3026 #endif
3027 	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3028 }
3029 
3030 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3031 {
3032 	int cpu;
3033 
3034 retry:
3035 	if (sched_smt_active()) {
3036 		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3037 		if (cpu < nr_cpu_ids)
3038 			goto found;
3039 
3040 		if (flags & SCX_PICK_IDLE_CORE)
3041 			return -EBUSY;
3042 	}
3043 
3044 	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3045 	if (cpu >= nr_cpu_ids)
3046 		return -EBUSY;
3047 
3048 found:
3049 	if (test_and_clear_cpu_idle(cpu))
3050 		return cpu;
3051 	else
3052 		goto retry;
3053 }
3054 
3055 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3056 			      u64 wake_flags, bool *found)
3057 {
3058 	s32 cpu;
3059 
3060 	*found = false;
3061 
3062 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
3063 		scx_ops_error("built-in idle tracking is disabled");
3064 		return prev_cpu;
3065 	}
3066 
3067 	/*
3068 	 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
3069 	 * under utilized, wake up @p to the local DSQ of the waker. Checking
3070 	 * only for an empty local DSQ is insufficient as it could give the
3071 	 * wakee an unfair advantage when the system is oversaturated.
3072 	 * Checking only for the presence of idle CPUs is also insufficient as
3073 	 * the local DSQ of the waker could have tasks piled up on it even if
3074 	 * there is an idle core elsewhere on the system.
3075 	 */
3076 	cpu = smp_processor_id();
3077 	if ((wake_flags & SCX_WAKE_SYNC) &&
3078 	    !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
3079 	    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3080 		if (cpumask_test_cpu(cpu, p->cpus_ptr))
3081 			goto cpu_found;
3082 	}
3083 
3084 	/*
3085 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3086 	 * partially idle @prev_cpu.
3087 	 */
3088 	if (sched_smt_active()) {
3089 		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3090 		    test_and_clear_cpu_idle(prev_cpu)) {
3091 			cpu = prev_cpu;
3092 			goto cpu_found;
3093 		}
3094 
3095 		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3096 		if (cpu >= 0)
3097 			goto cpu_found;
3098 	}
3099 
3100 	if (test_and_clear_cpu_idle(prev_cpu)) {
3101 		cpu = prev_cpu;
3102 		goto cpu_found;
3103 	}
3104 
3105 	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3106 	if (cpu >= 0)
3107 		goto cpu_found;
3108 
3109 	return prev_cpu;
3110 
3111 cpu_found:
3112 	*found = true;
3113 	return cpu;
3114 }
3115 
3116 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3117 {
3118 	/*
3119 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3120 	 * can be a good migration opportunity with low cache and memory
3121 	 * footprint. Returning a CPU different than @prev_cpu triggers
3122 	 * immediate rq migration. However, for SCX, as the current rq
3123 	 * association doesn't dictate where the task is going to run, this
3124 	 * doesn't fit well. If necessary, we can later add a dedicated method
3125 	 * which can decide to preempt self to force it through the regular
3126 	 * scheduling path.
3127 	 */
3128 	if (unlikely(wake_flags & WF_EXEC))
3129 		return prev_cpu;
3130 
3131 	if (SCX_HAS_OP(select_cpu)) {
3132 		s32 cpu;
3133 		struct task_struct **ddsp_taskp;
3134 
3135 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3136 		WARN_ON_ONCE(*ddsp_taskp);
3137 		*ddsp_taskp = p;
3138 
3139 		cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3140 					   select_cpu, p, prev_cpu, wake_flags);
3141 		*ddsp_taskp = NULL;
3142 		if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3143 			return cpu;
3144 		else
3145 			return prev_cpu;
3146 	} else {
3147 		bool found;
3148 		s32 cpu;
3149 
3150 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3151 		if (found) {
3152 			p->scx.slice = SCX_SLICE_DFL;
3153 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3154 		}
3155 		return cpu;
3156 	}
3157 }
3158 
3159 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3160 {
3161 	run_deferred(rq);
3162 }
3163 
3164 static void set_cpus_allowed_scx(struct task_struct *p,
3165 				 struct affinity_context *ac)
3166 {
3167 	set_cpus_allowed_common(p, ac);
3168 
3169 	/*
3170 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3171 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3172 	 * scheduler the effective one.
3173 	 *
3174 	 * Fine-grained memory write control is enforced by BPF making the const
3175 	 * designation pointless. Cast it away when calling the operation.
3176 	 */
3177 	if (SCX_HAS_OP(set_cpumask))
3178 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3179 				 (struct cpumask *)p->cpus_ptr);
3180 }
3181 
3182 static void reset_idle_masks(void)
3183 {
3184 	/*
3185 	 * Consider all online cpus idle. Should converge to the actual state
3186 	 * quickly.
3187 	 */
3188 	cpumask_copy(idle_masks.cpu, cpu_online_mask);
3189 	cpumask_copy(idle_masks.smt, cpu_online_mask);
3190 }
3191 
3192 void __scx_update_idle(struct rq *rq, bool idle)
3193 {
3194 	int cpu = cpu_of(rq);
3195 
3196 	if (SCX_HAS_OP(update_idle)) {
3197 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3198 		if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3199 			return;
3200 	}
3201 
3202 	if (idle)
3203 		cpumask_set_cpu(cpu, idle_masks.cpu);
3204 	else
3205 		cpumask_clear_cpu(cpu, idle_masks.cpu);
3206 
3207 #ifdef CONFIG_SCHED_SMT
3208 	if (sched_smt_active()) {
3209 		const struct cpumask *smt = cpu_smt_mask(cpu);
3210 
3211 		if (idle) {
3212 			/*
3213 			 * idle_masks.smt handling is racy but that's fine as
3214 			 * it's only for optimization and self-correcting.
3215 			 */
3216 			for_each_cpu(cpu, smt) {
3217 				if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3218 					return;
3219 			}
3220 			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3221 		} else {
3222 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3223 		}
3224 	}
3225 #endif
3226 }
3227 
3228 static void handle_hotplug(struct rq *rq, bool online)
3229 {
3230 	int cpu = cpu_of(rq);
3231 
3232 	atomic_long_inc(&scx_hotplug_seq);
3233 
3234 	if (online && SCX_HAS_OP(cpu_online))
3235 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3236 	else if (!online && SCX_HAS_OP(cpu_offline))
3237 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3238 	else
3239 		scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3240 			     "cpu %d going %s, exiting scheduler", cpu,
3241 			     online ? "online" : "offline");
3242 }
3243 
3244 void scx_rq_activate(struct rq *rq)
3245 {
3246 	handle_hotplug(rq, true);
3247 }
3248 
3249 void scx_rq_deactivate(struct rq *rq)
3250 {
3251 	handle_hotplug(rq, false);
3252 }
3253 
3254 static void rq_online_scx(struct rq *rq)
3255 {
3256 	rq->scx.flags |= SCX_RQ_ONLINE;
3257 }
3258 
3259 static void rq_offline_scx(struct rq *rq)
3260 {
3261 	rq->scx.flags &= ~SCX_RQ_ONLINE;
3262 }
3263 
3264 #else	/* CONFIG_SMP */
3265 
3266 static bool test_and_clear_cpu_idle(int cpu) { return false; }
3267 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
3268 static void reset_idle_masks(void) {}
3269 
3270 #endif	/* CONFIG_SMP */
3271 
3272 static bool check_rq_for_timeouts(struct rq *rq)
3273 {
3274 	struct task_struct *p;
3275 	struct rq_flags rf;
3276 	bool timed_out = false;
3277 
3278 	rq_lock_irqsave(rq, &rf);
3279 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3280 		unsigned long last_runnable = p->scx.runnable_at;
3281 
3282 		if (unlikely(time_after(jiffies,
3283 					last_runnable + scx_watchdog_timeout))) {
3284 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3285 
3286 			scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3287 					   "%s[%d] failed to run for %u.%03us",
3288 					   p->comm, p->pid,
3289 					   dur_ms / 1000, dur_ms % 1000);
3290 			timed_out = true;
3291 			break;
3292 		}
3293 	}
3294 	rq_unlock_irqrestore(rq, &rf);
3295 
3296 	return timed_out;
3297 }
3298 
3299 static void scx_watchdog_workfn(struct work_struct *work)
3300 {
3301 	int cpu;
3302 
3303 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3304 
3305 	for_each_online_cpu(cpu) {
3306 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3307 			break;
3308 
3309 		cond_resched();
3310 	}
3311 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3312 			   scx_watchdog_timeout / 2);
3313 }
3314 
3315 void scx_tick(struct rq *rq)
3316 {
3317 	unsigned long last_check;
3318 
3319 	if (!scx_enabled())
3320 		return;
3321 
3322 	last_check = READ_ONCE(scx_watchdog_timestamp);
3323 	if (unlikely(time_after(jiffies,
3324 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
3325 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3326 
3327 		scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3328 				   "watchdog failed to check in for %u.%03us",
3329 				   dur_ms / 1000, dur_ms % 1000);
3330 	}
3331 
3332 	update_other_load_avgs(rq);
3333 }
3334 
3335 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3336 {
3337 	update_curr_scx(rq);
3338 
3339 	/*
3340 	 * While disabling, always resched and refresh core-sched timestamp as
3341 	 * we can't trust the slice management or ops.core_sched_before().
3342 	 */
3343 	if (scx_rq_bypassing(rq)) {
3344 		curr->scx.slice = 0;
3345 		touch_core_sched(rq, curr);
3346 	} else if (SCX_HAS_OP(tick)) {
3347 		SCX_CALL_OP(SCX_KF_REST, tick, curr);
3348 	}
3349 
3350 	if (!curr->scx.slice)
3351 		resched_curr(rq);
3352 }
3353 
3354 #ifdef CONFIG_EXT_GROUP_SCHED
3355 static struct cgroup *tg_cgrp(struct task_group *tg)
3356 {
3357 	/*
3358 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3359 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3360 	 * root cgroup.
3361 	 */
3362 	if (tg && tg->css.cgroup)
3363 		return tg->css.cgroup;
3364 	else
3365 		return &cgrp_dfl_root.cgrp;
3366 }
3367 
3368 #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
3369 
3370 #else	/* CONFIG_EXT_GROUP_SCHED */
3371 
3372 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3373 
3374 #endif	/* CONFIG_EXT_GROUP_SCHED */
3375 
3376 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3377 {
3378 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3379 }
3380 
3381 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3382 {
3383 	enum scx_task_state prev_state = scx_get_task_state(p);
3384 	bool warn = false;
3385 
3386 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3387 
3388 	switch (state) {
3389 	case SCX_TASK_NONE:
3390 		break;
3391 	case SCX_TASK_INIT:
3392 		warn = prev_state != SCX_TASK_NONE;
3393 		break;
3394 	case SCX_TASK_READY:
3395 		warn = prev_state == SCX_TASK_NONE;
3396 		break;
3397 	case SCX_TASK_ENABLED:
3398 		warn = prev_state != SCX_TASK_READY;
3399 		break;
3400 	default:
3401 		warn = true;
3402 		return;
3403 	}
3404 
3405 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3406 		  prev_state, state, p->comm, p->pid);
3407 
3408 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
3409 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3410 }
3411 
3412 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3413 {
3414 	int ret;
3415 
3416 	p->scx.disallow = false;
3417 
3418 	if (SCX_HAS_OP(init_task)) {
3419 		struct scx_init_task_args args = {
3420 			SCX_INIT_TASK_ARGS_CGROUP(tg)
3421 			.fork = fork,
3422 		};
3423 
3424 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3425 		if (unlikely(ret)) {
3426 			ret = ops_sanitize_err("init_task", ret);
3427 			return ret;
3428 		}
3429 	}
3430 
3431 	scx_set_task_state(p, SCX_TASK_INIT);
3432 
3433 	if (p->scx.disallow) {
3434 		if (!fork) {
3435 			struct rq *rq;
3436 			struct rq_flags rf;
3437 
3438 			rq = task_rq_lock(p, &rf);
3439 
3440 			/*
3441 			 * We're in the load path and @p->policy will be applied
3442 			 * right after. Reverting @p->policy here and rejecting
3443 			 * %SCHED_EXT transitions from scx_check_setscheduler()
3444 			 * guarantees that if ops.init_task() sets @p->disallow,
3445 			 * @p can never be in SCX.
3446 			 */
3447 			if (p->policy == SCHED_EXT) {
3448 				p->policy = SCHED_NORMAL;
3449 				atomic_long_inc(&scx_nr_rejected);
3450 			}
3451 
3452 			task_rq_unlock(rq, p, &rf);
3453 		} else if (p->policy == SCHED_EXT) {
3454 			scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3455 				      p->comm, p->pid);
3456 		}
3457 	}
3458 
3459 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3460 	return 0;
3461 }
3462 
3463 static void scx_ops_enable_task(struct task_struct *p)
3464 {
3465 	u32 weight;
3466 
3467 	lockdep_assert_rq_held(task_rq(p));
3468 
3469 	/*
3470 	 * Set the weight before calling ops.enable() so that the scheduler
3471 	 * doesn't see a stale value if they inspect the task struct.
3472 	 */
3473 	if (task_has_idle_policy(p))
3474 		weight = WEIGHT_IDLEPRIO;
3475 	else
3476 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3477 
3478 	p->scx.weight = sched_weight_to_cgroup(weight);
3479 
3480 	if (SCX_HAS_OP(enable))
3481 		SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3482 	scx_set_task_state(p, SCX_TASK_ENABLED);
3483 
3484 	if (SCX_HAS_OP(set_weight))
3485 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3486 }
3487 
3488 static void scx_ops_disable_task(struct task_struct *p)
3489 {
3490 	lockdep_assert_rq_held(task_rq(p));
3491 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3492 
3493 	if (SCX_HAS_OP(disable))
3494 		SCX_CALL_OP(SCX_KF_REST, disable, p);
3495 	scx_set_task_state(p, SCX_TASK_READY);
3496 }
3497 
3498 static void scx_ops_exit_task(struct task_struct *p)
3499 {
3500 	struct scx_exit_task_args args = {
3501 		.cancelled = false,
3502 	};
3503 
3504 	lockdep_assert_rq_held(task_rq(p));
3505 
3506 	switch (scx_get_task_state(p)) {
3507 	case SCX_TASK_NONE:
3508 		return;
3509 	case SCX_TASK_INIT:
3510 		args.cancelled = true;
3511 		break;
3512 	case SCX_TASK_READY:
3513 		break;
3514 	case SCX_TASK_ENABLED:
3515 		scx_ops_disable_task(p);
3516 		break;
3517 	default:
3518 		WARN_ON_ONCE(true);
3519 		return;
3520 	}
3521 
3522 	if (SCX_HAS_OP(exit_task))
3523 		SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3524 	scx_set_task_state(p, SCX_TASK_NONE);
3525 }
3526 
3527 void init_scx_entity(struct sched_ext_entity *scx)
3528 {
3529 	/*
3530 	 * init_idle() calls this function again after fork sequence is
3531 	 * complete. Don't touch ->tasks_node as it's already linked.
3532 	 */
3533 	memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
3534 
3535 	INIT_LIST_HEAD(&scx->dsq_list.node);
3536 	RB_CLEAR_NODE(&scx->dsq_priq);
3537 	scx->sticky_cpu = -1;
3538 	scx->holding_cpu = -1;
3539 	INIT_LIST_HEAD(&scx->runnable_node);
3540 	scx->runnable_at = jiffies;
3541 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3542 	scx->slice = SCX_SLICE_DFL;
3543 }
3544 
3545 void scx_pre_fork(struct task_struct *p)
3546 {
3547 	/*
3548 	 * BPF scheduler enable/disable paths want to be able to iterate and
3549 	 * update all tasks which can become complex when racing forks. As
3550 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
3551 	 * exclude forks.
3552 	 */
3553 	percpu_down_read(&scx_fork_rwsem);
3554 }
3555 
3556 int scx_fork(struct task_struct *p)
3557 {
3558 	percpu_rwsem_assert_held(&scx_fork_rwsem);
3559 
3560 	if (scx_ops_init_task_enabled)
3561 		return scx_ops_init_task(p, task_group(p), true);
3562 	else
3563 		return 0;
3564 }
3565 
3566 void scx_post_fork(struct task_struct *p)
3567 {
3568 	if (scx_ops_init_task_enabled) {
3569 		scx_set_task_state(p, SCX_TASK_READY);
3570 
3571 		/*
3572 		 * Enable the task immediately if it's running on sched_ext.
3573 		 * Otherwise, it'll be enabled in switching_to_scx() if and
3574 		 * when it's ever configured to run with a SCHED_EXT policy.
3575 		 */
3576 		if (p->sched_class == &ext_sched_class) {
3577 			struct rq_flags rf;
3578 			struct rq *rq;
3579 
3580 			rq = task_rq_lock(p, &rf);
3581 			scx_ops_enable_task(p);
3582 			task_rq_unlock(rq, p, &rf);
3583 		}
3584 	}
3585 
3586 	spin_lock_irq(&scx_tasks_lock);
3587 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
3588 	spin_unlock_irq(&scx_tasks_lock);
3589 
3590 	percpu_up_read(&scx_fork_rwsem);
3591 }
3592 
3593 void scx_cancel_fork(struct task_struct *p)
3594 {
3595 	if (scx_enabled()) {
3596 		struct rq *rq;
3597 		struct rq_flags rf;
3598 
3599 		rq = task_rq_lock(p, &rf);
3600 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3601 		scx_ops_exit_task(p);
3602 		task_rq_unlock(rq, p, &rf);
3603 	}
3604 
3605 	percpu_up_read(&scx_fork_rwsem);
3606 }
3607 
3608 void sched_ext_free(struct task_struct *p)
3609 {
3610 	unsigned long flags;
3611 
3612 	spin_lock_irqsave(&scx_tasks_lock, flags);
3613 	list_del_init(&p->scx.tasks_node);
3614 	spin_unlock_irqrestore(&scx_tasks_lock, flags);
3615 
3616 	/*
3617 	 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
3618 	 * ENABLED transitions can't race us. Disable ops for @p.
3619 	 */
3620 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
3621 		struct rq_flags rf;
3622 		struct rq *rq;
3623 
3624 		rq = task_rq_lock(p, &rf);
3625 		scx_ops_exit_task(p);
3626 		task_rq_unlock(rq, p, &rf);
3627 	}
3628 }
3629 
3630 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3631 			      const struct load_weight *lw)
3632 {
3633 	lockdep_assert_rq_held(task_rq(p));
3634 
3635 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3636 	if (SCX_HAS_OP(set_weight))
3637 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3638 }
3639 
3640 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
3641 {
3642 }
3643 
3644 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3645 {
3646 	scx_ops_enable_task(p);
3647 
3648 	/*
3649 	 * set_cpus_allowed_scx() is not called while @p is associated with a
3650 	 * different scheduler class. Keep the BPF scheduler up-to-date.
3651 	 */
3652 	if (SCX_HAS_OP(set_cpumask))
3653 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3654 				 (struct cpumask *)p->cpus_ptr);
3655 }
3656 
3657 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3658 {
3659 	scx_ops_disable_task(p);
3660 }
3661 
3662 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
3663 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3664 
3665 int scx_check_setscheduler(struct task_struct *p, int policy)
3666 {
3667 	lockdep_assert_rq_held(task_rq(p));
3668 
3669 	/* if disallow, reject transitioning into SCX */
3670 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3671 	    p->policy != policy && policy == SCHED_EXT)
3672 		return -EACCES;
3673 
3674 	return 0;
3675 }
3676 
3677 #ifdef CONFIG_NO_HZ_FULL
3678 bool scx_can_stop_tick(struct rq *rq)
3679 {
3680 	struct task_struct *p = rq->curr;
3681 
3682 	if (scx_rq_bypassing(rq))
3683 		return false;
3684 
3685 	if (p->sched_class != &ext_sched_class)
3686 		return true;
3687 
3688 	/*
3689 	 * @rq can dispatch from different DSQs, so we can't tell whether it
3690 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
3691 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
3692 	 */
3693 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3694 }
3695 #endif
3696 
3697 #ifdef CONFIG_EXT_GROUP_SCHED
3698 
3699 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
3700 static bool scx_cgroup_enabled;
3701 static bool cgroup_warned_missing_weight;
3702 static bool cgroup_warned_missing_idle;
3703 
3704 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
3705 {
3706 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
3707 	    cgroup_warned_missing_weight)
3708 		return;
3709 
3710 	if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
3711 		return;
3712 
3713 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
3714 		scx_ops.name);
3715 	cgroup_warned_missing_weight = true;
3716 }
3717 
3718 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
3719 {
3720 	if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
3721 		return;
3722 
3723 	if (!tg->idle)
3724 		return;
3725 
3726 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
3727 		scx_ops.name);
3728 	cgroup_warned_missing_idle = true;
3729 }
3730 
3731 int scx_tg_online(struct task_group *tg)
3732 {
3733 	int ret = 0;
3734 
3735 	WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3736 
3737 	percpu_down_read(&scx_cgroup_rwsem);
3738 
3739 	scx_cgroup_warn_missing_weight(tg);
3740 
3741 	if (scx_cgroup_enabled) {
3742 		if (SCX_HAS_OP(cgroup_init)) {
3743 			struct scx_cgroup_init_args args =
3744 				{ .weight = tg->scx_weight };
3745 
3746 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
3747 					      tg->css.cgroup, &args);
3748 			if (ret)
3749 				ret = ops_sanitize_err("cgroup_init", ret);
3750 		}
3751 		if (ret == 0)
3752 			tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3753 	} else {
3754 		tg->scx_flags |= SCX_TG_ONLINE;
3755 	}
3756 
3757 	percpu_up_read(&scx_cgroup_rwsem);
3758 	return ret;
3759 }
3760 
3761 void scx_tg_offline(struct task_group *tg)
3762 {
3763 	WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
3764 
3765 	percpu_down_read(&scx_cgroup_rwsem);
3766 
3767 	if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
3768 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
3769 	tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3770 
3771 	percpu_up_read(&scx_cgroup_rwsem);
3772 }
3773 
3774 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3775 {
3776 	struct cgroup_subsys_state *css;
3777 	struct task_struct *p;
3778 	int ret;
3779 
3780 	/* released in scx_finish/cancel_attach() */
3781 	percpu_down_read(&scx_cgroup_rwsem);
3782 
3783 	if (!scx_cgroup_enabled)
3784 		return 0;
3785 
3786 	cgroup_taskset_for_each(p, css, tset) {
3787 		struct cgroup *from = tg_cgrp(task_group(p));
3788 		struct cgroup *to = tg_cgrp(css_tg(css));
3789 
3790 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
3791 
3792 		/*
3793 		 * sched_move_task() omits identity migrations. Let's match the
3794 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3795 		 * always match one-to-one.
3796 		 */
3797 		if (from == to)
3798 			continue;
3799 
3800 		if (SCX_HAS_OP(cgroup_prep_move)) {
3801 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
3802 					      p, from, css->cgroup);
3803 			if (ret)
3804 				goto err;
3805 		}
3806 
3807 		p->scx.cgrp_moving_from = from;
3808 	}
3809 
3810 	return 0;
3811 
3812 err:
3813 	cgroup_taskset_for_each(p, css, tset) {
3814 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3815 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3816 				    p->scx.cgrp_moving_from, css->cgroup);
3817 		p->scx.cgrp_moving_from = NULL;
3818 	}
3819 
3820 	percpu_up_read(&scx_cgroup_rwsem);
3821 	return ops_sanitize_err("cgroup_prep_move", ret);
3822 }
3823 
3824 void scx_move_task(struct task_struct *p)
3825 {
3826 	if (!scx_cgroup_enabled)
3827 		return;
3828 
3829 	/*
3830 	 * We're called from sched_move_task() which handles both cgroup and
3831 	 * autogroup moves. Ignore the latter.
3832 	 *
3833 	 * Also ignore exiting tasks, because in the exit path tasks transition
3834 	 * from the autogroup to the root group, so task_group_is_autogroup()
3835 	 * alone isn't able to catch exiting autogroup tasks. This is safe for
3836 	 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
3837 	 * tasks.
3838 	 */
3839 	if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
3840 		return;
3841 
3842 	/*
3843 	 * @p must have ops.cgroup_prep_move() called on it and thus
3844 	 * cgrp_moving_from set.
3845 	 */
3846 	if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3847 		SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
3848 			p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
3849 	p->scx.cgrp_moving_from = NULL;
3850 }
3851 
3852 void scx_cgroup_finish_attach(void)
3853 {
3854 	percpu_up_read(&scx_cgroup_rwsem);
3855 }
3856 
3857 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3858 {
3859 	struct cgroup_subsys_state *css;
3860 	struct task_struct *p;
3861 
3862 	if (!scx_cgroup_enabled)
3863 		goto out_unlock;
3864 
3865 	cgroup_taskset_for_each(p, css, tset) {
3866 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
3867 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
3868 				    p->scx.cgrp_moving_from, css->cgroup);
3869 		p->scx.cgrp_moving_from = NULL;
3870 	}
3871 out_unlock:
3872 	percpu_up_read(&scx_cgroup_rwsem);
3873 }
3874 
3875 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3876 {
3877 	percpu_down_read(&scx_cgroup_rwsem);
3878 
3879 	if (scx_cgroup_enabled && tg->scx_weight != weight) {
3880 		if (SCX_HAS_OP(cgroup_set_weight))
3881 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
3882 				    tg_cgrp(tg), weight);
3883 		tg->scx_weight = weight;
3884 	}
3885 
3886 	percpu_up_read(&scx_cgroup_rwsem);
3887 }
3888 
3889 void scx_group_set_idle(struct task_group *tg, bool idle)
3890 {
3891 	percpu_down_read(&scx_cgroup_rwsem);
3892 	scx_cgroup_warn_missing_idle(tg);
3893 	percpu_up_read(&scx_cgroup_rwsem);
3894 }
3895 
3896 static void scx_cgroup_lock(void)
3897 {
3898 	percpu_down_write(&scx_cgroup_rwsem);
3899 }
3900 
3901 static void scx_cgroup_unlock(void)
3902 {
3903 	percpu_up_write(&scx_cgroup_rwsem);
3904 }
3905 
3906 #else	/* CONFIG_EXT_GROUP_SCHED */
3907 
3908 static inline void scx_cgroup_lock(void) {}
3909 static inline void scx_cgroup_unlock(void) {}
3910 
3911 #endif	/* CONFIG_EXT_GROUP_SCHED */
3912 
3913 /*
3914  * Omitted operations:
3915  *
3916  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3917  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
3918  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
3919  *
3920  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3921  *
3922  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3923  *   their current sched_class. Call them directly from sched core instead.
3924  */
3925 DEFINE_SCHED_CLASS(ext) = {
3926 	.enqueue_task		= enqueue_task_scx,
3927 	.dequeue_task		= dequeue_task_scx,
3928 	.yield_task		= yield_task_scx,
3929 	.yield_to_task		= yield_to_task_scx,
3930 
3931 	.wakeup_preempt		= wakeup_preempt_scx,
3932 
3933 	.balance		= balance_scx,
3934 	.pick_task		= pick_task_scx,
3935 
3936 	.put_prev_task		= put_prev_task_scx,
3937 	.set_next_task		= set_next_task_scx,
3938 
3939 #ifdef CONFIG_SMP
3940 	.select_task_rq		= select_task_rq_scx,
3941 	.task_woken		= task_woken_scx,
3942 	.set_cpus_allowed	= set_cpus_allowed_scx,
3943 
3944 	.rq_online		= rq_online_scx,
3945 	.rq_offline		= rq_offline_scx,
3946 #endif
3947 
3948 	.task_tick		= task_tick_scx,
3949 
3950 	.switching_to		= switching_to_scx,
3951 	.switched_from		= switched_from_scx,
3952 	.switched_to		= switched_to_scx,
3953 	.reweight_task		= reweight_task_scx,
3954 	.prio_changed		= prio_changed_scx,
3955 
3956 	.update_curr		= update_curr_scx,
3957 
3958 #ifdef CONFIG_UCLAMP_TASK
3959 	.uclamp_enabled		= 1,
3960 #endif
3961 };
3962 
3963 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3964 {
3965 	memset(dsq, 0, sizeof(*dsq));
3966 
3967 	raw_spin_lock_init(&dsq->lock);
3968 	INIT_LIST_HEAD(&dsq->list);
3969 	dsq->id = dsq_id;
3970 }
3971 
3972 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
3973 {
3974 	struct scx_dispatch_q *dsq;
3975 	int ret;
3976 
3977 	if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
3978 		return ERR_PTR(-EINVAL);
3979 
3980 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
3981 	if (!dsq)
3982 		return ERR_PTR(-ENOMEM);
3983 
3984 	init_dsq(dsq, dsq_id);
3985 
3986 	ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
3987 				     dsq_hash_params);
3988 	if (ret) {
3989 		kfree(dsq);
3990 		return ERR_PTR(ret);
3991 	}
3992 	return dsq;
3993 }
3994 
3995 static void free_dsq_irq_workfn(struct irq_work *irq_work)
3996 {
3997 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
3998 	struct scx_dispatch_q *dsq, *tmp_dsq;
3999 
4000 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4001 		kfree_rcu(dsq, rcu);
4002 }
4003 
4004 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4005 
4006 static void destroy_dsq(u64 dsq_id)
4007 {
4008 	struct scx_dispatch_q *dsq;
4009 	unsigned long flags;
4010 
4011 	rcu_read_lock();
4012 
4013 	dsq = find_user_dsq(dsq_id);
4014 	if (!dsq)
4015 		goto out_unlock_rcu;
4016 
4017 	raw_spin_lock_irqsave(&dsq->lock, flags);
4018 
4019 	if (dsq->nr) {
4020 		scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4021 			      dsq->id, dsq->nr);
4022 		goto out_unlock_dsq;
4023 	}
4024 
4025 	if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4026 		goto out_unlock_dsq;
4027 
4028 	/*
4029 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4030 	 * queueing more tasks. As this function can be called from anywhere,
4031 	 * freeing is bounced through an irq work to avoid nesting RCU
4032 	 * operations inside scheduler locks.
4033 	 */
4034 	dsq->id = SCX_DSQ_INVALID;
4035 	llist_add(&dsq->free_node, &dsqs_to_free);
4036 	irq_work_queue(&free_dsq_irq_work);
4037 
4038 out_unlock_dsq:
4039 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
4040 out_unlock_rcu:
4041 	rcu_read_unlock();
4042 }
4043 
4044 #ifdef CONFIG_EXT_GROUP_SCHED
4045 static void scx_cgroup_exit(void)
4046 {
4047 	struct cgroup_subsys_state *css;
4048 
4049 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4050 
4051 	WARN_ON_ONCE(!scx_cgroup_enabled);
4052 	scx_cgroup_enabled = false;
4053 
4054 	/*
4055 	 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4056 	 * cgroups and exit all the inited ones, all online cgroups are exited.
4057 	 */
4058 	rcu_read_lock();
4059 	css_for_each_descendant_post(css, &root_task_group.css) {
4060 		struct task_group *tg = css_tg(css);
4061 
4062 		if (!(tg->scx_flags & SCX_TG_INITED))
4063 			continue;
4064 		tg->scx_flags &= ~SCX_TG_INITED;
4065 
4066 		if (!scx_ops.cgroup_exit)
4067 			continue;
4068 
4069 		if (WARN_ON_ONCE(!css_tryget(css)))
4070 			continue;
4071 		rcu_read_unlock();
4072 
4073 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4074 
4075 		rcu_read_lock();
4076 		css_put(css);
4077 	}
4078 	rcu_read_unlock();
4079 }
4080 
4081 static int scx_cgroup_init(void)
4082 {
4083 	struct cgroup_subsys_state *css;
4084 	int ret;
4085 
4086 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4087 
4088 	cgroup_warned_missing_weight = false;
4089 	cgroup_warned_missing_idle = false;
4090 
4091 	/*
4092 	 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4093 	 * cgroups and init, all online cgroups are initialized.
4094 	 */
4095 	rcu_read_lock();
4096 	css_for_each_descendant_pre(css, &root_task_group.css) {
4097 		struct task_group *tg = css_tg(css);
4098 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4099 
4100 		scx_cgroup_warn_missing_weight(tg);
4101 		scx_cgroup_warn_missing_idle(tg);
4102 
4103 		if ((tg->scx_flags &
4104 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4105 			continue;
4106 
4107 		if (!scx_ops.cgroup_init) {
4108 			tg->scx_flags |= SCX_TG_INITED;
4109 			continue;
4110 		}
4111 
4112 		if (WARN_ON_ONCE(!css_tryget(css)))
4113 			continue;
4114 		rcu_read_unlock();
4115 
4116 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4117 				      css->cgroup, &args);
4118 		if (ret) {
4119 			css_put(css);
4120 			return ret;
4121 		}
4122 		tg->scx_flags |= SCX_TG_INITED;
4123 
4124 		rcu_read_lock();
4125 		css_put(css);
4126 	}
4127 	rcu_read_unlock();
4128 
4129 	WARN_ON_ONCE(scx_cgroup_enabled);
4130 	scx_cgroup_enabled = true;
4131 
4132 	return 0;
4133 }
4134 
4135 #else
4136 static void scx_cgroup_exit(void) {}
4137 static int scx_cgroup_init(void) { return 0; }
4138 #endif
4139 
4140 
4141 /********************************************************************************
4142  * Sysfs interface and ops enable/disable.
4143  */
4144 
4145 #define SCX_ATTR(_name)								\
4146 	static struct kobj_attribute scx_attr_##_name = {			\
4147 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
4148 		.show = scx_attr_##_name##_show,				\
4149 	}
4150 
4151 static ssize_t scx_attr_state_show(struct kobject *kobj,
4152 				   struct kobj_attribute *ka, char *buf)
4153 {
4154 	return sysfs_emit(buf, "%s\n",
4155 			  scx_ops_enable_state_str[scx_ops_enable_state()]);
4156 }
4157 SCX_ATTR(state);
4158 
4159 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4160 					struct kobj_attribute *ka, char *buf)
4161 {
4162 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4163 }
4164 SCX_ATTR(switch_all);
4165 
4166 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4167 					 struct kobj_attribute *ka, char *buf)
4168 {
4169 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4170 }
4171 SCX_ATTR(nr_rejected);
4172 
4173 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4174 					 struct kobj_attribute *ka, char *buf)
4175 {
4176 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4177 }
4178 SCX_ATTR(hotplug_seq);
4179 
4180 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4181 					struct kobj_attribute *ka, char *buf)
4182 {
4183 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4184 }
4185 SCX_ATTR(enable_seq);
4186 
4187 static struct attribute *scx_global_attrs[] = {
4188 	&scx_attr_state.attr,
4189 	&scx_attr_switch_all.attr,
4190 	&scx_attr_nr_rejected.attr,
4191 	&scx_attr_hotplug_seq.attr,
4192 	&scx_attr_enable_seq.attr,
4193 	NULL,
4194 };
4195 
4196 static const struct attribute_group scx_global_attr_group = {
4197 	.attrs = scx_global_attrs,
4198 };
4199 
4200 static void scx_kobj_release(struct kobject *kobj)
4201 {
4202 	kfree(kobj);
4203 }
4204 
4205 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4206 				 struct kobj_attribute *ka, char *buf)
4207 {
4208 	return sysfs_emit(buf, "%s\n", scx_ops.name);
4209 }
4210 SCX_ATTR(ops);
4211 
4212 static struct attribute *scx_sched_attrs[] = {
4213 	&scx_attr_ops.attr,
4214 	NULL,
4215 };
4216 ATTRIBUTE_GROUPS(scx_sched);
4217 
4218 static const struct kobj_type scx_ktype = {
4219 	.release = scx_kobj_release,
4220 	.sysfs_ops = &kobj_sysfs_ops,
4221 	.default_groups = scx_sched_groups,
4222 };
4223 
4224 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4225 {
4226 	return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4227 }
4228 
4229 static const struct kset_uevent_ops scx_uevent_ops = {
4230 	.uevent = scx_uevent,
4231 };
4232 
4233 /*
4234  * Used by sched_fork() and __setscheduler_prio() to pick the matching
4235  * sched_class. dl/rt are already handled.
4236  */
4237 bool task_should_scx(struct task_struct *p)
4238 {
4239 	if (!scx_enabled() ||
4240 	    unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4241 		return false;
4242 	if (READ_ONCE(scx_switching_all))
4243 		return true;
4244 	return p->policy == SCHED_EXT;
4245 }
4246 
4247 /**
4248  * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4249  *
4250  * Bypassing guarantees that all runnable tasks make forward progress without
4251  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4252  * be held by tasks that the BPF scheduler is forgetting to run, which
4253  * unfortunately also excludes toggling the static branches.
4254  *
4255  * Let's work around by overriding a couple ops and modifying behaviors based on
4256  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4257  * to force global FIFO scheduling.
4258  *
4259  * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4260  *    %SCX_OPS_ENQ_LAST is also ignored.
4261  *
4262  * b. ops.dispatch() is ignored.
4263  *
4264  * c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4265  *    can't be trusted. Whenever a tick triggers, the running task is rotated to
4266  *    the tail of the queue with core_sched_at touched.
4267  *
4268  * d. pick_next_task() suppresses zero slice warning.
4269  *
4270  * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4271  *    operations.
4272  *
4273  * f. scx_prio_less() reverts to the default core_sched_at order.
4274  */
4275 static void scx_ops_bypass(bool bypass)
4276 {
4277 	int depth, cpu;
4278 
4279 	if (bypass) {
4280 		depth = atomic_inc_return(&scx_ops_bypass_depth);
4281 		WARN_ON_ONCE(depth <= 0);
4282 		if (depth != 1)
4283 			return;
4284 	} else {
4285 		depth = atomic_dec_return(&scx_ops_bypass_depth);
4286 		WARN_ON_ONCE(depth < 0);
4287 		if (depth != 0)
4288 			return;
4289 	}
4290 
4291 	/*
4292 	 * No task property is changing. We just need to make sure all currently
4293 	 * queued tasks are re-queued according to the new scx_rq_bypassing()
4294 	 * state. As an optimization, walk each rq's runnable_list instead of
4295 	 * the scx_tasks list.
4296 	 *
4297 	 * This function can't trust the scheduler and thus can't use
4298 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
4299 	 */
4300 	for_each_possible_cpu(cpu) {
4301 		struct rq *rq = cpu_rq(cpu);
4302 		struct rq_flags rf;
4303 		struct task_struct *p, *n;
4304 
4305 		rq_lock_irqsave(rq, &rf);
4306 
4307 		if (bypass) {
4308 			WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4309 			rq->scx.flags |= SCX_RQ_BYPASSING;
4310 		} else {
4311 			WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4312 			rq->scx.flags &= ~SCX_RQ_BYPASSING;
4313 		}
4314 
4315 		/*
4316 		 * We need to guarantee that no tasks are on the BPF scheduler
4317 		 * while bypassing. Either we see enabled or the enable path
4318 		 * sees scx_rq_bypassing() before moving tasks to SCX.
4319 		 */
4320 		if (!scx_enabled()) {
4321 			rq_unlock_irqrestore(rq, &rf);
4322 			continue;
4323 		}
4324 
4325 		/*
4326 		 * The use of list_for_each_entry_safe_reverse() is required
4327 		 * because each task is going to be removed from and added back
4328 		 * to the runnable_list during iteration. Because they're added
4329 		 * to the tail of the list, safe reverse iteration can still
4330 		 * visit all nodes.
4331 		 */
4332 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4333 						 scx.runnable_node) {
4334 			struct sched_enq_and_set_ctx ctx;
4335 
4336 			/* cycling deq/enq is enough, see the function comment */
4337 			sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4338 			sched_enq_and_set_task(&ctx);
4339 		}
4340 
4341 		rq_unlock_irqrestore(rq, &rf);
4342 
4343 		/* kick to restore ticks */
4344 		resched_cpu(cpu);
4345 	}
4346 }
4347 
4348 static void free_exit_info(struct scx_exit_info *ei)
4349 {
4350 	kfree(ei->dump);
4351 	kfree(ei->msg);
4352 	kfree(ei->bt);
4353 	kfree(ei);
4354 }
4355 
4356 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4357 {
4358 	struct scx_exit_info *ei;
4359 
4360 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4361 	if (!ei)
4362 		return NULL;
4363 
4364 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4365 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4366 	ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4367 
4368 	if (!ei->bt || !ei->msg || !ei->dump) {
4369 		free_exit_info(ei);
4370 		return NULL;
4371 	}
4372 
4373 	return ei;
4374 }
4375 
4376 static const char *scx_exit_reason(enum scx_exit_kind kind)
4377 {
4378 	switch (kind) {
4379 	case SCX_EXIT_UNREG:
4380 		return "unregistered from user space";
4381 	case SCX_EXIT_UNREG_BPF:
4382 		return "unregistered from BPF";
4383 	case SCX_EXIT_UNREG_KERN:
4384 		return "unregistered from the main kernel";
4385 	case SCX_EXIT_SYSRQ:
4386 		return "disabled by sysrq-S";
4387 	case SCX_EXIT_ERROR:
4388 		return "runtime error";
4389 	case SCX_EXIT_ERROR_BPF:
4390 		return "scx_bpf_error";
4391 	case SCX_EXIT_ERROR_STALL:
4392 		return "runnable task stall";
4393 	default:
4394 		return "<UNKNOWN>";
4395 	}
4396 }
4397 
4398 static void scx_ops_disable_workfn(struct kthread_work *work)
4399 {
4400 	struct scx_exit_info *ei = scx_exit_info;
4401 	struct scx_task_iter sti;
4402 	struct task_struct *p;
4403 	struct rhashtable_iter rht_iter;
4404 	struct scx_dispatch_q *dsq;
4405 	int i, kind;
4406 
4407 	kind = atomic_read(&scx_exit_kind);
4408 	while (true) {
4409 		/*
4410 		 * NONE indicates that a new scx_ops has been registered since
4411 		 * disable was scheduled - don't kill the new ops. DONE
4412 		 * indicates that the ops has already been disabled.
4413 		 */
4414 		if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4415 			return;
4416 		if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4417 			break;
4418 	}
4419 	ei->kind = kind;
4420 	ei->reason = scx_exit_reason(ei->kind);
4421 
4422 	/* guarantee forward progress by bypassing scx_ops */
4423 	scx_ops_bypass(true);
4424 
4425 	switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4426 	case SCX_OPS_DISABLING:
4427 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4428 		break;
4429 	case SCX_OPS_DISABLED:
4430 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
4431 			scx_exit_info->msg);
4432 		WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4433 			     SCX_OPS_DISABLING);
4434 		goto done;
4435 	default:
4436 		break;
4437 	}
4438 
4439 	/*
4440 	 * Here, every runnable task is guaranteed to make forward progress and
4441 	 * we can safely use blocking synchronization constructs. Actually
4442 	 * disable ops.
4443 	 */
4444 	mutex_lock(&scx_ops_enable_mutex);
4445 
4446 	static_branch_disable(&__scx_switched_all);
4447 	WRITE_ONCE(scx_switching_all, false);
4448 
4449 	/*
4450 	 * Shut down cgroup support before tasks so that the cgroup attach path
4451 	 * doesn't race against scx_ops_exit_task().
4452 	 */
4453 	scx_cgroup_lock();
4454 	scx_cgroup_exit();
4455 	scx_cgroup_unlock();
4456 
4457 	/*
4458 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4459 	 * must be switched out and exited synchronously.
4460 	 */
4461 	percpu_down_write(&scx_fork_rwsem);
4462 
4463 	scx_ops_init_task_enabled = false;
4464 
4465 	spin_lock_irq(&scx_tasks_lock);
4466 	scx_task_iter_init(&sti);
4467 	while ((p = scx_task_iter_next_locked(&sti))) {
4468 		const struct sched_class *old_class = p->sched_class;
4469 		struct sched_enq_and_set_ctx ctx;
4470 
4471 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4472 
4473 		p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL);
4474 		__setscheduler_prio(p, p->prio);
4475 		check_class_changing(task_rq(p), p, old_class);
4476 
4477 		sched_enq_and_set_task(&ctx);
4478 
4479 		check_class_changed(task_rq(p), p, old_class, p->prio);
4480 		scx_ops_exit_task(p);
4481 	}
4482 	scx_task_iter_exit(&sti);
4483 	spin_unlock_irq(&scx_tasks_lock);
4484 	percpu_up_write(&scx_fork_rwsem);
4485 
4486 	/* no task is on scx, turn off all the switches and flush in-progress calls */
4487 	static_branch_disable(&__scx_ops_enabled);
4488 	for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4489 		static_branch_disable(&scx_has_op[i]);
4490 	static_branch_disable(&scx_ops_enq_last);
4491 	static_branch_disable(&scx_ops_enq_exiting);
4492 	static_branch_disable(&scx_ops_cpu_preempt);
4493 	static_branch_disable(&scx_builtin_idle_enabled);
4494 	synchronize_rcu();
4495 
4496 	if (ei->kind >= SCX_EXIT_ERROR) {
4497 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4498 		       scx_ops.name, ei->reason);
4499 
4500 		if (ei->msg[0] != '\0')
4501 			pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4502 #ifdef CONFIG_STACKTRACE
4503 		stack_trace_print(ei->bt, ei->bt_len, 2);
4504 #endif
4505 	} else {
4506 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4507 			scx_ops.name, ei->reason);
4508 	}
4509 
4510 	if (scx_ops.exit)
4511 		SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4512 
4513 	cancel_delayed_work_sync(&scx_watchdog_work);
4514 
4515 	/*
4516 	 * Delete the kobject from the hierarchy eagerly in addition to just
4517 	 * dropping a reference. Otherwise, if the object is deleted
4518 	 * asynchronously, sysfs could observe an object of the same name still
4519 	 * in the hierarchy when another scheduler is loaded.
4520 	 */
4521 	kobject_del(scx_root_kobj);
4522 	kobject_put(scx_root_kobj);
4523 	scx_root_kobj = NULL;
4524 
4525 	memset(&scx_ops, 0, sizeof(scx_ops));
4526 
4527 	rhashtable_walk_enter(&dsq_hash, &rht_iter);
4528 	do {
4529 		rhashtable_walk_start(&rht_iter);
4530 
4531 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4532 			destroy_dsq(dsq->id);
4533 
4534 		rhashtable_walk_stop(&rht_iter);
4535 	} while (dsq == ERR_PTR(-EAGAIN));
4536 	rhashtable_walk_exit(&rht_iter);
4537 
4538 	free_percpu(scx_dsp_ctx);
4539 	scx_dsp_ctx = NULL;
4540 	scx_dsp_max_batch = 0;
4541 
4542 	free_exit_info(scx_exit_info);
4543 	scx_exit_info = NULL;
4544 
4545 	mutex_unlock(&scx_ops_enable_mutex);
4546 
4547 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4548 		     SCX_OPS_DISABLING);
4549 done:
4550 	scx_ops_bypass(false);
4551 }
4552 
4553 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
4554 
4555 static void schedule_scx_ops_disable_work(void)
4556 {
4557 	struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
4558 
4559 	/*
4560 	 * We may be called spuriously before the first bpf_sched_ext_reg(). If
4561 	 * scx_ops_helper isn't set up yet, there's nothing to do.
4562 	 */
4563 	if (helper)
4564 		kthread_queue_work(helper, &scx_ops_disable_work);
4565 }
4566 
4567 static void scx_ops_disable(enum scx_exit_kind kind)
4568 {
4569 	int none = SCX_EXIT_NONE;
4570 
4571 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4572 		kind = SCX_EXIT_ERROR;
4573 
4574 	atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
4575 
4576 	schedule_scx_ops_disable_work();
4577 }
4578 
4579 static void dump_newline(struct seq_buf *s)
4580 {
4581 	trace_sched_ext_dump("");
4582 
4583 	/* @s may be zero sized and seq_buf triggers WARN if so */
4584 	if (s->size)
4585 		seq_buf_putc(s, '\n');
4586 }
4587 
4588 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4589 {
4590 	va_list args;
4591 
4592 #ifdef CONFIG_TRACEPOINTS
4593 	if (trace_sched_ext_dump_enabled()) {
4594 		/* protected by scx_dump_state()::dump_lock */
4595 		static char line_buf[SCX_EXIT_MSG_LEN];
4596 
4597 		va_start(args, fmt);
4598 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4599 		va_end(args);
4600 
4601 		trace_sched_ext_dump(line_buf);
4602 	}
4603 #endif
4604 	/* @s may be zero sized and seq_buf triggers WARN if so */
4605 	if (s->size) {
4606 		va_start(args, fmt);
4607 		seq_buf_vprintf(s, fmt, args);
4608 		va_end(args);
4609 
4610 		seq_buf_putc(s, '\n');
4611 	}
4612 }
4613 
4614 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4615 			     const unsigned long *bt, unsigned int len)
4616 {
4617 	unsigned int i;
4618 
4619 	for (i = 0; i < len; i++)
4620 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4621 }
4622 
4623 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4624 {
4625 	struct scx_dump_data *dd = &scx_dump_data;
4626 
4627 	lockdep_assert_irqs_disabled();
4628 
4629 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
4630 	dd->first = true;
4631 	dd->cursor = 0;
4632 	dd->s = s;
4633 	dd->prefix = prefix;
4634 }
4635 
4636 static void ops_dump_flush(void)
4637 {
4638 	struct scx_dump_data *dd = &scx_dump_data;
4639 	char *line = dd->buf.line;
4640 
4641 	if (!dd->cursor)
4642 		return;
4643 
4644 	/*
4645 	 * There's something to flush and this is the first line. Insert a blank
4646 	 * line to distinguish ops dump.
4647 	 */
4648 	if (dd->first) {
4649 		dump_newline(dd->s);
4650 		dd->first = false;
4651 	}
4652 
4653 	/*
4654 	 * There may be multiple lines in $line. Scan and emit each line
4655 	 * separately.
4656 	 */
4657 	while (true) {
4658 		char *end = line;
4659 		char c;
4660 
4661 		while (*end != '\n' && *end != '\0')
4662 			end++;
4663 
4664 		/*
4665 		 * If $line overflowed, it may not have newline at the end.
4666 		 * Always emit with a newline.
4667 		 */
4668 		c = *end;
4669 		*end = '\0';
4670 		dump_line(dd->s, "%s%s", dd->prefix, line);
4671 		if (c == '\0')
4672 			break;
4673 
4674 		/* move to the next line */
4675 		end++;
4676 		if (*end == '\0')
4677 			break;
4678 		line = end;
4679 	}
4680 
4681 	dd->cursor = 0;
4682 }
4683 
4684 static void ops_dump_exit(void)
4685 {
4686 	ops_dump_flush();
4687 	scx_dump_data.cpu = -1;
4688 }
4689 
4690 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4691 			  struct task_struct *p, char marker)
4692 {
4693 	static unsigned long bt[SCX_EXIT_BT_LEN];
4694 	char dsq_id_buf[19] = "(n/a)";
4695 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4696 	unsigned int bt_len = 0;
4697 
4698 	if (p->scx.dsq)
4699 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4700 			  (unsigned long long)p->scx.dsq->id);
4701 
4702 	dump_newline(s);
4703 	dump_line(s, " %c%c %s[%d] %+ldms",
4704 		  marker, task_state_to_char(p), p->comm, p->pid,
4705 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4706 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4707 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4708 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4709 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
4710 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
4711 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
4712 		  p->scx.dsq_vtime);
4713 	dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
4714 
4715 	if (SCX_HAS_OP(dump_task)) {
4716 		ops_dump_init(s, "    ");
4717 		SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
4718 		ops_dump_exit();
4719 	}
4720 
4721 #ifdef CONFIG_STACKTRACE
4722 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4723 #endif
4724 	if (bt_len) {
4725 		dump_newline(s);
4726 		dump_stack_trace(s, "    ", bt, bt_len);
4727 	}
4728 }
4729 
4730 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4731 {
4732 	static DEFINE_SPINLOCK(dump_lock);
4733 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4734 	struct scx_dump_ctx dctx = {
4735 		.kind = ei->kind,
4736 		.exit_code = ei->exit_code,
4737 		.reason = ei->reason,
4738 		.at_ns = ktime_get_ns(),
4739 		.at_jiffies = jiffies,
4740 	};
4741 	struct seq_buf s;
4742 	unsigned long flags;
4743 	char *buf;
4744 	int cpu;
4745 
4746 	spin_lock_irqsave(&dump_lock, flags);
4747 
4748 	seq_buf_init(&s, ei->dump, dump_len);
4749 
4750 	if (ei->kind == SCX_EXIT_NONE) {
4751 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
4752 	} else {
4753 		dump_line(&s, "%s[%d] triggered exit kind %d:",
4754 			  current->comm, current->pid, ei->kind);
4755 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
4756 		dump_newline(&s);
4757 		dump_line(&s, "Backtrace:");
4758 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
4759 	}
4760 
4761 	if (SCX_HAS_OP(dump)) {
4762 		ops_dump_init(&s, "");
4763 		SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
4764 		ops_dump_exit();
4765 	}
4766 
4767 	dump_newline(&s);
4768 	dump_line(&s, "CPU states");
4769 	dump_line(&s, "----------");
4770 
4771 	for_each_possible_cpu(cpu) {
4772 		struct rq *rq = cpu_rq(cpu);
4773 		struct rq_flags rf;
4774 		struct task_struct *p;
4775 		struct seq_buf ns;
4776 		size_t avail, used;
4777 		bool idle;
4778 
4779 		rq_lock(rq, &rf);
4780 
4781 		idle = list_empty(&rq->scx.runnable_list) &&
4782 			rq->curr->sched_class == &idle_sched_class;
4783 
4784 		if (idle && !SCX_HAS_OP(dump_cpu))
4785 			goto next;
4786 
4787 		/*
4788 		 * We don't yet know whether ops.dump_cpu() will produce output
4789 		 * and we may want to skip the default CPU dump if it doesn't.
4790 		 * Use a nested seq_buf to generate the standard dump so that we
4791 		 * can decide whether to commit later.
4792 		 */
4793 		avail = seq_buf_get_buf(&s, &buf);
4794 		seq_buf_init(&ns, buf, avail);
4795 
4796 		dump_newline(&ns);
4797 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
4798 			  cpu, rq->scx.nr_running, rq->scx.flags,
4799 			  rq->scx.cpu_released, rq->scx.ops_qseq,
4800 			  rq->scx.pnt_seq);
4801 		dump_line(&ns, "          curr=%s[%d] class=%ps",
4802 			  rq->curr->comm, rq->curr->pid,
4803 			  rq->curr->sched_class);
4804 		if (!cpumask_empty(rq->scx.cpus_to_kick))
4805 			dump_line(&ns, "  cpus_to_kick   : %*pb",
4806 				  cpumask_pr_args(rq->scx.cpus_to_kick));
4807 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4808 			dump_line(&ns, "  idle_to_kick   : %*pb",
4809 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4810 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
4811 			dump_line(&ns, "  cpus_to_preempt: %*pb",
4812 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
4813 		if (!cpumask_empty(rq->scx.cpus_to_wait))
4814 			dump_line(&ns, "  cpus_to_wait   : %*pb",
4815 				  cpumask_pr_args(rq->scx.cpus_to_wait));
4816 
4817 		used = seq_buf_used(&ns);
4818 		if (SCX_HAS_OP(dump_cpu)) {
4819 			ops_dump_init(&ns, "  ");
4820 			SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
4821 			ops_dump_exit();
4822 		}
4823 
4824 		/*
4825 		 * If idle && nothing generated by ops.dump_cpu(), there's
4826 		 * nothing interesting. Skip.
4827 		 */
4828 		if (idle && used == seq_buf_used(&ns))
4829 			goto next;
4830 
4831 		/*
4832 		 * $s may already have overflowed when $ns was created. If so,
4833 		 * calling commit on it will trigger BUG.
4834 		 */
4835 		if (avail) {
4836 			seq_buf_commit(&s, seq_buf_used(&ns));
4837 			if (seq_buf_has_overflowed(&ns))
4838 				seq_buf_set_overflow(&s);
4839 		}
4840 
4841 		if (rq->curr->sched_class == &ext_sched_class)
4842 			scx_dump_task(&s, &dctx, rq->curr, '*');
4843 
4844 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4845 			scx_dump_task(&s, &dctx, p, ' ');
4846 	next:
4847 		rq_unlock(rq, &rf);
4848 	}
4849 
4850 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4851 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4852 		       trunc_marker, sizeof(trunc_marker));
4853 
4854 	spin_unlock_irqrestore(&dump_lock, flags);
4855 }
4856 
4857 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
4858 {
4859 	struct scx_exit_info *ei = scx_exit_info;
4860 
4861 	if (ei->kind >= SCX_EXIT_ERROR)
4862 		scx_dump_state(ei, scx_ops.exit_dump_len);
4863 
4864 	schedule_scx_ops_disable_work();
4865 }
4866 
4867 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
4868 
4869 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
4870 					     s64 exit_code,
4871 					     const char *fmt, ...)
4872 {
4873 	struct scx_exit_info *ei = scx_exit_info;
4874 	int none = SCX_EXIT_NONE;
4875 	va_list args;
4876 
4877 	if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
4878 		return;
4879 
4880 	ei->exit_code = exit_code;
4881 #ifdef CONFIG_STACKTRACE
4882 	if (kind >= SCX_EXIT_ERROR)
4883 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4884 #endif
4885 	va_start(args, fmt);
4886 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4887 	va_end(args);
4888 
4889 	/*
4890 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4891 	 * in scx_ops_disable_workfn().
4892 	 */
4893 	ei->kind = kind;
4894 	ei->reason = scx_exit_reason(ei->kind);
4895 
4896 	irq_work_queue(&scx_ops_error_irq_work);
4897 }
4898 
4899 static struct kthread_worker *scx_create_rt_helper(const char *name)
4900 {
4901 	struct kthread_worker *helper;
4902 
4903 	helper = kthread_create_worker(0, name);
4904 	if (helper)
4905 		sched_set_fifo(helper->task);
4906 	return helper;
4907 }
4908 
4909 static void check_hotplug_seq(const struct sched_ext_ops *ops)
4910 {
4911 	unsigned long long global_hotplug_seq;
4912 
4913 	/*
4914 	 * If a hotplug event has occurred between when a scheduler was
4915 	 * initialized, and when we were able to attach, exit and notify user
4916 	 * space about it.
4917 	 */
4918 	if (ops->hotplug_seq) {
4919 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4920 		if (ops->hotplug_seq != global_hotplug_seq) {
4921 			scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4922 				     "expected hotplug seq %llu did not match actual %llu",
4923 				     ops->hotplug_seq, global_hotplug_seq);
4924 		}
4925 	}
4926 }
4927 
4928 static int validate_ops(const struct sched_ext_ops *ops)
4929 {
4930 	/*
4931 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4932 	 * ops.enqueue() callback isn't implemented.
4933 	 */
4934 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4935 		scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4936 		return -EINVAL;
4937 	}
4938 
4939 	return 0;
4940 }
4941 
4942 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4943 {
4944 	struct scx_task_iter sti;
4945 	struct task_struct *p;
4946 	unsigned long timeout;
4947 	int i, cpu, node, ret;
4948 
4949 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4950 			   cpu_possible_mask)) {
4951 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
4952 		return -EINVAL;
4953 	}
4954 
4955 	mutex_lock(&scx_ops_enable_mutex);
4956 
4957 	if (!scx_ops_helper) {
4958 		WRITE_ONCE(scx_ops_helper,
4959 			   scx_create_rt_helper("sched_ext_ops_helper"));
4960 		if (!scx_ops_helper) {
4961 			ret = -ENOMEM;
4962 			goto err_unlock;
4963 		}
4964 	}
4965 
4966 	if (!global_dsqs) {
4967 		struct scx_dispatch_q **dsqs;
4968 
4969 		dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
4970 		if (!dsqs) {
4971 			ret = -ENOMEM;
4972 			goto err_unlock;
4973 		}
4974 
4975 		for_each_node_state(node, N_POSSIBLE) {
4976 			struct scx_dispatch_q *dsq;
4977 
4978 			dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4979 			if (!dsq) {
4980 				for_each_node_state(node, N_POSSIBLE)
4981 					kfree(dsqs[node]);
4982 				kfree(dsqs);
4983 				ret = -ENOMEM;
4984 				goto err_unlock;
4985 			}
4986 
4987 			init_dsq(dsq, SCX_DSQ_GLOBAL);
4988 			dsqs[node] = dsq;
4989 		}
4990 
4991 		global_dsqs = dsqs;
4992 	}
4993 
4994 	if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
4995 		ret = -EBUSY;
4996 		goto err_unlock;
4997 	}
4998 
4999 	scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5000 	if (!scx_root_kobj) {
5001 		ret = -ENOMEM;
5002 		goto err_unlock;
5003 	}
5004 
5005 	scx_root_kobj->kset = scx_kset;
5006 	ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5007 	if (ret < 0)
5008 		goto err;
5009 
5010 	scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5011 	if (!scx_exit_info) {
5012 		ret = -ENOMEM;
5013 		goto err_del;
5014 	}
5015 
5016 	/*
5017 	 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5018 	 * disable path. Failure triggers full disabling from here on.
5019 	 */
5020 	scx_ops = *ops;
5021 
5022 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5023 		     SCX_OPS_DISABLED);
5024 
5025 	atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5026 	scx_warned_zero_slice = false;
5027 
5028 	atomic_long_set(&scx_nr_rejected, 0);
5029 
5030 	for_each_possible_cpu(cpu)
5031 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5032 
5033 	/*
5034 	 * Keep CPUs stable during enable so that the BPF scheduler can track
5035 	 * online CPUs by watching ->on/offline_cpu() after ->init().
5036 	 */
5037 	cpus_read_lock();
5038 
5039 	if (scx_ops.init) {
5040 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5041 		if (ret) {
5042 			ret = ops_sanitize_err("init", ret);
5043 			cpus_read_unlock();
5044 			goto err_disable;
5045 		}
5046 	}
5047 
5048 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5049 		if (((void (**)(void))ops)[i])
5050 			static_branch_enable_cpuslocked(&scx_has_op[i]);
5051 
5052 	check_hotplug_seq(ops);
5053 	cpus_read_unlock();
5054 
5055 	ret = validate_ops(ops);
5056 	if (ret)
5057 		goto err_disable;
5058 
5059 	WARN_ON_ONCE(scx_dsp_ctx);
5060 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5061 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5062 						   scx_dsp_max_batch),
5063 				     __alignof__(struct scx_dsp_ctx));
5064 	if (!scx_dsp_ctx) {
5065 		ret = -ENOMEM;
5066 		goto err_disable;
5067 	}
5068 
5069 	if (ops->timeout_ms)
5070 		timeout = msecs_to_jiffies(ops->timeout_ms);
5071 	else
5072 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5073 
5074 	WRITE_ONCE(scx_watchdog_timeout, timeout);
5075 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5076 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5077 			   scx_watchdog_timeout / 2);
5078 
5079 	/*
5080 	 * Once __scx_ops_enabled is set, %current can be switched to SCX
5081 	 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5082 	 * userspace scheduling) may not function correctly before all tasks are
5083 	 * switched. Init in bypass mode to guarantee forward progress.
5084 	 */
5085 	scx_ops_bypass(true);
5086 
5087 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5088 		if (((void (**)(void))ops)[i])
5089 			static_branch_enable(&scx_has_op[i]);
5090 
5091 	if (ops->flags & SCX_OPS_ENQ_LAST)
5092 		static_branch_enable(&scx_ops_enq_last);
5093 
5094 	if (ops->flags & SCX_OPS_ENQ_EXITING)
5095 		static_branch_enable(&scx_ops_enq_exiting);
5096 	if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5097 		static_branch_enable(&scx_ops_cpu_preempt);
5098 
5099 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5100 		reset_idle_masks();
5101 		static_branch_enable(&scx_builtin_idle_enabled);
5102 	} else {
5103 		static_branch_disable(&scx_builtin_idle_enabled);
5104 	}
5105 
5106 	/*
5107 	 * Lock out forks, cgroup on/offlining and moves before opening the
5108 	 * floodgate so that they don't wander into the operations prematurely.
5109 	 */
5110 	percpu_down_write(&scx_fork_rwsem);
5111 
5112 	WARN_ON_ONCE(scx_ops_init_task_enabled);
5113 	scx_ops_init_task_enabled = true;
5114 
5115 	/*
5116 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5117 	 * preventing new tasks from being added. No need to exclude tasks
5118 	 * leaving as sched_ext_free() can handle both prepped and enabled
5119 	 * tasks. Prep all tasks first and then enable them with preemption
5120 	 * disabled.
5121 	 *
5122 	 * All cgroups should be initialized before scx_ops_init_task() so that
5123 	 * the BPF scheduler can reliably track each task's cgroup membership
5124 	 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5125 	 * migrations while tasks are being initialized so that
5126 	 * scx_cgroup_can_attach() never sees uninitialized tasks.
5127 	 */
5128 	scx_cgroup_lock();
5129 	ret = scx_cgroup_init();
5130 	if (ret)
5131 		goto err_disable_unlock_all;
5132 
5133 	spin_lock_irq(&scx_tasks_lock);
5134 	scx_task_iter_init(&sti);
5135 	while ((p = scx_task_iter_next_locked(&sti))) {
5136 		/*
5137 		 * @p may already be dead, have lost all its usages counts and
5138 		 * be waiting for RCU grace period before being freed. @p can't
5139 		 * be initialized for SCX in such cases and should be ignored.
5140 		 */
5141 		if (!tryget_task_struct(p))
5142 			continue;
5143 
5144 		scx_task_iter_rq_unlock(&sti);
5145 		spin_unlock_irq(&scx_tasks_lock);
5146 
5147 		ret = scx_ops_init_task(p, task_group(p), false);
5148 		if (ret) {
5149 			put_task_struct(p);
5150 			spin_lock_irq(&scx_tasks_lock);
5151 			scx_task_iter_exit(&sti);
5152 			spin_unlock_irq(&scx_tasks_lock);
5153 			pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n",
5154 			       ret, p->comm, p->pid);
5155 			goto err_disable_unlock_all;
5156 		}
5157 
5158 		scx_set_task_state(p, SCX_TASK_READY);
5159 
5160 		put_task_struct(p);
5161 		spin_lock_irq(&scx_tasks_lock);
5162 	}
5163 	scx_task_iter_exit(&sti);
5164 	spin_unlock_irq(&scx_tasks_lock);
5165 	scx_cgroup_unlock();
5166 	percpu_up_write(&scx_fork_rwsem);
5167 
5168 	/*
5169 	 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5170 	 * all eligible tasks.
5171 	 */
5172 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5173 	static_branch_enable(&__scx_ops_enabled);
5174 
5175 	/*
5176 	 * We're fully committed and can't fail. The task READY -> ENABLED
5177 	 * transitions here are synchronized against sched_ext_free() through
5178 	 * scx_tasks_lock.
5179 	 */
5180 	percpu_down_write(&scx_fork_rwsem);
5181 	spin_lock_irq(&scx_tasks_lock);
5182 	scx_task_iter_init(&sti);
5183 	while ((p = scx_task_iter_next_locked(&sti))) {
5184 		const struct sched_class *old_class = p->sched_class;
5185 		struct sched_enq_and_set_ctx ctx;
5186 
5187 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5188 
5189 		__setscheduler_prio(p, p->prio);
5190 		check_class_changing(task_rq(p), p, old_class);
5191 
5192 		sched_enq_and_set_task(&ctx);
5193 
5194 		check_class_changed(task_rq(p), p, old_class, p->prio);
5195 	}
5196 	scx_task_iter_exit(&sti);
5197 	spin_unlock_irq(&scx_tasks_lock);
5198 	percpu_up_write(&scx_fork_rwsem);
5199 
5200 	scx_ops_bypass(false);
5201 
5202 	/*
5203 	 * Returning an error code here would lose the recorded error
5204 	 * information. Exit indicating success so that the error is notified
5205 	 * through ops.exit() with all the details.
5206 	 */
5207 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5208 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5209 		ret = 0;
5210 		goto err_disable;
5211 	}
5212 
5213 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5214 		static_branch_enable(&__scx_switched_all);
5215 
5216 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5217 		scx_ops.name, scx_switched_all() ? "" : " (partial)");
5218 	kobject_uevent(scx_root_kobj, KOBJ_ADD);
5219 	mutex_unlock(&scx_ops_enable_mutex);
5220 
5221 	atomic_long_inc(&scx_enable_seq);
5222 
5223 	return 0;
5224 
5225 err_del:
5226 	kobject_del(scx_root_kobj);
5227 err:
5228 	kobject_put(scx_root_kobj);
5229 	scx_root_kobj = NULL;
5230 	if (scx_exit_info) {
5231 		free_exit_info(scx_exit_info);
5232 		scx_exit_info = NULL;
5233 	}
5234 err_unlock:
5235 	mutex_unlock(&scx_ops_enable_mutex);
5236 	return ret;
5237 
5238 err_disable_unlock_all:
5239 	scx_cgroup_unlock();
5240 	percpu_up_write(&scx_fork_rwsem);
5241 	scx_ops_bypass(false);
5242 err_disable:
5243 	mutex_unlock(&scx_ops_enable_mutex);
5244 	/* must be fully disabled before returning */
5245 	scx_ops_disable(SCX_EXIT_ERROR);
5246 	kthread_flush_work(&scx_ops_disable_work);
5247 	return ret;
5248 }
5249 
5250 
5251 /********************************************************************************
5252  * bpf_struct_ops plumbing.
5253  */
5254 #include <linux/bpf_verifier.h>
5255 #include <linux/bpf.h>
5256 #include <linux/btf.h>
5257 
5258 extern struct btf *btf_vmlinux;
5259 static const struct btf_type *task_struct_type;
5260 static u32 task_struct_type_id;
5261 
5262 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size,
5263 			       enum bpf_access_type type,
5264 			       const struct bpf_prog *prog,
5265 			       struct bpf_insn_access_aux *info)
5266 {
5267 	struct btf *btf = bpf_get_btf_vmlinux();
5268 	const struct bpf_struct_ops_desc *st_ops_desc;
5269 	const struct btf_member *member;
5270 	const struct btf_type *t;
5271 	u32 btf_id, member_idx;
5272 	const char *mname;
5273 
5274 	/* struct_ops op args are all sequential, 64-bit numbers */
5275 	if (off != arg_n * sizeof(__u64))
5276 		return false;
5277 
5278 	/* btf_id should be the type id of struct sched_ext_ops */
5279 	btf_id = prog->aux->attach_btf_id;
5280 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
5281 	if (!st_ops_desc)
5282 		return false;
5283 
5284 	/* BTF type of struct sched_ext_ops */
5285 	t = st_ops_desc->type;
5286 
5287 	member_idx = prog->expected_attach_type;
5288 	if (member_idx >= btf_type_vlen(t))
5289 		return false;
5290 
5291 	/*
5292 	 * Get the member name of this struct_ops program, which corresponds to
5293 	 * a field in struct sched_ext_ops. For example, the member name of the
5294 	 * dispatch struct_ops program (callback) is "dispatch".
5295 	 */
5296 	member = &btf_type_member(t)[member_idx];
5297 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
5298 
5299 	if (!strcmp(mname, op)) {
5300 		/*
5301 		 * The value is a pointer to a type (struct task_struct) given
5302 		 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
5303 		 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
5304 		 * should check the pointer to make sure it is not NULL before
5305 		 * using it, or the verifier will reject the program.
5306 		 *
5307 		 * Longer term, this is something that should be addressed by
5308 		 * BTF, and be fully contained within the verifier.
5309 		 */
5310 		info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
5311 		info->btf = btf_vmlinux;
5312 		info->btf_id = task_struct_type_id;
5313 
5314 		return true;
5315 	}
5316 
5317 	return false;
5318 }
5319 
5320 static bool bpf_scx_is_valid_access(int off, int size,
5321 				    enum bpf_access_type type,
5322 				    const struct bpf_prog *prog,
5323 				    struct bpf_insn_access_aux *info)
5324 {
5325 	if (type != BPF_READ)
5326 		return false;
5327 	if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) ||
5328 	    set_arg_maybe_null("yield", 1, off, size, type, prog, info))
5329 		return true;
5330 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5331 		return false;
5332 	if (off % size != 0)
5333 		return false;
5334 
5335 	return btf_ctx_access(off, size, type, prog, info);
5336 }
5337 
5338 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5339 				     const struct bpf_reg_state *reg, int off,
5340 				     int size)
5341 {
5342 	const struct btf_type *t;
5343 
5344 	t = btf_type_by_id(reg->btf, reg->btf_id);
5345 	if (t == task_struct_type) {
5346 		if (off >= offsetof(struct task_struct, scx.slice) &&
5347 		    off + size <= offsetofend(struct task_struct, scx.slice))
5348 			return SCALAR_VALUE;
5349 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5350 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5351 			return SCALAR_VALUE;
5352 		if (off >= offsetof(struct task_struct, scx.disallow) &&
5353 		    off + size <= offsetofend(struct task_struct, scx.disallow))
5354 			return SCALAR_VALUE;
5355 	}
5356 
5357 	return -EACCES;
5358 }
5359 
5360 static const struct bpf_func_proto *
5361 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5362 {
5363 	switch (func_id) {
5364 	case BPF_FUNC_task_storage_get:
5365 		return &bpf_task_storage_get_proto;
5366 	case BPF_FUNC_task_storage_delete:
5367 		return &bpf_task_storage_delete_proto;
5368 	default:
5369 		return bpf_base_func_proto(func_id, prog);
5370 	}
5371 }
5372 
5373 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5374 	.get_func_proto = bpf_scx_get_func_proto,
5375 	.is_valid_access = bpf_scx_is_valid_access,
5376 	.btf_struct_access = bpf_scx_btf_struct_access,
5377 };
5378 
5379 static int bpf_scx_init_member(const struct btf_type *t,
5380 			       const struct btf_member *member,
5381 			       void *kdata, const void *udata)
5382 {
5383 	const struct sched_ext_ops *uops = udata;
5384 	struct sched_ext_ops *ops = kdata;
5385 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5386 	int ret;
5387 
5388 	switch (moff) {
5389 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
5390 		if (*(u32 *)(udata + moff) > INT_MAX)
5391 			return -E2BIG;
5392 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
5393 		return 1;
5394 	case offsetof(struct sched_ext_ops, flags):
5395 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5396 			return -EINVAL;
5397 		ops->flags = *(u64 *)(udata + moff);
5398 		return 1;
5399 	case offsetof(struct sched_ext_ops, name):
5400 		ret = bpf_obj_name_cpy(ops->name, uops->name,
5401 				       sizeof(ops->name));
5402 		if (ret < 0)
5403 			return ret;
5404 		if (ret == 0)
5405 			return -EINVAL;
5406 		return 1;
5407 	case offsetof(struct sched_ext_ops, timeout_ms):
5408 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5409 		    SCX_WATCHDOG_MAX_TIMEOUT)
5410 			return -E2BIG;
5411 		ops->timeout_ms = *(u32 *)(udata + moff);
5412 		return 1;
5413 	case offsetof(struct sched_ext_ops, exit_dump_len):
5414 		ops->exit_dump_len =
5415 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5416 		return 1;
5417 	case offsetof(struct sched_ext_ops, hotplug_seq):
5418 		ops->hotplug_seq = *(u64 *)(udata + moff);
5419 		return 1;
5420 	}
5421 
5422 	return 0;
5423 }
5424 
5425 static int bpf_scx_check_member(const struct btf_type *t,
5426 				const struct btf_member *member,
5427 				const struct bpf_prog *prog)
5428 {
5429 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5430 
5431 	switch (moff) {
5432 	case offsetof(struct sched_ext_ops, init_task):
5433 #ifdef CONFIG_EXT_GROUP_SCHED
5434 	case offsetof(struct sched_ext_ops, cgroup_init):
5435 	case offsetof(struct sched_ext_ops, cgroup_exit):
5436 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
5437 #endif
5438 	case offsetof(struct sched_ext_ops, cpu_online):
5439 	case offsetof(struct sched_ext_ops, cpu_offline):
5440 	case offsetof(struct sched_ext_ops, init):
5441 	case offsetof(struct sched_ext_ops, exit):
5442 		break;
5443 	default:
5444 		if (prog->sleepable)
5445 			return -EINVAL;
5446 	}
5447 
5448 	return 0;
5449 }
5450 
5451 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5452 {
5453 	return scx_ops_enable(kdata, link);
5454 }
5455 
5456 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5457 {
5458 	scx_ops_disable(SCX_EXIT_UNREG);
5459 	kthread_flush_work(&scx_ops_disable_work);
5460 }
5461 
5462 static int bpf_scx_init(struct btf *btf)
5463 {
5464 	s32 type_id;
5465 
5466 	type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
5467 	if (type_id < 0)
5468 		return -EINVAL;
5469 	task_struct_type = btf_type_by_id(btf, type_id);
5470 	task_struct_type_id = type_id;
5471 
5472 	return 0;
5473 }
5474 
5475 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5476 {
5477 	/*
5478 	 * sched_ext does not support updating the actively-loaded BPF
5479 	 * scheduler, as registering a BPF scheduler can always fail if the
5480 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5481 	 * etc. Similarly, we can always race with unregistration happening
5482 	 * elsewhere, such as with sysrq.
5483 	 */
5484 	return -EOPNOTSUPP;
5485 }
5486 
5487 static int bpf_scx_validate(void *kdata)
5488 {
5489 	return 0;
5490 }
5491 
5492 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
5493 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
5494 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
5495 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
5496 static void tick_stub(struct task_struct *p) {}
5497 static void runnable_stub(struct task_struct *p, u64 enq_flags) {}
5498 static void running_stub(struct task_struct *p) {}
5499 static void stopping_stub(struct task_struct *p, bool runnable) {}
5500 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {}
5501 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
5502 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; }
5503 static void set_weight_stub(struct task_struct *p, u32 weight) {}
5504 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
5505 static void update_idle_stub(s32 cpu, bool idle) {}
5506 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {}
5507 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {}
5508 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
5509 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
5510 static void enable_stub(struct task_struct *p) {}
5511 static void disable_stub(struct task_struct *p) {}
5512 #ifdef CONFIG_EXT_GROUP_SCHED
5513 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
5514 static void cgroup_exit_stub(struct cgroup *cgrp) {}
5515 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
5516 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5517 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5518 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {}
5519 #endif
5520 static void cpu_online_stub(s32 cpu) {}
5521 static void cpu_offline_stub(s32 cpu) {}
5522 static s32 init_stub(void) { return -EINVAL; }
5523 static void exit_stub(struct scx_exit_info *info) {}
5524 static void dump_stub(struct scx_dump_ctx *ctx) {}
5525 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
5526 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5527 
5528 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5529 	.select_cpu = select_cpu_stub,
5530 	.enqueue = enqueue_stub,
5531 	.dequeue = dequeue_stub,
5532 	.dispatch = dispatch_stub,
5533 	.tick = tick_stub,
5534 	.runnable = runnable_stub,
5535 	.running = running_stub,
5536 	.stopping = stopping_stub,
5537 	.quiescent = quiescent_stub,
5538 	.yield = yield_stub,
5539 	.core_sched_before = core_sched_before_stub,
5540 	.set_weight = set_weight_stub,
5541 	.set_cpumask = set_cpumask_stub,
5542 	.update_idle = update_idle_stub,
5543 	.cpu_acquire = cpu_acquire_stub,
5544 	.cpu_release = cpu_release_stub,
5545 	.init_task = init_task_stub,
5546 	.exit_task = exit_task_stub,
5547 	.enable = enable_stub,
5548 	.disable = disable_stub,
5549 #ifdef CONFIG_EXT_GROUP_SCHED
5550 	.cgroup_init = cgroup_init_stub,
5551 	.cgroup_exit = cgroup_exit_stub,
5552 	.cgroup_prep_move = cgroup_prep_move_stub,
5553 	.cgroup_move = cgroup_move_stub,
5554 	.cgroup_cancel_move = cgroup_cancel_move_stub,
5555 	.cgroup_set_weight = cgroup_set_weight_stub,
5556 #endif
5557 	.cpu_online = cpu_online_stub,
5558 	.cpu_offline = cpu_offline_stub,
5559 	.init = init_stub,
5560 	.exit = exit_stub,
5561 	.dump = dump_stub,
5562 	.dump_cpu = dump_cpu_stub,
5563 	.dump_task = dump_task_stub,
5564 };
5565 
5566 static struct bpf_struct_ops bpf_sched_ext_ops = {
5567 	.verifier_ops = &bpf_scx_verifier_ops,
5568 	.reg = bpf_scx_reg,
5569 	.unreg = bpf_scx_unreg,
5570 	.check_member = bpf_scx_check_member,
5571 	.init_member = bpf_scx_init_member,
5572 	.init = bpf_scx_init,
5573 	.update = bpf_scx_update,
5574 	.validate = bpf_scx_validate,
5575 	.name = "sched_ext_ops",
5576 	.owner = THIS_MODULE,
5577 	.cfi_stubs = &__bpf_ops_sched_ext_ops
5578 };
5579 
5580 
5581 /********************************************************************************
5582  * System integration and init.
5583  */
5584 
5585 static void sysrq_handle_sched_ext_reset(u8 key)
5586 {
5587 	if (scx_ops_helper)
5588 		scx_ops_disable(SCX_EXIT_SYSRQ);
5589 	else
5590 		pr_info("sched_ext: BPF scheduler not yet used\n");
5591 }
5592 
5593 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5594 	.handler	= sysrq_handle_sched_ext_reset,
5595 	.help_msg	= "reset-sched-ext(S)",
5596 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
5597 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5598 };
5599 
5600 static void sysrq_handle_sched_ext_dump(u8 key)
5601 {
5602 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5603 
5604 	if (scx_enabled())
5605 		scx_dump_state(&ei, 0);
5606 }
5607 
5608 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5609 	.handler	= sysrq_handle_sched_ext_dump,
5610 	.help_msg	= "dump-sched-ext(D)",
5611 	.action_msg	= "Trigger sched_ext debug dump",
5612 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5613 };
5614 
5615 static bool can_skip_idle_kick(struct rq *rq)
5616 {
5617 	lockdep_assert_rq_held(rq);
5618 
5619 	/*
5620 	 * We can skip idle kicking if @rq is going to go through at least one
5621 	 * full SCX scheduling cycle before going idle. Just checking whether
5622 	 * curr is not idle is insufficient because we could be racing
5623 	 * balance_one() trying to pull the next task from a remote rq, which
5624 	 * may fail, and @rq may become idle afterwards.
5625 	 *
5626 	 * The race window is small and we don't and can't guarantee that @rq is
5627 	 * only kicked while idle anyway. Skip only when sure.
5628 	 */
5629 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5630 }
5631 
5632 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5633 {
5634 	struct rq *rq = cpu_rq(cpu);
5635 	struct scx_rq *this_scx = &this_rq->scx;
5636 	bool should_wait = false;
5637 	unsigned long flags;
5638 
5639 	raw_spin_rq_lock_irqsave(rq, flags);
5640 
5641 	/*
5642 	 * During CPU hotplug, a CPU may depend on kicking itself to make
5643 	 * forward progress. Allow kicking self regardless of online state.
5644 	 */
5645 	if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
5646 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5647 			if (rq->curr->sched_class == &ext_sched_class)
5648 				rq->curr->scx.slice = 0;
5649 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5650 		}
5651 
5652 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5653 			pseqs[cpu] = rq->scx.pnt_seq;
5654 			should_wait = true;
5655 		}
5656 
5657 		resched_curr(rq);
5658 	} else {
5659 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5660 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5661 	}
5662 
5663 	raw_spin_rq_unlock_irqrestore(rq, flags);
5664 
5665 	return should_wait;
5666 }
5667 
5668 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5669 {
5670 	struct rq *rq = cpu_rq(cpu);
5671 	unsigned long flags;
5672 
5673 	raw_spin_rq_lock_irqsave(rq, flags);
5674 
5675 	if (!can_skip_idle_kick(rq) &&
5676 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5677 		resched_curr(rq);
5678 
5679 	raw_spin_rq_unlock_irqrestore(rq, flags);
5680 }
5681 
5682 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5683 {
5684 	struct rq *this_rq = this_rq();
5685 	struct scx_rq *this_scx = &this_rq->scx;
5686 	unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
5687 	bool should_wait = false;
5688 	s32 cpu;
5689 
5690 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
5691 		should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
5692 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5693 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5694 	}
5695 
5696 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5697 		kick_one_cpu_if_idle(cpu, this_rq);
5698 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5699 	}
5700 
5701 	if (!should_wait)
5702 		return;
5703 
5704 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
5705 		unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
5706 
5707 		if (cpu != cpu_of(this_rq)) {
5708 			/*
5709 			 * Pairs with smp_store_release() issued by this CPU in
5710 			 * scx_next_task_picked() on the resched path.
5711 			 *
5712 			 * We busy-wait here to guarantee that no other task can
5713 			 * be scheduled on our core before the target CPU has
5714 			 * entered the resched path.
5715 			 */
5716 			while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
5717 				cpu_relax();
5718 		}
5719 
5720 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5721 	}
5722 }
5723 
5724 /**
5725  * print_scx_info - print out sched_ext scheduler state
5726  * @log_lvl: the log level to use when printing
5727  * @p: target task
5728  *
5729  * If a sched_ext scheduler is enabled, print the name and state of the
5730  * scheduler. If @p is on sched_ext, print further information about the task.
5731  *
5732  * This function can be safely called on any task as long as the task_struct
5733  * itself is accessible. While safe, this function isn't synchronized and may
5734  * print out mixups or garbages of limited length.
5735  */
5736 void print_scx_info(const char *log_lvl, struct task_struct *p)
5737 {
5738 	enum scx_ops_enable_state state = scx_ops_enable_state();
5739 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5740 	char runnable_at_buf[22] = "?";
5741 	struct sched_class *class;
5742 	unsigned long runnable_at;
5743 
5744 	if (state == SCX_OPS_DISABLED)
5745 		return;
5746 
5747 	/*
5748 	 * Carefully check if the task was running on sched_ext, and then
5749 	 * carefully copy the time it's been runnable, and its state.
5750 	 */
5751 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5752 	    class != &ext_sched_class) {
5753 		printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
5754 		       scx_ops_enable_state_str[state], all);
5755 		return;
5756 	}
5757 
5758 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5759 				      sizeof(runnable_at)))
5760 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5761 			  jiffies_delta_msecs(runnable_at, jiffies));
5762 
5763 	/* print everything onto one line to conserve console space */
5764 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5765 	       log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
5766 	       runnable_at_buf);
5767 }
5768 
5769 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5770 {
5771 	/*
5772 	 * SCX schedulers often have userspace components which are sometimes
5773 	 * involved in critial scheduling paths. PM operations involve freezing
5774 	 * userspace which can lead to scheduling misbehaviors including stalls.
5775 	 * Let's bypass while PM operations are in progress.
5776 	 */
5777 	switch (event) {
5778 	case PM_HIBERNATION_PREPARE:
5779 	case PM_SUSPEND_PREPARE:
5780 	case PM_RESTORE_PREPARE:
5781 		scx_ops_bypass(true);
5782 		break;
5783 	case PM_POST_HIBERNATION:
5784 	case PM_POST_SUSPEND:
5785 	case PM_POST_RESTORE:
5786 		scx_ops_bypass(false);
5787 		break;
5788 	}
5789 
5790 	return NOTIFY_OK;
5791 }
5792 
5793 static struct notifier_block scx_pm_notifier = {
5794 	.notifier_call = scx_pm_handler,
5795 };
5796 
5797 void __init init_sched_ext_class(void)
5798 {
5799 	s32 cpu, v;
5800 
5801 	/*
5802 	 * The following is to prevent the compiler from optimizing out the enum
5803 	 * definitions so that BPF scheduler implementations can use them
5804 	 * through the generated vmlinux.h.
5805 	 */
5806 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5807 		   SCX_TG_ONLINE);
5808 
5809 	BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
5810 #ifdef CONFIG_SMP
5811 	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
5812 	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
5813 #endif
5814 	scx_kick_cpus_pnt_seqs =
5815 		__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
5816 			       __alignof__(scx_kick_cpus_pnt_seqs[0]));
5817 	BUG_ON(!scx_kick_cpus_pnt_seqs);
5818 
5819 	for_each_possible_cpu(cpu) {
5820 		struct rq *rq = cpu_rq(cpu);
5821 
5822 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5823 		INIT_LIST_HEAD(&rq->scx.runnable_list);
5824 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5825 
5826 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
5827 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
5828 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
5829 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
5830 		init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
5831 		init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
5832 
5833 		if (cpu_online(cpu))
5834 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5835 	}
5836 
5837 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5838 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5839 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5840 }
5841 
5842 
5843 /********************************************************************************
5844  * Helpers that can be called from the BPF scheduler.
5845  */
5846 #include <linux/btf_ids.h>
5847 
5848 __bpf_kfunc_start_defs();
5849 
5850 /**
5851  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
5852  * @p: task_struct to select a CPU for
5853  * @prev_cpu: CPU @p was on previously
5854  * @wake_flags: %SCX_WAKE_* flags
5855  * @is_idle: out parameter indicating whether the returned CPU is idle
5856  *
5857  * Can only be called from ops.select_cpu() if the built-in CPU selection is
5858  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
5859  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
5860  *
5861  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
5862  * currently idle and thus a good candidate for direct dispatching.
5863  */
5864 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
5865 				       u64 wake_flags, bool *is_idle)
5866 {
5867 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) {
5868 		*is_idle = false;
5869 		return prev_cpu;
5870 	}
5871 #ifdef CONFIG_SMP
5872 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
5873 #else
5874 	*is_idle = false;
5875 	return prev_cpu;
5876 #endif
5877 }
5878 
5879 __bpf_kfunc_end_defs();
5880 
5881 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
5882 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
5883 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
5884 
5885 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
5886 	.owner			= THIS_MODULE,
5887 	.set			= &scx_kfunc_ids_select_cpu,
5888 };
5889 
5890 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
5891 {
5892 	if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5893 		return false;
5894 
5895 	lockdep_assert_irqs_disabled();
5896 
5897 	if (unlikely(!p)) {
5898 		scx_ops_error("called with NULL task");
5899 		return false;
5900 	}
5901 
5902 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5903 		scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
5904 		return false;
5905 	}
5906 
5907 	return true;
5908 }
5909 
5910 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
5911 {
5912 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5913 	struct task_struct *ddsp_task;
5914 
5915 	ddsp_task = __this_cpu_read(direct_dispatch_task);
5916 	if (ddsp_task) {
5917 		mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
5918 		return;
5919 	}
5920 
5921 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5922 		scx_ops_error("dispatch buffer overflow");
5923 		return;
5924 	}
5925 
5926 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5927 		.task = p,
5928 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5929 		.dsq_id = dsq_id,
5930 		.enq_flags = enq_flags,
5931 	};
5932 }
5933 
5934 __bpf_kfunc_start_defs();
5935 
5936 /**
5937  * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
5938  * @p: task_struct to dispatch
5939  * @dsq_id: DSQ to dispatch to
5940  * @slice: duration @p can run for in nsecs, 0 to keep the current value
5941  * @enq_flags: SCX_ENQ_*
5942  *
5943  * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
5944  * to call this function spuriously. Can be called from ops.enqueue(),
5945  * ops.select_cpu(), and ops.dispatch().
5946  *
5947  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5948  * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
5949  * used to target the local DSQ of a CPU other than the enqueueing one. Use
5950  * ops.select_cpu() to be on the target CPU in the first place.
5951  *
5952  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5953  * will be directly dispatched to the corresponding dispatch queue after
5954  * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
5955  * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
5956  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5957  * task is dispatched.
5958  *
5959  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5960  * and this function can be called upto ops.dispatch_max_batch times to dispatch
5961  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5962  * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
5963  *
5964  * This function doesn't have any locking restrictions and may be called under
5965  * BPF locks (in the future when BPF introduces more flexible locking).
5966  *
5967  * @p is allowed to run for @slice. The scheduling path is triggered on slice
5968  * exhaustion. If zero, the current residual slice is maintained. If
5969  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5970  * scx_bpf_kick_cpu() to trigger scheduling.
5971  */
5972 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
5973 				  u64 enq_flags)
5974 {
5975 	if (!scx_dispatch_preamble(p, enq_flags))
5976 		return;
5977 
5978 	if (slice)
5979 		p->scx.slice = slice;
5980 	else
5981 		p->scx.slice = p->scx.slice ?: 1;
5982 
5983 	scx_dispatch_commit(p, dsq_id, enq_flags);
5984 }
5985 
5986 /**
5987  * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ
5988  * @p: task_struct to dispatch
5989  * @dsq_id: DSQ to dispatch to
5990  * @slice: duration @p can run for in nsecs, 0 to keep the current value
5991  * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
5992  * @enq_flags: SCX_ENQ_*
5993  *
5994  * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id.
5995  * Tasks queued into the priority queue are ordered by @vtime and always
5996  * consumed after the tasks in the FIFO queue. All other aspects are identical
5997  * to scx_bpf_dispatch().
5998  *
5999  * @vtime ordering is according to time_before64() which considers wrapping. A
6000  * numerically larger vtime may indicate an earlier position in the ordering and
6001  * vice-versa.
6002  */
6003 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6004 					u64 slice, u64 vtime, u64 enq_flags)
6005 {
6006 	if (!scx_dispatch_preamble(p, enq_flags))
6007 		return;
6008 
6009 	if (slice)
6010 		p->scx.slice = slice;
6011 	else
6012 		p->scx.slice = p->scx.slice ?: 1;
6013 
6014 	p->scx.dsq_vtime = vtime;
6015 
6016 	scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6017 }
6018 
6019 __bpf_kfunc_end_defs();
6020 
6021 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6022 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6023 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6024 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6025 
6026 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6027 	.owner			= THIS_MODULE,
6028 	.set			= &scx_kfunc_ids_enqueue_dispatch,
6029 };
6030 
6031 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
6032 				  struct task_struct *p, u64 dsq_id,
6033 				  u64 enq_flags)
6034 {
6035 	struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6036 	struct rq *this_rq, *src_rq, *dst_rq, *locked_rq;
6037 	bool dispatched = false;
6038 	bool in_balance;
6039 	unsigned long flags;
6040 
6041 	if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6042 		return false;
6043 
6044 	/*
6045 	 * Can be called from either ops.dispatch() locking this_rq() or any
6046 	 * context where no rq lock is held. If latter, lock @p's task_rq which
6047 	 * we'll likely need anyway.
6048 	 */
6049 	src_rq = task_rq(p);
6050 
6051 	local_irq_save(flags);
6052 	this_rq = this_rq();
6053 	in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6054 
6055 	if (in_balance) {
6056 		if (this_rq != src_rq) {
6057 			raw_spin_rq_unlock(this_rq);
6058 			raw_spin_rq_lock(src_rq);
6059 		}
6060 	} else {
6061 		raw_spin_rq_lock(src_rq);
6062 	}
6063 
6064 	locked_rq = src_rq;
6065 	raw_spin_lock(&src_dsq->lock);
6066 
6067 	/*
6068 	 * Did someone else get to it? @p could have already left $src_dsq, got
6069 	 * re-enqueud, or be in the process of being consumed by someone else.
6070 	 */
6071 	if (unlikely(p->scx.dsq != src_dsq ||
6072 		     u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6073 		     p->scx.holding_cpu >= 0) ||
6074 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
6075 		raw_spin_unlock(&src_dsq->lock);
6076 		goto out;
6077 	}
6078 
6079 	/* @p is still on $src_dsq and stable, determine the destination */
6080 	dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6081 
6082 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
6083 		dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
6084 		if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
6085 			dst_dsq = find_global_dsq(p);
6086 			dst_rq = src_rq;
6087 		}
6088 	} else {
6089 		/* no need to migrate if destination is a non-local DSQ */
6090 		dst_rq = src_rq;
6091 	}
6092 
6093 	/*
6094 	 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
6095 	 * CPU, @p will be migrated.
6096 	 */
6097 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
6098 		/* @p is going from a non-local DSQ to a local DSQ */
6099 		if (src_rq == dst_rq) {
6100 			task_unlink_from_dsq(p, src_dsq);
6101 			move_local_task_to_local_dsq(p, enq_flags,
6102 						     src_dsq, dst_rq);
6103 			raw_spin_unlock(&src_dsq->lock);
6104 		} else {
6105 			raw_spin_unlock(&src_dsq->lock);
6106 			move_remote_task_to_local_dsq(p, enq_flags,
6107 						      src_rq, dst_rq);
6108 			locked_rq = dst_rq;
6109 		}
6110 	} else {
6111 		/*
6112 		 * @p is going from a non-local DSQ to a non-local DSQ. As
6113 		 * $src_dsq is already locked, do an abbreviated dequeue.
6114 		 */
6115 		task_unlink_from_dsq(p, src_dsq);
6116 		p->scx.dsq = NULL;
6117 		raw_spin_unlock(&src_dsq->lock);
6118 
6119 		if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6120 			p->scx.dsq_vtime = kit->vtime;
6121 		dispatch_enqueue(dst_dsq, p, enq_flags);
6122 	}
6123 
6124 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6125 		p->scx.slice = kit->slice;
6126 
6127 	dispatched = true;
6128 out:
6129 	if (in_balance) {
6130 		if (this_rq != locked_rq) {
6131 			raw_spin_rq_unlock(locked_rq);
6132 			raw_spin_rq_lock(this_rq);
6133 		}
6134 	} else {
6135 		raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6136 	}
6137 
6138 	kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6139 			       __SCX_DSQ_ITER_HAS_VTIME);
6140 	return dispatched;
6141 }
6142 
6143 __bpf_kfunc_start_defs();
6144 
6145 /**
6146  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6147  *
6148  * Can only be called from ops.dispatch().
6149  */
6150 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6151 {
6152 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6153 		return 0;
6154 
6155 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6156 }
6157 
6158 /**
6159  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6160  *
6161  * Cancel the latest dispatch. Can be called multiple times to cancel further
6162  * dispatches. Can only be called from ops.dispatch().
6163  */
6164 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6165 {
6166 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6167 
6168 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6169 		return;
6170 
6171 	if (dspc->cursor > 0)
6172 		dspc->cursor--;
6173 	else
6174 		scx_ops_error("dispatch buffer underflow");
6175 }
6176 
6177 /**
6178  * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
6179  * @dsq_id: DSQ to consume
6180  *
6181  * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
6182  * to the current CPU's local DSQ for execution. Can only be called from
6183  * ops.dispatch().
6184  *
6185  * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
6186  * trying to consume the specified DSQ. It may also grab rq locks and thus can't
6187  * be called under any BPF locks.
6188  *
6189  * Returns %true if a task has been consumed, %false if there isn't any task to
6190  * consume.
6191  */
6192 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6193 {
6194 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6195 	struct scx_dispatch_q *dsq;
6196 
6197 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6198 		return false;
6199 
6200 	flush_dispatch_buf(dspc->rq);
6201 
6202 	dsq = find_user_dsq(dsq_id);
6203 	if (unlikely(!dsq)) {
6204 		scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6205 		return false;
6206 	}
6207 
6208 	if (consume_dispatch_q(dspc->rq, dsq)) {
6209 		/*
6210 		 * A successfully consumed task can be dequeued before it starts
6211 		 * running while the CPU is trying to migrate other dispatched
6212 		 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6213 		 * local DSQ.
6214 		 */
6215 		dspc->nr_tasks++;
6216 		return true;
6217 	} else {
6218 		return false;
6219 	}
6220 }
6221 
6222 /**
6223  * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
6224  * @it__iter: DSQ iterator in progress
6225  * @slice: duration the dispatched task can run for in nsecs
6226  *
6227  * Override the slice of the next task that will be dispatched from @it__iter
6228  * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
6229  * the previous slice duration is kept.
6230  */
6231 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6232 				struct bpf_iter_scx_dsq *it__iter, u64 slice)
6233 {
6234 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6235 
6236 	kit->slice = slice;
6237 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6238 }
6239 
6240 /**
6241  * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
6242  * @it__iter: DSQ iterator in progress
6243  * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6244  *
6245  * Override the vtime of the next task that will be dispatched from @it__iter
6246  * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
6247  * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
6248  * dispatch the next task, the override is ignored and cleared.
6249  */
6250 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6251 				struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6252 {
6253 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6254 
6255 	kit->vtime = vtime;
6256 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6257 }
6258 
6259 /**
6260  * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
6261  * @it__iter: DSQ iterator in progress
6262  * @p: task to transfer
6263  * @dsq_id: DSQ to move @p to
6264  * @enq_flags: SCX_ENQ_*
6265  *
6266  * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6267  * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6268  * be the destination.
6269  *
6270  * For the transfer to be successful, @p must still be on the DSQ and have been
6271  * queued before the DSQ iteration started. This function doesn't care whether
6272  * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6273  * been queued before the iteration started.
6274  *
6275  * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
6276  * update.
6277  *
6278  * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6279  * lock (e.g. BPF timers or SYSCALL programs).
6280  *
6281  * Returns %true if @p has been consumed, %false if @p had already been consumed
6282  * or dequeued.
6283  */
6284 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6285 					   struct task_struct *p, u64 dsq_id,
6286 					   u64 enq_flags)
6287 {
6288 	return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6289 				     p, dsq_id, enq_flags);
6290 }
6291 
6292 /**
6293  * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
6294  * @it__iter: DSQ iterator in progress
6295  * @p: task to transfer
6296  * @dsq_id: DSQ to move @p to
6297  * @enq_flags: SCX_ENQ_*
6298  *
6299  * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6300  * priority queue of the DSQ specified by @dsq_id. The destination must be a
6301  * user DSQ as only user DSQs support priority queue.
6302  *
6303  * @p's slice and vtime are kept by default. Use
6304  * scx_bpf_dispatch_from_dsq_set_slice() and
6305  * scx_bpf_dispatch_from_dsq_set_vtime() to update.
6306  *
6307  * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
6308  * scx_bpf_dispatch_vtime() for more information on @vtime.
6309  */
6310 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6311 						 struct task_struct *p, u64 dsq_id,
6312 						 u64 enq_flags)
6313 {
6314 	return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6315 				     p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6316 }
6317 
6318 __bpf_kfunc_end_defs();
6319 
6320 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6321 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6322 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6323 BTF_ID_FLAGS(func, scx_bpf_consume)
6324 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6325 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6326 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6327 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6328 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6329 
6330 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6331 	.owner			= THIS_MODULE,
6332 	.set			= &scx_kfunc_ids_dispatch,
6333 };
6334 
6335 __bpf_kfunc_start_defs();
6336 
6337 /**
6338  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6339  *
6340  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6341  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6342  * processed tasks. Can only be called from ops.cpu_release().
6343  */
6344 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6345 {
6346 	LIST_HEAD(tasks);
6347 	u32 nr_enqueued = 0;
6348 	struct rq *rq;
6349 	struct task_struct *p, *n;
6350 
6351 	if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6352 		return 0;
6353 
6354 	rq = cpu_rq(smp_processor_id());
6355 	lockdep_assert_rq_held(rq);
6356 
6357 	/*
6358 	 * The BPF scheduler may choose to dispatch tasks back to
6359 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6360 	 * first to avoid processing the same tasks repeatedly.
6361 	 */
6362 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6363 				 scx.dsq_list.node) {
6364 		/*
6365 		 * If @p is being migrated, @p's current CPU may not agree with
6366 		 * its allowed CPUs and the migration_cpu_stop is about to
6367 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6368 		 *
6369 		 * While racing sched property changes may also dequeue and
6370 		 * re-enqueue a migrating task while its current CPU and allowed
6371 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6372 		 * the current local DSQ for running tasks and thus are not
6373 		 * visible to the BPF scheduler.
6374 		 */
6375 		if (p->migration_pending)
6376 			continue;
6377 
6378 		dispatch_dequeue(rq, p);
6379 		list_add_tail(&p->scx.dsq_list.node, &tasks);
6380 	}
6381 
6382 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6383 		list_del_init(&p->scx.dsq_list.node);
6384 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6385 		nr_enqueued++;
6386 	}
6387 
6388 	return nr_enqueued;
6389 }
6390 
6391 __bpf_kfunc_end_defs();
6392 
6393 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6394 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6395 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6396 
6397 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6398 	.owner			= THIS_MODULE,
6399 	.set			= &scx_kfunc_ids_cpu_release,
6400 };
6401 
6402 __bpf_kfunc_start_defs();
6403 
6404 /**
6405  * scx_bpf_create_dsq - Create a custom DSQ
6406  * @dsq_id: DSQ to create
6407  * @node: NUMA node to allocate from
6408  *
6409  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6410  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6411  */
6412 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6413 {
6414 	if (unlikely(node >= (int)nr_node_ids ||
6415 		     (node < 0 && node != NUMA_NO_NODE)))
6416 		return -EINVAL;
6417 	return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6418 }
6419 
6420 __bpf_kfunc_end_defs();
6421 
6422 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6423 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6424 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6425 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6426 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6427 
6428 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6429 	.owner			= THIS_MODULE,
6430 	.set			= &scx_kfunc_ids_unlocked,
6431 };
6432 
6433 __bpf_kfunc_start_defs();
6434 
6435 /**
6436  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6437  * @cpu: cpu to kick
6438  * @flags: %SCX_KICK_* flags
6439  *
6440  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6441  * trigger rescheduling on a busy CPU. This can be called from any online
6442  * scx_ops operation and the actual kicking is performed asynchronously through
6443  * an irq work.
6444  */
6445 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6446 {
6447 	struct rq *this_rq;
6448 	unsigned long irq_flags;
6449 
6450 	if (!ops_cpu_valid(cpu, NULL))
6451 		return;
6452 
6453 	local_irq_save(irq_flags);
6454 
6455 	this_rq = this_rq();
6456 
6457 	/*
6458 	 * While bypassing for PM ops, IRQ handling may not be online which can
6459 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
6460 	 * IRQ status update. Suppress kicking.
6461 	 */
6462 	if (scx_rq_bypassing(this_rq))
6463 		goto out;
6464 
6465 	/*
6466 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6467 	 * rq locks. We can probably be smarter and avoid bouncing if called
6468 	 * from ops which don't hold a rq lock.
6469 	 */
6470 	if (flags & SCX_KICK_IDLE) {
6471 		struct rq *target_rq = cpu_rq(cpu);
6472 
6473 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6474 			scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6475 
6476 		if (raw_spin_rq_trylock(target_rq)) {
6477 			if (can_skip_idle_kick(target_rq)) {
6478 				raw_spin_rq_unlock(target_rq);
6479 				goto out;
6480 			}
6481 			raw_spin_rq_unlock(target_rq);
6482 		}
6483 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6484 	} else {
6485 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6486 
6487 		if (flags & SCX_KICK_PREEMPT)
6488 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6489 		if (flags & SCX_KICK_WAIT)
6490 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6491 	}
6492 
6493 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6494 out:
6495 	local_irq_restore(irq_flags);
6496 }
6497 
6498 /**
6499  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6500  * @dsq_id: id of the DSQ
6501  *
6502  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6503  * -%ENOENT is returned.
6504  */
6505 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6506 {
6507 	struct scx_dispatch_q *dsq;
6508 	s32 ret;
6509 
6510 	preempt_disable();
6511 
6512 	if (dsq_id == SCX_DSQ_LOCAL) {
6513 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6514 		goto out;
6515 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6516 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6517 
6518 		if (ops_cpu_valid(cpu, NULL)) {
6519 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6520 			goto out;
6521 		}
6522 	} else {
6523 		dsq = find_user_dsq(dsq_id);
6524 		if (dsq) {
6525 			ret = READ_ONCE(dsq->nr);
6526 			goto out;
6527 		}
6528 	}
6529 	ret = -ENOENT;
6530 out:
6531 	preempt_enable();
6532 	return ret;
6533 }
6534 
6535 /**
6536  * scx_bpf_destroy_dsq - Destroy a custom DSQ
6537  * @dsq_id: DSQ to destroy
6538  *
6539  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6540  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6541  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6542  * which doesn't exist. Can be called from any online scx_ops operations.
6543  */
6544 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6545 {
6546 	destroy_dsq(dsq_id);
6547 }
6548 
6549 /**
6550  * bpf_iter_scx_dsq_new - Create a DSQ iterator
6551  * @it: iterator to initialize
6552  * @dsq_id: DSQ to iterate
6553  * @flags: %SCX_DSQ_ITER_*
6554  *
6555  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6556  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6557  * tasks which are already queued when this function is invoked.
6558  */
6559 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6560 				     u64 flags)
6561 {
6562 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6563 
6564 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6565 		     sizeof(struct bpf_iter_scx_dsq));
6566 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6567 		     __alignof__(struct bpf_iter_scx_dsq));
6568 
6569 	if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6570 		return -EINVAL;
6571 
6572 	kit->dsq = find_user_dsq(dsq_id);
6573 	if (!kit->dsq)
6574 		return -ENOENT;
6575 
6576 	INIT_LIST_HEAD(&kit->cursor.node);
6577 	kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
6578 	kit->cursor.priv = READ_ONCE(kit->dsq->seq);
6579 
6580 	return 0;
6581 }
6582 
6583 /**
6584  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6585  * @it: iterator to progress
6586  *
6587  * Return the next task. See bpf_iter_scx_dsq_new().
6588  */
6589 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6590 {
6591 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6592 	bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6593 	struct task_struct *p;
6594 	unsigned long flags;
6595 
6596 	if (!kit->dsq)
6597 		return NULL;
6598 
6599 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6600 
6601 	if (list_empty(&kit->cursor.node))
6602 		p = NULL;
6603 	else
6604 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6605 
6606 	/*
6607 	 * Only tasks which were queued before the iteration started are
6608 	 * visible. This bounds BPF iterations and guarantees that vtime never
6609 	 * jumps in the other direction while iterating.
6610 	 */
6611 	do {
6612 		p = nldsq_next_task(kit->dsq, p, rev);
6613 	} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6614 
6615 	if (p) {
6616 		if (rev)
6617 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6618 		else
6619 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6620 	} else {
6621 		list_del_init(&kit->cursor.node);
6622 	}
6623 
6624 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6625 
6626 	return p;
6627 }
6628 
6629 /**
6630  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6631  * @it: iterator to destroy
6632  *
6633  * Undo scx_iter_scx_dsq_new().
6634  */
6635 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6636 {
6637 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6638 
6639 	if (!kit->dsq)
6640 		return;
6641 
6642 	if (!list_empty(&kit->cursor.node)) {
6643 		unsigned long flags;
6644 
6645 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6646 		list_del_init(&kit->cursor.node);
6647 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6648 	}
6649 	kit->dsq = NULL;
6650 }
6651 
6652 __bpf_kfunc_end_defs();
6653 
6654 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
6655 			 char *fmt, unsigned long long *data, u32 data__sz)
6656 {
6657 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6658 	s32 ret;
6659 
6660 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6661 	    (data__sz && !data)) {
6662 		scx_ops_error("invalid data=%p and data__sz=%u",
6663 			      (void *)data, data__sz);
6664 		return -EINVAL;
6665 	}
6666 
6667 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6668 	if (ret < 0) {
6669 		scx_ops_error("failed to read data fields (%d)", ret);
6670 		return ret;
6671 	}
6672 
6673 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6674 				  &bprintf_data);
6675 	if (ret < 0) {
6676 		scx_ops_error("format preparation failed (%d)", ret);
6677 		return ret;
6678 	}
6679 
6680 	ret = bstr_printf(line_buf, line_size, fmt,
6681 			  bprintf_data.bin_args);
6682 	bpf_bprintf_cleanup(&bprintf_data);
6683 	if (ret < 0) {
6684 		scx_ops_error("(\"%s\", %p, %u) failed to format",
6685 			      fmt, data, data__sz);
6686 		return ret;
6687 	}
6688 
6689 	return ret;
6690 }
6691 
6692 static s32 bstr_format(struct scx_bstr_buf *buf,
6693 		       char *fmt, unsigned long long *data, u32 data__sz)
6694 {
6695 	return __bstr_format(buf->data, buf->line, sizeof(buf->line),
6696 			     fmt, data, data__sz);
6697 }
6698 
6699 __bpf_kfunc_start_defs();
6700 
6701 /**
6702  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6703  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6704  * @fmt: error message format string
6705  * @data: format string parameters packaged using ___bpf_fill() macro
6706  * @data__sz: @data len, must end in '__sz' for the verifier
6707  *
6708  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6709  * disabling.
6710  */
6711 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6712 				   unsigned long long *data, u32 data__sz)
6713 {
6714 	unsigned long flags;
6715 
6716 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6717 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6718 		scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
6719 				  scx_exit_bstr_buf.line);
6720 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6721 }
6722 
6723 /**
6724  * scx_bpf_error_bstr - Indicate fatal error
6725  * @fmt: error message format string
6726  * @data: format string parameters packaged using ___bpf_fill() macro
6727  * @data__sz: @data len, must end in '__sz' for the verifier
6728  *
6729  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6730  * disabling.
6731  */
6732 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6733 				    u32 data__sz)
6734 {
6735 	unsigned long flags;
6736 
6737 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6738 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6739 		scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
6740 				  scx_exit_bstr_buf.line);
6741 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6742 }
6743 
6744 /**
6745  * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
6746  * @fmt: format string
6747  * @data: format string parameters packaged using ___bpf_fill() macro
6748  * @data__sz: @data len, must end in '__sz' for the verifier
6749  *
6750  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6751  * dump_task() to generate extra debug dump specific to the BPF scheduler.
6752  *
6753  * The extra dump may be multiple lines. A single line may be split over
6754  * multiple calls. The last line is automatically terminated.
6755  */
6756 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6757 				   u32 data__sz)
6758 {
6759 	struct scx_dump_data *dd = &scx_dump_data;
6760 	struct scx_bstr_buf *buf = &dd->buf;
6761 	s32 ret;
6762 
6763 	if (raw_smp_processor_id() != dd->cpu) {
6764 		scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
6765 		return;
6766 	}
6767 
6768 	/* append the formatted string to the line buf */
6769 	ret = __bstr_format(buf->data, buf->line + dd->cursor,
6770 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6771 	if (ret < 0) {
6772 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6773 			  dd->prefix, fmt, data, data__sz, ret);
6774 		return;
6775 	}
6776 
6777 	dd->cursor += ret;
6778 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6779 
6780 	if (!dd->cursor)
6781 		return;
6782 
6783 	/*
6784 	 * If the line buf overflowed or ends in a newline, flush it into the
6785 	 * dump. This is to allow the caller to generate a single line over
6786 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6787 	 * the line buf, the only case which can lead to an unexpected
6788 	 * truncation is when the caller keeps generating newlines in the middle
6789 	 * instead of the end consecutively. Don't do that.
6790 	 */
6791 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6792 		ops_dump_flush();
6793 }
6794 
6795 /**
6796  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6797  * @cpu: CPU of interest
6798  *
6799  * Return the maximum relative capacity of @cpu in relation to the most
6800  * performant CPU in the system. The return value is in the range [1,
6801  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6802  */
6803 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6804 {
6805 	if (ops_cpu_valid(cpu, NULL))
6806 		return arch_scale_cpu_capacity(cpu);
6807 	else
6808 		return SCX_CPUPERF_ONE;
6809 }
6810 
6811 /**
6812  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6813  * @cpu: CPU of interest
6814  *
6815  * Return the current relative performance of @cpu in relation to its maximum.
6816  * The return value is in the range [1, %SCX_CPUPERF_ONE].
6817  *
6818  * The current performance level of a CPU in relation to the maximum performance
6819  * available in the system can be calculated as follows:
6820  *
6821  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6822  *
6823  * The result is in the range [1, %SCX_CPUPERF_ONE].
6824  */
6825 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6826 {
6827 	if (ops_cpu_valid(cpu, NULL))
6828 		return arch_scale_freq_capacity(cpu);
6829 	else
6830 		return SCX_CPUPERF_ONE;
6831 }
6832 
6833 /**
6834  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6835  * @cpu: CPU of interest
6836  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6837  * @flags: %SCX_CPUPERF_* flags
6838  *
6839  * Set the target performance level of @cpu to @perf. @perf is in linear
6840  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6841  * schedutil cpufreq governor chooses the target frequency.
6842  *
6843  * The actual performance level chosen, CPU grouping, and the overhead and
6844  * latency of the operations are dependent on the hardware and cpufreq driver in
6845  * use. Consult hardware and cpufreq documentation for more information. The
6846  * current performance level can be monitored using scx_bpf_cpuperf_cur().
6847  */
6848 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6849 {
6850 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
6851 		scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
6852 		return;
6853 	}
6854 
6855 	if (ops_cpu_valid(cpu, NULL)) {
6856 		struct rq *rq = cpu_rq(cpu);
6857 
6858 		rq->scx.cpuperf_target = perf;
6859 
6860 		rcu_read_lock_sched_notrace();
6861 		cpufreq_update_util(cpu_rq(cpu), 0);
6862 		rcu_read_unlock_sched_notrace();
6863 	}
6864 }
6865 
6866 /**
6867  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6868  *
6869  * All valid CPU IDs in the system are smaller than the returned value.
6870  */
6871 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6872 {
6873 	return nr_cpu_ids;
6874 }
6875 
6876 /**
6877  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6878  */
6879 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6880 {
6881 	return cpu_possible_mask;
6882 }
6883 
6884 /**
6885  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6886  */
6887 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6888 {
6889 	return cpu_online_mask;
6890 }
6891 
6892 /**
6893  * scx_bpf_put_cpumask - Release a possible/online cpumask
6894  * @cpumask: cpumask to release
6895  */
6896 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6897 {
6898 	/*
6899 	 * Empty function body because we aren't actually acquiring or releasing
6900 	 * a reference to a global cpumask, which is read-only in the caller and
6901 	 * is never released. The acquire / release semantics here are just used
6902 	 * to make the cpumask is a trusted pointer in the caller.
6903 	 */
6904 }
6905 
6906 /**
6907  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
6908  * per-CPU cpumask.
6909  *
6910  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6911  */
6912 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
6913 {
6914 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6915 		scx_ops_error("built-in idle tracking is disabled");
6916 		return cpu_none_mask;
6917 	}
6918 
6919 #ifdef CONFIG_SMP
6920 	return idle_masks.cpu;
6921 #else
6922 	return cpu_none_mask;
6923 #endif
6924 }
6925 
6926 /**
6927  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
6928  * per-physical-core cpumask. Can be used to determine if an entire physical
6929  * core is free.
6930  *
6931  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
6932  */
6933 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
6934 {
6935 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6936 		scx_ops_error("built-in idle tracking is disabled");
6937 		return cpu_none_mask;
6938 	}
6939 
6940 #ifdef CONFIG_SMP
6941 	if (sched_smt_active())
6942 		return idle_masks.smt;
6943 	else
6944 		return idle_masks.cpu;
6945 #else
6946 	return cpu_none_mask;
6947 #endif
6948 }
6949 
6950 /**
6951  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
6952  * either the percpu, or SMT idle-tracking cpumask.
6953  */
6954 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
6955 {
6956 	/*
6957 	 * Empty function body because we aren't actually acquiring or releasing
6958 	 * a reference to a global idle cpumask, which is read-only in the
6959 	 * caller and is never released. The acquire / release semantics here
6960 	 * are just used to make the cpumask a trusted pointer in the caller.
6961 	 */
6962 }
6963 
6964 /**
6965  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
6966  * @cpu: cpu to test and clear idle for
6967  *
6968  * Returns %true if @cpu was idle and its idle state was successfully cleared.
6969  * %false otherwise.
6970  *
6971  * Unavailable if ops.update_idle() is implemented and
6972  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
6973  */
6974 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
6975 {
6976 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6977 		scx_ops_error("built-in idle tracking is disabled");
6978 		return false;
6979 	}
6980 
6981 	if (ops_cpu_valid(cpu, NULL))
6982 		return test_and_clear_cpu_idle(cpu);
6983 	else
6984 		return false;
6985 }
6986 
6987 /**
6988  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
6989  * @cpus_allowed: Allowed cpumask
6990  * @flags: %SCX_PICK_IDLE_CPU_* flags
6991  *
6992  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
6993  * number on success. -%EBUSY if no matching cpu was found.
6994  *
6995  * Idle CPU tracking may race against CPU scheduling state transitions. For
6996  * example, this function may return -%EBUSY as CPUs are transitioning into the
6997  * idle state. If the caller then assumes that there will be dispatch events on
6998  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
6999  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7000  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7001  * event in the near future.
7002  *
7003  * Unavailable if ops.update_idle() is implemented and
7004  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7005  */
7006 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7007 				      u64 flags)
7008 {
7009 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7010 		scx_ops_error("built-in idle tracking is disabled");
7011 		return -EBUSY;
7012 	}
7013 
7014 	return scx_pick_idle_cpu(cpus_allowed, flags);
7015 }
7016 
7017 /**
7018  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7019  * @cpus_allowed: Allowed cpumask
7020  * @flags: %SCX_PICK_IDLE_CPU_* flags
7021  *
7022  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7023  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7024  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7025  * empty.
7026  *
7027  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7028  * set, this function can't tell which CPUs are idle and will always pick any
7029  * CPU.
7030  */
7031 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7032 				     u64 flags)
7033 {
7034 	s32 cpu;
7035 
7036 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
7037 		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7038 		if (cpu >= 0)
7039 			return cpu;
7040 	}
7041 
7042 	cpu = cpumask_any_distribute(cpus_allowed);
7043 	if (cpu < nr_cpu_ids)
7044 		return cpu;
7045 	else
7046 		return -EBUSY;
7047 }
7048 
7049 /**
7050  * scx_bpf_task_running - Is task currently running?
7051  * @p: task of interest
7052  */
7053 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7054 {
7055 	return task_rq(p)->curr == p;
7056 }
7057 
7058 /**
7059  * scx_bpf_task_cpu - CPU a task is currently associated with
7060  * @p: task of interest
7061  */
7062 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7063 {
7064 	return task_cpu(p);
7065 }
7066 
7067 /**
7068  * scx_bpf_cpu_rq - Fetch the rq of a CPU
7069  * @cpu: CPU of the rq
7070  */
7071 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7072 {
7073 	if (!ops_cpu_valid(cpu, NULL))
7074 		return NULL;
7075 
7076 	return cpu_rq(cpu);
7077 }
7078 
7079 /**
7080  * scx_bpf_task_cgroup - Return the sched cgroup of a task
7081  * @p: task of interest
7082  *
7083  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7084  * from the scheduler's POV. SCX operations should use this function to
7085  * determine @p's current cgroup as, unlike following @p->cgroups,
7086  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7087  * rq-locked operations. Can be called on the parameter tasks of rq-locked
7088  * operations. The restriction guarantees that @p's rq is locked by the caller.
7089  */
7090 #ifdef CONFIG_CGROUP_SCHED
7091 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7092 {
7093 	struct task_group *tg = p->sched_task_group;
7094 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7095 
7096 	if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7097 		goto out;
7098 
7099 	/*
7100 	 * A task_group may either be a cgroup or an autogroup. In the latter
7101 	 * case, @tg->css.cgroup is %NULL. A task_group can't become the other
7102 	 * kind once created.
7103 	 */
7104 	if (tg && tg->css.cgroup)
7105 		cgrp = tg->css.cgroup;
7106 	else
7107 		cgrp = &cgrp_dfl_root.cgrp;
7108 out:
7109 	cgroup_get(cgrp);
7110 	return cgrp;
7111 }
7112 #endif
7113 
7114 __bpf_kfunc_end_defs();
7115 
7116 BTF_KFUNCS_START(scx_kfunc_ids_any)
7117 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7118 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7119 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7120 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7121 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7122 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7123 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7124 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7125 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7126 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7127 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7128 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7129 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7130 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7131 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7132 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7133 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7134 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7135 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7136 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7137 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7138 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7139 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7140 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7141 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7142 #ifdef CONFIG_CGROUP_SCHED
7143 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7144 #endif
7145 BTF_KFUNCS_END(scx_kfunc_ids_any)
7146 
7147 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7148 	.owner			= THIS_MODULE,
7149 	.set			= &scx_kfunc_ids_any,
7150 };
7151 
7152 static int __init scx_init(void)
7153 {
7154 	int ret;
7155 
7156 	/*
7157 	 * kfunc registration can't be done from init_sched_ext_class() as
7158 	 * register_btf_kfunc_id_set() needs most of the system to be up.
7159 	 *
7160 	 * Some kfuncs are context-sensitive and can only be called from
7161 	 * specific SCX ops. They are grouped into BTF sets accordingly.
7162 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
7163 	 * restrictions. Eventually, the verifier should be able to enforce
7164 	 * them. For now, register them the same and make each kfunc explicitly
7165 	 * check using scx_kf_allowed().
7166 	 */
7167 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7168 					     &scx_kfunc_set_select_cpu)) ||
7169 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7170 					     &scx_kfunc_set_enqueue_dispatch)) ||
7171 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7172 					     &scx_kfunc_set_dispatch)) ||
7173 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7174 					     &scx_kfunc_set_cpu_release)) ||
7175 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7176 					     &scx_kfunc_set_unlocked)) ||
7177 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7178 					     &scx_kfunc_set_unlocked)) ||
7179 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7180 					     &scx_kfunc_set_any)) ||
7181 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7182 					     &scx_kfunc_set_any)) ||
7183 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7184 					     &scx_kfunc_set_any))) {
7185 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7186 		return ret;
7187 	}
7188 
7189 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7190 	if (ret) {
7191 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7192 		return ret;
7193 	}
7194 
7195 	ret = register_pm_notifier(&scx_pm_notifier);
7196 	if (ret) {
7197 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7198 		return ret;
7199 	}
7200 
7201 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7202 	if (!scx_kset) {
7203 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7204 		return -ENOMEM;
7205 	}
7206 
7207 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7208 	if (ret < 0) {
7209 		pr_err("sched_ext: Failed to add global attributes\n");
7210 		return ret;
7211 	}
7212 
7213 	return 0;
7214 }
7215 __initcall(scx_init);
7216