1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static unsigned long scx_in_softlockup; 37 static atomic_t scx_breather_depth = ATOMIC_INIT(0); 38 static int scx_bypass_depth; 39 static bool scx_init_task_enabled; 40 static bool scx_switching_all; 41 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 42 43 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 44 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 45 46 /* 47 * A monotically increasing sequence number that is incremented every time a 48 * scheduler is enabled. This can be used by to check if any custom sched_ext 49 * scheduler has ever been used in the system. 50 */ 51 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 52 53 /* 54 * The maximum amount of time in jiffies that a task may be runnable without 55 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 56 * scx_error(). 57 */ 58 static unsigned long scx_watchdog_timeout; 59 60 /* 61 * The last time the delayed work was run. This delayed work relies on 62 * ksoftirqd being able to run to service timer interrupts, so it's possible 63 * that this work itself could get wedged. To account for this, we check that 64 * it's not stalled in the timer tick, and trigger an error if it is. 65 */ 66 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 67 68 static struct delayed_work scx_watchdog_work; 69 70 /* 71 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of pick_task sequence 72 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu 73 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated 74 * lazily when enabling and freed when disabling to avoid waste when sched_ext 75 * isn't active. 76 */ 77 struct scx_kick_pseqs { 78 struct rcu_head rcu; 79 unsigned long seqs[]; 80 }; 81 82 static DEFINE_PER_CPU(struct scx_kick_pseqs __rcu *, scx_kick_pseqs); 83 84 /* 85 * Direct dispatch marker. 86 * 87 * Non-NULL values are used for direct dispatch from enqueue path. A valid 88 * pointer points to the task currently being enqueued. An ERR_PTR value is used 89 * to indicate that direct dispatch has already happened. 90 */ 91 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 92 93 static const struct rhashtable_params dsq_hash_params = { 94 .key_len = sizeof_field(struct scx_dispatch_q, id), 95 .key_offset = offsetof(struct scx_dispatch_q, id), 96 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 97 }; 98 99 static LLIST_HEAD(dsqs_to_free); 100 101 /* dispatch buf */ 102 struct scx_dsp_buf_ent { 103 struct task_struct *task; 104 unsigned long qseq; 105 u64 dsq_id; 106 u64 enq_flags; 107 }; 108 109 static u32 scx_dsp_max_batch; 110 111 struct scx_dsp_ctx { 112 struct rq *rq; 113 u32 cursor; 114 u32 nr_tasks; 115 struct scx_dsp_buf_ent buf[]; 116 }; 117 118 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 119 120 /* string formatting from BPF */ 121 struct scx_bstr_buf { 122 u64 data[MAX_BPRINTF_VARARGS]; 123 char line[SCX_EXIT_MSG_LEN]; 124 }; 125 126 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 127 static struct scx_bstr_buf scx_exit_bstr_buf; 128 129 /* ops debug dump */ 130 struct scx_dump_data { 131 s32 cpu; 132 bool first; 133 s32 cursor; 134 struct seq_buf *s; 135 const char *prefix; 136 struct scx_bstr_buf buf; 137 }; 138 139 static struct scx_dump_data scx_dump_data = { 140 .cpu = -1, 141 }; 142 143 /* /sys/kernel/sched_ext interface */ 144 static struct kset *scx_kset; 145 146 #define CREATE_TRACE_POINTS 147 #include <trace/events/sched_ext.h> 148 149 static void process_ddsp_deferred_locals(struct rq *rq); 150 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags); 151 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 152 s64 exit_code, const char *fmt, va_list args); 153 154 static __printf(4, 5) void scx_exit(struct scx_sched *sch, 155 enum scx_exit_kind kind, s64 exit_code, 156 const char *fmt, ...) 157 { 158 va_list args; 159 160 va_start(args, fmt); 161 scx_vexit(sch, kind, exit_code, fmt, args); 162 va_end(args); 163 } 164 165 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 166 167 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 168 169 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 170 { 171 if (time_after(at, now)) 172 return jiffies_to_msecs(at - now); 173 else 174 return -(long)jiffies_to_msecs(now - at); 175 } 176 177 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 178 static u32 higher_bits(u32 flags) 179 { 180 return ~((1 << fls(flags)) - 1); 181 } 182 183 /* return the mask with only the highest bit set */ 184 static u32 highest_bit(u32 flags) 185 { 186 int bit = fls(flags); 187 return ((u64)1 << bit) >> 1; 188 } 189 190 static bool u32_before(u32 a, u32 b) 191 { 192 return (s32)(a - b) < 0; 193 } 194 195 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch, 196 struct task_struct *p) 197 { 198 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 199 } 200 201 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 202 { 203 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params); 204 } 205 206 /* 207 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 208 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 209 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 210 * whether it's running from an allowed context. 211 * 212 * @mask is constant, always inline to cull the mask calculations. 213 */ 214 static __always_inline void scx_kf_allow(u32 mask) 215 { 216 /* nesting is allowed only in increasing scx_kf_mask order */ 217 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 218 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 219 current->scx.kf_mask, mask); 220 current->scx.kf_mask |= mask; 221 barrier(); 222 } 223 224 static void scx_kf_disallow(u32 mask) 225 { 226 barrier(); 227 current->scx.kf_mask &= ~mask; 228 } 229 230 /* 231 * Track the rq currently locked. 232 * 233 * This allows kfuncs to safely operate on rq from any scx ops callback, 234 * knowing which rq is already locked. 235 */ 236 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 237 238 static inline void update_locked_rq(struct rq *rq) 239 { 240 /* 241 * Check whether @rq is actually locked. This can help expose bugs 242 * or incorrect assumptions about the context in which a kfunc or 243 * callback is executed. 244 */ 245 if (rq) 246 lockdep_assert_rq_held(rq); 247 __this_cpu_write(scx_locked_rq_state, rq); 248 } 249 250 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 251 do { \ 252 if (rq) \ 253 update_locked_rq(rq); \ 254 if (mask) { \ 255 scx_kf_allow(mask); \ 256 (sch)->ops.op(args); \ 257 scx_kf_disallow(mask); \ 258 } else { \ 259 (sch)->ops.op(args); \ 260 } \ 261 if (rq) \ 262 update_locked_rq(NULL); \ 263 } while (0) 264 265 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 266 ({ \ 267 __typeof__((sch)->ops.op(args)) __ret; \ 268 \ 269 if (rq) \ 270 update_locked_rq(rq); \ 271 if (mask) { \ 272 scx_kf_allow(mask); \ 273 __ret = (sch)->ops.op(args); \ 274 scx_kf_disallow(mask); \ 275 } else { \ 276 __ret = (sch)->ops.op(args); \ 277 } \ 278 if (rq) \ 279 update_locked_rq(NULL); \ 280 __ret; \ 281 }) 282 283 /* 284 * Some kfuncs are allowed only on the tasks that are subjects of the 285 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 286 * restrictions, the following SCX_CALL_OP_*() variants should be used when 287 * invoking scx_ops operations that take task arguments. These can only be used 288 * for non-nesting operations due to the way the tasks are tracked. 289 * 290 * kfuncs which can only operate on such tasks can in turn use 291 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 292 * the specific task. 293 */ 294 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 295 do { \ 296 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 297 current->scx.kf_tasks[0] = task; \ 298 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 299 current->scx.kf_tasks[0] = NULL; \ 300 } while (0) 301 302 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 303 ({ \ 304 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 305 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 306 current->scx.kf_tasks[0] = task; \ 307 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 308 current->scx.kf_tasks[0] = NULL; \ 309 __ret; \ 310 }) 311 312 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 313 ({ \ 314 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 315 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 316 current->scx.kf_tasks[0] = task0; \ 317 current->scx.kf_tasks[1] = task1; \ 318 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 319 current->scx.kf_tasks[0] = NULL; \ 320 current->scx.kf_tasks[1] = NULL; \ 321 __ret; \ 322 }) 323 324 /* @mask is constant, always inline to cull unnecessary branches */ 325 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask) 326 { 327 if (unlikely(!(current->scx.kf_mask & mask))) { 328 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x", 329 mask, current->scx.kf_mask); 330 return false; 331 } 332 333 /* 334 * Enforce nesting boundaries. e.g. A kfunc which can be called from 335 * DISPATCH must not be called if we're running DEQUEUE which is nested 336 * inside ops.dispatch(). We don't need to check boundaries for any 337 * blocking kfuncs as the verifier ensures they're only called from 338 * sleepable progs. 339 */ 340 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 341 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 342 scx_error(sch, "cpu_release kfunc called from a nested operation"); 343 return false; 344 } 345 346 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 347 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 348 scx_error(sch, "dispatch kfunc called from a nested operation"); 349 return false; 350 } 351 352 return true; 353 } 354 355 /* see SCX_CALL_OP_TASK() */ 356 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch, 357 u32 mask, 358 struct task_struct *p) 359 { 360 if (!scx_kf_allowed(sch, mask)) 361 return false; 362 363 if (unlikely((p != current->scx.kf_tasks[0] && 364 p != current->scx.kf_tasks[1]))) { 365 scx_error(sch, "called on a task not being operated on"); 366 return false; 367 } 368 369 return true; 370 } 371 372 /** 373 * nldsq_next_task - Iterate to the next task in a non-local DSQ 374 * @dsq: user dsq being iterated 375 * @cur: current position, %NULL to start iteration 376 * @rev: walk backwards 377 * 378 * Returns %NULL when iteration is finished. 379 */ 380 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 381 struct task_struct *cur, bool rev) 382 { 383 struct list_head *list_node; 384 struct scx_dsq_list_node *dsq_lnode; 385 386 lockdep_assert_held(&dsq->lock); 387 388 if (cur) 389 list_node = &cur->scx.dsq_list.node; 390 else 391 list_node = &dsq->list; 392 393 /* find the next task, need to skip BPF iteration cursors */ 394 do { 395 if (rev) 396 list_node = list_node->prev; 397 else 398 list_node = list_node->next; 399 400 if (list_node == &dsq->list) 401 return NULL; 402 403 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 404 node); 405 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 406 407 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 408 } 409 410 #define nldsq_for_each_task(p, dsq) \ 411 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 412 (p) = nldsq_next_task((dsq), (p), false)) 413 414 415 /* 416 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 417 * dispatch order. BPF-visible iterator is opaque and larger to allow future 418 * changes without breaking backward compatibility. Can be used with 419 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 420 */ 421 enum scx_dsq_iter_flags { 422 /* iterate in the reverse dispatch order */ 423 SCX_DSQ_ITER_REV = 1U << 16, 424 425 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 426 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 427 428 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 429 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 430 __SCX_DSQ_ITER_HAS_SLICE | 431 __SCX_DSQ_ITER_HAS_VTIME, 432 }; 433 434 struct bpf_iter_scx_dsq_kern { 435 struct scx_dsq_list_node cursor; 436 struct scx_dispatch_q *dsq; 437 u64 slice; 438 u64 vtime; 439 } __attribute__((aligned(8))); 440 441 struct bpf_iter_scx_dsq { 442 u64 __opaque[6]; 443 } __attribute__((aligned(8))); 444 445 446 /* 447 * SCX task iterator. 448 */ 449 struct scx_task_iter { 450 struct sched_ext_entity cursor; 451 struct task_struct *locked_task; 452 struct rq *rq; 453 struct rq_flags rf; 454 u32 cnt; 455 bool list_locked; 456 }; 457 458 /** 459 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 460 * @iter: iterator to init 461 * 462 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 463 * must eventually be stopped with scx_task_iter_stop(). 464 * 465 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 466 * between this and the first next() call or between any two next() calls. If 467 * the locks are released between two next() calls, the caller is responsible 468 * for ensuring that the task being iterated remains accessible either through 469 * RCU read lock or obtaining a reference count. 470 * 471 * All tasks which existed when the iteration started are guaranteed to be 472 * visited as long as they still exist. 473 */ 474 static void scx_task_iter_start(struct scx_task_iter *iter) 475 { 476 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 477 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 478 479 spin_lock_irq(&scx_tasks_lock); 480 481 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 482 list_add(&iter->cursor.tasks_node, &scx_tasks); 483 iter->locked_task = NULL; 484 iter->cnt = 0; 485 iter->list_locked = true; 486 } 487 488 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 489 { 490 if (iter->locked_task) { 491 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 492 iter->locked_task = NULL; 493 } 494 } 495 496 /** 497 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 498 * @iter: iterator to unlock 499 * 500 * If @iter is in the middle of a locked iteration, it may be locking the rq of 501 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 502 * This function can be safely called anytime during an iteration. The next 503 * iterator operation will automatically restore the necessary locking. 504 */ 505 static void scx_task_iter_unlock(struct scx_task_iter *iter) 506 { 507 __scx_task_iter_rq_unlock(iter); 508 if (iter->list_locked) { 509 iter->list_locked = false; 510 spin_unlock_irq(&scx_tasks_lock); 511 } 512 } 513 514 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 515 { 516 if (!iter->list_locked) { 517 spin_lock_irq(&scx_tasks_lock); 518 iter->list_locked = true; 519 } 520 } 521 522 /** 523 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 524 * @iter: iterator to exit 525 * 526 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 527 * which is released on return. If the iterator holds a task's rq lock, that rq 528 * lock is also released. See scx_task_iter_start() for details. 529 */ 530 static void scx_task_iter_stop(struct scx_task_iter *iter) 531 { 532 __scx_task_iter_maybe_relock(iter); 533 list_del_init(&iter->cursor.tasks_node); 534 scx_task_iter_unlock(iter); 535 } 536 537 /** 538 * scx_task_iter_next - Next task 539 * @iter: iterator to walk 540 * 541 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 542 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 543 * by holding scx_tasks_lock for too long. 544 */ 545 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 546 { 547 struct list_head *cursor = &iter->cursor.tasks_node; 548 struct sched_ext_entity *pos; 549 550 __scx_task_iter_maybe_relock(iter); 551 552 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 553 scx_task_iter_unlock(iter); 554 cond_resched(); 555 __scx_task_iter_maybe_relock(iter); 556 } 557 558 list_for_each_entry(pos, cursor, tasks_node) { 559 if (&pos->tasks_node == &scx_tasks) 560 return NULL; 561 if (!(pos->flags & SCX_TASK_CURSOR)) { 562 list_move(cursor, &pos->tasks_node); 563 return container_of(pos, struct task_struct, scx); 564 } 565 } 566 567 /* can't happen, should always terminate at scx_tasks above */ 568 BUG(); 569 } 570 571 /** 572 * scx_task_iter_next_locked - Next non-idle task with its rq locked 573 * @iter: iterator to walk 574 * 575 * Visit the non-idle task with its rq lock held. Allows callers to specify 576 * whether they would like to filter out dead tasks. See scx_task_iter_start() 577 * for details. 578 */ 579 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 580 { 581 struct task_struct *p; 582 583 __scx_task_iter_rq_unlock(iter); 584 585 while ((p = scx_task_iter_next(iter))) { 586 /* 587 * scx_task_iter is used to prepare and move tasks into SCX 588 * while loading the BPF scheduler and vice-versa while 589 * unloading. The init_tasks ("swappers") should be excluded 590 * from the iteration because: 591 * 592 * - It's unsafe to use __setschduler_prio() on an init_task to 593 * determine the sched_class to use as it won't preserve its 594 * idle_sched_class. 595 * 596 * - ops.init/exit_task() can easily be confused if called with 597 * init_tasks as they, e.g., share PID 0. 598 * 599 * As init_tasks are never scheduled through SCX, they can be 600 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 601 * doesn't work here: 602 * 603 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 604 * yet been onlined. 605 * 606 * - %PF_IDLE can be set on tasks that are not init_tasks. See 607 * play_idle_precise() used by CONFIG_IDLE_INJECT. 608 * 609 * Test for idle_sched_class as only init_tasks are on it. 610 */ 611 if (p->sched_class != &idle_sched_class) 612 break; 613 } 614 if (!p) 615 return NULL; 616 617 iter->rq = task_rq_lock(p, &iter->rf); 618 iter->locked_task = p; 619 620 return p; 621 } 622 623 /** 624 * scx_add_event - Increase an event counter for 'name' by 'cnt' 625 * @sch: scx_sched to account events for 626 * @name: an event name defined in struct scx_event_stats 627 * @cnt: the number of the event occurred 628 * 629 * This can be used when preemption is not disabled. 630 */ 631 #define scx_add_event(sch, name, cnt) do { \ 632 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 633 trace_sched_ext_event(#name, (cnt)); \ 634 } while(0) 635 636 /** 637 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 638 * @sch: scx_sched to account events for 639 * @name: an event name defined in struct scx_event_stats 640 * @cnt: the number of the event occurred 641 * 642 * This should be used only when preemption is disabled. 643 */ 644 #define __scx_add_event(sch, name, cnt) do { \ 645 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 646 trace_sched_ext_event(#name, cnt); \ 647 } while(0) 648 649 /** 650 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 651 * @dst_e: destination event stats 652 * @src_e: source event stats 653 * @kind: a kind of event to be aggregated 654 */ 655 #define scx_agg_event(dst_e, src_e, kind) do { \ 656 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 657 } while(0) 658 659 /** 660 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 661 * @s: output seq_buf 662 * @events: event stats 663 * @kind: a kind of event to dump 664 */ 665 #define scx_dump_event(s, events, kind) do { \ 666 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 667 } while (0) 668 669 670 static void scx_read_events(struct scx_sched *sch, 671 struct scx_event_stats *events); 672 673 static enum scx_enable_state scx_enable_state(void) 674 { 675 return atomic_read(&scx_enable_state_var); 676 } 677 678 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 679 { 680 return atomic_xchg(&scx_enable_state_var, to); 681 } 682 683 static bool scx_tryset_enable_state(enum scx_enable_state to, 684 enum scx_enable_state from) 685 { 686 int from_v = from; 687 688 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 689 } 690 691 /** 692 * wait_ops_state - Busy-wait the specified ops state to end 693 * @p: target task 694 * @opss: state to wait the end of 695 * 696 * Busy-wait for @p to transition out of @opss. This can only be used when the 697 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 698 * has load_acquire semantics to ensure that the caller can see the updates made 699 * in the enqueueing and dispatching paths. 700 */ 701 static void wait_ops_state(struct task_struct *p, unsigned long opss) 702 { 703 do { 704 cpu_relax(); 705 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 706 } 707 708 static inline bool __cpu_valid(s32 cpu) 709 { 710 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 711 } 712 713 /** 714 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 715 * @sch: scx_sched to abort on error 716 * @cpu: cpu number which came from a BPF ops 717 * @where: extra information reported on error 718 * 719 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 720 * Verify that it is in range and one of the possible cpus. If invalid, trigger 721 * an ops error. 722 */ 723 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 724 { 725 if (__cpu_valid(cpu)) { 726 return true; 727 } else { 728 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 729 return false; 730 } 731 } 732 733 /** 734 * ops_sanitize_err - Sanitize a -errno value 735 * @sch: scx_sched to error out on error 736 * @ops_name: operation to blame on failure 737 * @err: -errno value to sanitize 738 * 739 * Verify @err is a valid -errno. If not, trigger scx_error() and return 740 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 741 * cause misbehaviors. For an example, a large negative return from 742 * ops.init_task() triggers an oops when passed up the call chain because the 743 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 744 * handled as a pointer. 745 */ 746 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 747 { 748 if (err < 0 && err >= -MAX_ERRNO) 749 return err; 750 751 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 752 return -EPROTO; 753 } 754 755 static void run_deferred(struct rq *rq) 756 { 757 process_ddsp_deferred_locals(rq); 758 } 759 760 static void deferred_bal_cb_workfn(struct rq *rq) 761 { 762 run_deferred(rq); 763 } 764 765 static void deferred_irq_workfn(struct irq_work *irq_work) 766 { 767 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 768 769 raw_spin_rq_lock(rq); 770 run_deferred(rq); 771 raw_spin_rq_unlock(rq); 772 } 773 774 /** 775 * schedule_deferred - Schedule execution of deferred actions on an rq 776 * @rq: target rq 777 * 778 * Schedule execution of deferred actions on @rq. Must be called with @rq 779 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 780 * can unlock @rq to e.g. migrate tasks to other rqs. 781 */ 782 static void schedule_deferred(struct rq *rq) 783 { 784 lockdep_assert_rq_held(rq); 785 786 /* 787 * If in the middle of waking up a task, task_woken_scx() will be called 788 * afterwards which will then run the deferred actions, no need to 789 * schedule anything. 790 */ 791 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 792 return; 793 794 /* Don't do anything if there already is a deferred operation. */ 795 if (rq->scx.flags & SCX_RQ_BAL_PENDING) 796 return; 797 798 /* 799 * If in balance, the balance callbacks will be called before rq lock is 800 * released. Schedule one. 801 * 802 * 803 * We can't directly insert the callback into the 804 * rq's list: The call can drop its lock and make the pending balance 805 * callback visible to unrelated code paths that call rq_pin_lock(). 806 * 807 * Just let balance_one() know that it must do it itself. 808 */ 809 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 810 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING; 811 return; 812 } 813 814 /* 815 * No scheduler hooks available. Queue an irq work. They are executed on 816 * IRQ re-enable which may take a bit longer than the scheduler hooks. 817 * The above WAKEUP and BALANCE paths should cover most of the cases and 818 * the time to IRQ re-enable shouldn't be long. 819 */ 820 irq_work_queue(&rq->scx.deferred_irq_work); 821 } 822 823 /** 824 * touch_core_sched - Update timestamp used for core-sched task ordering 825 * @rq: rq to read clock from, must be locked 826 * @p: task to update the timestamp for 827 * 828 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 829 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 830 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 831 * exhaustion). 832 */ 833 static void touch_core_sched(struct rq *rq, struct task_struct *p) 834 { 835 lockdep_assert_rq_held(rq); 836 837 #ifdef CONFIG_SCHED_CORE 838 /* 839 * It's okay to update the timestamp spuriously. Use 840 * sched_core_disabled() which is cheaper than enabled(). 841 * 842 * As this is used to determine ordering between tasks of sibling CPUs, 843 * it may be better to use per-core dispatch sequence instead. 844 */ 845 if (!sched_core_disabled()) 846 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 847 #endif 848 } 849 850 /** 851 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 852 * @rq: rq to read clock from, must be locked 853 * @p: task being dispatched 854 * 855 * If the BPF scheduler implements custom core-sched ordering via 856 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 857 * ordering within each local DSQ. This function is called from dispatch paths 858 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 859 */ 860 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 861 { 862 lockdep_assert_rq_held(rq); 863 864 #ifdef CONFIG_SCHED_CORE 865 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 866 touch_core_sched(rq, p); 867 #endif 868 } 869 870 static void update_curr_scx(struct rq *rq) 871 { 872 struct task_struct *curr = rq->curr; 873 s64 delta_exec; 874 875 delta_exec = update_curr_common(rq); 876 if (unlikely(delta_exec <= 0)) 877 return; 878 879 if (curr->scx.slice != SCX_SLICE_INF) { 880 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 881 if (!curr->scx.slice) 882 touch_core_sched(rq, curr); 883 } 884 } 885 886 static bool scx_dsq_priq_less(struct rb_node *node_a, 887 const struct rb_node *node_b) 888 { 889 const struct task_struct *a = 890 container_of(node_a, struct task_struct, scx.dsq_priq); 891 const struct task_struct *b = 892 container_of(node_b, struct task_struct, scx.dsq_priq); 893 894 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 895 } 896 897 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 898 { 899 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 900 WRITE_ONCE(dsq->nr, dsq->nr + delta); 901 } 902 903 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p) 904 { 905 p->scx.slice = SCX_SLICE_DFL; 906 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1); 907 } 908 909 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 910 struct task_struct *p, u64 enq_flags) 911 { 912 bool is_local = dsq->id == SCX_DSQ_LOCAL; 913 914 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 915 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 916 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 917 918 if (!is_local) { 919 raw_spin_lock(&dsq->lock); 920 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 921 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 922 /* fall back to the global dsq */ 923 raw_spin_unlock(&dsq->lock); 924 dsq = find_global_dsq(sch, p); 925 raw_spin_lock(&dsq->lock); 926 } 927 } 928 929 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 930 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 931 /* 932 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 933 * their FIFO queues. To avoid confusion and accidentally 934 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 935 * disallow any internal DSQ from doing vtime ordering of 936 * tasks. 937 */ 938 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 939 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 940 } 941 942 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 943 struct rb_node *rbp; 944 945 /* 946 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 947 * linked to both the rbtree and list on PRIQs, this can only be 948 * tested easily when adding the first task. 949 */ 950 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 951 nldsq_next_task(dsq, NULL, false))) 952 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 953 dsq->id); 954 955 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 956 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 957 958 /* 959 * Find the previous task and insert after it on the list so 960 * that @dsq->list is vtime ordered. 961 */ 962 rbp = rb_prev(&p->scx.dsq_priq); 963 if (rbp) { 964 struct task_struct *prev = 965 container_of(rbp, struct task_struct, 966 scx.dsq_priq); 967 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 968 /* first task unchanged - no update needed */ 969 } else { 970 list_add(&p->scx.dsq_list.node, &dsq->list); 971 /* not builtin and new task is at head - use fastpath */ 972 rcu_assign_pointer(dsq->first_task, p); 973 } 974 } else { 975 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 976 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 977 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 978 dsq->id); 979 980 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) { 981 list_add(&p->scx.dsq_list.node, &dsq->list); 982 /* new task inserted at head - use fastpath */ 983 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 984 rcu_assign_pointer(dsq->first_task, p); 985 } else { 986 bool was_empty; 987 988 was_empty = list_empty(&dsq->list); 989 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 990 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 991 rcu_assign_pointer(dsq->first_task, p); 992 } 993 } 994 995 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 996 dsq->seq++; 997 p->scx.dsq_seq = dsq->seq; 998 999 dsq_mod_nr(dsq, 1); 1000 p->scx.dsq = dsq; 1001 1002 /* 1003 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1004 * direct dispatch path, but we clear them here because the direct 1005 * dispatch verdict may be overridden on the enqueue path during e.g. 1006 * bypass. 1007 */ 1008 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1009 p->scx.ddsp_enq_flags = 0; 1010 1011 /* 1012 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1013 * match waiters' load_acquire. 1014 */ 1015 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1016 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1017 1018 if (is_local) { 1019 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1020 bool preempt = false; 1021 1022 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1023 rq->curr->sched_class == &ext_sched_class) { 1024 rq->curr->scx.slice = 0; 1025 preempt = true; 1026 } 1027 1028 if (preempt || sched_class_above(&ext_sched_class, 1029 rq->curr->sched_class)) 1030 resched_curr(rq); 1031 } else { 1032 raw_spin_unlock(&dsq->lock); 1033 } 1034 } 1035 1036 static void task_unlink_from_dsq(struct task_struct *p, 1037 struct scx_dispatch_q *dsq) 1038 { 1039 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1040 1041 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1042 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1043 RB_CLEAR_NODE(&p->scx.dsq_priq); 1044 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1045 } 1046 1047 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) { 1048 struct task_struct *first_task; 1049 1050 first_task = nldsq_next_task(dsq, NULL, false); 1051 rcu_assign_pointer(dsq->first_task, first_task); 1052 } 1053 1054 list_del_init(&p->scx.dsq_list.node); 1055 dsq_mod_nr(dsq, -1); 1056 } 1057 1058 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1059 { 1060 struct scx_dispatch_q *dsq = p->scx.dsq; 1061 bool is_local = dsq == &rq->scx.local_dsq; 1062 1063 if (!dsq) { 1064 /* 1065 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1066 * Unlinking is all that's needed to cancel. 1067 */ 1068 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1069 list_del_init(&p->scx.dsq_list.node); 1070 1071 /* 1072 * When dispatching directly from the BPF scheduler to a local 1073 * DSQ, the task isn't associated with any DSQ but 1074 * @p->scx.holding_cpu may be set under the protection of 1075 * %SCX_OPSS_DISPATCHING. 1076 */ 1077 if (p->scx.holding_cpu >= 0) 1078 p->scx.holding_cpu = -1; 1079 1080 return; 1081 } 1082 1083 if (!is_local) 1084 raw_spin_lock(&dsq->lock); 1085 1086 /* 1087 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1088 * change underneath us. 1089 */ 1090 if (p->scx.holding_cpu < 0) { 1091 /* @p must still be on @dsq, dequeue */ 1092 task_unlink_from_dsq(p, dsq); 1093 } else { 1094 /* 1095 * We're racing against dispatch_to_local_dsq() which already 1096 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1097 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1098 * the race. 1099 */ 1100 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1101 p->scx.holding_cpu = -1; 1102 } 1103 p->scx.dsq = NULL; 1104 1105 if (!is_local) 1106 raw_spin_unlock(&dsq->lock); 1107 } 1108 1109 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1110 struct rq *rq, u64 dsq_id, 1111 struct task_struct *p) 1112 { 1113 struct scx_dispatch_q *dsq; 1114 1115 if (dsq_id == SCX_DSQ_LOCAL) 1116 return &rq->scx.local_dsq; 1117 1118 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1119 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1120 1121 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1122 return find_global_dsq(sch, p); 1123 1124 return &cpu_rq(cpu)->scx.local_dsq; 1125 } 1126 1127 if (dsq_id == SCX_DSQ_GLOBAL) 1128 dsq = find_global_dsq(sch, p); 1129 else 1130 dsq = find_user_dsq(sch, dsq_id); 1131 1132 if (unlikely(!dsq)) { 1133 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1134 dsq_id, p->comm, p->pid); 1135 return find_global_dsq(sch, p); 1136 } 1137 1138 return dsq; 1139 } 1140 1141 static void mark_direct_dispatch(struct scx_sched *sch, 1142 struct task_struct *ddsp_task, 1143 struct task_struct *p, u64 dsq_id, 1144 u64 enq_flags) 1145 { 1146 /* 1147 * Mark that dispatch already happened from ops.select_cpu() or 1148 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1149 * which can never match a valid task pointer. 1150 */ 1151 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1152 1153 /* @p must match the task on the enqueue path */ 1154 if (unlikely(p != ddsp_task)) { 1155 if (IS_ERR(ddsp_task)) 1156 scx_error(sch, "%s[%d] already direct-dispatched", 1157 p->comm, p->pid); 1158 else 1159 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1160 ddsp_task->comm, ddsp_task->pid, 1161 p->comm, p->pid); 1162 return; 1163 } 1164 1165 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1166 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1167 1168 p->scx.ddsp_dsq_id = dsq_id; 1169 p->scx.ddsp_enq_flags = enq_flags; 1170 } 1171 1172 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1173 u64 enq_flags) 1174 { 1175 struct rq *rq = task_rq(p); 1176 struct scx_dispatch_q *dsq = 1177 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1178 1179 touch_core_sched_dispatch(rq, p); 1180 1181 p->scx.ddsp_enq_flags |= enq_flags; 1182 1183 /* 1184 * We are in the enqueue path with @rq locked and pinned, and thus can't 1185 * double lock a remote rq and enqueue to its local DSQ. For 1186 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1187 * the enqueue so that it's executed when @rq can be unlocked. 1188 */ 1189 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1190 unsigned long opss; 1191 1192 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1193 1194 switch (opss & SCX_OPSS_STATE_MASK) { 1195 case SCX_OPSS_NONE: 1196 break; 1197 case SCX_OPSS_QUEUEING: 1198 /* 1199 * As @p was never passed to the BPF side, _release is 1200 * not strictly necessary. Still do it for consistency. 1201 */ 1202 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1203 break; 1204 default: 1205 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1206 p->comm, p->pid, opss); 1207 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1208 break; 1209 } 1210 1211 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1212 list_add_tail(&p->scx.dsq_list.node, 1213 &rq->scx.ddsp_deferred_locals); 1214 schedule_deferred(rq); 1215 return; 1216 } 1217 1218 dispatch_enqueue(sch, dsq, p, 1219 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1220 } 1221 1222 static bool scx_rq_online(struct rq *rq) 1223 { 1224 /* 1225 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1226 * the online state as seen from the BPF scheduler. cpu_active() test 1227 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1228 * stay set until the current scheduling operation is complete even if 1229 * we aren't locking @rq. 1230 */ 1231 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1232 } 1233 1234 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1235 int sticky_cpu) 1236 { 1237 struct scx_sched *sch = scx_root; 1238 struct task_struct **ddsp_taskp; 1239 unsigned long qseq; 1240 1241 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1242 1243 /* rq migration */ 1244 if (sticky_cpu == cpu_of(rq)) 1245 goto local_norefill; 1246 1247 /* 1248 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1249 * is offline and are just running the hotplug path. Don't bother the 1250 * BPF scheduler. 1251 */ 1252 if (!scx_rq_online(rq)) 1253 goto local; 1254 1255 if (scx_rq_bypassing(rq)) { 1256 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1257 goto global; 1258 } 1259 1260 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1261 goto direct; 1262 1263 /* see %SCX_OPS_ENQ_EXITING */ 1264 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1265 unlikely(p->flags & PF_EXITING)) { 1266 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1267 goto local; 1268 } 1269 1270 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1271 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1272 is_migration_disabled(p)) { 1273 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1274 goto local; 1275 } 1276 1277 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1278 goto global; 1279 1280 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1281 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1282 1283 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1284 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1285 1286 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1287 WARN_ON_ONCE(*ddsp_taskp); 1288 *ddsp_taskp = p; 1289 1290 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1291 1292 *ddsp_taskp = NULL; 1293 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1294 goto direct; 1295 1296 /* 1297 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1298 * dequeue may be waiting. The store_release matches their load_acquire. 1299 */ 1300 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1301 return; 1302 1303 direct: 1304 direct_dispatch(sch, p, enq_flags); 1305 return; 1306 1307 local: 1308 /* 1309 * For task-ordering, slice refill must be treated as implying the end 1310 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1311 * higher priority it becomes from scx_prio_less()'s POV. 1312 */ 1313 touch_core_sched(rq, p); 1314 refill_task_slice_dfl(sch, p); 1315 local_norefill: 1316 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1317 return; 1318 1319 global: 1320 touch_core_sched(rq, p); /* see the comment in local: */ 1321 refill_task_slice_dfl(sch, p); 1322 dispatch_enqueue(sch, find_global_dsq(sch, p), p, enq_flags); 1323 } 1324 1325 static bool task_runnable(const struct task_struct *p) 1326 { 1327 return !list_empty(&p->scx.runnable_node); 1328 } 1329 1330 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1331 { 1332 lockdep_assert_rq_held(rq); 1333 1334 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1335 p->scx.runnable_at = jiffies; 1336 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1337 } 1338 1339 /* 1340 * list_add_tail() must be used. scx_bypass() depends on tasks being 1341 * appended to the runnable_list. 1342 */ 1343 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1344 } 1345 1346 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1347 { 1348 list_del_init(&p->scx.runnable_node); 1349 if (reset_runnable_at) 1350 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1351 } 1352 1353 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1354 { 1355 struct scx_sched *sch = scx_root; 1356 int sticky_cpu = p->scx.sticky_cpu; 1357 1358 if (enq_flags & ENQUEUE_WAKEUP) 1359 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1360 1361 enq_flags |= rq->scx.extra_enq_flags; 1362 1363 if (sticky_cpu >= 0) 1364 p->scx.sticky_cpu = -1; 1365 1366 /* 1367 * Restoring a running task will be immediately followed by 1368 * set_next_task_scx() which expects the task to not be on the BPF 1369 * scheduler as tasks can only start running through local DSQs. Force 1370 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1371 */ 1372 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1373 sticky_cpu = cpu_of(rq); 1374 1375 if (p->scx.flags & SCX_TASK_QUEUED) { 1376 WARN_ON_ONCE(!task_runnable(p)); 1377 goto out; 1378 } 1379 1380 set_task_runnable(rq, p); 1381 p->scx.flags |= SCX_TASK_QUEUED; 1382 rq->scx.nr_running++; 1383 add_nr_running(rq, 1); 1384 1385 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1386 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1387 1388 if (enq_flags & SCX_ENQ_WAKEUP) 1389 touch_core_sched(rq, p); 1390 1391 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1392 out: 1393 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1394 1395 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1396 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1397 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1398 } 1399 1400 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1401 { 1402 struct scx_sched *sch = scx_root; 1403 unsigned long opss; 1404 1405 /* dequeue is always temporary, don't reset runnable_at */ 1406 clr_task_runnable(p, false); 1407 1408 /* acquire ensures that we see the preceding updates on QUEUED */ 1409 opss = atomic_long_read_acquire(&p->scx.ops_state); 1410 1411 switch (opss & SCX_OPSS_STATE_MASK) { 1412 case SCX_OPSS_NONE: 1413 break; 1414 case SCX_OPSS_QUEUEING: 1415 /* 1416 * QUEUEING is started and finished while holding @p's rq lock. 1417 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1418 */ 1419 BUG(); 1420 case SCX_OPSS_QUEUED: 1421 if (SCX_HAS_OP(sch, dequeue)) 1422 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1423 p, deq_flags); 1424 1425 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1426 SCX_OPSS_NONE)) 1427 break; 1428 fallthrough; 1429 case SCX_OPSS_DISPATCHING: 1430 /* 1431 * If @p is being dispatched from the BPF scheduler to a DSQ, 1432 * wait for the transfer to complete so that @p doesn't get 1433 * added to its DSQ after dequeueing is complete. 1434 * 1435 * As we're waiting on DISPATCHING with the rq locked, the 1436 * dispatching side shouldn't try to lock the rq while 1437 * DISPATCHING is set. See dispatch_to_local_dsq(). 1438 * 1439 * DISPATCHING shouldn't have qseq set and control can reach 1440 * here with NONE @opss from the above QUEUED case block. 1441 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1442 */ 1443 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1444 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1445 break; 1446 } 1447 } 1448 1449 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1450 { 1451 struct scx_sched *sch = scx_root; 1452 1453 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1454 WARN_ON_ONCE(task_runnable(p)); 1455 return true; 1456 } 1457 1458 ops_dequeue(rq, p, deq_flags); 1459 1460 /* 1461 * A currently running task which is going off @rq first gets dequeued 1462 * and then stops running. As we want running <-> stopping transitions 1463 * to be contained within runnable <-> quiescent transitions, trigger 1464 * ->stopping() early here instead of in put_prev_task_scx(). 1465 * 1466 * @p may go through multiple stopping <-> running transitions between 1467 * here and put_prev_task_scx() if task attribute changes occur while 1468 * balance_scx() leaves @rq unlocked. However, they don't contain any 1469 * information meaningful to the BPF scheduler and can be suppressed by 1470 * skipping the callbacks if the task is !QUEUED. 1471 */ 1472 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1473 update_curr_scx(rq); 1474 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1475 } 1476 1477 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1478 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1479 1480 if (deq_flags & SCX_DEQ_SLEEP) 1481 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1482 else 1483 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1484 1485 p->scx.flags &= ~SCX_TASK_QUEUED; 1486 rq->scx.nr_running--; 1487 sub_nr_running(rq, 1); 1488 1489 dispatch_dequeue(rq, p); 1490 return true; 1491 } 1492 1493 static void yield_task_scx(struct rq *rq) 1494 { 1495 struct scx_sched *sch = scx_root; 1496 struct task_struct *p = rq->curr; 1497 1498 if (SCX_HAS_OP(sch, yield)) 1499 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1500 else 1501 p->scx.slice = 0; 1502 } 1503 1504 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1505 { 1506 struct scx_sched *sch = scx_root; 1507 struct task_struct *from = rq->curr; 1508 1509 if (SCX_HAS_OP(sch, yield)) 1510 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1511 from, to); 1512 else 1513 return false; 1514 } 1515 1516 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1517 struct scx_dispatch_q *src_dsq, 1518 struct rq *dst_rq) 1519 { 1520 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1521 1522 /* @dsq is locked and @p is on @dst_rq */ 1523 lockdep_assert_held(&src_dsq->lock); 1524 lockdep_assert_rq_held(dst_rq); 1525 1526 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1527 1528 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1529 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1530 else 1531 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1532 1533 dsq_mod_nr(dst_dsq, 1); 1534 p->scx.dsq = dst_dsq; 1535 } 1536 1537 /** 1538 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1539 * @p: task to move 1540 * @enq_flags: %SCX_ENQ_* 1541 * @src_rq: rq to move the task from, locked on entry, released on return 1542 * @dst_rq: rq to move the task into, locked on return 1543 * 1544 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1545 */ 1546 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1547 struct rq *src_rq, struct rq *dst_rq) 1548 { 1549 lockdep_assert_rq_held(src_rq); 1550 1551 /* the following marks @p MIGRATING which excludes dequeue */ 1552 deactivate_task(src_rq, p, 0); 1553 set_task_cpu(p, cpu_of(dst_rq)); 1554 p->scx.sticky_cpu = cpu_of(dst_rq); 1555 1556 raw_spin_rq_unlock(src_rq); 1557 raw_spin_rq_lock(dst_rq); 1558 1559 /* 1560 * We want to pass scx-specific enq_flags but activate_task() will 1561 * truncate the upper 32 bit. As we own @rq, we can pass them through 1562 * @rq->scx.extra_enq_flags instead. 1563 */ 1564 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1565 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1566 dst_rq->scx.extra_enq_flags = enq_flags; 1567 activate_task(dst_rq, p, 0); 1568 dst_rq->scx.extra_enq_flags = 0; 1569 } 1570 1571 /* 1572 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1573 * differences: 1574 * 1575 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1576 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1577 * this CPU?". 1578 * 1579 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1580 * must be allowed to finish on the CPU that it's currently on regardless of 1581 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1582 * BPF scheduler shouldn't attempt to migrate a task which has migration 1583 * disabled. 1584 * 1585 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1586 * no to the BPF scheduler initiated migrations while offline. 1587 * 1588 * The caller must ensure that @p and @rq are on different CPUs. 1589 */ 1590 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1591 struct task_struct *p, struct rq *rq, 1592 bool enforce) 1593 { 1594 int cpu = cpu_of(rq); 1595 1596 WARN_ON_ONCE(task_cpu(p) == cpu); 1597 1598 /* 1599 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1600 * the pinned CPU in migrate_disable_switch() while @p is being switched 1601 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1602 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1603 * @p passing the below task_allowed_on_cpu() check while migration is 1604 * disabled. 1605 * 1606 * Test the migration disabled state first as the race window is narrow 1607 * and the BPF scheduler failing to check migration disabled state can 1608 * easily be masked if task_allowed_on_cpu() is done first. 1609 */ 1610 if (unlikely(is_migration_disabled(p))) { 1611 if (enforce) 1612 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1613 p->comm, p->pid, task_cpu(p), cpu); 1614 return false; 1615 } 1616 1617 /* 1618 * We don't require the BPF scheduler to avoid dispatching to offline 1619 * CPUs mostly for convenience but also because CPUs can go offline 1620 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1621 * picked CPU is outside the allowed mask. 1622 */ 1623 if (!task_allowed_on_cpu(p, cpu)) { 1624 if (enforce) 1625 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1626 cpu, p->comm, p->pid); 1627 return false; 1628 } 1629 1630 if (!scx_rq_online(rq)) { 1631 if (enforce) 1632 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1633 return false; 1634 } 1635 1636 return true; 1637 } 1638 1639 /** 1640 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1641 * @p: target task 1642 * @dsq: locked DSQ @p is currently on 1643 * @src_rq: rq @p is currently on, stable with @dsq locked 1644 * 1645 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1646 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1647 * required when transferring into a local DSQ. Even when transferring into a 1648 * non-local DSQ, it's better to use the same mechanism to protect against 1649 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1650 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1651 * 1652 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1653 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1654 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1655 * dancing from our side. 1656 * 1657 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1658 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1659 * would be cleared to -1. While other cpus may have updated it to different 1660 * values afterwards, as this operation can't be preempted or recurse, the 1661 * holding_cpu can never become this CPU again before we're done. Thus, we can 1662 * tell whether we lost to dequeue by testing whether the holding_cpu still 1663 * points to this CPU. See dispatch_dequeue() for the counterpart. 1664 * 1665 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1666 * still valid. %false if lost to dequeue. 1667 */ 1668 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1669 struct scx_dispatch_q *dsq, 1670 struct rq *src_rq) 1671 { 1672 s32 cpu = raw_smp_processor_id(); 1673 1674 lockdep_assert_held(&dsq->lock); 1675 1676 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1677 task_unlink_from_dsq(p, dsq); 1678 p->scx.holding_cpu = cpu; 1679 1680 raw_spin_unlock(&dsq->lock); 1681 raw_spin_rq_lock(src_rq); 1682 1683 /* task_rq couldn't have changed if we're still the holding cpu */ 1684 return likely(p->scx.holding_cpu == cpu) && 1685 !WARN_ON_ONCE(src_rq != task_rq(p)); 1686 } 1687 1688 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1689 struct scx_dispatch_q *dsq, struct rq *src_rq) 1690 { 1691 raw_spin_rq_unlock(this_rq); 1692 1693 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1694 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1695 return true; 1696 } else { 1697 raw_spin_rq_unlock(src_rq); 1698 raw_spin_rq_lock(this_rq); 1699 return false; 1700 } 1701 } 1702 1703 /** 1704 * move_task_between_dsqs() - Move a task from one DSQ to another 1705 * @sch: scx_sched being operated on 1706 * @p: target task 1707 * @enq_flags: %SCX_ENQ_* 1708 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1709 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1710 * 1711 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1712 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1713 * will change. As @p's task_rq is locked, this function doesn't need to use the 1714 * holding_cpu mechanism. 1715 * 1716 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1717 * return value, is locked. 1718 */ 1719 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1720 struct task_struct *p, u64 enq_flags, 1721 struct scx_dispatch_q *src_dsq, 1722 struct scx_dispatch_q *dst_dsq) 1723 { 1724 struct rq *src_rq = task_rq(p), *dst_rq; 1725 1726 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1727 lockdep_assert_held(&src_dsq->lock); 1728 lockdep_assert_rq_held(src_rq); 1729 1730 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1731 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1732 if (src_rq != dst_rq && 1733 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1734 dst_dsq = find_global_dsq(sch, p); 1735 dst_rq = src_rq; 1736 } 1737 } else { 1738 /* no need to migrate if destination is a non-local DSQ */ 1739 dst_rq = src_rq; 1740 } 1741 1742 /* 1743 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1744 * CPU, @p will be migrated. 1745 */ 1746 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1747 /* @p is going from a non-local DSQ to a local DSQ */ 1748 if (src_rq == dst_rq) { 1749 task_unlink_from_dsq(p, src_dsq); 1750 move_local_task_to_local_dsq(p, enq_flags, 1751 src_dsq, dst_rq); 1752 raw_spin_unlock(&src_dsq->lock); 1753 } else { 1754 raw_spin_unlock(&src_dsq->lock); 1755 move_remote_task_to_local_dsq(p, enq_flags, 1756 src_rq, dst_rq); 1757 } 1758 } else { 1759 /* 1760 * @p is going from a non-local DSQ to a non-local DSQ. As 1761 * $src_dsq is already locked, do an abbreviated dequeue. 1762 */ 1763 task_unlink_from_dsq(p, src_dsq); 1764 p->scx.dsq = NULL; 1765 raw_spin_unlock(&src_dsq->lock); 1766 1767 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1768 } 1769 1770 return dst_rq; 1771 } 1772 1773 /* 1774 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 1775 * banging on the same DSQ on a large NUMA system to the point where switching 1776 * to the bypass mode can take a long time. Inject artificial delays while the 1777 * bypass mode is switching to guarantee timely completion. 1778 */ 1779 static void scx_breather(struct rq *rq) 1780 { 1781 u64 until; 1782 1783 lockdep_assert_rq_held(rq); 1784 1785 if (likely(!atomic_read(&scx_breather_depth))) 1786 return; 1787 1788 raw_spin_rq_unlock(rq); 1789 1790 until = ktime_get_ns() + NSEC_PER_MSEC; 1791 1792 do { 1793 int cnt = 1024; 1794 while (atomic_read(&scx_breather_depth) && --cnt) 1795 cpu_relax(); 1796 } while (atomic_read(&scx_breather_depth) && 1797 time_before64(ktime_get_ns(), until)); 1798 1799 raw_spin_rq_lock(rq); 1800 } 1801 1802 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1803 struct scx_dispatch_q *dsq) 1804 { 1805 struct task_struct *p; 1806 retry: 1807 /* 1808 * This retry loop can repeatedly race against scx_bypass() dequeueing 1809 * tasks from @dsq trying to put the system into the bypass mode. On 1810 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock 1811 * the machine into soft lockups. Give a breather. 1812 */ 1813 scx_breather(rq); 1814 1815 /* 1816 * The caller can't expect to successfully consume a task if the task's 1817 * addition to @dsq isn't guaranteed to be visible somehow. Test 1818 * @dsq->list without locking and skip if it seems empty. 1819 */ 1820 if (list_empty(&dsq->list)) 1821 return false; 1822 1823 raw_spin_lock(&dsq->lock); 1824 1825 nldsq_for_each_task(p, dsq) { 1826 struct rq *task_rq = task_rq(p); 1827 1828 if (rq == task_rq) { 1829 task_unlink_from_dsq(p, dsq); 1830 move_local_task_to_local_dsq(p, 0, dsq, rq); 1831 raw_spin_unlock(&dsq->lock); 1832 return true; 1833 } 1834 1835 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1836 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1837 return true; 1838 goto retry; 1839 } 1840 } 1841 1842 raw_spin_unlock(&dsq->lock); 1843 return false; 1844 } 1845 1846 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1847 { 1848 int node = cpu_to_node(cpu_of(rq)); 1849 1850 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1851 } 1852 1853 /** 1854 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1855 * @sch: scx_sched being operated on 1856 * @rq: current rq which is locked 1857 * @dst_dsq: destination DSQ 1858 * @p: task to dispatch 1859 * @enq_flags: %SCX_ENQ_* 1860 * 1861 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1862 * DSQ. This function performs all the synchronization dancing needed because 1863 * local DSQs are protected with rq locks. 1864 * 1865 * The caller must have exclusive ownership of @p (e.g. through 1866 * %SCX_OPSS_DISPATCHING). 1867 */ 1868 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1869 struct scx_dispatch_q *dst_dsq, 1870 struct task_struct *p, u64 enq_flags) 1871 { 1872 struct rq *src_rq = task_rq(p); 1873 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1874 struct rq *locked_rq = rq; 1875 1876 /* 1877 * We're synchronized against dequeue through DISPATCHING. As @p can't 1878 * be dequeued, its task_rq and cpus_allowed are stable too. 1879 * 1880 * If dispatching to @rq that @p is already on, no lock dancing needed. 1881 */ 1882 if (rq == src_rq && rq == dst_rq) { 1883 dispatch_enqueue(sch, dst_dsq, p, 1884 enq_flags | SCX_ENQ_CLEAR_OPSS); 1885 return; 1886 } 1887 1888 if (src_rq != dst_rq && 1889 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1890 dispatch_enqueue(sch, find_global_dsq(sch, p), p, 1891 enq_flags | SCX_ENQ_CLEAR_OPSS); 1892 return; 1893 } 1894 1895 /* 1896 * @p is on a possibly remote @src_rq which we need to lock to move the 1897 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1898 * on DISPATCHING, so we can't grab @src_rq lock while holding 1899 * DISPATCHING. 1900 * 1901 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1902 * we're moving from a DSQ and use the same mechanism - mark the task 1903 * under transfer with holding_cpu, release DISPATCHING and then follow 1904 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1905 */ 1906 p->scx.holding_cpu = raw_smp_processor_id(); 1907 1908 /* store_release ensures that dequeue sees the above */ 1909 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1910 1911 /* switch to @src_rq lock */ 1912 if (locked_rq != src_rq) { 1913 raw_spin_rq_unlock(locked_rq); 1914 locked_rq = src_rq; 1915 raw_spin_rq_lock(src_rq); 1916 } 1917 1918 /* task_rq couldn't have changed if we're still the holding cpu */ 1919 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 1920 !WARN_ON_ONCE(src_rq != task_rq(p))) { 1921 /* 1922 * If @p is staying on the same rq, there's no need to go 1923 * through the full deactivate/activate cycle. Optimize by 1924 * abbreviating move_remote_task_to_local_dsq(). 1925 */ 1926 if (src_rq == dst_rq) { 1927 p->scx.holding_cpu = -1; 1928 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 1929 enq_flags); 1930 } else { 1931 move_remote_task_to_local_dsq(p, enq_flags, 1932 src_rq, dst_rq); 1933 /* task has been moved to dst_rq, which is now locked */ 1934 locked_rq = dst_rq; 1935 } 1936 1937 /* if the destination CPU is idle, wake it up */ 1938 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 1939 resched_curr(dst_rq); 1940 } 1941 1942 /* switch back to @rq lock */ 1943 if (locked_rq != rq) { 1944 raw_spin_rq_unlock(locked_rq); 1945 raw_spin_rq_lock(rq); 1946 } 1947 } 1948 1949 /** 1950 * finish_dispatch - Asynchronously finish dispatching a task 1951 * @rq: current rq which is locked 1952 * @p: task to finish dispatching 1953 * @qseq_at_dispatch: qseq when @p started getting dispatched 1954 * @dsq_id: destination DSQ ID 1955 * @enq_flags: %SCX_ENQ_* 1956 * 1957 * Dispatching to local DSQs may need to wait for queueing to complete or 1958 * require rq lock dancing. As we don't wanna do either while inside 1959 * ops.dispatch() to avoid locking order inversion, we split dispatching into 1960 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 1961 * task and its qseq. Once ops.dispatch() returns, this function is called to 1962 * finish up. 1963 * 1964 * There is no guarantee that @p is still valid for dispatching or even that it 1965 * was valid in the first place. Make sure that the task is still owned by the 1966 * BPF scheduler and claim the ownership before dispatching. 1967 */ 1968 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 1969 struct task_struct *p, 1970 unsigned long qseq_at_dispatch, 1971 u64 dsq_id, u64 enq_flags) 1972 { 1973 struct scx_dispatch_q *dsq; 1974 unsigned long opss; 1975 1976 touch_core_sched_dispatch(rq, p); 1977 retry: 1978 /* 1979 * No need for _acquire here. @p is accessed only after a successful 1980 * try_cmpxchg to DISPATCHING. 1981 */ 1982 opss = atomic_long_read(&p->scx.ops_state); 1983 1984 switch (opss & SCX_OPSS_STATE_MASK) { 1985 case SCX_OPSS_DISPATCHING: 1986 case SCX_OPSS_NONE: 1987 /* someone else already got to it */ 1988 return; 1989 case SCX_OPSS_QUEUED: 1990 /* 1991 * If qseq doesn't match, @p has gone through at least one 1992 * dispatch/dequeue and re-enqueue cycle between 1993 * scx_bpf_dsq_insert() and here and we have no claim on it. 1994 */ 1995 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 1996 return; 1997 1998 /* 1999 * While we know @p is accessible, we don't yet have a claim on 2000 * it - the BPF scheduler is allowed to dispatch tasks 2001 * spuriously and there can be a racing dequeue attempt. Let's 2002 * claim @p by atomically transitioning it from QUEUED to 2003 * DISPATCHING. 2004 */ 2005 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2006 SCX_OPSS_DISPATCHING))) 2007 break; 2008 goto retry; 2009 case SCX_OPSS_QUEUEING: 2010 /* 2011 * do_enqueue_task() is in the process of transferring the task 2012 * to the BPF scheduler while holding @p's rq lock. As we aren't 2013 * holding any kernel or BPF resource that the enqueue path may 2014 * depend upon, it's safe to wait. 2015 */ 2016 wait_ops_state(p, opss); 2017 goto retry; 2018 } 2019 2020 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2021 2022 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 2023 2024 if (dsq->id == SCX_DSQ_LOCAL) 2025 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 2026 else 2027 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2028 } 2029 2030 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 2031 { 2032 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2033 u32 u; 2034 2035 for (u = 0; u < dspc->cursor; u++) { 2036 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2037 2038 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 2039 ent->enq_flags); 2040 } 2041 2042 dspc->nr_tasks += dspc->cursor; 2043 dspc->cursor = 0; 2044 } 2045 2046 static inline void maybe_queue_balance_callback(struct rq *rq) 2047 { 2048 lockdep_assert_rq_held(rq); 2049 2050 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING)) 2051 return; 2052 2053 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 2054 deferred_bal_cb_workfn); 2055 2056 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING; 2057 } 2058 2059 static int balance_one(struct rq *rq, struct task_struct *prev) 2060 { 2061 struct scx_sched *sch = scx_root; 2062 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2063 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2064 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2065 int nr_loops = SCX_DSP_MAX_LOOPS; 2066 2067 lockdep_assert_rq_held(rq); 2068 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2069 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2070 2071 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2072 unlikely(rq->scx.cpu_released)) { 2073 /* 2074 * If the previous sched_class for the current CPU was not SCX, 2075 * notify the BPF scheduler that it again has control of the 2076 * core. This callback complements ->cpu_release(), which is 2077 * emitted in switch_class(). 2078 */ 2079 if (SCX_HAS_OP(sch, cpu_acquire)) 2080 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2081 cpu_of(rq), NULL); 2082 rq->scx.cpu_released = false; 2083 } 2084 2085 if (prev_on_scx) { 2086 update_curr_scx(rq); 2087 2088 /* 2089 * If @prev is runnable & has slice left, it has priority and 2090 * fetching more just increases latency for the fetched tasks. 2091 * Tell pick_task_scx() to keep running @prev. If the BPF 2092 * scheduler wants to handle this explicitly, it should 2093 * implement ->cpu_release(). 2094 * 2095 * See scx_disable_workfn() for the explanation on the bypassing 2096 * test. 2097 */ 2098 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2099 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2100 goto has_tasks; 2101 } 2102 } 2103 2104 /* if there already are tasks to run, nothing to do */ 2105 if (rq->scx.local_dsq.nr) 2106 goto has_tasks; 2107 2108 if (consume_global_dsq(sch, rq)) 2109 goto has_tasks; 2110 2111 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || 2112 scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2113 goto no_tasks; 2114 2115 dspc->rq = rq; 2116 2117 /* 2118 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2119 * the local DSQ might still end up empty after a successful 2120 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2121 * produced some tasks, retry. The BPF scheduler may depend on this 2122 * looping behavior to simplify its implementation. 2123 */ 2124 do { 2125 dspc->nr_tasks = 0; 2126 2127 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2128 cpu_of(rq), prev_on_scx ? prev : NULL); 2129 2130 flush_dispatch_buf(sch, rq); 2131 2132 if (prev_on_rq && prev->scx.slice) { 2133 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2134 goto has_tasks; 2135 } 2136 if (rq->scx.local_dsq.nr) 2137 goto has_tasks; 2138 if (consume_global_dsq(sch, rq)) 2139 goto has_tasks; 2140 2141 /* 2142 * ops.dispatch() can trap us in this loop by repeatedly 2143 * dispatching ineligible tasks. Break out once in a while to 2144 * allow the watchdog to run. As IRQ can't be enabled in 2145 * balance(), we want to complete this scheduling cycle and then 2146 * start a new one. IOW, we want to call resched_curr() on the 2147 * next, most likely idle, task, not the current one. Use 2148 * scx_kick_cpu() for deferred kicking. 2149 */ 2150 if (unlikely(!--nr_loops)) { 2151 scx_kick_cpu(sch, cpu_of(rq), 0); 2152 break; 2153 } 2154 } while (dspc->nr_tasks); 2155 2156 no_tasks: 2157 /* 2158 * Didn't find another task to run. Keep running @prev unless 2159 * %SCX_OPS_ENQ_LAST is in effect. 2160 */ 2161 if (prev_on_rq && 2162 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2163 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2164 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2165 goto has_tasks; 2166 } 2167 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2168 return false; 2169 2170 has_tasks: 2171 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2172 return true; 2173 } 2174 2175 static int balance_scx(struct rq *rq, struct task_struct *prev, 2176 struct rq_flags *rf) 2177 { 2178 int ret; 2179 2180 rq_unpin_lock(rq, rf); 2181 2182 ret = balance_one(rq, prev); 2183 2184 #ifdef CONFIG_SCHED_SMT 2185 /* 2186 * When core-sched is enabled, this ops.balance() call will be followed 2187 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2188 * siblings too. 2189 */ 2190 if (sched_core_enabled(rq)) { 2191 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2192 int scpu; 2193 2194 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2195 struct rq *srq = cpu_rq(scpu); 2196 struct task_struct *sprev = srq->curr; 2197 2198 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2199 update_rq_clock(srq); 2200 balance_one(srq, sprev); 2201 } 2202 } 2203 #endif 2204 rq_repin_lock(rq, rf); 2205 2206 maybe_queue_balance_callback(rq); 2207 2208 return ret; 2209 } 2210 2211 static void process_ddsp_deferred_locals(struct rq *rq) 2212 { 2213 struct task_struct *p; 2214 2215 lockdep_assert_rq_held(rq); 2216 2217 /* 2218 * Now that @rq can be unlocked, execute the deferred enqueueing of 2219 * tasks directly dispatched to the local DSQs of other CPUs. See 2220 * direct_dispatch(). Keep popping from the head instead of using 2221 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2222 * temporarily. 2223 */ 2224 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2225 struct task_struct, scx.dsq_list.node))) { 2226 struct scx_sched *sch = scx_root; 2227 struct scx_dispatch_q *dsq; 2228 2229 list_del_init(&p->scx.dsq_list.node); 2230 2231 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2232 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2233 dispatch_to_local_dsq(sch, rq, dsq, p, 2234 p->scx.ddsp_enq_flags); 2235 } 2236 } 2237 2238 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2239 { 2240 struct scx_sched *sch = scx_root; 2241 2242 if (p->scx.flags & SCX_TASK_QUEUED) { 2243 /* 2244 * Core-sched might decide to execute @p before it is 2245 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2246 */ 2247 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2248 dispatch_dequeue(rq, p); 2249 } 2250 2251 p->se.exec_start = rq_clock_task(rq); 2252 2253 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2254 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2255 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2256 2257 clr_task_runnable(p, true); 2258 2259 /* 2260 * @p is getting newly scheduled or got kicked after someone updated its 2261 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2262 */ 2263 if ((p->scx.slice == SCX_SLICE_INF) != 2264 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2265 if (p->scx.slice == SCX_SLICE_INF) 2266 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2267 else 2268 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2269 2270 sched_update_tick_dependency(rq); 2271 2272 /* 2273 * For now, let's refresh the load_avgs just when transitioning 2274 * in and out of nohz. In the future, we might want to add a 2275 * mechanism which calls the following periodically on 2276 * tick-stopped CPUs. 2277 */ 2278 update_other_load_avgs(rq); 2279 } 2280 } 2281 2282 static enum scx_cpu_preempt_reason 2283 preempt_reason_from_class(const struct sched_class *class) 2284 { 2285 if (class == &stop_sched_class) 2286 return SCX_CPU_PREEMPT_STOP; 2287 if (class == &dl_sched_class) 2288 return SCX_CPU_PREEMPT_DL; 2289 if (class == &rt_sched_class) 2290 return SCX_CPU_PREEMPT_RT; 2291 return SCX_CPU_PREEMPT_UNKNOWN; 2292 } 2293 2294 static void switch_class(struct rq *rq, struct task_struct *next) 2295 { 2296 struct scx_sched *sch = scx_root; 2297 const struct sched_class *next_class = next->sched_class; 2298 2299 /* 2300 * Pairs with the smp_load_acquire() issued by a CPU in 2301 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2302 * resched. 2303 */ 2304 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2305 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2306 return; 2307 2308 /* 2309 * The callback is conceptually meant to convey that the CPU is no 2310 * longer under the control of SCX. Therefore, don't invoke the callback 2311 * if the next class is below SCX (in which case the BPF scheduler has 2312 * actively decided not to schedule any tasks on the CPU). 2313 */ 2314 if (sched_class_above(&ext_sched_class, next_class)) 2315 return; 2316 2317 /* 2318 * At this point we know that SCX was preempted by a higher priority 2319 * sched_class, so invoke the ->cpu_release() callback if we have not 2320 * done so already. We only send the callback once between SCX being 2321 * preempted, and it regaining control of the CPU. 2322 * 2323 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2324 * next time that balance_scx() is invoked. 2325 */ 2326 if (!rq->scx.cpu_released) { 2327 if (SCX_HAS_OP(sch, cpu_release)) { 2328 struct scx_cpu_release_args args = { 2329 .reason = preempt_reason_from_class(next_class), 2330 .task = next, 2331 }; 2332 2333 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2334 cpu_of(rq), &args); 2335 } 2336 rq->scx.cpu_released = true; 2337 } 2338 } 2339 2340 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2341 struct task_struct *next) 2342 { 2343 struct scx_sched *sch = scx_root; 2344 update_curr_scx(rq); 2345 2346 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2347 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2348 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2349 2350 if (p->scx.flags & SCX_TASK_QUEUED) { 2351 set_task_runnable(rq, p); 2352 2353 /* 2354 * If @p has slice left and is being put, @p is getting 2355 * preempted by a higher priority scheduler class or core-sched 2356 * forcing a different task. Leave it at the head of the local 2357 * DSQ. 2358 */ 2359 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2360 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2361 SCX_ENQ_HEAD); 2362 goto switch_class; 2363 } 2364 2365 /* 2366 * If @p is runnable but we're about to enter a lower 2367 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2368 * ops.enqueue() that @p is the only one available for this cpu, 2369 * which should trigger an explicit follow-up scheduling event. 2370 */ 2371 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2372 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2373 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2374 } else { 2375 do_enqueue_task(rq, p, 0, -1); 2376 } 2377 } 2378 2379 switch_class: 2380 if (next && next->sched_class != &ext_sched_class) 2381 switch_class(rq, next); 2382 } 2383 2384 static struct task_struct *first_local_task(struct rq *rq) 2385 { 2386 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2387 struct task_struct, scx.dsq_list.node); 2388 } 2389 2390 static struct task_struct *pick_task_scx(struct rq *rq) 2391 { 2392 struct task_struct *prev = rq->curr; 2393 struct task_struct *p; 2394 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2395 bool kick_idle = false; 2396 2397 /* 2398 * WORKAROUND: 2399 * 2400 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 2401 * have gone through balance_scx(). Unfortunately, there currently is a 2402 * bug where fair could say yes on balance() but no on pick_task(), 2403 * which then ends up calling pick_task_scx() without preceding 2404 * balance_scx(). 2405 * 2406 * Keep running @prev if possible and avoid stalling from entering idle 2407 * without balancing. 2408 * 2409 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 2410 * if pick_task_scx() is called without preceding balance_scx(). 2411 */ 2412 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 2413 if (prev->scx.flags & SCX_TASK_QUEUED) { 2414 keep_prev = true; 2415 } else { 2416 keep_prev = false; 2417 kick_idle = true; 2418 } 2419 } else if (unlikely(keep_prev && 2420 prev->sched_class != &ext_sched_class)) { 2421 /* 2422 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is 2423 * conditional on scx_enabled() and may have been skipped. 2424 */ 2425 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2426 keep_prev = false; 2427 } 2428 2429 /* 2430 * If balance_scx() is telling us to keep running @prev, replenish slice 2431 * if necessary and keep running @prev. Otherwise, pop the first one 2432 * from the local DSQ. 2433 */ 2434 if (keep_prev) { 2435 p = prev; 2436 if (!p->scx.slice) 2437 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p); 2438 } else { 2439 p = first_local_task(rq); 2440 if (!p) { 2441 if (kick_idle) 2442 scx_kick_cpu(rcu_dereference_sched(scx_root), 2443 cpu_of(rq), SCX_KICK_IDLE); 2444 return NULL; 2445 } 2446 2447 if (unlikely(!p->scx.slice)) { 2448 struct scx_sched *sch = rcu_dereference_sched(scx_root); 2449 2450 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2451 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2452 p->comm, p->pid, __func__); 2453 sch->warned_zero_slice = true; 2454 } 2455 refill_task_slice_dfl(sch, p); 2456 } 2457 } 2458 2459 return p; 2460 } 2461 2462 #ifdef CONFIG_SCHED_CORE 2463 /** 2464 * scx_prio_less - Task ordering for core-sched 2465 * @a: task A 2466 * @b: task B 2467 * @in_fi: in forced idle state 2468 * 2469 * Core-sched is implemented as an additional scheduling layer on top of the 2470 * usual sched_class'es and needs to find out the expected task ordering. For 2471 * SCX, core-sched calls this function to interrogate the task ordering. 2472 * 2473 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2474 * to implement the default task ordering. The older the timestamp, the higher 2475 * priority the task - the global FIFO ordering matching the default scheduling 2476 * behavior. 2477 * 2478 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2479 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2480 */ 2481 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2482 bool in_fi) 2483 { 2484 struct scx_sched *sch = scx_root; 2485 2486 /* 2487 * The const qualifiers are dropped from task_struct pointers when 2488 * calling ops.core_sched_before(). Accesses are controlled by the 2489 * verifier. 2490 */ 2491 if (SCX_HAS_OP(sch, core_sched_before) && 2492 !scx_rq_bypassing(task_rq(a))) 2493 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2494 NULL, 2495 (struct task_struct *)a, 2496 (struct task_struct *)b); 2497 else 2498 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2499 } 2500 #endif /* CONFIG_SCHED_CORE */ 2501 2502 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2503 { 2504 struct scx_sched *sch = scx_root; 2505 bool rq_bypass; 2506 2507 /* 2508 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2509 * can be a good migration opportunity with low cache and memory 2510 * footprint. Returning a CPU different than @prev_cpu triggers 2511 * immediate rq migration. However, for SCX, as the current rq 2512 * association doesn't dictate where the task is going to run, this 2513 * doesn't fit well. If necessary, we can later add a dedicated method 2514 * which can decide to preempt self to force it through the regular 2515 * scheduling path. 2516 */ 2517 if (unlikely(wake_flags & WF_EXEC)) 2518 return prev_cpu; 2519 2520 rq_bypass = scx_rq_bypassing(task_rq(p)); 2521 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2522 s32 cpu; 2523 struct task_struct **ddsp_taskp; 2524 2525 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2526 WARN_ON_ONCE(*ddsp_taskp); 2527 *ddsp_taskp = p; 2528 2529 cpu = SCX_CALL_OP_TASK_RET(sch, 2530 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2531 select_cpu, NULL, p, prev_cpu, 2532 wake_flags); 2533 p->scx.selected_cpu = cpu; 2534 *ddsp_taskp = NULL; 2535 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2536 return cpu; 2537 else 2538 return prev_cpu; 2539 } else { 2540 s32 cpu; 2541 2542 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2543 if (cpu >= 0) { 2544 refill_task_slice_dfl(sch, p); 2545 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2546 } else { 2547 cpu = prev_cpu; 2548 } 2549 p->scx.selected_cpu = cpu; 2550 2551 if (rq_bypass) 2552 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2553 return cpu; 2554 } 2555 } 2556 2557 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2558 { 2559 run_deferred(rq); 2560 } 2561 2562 static void set_cpus_allowed_scx(struct task_struct *p, 2563 struct affinity_context *ac) 2564 { 2565 struct scx_sched *sch = scx_root; 2566 2567 set_cpus_allowed_common(p, ac); 2568 2569 /* 2570 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2571 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2572 * scheduler the effective one. 2573 * 2574 * Fine-grained memory write control is enforced by BPF making the const 2575 * designation pointless. Cast it away when calling the operation. 2576 */ 2577 if (SCX_HAS_OP(sch, set_cpumask)) 2578 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2579 p, (struct cpumask *)p->cpus_ptr); 2580 } 2581 2582 static void handle_hotplug(struct rq *rq, bool online) 2583 { 2584 struct scx_sched *sch = scx_root; 2585 int cpu = cpu_of(rq); 2586 2587 atomic_long_inc(&scx_hotplug_seq); 2588 2589 /* 2590 * scx_root updates are protected by cpus_read_lock() and will stay 2591 * stable here. Note that we can't depend on scx_enabled() test as the 2592 * hotplug ops need to be enabled before __scx_enabled is set. 2593 */ 2594 if (unlikely(!sch)) 2595 return; 2596 2597 if (scx_enabled()) 2598 scx_idle_update_selcpu_topology(&sch->ops); 2599 2600 if (online && SCX_HAS_OP(sch, cpu_online)) 2601 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2602 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2603 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2604 else 2605 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2606 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2607 "cpu %d going %s, exiting scheduler", cpu, 2608 online ? "online" : "offline"); 2609 } 2610 2611 void scx_rq_activate(struct rq *rq) 2612 { 2613 handle_hotplug(rq, true); 2614 } 2615 2616 void scx_rq_deactivate(struct rq *rq) 2617 { 2618 handle_hotplug(rq, false); 2619 } 2620 2621 static void rq_online_scx(struct rq *rq) 2622 { 2623 rq->scx.flags |= SCX_RQ_ONLINE; 2624 } 2625 2626 static void rq_offline_scx(struct rq *rq) 2627 { 2628 rq->scx.flags &= ~SCX_RQ_ONLINE; 2629 } 2630 2631 2632 static bool check_rq_for_timeouts(struct rq *rq) 2633 { 2634 struct scx_sched *sch; 2635 struct task_struct *p; 2636 struct rq_flags rf; 2637 bool timed_out = false; 2638 2639 rq_lock_irqsave(rq, &rf); 2640 sch = rcu_dereference_bh(scx_root); 2641 if (unlikely(!sch)) 2642 goto out_unlock; 2643 2644 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2645 unsigned long last_runnable = p->scx.runnable_at; 2646 2647 if (unlikely(time_after(jiffies, 2648 last_runnable + scx_watchdog_timeout))) { 2649 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2650 2651 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2652 "%s[%d] failed to run for %u.%03us", 2653 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2654 timed_out = true; 2655 break; 2656 } 2657 } 2658 out_unlock: 2659 rq_unlock_irqrestore(rq, &rf); 2660 return timed_out; 2661 } 2662 2663 static void scx_watchdog_workfn(struct work_struct *work) 2664 { 2665 int cpu; 2666 2667 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2668 2669 for_each_online_cpu(cpu) { 2670 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2671 break; 2672 2673 cond_resched(); 2674 } 2675 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2676 scx_watchdog_timeout / 2); 2677 } 2678 2679 void scx_tick(struct rq *rq) 2680 { 2681 struct scx_sched *sch; 2682 unsigned long last_check; 2683 2684 if (!scx_enabled()) 2685 return; 2686 2687 sch = rcu_dereference_bh(scx_root); 2688 if (unlikely(!sch)) 2689 return; 2690 2691 last_check = READ_ONCE(scx_watchdog_timestamp); 2692 if (unlikely(time_after(jiffies, 2693 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2694 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2695 2696 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2697 "watchdog failed to check in for %u.%03us", 2698 dur_ms / 1000, dur_ms % 1000); 2699 } 2700 2701 update_other_load_avgs(rq); 2702 } 2703 2704 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2705 { 2706 struct scx_sched *sch = scx_root; 2707 2708 update_curr_scx(rq); 2709 2710 /* 2711 * While disabling, always resched and refresh core-sched timestamp as 2712 * we can't trust the slice management or ops.core_sched_before(). 2713 */ 2714 if (scx_rq_bypassing(rq)) { 2715 curr->scx.slice = 0; 2716 touch_core_sched(rq, curr); 2717 } else if (SCX_HAS_OP(sch, tick)) { 2718 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2719 } 2720 2721 if (!curr->scx.slice) 2722 resched_curr(rq); 2723 } 2724 2725 #ifdef CONFIG_EXT_GROUP_SCHED 2726 static struct cgroup *tg_cgrp(struct task_group *tg) 2727 { 2728 /* 2729 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2730 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2731 * root cgroup. 2732 */ 2733 if (tg && tg->css.cgroup) 2734 return tg->css.cgroup; 2735 else 2736 return &cgrp_dfl_root.cgrp; 2737 } 2738 2739 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2740 2741 #else /* CONFIG_EXT_GROUP_SCHED */ 2742 2743 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2744 2745 #endif /* CONFIG_EXT_GROUP_SCHED */ 2746 2747 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2748 { 2749 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2750 } 2751 2752 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2753 { 2754 enum scx_task_state prev_state = scx_get_task_state(p); 2755 bool warn = false; 2756 2757 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2758 2759 switch (state) { 2760 case SCX_TASK_NONE: 2761 break; 2762 case SCX_TASK_INIT: 2763 warn = prev_state != SCX_TASK_NONE; 2764 break; 2765 case SCX_TASK_READY: 2766 warn = prev_state == SCX_TASK_NONE; 2767 break; 2768 case SCX_TASK_ENABLED: 2769 warn = prev_state != SCX_TASK_READY; 2770 break; 2771 default: 2772 warn = true; 2773 return; 2774 } 2775 2776 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2777 prev_state, state, p->comm, p->pid); 2778 2779 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2780 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2781 } 2782 2783 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2784 { 2785 struct scx_sched *sch = scx_root; 2786 int ret; 2787 2788 p->scx.disallow = false; 2789 2790 if (SCX_HAS_OP(sch, init_task)) { 2791 struct scx_init_task_args args = { 2792 SCX_INIT_TASK_ARGS_CGROUP(tg) 2793 .fork = fork, 2794 }; 2795 2796 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2797 p, &args); 2798 if (unlikely(ret)) { 2799 ret = ops_sanitize_err(sch, "init_task", ret); 2800 return ret; 2801 } 2802 } 2803 2804 scx_set_task_state(p, SCX_TASK_INIT); 2805 2806 if (p->scx.disallow) { 2807 if (!fork) { 2808 struct rq *rq; 2809 struct rq_flags rf; 2810 2811 rq = task_rq_lock(p, &rf); 2812 2813 /* 2814 * We're in the load path and @p->policy will be applied 2815 * right after. Reverting @p->policy here and rejecting 2816 * %SCHED_EXT transitions from scx_check_setscheduler() 2817 * guarantees that if ops.init_task() sets @p->disallow, 2818 * @p can never be in SCX. 2819 */ 2820 if (p->policy == SCHED_EXT) { 2821 p->policy = SCHED_NORMAL; 2822 atomic_long_inc(&scx_nr_rejected); 2823 } 2824 2825 task_rq_unlock(rq, p, &rf); 2826 } else if (p->policy == SCHED_EXT) { 2827 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2828 p->comm, p->pid); 2829 } 2830 } 2831 2832 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2833 return 0; 2834 } 2835 2836 static void scx_enable_task(struct task_struct *p) 2837 { 2838 struct scx_sched *sch = scx_root; 2839 struct rq *rq = task_rq(p); 2840 u32 weight; 2841 2842 lockdep_assert_rq_held(rq); 2843 2844 /* 2845 * Set the weight before calling ops.enable() so that the scheduler 2846 * doesn't see a stale value if they inspect the task struct. 2847 */ 2848 if (task_has_idle_policy(p)) 2849 weight = WEIGHT_IDLEPRIO; 2850 else 2851 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2852 2853 p->scx.weight = sched_weight_to_cgroup(weight); 2854 2855 if (SCX_HAS_OP(sch, enable)) 2856 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2857 scx_set_task_state(p, SCX_TASK_ENABLED); 2858 2859 if (SCX_HAS_OP(sch, set_weight)) 2860 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2861 p, p->scx.weight); 2862 } 2863 2864 static void scx_disable_task(struct task_struct *p) 2865 { 2866 struct scx_sched *sch = scx_root; 2867 struct rq *rq = task_rq(p); 2868 2869 lockdep_assert_rq_held(rq); 2870 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2871 2872 if (SCX_HAS_OP(sch, disable)) 2873 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2874 scx_set_task_state(p, SCX_TASK_READY); 2875 } 2876 2877 static void scx_exit_task(struct task_struct *p) 2878 { 2879 struct scx_sched *sch = scx_root; 2880 struct scx_exit_task_args args = { 2881 .cancelled = false, 2882 }; 2883 2884 lockdep_assert_rq_held(task_rq(p)); 2885 2886 switch (scx_get_task_state(p)) { 2887 case SCX_TASK_NONE: 2888 return; 2889 case SCX_TASK_INIT: 2890 args.cancelled = true; 2891 break; 2892 case SCX_TASK_READY: 2893 break; 2894 case SCX_TASK_ENABLED: 2895 scx_disable_task(p); 2896 break; 2897 default: 2898 WARN_ON_ONCE(true); 2899 return; 2900 } 2901 2902 if (SCX_HAS_OP(sch, exit_task)) 2903 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2904 p, &args); 2905 scx_set_task_state(p, SCX_TASK_NONE); 2906 } 2907 2908 void init_scx_entity(struct sched_ext_entity *scx) 2909 { 2910 memset(scx, 0, sizeof(*scx)); 2911 INIT_LIST_HEAD(&scx->dsq_list.node); 2912 RB_CLEAR_NODE(&scx->dsq_priq); 2913 scx->sticky_cpu = -1; 2914 scx->holding_cpu = -1; 2915 INIT_LIST_HEAD(&scx->runnable_node); 2916 scx->runnable_at = jiffies; 2917 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2918 scx->slice = SCX_SLICE_DFL; 2919 } 2920 2921 void scx_pre_fork(struct task_struct *p) 2922 { 2923 /* 2924 * BPF scheduler enable/disable paths want to be able to iterate and 2925 * update all tasks which can become complex when racing forks. As 2926 * enable/disable are very cold paths, let's use a percpu_rwsem to 2927 * exclude forks. 2928 */ 2929 percpu_down_read(&scx_fork_rwsem); 2930 } 2931 2932 int scx_fork(struct task_struct *p) 2933 { 2934 percpu_rwsem_assert_held(&scx_fork_rwsem); 2935 2936 if (scx_init_task_enabled) 2937 return scx_init_task(p, task_group(p), true); 2938 else 2939 return 0; 2940 } 2941 2942 void scx_post_fork(struct task_struct *p) 2943 { 2944 if (scx_init_task_enabled) { 2945 scx_set_task_state(p, SCX_TASK_READY); 2946 2947 /* 2948 * Enable the task immediately if it's running on sched_ext. 2949 * Otherwise, it'll be enabled in switching_to_scx() if and 2950 * when it's ever configured to run with a SCHED_EXT policy. 2951 */ 2952 if (p->sched_class == &ext_sched_class) { 2953 struct rq_flags rf; 2954 struct rq *rq; 2955 2956 rq = task_rq_lock(p, &rf); 2957 scx_enable_task(p); 2958 task_rq_unlock(rq, p, &rf); 2959 } 2960 } 2961 2962 spin_lock_irq(&scx_tasks_lock); 2963 list_add_tail(&p->scx.tasks_node, &scx_tasks); 2964 spin_unlock_irq(&scx_tasks_lock); 2965 2966 percpu_up_read(&scx_fork_rwsem); 2967 } 2968 2969 void scx_cancel_fork(struct task_struct *p) 2970 { 2971 if (scx_enabled()) { 2972 struct rq *rq; 2973 struct rq_flags rf; 2974 2975 rq = task_rq_lock(p, &rf); 2976 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 2977 scx_exit_task(p); 2978 task_rq_unlock(rq, p, &rf); 2979 } 2980 2981 percpu_up_read(&scx_fork_rwsem); 2982 } 2983 2984 void sched_ext_free(struct task_struct *p) 2985 { 2986 unsigned long flags; 2987 2988 spin_lock_irqsave(&scx_tasks_lock, flags); 2989 list_del_init(&p->scx.tasks_node); 2990 spin_unlock_irqrestore(&scx_tasks_lock, flags); 2991 2992 /* 2993 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 2994 * transitions can't race us. Disable ops for @p. 2995 */ 2996 if (scx_get_task_state(p) != SCX_TASK_NONE) { 2997 struct rq_flags rf; 2998 struct rq *rq; 2999 3000 rq = task_rq_lock(p, &rf); 3001 scx_exit_task(p); 3002 task_rq_unlock(rq, p, &rf); 3003 } 3004 } 3005 3006 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3007 const struct load_weight *lw) 3008 { 3009 struct scx_sched *sch = scx_root; 3010 3011 lockdep_assert_rq_held(task_rq(p)); 3012 3013 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3014 if (SCX_HAS_OP(sch, set_weight)) 3015 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 3016 p, p->scx.weight); 3017 } 3018 3019 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 3020 { 3021 } 3022 3023 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3024 { 3025 struct scx_sched *sch = scx_root; 3026 3027 scx_enable_task(p); 3028 3029 /* 3030 * set_cpus_allowed_scx() is not called while @p is associated with a 3031 * different scheduler class. Keep the BPF scheduler up-to-date. 3032 */ 3033 if (SCX_HAS_OP(sch, set_cpumask)) 3034 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 3035 p, (struct cpumask *)p->cpus_ptr); 3036 } 3037 3038 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3039 { 3040 scx_disable_task(p); 3041 } 3042 3043 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3044 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3045 3046 int scx_check_setscheduler(struct task_struct *p, int policy) 3047 { 3048 lockdep_assert_rq_held(task_rq(p)); 3049 3050 /* if disallow, reject transitioning into SCX */ 3051 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3052 p->policy != policy && policy == SCHED_EXT) 3053 return -EACCES; 3054 3055 return 0; 3056 } 3057 3058 #ifdef CONFIG_NO_HZ_FULL 3059 bool scx_can_stop_tick(struct rq *rq) 3060 { 3061 struct task_struct *p = rq->curr; 3062 3063 if (scx_rq_bypassing(rq)) 3064 return false; 3065 3066 if (p->sched_class != &ext_sched_class) 3067 return true; 3068 3069 /* 3070 * @rq can dispatch from different DSQs, so we can't tell whether it 3071 * needs the tick or not by looking at nr_running. Allow stopping ticks 3072 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3073 */ 3074 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3075 } 3076 #endif 3077 3078 #ifdef CONFIG_EXT_GROUP_SCHED 3079 3080 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3081 static bool scx_cgroup_enabled; 3082 3083 void scx_tg_init(struct task_group *tg) 3084 { 3085 tg->scx.weight = CGROUP_WEIGHT_DFL; 3086 tg->scx.bw_period_us = default_bw_period_us(); 3087 tg->scx.bw_quota_us = RUNTIME_INF; 3088 tg->scx.idle = false; 3089 } 3090 3091 int scx_tg_online(struct task_group *tg) 3092 { 3093 struct scx_sched *sch = scx_root; 3094 int ret = 0; 3095 3096 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3097 3098 if (scx_cgroup_enabled) { 3099 if (SCX_HAS_OP(sch, cgroup_init)) { 3100 struct scx_cgroup_init_args args = 3101 { .weight = tg->scx.weight, 3102 .bw_period_us = tg->scx.bw_period_us, 3103 .bw_quota_us = tg->scx.bw_quota_us, 3104 .bw_burst_us = tg->scx.bw_burst_us }; 3105 3106 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3107 NULL, tg->css.cgroup, &args); 3108 if (ret) 3109 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3110 } 3111 if (ret == 0) 3112 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3113 } else { 3114 tg->scx.flags |= SCX_TG_ONLINE; 3115 } 3116 3117 return ret; 3118 } 3119 3120 void scx_tg_offline(struct task_group *tg) 3121 { 3122 struct scx_sched *sch = scx_root; 3123 3124 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3125 3126 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3127 (tg->scx.flags & SCX_TG_INITED)) 3128 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3129 tg->css.cgroup); 3130 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3131 } 3132 3133 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3134 { 3135 struct scx_sched *sch = scx_root; 3136 struct cgroup_subsys_state *css; 3137 struct task_struct *p; 3138 int ret; 3139 3140 if (!scx_cgroup_enabled) 3141 return 0; 3142 3143 cgroup_taskset_for_each(p, css, tset) { 3144 struct cgroup *from = tg_cgrp(task_group(p)); 3145 struct cgroup *to = tg_cgrp(css_tg(css)); 3146 3147 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3148 3149 /* 3150 * sched_move_task() omits identity migrations. Let's match the 3151 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3152 * always match one-to-one. 3153 */ 3154 if (from == to) 3155 continue; 3156 3157 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3158 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3159 cgroup_prep_move, NULL, 3160 p, from, css->cgroup); 3161 if (ret) 3162 goto err; 3163 } 3164 3165 p->scx.cgrp_moving_from = from; 3166 } 3167 3168 return 0; 3169 3170 err: 3171 cgroup_taskset_for_each(p, css, tset) { 3172 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3173 p->scx.cgrp_moving_from) 3174 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3175 p, p->scx.cgrp_moving_from, css->cgroup); 3176 p->scx.cgrp_moving_from = NULL; 3177 } 3178 3179 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3180 } 3181 3182 void scx_cgroup_move_task(struct task_struct *p) 3183 { 3184 struct scx_sched *sch = scx_root; 3185 3186 if (!scx_cgroup_enabled) 3187 return; 3188 3189 /* 3190 * @p must have ops.cgroup_prep_move() called on it and thus 3191 * cgrp_moving_from set. 3192 */ 3193 if (SCX_HAS_OP(sch, cgroup_move) && 3194 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3195 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3196 p, p->scx.cgrp_moving_from, 3197 tg_cgrp(task_group(p))); 3198 p->scx.cgrp_moving_from = NULL; 3199 } 3200 3201 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3202 { 3203 struct scx_sched *sch = scx_root; 3204 struct cgroup_subsys_state *css; 3205 struct task_struct *p; 3206 3207 if (!scx_cgroup_enabled) 3208 return; 3209 3210 cgroup_taskset_for_each(p, css, tset) { 3211 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3212 p->scx.cgrp_moving_from) 3213 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3214 p, p->scx.cgrp_moving_from, css->cgroup); 3215 p->scx.cgrp_moving_from = NULL; 3216 } 3217 } 3218 3219 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3220 { 3221 struct scx_sched *sch = scx_root; 3222 3223 percpu_down_read(&scx_cgroup_ops_rwsem); 3224 3225 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3226 tg->scx.weight != weight) 3227 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3228 tg_cgrp(tg), weight); 3229 3230 tg->scx.weight = weight; 3231 3232 percpu_up_read(&scx_cgroup_ops_rwsem); 3233 } 3234 3235 void scx_group_set_idle(struct task_group *tg, bool idle) 3236 { 3237 struct scx_sched *sch = scx_root; 3238 3239 percpu_down_read(&scx_cgroup_ops_rwsem); 3240 3241 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle)) 3242 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL, 3243 tg_cgrp(tg), idle); 3244 3245 /* Update the task group's idle state */ 3246 tg->scx.idle = idle; 3247 3248 percpu_up_read(&scx_cgroup_ops_rwsem); 3249 } 3250 3251 void scx_group_set_bandwidth(struct task_group *tg, 3252 u64 period_us, u64 quota_us, u64 burst_us) 3253 { 3254 struct scx_sched *sch = scx_root; 3255 3256 percpu_down_read(&scx_cgroup_ops_rwsem); 3257 3258 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3259 (tg->scx.bw_period_us != period_us || 3260 tg->scx.bw_quota_us != quota_us || 3261 tg->scx.bw_burst_us != burst_us)) 3262 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3263 tg_cgrp(tg), period_us, quota_us, burst_us); 3264 3265 tg->scx.bw_period_us = period_us; 3266 tg->scx.bw_quota_us = quota_us; 3267 tg->scx.bw_burst_us = burst_us; 3268 3269 percpu_up_read(&scx_cgroup_ops_rwsem); 3270 } 3271 3272 static void scx_cgroup_lock(void) 3273 { 3274 percpu_down_write(&scx_cgroup_ops_rwsem); 3275 cgroup_lock(); 3276 } 3277 3278 static void scx_cgroup_unlock(void) 3279 { 3280 cgroup_unlock(); 3281 percpu_up_write(&scx_cgroup_ops_rwsem); 3282 } 3283 3284 #else /* CONFIG_EXT_GROUP_SCHED */ 3285 3286 static void scx_cgroup_lock(void) {} 3287 static void scx_cgroup_unlock(void) {} 3288 3289 #endif /* CONFIG_EXT_GROUP_SCHED */ 3290 3291 /* 3292 * Omitted operations: 3293 * 3294 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3295 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3296 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3297 * 3298 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3299 * 3300 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3301 * their current sched_class. Call them directly from sched core instead. 3302 */ 3303 DEFINE_SCHED_CLASS(ext) = { 3304 .enqueue_task = enqueue_task_scx, 3305 .dequeue_task = dequeue_task_scx, 3306 .yield_task = yield_task_scx, 3307 .yield_to_task = yield_to_task_scx, 3308 3309 .wakeup_preempt = wakeup_preempt_scx, 3310 3311 .balance = balance_scx, 3312 .pick_task = pick_task_scx, 3313 3314 .put_prev_task = put_prev_task_scx, 3315 .set_next_task = set_next_task_scx, 3316 3317 .select_task_rq = select_task_rq_scx, 3318 .task_woken = task_woken_scx, 3319 .set_cpus_allowed = set_cpus_allowed_scx, 3320 3321 .rq_online = rq_online_scx, 3322 .rq_offline = rq_offline_scx, 3323 3324 .task_tick = task_tick_scx, 3325 3326 .switching_to = switching_to_scx, 3327 .switched_from = switched_from_scx, 3328 .switched_to = switched_to_scx, 3329 .reweight_task = reweight_task_scx, 3330 .prio_changed = prio_changed_scx, 3331 3332 .update_curr = update_curr_scx, 3333 3334 #ifdef CONFIG_UCLAMP_TASK 3335 .uclamp_enabled = 1, 3336 #endif 3337 }; 3338 3339 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3340 { 3341 memset(dsq, 0, sizeof(*dsq)); 3342 3343 raw_spin_lock_init(&dsq->lock); 3344 INIT_LIST_HEAD(&dsq->list); 3345 dsq->id = dsq_id; 3346 } 3347 3348 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3349 { 3350 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3351 struct scx_dispatch_q *dsq, *tmp_dsq; 3352 3353 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3354 kfree_rcu(dsq, rcu); 3355 } 3356 3357 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3358 3359 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3360 { 3361 struct scx_dispatch_q *dsq; 3362 unsigned long flags; 3363 3364 rcu_read_lock(); 3365 3366 dsq = find_user_dsq(sch, dsq_id); 3367 if (!dsq) 3368 goto out_unlock_rcu; 3369 3370 raw_spin_lock_irqsave(&dsq->lock, flags); 3371 3372 if (dsq->nr) { 3373 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3374 dsq->id, dsq->nr); 3375 goto out_unlock_dsq; 3376 } 3377 3378 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3379 dsq_hash_params)) 3380 goto out_unlock_dsq; 3381 3382 /* 3383 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3384 * queueing more tasks. As this function can be called from anywhere, 3385 * freeing is bounced through an irq work to avoid nesting RCU 3386 * operations inside scheduler locks. 3387 */ 3388 dsq->id = SCX_DSQ_INVALID; 3389 llist_add(&dsq->free_node, &dsqs_to_free); 3390 irq_work_queue(&free_dsq_irq_work); 3391 3392 out_unlock_dsq: 3393 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3394 out_unlock_rcu: 3395 rcu_read_unlock(); 3396 } 3397 3398 #ifdef CONFIG_EXT_GROUP_SCHED 3399 static void scx_cgroup_exit(struct scx_sched *sch) 3400 { 3401 struct cgroup_subsys_state *css; 3402 3403 scx_cgroup_enabled = false; 3404 3405 /* 3406 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3407 * cgroups and exit all the inited ones, all online cgroups are exited. 3408 */ 3409 css_for_each_descendant_post(css, &root_task_group.css) { 3410 struct task_group *tg = css_tg(css); 3411 3412 if (!(tg->scx.flags & SCX_TG_INITED)) 3413 continue; 3414 tg->scx.flags &= ~SCX_TG_INITED; 3415 3416 if (!sch->ops.cgroup_exit) 3417 continue; 3418 3419 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3420 css->cgroup); 3421 } 3422 } 3423 3424 static int scx_cgroup_init(struct scx_sched *sch) 3425 { 3426 struct cgroup_subsys_state *css; 3427 int ret; 3428 3429 /* 3430 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3431 * cgroups and init, all online cgroups are initialized. 3432 */ 3433 css_for_each_descendant_pre(css, &root_task_group.css) { 3434 struct task_group *tg = css_tg(css); 3435 struct scx_cgroup_init_args args = { 3436 .weight = tg->scx.weight, 3437 .bw_period_us = tg->scx.bw_period_us, 3438 .bw_quota_us = tg->scx.bw_quota_us, 3439 .bw_burst_us = tg->scx.bw_burst_us, 3440 }; 3441 3442 if ((tg->scx.flags & 3443 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3444 continue; 3445 3446 if (!sch->ops.cgroup_init) { 3447 tg->scx.flags |= SCX_TG_INITED; 3448 continue; 3449 } 3450 3451 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3452 css->cgroup, &args); 3453 if (ret) { 3454 css_put(css); 3455 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3456 return ret; 3457 } 3458 tg->scx.flags |= SCX_TG_INITED; 3459 } 3460 3461 WARN_ON_ONCE(scx_cgroup_enabled); 3462 scx_cgroup_enabled = true; 3463 3464 return 0; 3465 } 3466 3467 #else 3468 static void scx_cgroup_exit(struct scx_sched *sch) {} 3469 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3470 #endif 3471 3472 3473 /******************************************************************************** 3474 * Sysfs interface and ops enable/disable. 3475 */ 3476 3477 #define SCX_ATTR(_name) \ 3478 static struct kobj_attribute scx_attr_##_name = { \ 3479 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3480 .show = scx_attr_##_name##_show, \ 3481 } 3482 3483 static ssize_t scx_attr_state_show(struct kobject *kobj, 3484 struct kobj_attribute *ka, char *buf) 3485 { 3486 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3487 } 3488 SCX_ATTR(state); 3489 3490 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3491 struct kobj_attribute *ka, char *buf) 3492 { 3493 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3494 } 3495 SCX_ATTR(switch_all); 3496 3497 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3498 struct kobj_attribute *ka, char *buf) 3499 { 3500 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3501 } 3502 SCX_ATTR(nr_rejected); 3503 3504 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3505 struct kobj_attribute *ka, char *buf) 3506 { 3507 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3508 } 3509 SCX_ATTR(hotplug_seq); 3510 3511 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3512 struct kobj_attribute *ka, char *buf) 3513 { 3514 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3515 } 3516 SCX_ATTR(enable_seq); 3517 3518 static struct attribute *scx_global_attrs[] = { 3519 &scx_attr_state.attr, 3520 &scx_attr_switch_all.attr, 3521 &scx_attr_nr_rejected.attr, 3522 &scx_attr_hotplug_seq.attr, 3523 &scx_attr_enable_seq.attr, 3524 NULL, 3525 }; 3526 3527 static const struct attribute_group scx_global_attr_group = { 3528 .attrs = scx_global_attrs, 3529 }; 3530 3531 static void free_exit_info(struct scx_exit_info *ei); 3532 3533 static void scx_sched_free_rcu_work(struct work_struct *work) 3534 { 3535 struct rcu_work *rcu_work = to_rcu_work(work); 3536 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3537 struct rhashtable_iter rht_iter; 3538 struct scx_dispatch_q *dsq; 3539 int node; 3540 3541 irq_work_sync(&sch->error_irq_work); 3542 kthread_stop(sch->helper->task); 3543 3544 free_percpu(sch->pcpu); 3545 3546 for_each_node_state(node, N_POSSIBLE) 3547 kfree(sch->global_dsqs[node]); 3548 kfree(sch->global_dsqs); 3549 3550 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3551 do { 3552 rhashtable_walk_start(&rht_iter); 3553 3554 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3555 destroy_dsq(sch, dsq->id); 3556 3557 rhashtable_walk_stop(&rht_iter); 3558 } while (dsq == ERR_PTR(-EAGAIN)); 3559 rhashtable_walk_exit(&rht_iter); 3560 3561 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3562 free_exit_info(sch->exit_info); 3563 kfree(sch); 3564 } 3565 3566 static void scx_kobj_release(struct kobject *kobj) 3567 { 3568 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3569 3570 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3571 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3572 } 3573 3574 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3575 struct kobj_attribute *ka, char *buf) 3576 { 3577 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3578 } 3579 SCX_ATTR(ops); 3580 3581 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3582 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3583 }) 3584 3585 static ssize_t scx_attr_events_show(struct kobject *kobj, 3586 struct kobj_attribute *ka, char *buf) 3587 { 3588 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3589 struct scx_event_stats events; 3590 int at = 0; 3591 3592 scx_read_events(sch, &events); 3593 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3594 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3595 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3596 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3597 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3598 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3599 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3600 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3601 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3602 return at; 3603 } 3604 SCX_ATTR(events); 3605 3606 static struct attribute *scx_sched_attrs[] = { 3607 &scx_attr_ops.attr, 3608 &scx_attr_events.attr, 3609 NULL, 3610 }; 3611 ATTRIBUTE_GROUPS(scx_sched); 3612 3613 static const struct kobj_type scx_ktype = { 3614 .release = scx_kobj_release, 3615 .sysfs_ops = &kobj_sysfs_ops, 3616 .default_groups = scx_sched_groups, 3617 }; 3618 3619 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3620 { 3621 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3622 } 3623 3624 static const struct kset_uevent_ops scx_uevent_ops = { 3625 .uevent = scx_uevent, 3626 }; 3627 3628 /* 3629 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3630 * sched_class. dl/rt are already handled. 3631 */ 3632 bool task_should_scx(int policy) 3633 { 3634 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3635 return false; 3636 if (READ_ONCE(scx_switching_all)) 3637 return true; 3638 return policy == SCHED_EXT; 3639 } 3640 3641 bool scx_allow_ttwu_queue(const struct task_struct *p) 3642 { 3643 struct scx_sched *sch; 3644 3645 if (!scx_enabled()) 3646 return true; 3647 3648 sch = rcu_dereference_sched(scx_root); 3649 if (unlikely(!sch)) 3650 return true; 3651 3652 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 3653 return true; 3654 3655 if (unlikely(p->sched_class != &ext_sched_class)) 3656 return true; 3657 3658 return false; 3659 } 3660 3661 /** 3662 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3663 * 3664 * While there are various reasons why RCU CPU stalls can occur on a system 3665 * that may not be caused by the current BPF scheduler, try kicking out the 3666 * current scheduler in an attempt to recover the system to a good state before 3667 * issuing panics. 3668 */ 3669 bool scx_rcu_cpu_stall(void) 3670 { 3671 struct scx_sched *sch; 3672 3673 rcu_read_lock(); 3674 3675 sch = rcu_dereference(scx_root); 3676 if (unlikely(!sch)) { 3677 rcu_read_unlock(); 3678 return false; 3679 } 3680 3681 switch (scx_enable_state()) { 3682 case SCX_ENABLING: 3683 case SCX_ENABLED: 3684 break; 3685 default: 3686 rcu_read_unlock(); 3687 return false; 3688 } 3689 3690 scx_error(sch, "RCU CPU stall detected!"); 3691 rcu_read_unlock(); 3692 3693 return true; 3694 } 3695 3696 /** 3697 * scx_softlockup - sched_ext softlockup handler 3698 * @dur_s: number of seconds of CPU stuck due to soft lockup 3699 * 3700 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3701 * live-lock the system by making many CPUs target the same DSQ to the point 3702 * where soft-lockup detection triggers. This function is called from 3703 * soft-lockup watchdog when the triggering point is close and tries to unjam 3704 * the system by enabling the breather and aborting the BPF scheduler. 3705 */ 3706 void scx_softlockup(u32 dur_s) 3707 { 3708 struct scx_sched *sch; 3709 3710 rcu_read_lock(); 3711 3712 sch = rcu_dereference(scx_root); 3713 if (unlikely(!sch)) 3714 goto out_unlock; 3715 3716 switch (scx_enable_state()) { 3717 case SCX_ENABLING: 3718 case SCX_ENABLED: 3719 break; 3720 default: 3721 goto out_unlock; 3722 } 3723 3724 /* allow only one instance, cleared at the end of scx_bypass() */ 3725 if (test_and_set_bit(0, &scx_in_softlockup)) 3726 goto out_unlock; 3727 3728 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 3729 smp_processor_id(), dur_s, scx_root->ops.name); 3730 3731 /* 3732 * Some CPUs may be trapped in the dispatch paths. Enable breather 3733 * immediately; otherwise, we might even be able to get to scx_bypass(). 3734 */ 3735 atomic_inc(&scx_breather_depth); 3736 3737 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s); 3738 out_unlock: 3739 rcu_read_unlock(); 3740 } 3741 3742 static void scx_clear_softlockup(void) 3743 { 3744 if (test_and_clear_bit(0, &scx_in_softlockup)) 3745 atomic_dec(&scx_breather_depth); 3746 } 3747 3748 /** 3749 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 3750 * @bypass: true for bypass, false for unbypass 3751 * 3752 * Bypassing guarantees that all runnable tasks make forward progress without 3753 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 3754 * be held by tasks that the BPF scheduler is forgetting to run, which 3755 * unfortunately also excludes toggling the static branches. 3756 * 3757 * Let's work around by overriding a couple ops and modifying behaviors based on 3758 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 3759 * to force global FIFO scheduling. 3760 * 3761 * - ops.select_cpu() is ignored and the default select_cpu() is used. 3762 * 3763 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 3764 * %SCX_OPS_ENQ_LAST is also ignored. 3765 * 3766 * - ops.dispatch() is ignored. 3767 * 3768 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 3769 * can't be trusted. Whenever a tick triggers, the running task is rotated to 3770 * the tail of the queue with core_sched_at touched. 3771 * 3772 * - pick_next_task() suppresses zero slice warning. 3773 * 3774 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM 3775 * operations. 3776 * 3777 * - scx_prio_less() reverts to the default core_sched_at order. 3778 */ 3779 static void scx_bypass(bool bypass) 3780 { 3781 static DEFINE_RAW_SPINLOCK(bypass_lock); 3782 static unsigned long bypass_timestamp; 3783 struct scx_sched *sch; 3784 unsigned long flags; 3785 int cpu; 3786 3787 raw_spin_lock_irqsave(&bypass_lock, flags); 3788 sch = rcu_dereference_bh(scx_root); 3789 3790 if (bypass) { 3791 scx_bypass_depth++; 3792 WARN_ON_ONCE(scx_bypass_depth <= 0); 3793 if (scx_bypass_depth != 1) 3794 goto unlock; 3795 bypass_timestamp = ktime_get_ns(); 3796 if (sch) 3797 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 3798 } else { 3799 scx_bypass_depth--; 3800 WARN_ON_ONCE(scx_bypass_depth < 0); 3801 if (scx_bypass_depth != 0) 3802 goto unlock; 3803 if (sch) 3804 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 3805 ktime_get_ns() - bypass_timestamp); 3806 } 3807 3808 atomic_inc(&scx_breather_depth); 3809 3810 /* 3811 * No task property is changing. We just need to make sure all currently 3812 * queued tasks are re-queued according to the new scx_rq_bypassing() 3813 * state. As an optimization, walk each rq's runnable_list instead of 3814 * the scx_tasks list. 3815 * 3816 * This function can't trust the scheduler and thus can't use 3817 * cpus_read_lock(). Walk all possible CPUs instead of online. 3818 */ 3819 for_each_possible_cpu(cpu) { 3820 struct rq *rq = cpu_rq(cpu); 3821 struct task_struct *p, *n; 3822 3823 raw_spin_rq_lock(rq); 3824 3825 if (bypass) { 3826 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 3827 rq->scx.flags |= SCX_RQ_BYPASSING; 3828 } else { 3829 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 3830 rq->scx.flags &= ~SCX_RQ_BYPASSING; 3831 } 3832 3833 /* 3834 * We need to guarantee that no tasks are on the BPF scheduler 3835 * while bypassing. Either we see enabled or the enable path 3836 * sees scx_rq_bypassing() before moving tasks to SCX. 3837 */ 3838 if (!scx_enabled()) { 3839 raw_spin_rq_unlock(rq); 3840 continue; 3841 } 3842 3843 /* 3844 * The use of list_for_each_entry_safe_reverse() is required 3845 * because each task is going to be removed from and added back 3846 * to the runnable_list during iteration. Because they're added 3847 * to the tail of the list, safe reverse iteration can still 3848 * visit all nodes. 3849 */ 3850 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3851 scx.runnable_node) { 3852 struct sched_enq_and_set_ctx ctx; 3853 3854 /* cycling deq/enq is enough, see the function comment */ 3855 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3856 sched_enq_and_set_task(&ctx); 3857 } 3858 3859 /* resched to restore ticks and idle state */ 3860 if (cpu_online(cpu) || cpu == smp_processor_id()) 3861 resched_curr(rq); 3862 3863 raw_spin_rq_unlock(rq); 3864 } 3865 3866 atomic_dec(&scx_breather_depth); 3867 unlock: 3868 raw_spin_unlock_irqrestore(&bypass_lock, flags); 3869 scx_clear_softlockup(); 3870 } 3871 3872 static void free_exit_info(struct scx_exit_info *ei) 3873 { 3874 kvfree(ei->dump); 3875 kfree(ei->msg); 3876 kfree(ei->bt); 3877 kfree(ei); 3878 } 3879 3880 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3881 { 3882 struct scx_exit_info *ei; 3883 3884 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3885 if (!ei) 3886 return NULL; 3887 3888 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 3889 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3890 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 3891 3892 if (!ei->bt || !ei->msg || !ei->dump) { 3893 free_exit_info(ei); 3894 return NULL; 3895 } 3896 3897 return ei; 3898 } 3899 3900 static const char *scx_exit_reason(enum scx_exit_kind kind) 3901 { 3902 switch (kind) { 3903 case SCX_EXIT_UNREG: 3904 return "unregistered from user space"; 3905 case SCX_EXIT_UNREG_BPF: 3906 return "unregistered from BPF"; 3907 case SCX_EXIT_UNREG_KERN: 3908 return "unregistered from the main kernel"; 3909 case SCX_EXIT_SYSRQ: 3910 return "disabled by sysrq-S"; 3911 case SCX_EXIT_ERROR: 3912 return "runtime error"; 3913 case SCX_EXIT_ERROR_BPF: 3914 return "scx_bpf_error"; 3915 case SCX_EXIT_ERROR_STALL: 3916 return "runnable task stall"; 3917 default: 3918 return "<UNKNOWN>"; 3919 } 3920 } 3921 3922 static void free_kick_pseqs_rcu(struct rcu_head *rcu) 3923 { 3924 struct scx_kick_pseqs *pseqs = container_of(rcu, struct scx_kick_pseqs, rcu); 3925 3926 kvfree(pseqs); 3927 } 3928 3929 static void free_kick_pseqs(void) 3930 { 3931 int cpu; 3932 3933 for_each_possible_cpu(cpu) { 3934 struct scx_kick_pseqs **pseqs = per_cpu_ptr(&scx_kick_pseqs, cpu); 3935 struct scx_kick_pseqs *to_free; 3936 3937 to_free = rcu_replace_pointer(*pseqs, NULL, true); 3938 if (to_free) 3939 call_rcu(&to_free->rcu, free_kick_pseqs_rcu); 3940 } 3941 } 3942 3943 static void scx_disable_workfn(struct kthread_work *work) 3944 { 3945 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 3946 struct scx_exit_info *ei = sch->exit_info; 3947 struct scx_task_iter sti; 3948 struct task_struct *p; 3949 int kind, cpu; 3950 3951 kind = atomic_read(&sch->exit_kind); 3952 while (true) { 3953 if (kind == SCX_EXIT_DONE) /* already disabled? */ 3954 return; 3955 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 3956 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 3957 break; 3958 } 3959 ei->kind = kind; 3960 ei->reason = scx_exit_reason(ei->kind); 3961 3962 /* guarantee forward progress by bypassing scx_ops */ 3963 scx_bypass(true); 3964 3965 switch (scx_set_enable_state(SCX_DISABLING)) { 3966 case SCX_DISABLING: 3967 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3968 break; 3969 case SCX_DISABLED: 3970 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3971 sch->exit_info->msg); 3972 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 3973 goto done; 3974 default: 3975 break; 3976 } 3977 3978 /* 3979 * Here, every runnable task is guaranteed to make forward progress and 3980 * we can safely use blocking synchronization constructs. Actually 3981 * disable ops. 3982 */ 3983 mutex_lock(&scx_enable_mutex); 3984 3985 static_branch_disable(&__scx_switched_all); 3986 WRITE_ONCE(scx_switching_all, false); 3987 3988 /* 3989 * Shut down cgroup support before tasks so that the cgroup attach path 3990 * doesn't race against scx_exit_task(). 3991 */ 3992 scx_cgroup_lock(); 3993 scx_cgroup_exit(sch); 3994 scx_cgroup_unlock(); 3995 3996 /* 3997 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 3998 * must be switched out and exited synchronously. 3999 */ 4000 percpu_down_write(&scx_fork_rwsem); 4001 4002 scx_init_task_enabled = false; 4003 4004 scx_task_iter_start(&sti); 4005 while ((p = scx_task_iter_next_locked(&sti))) { 4006 const struct sched_class *old_class = p->sched_class; 4007 const struct sched_class *new_class = 4008 __setscheduler_class(p->policy, p->prio); 4009 struct sched_enq_and_set_ctx ctx; 4010 4011 if (old_class != new_class && p->se.sched_delayed) 4012 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4013 4014 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4015 4016 p->sched_class = new_class; 4017 check_class_changing(task_rq(p), p, old_class); 4018 4019 sched_enq_and_set_task(&ctx); 4020 4021 check_class_changed(task_rq(p), p, old_class, p->prio); 4022 scx_exit_task(p); 4023 } 4024 scx_task_iter_stop(&sti); 4025 percpu_up_write(&scx_fork_rwsem); 4026 4027 /* 4028 * Invalidate all the rq clocks to prevent getting outdated 4029 * rq clocks from a previous scx scheduler. 4030 */ 4031 for_each_possible_cpu(cpu) { 4032 struct rq *rq = cpu_rq(cpu); 4033 scx_rq_clock_invalidate(rq); 4034 } 4035 4036 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4037 static_branch_disable(&__scx_enabled); 4038 bitmap_zero(sch->has_op, SCX_OPI_END); 4039 scx_idle_disable(); 4040 synchronize_rcu(); 4041 4042 if (ei->kind >= SCX_EXIT_ERROR) { 4043 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4044 sch->ops.name, ei->reason); 4045 4046 if (ei->msg[0] != '\0') 4047 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 4048 #ifdef CONFIG_STACKTRACE 4049 stack_trace_print(ei->bt, ei->bt_len, 2); 4050 #endif 4051 } else { 4052 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4053 sch->ops.name, ei->reason); 4054 } 4055 4056 if (sch->ops.exit) 4057 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 4058 4059 cancel_delayed_work_sync(&scx_watchdog_work); 4060 4061 /* 4062 * scx_root clearing must be inside cpus_read_lock(). See 4063 * handle_hotplug(). 4064 */ 4065 cpus_read_lock(); 4066 RCU_INIT_POINTER(scx_root, NULL); 4067 cpus_read_unlock(); 4068 4069 /* 4070 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 4071 * could observe an object of the same name still in the hierarchy when 4072 * the next scheduler is loaded. 4073 */ 4074 kobject_del(&sch->kobj); 4075 4076 free_percpu(scx_dsp_ctx); 4077 scx_dsp_ctx = NULL; 4078 scx_dsp_max_batch = 0; 4079 free_kick_pseqs(); 4080 4081 mutex_unlock(&scx_enable_mutex); 4082 4083 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4084 done: 4085 scx_bypass(false); 4086 } 4087 4088 static void scx_disable(enum scx_exit_kind kind) 4089 { 4090 int none = SCX_EXIT_NONE; 4091 struct scx_sched *sch; 4092 4093 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4094 kind = SCX_EXIT_ERROR; 4095 4096 rcu_read_lock(); 4097 sch = rcu_dereference(scx_root); 4098 if (sch) { 4099 atomic_try_cmpxchg(&sch->exit_kind, &none, kind); 4100 kthread_queue_work(sch->helper, &sch->disable_work); 4101 } 4102 rcu_read_unlock(); 4103 } 4104 4105 static void dump_newline(struct seq_buf *s) 4106 { 4107 trace_sched_ext_dump(""); 4108 4109 /* @s may be zero sized and seq_buf triggers WARN if so */ 4110 if (s->size) 4111 seq_buf_putc(s, '\n'); 4112 } 4113 4114 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4115 { 4116 va_list args; 4117 4118 #ifdef CONFIG_TRACEPOINTS 4119 if (trace_sched_ext_dump_enabled()) { 4120 /* protected by scx_dump_state()::dump_lock */ 4121 static char line_buf[SCX_EXIT_MSG_LEN]; 4122 4123 va_start(args, fmt); 4124 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4125 va_end(args); 4126 4127 trace_sched_ext_dump(line_buf); 4128 } 4129 #endif 4130 /* @s may be zero sized and seq_buf triggers WARN if so */ 4131 if (s->size) { 4132 va_start(args, fmt); 4133 seq_buf_vprintf(s, fmt, args); 4134 va_end(args); 4135 4136 seq_buf_putc(s, '\n'); 4137 } 4138 } 4139 4140 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4141 const unsigned long *bt, unsigned int len) 4142 { 4143 unsigned int i; 4144 4145 for (i = 0; i < len; i++) 4146 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4147 } 4148 4149 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4150 { 4151 struct scx_dump_data *dd = &scx_dump_data; 4152 4153 lockdep_assert_irqs_disabled(); 4154 4155 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4156 dd->first = true; 4157 dd->cursor = 0; 4158 dd->s = s; 4159 dd->prefix = prefix; 4160 } 4161 4162 static void ops_dump_flush(void) 4163 { 4164 struct scx_dump_data *dd = &scx_dump_data; 4165 char *line = dd->buf.line; 4166 4167 if (!dd->cursor) 4168 return; 4169 4170 /* 4171 * There's something to flush and this is the first line. Insert a blank 4172 * line to distinguish ops dump. 4173 */ 4174 if (dd->first) { 4175 dump_newline(dd->s); 4176 dd->first = false; 4177 } 4178 4179 /* 4180 * There may be multiple lines in $line. Scan and emit each line 4181 * separately. 4182 */ 4183 while (true) { 4184 char *end = line; 4185 char c; 4186 4187 while (*end != '\n' && *end != '\0') 4188 end++; 4189 4190 /* 4191 * If $line overflowed, it may not have newline at the end. 4192 * Always emit with a newline. 4193 */ 4194 c = *end; 4195 *end = '\0'; 4196 dump_line(dd->s, "%s%s", dd->prefix, line); 4197 if (c == '\0') 4198 break; 4199 4200 /* move to the next line */ 4201 end++; 4202 if (*end == '\0') 4203 break; 4204 line = end; 4205 } 4206 4207 dd->cursor = 0; 4208 } 4209 4210 static void ops_dump_exit(void) 4211 { 4212 ops_dump_flush(); 4213 scx_dump_data.cpu = -1; 4214 } 4215 4216 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4217 struct task_struct *p, char marker) 4218 { 4219 static unsigned long bt[SCX_EXIT_BT_LEN]; 4220 struct scx_sched *sch = scx_root; 4221 char dsq_id_buf[19] = "(n/a)"; 4222 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4223 unsigned int bt_len = 0; 4224 4225 if (p->scx.dsq) 4226 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4227 (unsigned long long)p->scx.dsq->id); 4228 4229 dump_newline(s); 4230 dump_line(s, " %c%c %s[%d] %+ldms", 4231 marker, task_state_to_char(p), p->comm, p->pid, 4232 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4233 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4234 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4235 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4236 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4237 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4238 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4239 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4240 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4241 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr), 4242 p->migration_disabled); 4243 4244 if (SCX_HAS_OP(sch, dump_task)) { 4245 ops_dump_init(s, " "); 4246 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4247 ops_dump_exit(); 4248 } 4249 4250 #ifdef CONFIG_STACKTRACE 4251 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4252 #endif 4253 if (bt_len) { 4254 dump_newline(s); 4255 dump_stack_trace(s, " ", bt, bt_len); 4256 } 4257 } 4258 4259 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4260 { 4261 static DEFINE_SPINLOCK(dump_lock); 4262 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4263 struct scx_sched *sch = scx_root; 4264 struct scx_dump_ctx dctx = { 4265 .kind = ei->kind, 4266 .exit_code = ei->exit_code, 4267 .reason = ei->reason, 4268 .at_ns = ktime_get_ns(), 4269 .at_jiffies = jiffies, 4270 }; 4271 struct seq_buf s; 4272 struct scx_event_stats events; 4273 unsigned long flags; 4274 char *buf; 4275 int cpu; 4276 4277 spin_lock_irqsave(&dump_lock, flags); 4278 4279 seq_buf_init(&s, ei->dump, dump_len); 4280 4281 if (ei->kind == SCX_EXIT_NONE) { 4282 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4283 } else { 4284 dump_line(&s, "%s[%d] triggered exit kind %d:", 4285 current->comm, current->pid, ei->kind); 4286 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4287 dump_newline(&s); 4288 dump_line(&s, "Backtrace:"); 4289 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4290 } 4291 4292 if (SCX_HAS_OP(sch, dump)) { 4293 ops_dump_init(&s, ""); 4294 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4295 ops_dump_exit(); 4296 } 4297 4298 dump_newline(&s); 4299 dump_line(&s, "CPU states"); 4300 dump_line(&s, "----------"); 4301 4302 for_each_possible_cpu(cpu) { 4303 struct rq *rq = cpu_rq(cpu); 4304 struct rq_flags rf; 4305 struct task_struct *p; 4306 struct seq_buf ns; 4307 size_t avail, used; 4308 bool idle; 4309 4310 rq_lock(rq, &rf); 4311 4312 idle = list_empty(&rq->scx.runnable_list) && 4313 rq->curr->sched_class == &idle_sched_class; 4314 4315 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4316 goto next; 4317 4318 /* 4319 * We don't yet know whether ops.dump_cpu() will produce output 4320 * and we may want to skip the default CPU dump if it doesn't. 4321 * Use a nested seq_buf to generate the standard dump so that we 4322 * can decide whether to commit later. 4323 */ 4324 avail = seq_buf_get_buf(&s, &buf); 4325 seq_buf_init(&ns, buf, avail); 4326 4327 dump_newline(&ns); 4328 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4329 cpu, rq->scx.nr_running, rq->scx.flags, 4330 rq->scx.cpu_released, rq->scx.ops_qseq, 4331 rq->scx.pnt_seq); 4332 dump_line(&ns, " curr=%s[%d] class=%ps", 4333 rq->curr->comm, rq->curr->pid, 4334 rq->curr->sched_class); 4335 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4336 dump_line(&ns, " cpus_to_kick : %*pb", 4337 cpumask_pr_args(rq->scx.cpus_to_kick)); 4338 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4339 dump_line(&ns, " idle_to_kick : %*pb", 4340 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4341 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4342 dump_line(&ns, " cpus_to_preempt: %*pb", 4343 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4344 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4345 dump_line(&ns, " cpus_to_wait : %*pb", 4346 cpumask_pr_args(rq->scx.cpus_to_wait)); 4347 4348 used = seq_buf_used(&ns); 4349 if (SCX_HAS_OP(sch, dump_cpu)) { 4350 ops_dump_init(&ns, " "); 4351 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4352 &dctx, cpu, idle); 4353 ops_dump_exit(); 4354 } 4355 4356 /* 4357 * If idle && nothing generated by ops.dump_cpu(), there's 4358 * nothing interesting. Skip. 4359 */ 4360 if (idle && used == seq_buf_used(&ns)) 4361 goto next; 4362 4363 /* 4364 * $s may already have overflowed when $ns was created. If so, 4365 * calling commit on it will trigger BUG. 4366 */ 4367 if (avail) { 4368 seq_buf_commit(&s, seq_buf_used(&ns)); 4369 if (seq_buf_has_overflowed(&ns)) 4370 seq_buf_set_overflow(&s); 4371 } 4372 4373 if (rq->curr->sched_class == &ext_sched_class) 4374 scx_dump_task(&s, &dctx, rq->curr, '*'); 4375 4376 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4377 scx_dump_task(&s, &dctx, p, ' '); 4378 next: 4379 rq_unlock(rq, &rf); 4380 } 4381 4382 dump_newline(&s); 4383 dump_line(&s, "Event counters"); 4384 dump_line(&s, "--------------"); 4385 4386 scx_read_events(sch, &events); 4387 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4388 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4389 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4390 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4391 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4392 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4393 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4394 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4395 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4396 4397 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4398 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4399 trunc_marker, sizeof(trunc_marker)); 4400 4401 spin_unlock_irqrestore(&dump_lock, flags); 4402 } 4403 4404 static void scx_error_irq_workfn(struct irq_work *irq_work) 4405 { 4406 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4407 struct scx_exit_info *ei = sch->exit_info; 4408 4409 if (ei->kind >= SCX_EXIT_ERROR) 4410 scx_dump_state(ei, sch->ops.exit_dump_len); 4411 4412 kthread_queue_work(sch->helper, &sch->disable_work); 4413 } 4414 4415 static void scx_vexit(struct scx_sched *sch, 4416 enum scx_exit_kind kind, s64 exit_code, 4417 const char *fmt, va_list args) 4418 { 4419 struct scx_exit_info *ei = sch->exit_info; 4420 int none = SCX_EXIT_NONE; 4421 4422 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4423 return; 4424 4425 ei->exit_code = exit_code; 4426 #ifdef CONFIG_STACKTRACE 4427 if (kind >= SCX_EXIT_ERROR) 4428 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4429 #endif 4430 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4431 4432 /* 4433 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4434 * in scx_disable_workfn(). 4435 */ 4436 ei->kind = kind; 4437 ei->reason = scx_exit_reason(ei->kind); 4438 4439 irq_work_queue(&sch->error_irq_work); 4440 } 4441 4442 static int alloc_kick_pseqs(void) 4443 { 4444 int cpu; 4445 4446 /* 4447 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size 4448 * can exceed percpu allocator limits on large machines. 4449 */ 4450 for_each_possible_cpu(cpu) { 4451 struct scx_kick_pseqs **pseqs = per_cpu_ptr(&scx_kick_pseqs, cpu); 4452 struct scx_kick_pseqs *new_pseqs; 4453 4454 WARN_ON_ONCE(rcu_access_pointer(*pseqs)); 4455 4456 new_pseqs = kvzalloc_node(struct_size(new_pseqs, seqs, nr_cpu_ids), 4457 GFP_KERNEL, cpu_to_node(cpu)); 4458 if (!new_pseqs) { 4459 free_kick_pseqs(); 4460 return -ENOMEM; 4461 } 4462 4463 rcu_assign_pointer(*pseqs, new_pseqs); 4464 } 4465 4466 return 0; 4467 } 4468 4469 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4470 { 4471 struct scx_sched *sch; 4472 int node, ret; 4473 4474 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4475 if (!sch) 4476 return ERR_PTR(-ENOMEM); 4477 4478 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4479 if (!sch->exit_info) { 4480 ret = -ENOMEM; 4481 goto err_free_sch; 4482 } 4483 4484 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4485 if (ret < 0) 4486 goto err_free_ei; 4487 4488 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4489 GFP_KERNEL); 4490 if (!sch->global_dsqs) { 4491 ret = -ENOMEM; 4492 goto err_free_hash; 4493 } 4494 4495 for_each_node_state(node, N_POSSIBLE) { 4496 struct scx_dispatch_q *dsq; 4497 4498 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4499 if (!dsq) { 4500 ret = -ENOMEM; 4501 goto err_free_gdsqs; 4502 } 4503 4504 init_dsq(dsq, SCX_DSQ_GLOBAL); 4505 sch->global_dsqs[node] = dsq; 4506 } 4507 4508 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4509 if (!sch->pcpu) 4510 goto err_free_gdsqs; 4511 4512 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4513 if (!sch->helper) 4514 goto err_free_pcpu; 4515 sched_set_fifo(sch->helper->task); 4516 4517 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4518 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4519 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4520 sch->ops = *ops; 4521 ops->priv = sch; 4522 4523 sch->kobj.kset = scx_kset; 4524 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4525 if (ret < 0) 4526 goto err_stop_helper; 4527 4528 return sch; 4529 4530 err_stop_helper: 4531 kthread_stop(sch->helper->task); 4532 err_free_pcpu: 4533 free_percpu(sch->pcpu); 4534 err_free_gdsqs: 4535 for_each_node_state(node, N_POSSIBLE) 4536 kfree(sch->global_dsqs[node]); 4537 kfree(sch->global_dsqs); 4538 err_free_hash: 4539 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4540 err_free_ei: 4541 free_exit_info(sch->exit_info); 4542 err_free_sch: 4543 kfree(sch); 4544 return ERR_PTR(ret); 4545 } 4546 4547 static int check_hotplug_seq(struct scx_sched *sch, 4548 const struct sched_ext_ops *ops) 4549 { 4550 unsigned long long global_hotplug_seq; 4551 4552 /* 4553 * If a hotplug event has occurred between when a scheduler was 4554 * initialized, and when we were able to attach, exit and notify user 4555 * space about it. 4556 */ 4557 if (ops->hotplug_seq) { 4558 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4559 if (ops->hotplug_seq != global_hotplug_seq) { 4560 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4561 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4562 "expected hotplug seq %llu did not match actual %llu", 4563 ops->hotplug_seq, global_hotplug_seq); 4564 return -EBUSY; 4565 } 4566 } 4567 4568 return 0; 4569 } 4570 4571 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4572 { 4573 /* 4574 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4575 * ops.enqueue() callback isn't implemented. 4576 */ 4577 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4578 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4579 return -EINVAL; 4580 } 4581 4582 /* 4583 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4584 * selection policy to be enabled. 4585 */ 4586 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4587 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4588 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4589 return -EINVAL; 4590 } 4591 4592 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4593 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4594 4595 return 0; 4596 } 4597 4598 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4599 { 4600 struct scx_sched *sch; 4601 struct scx_task_iter sti; 4602 struct task_struct *p; 4603 unsigned long timeout; 4604 int i, cpu, ret; 4605 4606 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4607 cpu_possible_mask)) { 4608 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4609 return -EINVAL; 4610 } 4611 4612 mutex_lock(&scx_enable_mutex); 4613 4614 ret = alloc_kick_pseqs(); 4615 if (ret) 4616 goto err_unlock; 4617 4618 if (scx_enable_state() != SCX_DISABLED) { 4619 ret = -EBUSY; 4620 goto err_free_pseqs; 4621 } 4622 4623 sch = scx_alloc_and_add_sched(ops); 4624 if (IS_ERR(sch)) { 4625 ret = PTR_ERR(sch); 4626 goto err_free_pseqs; 4627 } 4628 4629 /* 4630 * Transition to ENABLING and clear exit info to arm the disable path. 4631 * Failure triggers full disabling from here on. 4632 */ 4633 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4634 WARN_ON_ONCE(scx_root); 4635 4636 atomic_long_set(&scx_nr_rejected, 0); 4637 4638 for_each_possible_cpu(cpu) 4639 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4640 4641 /* 4642 * Keep CPUs stable during enable so that the BPF scheduler can track 4643 * online CPUs by watching ->on/offline_cpu() after ->init(). 4644 */ 4645 cpus_read_lock(); 4646 4647 /* 4648 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4649 * See handle_hotplug(). 4650 */ 4651 rcu_assign_pointer(scx_root, sch); 4652 4653 scx_idle_enable(ops); 4654 4655 if (sch->ops.init) { 4656 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4657 if (ret) { 4658 ret = ops_sanitize_err(sch, "init", ret); 4659 cpus_read_unlock(); 4660 scx_error(sch, "ops.init() failed (%d)", ret); 4661 goto err_disable; 4662 } 4663 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED; 4664 } 4665 4666 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4667 if (((void (**)(void))ops)[i]) 4668 set_bit(i, sch->has_op); 4669 4670 ret = check_hotplug_seq(sch, ops); 4671 if (ret) { 4672 cpus_read_unlock(); 4673 goto err_disable; 4674 } 4675 scx_idle_update_selcpu_topology(ops); 4676 4677 cpus_read_unlock(); 4678 4679 ret = validate_ops(sch, ops); 4680 if (ret) 4681 goto err_disable; 4682 4683 WARN_ON_ONCE(scx_dsp_ctx); 4684 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4685 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4686 scx_dsp_max_batch), 4687 __alignof__(struct scx_dsp_ctx)); 4688 if (!scx_dsp_ctx) { 4689 ret = -ENOMEM; 4690 goto err_disable; 4691 } 4692 4693 if (ops->timeout_ms) 4694 timeout = msecs_to_jiffies(ops->timeout_ms); 4695 else 4696 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4697 4698 WRITE_ONCE(scx_watchdog_timeout, timeout); 4699 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4700 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4701 scx_watchdog_timeout / 2); 4702 4703 /* 4704 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4705 * This can lead to stalls as some BPF schedulers (e.g. userspace 4706 * scheduling) may not function correctly before all tasks are switched. 4707 * Init in bypass mode to guarantee forward progress. 4708 */ 4709 scx_bypass(true); 4710 4711 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4712 if (((void (**)(void))ops)[i]) 4713 set_bit(i, sch->has_op); 4714 4715 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 4716 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 4717 4718 /* 4719 * Lock out forks, cgroup on/offlining and moves before opening the 4720 * floodgate so that they don't wander into the operations prematurely. 4721 */ 4722 percpu_down_write(&scx_fork_rwsem); 4723 4724 WARN_ON_ONCE(scx_init_task_enabled); 4725 scx_init_task_enabled = true; 4726 4727 /* 4728 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 4729 * preventing new tasks from being added. No need to exclude tasks 4730 * leaving as sched_ext_free() can handle both prepped and enabled 4731 * tasks. Prep all tasks first and then enable them with preemption 4732 * disabled. 4733 * 4734 * All cgroups should be initialized before scx_init_task() so that the 4735 * BPF scheduler can reliably track each task's cgroup membership from 4736 * scx_init_task(). Lock out cgroup on/offlining and task migrations 4737 * while tasks are being initialized so that scx_cgroup_can_attach() 4738 * never sees uninitialized tasks. 4739 */ 4740 scx_cgroup_lock(); 4741 ret = scx_cgroup_init(sch); 4742 if (ret) 4743 goto err_disable_unlock_all; 4744 4745 scx_task_iter_start(&sti); 4746 while ((p = scx_task_iter_next_locked(&sti))) { 4747 /* 4748 * @p may already be dead, have lost all its usages counts and 4749 * be waiting for RCU grace period before being freed. @p can't 4750 * be initialized for SCX in such cases and should be ignored. 4751 */ 4752 if (!tryget_task_struct(p)) 4753 continue; 4754 4755 scx_task_iter_unlock(&sti); 4756 4757 ret = scx_init_task(p, task_group(p), false); 4758 if (ret) { 4759 put_task_struct(p); 4760 scx_task_iter_stop(&sti); 4761 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 4762 ret, p->comm, p->pid); 4763 goto err_disable_unlock_all; 4764 } 4765 4766 scx_set_task_state(p, SCX_TASK_READY); 4767 4768 put_task_struct(p); 4769 } 4770 scx_task_iter_stop(&sti); 4771 scx_cgroup_unlock(); 4772 percpu_up_write(&scx_fork_rwsem); 4773 4774 /* 4775 * All tasks are READY. It's safe to turn on scx_enabled() and switch 4776 * all eligible tasks. 4777 */ 4778 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 4779 static_branch_enable(&__scx_enabled); 4780 4781 /* 4782 * We're fully committed and can't fail. The task READY -> ENABLED 4783 * transitions here are synchronized against sched_ext_free() through 4784 * scx_tasks_lock. 4785 */ 4786 percpu_down_write(&scx_fork_rwsem); 4787 scx_task_iter_start(&sti); 4788 while ((p = scx_task_iter_next_locked(&sti))) { 4789 const struct sched_class *old_class = p->sched_class; 4790 const struct sched_class *new_class = 4791 __setscheduler_class(p->policy, p->prio); 4792 struct sched_enq_and_set_ctx ctx; 4793 4794 if (!tryget_task_struct(p)) 4795 continue; 4796 4797 if (old_class != new_class && p->se.sched_delayed) 4798 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4799 4800 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4801 4802 p->scx.slice = SCX_SLICE_DFL; 4803 p->sched_class = new_class; 4804 check_class_changing(task_rq(p), p, old_class); 4805 4806 sched_enq_and_set_task(&ctx); 4807 4808 check_class_changed(task_rq(p), p, old_class, p->prio); 4809 put_task_struct(p); 4810 } 4811 scx_task_iter_stop(&sti); 4812 percpu_up_write(&scx_fork_rwsem); 4813 4814 scx_bypass(false); 4815 4816 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 4817 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 4818 goto err_disable; 4819 } 4820 4821 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 4822 static_branch_enable(&__scx_switched_all); 4823 4824 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 4825 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 4826 kobject_uevent(&sch->kobj, KOBJ_ADD); 4827 mutex_unlock(&scx_enable_mutex); 4828 4829 atomic_long_inc(&scx_enable_seq); 4830 4831 return 0; 4832 4833 err_free_pseqs: 4834 free_kick_pseqs(); 4835 err_unlock: 4836 mutex_unlock(&scx_enable_mutex); 4837 return ret; 4838 4839 err_disable_unlock_all: 4840 scx_cgroup_unlock(); 4841 percpu_up_write(&scx_fork_rwsem); 4842 /* we'll soon enter disable path, keep bypass on */ 4843 err_disable: 4844 mutex_unlock(&scx_enable_mutex); 4845 /* 4846 * Returning an error code here would not pass all the error information 4847 * to userspace. Record errno using scx_error() for cases scx_error() 4848 * wasn't already invoked and exit indicating success so that the error 4849 * is notified through ops.exit() with all the details. 4850 * 4851 * Flush scx_disable_work to ensure that error is reported before init 4852 * completion. sch's base reference will be put by bpf_scx_unreg(). 4853 */ 4854 scx_error(sch, "scx_enable() failed (%d)", ret); 4855 kthread_flush_work(&sch->disable_work); 4856 return 0; 4857 } 4858 4859 4860 /******************************************************************************** 4861 * bpf_struct_ops plumbing. 4862 */ 4863 #include <linux/bpf_verifier.h> 4864 #include <linux/bpf.h> 4865 #include <linux/btf.h> 4866 4867 static const struct btf_type *task_struct_type; 4868 4869 static bool bpf_scx_is_valid_access(int off, int size, 4870 enum bpf_access_type type, 4871 const struct bpf_prog *prog, 4872 struct bpf_insn_access_aux *info) 4873 { 4874 if (type != BPF_READ) 4875 return false; 4876 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 4877 return false; 4878 if (off % size != 0) 4879 return false; 4880 4881 return btf_ctx_access(off, size, type, prog, info); 4882 } 4883 4884 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 4885 const struct bpf_reg_state *reg, int off, 4886 int size) 4887 { 4888 const struct btf_type *t; 4889 4890 t = btf_type_by_id(reg->btf, reg->btf_id); 4891 if (t == task_struct_type) { 4892 if (off >= offsetof(struct task_struct, scx.slice) && 4893 off + size <= offsetofend(struct task_struct, scx.slice)) 4894 return SCALAR_VALUE; 4895 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 4896 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 4897 return SCALAR_VALUE; 4898 if (off >= offsetof(struct task_struct, scx.disallow) && 4899 off + size <= offsetofend(struct task_struct, scx.disallow)) 4900 return SCALAR_VALUE; 4901 } 4902 4903 return -EACCES; 4904 } 4905 4906 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 4907 .get_func_proto = bpf_base_func_proto, 4908 .is_valid_access = bpf_scx_is_valid_access, 4909 .btf_struct_access = bpf_scx_btf_struct_access, 4910 }; 4911 4912 static int bpf_scx_init_member(const struct btf_type *t, 4913 const struct btf_member *member, 4914 void *kdata, const void *udata) 4915 { 4916 const struct sched_ext_ops *uops = udata; 4917 struct sched_ext_ops *ops = kdata; 4918 u32 moff = __btf_member_bit_offset(t, member) / 8; 4919 int ret; 4920 4921 switch (moff) { 4922 case offsetof(struct sched_ext_ops, dispatch_max_batch): 4923 if (*(u32 *)(udata + moff) > INT_MAX) 4924 return -E2BIG; 4925 ops->dispatch_max_batch = *(u32 *)(udata + moff); 4926 return 1; 4927 case offsetof(struct sched_ext_ops, flags): 4928 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 4929 return -EINVAL; 4930 ops->flags = *(u64 *)(udata + moff); 4931 return 1; 4932 case offsetof(struct sched_ext_ops, name): 4933 ret = bpf_obj_name_cpy(ops->name, uops->name, 4934 sizeof(ops->name)); 4935 if (ret < 0) 4936 return ret; 4937 if (ret == 0) 4938 return -EINVAL; 4939 return 1; 4940 case offsetof(struct sched_ext_ops, timeout_ms): 4941 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 4942 SCX_WATCHDOG_MAX_TIMEOUT) 4943 return -E2BIG; 4944 ops->timeout_ms = *(u32 *)(udata + moff); 4945 return 1; 4946 case offsetof(struct sched_ext_ops, exit_dump_len): 4947 ops->exit_dump_len = 4948 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 4949 return 1; 4950 case offsetof(struct sched_ext_ops, hotplug_seq): 4951 ops->hotplug_seq = *(u64 *)(udata + moff); 4952 return 1; 4953 } 4954 4955 return 0; 4956 } 4957 4958 static int bpf_scx_check_member(const struct btf_type *t, 4959 const struct btf_member *member, 4960 const struct bpf_prog *prog) 4961 { 4962 u32 moff = __btf_member_bit_offset(t, member) / 8; 4963 4964 switch (moff) { 4965 case offsetof(struct sched_ext_ops, init_task): 4966 #ifdef CONFIG_EXT_GROUP_SCHED 4967 case offsetof(struct sched_ext_ops, cgroup_init): 4968 case offsetof(struct sched_ext_ops, cgroup_exit): 4969 case offsetof(struct sched_ext_ops, cgroup_prep_move): 4970 #endif 4971 case offsetof(struct sched_ext_ops, cpu_online): 4972 case offsetof(struct sched_ext_ops, cpu_offline): 4973 case offsetof(struct sched_ext_ops, init): 4974 case offsetof(struct sched_ext_ops, exit): 4975 break; 4976 default: 4977 if (prog->sleepable) 4978 return -EINVAL; 4979 } 4980 4981 return 0; 4982 } 4983 4984 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4985 { 4986 return scx_enable(kdata, link); 4987 } 4988 4989 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4990 { 4991 struct sched_ext_ops *ops = kdata; 4992 struct scx_sched *sch = ops->priv; 4993 4994 scx_disable(SCX_EXIT_UNREG); 4995 kthread_flush_work(&sch->disable_work); 4996 kobject_put(&sch->kobj); 4997 } 4998 4999 static int bpf_scx_init(struct btf *btf) 5000 { 5001 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5002 5003 return 0; 5004 } 5005 5006 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5007 { 5008 /* 5009 * sched_ext does not support updating the actively-loaded BPF 5010 * scheduler, as registering a BPF scheduler can always fail if the 5011 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5012 * etc. Similarly, we can always race with unregistration happening 5013 * elsewhere, such as with sysrq. 5014 */ 5015 return -EOPNOTSUPP; 5016 } 5017 5018 static int bpf_scx_validate(void *kdata) 5019 { 5020 return 0; 5021 } 5022 5023 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5024 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5025 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5026 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5027 static void sched_ext_ops__tick(struct task_struct *p) {} 5028 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5029 static void sched_ext_ops__running(struct task_struct *p) {} 5030 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5031 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5032 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5033 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5034 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5035 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5036 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5037 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5038 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5039 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5040 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5041 static void sched_ext_ops__enable(struct task_struct *p) {} 5042 static void sched_ext_ops__disable(struct task_struct *p) {} 5043 #ifdef CONFIG_EXT_GROUP_SCHED 5044 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5045 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5046 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5047 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5048 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5049 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5050 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 5051 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {} 5052 #endif 5053 static void sched_ext_ops__cpu_online(s32 cpu) {} 5054 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5055 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5056 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5057 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5058 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5059 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5060 5061 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5062 .select_cpu = sched_ext_ops__select_cpu, 5063 .enqueue = sched_ext_ops__enqueue, 5064 .dequeue = sched_ext_ops__dequeue, 5065 .dispatch = sched_ext_ops__dispatch, 5066 .tick = sched_ext_ops__tick, 5067 .runnable = sched_ext_ops__runnable, 5068 .running = sched_ext_ops__running, 5069 .stopping = sched_ext_ops__stopping, 5070 .quiescent = sched_ext_ops__quiescent, 5071 .yield = sched_ext_ops__yield, 5072 .core_sched_before = sched_ext_ops__core_sched_before, 5073 .set_weight = sched_ext_ops__set_weight, 5074 .set_cpumask = sched_ext_ops__set_cpumask, 5075 .update_idle = sched_ext_ops__update_idle, 5076 .cpu_acquire = sched_ext_ops__cpu_acquire, 5077 .cpu_release = sched_ext_ops__cpu_release, 5078 .init_task = sched_ext_ops__init_task, 5079 .exit_task = sched_ext_ops__exit_task, 5080 .enable = sched_ext_ops__enable, 5081 .disable = sched_ext_ops__disable, 5082 #ifdef CONFIG_EXT_GROUP_SCHED 5083 .cgroup_init = sched_ext_ops__cgroup_init, 5084 .cgroup_exit = sched_ext_ops__cgroup_exit, 5085 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5086 .cgroup_move = sched_ext_ops__cgroup_move, 5087 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5088 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5089 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 5090 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle, 5091 #endif 5092 .cpu_online = sched_ext_ops__cpu_online, 5093 .cpu_offline = sched_ext_ops__cpu_offline, 5094 .init = sched_ext_ops__init, 5095 .exit = sched_ext_ops__exit, 5096 .dump = sched_ext_ops__dump, 5097 .dump_cpu = sched_ext_ops__dump_cpu, 5098 .dump_task = sched_ext_ops__dump_task, 5099 }; 5100 5101 static struct bpf_struct_ops bpf_sched_ext_ops = { 5102 .verifier_ops = &bpf_scx_verifier_ops, 5103 .reg = bpf_scx_reg, 5104 .unreg = bpf_scx_unreg, 5105 .check_member = bpf_scx_check_member, 5106 .init_member = bpf_scx_init_member, 5107 .init = bpf_scx_init, 5108 .update = bpf_scx_update, 5109 .validate = bpf_scx_validate, 5110 .name = "sched_ext_ops", 5111 .owner = THIS_MODULE, 5112 .cfi_stubs = &__bpf_ops_sched_ext_ops 5113 }; 5114 5115 5116 /******************************************************************************** 5117 * System integration and init. 5118 */ 5119 5120 static void sysrq_handle_sched_ext_reset(u8 key) 5121 { 5122 scx_disable(SCX_EXIT_SYSRQ); 5123 } 5124 5125 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5126 .handler = sysrq_handle_sched_ext_reset, 5127 .help_msg = "reset-sched-ext(S)", 5128 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5129 .enable_mask = SYSRQ_ENABLE_RTNICE, 5130 }; 5131 5132 static void sysrq_handle_sched_ext_dump(u8 key) 5133 { 5134 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5135 5136 if (scx_enabled()) 5137 scx_dump_state(&ei, 0); 5138 } 5139 5140 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5141 .handler = sysrq_handle_sched_ext_dump, 5142 .help_msg = "dump-sched-ext(D)", 5143 .action_msg = "Trigger sched_ext debug dump", 5144 .enable_mask = SYSRQ_ENABLE_RTNICE, 5145 }; 5146 5147 static bool can_skip_idle_kick(struct rq *rq) 5148 { 5149 lockdep_assert_rq_held(rq); 5150 5151 /* 5152 * We can skip idle kicking if @rq is going to go through at least one 5153 * full SCX scheduling cycle before going idle. Just checking whether 5154 * curr is not idle is insufficient because we could be racing 5155 * balance_one() trying to pull the next task from a remote rq, which 5156 * may fail, and @rq may become idle afterwards. 5157 * 5158 * The race window is small and we don't and can't guarantee that @rq is 5159 * only kicked while idle anyway. Skip only when sure. 5160 */ 5161 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5162 } 5163 5164 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5165 { 5166 struct rq *rq = cpu_rq(cpu); 5167 struct scx_rq *this_scx = &this_rq->scx; 5168 bool should_wait = false; 5169 unsigned long flags; 5170 5171 raw_spin_rq_lock_irqsave(rq, flags); 5172 5173 /* 5174 * During CPU hotplug, a CPU may depend on kicking itself to make 5175 * forward progress. Allow kicking self regardless of online state. 5176 */ 5177 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5178 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5179 if (rq->curr->sched_class == &ext_sched_class) 5180 rq->curr->scx.slice = 0; 5181 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5182 } 5183 5184 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5185 pseqs[cpu] = rq->scx.pnt_seq; 5186 should_wait = true; 5187 } 5188 5189 resched_curr(rq); 5190 } else { 5191 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5192 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5193 } 5194 5195 raw_spin_rq_unlock_irqrestore(rq, flags); 5196 5197 return should_wait; 5198 } 5199 5200 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5201 { 5202 struct rq *rq = cpu_rq(cpu); 5203 unsigned long flags; 5204 5205 raw_spin_rq_lock_irqsave(rq, flags); 5206 5207 if (!can_skip_idle_kick(rq) && 5208 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5209 resched_curr(rq); 5210 5211 raw_spin_rq_unlock_irqrestore(rq, flags); 5212 } 5213 5214 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5215 { 5216 struct rq *this_rq = this_rq(); 5217 struct scx_rq *this_scx = &this_rq->scx; 5218 struct scx_kick_pseqs __rcu *pseqs_pcpu = __this_cpu_read(scx_kick_pseqs); 5219 bool should_wait = false; 5220 unsigned long *pseqs; 5221 s32 cpu; 5222 5223 if (unlikely(!pseqs_pcpu)) { 5224 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_pseqs"); 5225 return; 5226 } 5227 5228 pseqs = rcu_dereference_bh(pseqs_pcpu)->seqs; 5229 5230 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5231 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5232 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5233 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5234 } 5235 5236 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5237 kick_one_cpu_if_idle(cpu, this_rq); 5238 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5239 } 5240 5241 if (!should_wait) 5242 return; 5243 5244 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5245 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5246 5247 if (cpu != cpu_of(this_rq)) { 5248 /* 5249 * Pairs with smp_store_release() issued by this CPU in 5250 * switch_class() on the resched path. 5251 * 5252 * We busy-wait here to guarantee that no other task can 5253 * be scheduled on our core before the target CPU has 5254 * entered the resched path. 5255 */ 5256 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5257 cpu_relax(); 5258 } 5259 5260 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5261 } 5262 } 5263 5264 /** 5265 * print_scx_info - print out sched_ext scheduler state 5266 * @log_lvl: the log level to use when printing 5267 * @p: target task 5268 * 5269 * If a sched_ext scheduler is enabled, print the name and state of the 5270 * scheduler. If @p is on sched_ext, print further information about the task. 5271 * 5272 * This function can be safely called on any task as long as the task_struct 5273 * itself is accessible. While safe, this function isn't synchronized and may 5274 * print out mixups or garbages of limited length. 5275 */ 5276 void print_scx_info(const char *log_lvl, struct task_struct *p) 5277 { 5278 struct scx_sched *sch = scx_root; 5279 enum scx_enable_state state = scx_enable_state(); 5280 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5281 char runnable_at_buf[22] = "?"; 5282 struct sched_class *class; 5283 unsigned long runnable_at; 5284 5285 if (state == SCX_DISABLED) 5286 return; 5287 5288 /* 5289 * Carefully check if the task was running on sched_ext, and then 5290 * carefully copy the time it's been runnable, and its state. 5291 */ 5292 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5293 class != &ext_sched_class) { 5294 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5295 scx_enable_state_str[state], all); 5296 return; 5297 } 5298 5299 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5300 sizeof(runnable_at))) 5301 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5302 jiffies_delta_msecs(runnable_at, jiffies)); 5303 5304 /* print everything onto one line to conserve console space */ 5305 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5306 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5307 runnable_at_buf); 5308 } 5309 5310 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5311 { 5312 /* 5313 * SCX schedulers often have userspace components which are sometimes 5314 * involved in critial scheduling paths. PM operations involve freezing 5315 * userspace which can lead to scheduling misbehaviors including stalls. 5316 * Let's bypass while PM operations are in progress. 5317 */ 5318 switch (event) { 5319 case PM_HIBERNATION_PREPARE: 5320 case PM_SUSPEND_PREPARE: 5321 case PM_RESTORE_PREPARE: 5322 scx_bypass(true); 5323 break; 5324 case PM_POST_HIBERNATION: 5325 case PM_POST_SUSPEND: 5326 case PM_POST_RESTORE: 5327 scx_bypass(false); 5328 break; 5329 } 5330 5331 return NOTIFY_OK; 5332 } 5333 5334 static struct notifier_block scx_pm_notifier = { 5335 .notifier_call = scx_pm_handler, 5336 }; 5337 5338 void __init init_sched_ext_class(void) 5339 { 5340 s32 cpu, v; 5341 5342 /* 5343 * The following is to prevent the compiler from optimizing out the enum 5344 * definitions so that BPF scheduler implementations can use them 5345 * through the generated vmlinux.h. 5346 */ 5347 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5348 SCX_TG_ONLINE); 5349 5350 scx_idle_init_masks(); 5351 5352 for_each_possible_cpu(cpu) { 5353 struct rq *rq = cpu_rq(cpu); 5354 int n = cpu_to_node(cpu); 5355 5356 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5357 INIT_LIST_HEAD(&rq->scx.runnable_list); 5358 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5359 5360 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5361 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5362 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5363 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5364 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5365 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5366 5367 if (cpu_online(cpu)) 5368 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5369 } 5370 5371 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5372 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5373 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5374 } 5375 5376 5377 /******************************************************************************** 5378 * Helpers that can be called from the BPF scheduler. 5379 */ 5380 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p, 5381 u64 enq_flags) 5382 { 5383 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5384 return false; 5385 5386 lockdep_assert_irqs_disabled(); 5387 5388 if (unlikely(!p)) { 5389 scx_error(sch, "called with NULL task"); 5390 return false; 5391 } 5392 5393 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5394 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags); 5395 return false; 5396 } 5397 5398 return true; 5399 } 5400 5401 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p, 5402 u64 dsq_id, u64 enq_flags) 5403 { 5404 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5405 struct task_struct *ddsp_task; 5406 5407 ddsp_task = __this_cpu_read(direct_dispatch_task); 5408 if (ddsp_task) { 5409 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags); 5410 return; 5411 } 5412 5413 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5414 scx_error(sch, "dispatch buffer overflow"); 5415 return; 5416 } 5417 5418 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5419 .task = p, 5420 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5421 .dsq_id = dsq_id, 5422 .enq_flags = enq_flags, 5423 }; 5424 } 5425 5426 __bpf_kfunc_start_defs(); 5427 5428 /** 5429 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5430 * @p: task_struct to insert 5431 * @dsq_id: DSQ to insert into 5432 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5433 * @enq_flags: SCX_ENQ_* 5434 * 5435 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5436 * call this function spuriously. Can be called from ops.enqueue(), 5437 * ops.select_cpu(), and ops.dispatch(). 5438 * 5439 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5440 * and @p must match the task being enqueued. 5441 * 5442 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5443 * will be directly inserted into the corresponding dispatch queue after 5444 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5445 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5446 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5447 * task is inserted. 5448 * 5449 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5450 * and this function can be called upto ops.dispatch_max_batch times to insert 5451 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5452 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5453 * counter. 5454 * 5455 * This function doesn't have any locking restrictions and may be called under 5456 * BPF locks (in the future when BPF introduces more flexible locking). 5457 * 5458 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5459 * exhaustion. If zero, the current residual slice is maintained. If 5460 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5461 * scx_bpf_kick_cpu() to trigger scheduling. 5462 * 5463 * Returns %true on successful insertion, %false on failure. On the root 5464 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5465 * to check the return value. 5466 */ 5467 __bpf_kfunc bool scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 5468 u64 enq_flags) 5469 { 5470 struct scx_sched *sch; 5471 5472 guard(rcu)(); 5473 sch = rcu_dereference(scx_root); 5474 if (unlikely(!sch)) 5475 return false; 5476 5477 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5478 return false; 5479 5480 if (slice) 5481 p->scx.slice = slice; 5482 else 5483 p->scx.slice = p->scx.slice ?: 1; 5484 5485 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags); 5486 5487 return true; 5488 } 5489 5490 /* 5491 * COMPAT: Will be removed in v6.23. 5492 */ 5493 __bpf_kfunc void scx_bpf_dsq_insert___compat(struct task_struct *p, u64 dsq_id, 5494 u64 slice, u64 enq_flags) 5495 { 5496 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 5497 } 5498 5499 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p, 5500 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) 5501 { 5502 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5503 return false; 5504 5505 if (slice) 5506 p->scx.slice = slice; 5507 else 5508 p->scx.slice = p->scx.slice ?: 1; 5509 5510 p->scx.dsq_vtime = vtime; 5511 5512 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5513 5514 return true; 5515 } 5516 5517 struct scx_bpf_dsq_insert_vtime_args { 5518 /* @p can't be packed together as KF_RCU is not transitive */ 5519 u64 dsq_id; 5520 u64 slice; 5521 u64 vtime; 5522 u64 enq_flags; 5523 }; 5524 5525 /** 5526 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion 5527 * @p: task_struct to insert 5528 * @args: struct containing the rest of the arguments 5529 * @args->dsq_id: DSQ to insert into 5530 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value 5531 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5532 * @args->enq_flags: SCX_ENQ_* 5533 * 5534 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument 5535 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided 5536 * as an inline wrapper in common.bpf.h. 5537 * 5538 * Insert @p into the vtime priority queue of the DSQ identified by 5539 * @args->dsq_id. Tasks queued into the priority queue are ordered by 5540 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert(). 5541 * 5542 * @args->vtime ordering is according to time_before64() which considers 5543 * wrapping. A numerically larger vtime may indicate an earlier position in the 5544 * ordering and vice-versa. 5545 * 5546 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5547 * function must not be called on a DSQ which already has one or more FIFO tasks 5548 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5549 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5550 * 5551 * Returns %true on successful insertion, %false on failure. On the root 5552 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5553 * to check the return value. 5554 */ 5555 __bpf_kfunc bool 5556 __scx_bpf_dsq_insert_vtime(struct task_struct *p, 5557 struct scx_bpf_dsq_insert_vtime_args *args) 5558 { 5559 struct scx_sched *sch; 5560 5561 guard(rcu)(); 5562 5563 sch = rcu_dereference(scx_root); 5564 if (unlikely(!sch)) 5565 return false; 5566 5567 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice, 5568 args->vtime, args->enq_flags); 5569 } 5570 5571 /* 5572 * COMPAT: Will be removed in v6.23. 5573 */ 5574 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5575 u64 slice, u64 vtime, u64 enq_flags) 5576 { 5577 struct scx_sched *sch; 5578 5579 guard(rcu)(); 5580 5581 sch = rcu_dereference(scx_root); 5582 if (unlikely(!sch)) 5583 return; 5584 5585 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags); 5586 } 5587 5588 __bpf_kfunc_end_defs(); 5589 5590 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5591 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5592 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___compat, KF_RCU) 5593 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU) 5594 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5595 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5596 5597 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5598 .owner = THIS_MODULE, 5599 .set = &scx_kfunc_ids_enqueue_dispatch, 5600 }; 5601 5602 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5603 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5604 { 5605 struct scx_sched *sch = scx_root; 5606 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5607 struct rq *this_rq, *src_rq, *locked_rq; 5608 bool dispatched = false; 5609 bool in_balance; 5610 unsigned long flags; 5611 5612 if (!scx_kf_allowed_if_unlocked() && 5613 !scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5614 return false; 5615 5616 /* 5617 * Can be called from either ops.dispatch() locking this_rq() or any 5618 * context where no rq lock is held. If latter, lock @p's task_rq which 5619 * we'll likely need anyway. 5620 */ 5621 src_rq = task_rq(p); 5622 5623 local_irq_save(flags); 5624 this_rq = this_rq(); 5625 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5626 5627 if (in_balance) { 5628 if (this_rq != src_rq) { 5629 raw_spin_rq_unlock(this_rq); 5630 raw_spin_rq_lock(src_rq); 5631 } 5632 } else { 5633 raw_spin_rq_lock(src_rq); 5634 } 5635 5636 /* 5637 * If the BPF scheduler keeps calling this function repeatedly, it can 5638 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 5639 * breather if necessary. 5640 */ 5641 scx_breather(src_rq); 5642 5643 locked_rq = src_rq; 5644 raw_spin_lock(&src_dsq->lock); 5645 5646 /* 5647 * Did someone else get to it? @p could have already left $src_dsq, got 5648 * re-enqueud, or be in the process of being consumed by someone else. 5649 */ 5650 if (unlikely(p->scx.dsq != src_dsq || 5651 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5652 p->scx.holding_cpu >= 0) || 5653 WARN_ON_ONCE(src_rq != task_rq(p))) { 5654 raw_spin_unlock(&src_dsq->lock); 5655 goto out; 5656 } 5657 5658 /* @p is still on $src_dsq and stable, determine the destination */ 5659 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5660 5661 /* 5662 * Apply vtime and slice updates before moving so that the new time is 5663 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5664 * this is safe as we're locking it. 5665 */ 5666 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5667 p->scx.dsq_vtime = kit->vtime; 5668 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5669 p->scx.slice = kit->slice; 5670 5671 /* execute move */ 5672 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5673 dispatched = true; 5674 out: 5675 if (in_balance) { 5676 if (this_rq != locked_rq) { 5677 raw_spin_rq_unlock(locked_rq); 5678 raw_spin_rq_lock(this_rq); 5679 } 5680 } else { 5681 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5682 } 5683 5684 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5685 __SCX_DSQ_ITER_HAS_VTIME); 5686 return dispatched; 5687 } 5688 5689 __bpf_kfunc_start_defs(); 5690 5691 /** 5692 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5693 * 5694 * Can only be called from ops.dispatch(). 5695 */ 5696 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5697 { 5698 struct scx_sched *sch; 5699 5700 guard(rcu)(); 5701 5702 sch = rcu_dereference(scx_root); 5703 if (unlikely(!sch)) 5704 return 0; 5705 5706 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5707 return 0; 5708 5709 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 5710 } 5711 5712 /** 5713 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 5714 * 5715 * Cancel the latest dispatch. Can be called multiple times to cancel further 5716 * dispatches. Can only be called from ops.dispatch(). 5717 */ 5718 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 5719 { 5720 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5721 struct scx_sched *sch; 5722 5723 guard(rcu)(); 5724 5725 sch = rcu_dereference(scx_root); 5726 if (unlikely(!sch)) 5727 return; 5728 5729 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5730 return; 5731 5732 if (dspc->cursor > 0) 5733 dspc->cursor--; 5734 else 5735 scx_error(sch, "dispatch buffer underflow"); 5736 } 5737 5738 /** 5739 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 5740 * @dsq_id: DSQ to move task from 5741 * 5742 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 5743 * local DSQ for execution. Can only be called from ops.dispatch(). 5744 * 5745 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 5746 * before trying to move from the specified DSQ. It may also grab rq locks and 5747 * thus can't be called under any BPF locks. 5748 * 5749 * Returns %true if a task has been moved, %false if there isn't any task to 5750 * move. 5751 */ 5752 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 5753 { 5754 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5755 struct scx_dispatch_q *dsq; 5756 struct scx_sched *sch; 5757 5758 guard(rcu)(); 5759 5760 sch = rcu_dereference(scx_root); 5761 if (unlikely(!sch)) 5762 return false; 5763 5764 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5765 return false; 5766 5767 flush_dispatch_buf(sch, dspc->rq); 5768 5769 dsq = find_user_dsq(sch, dsq_id); 5770 if (unlikely(!dsq)) { 5771 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 5772 return false; 5773 } 5774 5775 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 5776 /* 5777 * A successfully consumed task can be dequeued before it starts 5778 * running while the CPU is trying to migrate other dispatched 5779 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 5780 * local DSQ. 5781 */ 5782 dspc->nr_tasks++; 5783 return true; 5784 } else { 5785 return false; 5786 } 5787 } 5788 5789 /** 5790 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 5791 * @it__iter: DSQ iterator in progress 5792 * @slice: duration the moved task can run for in nsecs 5793 * 5794 * Override the slice of the next task that will be moved from @it__iter using 5795 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 5796 * slice duration is kept. 5797 */ 5798 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 5799 u64 slice) 5800 { 5801 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5802 5803 kit->slice = slice; 5804 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 5805 } 5806 5807 /** 5808 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 5809 * @it__iter: DSQ iterator in progress 5810 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 5811 * 5812 * Override the vtime of the next task that will be moved from @it__iter using 5813 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 5814 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 5815 * override is ignored and cleared. 5816 */ 5817 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 5818 u64 vtime) 5819 { 5820 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5821 5822 kit->vtime = vtime; 5823 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 5824 } 5825 5826 /** 5827 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 5828 * @it__iter: DSQ iterator in progress 5829 * @p: task to transfer 5830 * @dsq_id: DSQ to move @p to 5831 * @enq_flags: SCX_ENQ_* 5832 * 5833 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 5834 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 5835 * be the destination. 5836 * 5837 * For the transfer to be successful, @p must still be on the DSQ and have been 5838 * queued before the DSQ iteration started. This function doesn't care whether 5839 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 5840 * been queued before the iteration started. 5841 * 5842 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 5843 * 5844 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 5845 * lock (e.g. BPF timers or SYSCALL programs). 5846 * 5847 * Returns %true if @p has been consumed, %false if @p had already been 5848 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local 5849 * DSQ. 5850 */ 5851 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 5852 struct task_struct *p, u64 dsq_id, 5853 u64 enq_flags) 5854 { 5855 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5856 p, dsq_id, enq_flags); 5857 } 5858 5859 /** 5860 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 5861 * @it__iter: DSQ iterator in progress 5862 * @p: task to transfer 5863 * @dsq_id: DSQ to move @p to 5864 * @enq_flags: SCX_ENQ_* 5865 * 5866 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 5867 * priority queue of the DSQ specified by @dsq_id. The destination must be a 5868 * user DSQ as only user DSQs support priority queue. 5869 * 5870 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 5871 * and scx_bpf_dsq_move_set_vtime() to update. 5872 * 5873 * All other aspects are identical to scx_bpf_dsq_move(). See 5874 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 5875 */ 5876 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 5877 struct task_struct *p, u64 dsq_id, 5878 u64 enq_flags) 5879 { 5880 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5881 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5882 } 5883 5884 __bpf_kfunc_end_defs(); 5885 5886 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 5887 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 5888 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 5889 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 5890 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 5891 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 5892 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5893 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5894 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 5895 5896 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 5897 .owner = THIS_MODULE, 5898 .set = &scx_kfunc_ids_dispatch, 5899 }; 5900 5901 __bpf_kfunc_start_defs(); 5902 5903 /** 5904 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 5905 * 5906 * Iterate over all of the tasks currently enqueued on the local DSQ of the 5907 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 5908 * processed tasks. Can only be called from ops.cpu_release(). 5909 */ 5910 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 5911 { 5912 struct scx_sched *sch; 5913 LIST_HEAD(tasks); 5914 u32 nr_enqueued = 0; 5915 struct rq *rq; 5916 struct task_struct *p, *n; 5917 5918 guard(rcu)(); 5919 sch = rcu_dereference(scx_root); 5920 if (unlikely(!sch)) 5921 return 0; 5922 5923 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE)) 5924 return 0; 5925 5926 rq = cpu_rq(smp_processor_id()); 5927 lockdep_assert_rq_held(rq); 5928 5929 /* 5930 * The BPF scheduler may choose to dispatch tasks back to 5931 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 5932 * first to avoid processing the same tasks repeatedly. 5933 */ 5934 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 5935 scx.dsq_list.node) { 5936 /* 5937 * If @p is being migrated, @p's current CPU may not agree with 5938 * its allowed CPUs and the migration_cpu_stop is about to 5939 * deactivate and re-activate @p anyway. Skip re-enqueueing. 5940 * 5941 * While racing sched property changes may also dequeue and 5942 * re-enqueue a migrating task while its current CPU and allowed 5943 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 5944 * the current local DSQ for running tasks and thus are not 5945 * visible to the BPF scheduler. 5946 */ 5947 if (p->migration_pending) 5948 continue; 5949 5950 dispatch_dequeue(rq, p); 5951 list_add_tail(&p->scx.dsq_list.node, &tasks); 5952 } 5953 5954 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 5955 list_del_init(&p->scx.dsq_list.node); 5956 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 5957 nr_enqueued++; 5958 } 5959 5960 return nr_enqueued; 5961 } 5962 5963 __bpf_kfunc_end_defs(); 5964 5965 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 5966 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 5967 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 5968 5969 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 5970 .owner = THIS_MODULE, 5971 .set = &scx_kfunc_ids_cpu_release, 5972 }; 5973 5974 __bpf_kfunc_start_defs(); 5975 5976 /** 5977 * scx_bpf_create_dsq - Create a custom DSQ 5978 * @dsq_id: DSQ to create 5979 * @node: NUMA node to allocate from 5980 * 5981 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 5982 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 5983 */ 5984 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 5985 { 5986 struct scx_dispatch_q *dsq; 5987 struct scx_sched *sch; 5988 s32 ret; 5989 5990 if (unlikely(node >= (int)nr_node_ids || 5991 (node < 0 && node != NUMA_NO_NODE))) 5992 return -EINVAL; 5993 5994 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 5995 return -EINVAL; 5996 5997 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5998 if (!dsq) 5999 return -ENOMEM; 6000 6001 init_dsq(dsq, dsq_id); 6002 6003 rcu_read_lock(); 6004 6005 sch = rcu_dereference(scx_root); 6006 if (sch) 6007 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 6008 dsq_hash_params); 6009 else 6010 ret = -ENODEV; 6011 6012 rcu_read_unlock(); 6013 if (ret) 6014 kfree(dsq); 6015 return ret; 6016 } 6017 6018 __bpf_kfunc_end_defs(); 6019 6020 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6021 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6022 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 6023 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 6024 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6025 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6026 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6027 6028 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6029 .owner = THIS_MODULE, 6030 .set = &scx_kfunc_ids_unlocked, 6031 }; 6032 6033 __bpf_kfunc_start_defs(); 6034 6035 /** 6036 * scx_bpf_task_set_slice - Set task's time slice 6037 * @p: task of interest 6038 * @slice: time slice to set in nsecs 6039 * 6040 * Set @p's time slice to @slice. Returns %true on success, %false if the 6041 * calling scheduler doesn't have authority over @p. 6042 */ 6043 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice) 6044 { 6045 p->scx.slice = slice; 6046 return true; 6047 } 6048 6049 /** 6050 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering 6051 * @p: task of interest 6052 * @vtime: virtual time to set 6053 * 6054 * Set @p's virtual time to @vtime. Returns %true on success, %false if the 6055 * calling scheduler doesn't have authority over @p. 6056 */ 6057 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime) 6058 { 6059 p->scx.dsq_vtime = vtime; 6060 return true; 6061 } 6062 6063 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags) 6064 { 6065 struct rq *this_rq; 6066 unsigned long irq_flags; 6067 6068 if (!ops_cpu_valid(sch, cpu, NULL)) 6069 return; 6070 6071 local_irq_save(irq_flags); 6072 6073 this_rq = this_rq(); 6074 6075 /* 6076 * While bypassing for PM ops, IRQ handling may not be online which can 6077 * lead to irq_work_queue() malfunction such as infinite busy wait for 6078 * IRQ status update. Suppress kicking. 6079 */ 6080 if (scx_rq_bypassing(this_rq)) 6081 goto out; 6082 6083 /* 6084 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6085 * rq locks. We can probably be smarter and avoid bouncing if called 6086 * from ops which don't hold a rq lock. 6087 */ 6088 if (flags & SCX_KICK_IDLE) { 6089 struct rq *target_rq = cpu_rq(cpu); 6090 6091 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6092 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6093 6094 if (raw_spin_rq_trylock(target_rq)) { 6095 if (can_skip_idle_kick(target_rq)) { 6096 raw_spin_rq_unlock(target_rq); 6097 goto out; 6098 } 6099 raw_spin_rq_unlock(target_rq); 6100 } 6101 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6102 } else { 6103 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6104 6105 if (flags & SCX_KICK_PREEMPT) 6106 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6107 if (flags & SCX_KICK_WAIT) 6108 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6109 } 6110 6111 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6112 out: 6113 local_irq_restore(irq_flags); 6114 } 6115 6116 /** 6117 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6118 * @cpu: cpu to kick 6119 * @flags: %SCX_KICK_* flags 6120 * 6121 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6122 * trigger rescheduling on a busy CPU. This can be called from any online 6123 * scx_ops operation and the actual kicking is performed asynchronously through 6124 * an irq work. 6125 */ 6126 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6127 { 6128 struct scx_sched *sch; 6129 6130 guard(rcu)(); 6131 sch = rcu_dereference(scx_root); 6132 if (likely(sch)) 6133 scx_kick_cpu(sch, cpu, flags); 6134 } 6135 6136 /** 6137 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6138 * @dsq_id: id of the DSQ 6139 * 6140 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6141 * -%ENOENT is returned. 6142 */ 6143 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6144 { 6145 struct scx_sched *sch; 6146 struct scx_dispatch_q *dsq; 6147 s32 ret; 6148 6149 preempt_disable(); 6150 6151 sch = rcu_dereference_sched(scx_root); 6152 if (unlikely(!sch)) { 6153 ret = -ENODEV; 6154 goto out; 6155 } 6156 6157 if (dsq_id == SCX_DSQ_LOCAL) { 6158 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6159 goto out; 6160 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6161 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6162 6163 if (ops_cpu_valid(sch, cpu, NULL)) { 6164 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6165 goto out; 6166 } 6167 } else { 6168 dsq = find_user_dsq(sch, dsq_id); 6169 if (dsq) { 6170 ret = READ_ONCE(dsq->nr); 6171 goto out; 6172 } 6173 } 6174 ret = -ENOENT; 6175 out: 6176 preempt_enable(); 6177 return ret; 6178 } 6179 6180 /** 6181 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6182 * @dsq_id: DSQ to destroy 6183 * 6184 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6185 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6186 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6187 * which doesn't exist. Can be called from any online scx_ops operations. 6188 */ 6189 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6190 { 6191 struct scx_sched *sch; 6192 6193 rcu_read_lock(); 6194 sch = rcu_dereference(scx_root); 6195 if (sch) 6196 destroy_dsq(sch, dsq_id); 6197 rcu_read_unlock(); 6198 } 6199 6200 /** 6201 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6202 * @it: iterator to initialize 6203 * @dsq_id: DSQ to iterate 6204 * @flags: %SCX_DSQ_ITER_* 6205 * 6206 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6207 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6208 * tasks which are already queued when this function is invoked. 6209 */ 6210 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6211 u64 flags) 6212 { 6213 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6214 struct scx_sched *sch; 6215 6216 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6217 sizeof(struct bpf_iter_scx_dsq)); 6218 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6219 __alignof__(struct bpf_iter_scx_dsq)); 6220 6221 /* 6222 * next() and destroy() will be called regardless of the return value. 6223 * Always clear $kit->dsq. 6224 */ 6225 kit->dsq = NULL; 6226 6227 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 6228 if (unlikely(!sch)) 6229 return -ENODEV; 6230 6231 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6232 return -EINVAL; 6233 6234 kit->dsq = find_user_dsq(sch, dsq_id); 6235 if (!kit->dsq) 6236 return -ENOENT; 6237 6238 INIT_LIST_HEAD(&kit->cursor.node); 6239 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 6240 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6241 6242 return 0; 6243 } 6244 6245 /** 6246 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6247 * @it: iterator to progress 6248 * 6249 * Return the next task. See bpf_iter_scx_dsq_new(). 6250 */ 6251 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6252 { 6253 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6254 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6255 struct task_struct *p; 6256 unsigned long flags; 6257 6258 if (!kit->dsq) 6259 return NULL; 6260 6261 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6262 6263 if (list_empty(&kit->cursor.node)) 6264 p = NULL; 6265 else 6266 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6267 6268 /* 6269 * Only tasks which were queued before the iteration started are 6270 * visible. This bounds BPF iterations and guarantees that vtime never 6271 * jumps in the other direction while iterating. 6272 */ 6273 do { 6274 p = nldsq_next_task(kit->dsq, p, rev); 6275 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6276 6277 if (p) { 6278 if (rev) 6279 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6280 else 6281 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6282 } else { 6283 list_del_init(&kit->cursor.node); 6284 } 6285 6286 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6287 6288 return p; 6289 } 6290 6291 /** 6292 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6293 * @it: iterator to destroy 6294 * 6295 * Undo scx_iter_scx_dsq_new(). 6296 */ 6297 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6298 { 6299 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6300 6301 if (!kit->dsq) 6302 return; 6303 6304 if (!list_empty(&kit->cursor.node)) { 6305 unsigned long flags; 6306 6307 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6308 list_del_init(&kit->cursor.node); 6309 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6310 } 6311 kit->dsq = NULL; 6312 } 6313 6314 /** 6315 * scx_bpf_dsq_peek - Lockless peek at the first element. 6316 * @dsq_id: DSQ to examine. 6317 * 6318 * Read the first element in the DSQ. This is semantically equivalent to using 6319 * the DSQ iterator, but is lockfree. Of course, like any lockless operation, 6320 * this provides only a point-in-time snapshot, and the contents may change 6321 * by the time any subsequent locking operation reads the queue. 6322 * 6323 * Returns the pointer, or NULL indicates an empty queue OR internal error. 6324 */ 6325 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id) 6326 { 6327 struct scx_sched *sch; 6328 struct scx_dispatch_q *dsq; 6329 6330 sch = rcu_dereference(scx_root); 6331 if (unlikely(!sch)) 6332 return NULL; 6333 6334 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) { 6335 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id); 6336 return NULL; 6337 } 6338 6339 dsq = find_user_dsq(sch, dsq_id); 6340 if (unlikely(!dsq)) { 6341 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id); 6342 return NULL; 6343 } 6344 6345 return rcu_dereference(dsq->first_task); 6346 } 6347 6348 __bpf_kfunc_end_defs(); 6349 6350 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf, 6351 size_t line_size, char *fmt, unsigned long long *data, 6352 u32 data__sz) 6353 { 6354 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6355 s32 ret; 6356 6357 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6358 (data__sz && !data)) { 6359 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz); 6360 return -EINVAL; 6361 } 6362 6363 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6364 if (ret < 0) { 6365 scx_error(sch, "failed to read data fields (%d)", ret); 6366 return ret; 6367 } 6368 6369 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6370 &bprintf_data); 6371 if (ret < 0) { 6372 scx_error(sch, "format preparation failed (%d)", ret); 6373 return ret; 6374 } 6375 6376 ret = bstr_printf(line_buf, line_size, fmt, 6377 bprintf_data.bin_args); 6378 bpf_bprintf_cleanup(&bprintf_data); 6379 if (ret < 0) { 6380 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6381 return ret; 6382 } 6383 6384 return ret; 6385 } 6386 6387 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf, 6388 char *fmt, unsigned long long *data, u32 data__sz) 6389 { 6390 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line), 6391 fmt, data, data__sz); 6392 } 6393 6394 __bpf_kfunc_start_defs(); 6395 6396 /** 6397 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6398 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6399 * @fmt: error message format string 6400 * @data: format string parameters packaged using ___bpf_fill() macro 6401 * @data__sz: @data len, must end in '__sz' for the verifier 6402 * 6403 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6404 * disabling. 6405 */ 6406 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6407 unsigned long long *data, u32 data__sz) 6408 { 6409 struct scx_sched *sch; 6410 unsigned long flags; 6411 6412 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6413 sch = rcu_dereference_bh(scx_root); 6414 if (likely(sch) && 6415 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6416 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6417 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6418 } 6419 6420 /** 6421 * scx_bpf_error_bstr - Indicate fatal error 6422 * @fmt: error message format string 6423 * @data: format string parameters packaged using ___bpf_fill() macro 6424 * @data__sz: @data len, must end in '__sz' for the verifier 6425 * 6426 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6427 * disabling. 6428 */ 6429 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6430 u32 data__sz) 6431 { 6432 struct scx_sched *sch; 6433 unsigned long flags; 6434 6435 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6436 sch = rcu_dereference_bh(scx_root); 6437 if (likely(sch) && 6438 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6439 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6440 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6441 } 6442 6443 /** 6444 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6445 * @fmt: format string 6446 * @data: format string parameters packaged using ___bpf_fill() macro 6447 * @data__sz: @data len, must end in '__sz' for the verifier 6448 * 6449 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6450 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6451 * 6452 * The extra dump may be multiple lines. A single line may be split over 6453 * multiple calls. The last line is automatically terminated. 6454 */ 6455 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6456 u32 data__sz) 6457 { 6458 struct scx_sched *sch; 6459 struct scx_dump_data *dd = &scx_dump_data; 6460 struct scx_bstr_buf *buf = &dd->buf; 6461 s32 ret; 6462 6463 guard(rcu)(); 6464 6465 sch = rcu_dereference(scx_root); 6466 if (unlikely(!sch)) 6467 return; 6468 6469 if (raw_smp_processor_id() != dd->cpu) { 6470 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends"); 6471 return; 6472 } 6473 6474 /* append the formatted string to the line buf */ 6475 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor, 6476 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6477 if (ret < 0) { 6478 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6479 dd->prefix, fmt, data, data__sz, ret); 6480 return; 6481 } 6482 6483 dd->cursor += ret; 6484 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6485 6486 if (!dd->cursor) 6487 return; 6488 6489 /* 6490 * If the line buf overflowed or ends in a newline, flush it into the 6491 * dump. This is to allow the caller to generate a single line over 6492 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6493 * the line buf, the only case which can lead to an unexpected 6494 * truncation is when the caller keeps generating newlines in the middle 6495 * instead of the end consecutively. Don't do that. 6496 */ 6497 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6498 ops_dump_flush(); 6499 } 6500 6501 /** 6502 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6503 * @cpu: CPU of interest 6504 * 6505 * Return the maximum relative capacity of @cpu in relation to the most 6506 * performant CPU in the system. The return value is in the range [1, 6507 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6508 */ 6509 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6510 { 6511 struct scx_sched *sch; 6512 6513 guard(rcu)(); 6514 6515 sch = rcu_dereference(scx_root); 6516 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6517 return arch_scale_cpu_capacity(cpu); 6518 else 6519 return SCX_CPUPERF_ONE; 6520 } 6521 6522 /** 6523 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6524 * @cpu: CPU of interest 6525 * 6526 * Return the current relative performance of @cpu in relation to its maximum. 6527 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6528 * 6529 * The current performance level of a CPU in relation to the maximum performance 6530 * available in the system can be calculated as follows: 6531 * 6532 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6533 * 6534 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6535 */ 6536 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6537 { 6538 struct scx_sched *sch; 6539 6540 guard(rcu)(); 6541 6542 sch = rcu_dereference(scx_root); 6543 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6544 return arch_scale_freq_capacity(cpu); 6545 else 6546 return SCX_CPUPERF_ONE; 6547 } 6548 6549 /** 6550 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6551 * @cpu: CPU of interest 6552 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6553 * 6554 * Set the target performance level of @cpu to @perf. @perf is in linear 6555 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6556 * schedutil cpufreq governor chooses the target frequency. 6557 * 6558 * The actual performance level chosen, CPU grouping, and the overhead and 6559 * latency of the operations are dependent on the hardware and cpufreq driver in 6560 * use. Consult hardware and cpufreq documentation for more information. The 6561 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6562 */ 6563 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6564 { 6565 struct scx_sched *sch; 6566 6567 guard(rcu)(); 6568 6569 sch = rcu_dereference(sch); 6570 if (unlikely(!sch)) 6571 return; 6572 6573 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6574 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu); 6575 return; 6576 } 6577 6578 if (ops_cpu_valid(sch, cpu, NULL)) { 6579 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6580 struct rq_flags rf; 6581 6582 /* 6583 * When called with an rq lock held, restrict the operation 6584 * to the corresponding CPU to prevent ABBA deadlocks. 6585 */ 6586 if (locked_rq && rq != locked_rq) { 6587 scx_error(sch, "Invalid target CPU %d", cpu); 6588 return; 6589 } 6590 6591 /* 6592 * If no rq lock is held, allow to operate on any CPU by 6593 * acquiring the corresponding rq lock. 6594 */ 6595 if (!locked_rq) { 6596 rq_lock_irqsave(rq, &rf); 6597 update_rq_clock(rq); 6598 } 6599 6600 rq->scx.cpuperf_target = perf; 6601 cpufreq_update_util(rq, 0); 6602 6603 if (!locked_rq) 6604 rq_unlock_irqrestore(rq, &rf); 6605 } 6606 } 6607 6608 /** 6609 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6610 * 6611 * All valid node IDs in the system are smaller than the returned value. 6612 */ 6613 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6614 { 6615 return nr_node_ids; 6616 } 6617 6618 /** 6619 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6620 * 6621 * All valid CPU IDs in the system are smaller than the returned value. 6622 */ 6623 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6624 { 6625 return nr_cpu_ids; 6626 } 6627 6628 /** 6629 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6630 */ 6631 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6632 { 6633 return cpu_possible_mask; 6634 } 6635 6636 /** 6637 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6638 */ 6639 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6640 { 6641 return cpu_online_mask; 6642 } 6643 6644 /** 6645 * scx_bpf_put_cpumask - Release a possible/online cpumask 6646 * @cpumask: cpumask to release 6647 */ 6648 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6649 { 6650 /* 6651 * Empty function body because we aren't actually acquiring or releasing 6652 * a reference to a global cpumask, which is read-only in the caller and 6653 * is never released. The acquire / release semantics here are just used 6654 * to make the cpumask is a trusted pointer in the caller. 6655 */ 6656 } 6657 6658 /** 6659 * scx_bpf_task_running - Is task currently running? 6660 * @p: task of interest 6661 */ 6662 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6663 { 6664 return task_rq(p)->curr == p; 6665 } 6666 6667 /** 6668 * scx_bpf_task_cpu - CPU a task is currently associated with 6669 * @p: task of interest 6670 */ 6671 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6672 { 6673 return task_cpu(p); 6674 } 6675 6676 /** 6677 * scx_bpf_cpu_rq - Fetch the rq of a CPU 6678 * @cpu: CPU of the rq 6679 */ 6680 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 6681 { 6682 struct scx_sched *sch; 6683 6684 guard(rcu)(); 6685 6686 sch = rcu_dereference(scx_root); 6687 if (unlikely(!sch)) 6688 return NULL; 6689 6690 if (!ops_cpu_valid(sch, cpu, NULL)) 6691 return NULL; 6692 6693 if (!sch->warned_deprecated_rq) { 6694 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; " 6695 "use scx_bpf_locked_rq() when holding rq lock " 6696 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__); 6697 sch->warned_deprecated_rq = true; 6698 } 6699 6700 return cpu_rq(cpu); 6701 } 6702 6703 /** 6704 * scx_bpf_locked_rq - Return the rq currently locked by SCX 6705 * 6706 * Returns the rq if a rq lock is currently held by SCX. 6707 * Otherwise emits an error and returns NULL. 6708 */ 6709 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 6710 { 6711 struct scx_sched *sch; 6712 struct rq *rq; 6713 6714 guard(preempt)(); 6715 6716 sch = rcu_dereference_sched(scx_root); 6717 if (unlikely(!sch)) 6718 return NULL; 6719 6720 rq = scx_locked_rq(); 6721 if (!rq) { 6722 scx_error(sch, "accessing rq without holding rq lock"); 6723 return NULL; 6724 } 6725 6726 return rq; 6727 } 6728 6729 /** 6730 * scx_bpf_cpu_curr - Return remote CPU's curr task 6731 * @cpu: CPU of interest 6732 * 6733 * Callers must hold RCU read lock (KF_RCU). 6734 */ 6735 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 6736 { 6737 struct scx_sched *sch; 6738 6739 guard(rcu)(); 6740 6741 sch = rcu_dereference(scx_root); 6742 if (unlikely(!sch)) 6743 return NULL; 6744 6745 if (!ops_cpu_valid(sch, cpu, NULL)) 6746 return NULL; 6747 6748 return rcu_dereference(cpu_rq(cpu)->curr); 6749 } 6750 6751 /** 6752 * scx_bpf_task_cgroup - Return the sched cgroup of a task 6753 * @p: task of interest 6754 * 6755 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 6756 * from the scheduler's POV. SCX operations should use this function to 6757 * determine @p's current cgroup as, unlike following @p->cgroups, 6758 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 6759 * rq-locked operations. Can be called on the parameter tasks of rq-locked 6760 * operations. The restriction guarantees that @p's rq is locked by the caller. 6761 */ 6762 #ifdef CONFIG_CGROUP_SCHED 6763 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 6764 { 6765 struct task_group *tg = p->sched_task_group; 6766 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 6767 struct scx_sched *sch; 6768 6769 guard(rcu)(); 6770 6771 sch = rcu_dereference(scx_root); 6772 if (unlikely(!sch)) 6773 goto out; 6774 6775 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p)) 6776 goto out; 6777 6778 cgrp = tg_cgrp(tg); 6779 6780 out: 6781 cgroup_get(cgrp); 6782 return cgrp; 6783 } 6784 #endif 6785 6786 /** 6787 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 6788 * clock for the current CPU. The clock returned is in nanoseconds. 6789 * 6790 * It provides the following properties: 6791 * 6792 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 6793 * to account for execution time and track tasks' runtime properties. 6794 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 6795 * eventually reads a hardware timestamp counter -- is neither performant nor 6796 * scalable. scx_bpf_now() aims to provide a high-performance clock by 6797 * using the rq clock in the scheduler core whenever possible. 6798 * 6799 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 6800 * scheduler use cases, the required clock resolution is lower than the most 6801 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 6802 * uses the rq clock in the scheduler core whenever it is valid. It considers 6803 * that the rq clock is valid from the time the rq clock is updated 6804 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 6805 * 6806 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 6807 * guarantees the clock never goes backward when comparing them in the same 6808 * CPU. On the other hand, when comparing clocks in different CPUs, there 6809 * is no such guarantee -- the clock can go backward. It provides a 6810 * monotonically *non-decreasing* clock so that it would provide the same 6811 * clock values in two different scx_bpf_now() calls in the same CPU 6812 * during the same period of when the rq clock is valid. 6813 */ 6814 __bpf_kfunc u64 scx_bpf_now(void) 6815 { 6816 struct rq *rq; 6817 u64 clock; 6818 6819 preempt_disable(); 6820 6821 rq = this_rq(); 6822 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 6823 /* 6824 * If the rq clock is valid, use the cached rq clock. 6825 * 6826 * Note that scx_bpf_now() is re-entrant between a process 6827 * context and an interrupt context (e.g., timer interrupt). 6828 * However, we don't need to consider the race between them 6829 * because such race is not observable from a caller. 6830 */ 6831 clock = READ_ONCE(rq->scx.clock); 6832 } else { 6833 /* 6834 * Otherwise, return a fresh rq clock. 6835 * 6836 * The rq clock is updated outside of the rq lock. 6837 * In this case, keep the updated rq clock invalid so the next 6838 * kfunc call outside the rq lock gets a fresh rq clock. 6839 */ 6840 clock = sched_clock_cpu(cpu_of(rq)); 6841 } 6842 6843 preempt_enable(); 6844 6845 return clock; 6846 } 6847 6848 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 6849 { 6850 struct scx_event_stats *e_cpu; 6851 int cpu; 6852 6853 /* Aggregate per-CPU event counters into @events. */ 6854 memset(events, 0, sizeof(*events)); 6855 for_each_possible_cpu(cpu) { 6856 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 6857 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 6858 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 6859 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 6860 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 6861 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 6862 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 6863 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 6864 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 6865 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 6866 } 6867 } 6868 6869 /* 6870 * scx_bpf_events - Get a system-wide event counter to 6871 * @events: output buffer from a BPF program 6872 * @events__sz: @events len, must end in '__sz'' for the verifier 6873 */ 6874 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 6875 size_t events__sz) 6876 { 6877 struct scx_sched *sch; 6878 struct scx_event_stats e_sys; 6879 6880 rcu_read_lock(); 6881 sch = rcu_dereference(scx_root); 6882 if (sch) 6883 scx_read_events(sch, &e_sys); 6884 else 6885 memset(&e_sys, 0, sizeof(e_sys)); 6886 rcu_read_unlock(); 6887 6888 /* 6889 * We cannot entirely trust a BPF-provided size since a BPF program 6890 * might be compiled against a different vmlinux.h, of which 6891 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 6892 * (an older vmlinux.h). Hence, we use the smaller size to avoid 6893 * memory corruption. 6894 */ 6895 events__sz = min(events__sz, sizeof(*events)); 6896 memcpy(events, &e_sys, events__sz); 6897 } 6898 6899 __bpf_kfunc_end_defs(); 6900 6901 BTF_KFUNCS_START(scx_kfunc_ids_any) 6902 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU); 6903 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU); 6904 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 6905 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 6906 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 6907 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL) 6908 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 6909 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 6910 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 6911 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 6912 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 6913 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 6914 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 6915 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 6916 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 6917 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 6918 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 6919 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 6920 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 6921 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 6922 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 6923 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 6924 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 6925 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 6926 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED) 6927 #ifdef CONFIG_CGROUP_SCHED 6928 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 6929 #endif 6930 BTF_ID_FLAGS(func, scx_bpf_now) 6931 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 6932 BTF_KFUNCS_END(scx_kfunc_ids_any) 6933 6934 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 6935 .owner = THIS_MODULE, 6936 .set = &scx_kfunc_ids_any, 6937 }; 6938 6939 static int __init scx_init(void) 6940 { 6941 int ret; 6942 6943 /* 6944 * kfunc registration can't be done from init_sched_ext_class() as 6945 * register_btf_kfunc_id_set() needs most of the system to be up. 6946 * 6947 * Some kfuncs are context-sensitive and can only be called from 6948 * specific SCX ops. They are grouped into BTF sets accordingly. 6949 * Unfortunately, BPF currently doesn't have a way of enforcing such 6950 * restrictions. Eventually, the verifier should be able to enforce 6951 * them. For now, register them the same and make each kfunc explicitly 6952 * check using scx_kf_allowed(). 6953 */ 6954 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6955 &scx_kfunc_set_enqueue_dispatch)) || 6956 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6957 &scx_kfunc_set_dispatch)) || 6958 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6959 &scx_kfunc_set_cpu_release)) || 6960 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6961 &scx_kfunc_set_unlocked)) || 6962 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6963 &scx_kfunc_set_unlocked)) || 6964 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6965 &scx_kfunc_set_any)) || 6966 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 6967 &scx_kfunc_set_any)) || 6968 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6969 &scx_kfunc_set_any))) { 6970 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 6971 return ret; 6972 } 6973 6974 ret = scx_idle_init(); 6975 if (ret) { 6976 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 6977 return ret; 6978 } 6979 6980 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 6981 if (ret) { 6982 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 6983 return ret; 6984 } 6985 6986 ret = register_pm_notifier(&scx_pm_notifier); 6987 if (ret) { 6988 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 6989 return ret; 6990 } 6991 6992 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 6993 if (!scx_kset) { 6994 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 6995 return -ENOMEM; 6996 } 6997 6998 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 6999 if (ret < 0) { 7000 pr_err("sched_ext: Failed to add global attributes\n"); 7001 return ret; 7002 } 7003 7004 return 0; 7005 } 7006 __initcall(scx_init); 7007