1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_RAW_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static int scx_bypass_depth; 37 static cpumask_var_t scx_bypass_lb_donee_cpumask; 38 static cpumask_var_t scx_bypass_lb_resched_cpumask; 39 static bool scx_aborting; 40 static bool scx_init_task_enabled; 41 static bool scx_switching_all; 42 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 43 44 /* 45 * Tracks whether scx_enable() called scx_bypass(true). Used to balance bypass 46 * depth on enable failure. Will be removed when bypass depth is moved into the 47 * sched instance. 48 */ 49 static bool scx_bypassed_for_enable; 50 51 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 52 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 53 54 /* 55 * A monotically increasing sequence number that is incremented every time a 56 * scheduler is enabled. This can be used by to check if any custom sched_ext 57 * scheduler has ever been used in the system. 58 */ 59 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 60 61 /* 62 * The maximum amount of time in jiffies that a task may be runnable without 63 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 64 * scx_error(). 65 */ 66 static unsigned long scx_watchdog_timeout; 67 68 /* 69 * The last time the delayed work was run. This delayed work relies on 70 * ksoftirqd being able to run to service timer interrupts, so it's possible 71 * that this work itself could get wedged. To account for this, we check that 72 * it's not stalled in the timer tick, and trigger an error if it is. 73 */ 74 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 75 76 static struct delayed_work scx_watchdog_work; 77 78 /* 79 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence 80 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu 81 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated 82 * lazily when enabling and freed when disabling to avoid waste when sched_ext 83 * isn't active. 84 */ 85 struct scx_kick_syncs { 86 struct rcu_head rcu; 87 unsigned long syncs[]; 88 }; 89 90 static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs); 91 92 /* 93 * Direct dispatch marker. 94 * 95 * Non-NULL values are used for direct dispatch from enqueue path. A valid 96 * pointer points to the task currently being enqueued. An ERR_PTR value is used 97 * to indicate that direct dispatch has already happened. 98 */ 99 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 100 101 static const struct rhashtable_params dsq_hash_params = { 102 .key_len = sizeof_field(struct scx_dispatch_q, id), 103 .key_offset = offsetof(struct scx_dispatch_q, id), 104 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 105 }; 106 107 static LLIST_HEAD(dsqs_to_free); 108 109 /* dispatch buf */ 110 struct scx_dsp_buf_ent { 111 struct task_struct *task; 112 unsigned long qseq; 113 u64 dsq_id; 114 u64 enq_flags; 115 }; 116 117 static u32 scx_dsp_max_batch; 118 119 struct scx_dsp_ctx { 120 struct rq *rq; 121 u32 cursor; 122 u32 nr_tasks; 123 struct scx_dsp_buf_ent buf[]; 124 }; 125 126 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 127 128 /* string formatting from BPF */ 129 struct scx_bstr_buf { 130 u64 data[MAX_BPRINTF_VARARGS]; 131 char line[SCX_EXIT_MSG_LEN]; 132 }; 133 134 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 135 static struct scx_bstr_buf scx_exit_bstr_buf; 136 137 /* ops debug dump */ 138 struct scx_dump_data { 139 s32 cpu; 140 bool first; 141 s32 cursor; 142 struct seq_buf *s; 143 const char *prefix; 144 struct scx_bstr_buf buf; 145 }; 146 147 static struct scx_dump_data scx_dump_data = { 148 .cpu = -1, 149 }; 150 151 /* /sys/kernel/sched_ext interface */ 152 static struct kset *scx_kset; 153 154 /* 155 * Parameters that can be adjusted through /sys/module/sched_ext/parameters. 156 * There usually is no reason to modify these as normal scheduler operation 157 * shouldn't be affected by them. The knobs are primarily for debugging. 158 */ 159 static u64 scx_slice_dfl = SCX_SLICE_DFL; 160 static unsigned int scx_slice_bypass_us = SCX_SLICE_BYPASS / NSEC_PER_USEC; 161 static unsigned int scx_bypass_lb_intv_us = SCX_BYPASS_LB_DFL_INTV_US; 162 163 static int set_slice_us(const char *val, const struct kernel_param *kp) 164 { 165 return param_set_uint_minmax(val, kp, 100, 100 * USEC_PER_MSEC); 166 } 167 168 static const struct kernel_param_ops slice_us_param_ops = { 169 .set = set_slice_us, 170 .get = param_get_uint, 171 }; 172 173 static int set_bypass_lb_intv_us(const char *val, const struct kernel_param *kp) 174 { 175 return param_set_uint_minmax(val, kp, 0, 10 * USEC_PER_SEC); 176 } 177 178 static const struct kernel_param_ops bypass_lb_intv_us_param_ops = { 179 .set = set_bypass_lb_intv_us, 180 .get = param_get_uint, 181 }; 182 183 #undef MODULE_PARAM_PREFIX 184 #define MODULE_PARAM_PREFIX "sched_ext." 185 186 module_param_cb(slice_bypass_us, &slice_us_param_ops, &scx_slice_bypass_us, 0600); 187 MODULE_PARM_DESC(slice_bypass_us, "bypass slice in microseconds, applied on [un]load (100us to 100ms)"); 188 module_param_cb(bypass_lb_intv_us, &bypass_lb_intv_us_param_ops, &scx_bypass_lb_intv_us, 0600); 189 MODULE_PARM_DESC(bypass_lb_intv_us, "bypass load balance interval in microseconds (0 (disable) to 10s)"); 190 191 #undef MODULE_PARAM_PREFIX 192 193 #define CREATE_TRACE_POINTS 194 #include <trace/events/sched_ext.h> 195 196 static void process_ddsp_deferred_locals(struct rq *rq); 197 static u32 reenq_local(struct rq *rq); 198 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags); 199 static bool scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 200 s64 exit_code, const char *fmt, va_list args); 201 202 static __printf(4, 5) bool scx_exit(struct scx_sched *sch, 203 enum scx_exit_kind kind, s64 exit_code, 204 const char *fmt, ...) 205 { 206 va_list args; 207 bool ret; 208 209 va_start(args, fmt); 210 ret = scx_vexit(sch, kind, exit_code, fmt, args); 211 va_end(args); 212 213 return ret; 214 } 215 216 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 217 #define scx_verror(sch, fmt, args) scx_vexit((sch), SCX_EXIT_ERROR, 0, fmt, args) 218 219 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 220 221 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 222 { 223 if (time_after(at, now)) 224 return jiffies_to_msecs(at - now); 225 else 226 return -(long)jiffies_to_msecs(now - at); 227 } 228 229 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 230 static u32 higher_bits(u32 flags) 231 { 232 return ~((1 << fls(flags)) - 1); 233 } 234 235 /* return the mask with only the highest bit set */ 236 static u32 highest_bit(u32 flags) 237 { 238 int bit = fls(flags); 239 return ((u64)1 << bit) >> 1; 240 } 241 242 static bool u32_before(u32 a, u32 b) 243 { 244 return (s32)(a - b) < 0; 245 } 246 247 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch, 248 struct task_struct *p) 249 { 250 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 251 } 252 253 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 254 { 255 return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params); 256 } 257 258 static const struct sched_class *scx_setscheduler_class(struct task_struct *p) 259 { 260 if (p->sched_class == &stop_sched_class) 261 return &stop_sched_class; 262 263 return __setscheduler_class(p->policy, p->prio); 264 } 265 266 /* 267 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 268 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 269 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 270 * whether it's running from an allowed context. 271 * 272 * @mask is constant, always inline to cull the mask calculations. 273 */ 274 static __always_inline void scx_kf_allow(u32 mask) 275 { 276 /* nesting is allowed only in increasing scx_kf_mask order */ 277 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 278 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 279 current->scx.kf_mask, mask); 280 current->scx.kf_mask |= mask; 281 barrier(); 282 } 283 284 static void scx_kf_disallow(u32 mask) 285 { 286 barrier(); 287 current->scx.kf_mask &= ~mask; 288 } 289 290 /* 291 * Track the rq currently locked. 292 * 293 * This allows kfuncs to safely operate on rq from any scx ops callback, 294 * knowing which rq is already locked. 295 */ 296 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 297 298 static inline void update_locked_rq(struct rq *rq) 299 { 300 /* 301 * Check whether @rq is actually locked. This can help expose bugs 302 * or incorrect assumptions about the context in which a kfunc or 303 * callback is executed. 304 */ 305 if (rq) 306 lockdep_assert_rq_held(rq); 307 __this_cpu_write(scx_locked_rq_state, rq); 308 } 309 310 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 311 do { \ 312 if (rq) \ 313 update_locked_rq(rq); \ 314 if (mask) { \ 315 scx_kf_allow(mask); \ 316 (sch)->ops.op(args); \ 317 scx_kf_disallow(mask); \ 318 } else { \ 319 (sch)->ops.op(args); \ 320 } \ 321 if (rq) \ 322 update_locked_rq(NULL); \ 323 } while (0) 324 325 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 326 ({ \ 327 __typeof__((sch)->ops.op(args)) __ret; \ 328 \ 329 if (rq) \ 330 update_locked_rq(rq); \ 331 if (mask) { \ 332 scx_kf_allow(mask); \ 333 __ret = (sch)->ops.op(args); \ 334 scx_kf_disallow(mask); \ 335 } else { \ 336 __ret = (sch)->ops.op(args); \ 337 } \ 338 if (rq) \ 339 update_locked_rq(NULL); \ 340 __ret; \ 341 }) 342 343 /* 344 * Some kfuncs are allowed only on the tasks that are subjects of the 345 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 346 * restrictions, the following SCX_CALL_OP_*() variants should be used when 347 * invoking scx_ops operations that take task arguments. These can only be used 348 * for non-nesting operations due to the way the tasks are tracked. 349 * 350 * kfuncs which can only operate on such tasks can in turn use 351 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 352 * the specific task. 353 */ 354 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 355 do { \ 356 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 357 current->scx.kf_tasks[0] = task; \ 358 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 359 current->scx.kf_tasks[0] = NULL; \ 360 } while (0) 361 362 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 363 ({ \ 364 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 365 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 366 current->scx.kf_tasks[0] = task; \ 367 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 368 current->scx.kf_tasks[0] = NULL; \ 369 __ret; \ 370 }) 371 372 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 373 ({ \ 374 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 375 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 376 current->scx.kf_tasks[0] = task0; \ 377 current->scx.kf_tasks[1] = task1; \ 378 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 379 current->scx.kf_tasks[0] = NULL; \ 380 current->scx.kf_tasks[1] = NULL; \ 381 __ret; \ 382 }) 383 384 /* @mask is constant, always inline to cull unnecessary branches */ 385 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask) 386 { 387 if (unlikely(!(current->scx.kf_mask & mask))) { 388 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x", 389 mask, current->scx.kf_mask); 390 return false; 391 } 392 393 /* 394 * Enforce nesting boundaries. e.g. A kfunc which can be called from 395 * DISPATCH must not be called if we're running DEQUEUE which is nested 396 * inside ops.dispatch(). We don't need to check boundaries for any 397 * blocking kfuncs as the verifier ensures they're only called from 398 * sleepable progs. 399 */ 400 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 401 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 402 scx_error(sch, "cpu_release kfunc called from a nested operation"); 403 return false; 404 } 405 406 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 407 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 408 scx_error(sch, "dispatch kfunc called from a nested operation"); 409 return false; 410 } 411 412 return true; 413 } 414 415 /* see SCX_CALL_OP_TASK() */ 416 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch, 417 u32 mask, 418 struct task_struct *p) 419 { 420 if (!scx_kf_allowed(sch, mask)) 421 return false; 422 423 if (unlikely((p != current->scx.kf_tasks[0] && 424 p != current->scx.kf_tasks[1]))) { 425 scx_error(sch, "called on a task not being operated on"); 426 return false; 427 } 428 429 return true; 430 } 431 432 /** 433 * nldsq_next_task - Iterate to the next task in a non-local DSQ 434 * @dsq: user dsq being iterated 435 * @cur: current position, %NULL to start iteration 436 * @rev: walk backwards 437 * 438 * Returns %NULL when iteration is finished. 439 */ 440 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 441 struct task_struct *cur, bool rev) 442 { 443 struct list_head *list_node; 444 struct scx_dsq_list_node *dsq_lnode; 445 446 lockdep_assert_held(&dsq->lock); 447 448 if (cur) 449 list_node = &cur->scx.dsq_list.node; 450 else 451 list_node = &dsq->list; 452 453 /* find the next task, need to skip BPF iteration cursors */ 454 do { 455 if (rev) 456 list_node = list_node->prev; 457 else 458 list_node = list_node->next; 459 460 if (list_node == &dsq->list) 461 return NULL; 462 463 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 464 node); 465 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 466 467 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 468 } 469 470 #define nldsq_for_each_task(p, dsq) \ 471 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 472 (p) = nldsq_next_task((dsq), (p), false)) 473 474 475 /* 476 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 477 * dispatch order. BPF-visible iterator is opaque and larger to allow future 478 * changes without breaking backward compatibility. Can be used with 479 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 480 */ 481 enum scx_dsq_iter_flags { 482 /* iterate in the reverse dispatch order */ 483 SCX_DSQ_ITER_REV = 1U << 16, 484 485 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 486 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 487 488 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 489 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 490 __SCX_DSQ_ITER_HAS_SLICE | 491 __SCX_DSQ_ITER_HAS_VTIME, 492 }; 493 494 struct bpf_iter_scx_dsq_kern { 495 struct scx_dsq_list_node cursor; 496 struct scx_dispatch_q *dsq; 497 u64 slice; 498 u64 vtime; 499 } __attribute__((aligned(8))); 500 501 struct bpf_iter_scx_dsq { 502 u64 __opaque[6]; 503 } __attribute__((aligned(8))); 504 505 506 /* 507 * SCX task iterator. 508 */ 509 struct scx_task_iter { 510 struct sched_ext_entity cursor; 511 struct task_struct *locked_task; 512 struct rq *rq; 513 struct rq_flags rf; 514 u32 cnt; 515 bool list_locked; 516 }; 517 518 /** 519 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 520 * @iter: iterator to init 521 * 522 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 523 * must eventually be stopped with scx_task_iter_stop(). 524 * 525 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 526 * between this and the first next() call or between any two next() calls. If 527 * the locks are released between two next() calls, the caller is responsible 528 * for ensuring that the task being iterated remains accessible either through 529 * RCU read lock or obtaining a reference count. 530 * 531 * All tasks which existed when the iteration started are guaranteed to be 532 * visited as long as they are not dead. 533 */ 534 static void scx_task_iter_start(struct scx_task_iter *iter) 535 { 536 memset(iter, 0, sizeof(*iter)); 537 538 raw_spin_lock_irq(&scx_tasks_lock); 539 540 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 541 list_add(&iter->cursor.tasks_node, &scx_tasks); 542 iter->list_locked = true; 543 } 544 545 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 546 { 547 if (iter->locked_task) { 548 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 549 iter->locked_task = NULL; 550 } 551 } 552 553 /** 554 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 555 * @iter: iterator to unlock 556 * 557 * If @iter is in the middle of a locked iteration, it may be locking the rq of 558 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 559 * This function can be safely called anytime during an iteration. The next 560 * iterator operation will automatically restore the necessary locking. 561 */ 562 static void scx_task_iter_unlock(struct scx_task_iter *iter) 563 { 564 __scx_task_iter_rq_unlock(iter); 565 if (iter->list_locked) { 566 iter->list_locked = false; 567 raw_spin_unlock_irq(&scx_tasks_lock); 568 } 569 } 570 571 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 572 { 573 if (!iter->list_locked) { 574 raw_spin_lock_irq(&scx_tasks_lock); 575 iter->list_locked = true; 576 } 577 } 578 579 /** 580 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 581 * @iter: iterator to exit 582 * 583 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 584 * which is released on return. If the iterator holds a task's rq lock, that rq 585 * lock is also released. See scx_task_iter_start() for details. 586 */ 587 static void scx_task_iter_stop(struct scx_task_iter *iter) 588 { 589 __scx_task_iter_maybe_relock(iter); 590 list_del_init(&iter->cursor.tasks_node); 591 scx_task_iter_unlock(iter); 592 } 593 594 /** 595 * scx_task_iter_next - Next task 596 * @iter: iterator to walk 597 * 598 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 599 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 600 * by holding scx_tasks_lock for too long. 601 */ 602 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 603 { 604 struct list_head *cursor = &iter->cursor.tasks_node; 605 struct sched_ext_entity *pos; 606 607 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 608 scx_task_iter_unlock(iter); 609 cond_resched(); 610 } 611 612 __scx_task_iter_maybe_relock(iter); 613 614 list_for_each_entry(pos, cursor, tasks_node) { 615 if (&pos->tasks_node == &scx_tasks) 616 return NULL; 617 if (!(pos->flags & SCX_TASK_CURSOR)) { 618 list_move(cursor, &pos->tasks_node); 619 return container_of(pos, struct task_struct, scx); 620 } 621 } 622 623 /* can't happen, should always terminate at scx_tasks above */ 624 BUG(); 625 } 626 627 /** 628 * scx_task_iter_next_locked - Next non-idle task with its rq locked 629 * @iter: iterator to walk 630 * 631 * Visit the non-idle task with its rq lock held. Allows callers to specify 632 * whether they would like to filter out dead tasks. See scx_task_iter_start() 633 * for details. 634 */ 635 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 636 { 637 struct task_struct *p; 638 639 __scx_task_iter_rq_unlock(iter); 640 641 while ((p = scx_task_iter_next(iter))) { 642 /* 643 * scx_task_iter is used to prepare and move tasks into SCX 644 * while loading the BPF scheduler and vice-versa while 645 * unloading. The init_tasks ("swappers") should be excluded 646 * from the iteration because: 647 * 648 * - It's unsafe to use __setschduler_prio() on an init_task to 649 * determine the sched_class to use as it won't preserve its 650 * idle_sched_class. 651 * 652 * - ops.init/exit_task() can easily be confused if called with 653 * init_tasks as they, e.g., share PID 0. 654 * 655 * As init_tasks are never scheduled through SCX, they can be 656 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 657 * doesn't work here: 658 * 659 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 660 * yet been onlined. 661 * 662 * - %PF_IDLE can be set on tasks that are not init_tasks. See 663 * play_idle_precise() used by CONFIG_IDLE_INJECT. 664 * 665 * Test for idle_sched_class as only init_tasks are on it. 666 */ 667 if (p->sched_class != &idle_sched_class) 668 break; 669 } 670 if (!p) 671 return NULL; 672 673 iter->rq = task_rq_lock(p, &iter->rf); 674 iter->locked_task = p; 675 676 return p; 677 } 678 679 /** 680 * scx_add_event - Increase an event counter for 'name' by 'cnt' 681 * @sch: scx_sched to account events for 682 * @name: an event name defined in struct scx_event_stats 683 * @cnt: the number of the event occurred 684 * 685 * This can be used when preemption is not disabled. 686 */ 687 #define scx_add_event(sch, name, cnt) do { \ 688 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 689 trace_sched_ext_event(#name, (cnt)); \ 690 } while(0) 691 692 /** 693 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 694 * @sch: scx_sched to account events for 695 * @name: an event name defined in struct scx_event_stats 696 * @cnt: the number of the event occurred 697 * 698 * This should be used only when preemption is disabled. 699 */ 700 #define __scx_add_event(sch, name, cnt) do { \ 701 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 702 trace_sched_ext_event(#name, cnt); \ 703 } while(0) 704 705 /** 706 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 707 * @dst_e: destination event stats 708 * @src_e: source event stats 709 * @kind: a kind of event to be aggregated 710 */ 711 #define scx_agg_event(dst_e, src_e, kind) do { \ 712 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 713 } while(0) 714 715 /** 716 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 717 * @s: output seq_buf 718 * @events: event stats 719 * @kind: a kind of event to dump 720 */ 721 #define scx_dump_event(s, events, kind) do { \ 722 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 723 } while (0) 724 725 726 static void scx_read_events(struct scx_sched *sch, 727 struct scx_event_stats *events); 728 729 static enum scx_enable_state scx_enable_state(void) 730 { 731 return atomic_read(&scx_enable_state_var); 732 } 733 734 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 735 { 736 return atomic_xchg(&scx_enable_state_var, to); 737 } 738 739 static bool scx_tryset_enable_state(enum scx_enable_state to, 740 enum scx_enable_state from) 741 { 742 int from_v = from; 743 744 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 745 } 746 747 /** 748 * wait_ops_state - Busy-wait the specified ops state to end 749 * @p: target task 750 * @opss: state to wait the end of 751 * 752 * Busy-wait for @p to transition out of @opss. This can only be used when the 753 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 754 * has load_acquire semantics to ensure that the caller can see the updates made 755 * in the enqueueing and dispatching paths. 756 */ 757 static void wait_ops_state(struct task_struct *p, unsigned long opss) 758 { 759 do { 760 cpu_relax(); 761 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 762 } 763 764 static inline bool __cpu_valid(s32 cpu) 765 { 766 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 767 } 768 769 /** 770 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 771 * @sch: scx_sched to abort on error 772 * @cpu: cpu number which came from a BPF ops 773 * @where: extra information reported on error 774 * 775 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 776 * Verify that it is in range and one of the possible cpus. If invalid, trigger 777 * an ops error. 778 */ 779 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 780 { 781 if (__cpu_valid(cpu)) { 782 return true; 783 } else { 784 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 785 return false; 786 } 787 } 788 789 /** 790 * ops_sanitize_err - Sanitize a -errno value 791 * @sch: scx_sched to error out on error 792 * @ops_name: operation to blame on failure 793 * @err: -errno value to sanitize 794 * 795 * Verify @err is a valid -errno. If not, trigger scx_error() and return 796 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 797 * cause misbehaviors. For an example, a large negative return from 798 * ops.init_task() triggers an oops when passed up the call chain because the 799 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 800 * handled as a pointer. 801 */ 802 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 803 { 804 if (err < 0 && err >= -MAX_ERRNO) 805 return err; 806 807 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 808 return -EPROTO; 809 } 810 811 static void run_deferred(struct rq *rq) 812 { 813 process_ddsp_deferred_locals(rq); 814 815 if (local_read(&rq->scx.reenq_local_deferred)) { 816 local_set(&rq->scx.reenq_local_deferred, 0); 817 reenq_local(rq); 818 } 819 } 820 821 static void deferred_bal_cb_workfn(struct rq *rq) 822 { 823 run_deferred(rq); 824 } 825 826 static void deferred_irq_workfn(struct irq_work *irq_work) 827 { 828 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 829 830 raw_spin_rq_lock(rq); 831 run_deferred(rq); 832 raw_spin_rq_unlock(rq); 833 } 834 835 /** 836 * schedule_deferred - Schedule execution of deferred actions on an rq 837 * @rq: target rq 838 * 839 * Schedule execution of deferred actions on @rq. Deferred actions are executed 840 * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks 841 * to other rqs. 842 */ 843 static void schedule_deferred(struct rq *rq) 844 { 845 /* 846 * Queue an irq work. They are executed on IRQ re-enable which may take 847 * a bit longer than the scheduler hook in schedule_deferred_locked(). 848 */ 849 irq_work_queue(&rq->scx.deferred_irq_work); 850 } 851 852 /** 853 * schedule_deferred_locked - Schedule execution of deferred actions on an rq 854 * @rq: target rq 855 * 856 * Schedule execution of deferred actions on @rq. Equivalent to 857 * schedule_deferred() but requires @rq to be locked and can be more efficient. 858 */ 859 static void schedule_deferred_locked(struct rq *rq) 860 { 861 lockdep_assert_rq_held(rq); 862 863 /* 864 * If in the middle of waking up a task, task_woken_scx() will be called 865 * afterwards which will then run the deferred actions, no need to 866 * schedule anything. 867 */ 868 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 869 return; 870 871 /* Don't do anything if there already is a deferred operation. */ 872 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING) 873 return; 874 875 /* 876 * If in balance, the balance callbacks will be called before rq lock is 877 * released. Schedule one. 878 * 879 * 880 * We can't directly insert the callback into the 881 * rq's list: The call can drop its lock and make the pending balance 882 * callback visible to unrelated code paths that call rq_pin_lock(). 883 * 884 * Just let balance_one() know that it must do it itself. 885 */ 886 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 887 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING; 888 return; 889 } 890 891 /* 892 * No scheduler hooks available. Use the generic irq_work path. The 893 * above WAKEUP and BALANCE paths should cover most of the cases and the 894 * time to IRQ re-enable shouldn't be long. 895 */ 896 schedule_deferred(rq); 897 } 898 899 /** 900 * touch_core_sched - Update timestamp used for core-sched task ordering 901 * @rq: rq to read clock from, must be locked 902 * @p: task to update the timestamp for 903 * 904 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 905 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 906 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 907 * exhaustion). 908 */ 909 static void touch_core_sched(struct rq *rq, struct task_struct *p) 910 { 911 lockdep_assert_rq_held(rq); 912 913 #ifdef CONFIG_SCHED_CORE 914 /* 915 * It's okay to update the timestamp spuriously. Use 916 * sched_core_disabled() which is cheaper than enabled(). 917 * 918 * As this is used to determine ordering between tasks of sibling CPUs, 919 * it may be better to use per-core dispatch sequence instead. 920 */ 921 if (!sched_core_disabled()) 922 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 923 #endif 924 } 925 926 /** 927 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 928 * @rq: rq to read clock from, must be locked 929 * @p: task being dispatched 930 * 931 * If the BPF scheduler implements custom core-sched ordering via 932 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 933 * ordering within each local DSQ. This function is called from dispatch paths 934 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 935 */ 936 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 937 { 938 lockdep_assert_rq_held(rq); 939 940 #ifdef CONFIG_SCHED_CORE 941 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 942 touch_core_sched(rq, p); 943 #endif 944 } 945 946 static void update_curr_scx(struct rq *rq) 947 { 948 struct task_struct *curr = rq->curr; 949 s64 delta_exec; 950 951 delta_exec = update_curr_common(rq); 952 if (unlikely(delta_exec <= 0)) 953 return; 954 955 if (curr->scx.slice != SCX_SLICE_INF) { 956 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 957 if (!curr->scx.slice) 958 touch_core_sched(rq, curr); 959 } 960 } 961 962 static bool scx_dsq_priq_less(struct rb_node *node_a, 963 const struct rb_node *node_b) 964 { 965 const struct task_struct *a = 966 container_of(node_a, struct task_struct, scx.dsq_priq); 967 const struct task_struct *b = 968 container_of(node_b, struct task_struct, scx.dsq_priq); 969 970 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 971 } 972 973 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 974 { 975 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 976 WRITE_ONCE(dsq->nr, dsq->nr + delta); 977 } 978 979 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p) 980 { 981 p->scx.slice = READ_ONCE(scx_slice_dfl); 982 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1); 983 } 984 985 static void local_dsq_post_enq(struct scx_dispatch_q *dsq, struct task_struct *p, 986 u64 enq_flags) 987 { 988 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 989 bool preempt = false; 990 991 /* 992 * If @rq is in balance, the CPU is already vacant and looking for the 993 * next task to run. No need to preempt or trigger resched after moving 994 * @p into its local DSQ. 995 */ 996 if (rq->scx.flags & SCX_RQ_IN_BALANCE) 997 return; 998 999 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1000 rq->curr->sched_class == &ext_sched_class) { 1001 rq->curr->scx.slice = 0; 1002 preempt = true; 1003 } 1004 1005 if (preempt || sched_class_above(&ext_sched_class, rq->curr->sched_class)) 1006 resched_curr(rq); 1007 } 1008 1009 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 1010 struct task_struct *p, u64 enq_flags) 1011 { 1012 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1013 1014 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1015 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1016 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1017 1018 if (!is_local) { 1019 raw_spin_lock_nested(&dsq->lock, 1020 (enq_flags & SCX_ENQ_NESTED) ? SINGLE_DEPTH_NESTING : 0); 1021 1022 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1023 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 1024 /* fall back to the global dsq */ 1025 raw_spin_unlock(&dsq->lock); 1026 dsq = find_global_dsq(sch, p); 1027 raw_spin_lock(&dsq->lock); 1028 } 1029 } 1030 1031 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1032 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1033 /* 1034 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1035 * their FIFO queues. To avoid confusion and accidentally 1036 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1037 * disallow any internal DSQ from doing vtime ordering of 1038 * tasks. 1039 */ 1040 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 1041 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1042 } 1043 1044 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1045 struct rb_node *rbp; 1046 1047 /* 1048 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1049 * linked to both the rbtree and list on PRIQs, this can only be 1050 * tested easily when adding the first task. 1051 */ 1052 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1053 nldsq_next_task(dsq, NULL, false))) 1054 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1055 dsq->id); 1056 1057 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1058 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1059 1060 /* 1061 * Find the previous task and insert after it on the list so 1062 * that @dsq->list is vtime ordered. 1063 */ 1064 rbp = rb_prev(&p->scx.dsq_priq); 1065 if (rbp) { 1066 struct task_struct *prev = 1067 container_of(rbp, struct task_struct, 1068 scx.dsq_priq); 1069 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1070 /* first task unchanged - no update needed */ 1071 } else { 1072 list_add(&p->scx.dsq_list.node, &dsq->list); 1073 /* not builtin and new task is at head - use fastpath */ 1074 rcu_assign_pointer(dsq->first_task, p); 1075 } 1076 } else { 1077 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1078 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1079 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1080 dsq->id); 1081 1082 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) { 1083 list_add(&p->scx.dsq_list.node, &dsq->list); 1084 /* new task inserted at head - use fastpath */ 1085 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 1086 rcu_assign_pointer(dsq->first_task, p); 1087 } else { 1088 bool was_empty; 1089 1090 was_empty = list_empty(&dsq->list); 1091 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1092 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 1093 rcu_assign_pointer(dsq->first_task, p); 1094 } 1095 } 1096 1097 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1098 dsq->seq++; 1099 p->scx.dsq_seq = dsq->seq; 1100 1101 dsq_mod_nr(dsq, 1); 1102 p->scx.dsq = dsq; 1103 1104 /* 1105 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1106 * direct dispatch path, but we clear them here because the direct 1107 * dispatch verdict may be overridden on the enqueue path during e.g. 1108 * bypass. 1109 */ 1110 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1111 p->scx.ddsp_enq_flags = 0; 1112 1113 /* 1114 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1115 * match waiters' load_acquire. 1116 */ 1117 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1118 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1119 1120 if (is_local) 1121 local_dsq_post_enq(dsq, p, enq_flags); 1122 else 1123 raw_spin_unlock(&dsq->lock); 1124 } 1125 1126 static void task_unlink_from_dsq(struct task_struct *p, 1127 struct scx_dispatch_q *dsq) 1128 { 1129 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1130 1131 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1132 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1133 RB_CLEAR_NODE(&p->scx.dsq_priq); 1134 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1135 } 1136 1137 list_del_init(&p->scx.dsq_list.node); 1138 dsq_mod_nr(dsq, -1); 1139 1140 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) { 1141 struct task_struct *first_task; 1142 1143 first_task = nldsq_next_task(dsq, NULL, false); 1144 rcu_assign_pointer(dsq->first_task, first_task); 1145 } 1146 } 1147 1148 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1149 { 1150 struct scx_dispatch_q *dsq = p->scx.dsq; 1151 bool is_local = dsq == &rq->scx.local_dsq; 1152 1153 lockdep_assert_rq_held(rq); 1154 1155 if (!dsq) { 1156 /* 1157 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1158 * Unlinking is all that's needed to cancel. 1159 */ 1160 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1161 list_del_init(&p->scx.dsq_list.node); 1162 1163 /* 1164 * When dispatching directly from the BPF scheduler to a local 1165 * DSQ, the task isn't associated with any DSQ but 1166 * @p->scx.holding_cpu may be set under the protection of 1167 * %SCX_OPSS_DISPATCHING. 1168 */ 1169 if (p->scx.holding_cpu >= 0) 1170 p->scx.holding_cpu = -1; 1171 1172 return; 1173 } 1174 1175 if (!is_local) 1176 raw_spin_lock(&dsq->lock); 1177 1178 /* 1179 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1180 * change underneath us. 1181 */ 1182 if (p->scx.holding_cpu < 0) { 1183 /* @p must still be on @dsq, dequeue */ 1184 task_unlink_from_dsq(p, dsq); 1185 } else { 1186 /* 1187 * We're racing against dispatch_to_local_dsq() which already 1188 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1189 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1190 * the race. 1191 */ 1192 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1193 p->scx.holding_cpu = -1; 1194 } 1195 p->scx.dsq = NULL; 1196 1197 if (!is_local) 1198 raw_spin_unlock(&dsq->lock); 1199 } 1200 1201 /* 1202 * Abbreviated version of dispatch_dequeue() that can be used when both @p's rq 1203 * and dsq are locked. 1204 */ 1205 static void dispatch_dequeue_locked(struct task_struct *p, 1206 struct scx_dispatch_q *dsq) 1207 { 1208 lockdep_assert_rq_held(task_rq(p)); 1209 lockdep_assert_held(&dsq->lock); 1210 1211 task_unlink_from_dsq(p, dsq); 1212 p->scx.dsq = NULL; 1213 } 1214 1215 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1216 struct rq *rq, u64 dsq_id, 1217 struct task_struct *p) 1218 { 1219 struct scx_dispatch_q *dsq; 1220 1221 if (dsq_id == SCX_DSQ_LOCAL) 1222 return &rq->scx.local_dsq; 1223 1224 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1225 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1226 1227 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1228 return find_global_dsq(sch, p); 1229 1230 return &cpu_rq(cpu)->scx.local_dsq; 1231 } 1232 1233 if (dsq_id == SCX_DSQ_GLOBAL) 1234 dsq = find_global_dsq(sch, p); 1235 else 1236 dsq = find_user_dsq(sch, dsq_id); 1237 1238 if (unlikely(!dsq)) { 1239 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1240 dsq_id, p->comm, p->pid); 1241 return find_global_dsq(sch, p); 1242 } 1243 1244 return dsq; 1245 } 1246 1247 static void mark_direct_dispatch(struct scx_sched *sch, 1248 struct task_struct *ddsp_task, 1249 struct task_struct *p, u64 dsq_id, 1250 u64 enq_flags) 1251 { 1252 /* 1253 * Mark that dispatch already happened from ops.select_cpu() or 1254 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1255 * which can never match a valid task pointer. 1256 */ 1257 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1258 1259 /* @p must match the task on the enqueue path */ 1260 if (unlikely(p != ddsp_task)) { 1261 if (IS_ERR(ddsp_task)) 1262 scx_error(sch, "%s[%d] already direct-dispatched", 1263 p->comm, p->pid); 1264 else 1265 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1266 ddsp_task->comm, ddsp_task->pid, 1267 p->comm, p->pid); 1268 return; 1269 } 1270 1271 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1272 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1273 1274 p->scx.ddsp_dsq_id = dsq_id; 1275 p->scx.ddsp_enq_flags = enq_flags; 1276 } 1277 1278 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1279 u64 enq_flags) 1280 { 1281 struct rq *rq = task_rq(p); 1282 struct scx_dispatch_q *dsq = 1283 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1284 1285 touch_core_sched_dispatch(rq, p); 1286 1287 p->scx.ddsp_enq_flags |= enq_flags; 1288 1289 /* 1290 * We are in the enqueue path with @rq locked and pinned, and thus can't 1291 * double lock a remote rq and enqueue to its local DSQ. For 1292 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1293 * the enqueue so that it's executed when @rq can be unlocked. 1294 */ 1295 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1296 unsigned long opss; 1297 1298 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1299 1300 switch (opss & SCX_OPSS_STATE_MASK) { 1301 case SCX_OPSS_NONE: 1302 break; 1303 case SCX_OPSS_QUEUEING: 1304 /* 1305 * As @p was never passed to the BPF side, _release is 1306 * not strictly necessary. Still do it for consistency. 1307 */ 1308 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1309 break; 1310 default: 1311 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1312 p->comm, p->pid, opss); 1313 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1314 break; 1315 } 1316 1317 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1318 list_add_tail(&p->scx.dsq_list.node, 1319 &rq->scx.ddsp_deferred_locals); 1320 schedule_deferred_locked(rq); 1321 return; 1322 } 1323 1324 dispatch_enqueue(sch, dsq, p, 1325 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1326 } 1327 1328 static bool scx_rq_online(struct rq *rq) 1329 { 1330 /* 1331 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1332 * the online state as seen from the BPF scheduler. cpu_active() test 1333 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1334 * stay set until the current scheduling operation is complete even if 1335 * we aren't locking @rq. 1336 */ 1337 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1338 } 1339 1340 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1341 int sticky_cpu) 1342 { 1343 struct scx_sched *sch = scx_root; 1344 struct task_struct **ddsp_taskp; 1345 struct scx_dispatch_q *dsq; 1346 unsigned long qseq; 1347 1348 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1349 1350 /* rq migration */ 1351 if (sticky_cpu == cpu_of(rq)) 1352 goto local_norefill; 1353 1354 /* 1355 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1356 * is offline and are just running the hotplug path. Don't bother the 1357 * BPF scheduler. 1358 */ 1359 if (!scx_rq_online(rq)) 1360 goto local; 1361 1362 if (scx_rq_bypassing(rq)) { 1363 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1364 goto bypass; 1365 } 1366 1367 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1368 goto direct; 1369 1370 /* see %SCX_OPS_ENQ_EXITING */ 1371 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1372 unlikely(p->flags & PF_EXITING)) { 1373 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1374 goto local; 1375 } 1376 1377 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1378 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1379 is_migration_disabled(p)) { 1380 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1381 goto local; 1382 } 1383 1384 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1385 goto global; 1386 1387 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1388 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1389 1390 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1391 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1392 1393 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1394 WARN_ON_ONCE(*ddsp_taskp); 1395 *ddsp_taskp = p; 1396 1397 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1398 1399 *ddsp_taskp = NULL; 1400 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1401 goto direct; 1402 1403 /* 1404 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1405 * dequeue may be waiting. The store_release matches their load_acquire. 1406 */ 1407 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1408 return; 1409 1410 direct: 1411 direct_dispatch(sch, p, enq_flags); 1412 return; 1413 local_norefill: 1414 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1415 return; 1416 local: 1417 dsq = &rq->scx.local_dsq; 1418 goto enqueue; 1419 global: 1420 dsq = find_global_dsq(sch, p); 1421 goto enqueue; 1422 bypass: 1423 dsq = &task_rq(p)->scx.bypass_dsq; 1424 goto enqueue; 1425 1426 enqueue: 1427 /* 1428 * For task-ordering, slice refill must be treated as implying the end 1429 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1430 * higher priority it becomes from scx_prio_less()'s POV. 1431 */ 1432 touch_core_sched(rq, p); 1433 refill_task_slice_dfl(sch, p); 1434 dispatch_enqueue(sch, dsq, p, enq_flags); 1435 } 1436 1437 static bool task_runnable(const struct task_struct *p) 1438 { 1439 return !list_empty(&p->scx.runnable_node); 1440 } 1441 1442 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1443 { 1444 lockdep_assert_rq_held(rq); 1445 1446 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1447 p->scx.runnable_at = jiffies; 1448 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1449 } 1450 1451 /* 1452 * list_add_tail() must be used. scx_bypass() depends on tasks being 1453 * appended to the runnable_list. 1454 */ 1455 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1456 } 1457 1458 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1459 { 1460 list_del_init(&p->scx.runnable_node); 1461 if (reset_runnable_at) 1462 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1463 } 1464 1465 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1466 { 1467 struct scx_sched *sch = scx_root; 1468 int sticky_cpu = p->scx.sticky_cpu; 1469 1470 if (enq_flags & ENQUEUE_WAKEUP) 1471 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1472 1473 enq_flags |= rq->scx.extra_enq_flags; 1474 1475 if (sticky_cpu >= 0) 1476 p->scx.sticky_cpu = -1; 1477 1478 /* 1479 * Restoring a running task will be immediately followed by 1480 * set_next_task_scx() which expects the task to not be on the BPF 1481 * scheduler as tasks can only start running through local DSQs. Force 1482 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1483 */ 1484 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1485 sticky_cpu = cpu_of(rq); 1486 1487 if (p->scx.flags & SCX_TASK_QUEUED) { 1488 WARN_ON_ONCE(!task_runnable(p)); 1489 goto out; 1490 } 1491 1492 set_task_runnable(rq, p); 1493 p->scx.flags |= SCX_TASK_QUEUED; 1494 rq->scx.nr_running++; 1495 add_nr_running(rq, 1); 1496 1497 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1498 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1499 1500 if (enq_flags & SCX_ENQ_WAKEUP) 1501 touch_core_sched(rq, p); 1502 1503 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1504 out: 1505 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1506 1507 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1508 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1509 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1510 } 1511 1512 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1513 { 1514 struct scx_sched *sch = scx_root; 1515 unsigned long opss; 1516 1517 /* dequeue is always temporary, don't reset runnable_at */ 1518 clr_task_runnable(p, false); 1519 1520 /* acquire ensures that we see the preceding updates on QUEUED */ 1521 opss = atomic_long_read_acquire(&p->scx.ops_state); 1522 1523 switch (opss & SCX_OPSS_STATE_MASK) { 1524 case SCX_OPSS_NONE: 1525 break; 1526 case SCX_OPSS_QUEUEING: 1527 /* 1528 * QUEUEING is started and finished while holding @p's rq lock. 1529 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1530 */ 1531 BUG(); 1532 case SCX_OPSS_QUEUED: 1533 if (SCX_HAS_OP(sch, dequeue)) 1534 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1535 p, deq_flags); 1536 1537 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1538 SCX_OPSS_NONE)) 1539 break; 1540 fallthrough; 1541 case SCX_OPSS_DISPATCHING: 1542 /* 1543 * If @p is being dispatched from the BPF scheduler to a DSQ, 1544 * wait for the transfer to complete so that @p doesn't get 1545 * added to its DSQ after dequeueing is complete. 1546 * 1547 * As we're waiting on DISPATCHING with the rq locked, the 1548 * dispatching side shouldn't try to lock the rq while 1549 * DISPATCHING is set. See dispatch_to_local_dsq(). 1550 * 1551 * DISPATCHING shouldn't have qseq set and control can reach 1552 * here with NONE @opss from the above QUEUED case block. 1553 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1554 */ 1555 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1556 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1557 break; 1558 } 1559 } 1560 1561 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1562 { 1563 struct scx_sched *sch = scx_root; 1564 1565 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1566 WARN_ON_ONCE(task_runnable(p)); 1567 return true; 1568 } 1569 1570 ops_dequeue(rq, p, deq_flags); 1571 1572 /* 1573 * A currently running task which is going off @rq first gets dequeued 1574 * and then stops running. As we want running <-> stopping transitions 1575 * to be contained within runnable <-> quiescent transitions, trigger 1576 * ->stopping() early here instead of in put_prev_task_scx(). 1577 * 1578 * @p may go through multiple stopping <-> running transitions between 1579 * here and put_prev_task_scx() if task attribute changes occur while 1580 * balance_scx() leaves @rq unlocked. However, they don't contain any 1581 * information meaningful to the BPF scheduler and can be suppressed by 1582 * skipping the callbacks if the task is !QUEUED. 1583 */ 1584 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1585 update_curr_scx(rq); 1586 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1587 } 1588 1589 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1590 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1591 1592 if (deq_flags & SCX_DEQ_SLEEP) 1593 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1594 else 1595 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1596 1597 p->scx.flags &= ~SCX_TASK_QUEUED; 1598 rq->scx.nr_running--; 1599 sub_nr_running(rq, 1); 1600 1601 dispatch_dequeue(rq, p); 1602 return true; 1603 } 1604 1605 static void yield_task_scx(struct rq *rq) 1606 { 1607 struct scx_sched *sch = scx_root; 1608 struct task_struct *p = rq->donor; 1609 1610 if (SCX_HAS_OP(sch, yield)) 1611 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1612 else 1613 p->scx.slice = 0; 1614 } 1615 1616 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1617 { 1618 struct scx_sched *sch = scx_root; 1619 struct task_struct *from = rq->donor; 1620 1621 if (SCX_HAS_OP(sch, yield)) 1622 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1623 from, to); 1624 else 1625 return false; 1626 } 1627 1628 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1629 struct scx_dispatch_q *src_dsq, 1630 struct rq *dst_rq) 1631 { 1632 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1633 1634 /* @dsq is locked and @p is on @dst_rq */ 1635 lockdep_assert_held(&src_dsq->lock); 1636 lockdep_assert_rq_held(dst_rq); 1637 1638 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1639 1640 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1641 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1642 else 1643 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1644 1645 dsq_mod_nr(dst_dsq, 1); 1646 p->scx.dsq = dst_dsq; 1647 1648 local_dsq_post_enq(dst_dsq, p, enq_flags); 1649 } 1650 1651 /** 1652 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1653 * @p: task to move 1654 * @enq_flags: %SCX_ENQ_* 1655 * @src_rq: rq to move the task from, locked on entry, released on return 1656 * @dst_rq: rq to move the task into, locked on return 1657 * 1658 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1659 */ 1660 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1661 struct rq *src_rq, struct rq *dst_rq) 1662 { 1663 lockdep_assert_rq_held(src_rq); 1664 1665 /* the following marks @p MIGRATING which excludes dequeue */ 1666 deactivate_task(src_rq, p, 0); 1667 set_task_cpu(p, cpu_of(dst_rq)); 1668 p->scx.sticky_cpu = cpu_of(dst_rq); 1669 1670 raw_spin_rq_unlock(src_rq); 1671 raw_spin_rq_lock(dst_rq); 1672 1673 /* 1674 * We want to pass scx-specific enq_flags but activate_task() will 1675 * truncate the upper 32 bit. As we own @rq, we can pass them through 1676 * @rq->scx.extra_enq_flags instead. 1677 */ 1678 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1679 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1680 dst_rq->scx.extra_enq_flags = enq_flags; 1681 activate_task(dst_rq, p, 0); 1682 dst_rq->scx.extra_enq_flags = 0; 1683 } 1684 1685 /* 1686 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1687 * differences: 1688 * 1689 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1690 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1691 * this CPU?". 1692 * 1693 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1694 * must be allowed to finish on the CPU that it's currently on regardless of 1695 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1696 * BPF scheduler shouldn't attempt to migrate a task which has migration 1697 * disabled. 1698 * 1699 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1700 * no to the BPF scheduler initiated migrations while offline. 1701 * 1702 * The caller must ensure that @p and @rq are on different CPUs. 1703 */ 1704 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1705 struct task_struct *p, struct rq *rq, 1706 bool enforce) 1707 { 1708 int cpu = cpu_of(rq); 1709 1710 WARN_ON_ONCE(task_cpu(p) == cpu); 1711 1712 /* 1713 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1714 * the pinned CPU in migrate_disable_switch() while @p is being switched 1715 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1716 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1717 * @p passing the below task_allowed_on_cpu() check while migration is 1718 * disabled. 1719 * 1720 * Test the migration disabled state first as the race window is narrow 1721 * and the BPF scheduler failing to check migration disabled state can 1722 * easily be masked if task_allowed_on_cpu() is done first. 1723 */ 1724 if (unlikely(is_migration_disabled(p))) { 1725 if (enforce) 1726 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1727 p->comm, p->pid, task_cpu(p), cpu); 1728 return false; 1729 } 1730 1731 /* 1732 * We don't require the BPF scheduler to avoid dispatching to offline 1733 * CPUs mostly for convenience but also because CPUs can go offline 1734 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1735 * picked CPU is outside the allowed mask. 1736 */ 1737 if (!task_allowed_on_cpu(p, cpu)) { 1738 if (enforce) 1739 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1740 cpu, p->comm, p->pid); 1741 return false; 1742 } 1743 1744 if (!scx_rq_online(rq)) { 1745 if (enforce) 1746 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1747 return false; 1748 } 1749 1750 return true; 1751 } 1752 1753 /** 1754 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1755 * @p: target task 1756 * @dsq: locked DSQ @p is currently on 1757 * @src_rq: rq @p is currently on, stable with @dsq locked 1758 * 1759 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1760 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1761 * required when transferring into a local DSQ. Even when transferring into a 1762 * non-local DSQ, it's better to use the same mechanism to protect against 1763 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1764 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1765 * 1766 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1767 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1768 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1769 * dancing from our side. 1770 * 1771 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1772 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1773 * would be cleared to -1. While other cpus may have updated it to different 1774 * values afterwards, as this operation can't be preempted or recurse, the 1775 * holding_cpu can never become this CPU again before we're done. Thus, we can 1776 * tell whether we lost to dequeue by testing whether the holding_cpu still 1777 * points to this CPU. See dispatch_dequeue() for the counterpart. 1778 * 1779 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1780 * still valid. %false if lost to dequeue. 1781 */ 1782 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1783 struct scx_dispatch_q *dsq, 1784 struct rq *src_rq) 1785 { 1786 s32 cpu = raw_smp_processor_id(); 1787 1788 lockdep_assert_held(&dsq->lock); 1789 1790 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1791 task_unlink_from_dsq(p, dsq); 1792 p->scx.holding_cpu = cpu; 1793 1794 raw_spin_unlock(&dsq->lock); 1795 raw_spin_rq_lock(src_rq); 1796 1797 /* task_rq couldn't have changed if we're still the holding cpu */ 1798 return likely(p->scx.holding_cpu == cpu) && 1799 !WARN_ON_ONCE(src_rq != task_rq(p)); 1800 } 1801 1802 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1803 struct scx_dispatch_q *dsq, struct rq *src_rq) 1804 { 1805 raw_spin_rq_unlock(this_rq); 1806 1807 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1808 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1809 return true; 1810 } else { 1811 raw_spin_rq_unlock(src_rq); 1812 raw_spin_rq_lock(this_rq); 1813 return false; 1814 } 1815 } 1816 1817 /** 1818 * move_task_between_dsqs() - Move a task from one DSQ to another 1819 * @sch: scx_sched being operated on 1820 * @p: target task 1821 * @enq_flags: %SCX_ENQ_* 1822 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1823 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1824 * 1825 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1826 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1827 * will change. As @p's task_rq is locked, this function doesn't need to use the 1828 * holding_cpu mechanism. 1829 * 1830 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1831 * return value, is locked. 1832 */ 1833 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1834 struct task_struct *p, u64 enq_flags, 1835 struct scx_dispatch_q *src_dsq, 1836 struct scx_dispatch_q *dst_dsq) 1837 { 1838 struct rq *src_rq = task_rq(p), *dst_rq; 1839 1840 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1841 lockdep_assert_held(&src_dsq->lock); 1842 lockdep_assert_rq_held(src_rq); 1843 1844 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1845 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1846 if (src_rq != dst_rq && 1847 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1848 dst_dsq = find_global_dsq(sch, p); 1849 dst_rq = src_rq; 1850 } 1851 } else { 1852 /* no need to migrate if destination is a non-local DSQ */ 1853 dst_rq = src_rq; 1854 } 1855 1856 /* 1857 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1858 * CPU, @p will be migrated. 1859 */ 1860 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1861 /* @p is going from a non-local DSQ to a local DSQ */ 1862 if (src_rq == dst_rq) { 1863 task_unlink_from_dsq(p, src_dsq); 1864 move_local_task_to_local_dsq(p, enq_flags, 1865 src_dsq, dst_rq); 1866 raw_spin_unlock(&src_dsq->lock); 1867 } else { 1868 raw_spin_unlock(&src_dsq->lock); 1869 move_remote_task_to_local_dsq(p, enq_flags, 1870 src_rq, dst_rq); 1871 } 1872 } else { 1873 /* 1874 * @p is going from a non-local DSQ to a non-local DSQ. As 1875 * $src_dsq is already locked, do an abbreviated dequeue. 1876 */ 1877 dispatch_dequeue_locked(p, src_dsq); 1878 raw_spin_unlock(&src_dsq->lock); 1879 1880 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1881 } 1882 1883 return dst_rq; 1884 } 1885 1886 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1887 struct scx_dispatch_q *dsq) 1888 { 1889 struct task_struct *p; 1890 retry: 1891 /* 1892 * The caller can't expect to successfully consume a task if the task's 1893 * addition to @dsq isn't guaranteed to be visible somehow. Test 1894 * @dsq->list without locking and skip if it seems empty. 1895 */ 1896 if (list_empty(&dsq->list)) 1897 return false; 1898 1899 raw_spin_lock(&dsq->lock); 1900 1901 nldsq_for_each_task(p, dsq) { 1902 struct rq *task_rq = task_rq(p); 1903 1904 /* 1905 * This loop can lead to multiple lockup scenarios, e.g. the BPF 1906 * scheduler can put an enormous number of affinitized tasks into 1907 * a contended DSQ, or the outer retry loop can repeatedly race 1908 * against scx_bypass() dequeueing tasks from @dsq trying to put 1909 * the system into the bypass mode. This can easily live-lock the 1910 * machine. If aborting, exit from all non-bypass DSQs. 1911 */ 1912 if (unlikely(READ_ONCE(scx_aborting)) && dsq->id != SCX_DSQ_BYPASS) 1913 break; 1914 1915 if (rq == task_rq) { 1916 task_unlink_from_dsq(p, dsq); 1917 move_local_task_to_local_dsq(p, 0, dsq, rq); 1918 raw_spin_unlock(&dsq->lock); 1919 return true; 1920 } 1921 1922 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1923 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1924 return true; 1925 goto retry; 1926 } 1927 } 1928 1929 raw_spin_unlock(&dsq->lock); 1930 return false; 1931 } 1932 1933 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1934 { 1935 int node = cpu_to_node(cpu_of(rq)); 1936 1937 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1938 } 1939 1940 /** 1941 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1942 * @sch: scx_sched being operated on 1943 * @rq: current rq which is locked 1944 * @dst_dsq: destination DSQ 1945 * @p: task to dispatch 1946 * @enq_flags: %SCX_ENQ_* 1947 * 1948 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1949 * DSQ. This function performs all the synchronization dancing needed because 1950 * local DSQs are protected with rq locks. 1951 * 1952 * The caller must have exclusive ownership of @p (e.g. through 1953 * %SCX_OPSS_DISPATCHING). 1954 */ 1955 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1956 struct scx_dispatch_q *dst_dsq, 1957 struct task_struct *p, u64 enq_flags) 1958 { 1959 struct rq *src_rq = task_rq(p); 1960 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1961 struct rq *locked_rq = rq; 1962 1963 /* 1964 * We're synchronized against dequeue through DISPATCHING. As @p can't 1965 * be dequeued, its task_rq and cpus_allowed are stable too. 1966 * 1967 * If dispatching to @rq that @p is already on, no lock dancing needed. 1968 */ 1969 if (rq == src_rq && rq == dst_rq) { 1970 dispatch_enqueue(sch, dst_dsq, p, 1971 enq_flags | SCX_ENQ_CLEAR_OPSS); 1972 return; 1973 } 1974 1975 if (src_rq != dst_rq && 1976 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1977 dispatch_enqueue(sch, find_global_dsq(sch, p), p, 1978 enq_flags | SCX_ENQ_CLEAR_OPSS); 1979 return; 1980 } 1981 1982 /* 1983 * @p is on a possibly remote @src_rq which we need to lock to move the 1984 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1985 * on DISPATCHING, so we can't grab @src_rq lock while holding 1986 * DISPATCHING. 1987 * 1988 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1989 * we're moving from a DSQ and use the same mechanism - mark the task 1990 * under transfer with holding_cpu, release DISPATCHING and then follow 1991 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1992 */ 1993 p->scx.holding_cpu = raw_smp_processor_id(); 1994 1995 /* store_release ensures that dequeue sees the above */ 1996 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1997 1998 /* switch to @src_rq lock */ 1999 if (locked_rq != src_rq) { 2000 raw_spin_rq_unlock(locked_rq); 2001 locked_rq = src_rq; 2002 raw_spin_rq_lock(src_rq); 2003 } 2004 2005 /* task_rq couldn't have changed if we're still the holding cpu */ 2006 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2007 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2008 /* 2009 * If @p is staying on the same rq, there's no need to go 2010 * through the full deactivate/activate cycle. Optimize by 2011 * abbreviating move_remote_task_to_local_dsq(). 2012 */ 2013 if (src_rq == dst_rq) { 2014 p->scx.holding_cpu = -1; 2015 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 2016 enq_flags); 2017 } else { 2018 move_remote_task_to_local_dsq(p, enq_flags, 2019 src_rq, dst_rq); 2020 /* task has been moved to dst_rq, which is now locked */ 2021 locked_rq = dst_rq; 2022 } 2023 2024 /* if the destination CPU is idle, wake it up */ 2025 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2026 resched_curr(dst_rq); 2027 } 2028 2029 /* switch back to @rq lock */ 2030 if (locked_rq != rq) { 2031 raw_spin_rq_unlock(locked_rq); 2032 raw_spin_rq_lock(rq); 2033 } 2034 } 2035 2036 /** 2037 * finish_dispatch - Asynchronously finish dispatching a task 2038 * @rq: current rq which is locked 2039 * @p: task to finish dispatching 2040 * @qseq_at_dispatch: qseq when @p started getting dispatched 2041 * @dsq_id: destination DSQ ID 2042 * @enq_flags: %SCX_ENQ_* 2043 * 2044 * Dispatching to local DSQs may need to wait for queueing to complete or 2045 * require rq lock dancing. As we don't wanna do either while inside 2046 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2047 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2048 * task and its qseq. Once ops.dispatch() returns, this function is called to 2049 * finish up. 2050 * 2051 * There is no guarantee that @p is still valid for dispatching or even that it 2052 * was valid in the first place. Make sure that the task is still owned by the 2053 * BPF scheduler and claim the ownership before dispatching. 2054 */ 2055 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 2056 struct task_struct *p, 2057 unsigned long qseq_at_dispatch, 2058 u64 dsq_id, u64 enq_flags) 2059 { 2060 struct scx_dispatch_q *dsq; 2061 unsigned long opss; 2062 2063 touch_core_sched_dispatch(rq, p); 2064 retry: 2065 /* 2066 * No need for _acquire here. @p is accessed only after a successful 2067 * try_cmpxchg to DISPATCHING. 2068 */ 2069 opss = atomic_long_read(&p->scx.ops_state); 2070 2071 switch (opss & SCX_OPSS_STATE_MASK) { 2072 case SCX_OPSS_DISPATCHING: 2073 case SCX_OPSS_NONE: 2074 /* someone else already got to it */ 2075 return; 2076 case SCX_OPSS_QUEUED: 2077 /* 2078 * If qseq doesn't match, @p has gone through at least one 2079 * dispatch/dequeue and re-enqueue cycle between 2080 * scx_bpf_dsq_insert() and here and we have no claim on it. 2081 */ 2082 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2083 return; 2084 2085 /* 2086 * While we know @p is accessible, we don't yet have a claim on 2087 * it - the BPF scheduler is allowed to dispatch tasks 2088 * spuriously and there can be a racing dequeue attempt. Let's 2089 * claim @p by atomically transitioning it from QUEUED to 2090 * DISPATCHING. 2091 */ 2092 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2093 SCX_OPSS_DISPATCHING))) 2094 break; 2095 goto retry; 2096 case SCX_OPSS_QUEUEING: 2097 /* 2098 * do_enqueue_task() is in the process of transferring the task 2099 * to the BPF scheduler while holding @p's rq lock. As we aren't 2100 * holding any kernel or BPF resource that the enqueue path may 2101 * depend upon, it's safe to wait. 2102 */ 2103 wait_ops_state(p, opss); 2104 goto retry; 2105 } 2106 2107 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2108 2109 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 2110 2111 if (dsq->id == SCX_DSQ_LOCAL) 2112 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 2113 else 2114 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2115 } 2116 2117 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 2118 { 2119 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2120 u32 u; 2121 2122 for (u = 0; u < dspc->cursor; u++) { 2123 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2124 2125 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 2126 ent->enq_flags); 2127 } 2128 2129 dspc->nr_tasks += dspc->cursor; 2130 dspc->cursor = 0; 2131 } 2132 2133 static inline void maybe_queue_balance_callback(struct rq *rq) 2134 { 2135 lockdep_assert_rq_held(rq); 2136 2137 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING)) 2138 return; 2139 2140 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 2141 deferred_bal_cb_workfn); 2142 2143 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING; 2144 } 2145 2146 static int balance_one(struct rq *rq, struct task_struct *prev) 2147 { 2148 struct scx_sched *sch = scx_root; 2149 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2150 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2151 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2152 int nr_loops = SCX_DSP_MAX_LOOPS; 2153 2154 lockdep_assert_rq_held(rq); 2155 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2156 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2157 2158 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2159 unlikely(rq->scx.cpu_released)) { 2160 /* 2161 * If the previous sched_class for the current CPU was not SCX, 2162 * notify the BPF scheduler that it again has control of the 2163 * core. This callback complements ->cpu_release(), which is 2164 * emitted in switch_class(). 2165 */ 2166 if (SCX_HAS_OP(sch, cpu_acquire)) 2167 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2168 cpu_of(rq), NULL); 2169 rq->scx.cpu_released = false; 2170 } 2171 2172 if (prev_on_scx) { 2173 update_curr_scx(rq); 2174 2175 /* 2176 * If @prev is runnable & has slice left, it has priority and 2177 * fetching more just increases latency for the fetched tasks. 2178 * Tell pick_task_scx() to keep running @prev. If the BPF 2179 * scheduler wants to handle this explicitly, it should 2180 * implement ->cpu_release(). 2181 * 2182 * See scx_disable_workfn() for the explanation on the bypassing 2183 * test. 2184 */ 2185 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2186 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2187 goto has_tasks; 2188 } 2189 } 2190 2191 /* if there already are tasks to run, nothing to do */ 2192 if (rq->scx.local_dsq.nr) 2193 goto has_tasks; 2194 2195 if (consume_global_dsq(sch, rq)) 2196 goto has_tasks; 2197 2198 if (scx_rq_bypassing(rq)) { 2199 if (consume_dispatch_q(sch, rq, &rq->scx.bypass_dsq)) 2200 goto has_tasks; 2201 else 2202 goto no_tasks; 2203 } 2204 2205 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || !scx_rq_online(rq)) 2206 goto no_tasks; 2207 2208 dspc->rq = rq; 2209 2210 /* 2211 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2212 * the local DSQ might still end up empty after a successful 2213 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2214 * produced some tasks, retry. The BPF scheduler may depend on this 2215 * looping behavior to simplify its implementation. 2216 */ 2217 do { 2218 dspc->nr_tasks = 0; 2219 2220 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2221 cpu_of(rq), prev_on_scx ? prev : NULL); 2222 2223 flush_dispatch_buf(sch, rq); 2224 2225 if (prev_on_rq && prev->scx.slice) { 2226 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2227 goto has_tasks; 2228 } 2229 if (rq->scx.local_dsq.nr) 2230 goto has_tasks; 2231 if (consume_global_dsq(sch, rq)) 2232 goto has_tasks; 2233 2234 /* 2235 * ops.dispatch() can trap us in this loop by repeatedly 2236 * dispatching ineligible tasks. Break out once in a while to 2237 * allow the watchdog to run. As IRQ can't be enabled in 2238 * balance(), we want to complete this scheduling cycle and then 2239 * start a new one. IOW, we want to call resched_curr() on the 2240 * next, most likely idle, task, not the current one. Use 2241 * scx_kick_cpu() for deferred kicking. 2242 */ 2243 if (unlikely(!--nr_loops)) { 2244 scx_kick_cpu(sch, cpu_of(rq), 0); 2245 break; 2246 } 2247 } while (dspc->nr_tasks); 2248 2249 no_tasks: 2250 /* 2251 * Didn't find another task to run. Keep running @prev unless 2252 * %SCX_OPS_ENQ_LAST is in effect. 2253 */ 2254 if (prev_on_rq && 2255 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2256 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2257 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2258 goto has_tasks; 2259 } 2260 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2261 return false; 2262 2263 has_tasks: 2264 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2265 return true; 2266 } 2267 2268 static void process_ddsp_deferred_locals(struct rq *rq) 2269 { 2270 struct task_struct *p; 2271 2272 lockdep_assert_rq_held(rq); 2273 2274 /* 2275 * Now that @rq can be unlocked, execute the deferred enqueueing of 2276 * tasks directly dispatched to the local DSQs of other CPUs. See 2277 * direct_dispatch(). Keep popping from the head instead of using 2278 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2279 * temporarily. 2280 */ 2281 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2282 struct task_struct, scx.dsq_list.node))) { 2283 struct scx_sched *sch = scx_root; 2284 struct scx_dispatch_q *dsq; 2285 2286 list_del_init(&p->scx.dsq_list.node); 2287 2288 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2289 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2290 dispatch_to_local_dsq(sch, rq, dsq, p, 2291 p->scx.ddsp_enq_flags); 2292 } 2293 } 2294 2295 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2296 { 2297 struct scx_sched *sch = scx_root; 2298 2299 if (p->scx.flags & SCX_TASK_QUEUED) { 2300 /* 2301 * Core-sched might decide to execute @p before it is 2302 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2303 */ 2304 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2305 dispatch_dequeue(rq, p); 2306 } 2307 2308 p->se.exec_start = rq_clock_task(rq); 2309 2310 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2311 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2312 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2313 2314 clr_task_runnable(p, true); 2315 2316 /* 2317 * @p is getting newly scheduled or got kicked after someone updated its 2318 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2319 */ 2320 if ((p->scx.slice == SCX_SLICE_INF) != 2321 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2322 if (p->scx.slice == SCX_SLICE_INF) 2323 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2324 else 2325 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2326 2327 sched_update_tick_dependency(rq); 2328 2329 /* 2330 * For now, let's refresh the load_avgs just when transitioning 2331 * in and out of nohz. In the future, we might want to add a 2332 * mechanism which calls the following periodically on 2333 * tick-stopped CPUs. 2334 */ 2335 update_other_load_avgs(rq); 2336 } 2337 } 2338 2339 static enum scx_cpu_preempt_reason 2340 preempt_reason_from_class(const struct sched_class *class) 2341 { 2342 if (class == &stop_sched_class) 2343 return SCX_CPU_PREEMPT_STOP; 2344 if (class == &dl_sched_class) 2345 return SCX_CPU_PREEMPT_DL; 2346 if (class == &rt_sched_class) 2347 return SCX_CPU_PREEMPT_RT; 2348 return SCX_CPU_PREEMPT_UNKNOWN; 2349 } 2350 2351 static void switch_class(struct rq *rq, struct task_struct *next) 2352 { 2353 struct scx_sched *sch = scx_root; 2354 const struct sched_class *next_class = next->sched_class; 2355 2356 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2357 return; 2358 2359 /* 2360 * The callback is conceptually meant to convey that the CPU is no 2361 * longer under the control of SCX. Therefore, don't invoke the callback 2362 * if the next class is below SCX (in which case the BPF scheduler has 2363 * actively decided not to schedule any tasks on the CPU). 2364 */ 2365 if (sched_class_above(&ext_sched_class, next_class)) 2366 return; 2367 2368 /* 2369 * At this point we know that SCX was preempted by a higher priority 2370 * sched_class, so invoke the ->cpu_release() callback if we have not 2371 * done so already. We only send the callback once between SCX being 2372 * preempted, and it regaining control of the CPU. 2373 * 2374 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2375 * next time that balance_scx() is invoked. 2376 */ 2377 if (!rq->scx.cpu_released) { 2378 if (SCX_HAS_OP(sch, cpu_release)) { 2379 struct scx_cpu_release_args args = { 2380 .reason = preempt_reason_from_class(next_class), 2381 .task = next, 2382 }; 2383 2384 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2385 cpu_of(rq), &args); 2386 } 2387 rq->scx.cpu_released = true; 2388 } 2389 } 2390 2391 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2392 struct task_struct *next) 2393 { 2394 struct scx_sched *sch = scx_root; 2395 2396 /* see kick_cpus_irq_workfn() */ 2397 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1); 2398 2399 update_curr_scx(rq); 2400 2401 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2402 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2403 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2404 2405 if (p->scx.flags & SCX_TASK_QUEUED) { 2406 set_task_runnable(rq, p); 2407 2408 /* 2409 * If @p has slice left and is being put, @p is getting 2410 * preempted by a higher priority scheduler class or core-sched 2411 * forcing a different task. Leave it at the head of the local 2412 * DSQ. 2413 */ 2414 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2415 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2416 SCX_ENQ_HEAD); 2417 goto switch_class; 2418 } 2419 2420 /* 2421 * If @p is runnable but we're about to enter a lower 2422 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2423 * ops.enqueue() that @p is the only one available for this cpu, 2424 * which should trigger an explicit follow-up scheduling event. 2425 */ 2426 if (next && sched_class_above(&ext_sched_class, next->sched_class)) { 2427 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2428 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2429 } else { 2430 do_enqueue_task(rq, p, 0, -1); 2431 } 2432 } 2433 2434 switch_class: 2435 if (next && next->sched_class != &ext_sched_class) 2436 switch_class(rq, next); 2437 } 2438 2439 static struct task_struct *first_local_task(struct rq *rq) 2440 { 2441 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2442 struct task_struct, scx.dsq_list.node); 2443 } 2444 2445 static struct task_struct * 2446 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx) 2447 { 2448 struct task_struct *prev = rq->curr; 2449 bool keep_prev, kick_idle = false; 2450 struct task_struct *p; 2451 2452 /* see kick_cpus_irq_workfn() */ 2453 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1); 2454 2455 rq_modified_clear(rq); 2456 2457 rq_unpin_lock(rq, rf); 2458 balance_one(rq, prev); 2459 rq_repin_lock(rq, rf); 2460 maybe_queue_balance_callback(rq); 2461 2462 /* 2463 * If any higher-priority sched class enqueued a runnable task on 2464 * this rq during balance_one(), abort and return RETRY_TASK, so 2465 * that the scheduler loop can restart. 2466 * 2467 * If @force_scx is true, always try to pick a SCHED_EXT task, 2468 * regardless of any higher-priority sched classes activity. 2469 */ 2470 if (!force_scx && rq_modified_above(rq, &ext_sched_class)) 2471 return RETRY_TASK; 2472 2473 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2474 if (unlikely(keep_prev && 2475 prev->sched_class != &ext_sched_class)) { 2476 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2477 keep_prev = false; 2478 } 2479 2480 /* 2481 * If balance_scx() is telling us to keep running @prev, replenish slice 2482 * if necessary and keep running @prev. Otherwise, pop the first one 2483 * from the local DSQ. 2484 */ 2485 if (keep_prev) { 2486 p = prev; 2487 if (!p->scx.slice) 2488 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p); 2489 } else { 2490 p = first_local_task(rq); 2491 if (!p) { 2492 if (kick_idle) 2493 scx_kick_cpu(rcu_dereference_sched(scx_root), 2494 cpu_of(rq), SCX_KICK_IDLE); 2495 return NULL; 2496 } 2497 2498 if (unlikely(!p->scx.slice)) { 2499 struct scx_sched *sch = rcu_dereference_sched(scx_root); 2500 2501 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2502 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2503 p->comm, p->pid, __func__); 2504 sch->warned_zero_slice = true; 2505 } 2506 refill_task_slice_dfl(sch, p); 2507 } 2508 } 2509 2510 return p; 2511 } 2512 2513 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf) 2514 { 2515 return do_pick_task_scx(rq, rf, false); 2516 } 2517 2518 #ifdef CONFIG_SCHED_CORE 2519 /** 2520 * scx_prio_less - Task ordering for core-sched 2521 * @a: task A 2522 * @b: task B 2523 * @in_fi: in forced idle state 2524 * 2525 * Core-sched is implemented as an additional scheduling layer on top of the 2526 * usual sched_class'es and needs to find out the expected task ordering. For 2527 * SCX, core-sched calls this function to interrogate the task ordering. 2528 * 2529 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2530 * to implement the default task ordering. The older the timestamp, the higher 2531 * priority the task - the global FIFO ordering matching the default scheduling 2532 * behavior. 2533 * 2534 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2535 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2536 */ 2537 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2538 bool in_fi) 2539 { 2540 struct scx_sched *sch = scx_root; 2541 2542 /* 2543 * The const qualifiers are dropped from task_struct pointers when 2544 * calling ops.core_sched_before(). Accesses are controlled by the 2545 * verifier. 2546 */ 2547 if (SCX_HAS_OP(sch, core_sched_before) && 2548 !scx_rq_bypassing(task_rq(a))) 2549 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2550 NULL, 2551 (struct task_struct *)a, 2552 (struct task_struct *)b); 2553 else 2554 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2555 } 2556 #endif /* CONFIG_SCHED_CORE */ 2557 2558 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2559 { 2560 struct scx_sched *sch = scx_root; 2561 bool rq_bypass; 2562 2563 /* 2564 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2565 * can be a good migration opportunity with low cache and memory 2566 * footprint. Returning a CPU different than @prev_cpu triggers 2567 * immediate rq migration. However, for SCX, as the current rq 2568 * association doesn't dictate where the task is going to run, this 2569 * doesn't fit well. If necessary, we can later add a dedicated method 2570 * which can decide to preempt self to force it through the regular 2571 * scheduling path. 2572 */ 2573 if (unlikely(wake_flags & WF_EXEC)) 2574 return prev_cpu; 2575 2576 rq_bypass = scx_rq_bypassing(task_rq(p)); 2577 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2578 s32 cpu; 2579 struct task_struct **ddsp_taskp; 2580 2581 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2582 WARN_ON_ONCE(*ddsp_taskp); 2583 *ddsp_taskp = p; 2584 2585 cpu = SCX_CALL_OP_TASK_RET(sch, 2586 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2587 select_cpu, NULL, p, prev_cpu, 2588 wake_flags); 2589 p->scx.selected_cpu = cpu; 2590 *ddsp_taskp = NULL; 2591 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2592 return cpu; 2593 else 2594 return prev_cpu; 2595 } else { 2596 s32 cpu; 2597 2598 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2599 if (cpu >= 0) { 2600 refill_task_slice_dfl(sch, p); 2601 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2602 } else { 2603 cpu = prev_cpu; 2604 } 2605 p->scx.selected_cpu = cpu; 2606 2607 if (rq_bypass) 2608 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2609 return cpu; 2610 } 2611 } 2612 2613 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2614 { 2615 run_deferred(rq); 2616 } 2617 2618 static void set_cpus_allowed_scx(struct task_struct *p, 2619 struct affinity_context *ac) 2620 { 2621 struct scx_sched *sch = scx_root; 2622 2623 set_cpus_allowed_common(p, ac); 2624 2625 /* 2626 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2627 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2628 * scheduler the effective one. 2629 * 2630 * Fine-grained memory write control is enforced by BPF making the const 2631 * designation pointless. Cast it away when calling the operation. 2632 */ 2633 if (SCX_HAS_OP(sch, set_cpumask)) 2634 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2635 p, (struct cpumask *)p->cpus_ptr); 2636 } 2637 2638 static void handle_hotplug(struct rq *rq, bool online) 2639 { 2640 struct scx_sched *sch = scx_root; 2641 int cpu = cpu_of(rq); 2642 2643 atomic_long_inc(&scx_hotplug_seq); 2644 2645 /* 2646 * scx_root updates are protected by cpus_read_lock() and will stay 2647 * stable here. Note that we can't depend on scx_enabled() test as the 2648 * hotplug ops need to be enabled before __scx_enabled is set. 2649 */ 2650 if (unlikely(!sch)) 2651 return; 2652 2653 if (scx_enabled()) 2654 scx_idle_update_selcpu_topology(&sch->ops); 2655 2656 if (online && SCX_HAS_OP(sch, cpu_online)) 2657 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2658 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2659 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2660 else 2661 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2662 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2663 "cpu %d going %s, exiting scheduler", cpu, 2664 online ? "online" : "offline"); 2665 } 2666 2667 void scx_rq_activate(struct rq *rq) 2668 { 2669 handle_hotplug(rq, true); 2670 } 2671 2672 void scx_rq_deactivate(struct rq *rq) 2673 { 2674 handle_hotplug(rq, false); 2675 } 2676 2677 static void rq_online_scx(struct rq *rq) 2678 { 2679 rq->scx.flags |= SCX_RQ_ONLINE; 2680 } 2681 2682 static void rq_offline_scx(struct rq *rq) 2683 { 2684 rq->scx.flags &= ~SCX_RQ_ONLINE; 2685 } 2686 2687 2688 static bool check_rq_for_timeouts(struct rq *rq) 2689 { 2690 struct scx_sched *sch; 2691 struct task_struct *p; 2692 struct rq_flags rf; 2693 bool timed_out = false; 2694 2695 rq_lock_irqsave(rq, &rf); 2696 sch = rcu_dereference_bh(scx_root); 2697 if (unlikely(!sch)) 2698 goto out_unlock; 2699 2700 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2701 unsigned long last_runnable = p->scx.runnable_at; 2702 2703 if (unlikely(time_after(jiffies, 2704 last_runnable + scx_watchdog_timeout))) { 2705 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2706 2707 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2708 "%s[%d] failed to run for %u.%03us", 2709 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2710 timed_out = true; 2711 break; 2712 } 2713 } 2714 out_unlock: 2715 rq_unlock_irqrestore(rq, &rf); 2716 return timed_out; 2717 } 2718 2719 static void scx_watchdog_workfn(struct work_struct *work) 2720 { 2721 int cpu; 2722 2723 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2724 2725 for_each_online_cpu(cpu) { 2726 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2727 break; 2728 2729 cond_resched(); 2730 } 2731 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2732 scx_watchdog_timeout / 2); 2733 } 2734 2735 void scx_tick(struct rq *rq) 2736 { 2737 struct scx_sched *sch; 2738 unsigned long last_check; 2739 2740 if (!scx_enabled()) 2741 return; 2742 2743 sch = rcu_dereference_bh(scx_root); 2744 if (unlikely(!sch)) 2745 return; 2746 2747 last_check = READ_ONCE(scx_watchdog_timestamp); 2748 if (unlikely(time_after(jiffies, 2749 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2750 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2751 2752 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2753 "watchdog failed to check in for %u.%03us", 2754 dur_ms / 1000, dur_ms % 1000); 2755 } 2756 2757 update_other_load_avgs(rq); 2758 } 2759 2760 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2761 { 2762 struct scx_sched *sch = scx_root; 2763 2764 update_curr_scx(rq); 2765 2766 /* 2767 * While disabling, always resched and refresh core-sched timestamp as 2768 * we can't trust the slice management or ops.core_sched_before(). 2769 */ 2770 if (scx_rq_bypassing(rq)) { 2771 curr->scx.slice = 0; 2772 touch_core_sched(rq, curr); 2773 } else if (SCX_HAS_OP(sch, tick)) { 2774 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2775 } 2776 2777 if (!curr->scx.slice) 2778 resched_curr(rq); 2779 } 2780 2781 #ifdef CONFIG_EXT_GROUP_SCHED 2782 static struct cgroup *tg_cgrp(struct task_group *tg) 2783 { 2784 /* 2785 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2786 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2787 * root cgroup. 2788 */ 2789 if (tg && tg->css.cgroup) 2790 return tg->css.cgroup; 2791 else 2792 return &cgrp_dfl_root.cgrp; 2793 } 2794 2795 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2796 2797 #else /* CONFIG_EXT_GROUP_SCHED */ 2798 2799 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2800 2801 #endif /* CONFIG_EXT_GROUP_SCHED */ 2802 2803 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2804 { 2805 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2806 } 2807 2808 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2809 { 2810 enum scx_task_state prev_state = scx_get_task_state(p); 2811 bool warn = false; 2812 2813 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2814 2815 switch (state) { 2816 case SCX_TASK_NONE: 2817 break; 2818 case SCX_TASK_INIT: 2819 warn = prev_state != SCX_TASK_NONE; 2820 break; 2821 case SCX_TASK_READY: 2822 warn = prev_state == SCX_TASK_NONE; 2823 break; 2824 case SCX_TASK_ENABLED: 2825 warn = prev_state != SCX_TASK_READY; 2826 break; 2827 default: 2828 warn = true; 2829 return; 2830 } 2831 2832 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2833 prev_state, state, p->comm, p->pid); 2834 2835 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2836 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2837 } 2838 2839 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2840 { 2841 struct scx_sched *sch = scx_root; 2842 int ret; 2843 2844 p->scx.disallow = false; 2845 2846 if (SCX_HAS_OP(sch, init_task)) { 2847 struct scx_init_task_args args = { 2848 SCX_INIT_TASK_ARGS_CGROUP(tg) 2849 .fork = fork, 2850 }; 2851 2852 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2853 p, &args); 2854 if (unlikely(ret)) { 2855 ret = ops_sanitize_err(sch, "init_task", ret); 2856 return ret; 2857 } 2858 } 2859 2860 scx_set_task_state(p, SCX_TASK_INIT); 2861 2862 if (p->scx.disallow) { 2863 if (!fork) { 2864 struct rq *rq; 2865 struct rq_flags rf; 2866 2867 rq = task_rq_lock(p, &rf); 2868 2869 /* 2870 * We're in the load path and @p->policy will be applied 2871 * right after. Reverting @p->policy here and rejecting 2872 * %SCHED_EXT transitions from scx_check_setscheduler() 2873 * guarantees that if ops.init_task() sets @p->disallow, 2874 * @p can never be in SCX. 2875 */ 2876 if (p->policy == SCHED_EXT) { 2877 p->policy = SCHED_NORMAL; 2878 atomic_long_inc(&scx_nr_rejected); 2879 } 2880 2881 task_rq_unlock(rq, p, &rf); 2882 } else if (p->policy == SCHED_EXT) { 2883 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2884 p->comm, p->pid); 2885 } 2886 } 2887 2888 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2889 return 0; 2890 } 2891 2892 static void scx_enable_task(struct task_struct *p) 2893 { 2894 struct scx_sched *sch = scx_root; 2895 struct rq *rq = task_rq(p); 2896 u32 weight; 2897 2898 lockdep_assert_rq_held(rq); 2899 2900 /* 2901 * Set the weight before calling ops.enable() so that the scheduler 2902 * doesn't see a stale value if they inspect the task struct. 2903 */ 2904 if (task_has_idle_policy(p)) 2905 weight = WEIGHT_IDLEPRIO; 2906 else 2907 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2908 2909 p->scx.weight = sched_weight_to_cgroup(weight); 2910 2911 if (SCX_HAS_OP(sch, enable)) 2912 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2913 scx_set_task_state(p, SCX_TASK_ENABLED); 2914 2915 if (SCX_HAS_OP(sch, set_weight)) 2916 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2917 p, p->scx.weight); 2918 } 2919 2920 static void scx_disable_task(struct task_struct *p) 2921 { 2922 struct scx_sched *sch = scx_root; 2923 struct rq *rq = task_rq(p); 2924 2925 lockdep_assert_rq_held(rq); 2926 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2927 2928 if (SCX_HAS_OP(sch, disable)) 2929 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2930 scx_set_task_state(p, SCX_TASK_READY); 2931 } 2932 2933 static void scx_exit_task(struct task_struct *p) 2934 { 2935 struct scx_sched *sch = scx_root; 2936 struct scx_exit_task_args args = { 2937 .cancelled = false, 2938 }; 2939 2940 lockdep_assert_rq_held(task_rq(p)); 2941 2942 switch (scx_get_task_state(p)) { 2943 case SCX_TASK_NONE: 2944 return; 2945 case SCX_TASK_INIT: 2946 args.cancelled = true; 2947 break; 2948 case SCX_TASK_READY: 2949 break; 2950 case SCX_TASK_ENABLED: 2951 scx_disable_task(p); 2952 break; 2953 default: 2954 WARN_ON_ONCE(true); 2955 return; 2956 } 2957 2958 if (SCX_HAS_OP(sch, exit_task)) 2959 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2960 p, &args); 2961 scx_set_task_state(p, SCX_TASK_NONE); 2962 } 2963 2964 void init_scx_entity(struct sched_ext_entity *scx) 2965 { 2966 memset(scx, 0, sizeof(*scx)); 2967 INIT_LIST_HEAD(&scx->dsq_list.node); 2968 RB_CLEAR_NODE(&scx->dsq_priq); 2969 scx->sticky_cpu = -1; 2970 scx->holding_cpu = -1; 2971 INIT_LIST_HEAD(&scx->runnable_node); 2972 scx->runnable_at = jiffies; 2973 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2974 scx->slice = READ_ONCE(scx_slice_dfl); 2975 } 2976 2977 void scx_pre_fork(struct task_struct *p) 2978 { 2979 /* 2980 * BPF scheduler enable/disable paths want to be able to iterate and 2981 * update all tasks which can become complex when racing forks. As 2982 * enable/disable are very cold paths, let's use a percpu_rwsem to 2983 * exclude forks. 2984 */ 2985 percpu_down_read(&scx_fork_rwsem); 2986 } 2987 2988 int scx_fork(struct task_struct *p) 2989 { 2990 percpu_rwsem_assert_held(&scx_fork_rwsem); 2991 2992 if (scx_init_task_enabled) 2993 return scx_init_task(p, task_group(p), true); 2994 else 2995 return 0; 2996 } 2997 2998 void scx_post_fork(struct task_struct *p) 2999 { 3000 if (scx_init_task_enabled) { 3001 scx_set_task_state(p, SCX_TASK_READY); 3002 3003 /* 3004 * Enable the task immediately if it's running on sched_ext. 3005 * Otherwise, it'll be enabled in switching_to_scx() if and 3006 * when it's ever configured to run with a SCHED_EXT policy. 3007 */ 3008 if (p->sched_class == &ext_sched_class) { 3009 struct rq_flags rf; 3010 struct rq *rq; 3011 3012 rq = task_rq_lock(p, &rf); 3013 scx_enable_task(p); 3014 task_rq_unlock(rq, p, &rf); 3015 } 3016 } 3017 3018 raw_spin_lock_irq(&scx_tasks_lock); 3019 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3020 raw_spin_unlock_irq(&scx_tasks_lock); 3021 3022 percpu_up_read(&scx_fork_rwsem); 3023 } 3024 3025 void scx_cancel_fork(struct task_struct *p) 3026 { 3027 if (scx_enabled()) { 3028 struct rq *rq; 3029 struct rq_flags rf; 3030 3031 rq = task_rq_lock(p, &rf); 3032 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3033 scx_exit_task(p); 3034 task_rq_unlock(rq, p, &rf); 3035 } 3036 3037 percpu_up_read(&scx_fork_rwsem); 3038 } 3039 3040 void sched_ext_dead(struct task_struct *p) 3041 { 3042 unsigned long flags; 3043 3044 raw_spin_lock_irqsave(&scx_tasks_lock, flags); 3045 list_del_init(&p->scx.tasks_node); 3046 raw_spin_unlock_irqrestore(&scx_tasks_lock, flags); 3047 3048 /* 3049 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 3050 * transitions can't race us. Disable ops for @p. 3051 */ 3052 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3053 struct rq_flags rf; 3054 struct rq *rq; 3055 3056 rq = task_rq_lock(p, &rf); 3057 scx_exit_task(p); 3058 task_rq_unlock(rq, p, &rf); 3059 } 3060 } 3061 3062 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3063 const struct load_weight *lw) 3064 { 3065 struct scx_sched *sch = scx_root; 3066 3067 lockdep_assert_rq_held(task_rq(p)); 3068 3069 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3070 if (SCX_HAS_OP(sch, set_weight)) 3071 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 3072 p, p->scx.weight); 3073 } 3074 3075 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio) 3076 { 3077 } 3078 3079 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3080 { 3081 struct scx_sched *sch = scx_root; 3082 3083 scx_enable_task(p); 3084 3085 /* 3086 * set_cpus_allowed_scx() is not called while @p is associated with a 3087 * different scheduler class. Keep the BPF scheduler up-to-date. 3088 */ 3089 if (SCX_HAS_OP(sch, set_cpumask)) 3090 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 3091 p, (struct cpumask *)p->cpus_ptr); 3092 } 3093 3094 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3095 { 3096 scx_disable_task(p); 3097 } 3098 3099 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3100 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3101 3102 int scx_check_setscheduler(struct task_struct *p, int policy) 3103 { 3104 lockdep_assert_rq_held(task_rq(p)); 3105 3106 /* if disallow, reject transitioning into SCX */ 3107 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3108 p->policy != policy && policy == SCHED_EXT) 3109 return -EACCES; 3110 3111 return 0; 3112 } 3113 3114 #ifdef CONFIG_NO_HZ_FULL 3115 bool scx_can_stop_tick(struct rq *rq) 3116 { 3117 struct task_struct *p = rq->curr; 3118 3119 if (scx_rq_bypassing(rq)) 3120 return false; 3121 3122 if (p->sched_class != &ext_sched_class) 3123 return true; 3124 3125 /* 3126 * @rq can dispatch from different DSQs, so we can't tell whether it 3127 * needs the tick or not by looking at nr_running. Allow stopping ticks 3128 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3129 */ 3130 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3131 } 3132 #endif 3133 3134 #ifdef CONFIG_EXT_GROUP_SCHED 3135 3136 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3137 static bool scx_cgroup_enabled; 3138 3139 void scx_tg_init(struct task_group *tg) 3140 { 3141 tg->scx.weight = CGROUP_WEIGHT_DFL; 3142 tg->scx.bw_period_us = default_bw_period_us(); 3143 tg->scx.bw_quota_us = RUNTIME_INF; 3144 tg->scx.idle = false; 3145 } 3146 3147 int scx_tg_online(struct task_group *tg) 3148 { 3149 struct scx_sched *sch = scx_root; 3150 int ret = 0; 3151 3152 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3153 3154 if (scx_cgroup_enabled) { 3155 if (SCX_HAS_OP(sch, cgroup_init)) { 3156 struct scx_cgroup_init_args args = 3157 { .weight = tg->scx.weight, 3158 .bw_period_us = tg->scx.bw_period_us, 3159 .bw_quota_us = tg->scx.bw_quota_us, 3160 .bw_burst_us = tg->scx.bw_burst_us }; 3161 3162 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3163 NULL, tg->css.cgroup, &args); 3164 if (ret) 3165 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3166 } 3167 if (ret == 0) 3168 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3169 } else { 3170 tg->scx.flags |= SCX_TG_ONLINE; 3171 } 3172 3173 return ret; 3174 } 3175 3176 void scx_tg_offline(struct task_group *tg) 3177 { 3178 struct scx_sched *sch = scx_root; 3179 3180 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3181 3182 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3183 (tg->scx.flags & SCX_TG_INITED)) 3184 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3185 tg->css.cgroup); 3186 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3187 } 3188 3189 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3190 { 3191 struct scx_sched *sch = scx_root; 3192 struct cgroup_subsys_state *css; 3193 struct task_struct *p; 3194 int ret; 3195 3196 if (!scx_cgroup_enabled) 3197 return 0; 3198 3199 cgroup_taskset_for_each(p, css, tset) { 3200 struct cgroup *from = tg_cgrp(task_group(p)); 3201 struct cgroup *to = tg_cgrp(css_tg(css)); 3202 3203 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3204 3205 /* 3206 * sched_move_task() omits identity migrations. Let's match the 3207 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3208 * always match one-to-one. 3209 */ 3210 if (from == to) 3211 continue; 3212 3213 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3214 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3215 cgroup_prep_move, NULL, 3216 p, from, css->cgroup); 3217 if (ret) 3218 goto err; 3219 } 3220 3221 p->scx.cgrp_moving_from = from; 3222 } 3223 3224 return 0; 3225 3226 err: 3227 cgroup_taskset_for_each(p, css, tset) { 3228 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3229 p->scx.cgrp_moving_from) 3230 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3231 p, p->scx.cgrp_moving_from, css->cgroup); 3232 p->scx.cgrp_moving_from = NULL; 3233 } 3234 3235 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3236 } 3237 3238 void scx_cgroup_move_task(struct task_struct *p) 3239 { 3240 struct scx_sched *sch = scx_root; 3241 3242 if (!scx_cgroup_enabled) 3243 return; 3244 3245 /* 3246 * @p must have ops.cgroup_prep_move() called on it and thus 3247 * cgrp_moving_from set. 3248 */ 3249 if (SCX_HAS_OP(sch, cgroup_move) && 3250 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3251 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3252 p, p->scx.cgrp_moving_from, 3253 tg_cgrp(task_group(p))); 3254 p->scx.cgrp_moving_from = NULL; 3255 } 3256 3257 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3258 { 3259 struct scx_sched *sch = scx_root; 3260 struct cgroup_subsys_state *css; 3261 struct task_struct *p; 3262 3263 if (!scx_cgroup_enabled) 3264 return; 3265 3266 cgroup_taskset_for_each(p, css, tset) { 3267 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3268 p->scx.cgrp_moving_from) 3269 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3270 p, p->scx.cgrp_moving_from, css->cgroup); 3271 p->scx.cgrp_moving_from = NULL; 3272 } 3273 } 3274 3275 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3276 { 3277 struct scx_sched *sch = scx_root; 3278 3279 percpu_down_read(&scx_cgroup_ops_rwsem); 3280 3281 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3282 tg->scx.weight != weight) 3283 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3284 tg_cgrp(tg), weight); 3285 3286 tg->scx.weight = weight; 3287 3288 percpu_up_read(&scx_cgroup_ops_rwsem); 3289 } 3290 3291 void scx_group_set_idle(struct task_group *tg, bool idle) 3292 { 3293 struct scx_sched *sch = scx_root; 3294 3295 percpu_down_read(&scx_cgroup_ops_rwsem); 3296 3297 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle)) 3298 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL, 3299 tg_cgrp(tg), idle); 3300 3301 /* Update the task group's idle state */ 3302 tg->scx.idle = idle; 3303 3304 percpu_up_read(&scx_cgroup_ops_rwsem); 3305 } 3306 3307 void scx_group_set_bandwidth(struct task_group *tg, 3308 u64 period_us, u64 quota_us, u64 burst_us) 3309 { 3310 struct scx_sched *sch = scx_root; 3311 3312 percpu_down_read(&scx_cgroup_ops_rwsem); 3313 3314 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3315 (tg->scx.bw_period_us != period_us || 3316 tg->scx.bw_quota_us != quota_us || 3317 tg->scx.bw_burst_us != burst_us)) 3318 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3319 tg_cgrp(tg), period_us, quota_us, burst_us); 3320 3321 tg->scx.bw_period_us = period_us; 3322 tg->scx.bw_quota_us = quota_us; 3323 tg->scx.bw_burst_us = burst_us; 3324 3325 percpu_up_read(&scx_cgroup_ops_rwsem); 3326 } 3327 3328 static void scx_cgroup_lock(void) 3329 { 3330 percpu_down_write(&scx_cgroup_ops_rwsem); 3331 cgroup_lock(); 3332 } 3333 3334 static void scx_cgroup_unlock(void) 3335 { 3336 cgroup_unlock(); 3337 percpu_up_write(&scx_cgroup_ops_rwsem); 3338 } 3339 3340 #else /* CONFIG_EXT_GROUP_SCHED */ 3341 3342 static void scx_cgroup_lock(void) {} 3343 static void scx_cgroup_unlock(void) {} 3344 3345 #endif /* CONFIG_EXT_GROUP_SCHED */ 3346 3347 /* 3348 * Omitted operations: 3349 * 3350 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3351 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3352 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3353 * 3354 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3355 * 3356 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3357 * their current sched_class. Call them directly from sched core instead. 3358 */ 3359 DEFINE_SCHED_CLASS(ext) = { 3360 .queue_mask = 1, 3361 3362 .enqueue_task = enqueue_task_scx, 3363 .dequeue_task = dequeue_task_scx, 3364 .yield_task = yield_task_scx, 3365 .yield_to_task = yield_to_task_scx, 3366 3367 .wakeup_preempt = wakeup_preempt_scx, 3368 3369 .pick_task = pick_task_scx, 3370 3371 .put_prev_task = put_prev_task_scx, 3372 .set_next_task = set_next_task_scx, 3373 3374 .select_task_rq = select_task_rq_scx, 3375 .task_woken = task_woken_scx, 3376 .set_cpus_allowed = set_cpus_allowed_scx, 3377 3378 .rq_online = rq_online_scx, 3379 .rq_offline = rq_offline_scx, 3380 3381 .task_tick = task_tick_scx, 3382 3383 .switching_to = switching_to_scx, 3384 .switched_from = switched_from_scx, 3385 .switched_to = switched_to_scx, 3386 .reweight_task = reweight_task_scx, 3387 .prio_changed = prio_changed_scx, 3388 3389 .update_curr = update_curr_scx, 3390 3391 #ifdef CONFIG_UCLAMP_TASK 3392 .uclamp_enabled = 1, 3393 #endif 3394 }; 3395 3396 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3397 { 3398 memset(dsq, 0, sizeof(*dsq)); 3399 3400 raw_spin_lock_init(&dsq->lock); 3401 INIT_LIST_HEAD(&dsq->list); 3402 dsq->id = dsq_id; 3403 } 3404 3405 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3406 { 3407 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3408 struct scx_dispatch_q *dsq, *tmp_dsq; 3409 3410 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3411 kfree_rcu(dsq, rcu); 3412 } 3413 3414 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3415 3416 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3417 { 3418 struct scx_dispatch_q *dsq; 3419 unsigned long flags; 3420 3421 rcu_read_lock(); 3422 3423 dsq = find_user_dsq(sch, dsq_id); 3424 if (!dsq) 3425 goto out_unlock_rcu; 3426 3427 raw_spin_lock_irqsave(&dsq->lock, flags); 3428 3429 if (dsq->nr) { 3430 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3431 dsq->id, dsq->nr); 3432 goto out_unlock_dsq; 3433 } 3434 3435 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3436 dsq_hash_params)) 3437 goto out_unlock_dsq; 3438 3439 /* 3440 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3441 * queueing more tasks. As this function can be called from anywhere, 3442 * freeing is bounced through an irq work to avoid nesting RCU 3443 * operations inside scheduler locks. 3444 */ 3445 dsq->id = SCX_DSQ_INVALID; 3446 llist_add(&dsq->free_node, &dsqs_to_free); 3447 irq_work_queue(&free_dsq_irq_work); 3448 3449 out_unlock_dsq: 3450 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3451 out_unlock_rcu: 3452 rcu_read_unlock(); 3453 } 3454 3455 #ifdef CONFIG_EXT_GROUP_SCHED 3456 static void scx_cgroup_exit(struct scx_sched *sch) 3457 { 3458 struct cgroup_subsys_state *css; 3459 3460 scx_cgroup_enabled = false; 3461 3462 /* 3463 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3464 * cgroups and exit all the inited ones, all online cgroups are exited. 3465 */ 3466 css_for_each_descendant_post(css, &root_task_group.css) { 3467 struct task_group *tg = css_tg(css); 3468 3469 if (!(tg->scx.flags & SCX_TG_INITED)) 3470 continue; 3471 tg->scx.flags &= ~SCX_TG_INITED; 3472 3473 if (!sch->ops.cgroup_exit) 3474 continue; 3475 3476 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3477 css->cgroup); 3478 } 3479 } 3480 3481 static int scx_cgroup_init(struct scx_sched *sch) 3482 { 3483 struct cgroup_subsys_state *css; 3484 int ret; 3485 3486 /* 3487 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3488 * cgroups and init, all online cgroups are initialized. 3489 */ 3490 css_for_each_descendant_pre(css, &root_task_group.css) { 3491 struct task_group *tg = css_tg(css); 3492 struct scx_cgroup_init_args args = { 3493 .weight = tg->scx.weight, 3494 .bw_period_us = tg->scx.bw_period_us, 3495 .bw_quota_us = tg->scx.bw_quota_us, 3496 .bw_burst_us = tg->scx.bw_burst_us, 3497 }; 3498 3499 if ((tg->scx.flags & 3500 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3501 continue; 3502 3503 if (!sch->ops.cgroup_init) { 3504 tg->scx.flags |= SCX_TG_INITED; 3505 continue; 3506 } 3507 3508 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3509 css->cgroup, &args); 3510 if (ret) { 3511 css_put(css); 3512 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3513 return ret; 3514 } 3515 tg->scx.flags |= SCX_TG_INITED; 3516 } 3517 3518 WARN_ON_ONCE(scx_cgroup_enabled); 3519 scx_cgroup_enabled = true; 3520 3521 return 0; 3522 } 3523 3524 #else 3525 static void scx_cgroup_exit(struct scx_sched *sch) {} 3526 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3527 #endif 3528 3529 3530 /******************************************************************************** 3531 * Sysfs interface and ops enable/disable. 3532 */ 3533 3534 #define SCX_ATTR(_name) \ 3535 static struct kobj_attribute scx_attr_##_name = { \ 3536 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3537 .show = scx_attr_##_name##_show, \ 3538 } 3539 3540 static ssize_t scx_attr_state_show(struct kobject *kobj, 3541 struct kobj_attribute *ka, char *buf) 3542 { 3543 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3544 } 3545 SCX_ATTR(state); 3546 3547 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3548 struct kobj_attribute *ka, char *buf) 3549 { 3550 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3551 } 3552 SCX_ATTR(switch_all); 3553 3554 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3555 struct kobj_attribute *ka, char *buf) 3556 { 3557 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3558 } 3559 SCX_ATTR(nr_rejected); 3560 3561 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3562 struct kobj_attribute *ka, char *buf) 3563 { 3564 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3565 } 3566 SCX_ATTR(hotplug_seq); 3567 3568 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3569 struct kobj_attribute *ka, char *buf) 3570 { 3571 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3572 } 3573 SCX_ATTR(enable_seq); 3574 3575 static struct attribute *scx_global_attrs[] = { 3576 &scx_attr_state.attr, 3577 &scx_attr_switch_all.attr, 3578 &scx_attr_nr_rejected.attr, 3579 &scx_attr_hotplug_seq.attr, 3580 &scx_attr_enable_seq.attr, 3581 NULL, 3582 }; 3583 3584 static const struct attribute_group scx_global_attr_group = { 3585 .attrs = scx_global_attrs, 3586 }; 3587 3588 static void free_exit_info(struct scx_exit_info *ei); 3589 3590 static void scx_sched_free_rcu_work(struct work_struct *work) 3591 { 3592 struct rcu_work *rcu_work = to_rcu_work(work); 3593 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3594 struct rhashtable_iter rht_iter; 3595 struct scx_dispatch_q *dsq; 3596 int node; 3597 3598 irq_work_sync(&sch->error_irq_work); 3599 kthread_destroy_worker(sch->helper); 3600 3601 free_percpu(sch->pcpu); 3602 3603 for_each_node_state(node, N_POSSIBLE) 3604 kfree(sch->global_dsqs[node]); 3605 kfree(sch->global_dsqs); 3606 3607 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3608 do { 3609 rhashtable_walk_start(&rht_iter); 3610 3611 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3612 destroy_dsq(sch, dsq->id); 3613 3614 rhashtable_walk_stop(&rht_iter); 3615 } while (dsq == ERR_PTR(-EAGAIN)); 3616 rhashtable_walk_exit(&rht_iter); 3617 3618 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3619 free_exit_info(sch->exit_info); 3620 kfree(sch); 3621 } 3622 3623 static void scx_kobj_release(struct kobject *kobj) 3624 { 3625 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3626 3627 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3628 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3629 } 3630 3631 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3632 struct kobj_attribute *ka, char *buf) 3633 { 3634 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3635 } 3636 SCX_ATTR(ops); 3637 3638 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3639 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3640 }) 3641 3642 static ssize_t scx_attr_events_show(struct kobject *kobj, 3643 struct kobj_attribute *ka, char *buf) 3644 { 3645 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3646 struct scx_event_stats events; 3647 int at = 0; 3648 3649 scx_read_events(sch, &events); 3650 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3651 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3652 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3653 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3654 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3655 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3656 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3657 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3658 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3659 return at; 3660 } 3661 SCX_ATTR(events); 3662 3663 static struct attribute *scx_sched_attrs[] = { 3664 &scx_attr_ops.attr, 3665 &scx_attr_events.attr, 3666 NULL, 3667 }; 3668 ATTRIBUTE_GROUPS(scx_sched); 3669 3670 static const struct kobj_type scx_ktype = { 3671 .release = scx_kobj_release, 3672 .sysfs_ops = &kobj_sysfs_ops, 3673 .default_groups = scx_sched_groups, 3674 }; 3675 3676 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3677 { 3678 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3679 } 3680 3681 static const struct kset_uevent_ops scx_uevent_ops = { 3682 .uevent = scx_uevent, 3683 }; 3684 3685 /* 3686 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3687 * sched_class. dl/rt are already handled. 3688 */ 3689 bool task_should_scx(int policy) 3690 { 3691 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3692 return false; 3693 if (READ_ONCE(scx_switching_all)) 3694 return true; 3695 return policy == SCHED_EXT; 3696 } 3697 3698 bool scx_allow_ttwu_queue(const struct task_struct *p) 3699 { 3700 struct scx_sched *sch; 3701 3702 if (!scx_enabled()) 3703 return true; 3704 3705 sch = rcu_dereference_sched(scx_root); 3706 if (unlikely(!sch)) 3707 return true; 3708 3709 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 3710 return true; 3711 3712 if (unlikely(p->sched_class != &ext_sched_class)) 3713 return true; 3714 3715 return false; 3716 } 3717 3718 /** 3719 * handle_lockup - sched_ext common lockup handler 3720 * @fmt: format string 3721 * 3722 * Called on system stall or lockup condition and initiates abort of sched_ext 3723 * if enabled, which may resolve the reported lockup. 3724 * 3725 * Returns %true if sched_ext is enabled and abort was initiated, which may 3726 * resolve the lockup. %false if sched_ext is not enabled or abort was already 3727 * initiated by someone else. 3728 */ 3729 static __printf(1, 2) bool handle_lockup(const char *fmt, ...) 3730 { 3731 struct scx_sched *sch; 3732 va_list args; 3733 bool ret; 3734 3735 guard(rcu)(); 3736 3737 sch = rcu_dereference(scx_root); 3738 if (unlikely(!sch)) 3739 return false; 3740 3741 switch (scx_enable_state()) { 3742 case SCX_ENABLING: 3743 case SCX_ENABLED: 3744 va_start(args, fmt); 3745 ret = scx_verror(sch, fmt, args); 3746 va_end(args); 3747 return ret; 3748 default: 3749 return false; 3750 } 3751 } 3752 3753 /** 3754 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3755 * 3756 * While there are various reasons why RCU CPU stalls can occur on a system 3757 * that may not be caused by the current BPF scheduler, try kicking out the 3758 * current scheduler in an attempt to recover the system to a good state before 3759 * issuing panics. 3760 * 3761 * Returns %true if sched_ext is enabled and abort was initiated, which may 3762 * resolve the reported RCU stall. %false if sched_ext is not enabled or someone 3763 * else already initiated abort. 3764 */ 3765 bool scx_rcu_cpu_stall(void) 3766 { 3767 return handle_lockup("RCU CPU stall detected!"); 3768 } 3769 3770 /** 3771 * scx_softlockup - sched_ext softlockup handler 3772 * @dur_s: number of seconds of CPU stuck due to soft lockup 3773 * 3774 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3775 * live-lock the system by making many CPUs target the same DSQ to the point 3776 * where soft-lockup detection triggers. This function is called from 3777 * soft-lockup watchdog when the triggering point is close and tries to unjam 3778 * the system and aborting the BPF scheduler. 3779 */ 3780 void scx_softlockup(u32 dur_s) 3781 { 3782 if (!handle_lockup("soft lockup - CPU %d stuck for %us", smp_processor_id(), dur_s)) 3783 return; 3784 3785 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU %d stuck for %us, disabling BPF scheduler\n", 3786 smp_processor_id(), dur_s); 3787 } 3788 3789 /** 3790 * scx_hardlockup - sched_ext hardlockup handler 3791 * 3792 * A poorly behaving BPF scheduler can trigger hard lockup by e.g. putting 3793 * numerous affinitized tasks in a single queue and directing all CPUs at it. 3794 * Try kicking out the current scheduler in an attempt to recover the system to 3795 * a good state before taking more drastic actions. 3796 * 3797 * Returns %true if sched_ext is enabled and abort was initiated, which may 3798 * resolve the reported hardlockdup. %false if sched_ext is not enabled or 3799 * someone else already initiated abort. 3800 */ 3801 bool scx_hardlockup(int cpu) 3802 { 3803 if (!handle_lockup("hard lockup - CPU %d", cpu)) 3804 return false; 3805 3806 printk_deferred(KERN_ERR "sched_ext: Hard lockup - CPU %d, disabling BPF scheduler\n", 3807 cpu); 3808 return true; 3809 } 3810 3811 static u32 bypass_lb_cpu(struct scx_sched *sch, struct rq *rq, 3812 struct cpumask *donee_mask, struct cpumask *resched_mask, 3813 u32 nr_donor_target, u32 nr_donee_target) 3814 { 3815 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq; 3816 struct task_struct *p, *n; 3817 struct scx_dsq_list_node cursor = INIT_DSQ_LIST_CURSOR(cursor, 0, 0); 3818 s32 delta = READ_ONCE(donor_dsq->nr) - nr_donor_target; 3819 u32 nr_balanced = 0, min_delta_us; 3820 3821 /* 3822 * All we want to guarantee is reasonable forward progress. No reason to 3823 * fine tune. Assuming every task on @donor_dsq runs their full slice, 3824 * consider offloading iff the total queued duration is over the 3825 * threshold. 3826 */ 3827 min_delta_us = scx_bypass_lb_intv_us / SCX_BYPASS_LB_MIN_DELTA_DIV; 3828 if (delta < DIV_ROUND_UP(min_delta_us, scx_slice_bypass_us)) 3829 return 0; 3830 3831 raw_spin_rq_lock_irq(rq); 3832 raw_spin_lock(&donor_dsq->lock); 3833 list_add(&cursor.node, &donor_dsq->list); 3834 resume: 3835 n = container_of(&cursor, struct task_struct, scx.dsq_list); 3836 n = nldsq_next_task(donor_dsq, n, false); 3837 3838 while ((p = n)) { 3839 struct rq *donee_rq; 3840 struct scx_dispatch_q *donee_dsq; 3841 int donee; 3842 3843 n = nldsq_next_task(donor_dsq, n, false); 3844 3845 if (donor_dsq->nr <= nr_donor_target) 3846 break; 3847 3848 if (cpumask_empty(donee_mask)) 3849 break; 3850 3851 donee = cpumask_any_and_distribute(donee_mask, p->cpus_ptr); 3852 if (donee >= nr_cpu_ids) 3853 continue; 3854 3855 donee_rq = cpu_rq(donee); 3856 donee_dsq = &donee_rq->scx.bypass_dsq; 3857 3858 /* 3859 * $p's rq is not locked but $p's DSQ lock protects its 3860 * scheduling properties making this test safe. 3861 */ 3862 if (!task_can_run_on_remote_rq(sch, p, donee_rq, false)) 3863 continue; 3864 3865 /* 3866 * Moving $p from one non-local DSQ to another. The source rq 3867 * and DSQ are already locked. Do an abbreviated dequeue and 3868 * then perform enqueue without unlocking $donor_dsq. 3869 * 3870 * We don't want to drop and reacquire the lock on each 3871 * iteration as @donor_dsq can be very long and potentially 3872 * highly contended. Donee DSQs are less likely to be contended. 3873 * The nested locking is safe as only this LB moves tasks 3874 * between bypass DSQs. 3875 */ 3876 dispatch_dequeue_locked(p, donor_dsq); 3877 dispatch_enqueue(sch, donee_dsq, p, SCX_ENQ_NESTED); 3878 3879 /* 3880 * $donee might have been idle and need to be woken up. No need 3881 * to be clever. Kick every CPU that receives tasks. 3882 */ 3883 cpumask_set_cpu(donee, resched_mask); 3884 3885 if (READ_ONCE(donee_dsq->nr) >= nr_donee_target) 3886 cpumask_clear_cpu(donee, donee_mask); 3887 3888 nr_balanced++; 3889 if (!(nr_balanced % SCX_BYPASS_LB_BATCH) && n) { 3890 list_move_tail(&cursor.node, &n->scx.dsq_list.node); 3891 raw_spin_unlock(&donor_dsq->lock); 3892 raw_spin_rq_unlock_irq(rq); 3893 cpu_relax(); 3894 raw_spin_rq_lock_irq(rq); 3895 raw_spin_lock(&donor_dsq->lock); 3896 goto resume; 3897 } 3898 } 3899 3900 list_del_init(&cursor.node); 3901 raw_spin_unlock(&donor_dsq->lock); 3902 raw_spin_rq_unlock_irq(rq); 3903 3904 return nr_balanced; 3905 } 3906 3907 static void bypass_lb_node(struct scx_sched *sch, int node) 3908 { 3909 const struct cpumask *node_mask = cpumask_of_node(node); 3910 struct cpumask *donee_mask = scx_bypass_lb_donee_cpumask; 3911 struct cpumask *resched_mask = scx_bypass_lb_resched_cpumask; 3912 u32 nr_tasks = 0, nr_cpus = 0, nr_balanced = 0; 3913 u32 nr_target, nr_donor_target; 3914 u32 before_min = U32_MAX, before_max = 0; 3915 u32 after_min = U32_MAX, after_max = 0; 3916 int cpu; 3917 3918 /* count the target tasks and CPUs */ 3919 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3920 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr); 3921 3922 nr_tasks += nr; 3923 nr_cpus++; 3924 3925 before_min = min(nr, before_min); 3926 before_max = max(nr, before_max); 3927 } 3928 3929 if (!nr_cpus) 3930 return; 3931 3932 /* 3933 * We don't want CPUs to have more than $nr_donor_target tasks and 3934 * balancing to fill donee CPUs upto $nr_target. Once targets are 3935 * calculated, find the donee CPUs. 3936 */ 3937 nr_target = DIV_ROUND_UP(nr_tasks, nr_cpus); 3938 nr_donor_target = DIV_ROUND_UP(nr_target * SCX_BYPASS_LB_DONOR_PCT, 100); 3939 3940 cpumask_clear(donee_mask); 3941 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3942 if (READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr) < nr_target) 3943 cpumask_set_cpu(cpu, donee_mask); 3944 } 3945 3946 /* iterate !donee CPUs and see if they should be offloaded */ 3947 cpumask_clear(resched_mask); 3948 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3949 struct rq *rq = cpu_rq(cpu); 3950 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq; 3951 3952 if (cpumask_empty(donee_mask)) 3953 break; 3954 if (cpumask_test_cpu(cpu, donee_mask)) 3955 continue; 3956 if (READ_ONCE(donor_dsq->nr) <= nr_donor_target) 3957 continue; 3958 3959 nr_balanced += bypass_lb_cpu(sch, rq, donee_mask, resched_mask, 3960 nr_donor_target, nr_target); 3961 } 3962 3963 for_each_cpu(cpu, resched_mask) { 3964 struct rq *rq = cpu_rq(cpu); 3965 3966 raw_spin_rq_lock_irq(rq); 3967 resched_curr(rq); 3968 raw_spin_rq_unlock_irq(rq); 3969 } 3970 3971 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3972 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr); 3973 3974 after_min = min(nr, after_min); 3975 after_max = max(nr, after_max); 3976 3977 } 3978 3979 trace_sched_ext_bypass_lb(node, nr_cpus, nr_tasks, nr_balanced, 3980 before_min, before_max, after_min, after_max); 3981 } 3982 3983 /* 3984 * In bypass mode, all tasks are put on the per-CPU bypass DSQs. If the machine 3985 * is over-saturated and the BPF scheduler skewed tasks into few CPUs, some 3986 * bypass DSQs can be overloaded. If there are enough tasks to saturate other 3987 * lightly loaded CPUs, such imbalance can lead to very high execution latency 3988 * on the overloaded CPUs and thus to hung tasks and RCU stalls. To avoid such 3989 * outcomes, a simple load balancing mechanism is implemented by the following 3990 * timer which runs periodically while bypass mode is in effect. 3991 */ 3992 static void scx_bypass_lb_timerfn(struct timer_list *timer) 3993 { 3994 struct scx_sched *sch; 3995 int node; 3996 u32 intv_us; 3997 3998 sch = rcu_dereference_all(scx_root); 3999 if (unlikely(!sch) || !READ_ONCE(scx_bypass_depth)) 4000 return; 4001 4002 for_each_node_with_cpus(node) 4003 bypass_lb_node(sch, node); 4004 4005 intv_us = READ_ONCE(scx_bypass_lb_intv_us); 4006 if (intv_us) 4007 mod_timer(timer, jiffies + usecs_to_jiffies(intv_us)); 4008 } 4009 4010 static DEFINE_TIMER(scx_bypass_lb_timer, scx_bypass_lb_timerfn); 4011 4012 /** 4013 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 4014 * @bypass: true for bypass, false for unbypass 4015 * 4016 * Bypassing guarantees that all runnable tasks make forward progress without 4017 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4018 * be held by tasks that the BPF scheduler is forgetting to run, which 4019 * unfortunately also excludes toggling the static branches. 4020 * 4021 * Let's work around by overriding a couple ops and modifying behaviors based on 4022 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4023 * to force global FIFO scheduling. 4024 * 4025 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4026 * 4027 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4028 * %SCX_OPS_ENQ_LAST is also ignored. 4029 * 4030 * - ops.dispatch() is ignored. 4031 * 4032 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4033 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4034 * the tail of the queue with core_sched_at touched. 4035 * 4036 * - pick_next_task() suppresses zero slice warning. 4037 * 4038 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM 4039 * operations. 4040 * 4041 * - scx_prio_less() reverts to the default core_sched_at order. 4042 */ 4043 static void scx_bypass(bool bypass) 4044 { 4045 static DEFINE_RAW_SPINLOCK(bypass_lock); 4046 static unsigned long bypass_timestamp; 4047 struct scx_sched *sch; 4048 unsigned long flags; 4049 int cpu; 4050 4051 raw_spin_lock_irqsave(&bypass_lock, flags); 4052 sch = rcu_dereference_bh(scx_root); 4053 4054 if (bypass) { 4055 u32 intv_us; 4056 4057 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth + 1); 4058 WARN_ON_ONCE(scx_bypass_depth <= 0); 4059 if (scx_bypass_depth != 1) 4060 goto unlock; 4061 WRITE_ONCE(scx_slice_dfl, scx_slice_bypass_us * NSEC_PER_USEC); 4062 bypass_timestamp = ktime_get_ns(); 4063 if (sch) 4064 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 4065 4066 intv_us = READ_ONCE(scx_bypass_lb_intv_us); 4067 if (intv_us && !timer_pending(&scx_bypass_lb_timer)) { 4068 scx_bypass_lb_timer.expires = 4069 jiffies + usecs_to_jiffies(intv_us); 4070 add_timer_global(&scx_bypass_lb_timer); 4071 } 4072 } else { 4073 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth - 1); 4074 WARN_ON_ONCE(scx_bypass_depth < 0); 4075 if (scx_bypass_depth != 0) 4076 goto unlock; 4077 WRITE_ONCE(scx_slice_dfl, SCX_SLICE_DFL); 4078 if (sch) 4079 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 4080 ktime_get_ns() - bypass_timestamp); 4081 } 4082 4083 /* 4084 * No task property is changing. We just need to make sure all currently 4085 * queued tasks are re-queued according to the new scx_rq_bypassing() 4086 * state. As an optimization, walk each rq's runnable_list instead of 4087 * the scx_tasks list. 4088 * 4089 * This function can't trust the scheduler and thus can't use 4090 * cpus_read_lock(). Walk all possible CPUs instead of online. 4091 */ 4092 for_each_possible_cpu(cpu) { 4093 struct rq *rq = cpu_rq(cpu); 4094 struct task_struct *p, *n; 4095 4096 raw_spin_rq_lock(rq); 4097 4098 if (bypass) { 4099 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4100 rq->scx.flags |= SCX_RQ_BYPASSING; 4101 } else { 4102 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4103 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4104 } 4105 4106 /* 4107 * We need to guarantee that no tasks are on the BPF scheduler 4108 * while bypassing. Either we see enabled or the enable path 4109 * sees scx_rq_bypassing() before moving tasks to SCX. 4110 */ 4111 if (!scx_enabled()) { 4112 raw_spin_rq_unlock(rq); 4113 continue; 4114 } 4115 4116 /* 4117 * The use of list_for_each_entry_safe_reverse() is required 4118 * because each task is going to be removed from and added back 4119 * to the runnable_list during iteration. Because they're added 4120 * to the tail of the list, safe reverse iteration can still 4121 * visit all nodes. 4122 */ 4123 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4124 scx.runnable_node) { 4125 /* cycling deq/enq is enough, see the function comment */ 4126 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) { 4127 /* nothing */ ; 4128 } 4129 } 4130 4131 /* resched to restore ticks and idle state */ 4132 if (cpu_online(cpu) || cpu == smp_processor_id()) 4133 resched_curr(rq); 4134 4135 raw_spin_rq_unlock(rq); 4136 } 4137 4138 unlock: 4139 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4140 } 4141 4142 static void free_exit_info(struct scx_exit_info *ei) 4143 { 4144 kvfree(ei->dump); 4145 kfree(ei->msg); 4146 kfree(ei->bt); 4147 kfree(ei); 4148 } 4149 4150 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4151 { 4152 struct scx_exit_info *ei; 4153 4154 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4155 if (!ei) 4156 return NULL; 4157 4158 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4159 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4160 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 4161 4162 if (!ei->bt || !ei->msg || !ei->dump) { 4163 free_exit_info(ei); 4164 return NULL; 4165 } 4166 4167 return ei; 4168 } 4169 4170 static const char *scx_exit_reason(enum scx_exit_kind kind) 4171 { 4172 switch (kind) { 4173 case SCX_EXIT_UNREG: 4174 return "unregistered from user space"; 4175 case SCX_EXIT_UNREG_BPF: 4176 return "unregistered from BPF"; 4177 case SCX_EXIT_UNREG_KERN: 4178 return "unregistered from the main kernel"; 4179 case SCX_EXIT_SYSRQ: 4180 return "disabled by sysrq-S"; 4181 case SCX_EXIT_ERROR: 4182 return "runtime error"; 4183 case SCX_EXIT_ERROR_BPF: 4184 return "scx_bpf_error"; 4185 case SCX_EXIT_ERROR_STALL: 4186 return "runnable task stall"; 4187 default: 4188 return "<UNKNOWN>"; 4189 } 4190 } 4191 4192 static void free_kick_syncs(void) 4193 { 4194 int cpu; 4195 4196 for_each_possible_cpu(cpu) { 4197 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu); 4198 struct scx_kick_syncs *to_free; 4199 4200 to_free = rcu_replace_pointer(*ksyncs, NULL, true); 4201 if (to_free) 4202 kvfree_rcu(to_free, rcu); 4203 } 4204 } 4205 4206 static void scx_disable_workfn(struct kthread_work *work) 4207 { 4208 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 4209 struct scx_exit_info *ei = sch->exit_info; 4210 struct scx_task_iter sti; 4211 struct task_struct *p; 4212 int kind, cpu; 4213 4214 kind = atomic_read(&sch->exit_kind); 4215 while (true) { 4216 if (kind == SCX_EXIT_DONE) /* already disabled? */ 4217 return; 4218 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 4219 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 4220 break; 4221 } 4222 ei->kind = kind; 4223 ei->reason = scx_exit_reason(ei->kind); 4224 4225 /* guarantee forward progress by bypassing scx_ops */ 4226 scx_bypass(true); 4227 WRITE_ONCE(scx_aborting, false); 4228 4229 switch (scx_set_enable_state(SCX_DISABLING)) { 4230 case SCX_DISABLING: 4231 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4232 break; 4233 case SCX_DISABLED: 4234 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4235 sch->exit_info->msg); 4236 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4237 goto done; 4238 default: 4239 break; 4240 } 4241 4242 /* 4243 * Here, every runnable task is guaranteed to make forward progress and 4244 * we can safely use blocking synchronization constructs. Actually 4245 * disable ops. 4246 */ 4247 mutex_lock(&scx_enable_mutex); 4248 4249 static_branch_disable(&__scx_switched_all); 4250 WRITE_ONCE(scx_switching_all, false); 4251 4252 /* 4253 * Shut down cgroup support before tasks so that the cgroup attach path 4254 * doesn't race against scx_exit_task(). 4255 */ 4256 scx_cgroup_lock(); 4257 scx_cgroup_exit(sch); 4258 scx_cgroup_unlock(); 4259 4260 /* 4261 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4262 * must be switched out and exited synchronously. 4263 */ 4264 percpu_down_write(&scx_fork_rwsem); 4265 4266 scx_init_task_enabled = false; 4267 4268 scx_task_iter_start(&sti); 4269 while ((p = scx_task_iter_next_locked(&sti))) { 4270 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4271 const struct sched_class *old_class = p->sched_class; 4272 const struct sched_class *new_class = scx_setscheduler_class(p); 4273 4274 update_rq_clock(task_rq(p)); 4275 4276 if (old_class != new_class) 4277 queue_flags |= DEQUEUE_CLASS; 4278 4279 scoped_guard (sched_change, p, queue_flags) { 4280 p->sched_class = new_class; 4281 } 4282 4283 scx_exit_task(p); 4284 } 4285 scx_task_iter_stop(&sti); 4286 percpu_up_write(&scx_fork_rwsem); 4287 4288 /* 4289 * Invalidate all the rq clocks to prevent getting outdated 4290 * rq clocks from a previous scx scheduler. 4291 */ 4292 for_each_possible_cpu(cpu) { 4293 struct rq *rq = cpu_rq(cpu); 4294 scx_rq_clock_invalidate(rq); 4295 } 4296 4297 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4298 static_branch_disable(&__scx_enabled); 4299 bitmap_zero(sch->has_op, SCX_OPI_END); 4300 scx_idle_disable(); 4301 synchronize_rcu(); 4302 4303 if (ei->kind >= SCX_EXIT_ERROR) { 4304 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4305 sch->ops.name, ei->reason); 4306 4307 if (ei->msg[0] != '\0') 4308 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 4309 #ifdef CONFIG_STACKTRACE 4310 stack_trace_print(ei->bt, ei->bt_len, 2); 4311 #endif 4312 } else { 4313 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4314 sch->ops.name, ei->reason); 4315 } 4316 4317 if (sch->ops.exit) 4318 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 4319 4320 cancel_delayed_work_sync(&scx_watchdog_work); 4321 4322 /* 4323 * scx_root clearing must be inside cpus_read_lock(). See 4324 * handle_hotplug(). 4325 */ 4326 cpus_read_lock(); 4327 RCU_INIT_POINTER(scx_root, NULL); 4328 cpus_read_unlock(); 4329 4330 /* 4331 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 4332 * could observe an object of the same name still in the hierarchy when 4333 * the next scheduler is loaded. 4334 */ 4335 kobject_del(&sch->kobj); 4336 4337 free_percpu(scx_dsp_ctx); 4338 scx_dsp_ctx = NULL; 4339 scx_dsp_max_batch = 0; 4340 free_kick_syncs(); 4341 4342 if (scx_bypassed_for_enable) { 4343 scx_bypassed_for_enable = false; 4344 scx_bypass(false); 4345 } 4346 4347 mutex_unlock(&scx_enable_mutex); 4348 4349 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4350 done: 4351 scx_bypass(false); 4352 } 4353 4354 static bool scx_claim_exit(struct scx_sched *sch, enum scx_exit_kind kind) 4355 { 4356 int none = SCX_EXIT_NONE; 4357 4358 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4359 return false; 4360 4361 /* 4362 * Some CPUs may be trapped in the dispatch paths. Set the aborting 4363 * flag to break potential live-lock scenarios, ensuring we can 4364 * successfully reach scx_bypass(). 4365 */ 4366 WRITE_ONCE(scx_aborting, true); 4367 return true; 4368 } 4369 4370 static void scx_disable(enum scx_exit_kind kind) 4371 { 4372 struct scx_sched *sch; 4373 4374 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4375 kind = SCX_EXIT_ERROR; 4376 4377 rcu_read_lock(); 4378 sch = rcu_dereference(scx_root); 4379 if (sch) { 4380 scx_claim_exit(sch, kind); 4381 kthread_queue_work(sch->helper, &sch->disable_work); 4382 } 4383 rcu_read_unlock(); 4384 } 4385 4386 static void dump_newline(struct seq_buf *s) 4387 { 4388 trace_sched_ext_dump(""); 4389 4390 /* @s may be zero sized and seq_buf triggers WARN if so */ 4391 if (s->size) 4392 seq_buf_putc(s, '\n'); 4393 } 4394 4395 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4396 { 4397 va_list args; 4398 4399 #ifdef CONFIG_TRACEPOINTS 4400 if (trace_sched_ext_dump_enabled()) { 4401 /* protected by scx_dump_state()::dump_lock */ 4402 static char line_buf[SCX_EXIT_MSG_LEN]; 4403 4404 va_start(args, fmt); 4405 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4406 va_end(args); 4407 4408 trace_sched_ext_dump(line_buf); 4409 } 4410 #endif 4411 /* @s may be zero sized and seq_buf triggers WARN if so */ 4412 if (s->size) { 4413 va_start(args, fmt); 4414 seq_buf_vprintf(s, fmt, args); 4415 va_end(args); 4416 4417 seq_buf_putc(s, '\n'); 4418 } 4419 } 4420 4421 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4422 const unsigned long *bt, unsigned int len) 4423 { 4424 unsigned int i; 4425 4426 for (i = 0; i < len; i++) 4427 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4428 } 4429 4430 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4431 { 4432 struct scx_dump_data *dd = &scx_dump_data; 4433 4434 lockdep_assert_irqs_disabled(); 4435 4436 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4437 dd->first = true; 4438 dd->cursor = 0; 4439 dd->s = s; 4440 dd->prefix = prefix; 4441 } 4442 4443 static void ops_dump_flush(void) 4444 { 4445 struct scx_dump_data *dd = &scx_dump_data; 4446 char *line = dd->buf.line; 4447 4448 if (!dd->cursor) 4449 return; 4450 4451 /* 4452 * There's something to flush and this is the first line. Insert a blank 4453 * line to distinguish ops dump. 4454 */ 4455 if (dd->first) { 4456 dump_newline(dd->s); 4457 dd->first = false; 4458 } 4459 4460 /* 4461 * There may be multiple lines in $line. Scan and emit each line 4462 * separately. 4463 */ 4464 while (true) { 4465 char *end = line; 4466 char c; 4467 4468 while (*end != '\n' && *end != '\0') 4469 end++; 4470 4471 /* 4472 * If $line overflowed, it may not have newline at the end. 4473 * Always emit with a newline. 4474 */ 4475 c = *end; 4476 *end = '\0'; 4477 dump_line(dd->s, "%s%s", dd->prefix, line); 4478 if (c == '\0') 4479 break; 4480 4481 /* move to the next line */ 4482 end++; 4483 if (*end == '\0') 4484 break; 4485 line = end; 4486 } 4487 4488 dd->cursor = 0; 4489 } 4490 4491 static void ops_dump_exit(void) 4492 { 4493 ops_dump_flush(); 4494 scx_dump_data.cpu = -1; 4495 } 4496 4497 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4498 struct task_struct *p, char marker) 4499 { 4500 static unsigned long bt[SCX_EXIT_BT_LEN]; 4501 struct scx_sched *sch = scx_root; 4502 char dsq_id_buf[19] = "(n/a)"; 4503 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4504 unsigned int bt_len = 0; 4505 4506 if (p->scx.dsq) 4507 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4508 (unsigned long long)p->scx.dsq->id); 4509 4510 dump_newline(s); 4511 dump_line(s, " %c%c %s[%d] %+ldms", 4512 marker, task_state_to_char(p), p->comm, p->pid, 4513 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4514 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4515 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4516 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4517 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4518 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4519 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4520 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4521 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4522 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr), 4523 p->migration_disabled); 4524 4525 if (SCX_HAS_OP(sch, dump_task)) { 4526 ops_dump_init(s, " "); 4527 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4528 ops_dump_exit(); 4529 } 4530 4531 #ifdef CONFIG_STACKTRACE 4532 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4533 #endif 4534 if (bt_len) { 4535 dump_newline(s); 4536 dump_stack_trace(s, " ", bt, bt_len); 4537 } 4538 } 4539 4540 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4541 { 4542 static DEFINE_SPINLOCK(dump_lock); 4543 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4544 struct scx_sched *sch = scx_root; 4545 struct scx_dump_ctx dctx = { 4546 .kind = ei->kind, 4547 .exit_code = ei->exit_code, 4548 .reason = ei->reason, 4549 .at_ns = ktime_get_ns(), 4550 .at_jiffies = jiffies, 4551 }; 4552 struct seq_buf s; 4553 struct scx_event_stats events; 4554 unsigned long flags; 4555 char *buf; 4556 int cpu; 4557 4558 spin_lock_irqsave(&dump_lock, flags); 4559 4560 seq_buf_init(&s, ei->dump, dump_len); 4561 4562 if (ei->kind == SCX_EXIT_NONE) { 4563 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4564 } else { 4565 dump_line(&s, "%s[%d] triggered exit kind %d:", 4566 current->comm, current->pid, ei->kind); 4567 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4568 dump_newline(&s); 4569 dump_line(&s, "Backtrace:"); 4570 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4571 } 4572 4573 if (SCX_HAS_OP(sch, dump)) { 4574 ops_dump_init(&s, ""); 4575 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4576 ops_dump_exit(); 4577 } 4578 4579 dump_newline(&s); 4580 dump_line(&s, "CPU states"); 4581 dump_line(&s, "----------"); 4582 4583 for_each_possible_cpu(cpu) { 4584 struct rq *rq = cpu_rq(cpu); 4585 struct rq_flags rf; 4586 struct task_struct *p; 4587 struct seq_buf ns; 4588 size_t avail, used; 4589 bool idle; 4590 4591 rq_lock_irqsave(rq, &rf); 4592 4593 idle = list_empty(&rq->scx.runnable_list) && 4594 rq->curr->sched_class == &idle_sched_class; 4595 4596 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4597 goto next; 4598 4599 /* 4600 * We don't yet know whether ops.dump_cpu() will produce output 4601 * and we may want to skip the default CPU dump if it doesn't. 4602 * Use a nested seq_buf to generate the standard dump so that we 4603 * can decide whether to commit later. 4604 */ 4605 avail = seq_buf_get_buf(&s, &buf); 4606 seq_buf_init(&ns, buf, avail); 4607 4608 dump_newline(&ns); 4609 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu", 4610 cpu, rq->scx.nr_running, rq->scx.flags, 4611 rq->scx.cpu_released, rq->scx.ops_qseq, 4612 rq->scx.kick_sync); 4613 dump_line(&ns, " curr=%s[%d] class=%ps", 4614 rq->curr->comm, rq->curr->pid, 4615 rq->curr->sched_class); 4616 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4617 dump_line(&ns, " cpus_to_kick : %*pb", 4618 cpumask_pr_args(rq->scx.cpus_to_kick)); 4619 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4620 dump_line(&ns, " idle_to_kick : %*pb", 4621 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4622 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4623 dump_line(&ns, " cpus_to_preempt: %*pb", 4624 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4625 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4626 dump_line(&ns, " cpus_to_wait : %*pb", 4627 cpumask_pr_args(rq->scx.cpus_to_wait)); 4628 4629 used = seq_buf_used(&ns); 4630 if (SCX_HAS_OP(sch, dump_cpu)) { 4631 ops_dump_init(&ns, " "); 4632 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4633 &dctx, cpu, idle); 4634 ops_dump_exit(); 4635 } 4636 4637 /* 4638 * If idle && nothing generated by ops.dump_cpu(), there's 4639 * nothing interesting. Skip. 4640 */ 4641 if (idle && used == seq_buf_used(&ns)) 4642 goto next; 4643 4644 /* 4645 * $s may already have overflowed when $ns was created. If so, 4646 * calling commit on it will trigger BUG. 4647 */ 4648 if (avail) { 4649 seq_buf_commit(&s, seq_buf_used(&ns)); 4650 if (seq_buf_has_overflowed(&ns)) 4651 seq_buf_set_overflow(&s); 4652 } 4653 4654 if (rq->curr->sched_class == &ext_sched_class) 4655 scx_dump_task(&s, &dctx, rq->curr, '*'); 4656 4657 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4658 scx_dump_task(&s, &dctx, p, ' '); 4659 next: 4660 rq_unlock_irqrestore(rq, &rf); 4661 } 4662 4663 dump_newline(&s); 4664 dump_line(&s, "Event counters"); 4665 dump_line(&s, "--------------"); 4666 4667 scx_read_events(sch, &events); 4668 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4669 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4670 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4671 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4672 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4673 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4674 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4675 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4676 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4677 4678 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4679 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4680 trunc_marker, sizeof(trunc_marker)); 4681 4682 spin_unlock_irqrestore(&dump_lock, flags); 4683 } 4684 4685 static void scx_error_irq_workfn(struct irq_work *irq_work) 4686 { 4687 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4688 struct scx_exit_info *ei = sch->exit_info; 4689 4690 if (ei->kind >= SCX_EXIT_ERROR) 4691 scx_dump_state(ei, sch->ops.exit_dump_len); 4692 4693 kthread_queue_work(sch->helper, &sch->disable_work); 4694 } 4695 4696 static bool scx_vexit(struct scx_sched *sch, 4697 enum scx_exit_kind kind, s64 exit_code, 4698 const char *fmt, va_list args) 4699 { 4700 struct scx_exit_info *ei = sch->exit_info; 4701 4702 if (!scx_claim_exit(sch, kind)) 4703 return false; 4704 4705 ei->exit_code = exit_code; 4706 #ifdef CONFIG_STACKTRACE 4707 if (kind >= SCX_EXIT_ERROR) 4708 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4709 #endif 4710 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4711 4712 /* 4713 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4714 * in scx_disable_workfn(). 4715 */ 4716 ei->kind = kind; 4717 ei->reason = scx_exit_reason(ei->kind); 4718 4719 irq_work_queue(&sch->error_irq_work); 4720 return true; 4721 } 4722 4723 static int alloc_kick_syncs(void) 4724 { 4725 int cpu; 4726 4727 /* 4728 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size 4729 * can exceed percpu allocator limits on large machines. 4730 */ 4731 for_each_possible_cpu(cpu) { 4732 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu); 4733 struct scx_kick_syncs *new_ksyncs; 4734 4735 WARN_ON_ONCE(rcu_access_pointer(*ksyncs)); 4736 4737 new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids), 4738 GFP_KERNEL, cpu_to_node(cpu)); 4739 if (!new_ksyncs) { 4740 free_kick_syncs(); 4741 return -ENOMEM; 4742 } 4743 4744 rcu_assign_pointer(*ksyncs, new_ksyncs); 4745 } 4746 4747 return 0; 4748 } 4749 4750 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4751 { 4752 struct scx_sched *sch; 4753 int node, ret; 4754 4755 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4756 if (!sch) 4757 return ERR_PTR(-ENOMEM); 4758 4759 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4760 if (!sch->exit_info) { 4761 ret = -ENOMEM; 4762 goto err_free_sch; 4763 } 4764 4765 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4766 if (ret < 0) 4767 goto err_free_ei; 4768 4769 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4770 GFP_KERNEL); 4771 if (!sch->global_dsqs) { 4772 ret = -ENOMEM; 4773 goto err_free_hash; 4774 } 4775 4776 for_each_node_state(node, N_POSSIBLE) { 4777 struct scx_dispatch_q *dsq; 4778 4779 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4780 if (!dsq) { 4781 ret = -ENOMEM; 4782 goto err_free_gdsqs; 4783 } 4784 4785 init_dsq(dsq, SCX_DSQ_GLOBAL); 4786 sch->global_dsqs[node] = dsq; 4787 } 4788 4789 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4790 if (!sch->pcpu) 4791 goto err_free_gdsqs; 4792 4793 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4794 if (IS_ERR(sch->helper)) { 4795 ret = PTR_ERR(sch->helper); 4796 goto err_free_pcpu; 4797 } 4798 4799 sched_set_fifo(sch->helper->task); 4800 4801 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4802 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4803 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4804 sch->ops = *ops; 4805 ops->priv = sch; 4806 4807 sch->kobj.kset = scx_kset; 4808 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4809 if (ret < 0) 4810 goto err_stop_helper; 4811 4812 return sch; 4813 4814 err_stop_helper: 4815 kthread_destroy_worker(sch->helper); 4816 err_free_pcpu: 4817 free_percpu(sch->pcpu); 4818 err_free_gdsqs: 4819 for_each_node_state(node, N_POSSIBLE) 4820 kfree(sch->global_dsqs[node]); 4821 kfree(sch->global_dsqs); 4822 err_free_hash: 4823 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4824 err_free_ei: 4825 free_exit_info(sch->exit_info); 4826 err_free_sch: 4827 kfree(sch); 4828 return ERR_PTR(ret); 4829 } 4830 4831 static int check_hotplug_seq(struct scx_sched *sch, 4832 const struct sched_ext_ops *ops) 4833 { 4834 unsigned long long global_hotplug_seq; 4835 4836 /* 4837 * If a hotplug event has occurred between when a scheduler was 4838 * initialized, and when we were able to attach, exit and notify user 4839 * space about it. 4840 */ 4841 if (ops->hotplug_seq) { 4842 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4843 if (ops->hotplug_seq != global_hotplug_seq) { 4844 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4845 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4846 "expected hotplug seq %llu did not match actual %llu", 4847 ops->hotplug_seq, global_hotplug_seq); 4848 return -EBUSY; 4849 } 4850 } 4851 4852 return 0; 4853 } 4854 4855 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4856 { 4857 /* 4858 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4859 * ops.enqueue() callback isn't implemented. 4860 */ 4861 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4862 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4863 return -EINVAL; 4864 } 4865 4866 /* 4867 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4868 * selection policy to be enabled. 4869 */ 4870 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4871 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4872 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4873 return -EINVAL; 4874 } 4875 4876 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4877 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4878 4879 if (ops->cpu_acquire || ops->cpu_release) 4880 pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n"); 4881 4882 return 0; 4883 } 4884 4885 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4886 { 4887 struct scx_sched *sch; 4888 struct scx_task_iter sti; 4889 struct task_struct *p; 4890 unsigned long timeout; 4891 int i, cpu, ret; 4892 4893 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4894 cpu_possible_mask)) { 4895 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4896 return -EINVAL; 4897 } 4898 4899 mutex_lock(&scx_enable_mutex); 4900 4901 if (scx_enable_state() != SCX_DISABLED) { 4902 ret = -EBUSY; 4903 goto err_unlock; 4904 } 4905 4906 ret = alloc_kick_syncs(); 4907 if (ret) 4908 goto err_unlock; 4909 4910 sch = scx_alloc_and_add_sched(ops); 4911 if (IS_ERR(sch)) { 4912 ret = PTR_ERR(sch); 4913 goto err_free_ksyncs; 4914 } 4915 4916 /* 4917 * Transition to ENABLING and clear exit info to arm the disable path. 4918 * Failure triggers full disabling from here on. 4919 */ 4920 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4921 WARN_ON_ONCE(scx_root); 4922 if (WARN_ON_ONCE(READ_ONCE(scx_aborting))) 4923 WRITE_ONCE(scx_aborting, false); 4924 4925 atomic_long_set(&scx_nr_rejected, 0); 4926 4927 for_each_possible_cpu(cpu) 4928 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4929 4930 /* 4931 * Keep CPUs stable during enable so that the BPF scheduler can track 4932 * online CPUs by watching ->on/offline_cpu() after ->init(). 4933 */ 4934 cpus_read_lock(); 4935 4936 /* 4937 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4938 * See handle_hotplug(). 4939 */ 4940 rcu_assign_pointer(scx_root, sch); 4941 4942 scx_idle_enable(ops); 4943 4944 if (sch->ops.init) { 4945 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4946 if (ret) { 4947 ret = ops_sanitize_err(sch, "init", ret); 4948 cpus_read_unlock(); 4949 scx_error(sch, "ops.init() failed (%d)", ret); 4950 goto err_disable; 4951 } 4952 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED; 4953 } 4954 4955 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4956 if (((void (**)(void))ops)[i]) 4957 set_bit(i, sch->has_op); 4958 4959 ret = check_hotplug_seq(sch, ops); 4960 if (ret) { 4961 cpus_read_unlock(); 4962 goto err_disable; 4963 } 4964 scx_idle_update_selcpu_topology(ops); 4965 4966 cpus_read_unlock(); 4967 4968 ret = validate_ops(sch, ops); 4969 if (ret) 4970 goto err_disable; 4971 4972 WARN_ON_ONCE(scx_dsp_ctx); 4973 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4974 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4975 scx_dsp_max_batch), 4976 __alignof__(struct scx_dsp_ctx)); 4977 if (!scx_dsp_ctx) { 4978 ret = -ENOMEM; 4979 goto err_disable; 4980 } 4981 4982 if (ops->timeout_ms) 4983 timeout = msecs_to_jiffies(ops->timeout_ms); 4984 else 4985 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4986 4987 WRITE_ONCE(scx_watchdog_timeout, timeout); 4988 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4989 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4990 scx_watchdog_timeout / 2); 4991 4992 /* 4993 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4994 * This can lead to stalls as some BPF schedulers (e.g. userspace 4995 * scheduling) may not function correctly before all tasks are switched. 4996 * Init in bypass mode to guarantee forward progress. 4997 */ 4998 scx_bypass(true); 4999 scx_bypassed_for_enable = true; 5000 5001 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5002 if (((void (**)(void))ops)[i]) 5003 set_bit(i, sch->has_op); 5004 5005 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 5006 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 5007 5008 /* 5009 * Lock out forks, cgroup on/offlining and moves before opening the 5010 * floodgate so that they don't wander into the operations prematurely. 5011 */ 5012 percpu_down_write(&scx_fork_rwsem); 5013 5014 WARN_ON_ONCE(scx_init_task_enabled); 5015 scx_init_task_enabled = true; 5016 5017 /* 5018 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5019 * preventing new tasks from being added. No need to exclude tasks 5020 * leaving as sched_ext_free() can handle both prepped and enabled 5021 * tasks. Prep all tasks first and then enable them with preemption 5022 * disabled. 5023 * 5024 * All cgroups should be initialized before scx_init_task() so that the 5025 * BPF scheduler can reliably track each task's cgroup membership from 5026 * scx_init_task(). Lock out cgroup on/offlining and task migrations 5027 * while tasks are being initialized so that scx_cgroup_can_attach() 5028 * never sees uninitialized tasks. 5029 */ 5030 scx_cgroup_lock(); 5031 ret = scx_cgroup_init(sch); 5032 if (ret) 5033 goto err_disable_unlock_all; 5034 5035 scx_task_iter_start(&sti); 5036 while ((p = scx_task_iter_next_locked(&sti))) { 5037 /* 5038 * @p may already be dead, have lost all its usages counts and 5039 * be waiting for RCU grace period before being freed. @p can't 5040 * be initialized for SCX in such cases and should be ignored. 5041 */ 5042 if (!tryget_task_struct(p)) 5043 continue; 5044 5045 scx_task_iter_unlock(&sti); 5046 5047 ret = scx_init_task(p, task_group(p), false); 5048 if (ret) { 5049 put_task_struct(p); 5050 scx_task_iter_stop(&sti); 5051 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 5052 ret, p->comm, p->pid); 5053 goto err_disable_unlock_all; 5054 } 5055 5056 scx_set_task_state(p, SCX_TASK_READY); 5057 5058 put_task_struct(p); 5059 } 5060 scx_task_iter_stop(&sti); 5061 scx_cgroup_unlock(); 5062 percpu_up_write(&scx_fork_rwsem); 5063 5064 /* 5065 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5066 * all eligible tasks. 5067 */ 5068 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5069 static_branch_enable(&__scx_enabled); 5070 5071 /* 5072 * We're fully committed and can't fail. The task READY -> ENABLED 5073 * transitions here are synchronized against sched_ext_free() through 5074 * scx_tasks_lock. 5075 */ 5076 percpu_down_write(&scx_fork_rwsem); 5077 scx_task_iter_start(&sti); 5078 while ((p = scx_task_iter_next_locked(&sti))) { 5079 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 5080 const struct sched_class *old_class = p->sched_class; 5081 const struct sched_class *new_class = scx_setscheduler_class(p); 5082 5083 if (scx_get_task_state(p) != SCX_TASK_READY) 5084 continue; 5085 5086 if (old_class != new_class) 5087 queue_flags |= DEQUEUE_CLASS; 5088 5089 scoped_guard (sched_change, p, queue_flags) { 5090 p->scx.slice = READ_ONCE(scx_slice_dfl); 5091 p->sched_class = new_class; 5092 } 5093 } 5094 scx_task_iter_stop(&sti); 5095 percpu_up_write(&scx_fork_rwsem); 5096 5097 scx_bypassed_for_enable = false; 5098 scx_bypass(false); 5099 5100 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 5101 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 5102 goto err_disable; 5103 } 5104 5105 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5106 static_branch_enable(&__scx_switched_all); 5107 5108 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5109 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 5110 kobject_uevent(&sch->kobj, KOBJ_ADD); 5111 mutex_unlock(&scx_enable_mutex); 5112 5113 atomic_long_inc(&scx_enable_seq); 5114 5115 return 0; 5116 5117 err_free_ksyncs: 5118 free_kick_syncs(); 5119 err_unlock: 5120 mutex_unlock(&scx_enable_mutex); 5121 return ret; 5122 5123 err_disable_unlock_all: 5124 scx_cgroup_unlock(); 5125 percpu_up_write(&scx_fork_rwsem); 5126 /* we'll soon enter disable path, keep bypass on */ 5127 err_disable: 5128 mutex_unlock(&scx_enable_mutex); 5129 /* 5130 * Returning an error code here would not pass all the error information 5131 * to userspace. Record errno using scx_error() for cases scx_error() 5132 * wasn't already invoked and exit indicating success so that the error 5133 * is notified through ops.exit() with all the details. 5134 * 5135 * Flush scx_disable_work to ensure that error is reported before init 5136 * completion. sch's base reference will be put by bpf_scx_unreg(). 5137 */ 5138 scx_error(sch, "scx_enable() failed (%d)", ret); 5139 kthread_flush_work(&sch->disable_work); 5140 return 0; 5141 } 5142 5143 5144 /******************************************************************************** 5145 * bpf_struct_ops plumbing. 5146 */ 5147 #include <linux/bpf_verifier.h> 5148 #include <linux/bpf.h> 5149 #include <linux/btf.h> 5150 5151 static const struct btf_type *task_struct_type; 5152 5153 static bool bpf_scx_is_valid_access(int off, int size, 5154 enum bpf_access_type type, 5155 const struct bpf_prog *prog, 5156 struct bpf_insn_access_aux *info) 5157 { 5158 if (type != BPF_READ) 5159 return false; 5160 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5161 return false; 5162 if (off % size != 0) 5163 return false; 5164 5165 return btf_ctx_access(off, size, type, prog, info); 5166 } 5167 5168 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5169 const struct bpf_reg_state *reg, int off, 5170 int size) 5171 { 5172 const struct btf_type *t; 5173 5174 t = btf_type_by_id(reg->btf, reg->btf_id); 5175 if (t == task_struct_type) { 5176 if (off >= offsetof(struct task_struct, scx.slice) && 5177 off + size <= offsetofend(struct task_struct, scx.slice)) 5178 return SCALAR_VALUE; 5179 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5180 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5181 return SCALAR_VALUE; 5182 if (off >= offsetof(struct task_struct, scx.disallow) && 5183 off + size <= offsetofend(struct task_struct, scx.disallow)) 5184 return SCALAR_VALUE; 5185 } 5186 5187 return -EACCES; 5188 } 5189 5190 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5191 .get_func_proto = bpf_base_func_proto, 5192 .is_valid_access = bpf_scx_is_valid_access, 5193 .btf_struct_access = bpf_scx_btf_struct_access, 5194 }; 5195 5196 static int bpf_scx_init_member(const struct btf_type *t, 5197 const struct btf_member *member, 5198 void *kdata, const void *udata) 5199 { 5200 const struct sched_ext_ops *uops = udata; 5201 struct sched_ext_ops *ops = kdata; 5202 u32 moff = __btf_member_bit_offset(t, member) / 8; 5203 int ret; 5204 5205 switch (moff) { 5206 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5207 if (*(u32 *)(udata + moff) > INT_MAX) 5208 return -E2BIG; 5209 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5210 return 1; 5211 case offsetof(struct sched_ext_ops, flags): 5212 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5213 return -EINVAL; 5214 ops->flags = *(u64 *)(udata + moff); 5215 return 1; 5216 case offsetof(struct sched_ext_ops, name): 5217 ret = bpf_obj_name_cpy(ops->name, uops->name, 5218 sizeof(ops->name)); 5219 if (ret < 0) 5220 return ret; 5221 if (ret == 0) 5222 return -EINVAL; 5223 return 1; 5224 case offsetof(struct sched_ext_ops, timeout_ms): 5225 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5226 SCX_WATCHDOG_MAX_TIMEOUT) 5227 return -E2BIG; 5228 ops->timeout_ms = *(u32 *)(udata + moff); 5229 return 1; 5230 case offsetof(struct sched_ext_ops, exit_dump_len): 5231 ops->exit_dump_len = 5232 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5233 return 1; 5234 case offsetof(struct sched_ext_ops, hotplug_seq): 5235 ops->hotplug_seq = *(u64 *)(udata + moff); 5236 return 1; 5237 } 5238 5239 return 0; 5240 } 5241 5242 static int bpf_scx_check_member(const struct btf_type *t, 5243 const struct btf_member *member, 5244 const struct bpf_prog *prog) 5245 { 5246 u32 moff = __btf_member_bit_offset(t, member) / 8; 5247 5248 switch (moff) { 5249 case offsetof(struct sched_ext_ops, init_task): 5250 #ifdef CONFIG_EXT_GROUP_SCHED 5251 case offsetof(struct sched_ext_ops, cgroup_init): 5252 case offsetof(struct sched_ext_ops, cgroup_exit): 5253 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5254 #endif 5255 case offsetof(struct sched_ext_ops, cpu_online): 5256 case offsetof(struct sched_ext_ops, cpu_offline): 5257 case offsetof(struct sched_ext_ops, init): 5258 case offsetof(struct sched_ext_ops, exit): 5259 break; 5260 default: 5261 if (prog->sleepable) 5262 return -EINVAL; 5263 } 5264 5265 return 0; 5266 } 5267 5268 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5269 { 5270 return scx_enable(kdata, link); 5271 } 5272 5273 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5274 { 5275 struct sched_ext_ops *ops = kdata; 5276 struct scx_sched *sch = ops->priv; 5277 5278 scx_disable(SCX_EXIT_UNREG); 5279 kthread_flush_work(&sch->disable_work); 5280 kobject_put(&sch->kobj); 5281 } 5282 5283 static int bpf_scx_init(struct btf *btf) 5284 { 5285 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5286 5287 return 0; 5288 } 5289 5290 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5291 { 5292 /* 5293 * sched_ext does not support updating the actively-loaded BPF 5294 * scheduler, as registering a BPF scheduler can always fail if the 5295 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5296 * etc. Similarly, we can always race with unregistration happening 5297 * elsewhere, such as with sysrq. 5298 */ 5299 return -EOPNOTSUPP; 5300 } 5301 5302 static int bpf_scx_validate(void *kdata) 5303 { 5304 return 0; 5305 } 5306 5307 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5308 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5309 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5310 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5311 static void sched_ext_ops__tick(struct task_struct *p) {} 5312 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5313 static void sched_ext_ops__running(struct task_struct *p) {} 5314 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5315 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5316 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5317 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5318 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5319 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5320 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5321 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5322 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5323 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5324 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5325 static void sched_ext_ops__enable(struct task_struct *p) {} 5326 static void sched_ext_ops__disable(struct task_struct *p) {} 5327 #ifdef CONFIG_EXT_GROUP_SCHED 5328 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5329 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5330 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5331 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5332 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5333 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5334 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 5335 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {} 5336 #endif 5337 static void sched_ext_ops__cpu_online(s32 cpu) {} 5338 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5339 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5340 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5341 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5342 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5343 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5344 5345 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5346 .select_cpu = sched_ext_ops__select_cpu, 5347 .enqueue = sched_ext_ops__enqueue, 5348 .dequeue = sched_ext_ops__dequeue, 5349 .dispatch = sched_ext_ops__dispatch, 5350 .tick = sched_ext_ops__tick, 5351 .runnable = sched_ext_ops__runnable, 5352 .running = sched_ext_ops__running, 5353 .stopping = sched_ext_ops__stopping, 5354 .quiescent = sched_ext_ops__quiescent, 5355 .yield = sched_ext_ops__yield, 5356 .core_sched_before = sched_ext_ops__core_sched_before, 5357 .set_weight = sched_ext_ops__set_weight, 5358 .set_cpumask = sched_ext_ops__set_cpumask, 5359 .update_idle = sched_ext_ops__update_idle, 5360 .cpu_acquire = sched_ext_ops__cpu_acquire, 5361 .cpu_release = sched_ext_ops__cpu_release, 5362 .init_task = sched_ext_ops__init_task, 5363 .exit_task = sched_ext_ops__exit_task, 5364 .enable = sched_ext_ops__enable, 5365 .disable = sched_ext_ops__disable, 5366 #ifdef CONFIG_EXT_GROUP_SCHED 5367 .cgroup_init = sched_ext_ops__cgroup_init, 5368 .cgroup_exit = sched_ext_ops__cgroup_exit, 5369 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5370 .cgroup_move = sched_ext_ops__cgroup_move, 5371 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5372 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5373 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 5374 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle, 5375 #endif 5376 .cpu_online = sched_ext_ops__cpu_online, 5377 .cpu_offline = sched_ext_ops__cpu_offline, 5378 .init = sched_ext_ops__init, 5379 .exit = sched_ext_ops__exit, 5380 .dump = sched_ext_ops__dump, 5381 .dump_cpu = sched_ext_ops__dump_cpu, 5382 .dump_task = sched_ext_ops__dump_task, 5383 }; 5384 5385 static struct bpf_struct_ops bpf_sched_ext_ops = { 5386 .verifier_ops = &bpf_scx_verifier_ops, 5387 .reg = bpf_scx_reg, 5388 .unreg = bpf_scx_unreg, 5389 .check_member = bpf_scx_check_member, 5390 .init_member = bpf_scx_init_member, 5391 .init = bpf_scx_init, 5392 .update = bpf_scx_update, 5393 .validate = bpf_scx_validate, 5394 .name = "sched_ext_ops", 5395 .owner = THIS_MODULE, 5396 .cfi_stubs = &__bpf_ops_sched_ext_ops 5397 }; 5398 5399 5400 /******************************************************************************** 5401 * System integration and init. 5402 */ 5403 5404 static void sysrq_handle_sched_ext_reset(u8 key) 5405 { 5406 scx_disable(SCX_EXIT_SYSRQ); 5407 } 5408 5409 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5410 .handler = sysrq_handle_sched_ext_reset, 5411 .help_msg = "reset-sched-ext(S)", 5412 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5413 .enable_mask = SYSRQ_ENABLE_RTNICE, 5414 }; 5415 5416 static void sysrq_handle_sched_ext_dump(u8 key) 5417 { 5418 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5419 5420 if (scx_enabled()) 5421 scx_dump_state(&ei, 0); 5422 } 5423 5424 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5425 .handler = sysrq_handle_sched_ext_dump, 5426 .help_msg = "dump-sched-ext(D)", 5427 .action_msg = "Trigger sched_ext debug dump", 5428 .enable_mask = SYSRQ_ENABLE_RTNICE, 5429 }; 5430 5431 static bool can_skip_idle_kick(struct rq *rq) 5432 { 5433 lockdep_assert_rq_held(rq); 5434 5435 /* 5436 * We can skip idle kicking if @rq is going to go through at least one 5437 * full SCX scheduling cycle before going idle. Just checking whether 5438 * curr is not idle is insufficient because we could be racing 5439 * balance_one() trying to pull the next task from a remote rq, which 5440 * may fail, and @rq may become idle afterwards. 5441 * 5442 * The race window is small and we don't and can't guarantee that @rq is 5443 * only kicked while idle anyway. Skip only when sure. 5444 */ 5445 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5446 } 5447 5448 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs) 5449 { 5450 struct rq *rq = cpu_rq(cpu); 5451 struct scx_rq *this_scx = &this_rq->scx; 5452 const struct sched_class *cur_class; 5453 bool should_wait = false; 5454 unsigned long flags; 5455 5456 raw_spin_rq_lock_irqsave(rq, flags); 5457 cur_class = rq->curr->sched_class; 5458 5459 /* 5460 * During CPU hotplug, a CPU may depend on kicking itself to make 5461 * forward progress. Allow kicking self regardless of online state. If 5462 * @cpu is running a higher class task, we have no control over @cpu. 5463 * Skip kicking. 5464 */ 5465 if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) && 5466 !sched_class_above(cur_class, &ext_sched_class)) { 5467 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5468 if (cur_class == &ext_sched_class) 5469 rq->curr->scx.slice = 0; 5470 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5471 } 5472 5473 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5474 if (cur_class == &ext_sched_class) { 5475 ksyncs[cpu] = rq->scx.kick_sync; 5476 should_wait = true; 5477 } else { 5478 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5479 } 5480 } 5481 5482 resched_curr(rq); 5483 } else { 5484 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5485 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5486 } 5487 5488 raw_spin_rq_unlock_irqrestore(rq, flags); 5489 5490 return should_wait; 5491 } 5492 5493 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5494 { 5495 struct rq *rq = cpu_rq(cpu); 5496 unsigned long flags; 5497 5498 raw_spin_rq_lock_irqsave(rq, flags); 5499 5500 if (!can_skip_idle_kick(rq) && 5501 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5502 resched_curr(rq); 5503 5504 raw_spin_rq_unlock_irqrestore(rq, flags); 5505 } 5506 5507 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5508 { 5509 struct rq *this_rq = this_rq(); 5510 struct scx_rq *this_scx = &this_rq->scx; 5511 struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs); 5512 bool should_wait = false; 5513 unsigned long *ksyncs; 5514 s32 cpu; 5515 5516 if (unlikely(!ksyncs_pcpu)) { 5517 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs"); 5518 return; 5519 } 5520 5521 ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs; 5522 5523 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5524 should_wait |= kick_one_cpu(cpu, this_rq, ksyncs); 5525 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5526 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5527 } 5528 5529 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5530 kick_one_cpu_if_idle(cpu, this_rq); 5531 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5532 } 5533 5534 if (!should_wait) 5535 return; 5536 5537 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5538 unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync; 5539 5540 /* 5541 * Busy-wait until the task running at the time of kicking is no 5542 * longer running. This can be used to implement e.g. core 5543 * scheduling. 5544 * 5545 * smp_cond_load_acquire() pairs with store_releases in 5546 * pick_task_scx() and put_prev_task_scx(). The former breaks 5547 * the wait if SCX's scheduling path is entered even if the same 5548 * task is picked subsequently. The latter is necessary to break 5549 * the wait when $cpu is taken by a higher sched class. 5550 */ 5551 if (cpu != cpu_of(this_rq)) 5552 smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]); 5553 5554 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5555 } 5556 } 5557 5558 /** 5559 * print_scx_info - print out sched_ext scheduler state 5560 * @log_lvl: the log level to use when printing 5561 * @p: target task 5562 * 5563 * If a sched_ext scheduler is enabled, print the name and state of the 5564 * scheduler. If @p is on sched_ext, print further information about the task. 5565 * 5566 * This function can be safely called on any task as long as the task_struct 5567 * itself is accessible. While safe, this function isn't synchronized and may 5568 * print out mixups or garbages of limited length. 5569 */ 5570 void print_scx_info(const char *log_lvl, struct task_struct *p) 5571 { 5572 struct scx_sched *sch = scx_root; 5573 enum scx_enable_state state = scx_enable_state(); 5574 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5575 char runnable_at_buf[22] = "?"; 5576 struct sched_class *class; 5577 unsigned long runnable_at; 5578 5579 if (state == SCX_DISABLED) 5580 return; 5581 5582 /* 5583 * Carefully check if the task was running on sched_ext, and then 5584 * carefully copy the time it's been runnable, and its state. 5585 */ 5586 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5587 class != &ext_sched_class) { 5588 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5589 scx_enable_state_str[state], all); 5590 return; 5591 } 5592 5593 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5594 sizeof(runnable_at))) 5595 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5596 jiffies_delta_msecs(runnable_at, jiffies)); 5597 5598 /* print everything onto one line to conserve console space */ 5599 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5600 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5601 runnable_at_buf); 5602 } 5603 5604 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5605 { 5606 /* 5607 * SCX schedulers often have userspace components which are sometimes 5608 * involved in critial scheduling paths. PM operations involve freezing 5609 * userspace which can lead to scheduling misbehaviors including stalls. 5610 * Let's bypass while PM operations are in progress. 5611 */ 5612 switch (event) { 5613 case PM_HIBERNATION_PREPARE: 5614 case PM_SUSPEND_PREPARE: 5615 case PM_RESTORE_PREPARE: 5616 scx_bypass(true); 5617 break; 5618 case PM_POST_HIBERNATION: 5619 case PM_POST_SUSPEND: 5620 case PM_POST_RESTORE: 5621 scx_bypass(false); 5622 break; 5623 } 5624 5625 return NOTIFY_OK; 5626 } 5627 5628 static struct notifier_block scx_pm_notifier = { 5629 .notifier_call = scx_pm_handler, 5630 }; 5631 5632 void __init init_sched_ext_class(void) 5633 { 5634 s32 cpu, v; 5635 5636 /* 5637 * The following is to prevent the compiler from optimizing out the enum 5638 * definitions so that BPF scheduler implementations can use them 5639 * through the generated vmlinux.h. 5640 */ 5641 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5642 SCX_TG_ONLINE); 5643 5644 scx_idle_init_masks(); 5645 5646 for_each_possible_cpu(cpu) { 5647 struct rq *rq = cpu_rq(cpu); 5648 int n = cpu_to_node(cpu); 5649 5650 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5651 init_dsq(&rq->scx.bypass_dsq, SCX_DSQ_BYPASS); 5652 INIT_LIST_HEAD(&rq->scx.runnable_list); 5653 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5654 5655 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5656 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5657 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5658 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5659 rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn); 5660 rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn); 5661 5662 if (cpu_online(cpu)) 5663 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5664 } 5665 5666 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5667 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5668 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5669 } 5670 5671 5672 /******************************************************************************** 5673 * Helpers that can be called from the BPF scheduler. 5674 */ 5675 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p, 5676 u64 enq_flags) 5677 { 5678 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5679 return false; 5680 5681 lockdep_assert_irqs_disabled(); 5682 5683 if (unlikely(!p)) { 5684 scx_error(sch, "called with NULL task"); 5685 return false; 5686 } 5687 5688 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5689 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags); 5690 return false; 5691 } 5692 5693 return true; 5694 } 5695 5696 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p, 5697 u64 dsq_id, u64 enq_flags) 5698 { 5699 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5700 struct task_struct *ddsp_task; 5701 5702 ddsp_task = __this_cpu_read(direct_dispatch_task); 5703 if (ddsp_task) { 5704 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags); 5705 return; 5706 } 5707 5708 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5709 scx_error(sch, "dispatch buffer overflow"); 5710 return; 5711 } 5712 5713 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5714 .task = p, 5715 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5716 .dsq_id = dsq_id, 5717 .enq_flags = enq_flags, 5718 }; 5719 } 5720 5721 __bpf_kfunc_start_defs(); 5722 5723 /** 5724 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5725 * @p: task_struct to insert 5726 * @dsq_id: DSQ to insert into 5727 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5728 * @enq_flags: SCX_ENQ_* 5729 * 5730 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5731 * call this function spuriously. Can be called from ops.enqueue(), 5732 * ops.select_cpu(), and ops.dispatch(). 5733 * 5734 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5735 * and @p must match the task being enqueued. 5736 * 5737 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5738 * will be directly inserted into the corresponding dispatch queue after 5739 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5740 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5741 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5742 * task is inserted. 5743 * 5744 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5745 * and this function can be called upto ops.dispatch_max_batch times to insert 5746 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5747 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5748 * counter. 5749 * 5750 * This function doesn't have any locking restrictions and may be called under 5751 * BPF locks (in the future when BPF introduces more flexible locking). 5752 * 5753 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5754 * exhaustion. If zero, the current residual slice is maintained. If 5755 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5756 * scx_bpf_kick_cpu() to trigger scheduling. 5757 * 5758 * Returns %true on successful insertion, %false on failure. On the root 5759 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5760 * to check the return value. 5761 */ 5762 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id, 5763 u64 slice, u64 enq_flags) 5764 { 5765 struct scx_sched *sch; 5766 5767 guard(rcu)(); 5768 sch = rcu_dereference(scx_root); 5769 if (unlikely(!sch)) 5770 return false; 5771 5772 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5773 return false; 5774 5775 if (slice) 5776 p->scx.slice = slice; 5777 else 5778 p->scx.slice = p->scx.slice ?: 1; 5779 5780 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags); 5781 5782 return true; 5783 } 5784 5785 /* 5786 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix. 5787 */ 5788 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, 5789 u64 slice, u64 enq_flags) 5790 { 5791 scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags); 5792 } 5793 5794 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p, 5795 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) 5796 { 5797 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5798 return false; 5799 5800 if (slice) 5801 p->scx.slice = slice; 5802 else 5803 p->scx.slice = p->scx.slice ?: 1; 5804 5805 p->scx.dsq_vtime = vtime; 5806 5807 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5808 5809 return true; 5810 } 5811 5812 struct scx_bpf_dsq_insert_vtime_args { 5813 /* @p can't be packed together as KF_RCU is not transitive */ 5814 u64 dsq_id; 5815 u64 slice; 5816 u64 vtime; 5817 u64 enq_flags; 5818 }; 5819 5820 /** 5821 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion 5822 * @p: task_struct to insert 5823 * @args: struct containing the rest of the arguments 5824 * @args->dsq_id: DSQ to insert into 5825 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value 5826 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5827 * @args->enq_flags: SCX_ENQ_* 5828 * 5829 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument 5830 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided 5831 * as an inline wrapper in common.bpf.h. 5832 * 5833 * Insert @p into the vtime priority queue of the DSQ identified by 5834 * @args->dsq_id. Tasks queued into the priority queue are ordered by 5835 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert(). 5836 * 5837 * @args->vtime ordering is according to time_before64() which considers 5838 * wrapping. A numerically larger vtime may indicate an earlier position in the 5839 * ordering and vice-versa. 5840 * 5841 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5842 * function must not be called on a DSQ which already has one or more FIFO tasks 5843 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5844 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5845 * 5846 * Returns %true on successful insertion, %false on failure. On the root 5847 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5848 * to check the return value. 5849 */ 5850 __bpf_kfunc bool 5851 __scx_bpf_dsq_insert_vtime(struct task_struct *p, 5852 struct scx_bpf_dsq_insert_vtime_args *args) 5853 { 5854 struct scx_sched *sch; 5855 5856 guard(rcu)(); 5857 5858 sch = rcu_dereference(scx_root); 5859 if (unlikely(!sch)) 5860 return false; 5861 5862 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice, 5863 args->vtime, args->enq_flags); 5864 } 5865 5866 /* 5867 * COMPAT: Will be removed in v6.23. 5868 */ 5869 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5870 u64 slice, u64 vtime, u64 enq_flags) 5871 { 5872 struct scx_sched *sch; 5873 5874 guard(rcu)(); 5875 5876 sch = rcu_dereference(scx_root); 5877 if (unlikely(!sch)) 5878 return; 5879 5880 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags); 5881 } 5882 5883 __bpf_kfunc_end_defs(); 5884 5885 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5886 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5887 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU) 5888 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU) 5889 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5890 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5891 5892 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5893 .owner = THIS_MODULE, 5894 .set = &scx_kfunc_ids_enqueue_dispatch, 5895 }; 5896 5897 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5898 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5899 { 5900 struct scx_sched *sch = scx_root; 5901 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5902 struct rq *this_rq, *src_rq, *locked_rq; 5903 bool dispatched = false; 5904 bool in_balance; 5905 unsigned long flags; 5906 5907 if (!scx_kf_allowed_if_unlocked() && 5908 !scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5909 return false; 5910 5911 /* 5912 * If the BPF scheduler keeps calling this function repeatedly, it can 5913 * cause similar live-lock conditions as consume_dispatch_q(). 5914 */ 5915 if (unlikely(READ_ONCE(scx_aborting))) 5916 return false; 5917 5918 /* 5919 * Can be called from either ops.dispatch() locking this_rq() or any 5920 * context where no rq lock is held. If latter, lock @p's task_rq which 5921 * we'll likely need anyway. 5922 */ 5923 src_rq = task_rq(p); 5924 5925 local_irq_save(flags); 5926 this_rq = this_rq(); 5927 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5928 5929 if (in_balance) { 5930 if (this_rq != src_rq) { 5931 raw_spin_rq_unlock(this_rq); 5932 raw_spin_rq_lock(src_rq); 5933 } 5934 } else { 5935 raw_spin_rq_lock(src_rq); 5936 } 5937 5938 locked_rq = src_rq; 5939 raw_spin_lock(&src_dsq->lock); 5940 5941 /* 5942 * Did someone else get to it? @p could have already left $src_dsq, got 5943 * re-enqueud, or be in the process of being consumed by someone else. 5944 */ 5945 if (unlikely(p->scx.dsq != src_dsq || 5946 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5947 p->scx.holding_cpu >= 0) || 5948 WARN_ON_ONCE(src_rq != task_rq(p))) { 5949 raw_spin_unlock(&src_dsq->lock); 5950 goto out; 5951 } 5952 5953 /* @p is still on $src_dsq and stable, determine the destination */ 5954 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5955 5956 /* 5957 * Apply vtime and slice updates before moving so that the new time is 5958 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5959 * this is safe as we're locking it. 5960 */ 5961 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5962 p->scx.dsq_vtime = kit->vtime; 5963 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5964 p->scx.slice = kit->slice; 5965 5966 /* execute move */ 5967 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5968 dispatched = true; 5969 out: 5970 if (in_balance) { 5971 if (this_rq != locked_rq) { 5972 raw_spin_rq_unlock(locked_rq); 5973 raw_spin_rq_lock(this_rq); 5974 } 5975 } else { 5976 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5977 } 5978 5979 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5980 __SCX_DSQ_ITER_HAS_VTIME); 5981 return dispatched; 5982 } 5983 5984 __bpf_kfunc_start_defs(); 5985 5986 /** 5987 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5988 * 5989 * Can only be called from ops.dispatch(). 5990 */ 5991 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5992 { 5993 struct scx_sched *sch; 5994 5995 guard(rcu)(); 5996 5997 sch = rcu_dereference(scx_root); 5998 if (unlikely(!sch)) 5999 return 0; 6000 6001 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 6002 return 0; 6003 6004 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6005 } 6006 6007 /** 6008 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6009 * 6010 * Cancel the latest dispatch. Can be called multiple times to cancel further 6011 * dispatches. Can only be called from ops.dispatch(). 6012 */ 6013 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6014 { 6015 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6016 struct scx_sched *sch; 6017 6018 guard(rcu)(); 6019 6020 sch = rcu_dereference(scx_root); 6021 if (unlikely(!sch)) 6022 return; 6023 6024 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 6025 return; 6026 6027 if (dspc->cursor > 0) 6028 dspc->cursor--; 6029 else 6030 scx_error(sch, "dispatch buffer underflow"); 6031 } 6032 6033 /** 6034 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6035 * @dsq_id: DSQ to move task from 6036 * 6037 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6038 * local DSQ for execution. Can only be called from ops.dispatch(). 6039 * 6040 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6041 * before trying to move from the specified DSQ. It may also grab rq locks and 6042 * thus can't be called under any BPF locks. 6043 * 6044 * Returns %true if a task has been moved, %false if there isn't any task to 6045 * move. 6046 */ 6047 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6048 { 6049 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6050 struct scx_dispatch_q *dsq; 6051 struct scx_sched *sch; 6052 6053 guard(rcu)(); 6054 6055 sch = rcu_dereference(scx_root); 6056 if (unlikely(!sch)) 6057 return false; 6058 6059 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 6060 return false; 6061 6062 flush_dispatch_buf(sch, dspc->rq); 6063 6064 dsq = find_user_dsq(sch, dsq_id); 6065 if (unlikely(!dsq)) { 6066 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 6067 return false; 6068 } 6069 6070 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 6071 /* 6072 * A successfully consumed task can be dequeued before it starts 6073 * running while the CPU is trying to migrate other dispatched 6074 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6075 * local DSQ. 6076 */ 6077 dspc->nr_tasks++; 6078 return true; 6079 } else { 6080 return false; 6081 } 6082 } 6083 6084 /** 6085 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6086 * @it__iter: DSQ iterator in progress 6087 * @slice: duration the moved task can run for in nsecs 6088 * 6089 * Override the slice of the next task that will be moved from @it__iter using 6090 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6091 * slice duration is kept. 6092 */ 6093 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6094 u64 slice) 6095 { 6096 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6097 6098 kit->slice = slice; 6099 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6100 } 6101 6102 /** 6103 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6104 * @it__iter: DSQ iterator in progress 6105 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6106 * 6107 * Override the vtime of the next task that will be moved from @it__iter using 6108 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6109 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6110 * override is ignored and cleared. 6111 */ 6112 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6113 u64 vtime) 6114 { 6115 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6116 6117 kit->vtime = vtime; 6118 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6119 } 6120 6121 /** 6122 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6123 * @it__iter: DSQ iterator in progress 6124 * @p: task to transfer 6125 * @dsq_id: DSQ to move @p to 6126 * @enq_flags: SCX_ENQ_* 6127 * 6128 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6129 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6130 * be the destination. 6131 * 6132 * For the transfer to be successful, @p must still be on the DSQ and have been 6133 * queued before the DSQ iteration started. This function doesn't care whether 6134 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6135 * been queued before the iteration started. 6136 * 6137 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6138 * 6139 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6140 * lock (e.g. BPF timers or SYSCALL programs). 6141 * 6142 * Returns %true if @p has been consumed, %false if @p had already been 6143 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local 6144 * DSQ. 6145 */ 6146 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6147 struct task_struct *p, u64 dsq_id, 6148 u64 enq_flags) 6149 { 6150 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6151 p, dsq_id, enq_flags); 6152 } 6153 6154 /** 6155 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6156 * @it__iter: DSQ iterator in progress 6157 * @p: task to transfer 6158 * @dsq_id: DSQ to move @p to 6159 * @enq_flags: SCX_ENQ_* 6160 * 6161 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6162 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6163 * user DSQ as only user DSQs support priority queue. 6164 * 6165 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6166 * and scx_bpf_dsq_move_set_vtime() to update. 6167 * 6168 * All other aspects are identical to scx_bpf_dsq_move(). See 6169 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6170 */ 6171 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6172 struct task_struct *p, u64 dsq_id, 6173 u64 enq_flags) 6174 { 6175 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6176 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6177 } 6178 6179 __bpf_kfunc_end_defs(); 6180 6181 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6182 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6183 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6184 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6185 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 6186 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 6187 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6188 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6189 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6190 6191 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6192 .owner = THIS_MODULE, 6193 .set = &scx_kfunc_ids_dispatch, 6194 }; 6195 6196 static u32 reenq_local(struct rq *rq) 6197 { 6198 LIST_HEAD(tasks); 6199 u32 nr_enqueued = 0; 6200 struct task_struct *p, *n; 6201 6202 lockdep_assert_rq_held(rq); 6203 6204 /* 6205 * The BPF scheduler may choose to dispatch tasks back to 6206 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6207 * first to avoid processing the same tasks repeatedly. 6208 */ 6209 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6210 scx.dsq_list.node) { 6211 /* 6212 * If @p is being migrated, @p's current CPU may not agree with 6213 * its allowed CPUs and the migration_cpu_stop is about to 6214 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6215 * 6216 * While racing sched property changes may also dequeue and 6217 * re-enqueue a migrating task while its current CPU and allowed 6218 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6219 * the current local DSQ for running tasks and thus are not 6220 * visible to the BPF scheduler. 6221 */ 6222 if (p->migration_pending) 6223 continue; 6224 6225 dispatch_dequeue(rq, p); 6226 list_add_tail(&p->scx.dsq_list.node, &tasks); 6227 } 6228 6229 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6230 list_del_init(&p->scx.dsq_list.node); 6231 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6232 nr_enqueued++; 6233 } 6234 6235 return nr_enqueued; 6236 } 6237 6238 __bpf_kfunc_start_defs(); 6239 6240 /** 6241 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6242 * 6243 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6244 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6245 * processed tasks. Can only be called from ops.cpu_release(). 6246 * 6247 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void 6248 * returning variant that can be called from anywhere. 6249 */ 6250 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6251 { 6252 struct scx_sched *sch; 6253 struct rq *rq; 6254 6255 guard(rcu)(); 6256 sch = rcu_dereference(scx_root); 6257 if (unlikely(!sch)) 6258 return 0; 6259 6260 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE)) 6261 return 0; 6262 6263 rq = cpu_rq(smp_processor_id()); 6264 lockdep_assert_rq_held(rq); 6265 6266 return reenq_local(rq); 6267 } 6268 6269 __bpf_kfunc_end_defs(); 6270 6271 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6272 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6273 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6274 6275 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6276 .owner = THIS_MODULE, 6277 .set = &scx_kfunc_ids_cpu_release, 6278 }; 6279 6280 __bpf_kfunc_start_defs(); 6281 6282 /** 6283 * scx_bpf_create_dsq - Create a custom DSQ 6284 * @dsq_id: DSQ to create 6285 * @node: NUMA node to allocate from 6286 * 6287 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6288 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6289 */ 6290 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6291 { 6292 struct scx_dispatch_q *dsq; 6293 struct scx_sched *sch; 6294 s32 ret; 6295 6296 if (unlikely(node >= (int)nr_node_ids || 6297 (node < 0 && node != NUMA_NO_NODE))) 6298 return -EINVAL; 6299 6300 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 6301 return -EINVAL; 6302 6303 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 6304 if (!dsq) 6305 return -ENOMEM; 6306 6307 init_dsq(dsq, dsq_id); 6308 6309 rcu_read_lock(); 6310 6311 sch = rcu_dereference(scx_root); 6312 if (sch) 6313 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 6314 dsq_hash_params); 6315 else 6316 ret = -ENODEV; 6317 6318 rcu_read_unlock(); 6319 if (ret) 6320 kfree(dsq); 6321 return ret; 6322 } 6323 6324 __bpf_kfunc_end_defs(); 6325 6326 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6327 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6328 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 6329 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 6330 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6331 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6332 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6333 6334 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6335 .owner = THIS_MODULE, 6336 .set = &scx_kfunc_ids_unlocked, 6337 }; 6338 6339 __bpf_kfunc_start_defs(); 6340 6341 /** 6342 * scx_bpf_task_set_slice - Set task's time slice 6343 * @p: task of interest 6344 * @slice: time slice to set in nsecs 6345 * 6346 * Set @p's time slice to @slice. Returns %true on success, %false if the 6347 * calling scheduler doesn't have authority over @p. 6348 */ 6349 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice) 6350 { 6351 p->scx.slice = slice; 6352 return true; 6353 } 6354 6355 /** 6356 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering 6357 * @p: task of interest 6358 * @vtime: virtual time to set 6359 * 6360 * Set @p's virtual time to @vtime. Returns %true on success, %false if the 6361 * calling scheduler doesn't have authority over @p. 6362 */ 6363 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime) 6364 { 6365 p->scx.dsq_vtime = vtime; 6366 return true; 6367 } 6368 6369 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags) 6370 { 6371 struct rq *this_rq; 6372 unsigned long irq_flags; 6373 6374 if (!ops_cpu_valid(sch, cpu, NULL)) 6375 return; 6376 6377 local_irq_save(irq_flags); 6378 6379 this_rq = this_rq(); 6380 6381 /* 6382 * While bypassing for PM ops, IRQ handling may not be online which can 6383 * lead to irq_work_queue() malfunction such as infinite busy wait for 6384 * IRQ status update. Suppress kicking. 6385 */ 6386 if (scx_rq_bypassing(this_rq)) 6387 goto out; 6388 6389 /* 6390 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6391 * rq locks. We can probably be smarter and avoid bouncing if called 6392 * from ops which don't hold a rq lock. 6393 */ 6394 if (flags & SCX_KICK_IDLE) { 6395 struct rq *target_rq = cpu_rq(cpu); 6396 6397 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6398 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6399 6400 if (raw_spin_rq_trylock(target_rq)) { 6401 if (can_skip_idle_kick(target_rq)) { 6402 raw_spin_rq_unlock(target_rq); 6403 goto out; 6404 } 6405 raw_spin_rq_unlock(target_rq); 6406 } 6407 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6408 } else { 6409 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6410 6411 if (flags & SCX_KICK_PREEMPT) 6412 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6413 if (flags & SCX_KICK_WAIT) 6414 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6415 } 6416 6417 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6418 out: 6419 local_irq_restore(irq_flags); 6420 } 6421 6422 /** 6423 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6424 * @cpu: cpu to kick 6425 * @flags: %SCX_KICK_* flags 6426 * 6427 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6428 * trigger rescheduling on a busy CPU. This can be called from any online 6429 * scx_ops operation and the actual kicking is performed asynchronously through 6430 * an irq work. 6431 */ 6432 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6433 { 6434 struct scx_sched *sch; 6435 6436 guard(rcu)(); 6437 sch = rcu_dereference(scx_root); 6438 if (likely(sch)) 6439 scx_kick_cpu(sch, cpu, flags); 6440 } 6441 6442 /** 6443 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6444 * @dsq_id: id of the DSQ 6445 * 6446 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6447 * -%ENOENT is returned. 6448 */ 6449 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6450 { 6451 struct scx_sched *sch; 6452 struct scx_dispatch_q *dsq; 6453 s32 ret; 6454 6455 preempt_disable(); 6456 6457 sch = rcu_dereference_sched(scx_root); 6458 if (unlikely(!sch)) { 6459 ret = -ENODEV; 6460 goto out; 6461 } 6462 6463 if (dsq_id == SCX_DSQ_LOCAL) { 6464 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6465 goto out; 6466 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6467 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6468 6469 if (ops_cpu_valid(sch, cpu, NULL)) { 6470 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6471 goto out; 6472 } 6473 } else { 6474 dsq = find_user_dsq(sch, dsq_id); 6475 if (dsq) { 6476 ret = READ_ONCE(dsq->nr); 6477 goto out; 6478 } 6479 } 6480 ret = -ENOENT; 6481 out: 6482 preempt_enable(); 6483 return ret; 6484 } 6485 6486 /** 6487 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6488 * @dsq_id: DSQ to destroy 6489 * 6490 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6491 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6492 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6493 * which doesn't exist. Can be called from any online scx_ops operations. 6494 */ 6495 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6496 { 6497 struct scx_sched *sch; 6498 6499 rcu_read_lock(); 6500 sch = rcu_dereference(scx_root); 6501 if (sch) 6502 destroy_dsq(sch, dsq_id); 6503 rcu_read_unlock(); 6504 } 6505 6506 /** 6507 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6508 * @it: iterator to initialize 6509 * @dsq_id: DSQ to iterate 6510 * @flags: %SCX_DSQ_ITER_* 6511 * 6512 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6513 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6514 * tasks which are already queued when this function is invoked. 6515 */ 6516 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6517 u64 flags) 6518 { 6519 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6520 struct scx_sched *sch; 6521 6522 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6523 sizeof(struct bpf_iter_scx_dsq)); 6524 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6525 __alignof__(struct bpf_iter_scx_dsq)); 6526 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 6527 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 6528 6529 /* 6530 * next() and destroy() will be called regardless of the return value. 6531 * Always clear $kit->dsq. 6532 */ 6533 kit->dsq = NULL; 6534 6535 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 6536 if (unlikely(!sch)) 6537 return -ENODEV; 6538 6539 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6540 return -EINVAL; 6541 6542 kit->dsq = find_user_dsq(sch, dsq_id); 6543 if (!kit->dsq) 6544 return -ENOENT; 6545 6546 kit->cursor = INIT_DSQ_LIST_CURSOR(kit->cursor, flags, 6547 READ_ONCE(kit->dsq->seq)); 6548 6549 return 0; 6550 } 6551 6552 /** 6553 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6554 * @it: iterator to progress 6555 * 6556 * Return the next task. See bpf_iter_scx_dsq_new(). 6557 */ 6558 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6559 { 6560 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6561 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6562 struct task_struct *p; 6563 unsigned long flags; 6564 6565 if (!kit->dsq) 6566 return NULL; 6567 6568 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6569 6570 if (list_empty(&kit->cursor.node)) 6571 p = NULL; 6572 else 6573 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6574 6575 /* 6576 * Only tasks which were queued before the iteration started are 6577 * visible. This bounds BPF iterations and guarantees that vtime never 6578 * jumps in the other direction while iterating. 6579 */ 6580 do { 6581 p = nldsq_next_task(kit->dsq, p, rev); 6582 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6583 6584 if (p) { 6585 if (rev) 6586 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6587 else 6588 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6589 } else { 6590 list_del_init(&kit->cursor.node); 6591 } 6592 6593 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6594 6595 return p; 6596 } 6597 6598 /** 6599 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6600 * @it: iterator to destroy 6601 * 6602 * Undo scx_iter_scx_dsq_new(). 6603 */ 6604 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6605 { 6606 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6607 6608 if (!kit->dsq) 6609 return; 6610 6611 if (!list_empty(&kit->cursor.node)) { 6612 unsigned long flags; 6613 6614 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6615 list_del_init(&kit->cursor.node); 6616 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6617 } 6618 kit->dsq = NULL; 6619 } 6620 6621 /** 6622 * scx_bpf_dsq_peek - Lockless peek at the first element. 6623 * @dsq_id: DSQ to examine. 6624 * 6625 * Read the first element in the DSQ. This is semantically equivalent to using 6626 * the DSQ iterator, but is lockfree. Of course, like any lockless operation, 6627 * this provides only a point-in-time snapshot, and the contents may change 6628 * by the time any subsequent locking operation reads the queue. 6629 * 6630 * Returns the pointer, or NULL indicates an empty queue OR internal error. 6631 */ 6632 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id) 6633 { 6634 struct scx_sched *sch; 6635 struct scx_dispatch_q *dsq; 6636 6637 sch = rcu_dereference(scx_root); 6638 if (unlikely(!sch)) 6639 return NULL; 6640 6641 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) { 6642 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id); 6643 return NULL; 6644 } 6645 6646 dsq = find_user_dsq(sch, dsq_id); 6647 if (unlikely(!dsq)) { 6648 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id); 6649 return NULL; 6650 } 6651 6652 return rcu_dereference(dsq->first_task); 6653 } 6654 6655 __bpf_kfunc_end_defs(); 6656 6657 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf, 6658 size_t line_size, char *fmt, unsigned long long *data, 6659 u32 data__sz) 6660 { 6661 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6662 s32 ret; 6663 6664 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6665 (data__sz && !data)) { 6666 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz); 6667 return -EINVAL; 6668 } 6669 6670 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6671 if (ret < 0) { 6672 scx_error(sch, "failed to read data fields (%d)", ret); 6673 return ret; 6674 } 6675 6676 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6677 &bprintf_data); 6678 if (ret < 0) { 6679 scx_error(sch, "format preparation failed (%d)", ret); 6680 return ret; 6681 } 6682 6683 ret = bstr_printf(line_buf, line_size, fmt, 6684 bprintf_data.bin_args); 6685 bpf_bprintf_cleanup(&bprintf_data); 6686 if (ret < 0) { 6687 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6688 return ret; 6689 } 6690 6691 return ret; 6692 } 6693 6694 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf, 6695 char *fmt, unsigned long long *data, u32 data__sz) 6696 { 6697 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line), 6698 fmt, data, data__sz); 6699 } 6700 6701 __bpf_kfunc_start_defs(); 6702 6703 /** 6704 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6705 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6706 * @fmt: error message format string 6707 * @data: format string parameters packaged using ___bpf_fill() macro 6708 * @data__sz: @data len, must end in '__sz' for the verifier 6709 * 6710 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6711 * disabling. 6712 */ 6713 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6714 unsigned long long *data, u32 data__sz) 6715 { 6716 struct scx_sched *sch; 6717 unsigned long flags; 6718 6719 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6720 sch = rcu_dereference_bh(scx_root); 6721 if (likely(sch) && 6722 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6723 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6724 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6725 } 6726 6727 /** 6728 * scx_bpf_error_bstr - Indicate fatal error 6729 * @fmt: error message format string 6730 * @data: format string parameters packaged using ___bpf_fill() macro 6731 * @data__sz: @data len, must end in '__sz' for the verifier 6732 * 6733 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6734 * disabling. 6735 */ 6736 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6737 u32 data__sz) 6738 { 6739 struct scx_sched *sch; 6740 unsigned long flags; 6741 6742 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6743 sch = rcu_dereference_bh(scx_root); 6744 if (likely(sch) && 6745 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6746 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6747 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6748 } 6749 6750 /** 6751 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6752 * @fmt: format string 6753 * @data: format string parameters packaged using ___bpf_fill() macro 6754 * @data__sz: @data len, must end in '__sz' for the verifier 6755 * 6756 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6757 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6758 * 6759 * The extra dump may be multiple lines. A single line may be split over 6760 * multiple calls. The last line is automatically terminated. 6761 */ 6762 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6763 u32 data__sz) 6764 { 6765 struct scx_sched *sch; 6766 struct scx_dump_data *dd = &scx_dump_data; 6767 struct scx_bstr_buf *buf = &dd->buf; 6768 s32 ret; 6769 6770 guard(rcu)(); 6771 6772 sch = rcu_dereference(scx_root); 6773 if (unlikely(!sch)) 6774 return; 6775 6776 if (raw_smp_processor_id() != dd->cpu) { 6777 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends"); 6778 return; 6779 } 6780 6781 /* append the formatted string to the line buf */ 6782 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor, 6783 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6784 if (ret < 0) { 6785 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6786 dd->prefix, fmt, data, data__sz, ret); 6787 return; 6788 } 6789 6790 dd->cursor += ret; 6791 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6792 6793 if (!dd->cursor) 6794 return; 6795 6796 /* 6797 * If the line buf overflowed or ends in a newline, flush it into the 6798 * dump. This is to allow the caller to generate a single line over 6799 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6800 * the line buf, the only case which can lead to an unexpected 6801 * truncation is when the caller keeps generating newlines in the middle 6802 * instead of the end consecutively. Don't do that. 6803 */ 6804 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6805 ops_dump_flush(); 6806 } 6807 6808 /** 6809 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6810 * 6811 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6812 * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from 6813 * anywhere. 6814 */ 6815 __bpf_kfunc void scx_bpf_reenqueue_local___v2(void) 6816 { 6817 struct rq *rq; 6818 6819 guard(preempt)(); 6820 6821 rq = this_rq(); 6822 local_set(&rq->scx.reenq_local_deferred, 1); 6823 schedule_deferred(rq); 6824 } 6825 6826 /** 6827 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6828 * @cpu: CPU of interest 6829 * 6830 * Return the maximum relative capacity of @cpu in relation to the most 6831 * performant CPU in the system. The return value is in the range [1, 6832 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6833 */ 6834 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6835 { 6836 struct scx_sched *sch; 6837 6838 guard(rcu)(); 6839 6840 sch = rcu_dereference(scx_root); 6841 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6842 return arch_scale_cpu_capacity(cpu); 6843 else 6844 return SCX_CPUPERF_ONE; 6845 } 6846 6847 /** 6848 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6849 * @cpu: CPU of interest 6850 * 6851 * Return the current relative performance of @cpu in relation to its maximum. 6852 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6853 * 6854 * The current performance level of a CPU in relation to the maximum performance 6855 * available in the system can be calculated as follows: 6856 * 6857 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6858 * 6859 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6860 */ 6861 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6862 { 6863 struct scx_sched *sch; 6864 6865 guard(rcu)(); 6866 6867 sch = rcu_dereference(scx_root); 6868 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6869 return arch_scale_freq_capacity(cpu); 6870 else 6871 return SCX_CPUPERF_ONE; 6872 } 6873 6874 /** 6875 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6876 * @cpu: CPU of interest 6877 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6878 * 6879 * Set the target performance level of @cpu to @perf. @perf is in linear 6880 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6881 * schedutil cpufreq governor chooses the target frequency. 6882 * 6883 * The actual performance level chosen, CPU grouping, and the overhead and 6884 * latency of the operations are dependent on the hardware and cpufreq driver in 6885 * use. Consult hardware and cpufreq documentation for more information. The 6886 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6887 */ 6888 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6889 { 6890 struct scx_sched *sch; 6891 6892 guard(rcu)(); 6893 6894 sch = rcu_dereference(scx_root); 6895 if (unlikely(!sch)) 6896 return; 6897 6898 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6899 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu); 6900 return; 6901 } 6902 6903 if (ops_cpu_valid(sch, cpu, NULL)) { 6904 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6905 struct rq_flags rf; 6906 6907 /* 6908 * When called with an rq lock held, restrict the operation 6909 * to the corresponding CPU to prevent ABBA deadlocks. 6910 */ 6911 if (locked_rq && rq != locked_rq) { 6912 scx_error(sch, "Invalid target CPU %d", cpu); 6913 return; 6914 } 6915 6916 /* 6917 * If no rq lock is held, allow to operate on any CPU by 6918 * acquiring the corresponding rq lock. 6919 */ 6920 if (!locked_rq) { 6921 rq_lock_irqsave(rq, &rf); 6922 update_rq_clock(rq); 6923 } 6924 6925 rq->scx.cpuperf_target = perf; 6926 cpufreq_update_util(rq, 0); 6927 6928 if (!locked_rq) 6929 rq_unlock_irqrestore(rq, &rf); 6930 } 6931 } 6932 6933 /** 6934 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6935 * 6936 * All valid node IDs in the system are smaller than the returned value. 6937 */ 6938 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6939 { 6940 return nr_node_ids; 6941 } 6942 6943 /** 6944 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6945 * 6946 * All valid CPU IDs in the system are smaller than the returned value. 6947 */ 6948 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6949 { 6950 return nr_cpu_ids; 6951 } 6952 6953 /** 6954 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6955 */ 6956 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6957 { 6958 return cpu_possible_mask; 6959 } 6960 6961 /** 6962 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6963 */ 6964 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6965 { 6966 return cpu_online_mask; 6967 } 6968 6969 /** 6970 * scx_bpf_put_cpumask - Release a possible/online cpumask 6971 * @cpumask: cpumask to release 6972 */ 6973 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6974 { 6975 /* 6976 * Empty function body because we aren't actually acquiring or releasing 6977 * a reference to a global cpumask, which is read-only in the caller and 6978 * is never released. The acquire / release semantics here are just used 6979 * to make the cpumask is a trusted pointer in the caller. 6980 */ 6981 } 6982 6983 /** 6984 * scx_bpf_task_running - Is task currently running? 6985 * @p: task of interest 6986 */ 6987 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6988 { 6989 return task_rq(p)->curr == p; 6990 } 6991 6992 /** 6993 * scx_bpf_task_cpu - CPU a task is currently associated with 6994 * @p: task of interest 6995 */ 6996 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6997 { 6998 return task_cpu(p); 6999 } 7000 7001 /** 7002 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7003 * @cpu: CPU of the rq 7004 */ 7005 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7006 { 7007 struct scx_sched *sch; 7008 7009 guard(rcu)(); 7010 7011 sch = rcu_dereference(scx_root); 7012 if (unlikely(!sch)) 7013 return NULL; 7014 7015 if (!ops_cpu_valid(sch, cpu, NULL)) 7016 return NULL; 7017 7018 if (!sch->warned_deprecated_rq) { 7019 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; " 7020 "use scx_bpf_locked_rq() when holding rq lock " 7021 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__); 7022 sch->warned_deprecated_rq = true; 7023 } 7024 7025 return cpu_rq(cpu); 7026 } 7027 7028 /** 7029 * scx_bpf_locked_rq - Return the rq currently locked by SCX 7030 * 7031 * Returns the rq if a rq lock is currently held by SCX. 7032 * Otherwise emits an error and returns NULL. 7033 */ 7034 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 7035 { 7036 struct scx_sched *sch; 7037 struct rq *rq; 7038 7039 guard(preempt)(); 7040 7041 sch = rcu_dereference_sched(scx_root); 7042 if (unlikely(!sch)) 7043 return NULL; 7044 7045 rq = scx_locked_rq(); 7046 if (!rq) { 7047 scx_error(sch, "accessing rq without holding rq lock"); 7048 return NULL; 7049 } 7050 7051 return rq; 7052 } 7053 7054 /** 7055 * scx_bpf_cpu_curr - Return remote CPU's curr task 7056 * @cpu: CPU of interest 7057 * 7058 * Callers must hold RCU read lock (KF_RCU). 7059 */ 7060 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 7061 { 7062 struct scx_sched *sch; 7063 7064 guard(rcu)(); 7065 7066 sch = rcu_dereference(scx_root); 7067 if (unlikely(!sch)) 7068 return NULL; 7069 7070 if (!ops_cpu_valid(sch, cpu, NULL)) 7071 return NULL; 7072 7073 return rcu_dereference(cpu_rq(cpu)->curr); 7074 } 7075 7076 /** 7077 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7078 * @p: task of interest 7079 * 7080 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7081 * from the scheduler's POV. SCX operations should use this function to 7082 * determine @p's current cgroup as, unlike following @p->cgroups, 7083 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7084 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7085 * operations. The restriction guarantees that @p's rq is locked by the caller. 7086 */ 7087 #ifdef CONFIG_CGROUP_SCHED 7088 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7089 { 7090 struct task_group *tg = p->sched_task_group; 7091 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7092 struct scx_sched *sch; 7093 7094 guard(rcu)(); 7095 7096 sch = rcu_dereference(scx_root); 7097 if (unlikely(!sch)) 7098 goto out; 7099 7100 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p)) 7101 goto out; 7102 7103 cgrp = tg_cgrp(tg); 7104 7105 out: 7106 cgroup_get(cgrp); 7107 return cgrp; 7108 } 7109 #endif 7110 7111 /** 7112 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7113 * clock for the current CPU. The clock returned is in nanoseconds. 7114 * 7115 * It provides the following properties: 7116 * 7117 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7118 * to account for execution time and track tasks' runtime properties. 7119 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7120 * eventually reads a hardware timestamp counter -- is neither performant nor 7121 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7122 * using the rq clock in the scheduler core whenever possible. 7123 * 7124 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7125 * scheduler use cases, the required clock resolution is lower than the most 7126 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7127 * uses the rq clock in the scheduler core whenever it is valid. It considers 7128 * that the rq clock is valid from the time the rq clock is updated 7129 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7130 * 7131 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7132 * guarantees the clock never goes backward when comparing them in the same 7133 * CPU. On the other hand, when comparing clocks in different CPUs, there 7134 * is no such guarantee -- the clock can go backward. It provides a 7135 * monotonically *non-decreasing* clock so that it would provide the same 7136 * clock values in two different scx_bpf_now() calls in the same CPU 7137 * during the same period of when the rq clock is valid. 7138 */ 7139 __bpf_kfunc u64 scx_bpf_now(void) 7140 { 7141 struct rq *rq; 7142 u64 clock; 7143 7144 preempt_disable(); 7145 7146 rq = this_rq(); 7147 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7148 /* 7149 * If the rq clock is valid, use the cached rq clock. 7150 * 7151 * Note that scx_bpf_now() is re-entrant between a process 7152 * context and an interrupt context (e.g., timer interrupt). 7153 * However, we don't need to consider the race between them 7154 * because such race is not observable from a caller. 7155 */ 7156 clock = READ_ONCE(rq->scx.clock); 7157 } else { 7158 /* 7159 * Otherwise, return a fresh rq clock. 7160 * 7161 * The rq clock is updated outside of the rq lock. 7162 * In this case, keep the updated rq clock invalid so the next 7163 * kfunc call outside the rq lock gets a fresh rq clock. 7164 */ 7165 clock = sched_clock_cpu(cpu_of(rq)); 7166 } 7167 7168 preempt_enable(); 7169 7170 return clock; 7171 } 7172 7173 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 7174 { 7175 struct scx_event_stats *e_cpu; 7176 int cpu; 7177 7178 /* Aggregate per-CPU event counters into @events. */ 7179 memset(events, 0, sizeof(*events)); 7180 for_each_possible_cpu(cpu) { 7181 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 7182 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 7183 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 7184 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 7185 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 7186 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 7187 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 7188 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 7189 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 7190 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 7191 } 7192 } 7193 7194 /* 7195 * scx_bpf_events - Get a system-wide event counter to 7196 * @events: output buffer from a BPF program 7197 * @events__sz: @events len, must end in '__sz'' for the verifier 7198 */ 7199 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 7200 size_t events__sz) 7201 { 7202 struct scx_sched *sch; 7203 struct scx_event_stats e_sys; 7204 7205 rcu_read_lock(); 7206 sch = rcu_dereference(scx_root); 7207 if (sch) 7208 scx_read_events(sch, &e_sys); 7209 else 7210 memset(&e_sys, 0, sizeof(e_sys)); 7211 rcu_read_unlock(); 7212 7213 /* 7214 * We cannot entirely trust a BPF-provided size since a BPF program 7215 * might be compiled against a different vmlinux.h, of which 7216 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 7217 * (an older vmlinux.h). Hence, we use the smaller size to avoid 7218 * memory corruption. 7219 */ 7220 events__sz = min(events__sz, sizeof(*events)); 7221 memcpy(events, &e_sys, events__sz); 7222 } 7223 7224 __bpf_kfunc_end_defs(); 7225 7226 BTF_KFUNCS_START(scx_kfunc_ids_any) 7227 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU); 7228 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU); 7229 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7230 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7231 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7232 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL) 7233 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7234 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7235 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7236 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7237 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7238 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7239 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2) 7240 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7241 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7242 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7243 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 7244 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7245 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7246 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7247 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7248 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7249 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7250 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7251 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 7252 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED) 7253 #ifdef CONFIG_CGROUP_SCHED 7254 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7255 #endif 7256 BTF_ID_FLAGS(func, scx_bpf_now) 7257 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 7258 BTF_KFUNCS_END(scx_kfunc_ids_any) 7259 7260 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7261 .owner = THIS_MODULE, 7262 .set = &scx_kfunc_ids_any, 7263 }; 7264 7265 static int __init scx_init(void) 7266 { 7267 int ret; 7268 7269 /* 7270 * kfunc registration can't be done from init_sched_ext_class() as 7271 * register_btf_kfunc_id_set() needs most of the system to be up. 7272 * 7273 * Some kfuncs are context-sensitive and can only be called from 7274 * specific SCX ops. They are grouped into BTF sets accordingly. 7275 * Unfortunately, BPF currently doesn't have a way of enforcing such 7276 * restrictions. Eventually, the verifier should be able to enforce 7277 * them. For now, register them the same and make each kfunc explicitly 7278 * check using scx_kf_allowed(). 7279 */ 7280 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7281 &scx_kfunc_set_enqueue_dispatch)) || 7282 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7283 &scx_kfunc_set_dispatch)) || 7284 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7285 &scx_kfunc_set_cpu_release)) || 7286 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7287 &scx_kfunc_set_unlocked)) || 7288 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7289 &scx_kfunc_set_unlocked)) || 7290 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7291 &scx_kfunc_set_any)) || 7292 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7293 &scx_kfunc_set_any)) || 7294 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7295 &scx_kfunc_set_any))) { 7296 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7297 return ret; 7298 } 7299 7300 ret = scx_idle_init(); 7301 if (ret) { 7302 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 7303 return ret; 7304 } 7305 7306 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7307 if (ret) { 7308 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7309 return ret; 7310 } 7311 7312 ret = register_pm_notifier(&scx_pm_notifier); 7313 if (ret) { 7314 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7315 return ret; 7316 } 7317 7318 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7319 if (!scx_kset) { 7320 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7321 return -ENOMEM; 7322 } 7323 7324 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7325 if (ret < 0) { 7326 pr_err("sched_ext: Failed to add global attributes\n"); 7327 return ret; 7328 } 7329 7330 if (!alloc_cpumask_var(&scx_bypass_lb_donee_cpumask, GFP_KERNEL) || 7331 !alloc_cpumask_var(&scx_bypass_lb_resched_cpumask, GFP_KERNEL)) { 7332 pr_err("sched_ext: Failed to allocate cpumasks\n"); 7333 return -ENOMEM; 7334 } 7335 7336 return 0; 7337 } 7338 __initcall(scx_init); 7339