1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_SLICE_BYPASS = SCX_SLICE_DFL / 4, 13 SCX_DSP_DFL_MAX_BATCH = 32, 14 SCX_DSP_MAX_LOOPS = 32, 15 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 16 17 SCX_EXIT_BT_LEN = 64, 18 SCX_EXIT_MSG_LEN = 1024, 19 SCX_EXIT_DUMP_DFL_LEN = 32768, 20 21 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 22 }; 23 24 enum scx_exit_kind { 25 SCX_EXIT_NONE, 26 SCX_EXIT_DONE, 27 28 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 29 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 30 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 31 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 32 33 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 34 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 35 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 36 }; 37 38 /* 39 * An exit code can be specified when exiting with scx_bpf_exit() or 40 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 41 * respectively. The codes are 64bit of the format: 42 * 43 * Bits: [63 .. 48 47 .. 32 31 .. 0] 44 * [ SYS ACT ] [ SYS RSN ] [ USR ] 45 * 46 * SYS ACT: System-defined exit actions 47 * SYS RSN: System-defined exit reasons 48 * USR : User-defined exit codes and reasons 49 * 50 * Using the above, users may communicate intention and context by ORing system 51 * actions and/or system reasons with a user-defined exit code. 52 */ 53 enum scx_exit_code { 54 /* Reasons */ 55 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 56 57 /* Actions */ 58 SCX_ECODE_ACT_RESTART = 1LLU << 48, 59 }; 60 61 /* 62 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 63 * being disabled. 64 */ 65 struct scx_exit_info { 66 /* %SCX_EXIT_* - broad category of the exit reason */ 67 enum scx_exit_kind kind; 68 69 /* exit code if gracefully exiting */ 70 s64 exit_code; 71 72 /* textual representation of the above */ 73 const char *reason; 74 75 /* backtrace if exiting due to an error */ 76 unsigned long *bt; 77 u32 bt_len; 78 79 /* informational message */ 80 char *msg; 81 82 /* debug dump */ 83 char *dump; 84 }; 85 86 /* sched_ext_ops.flags */ 87 enum scx_ops_flags { 88 /* 89 * Keep built-in idle tracking even if ops.update_idle() is implemented. 90 */ 91 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 92 93 /* 94 * By default, if there are no other task to run on the CPU, ext core 95 * keeps running the current task even after its slice expires. If this 96 * flag is specified, such tasks are passed to ops.enqueue() with 97 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 98 */ 99 SCX_OPS_ENQ_LAST = 1LLU << 1, 100 101 /* 102 * An exiting task may schedule after PF_EXITING is set. In such cases, 103 * bpf_task_from_pid() may not be able to find the task and if the BPF 104 * scheduler depends on pid lookup for dispatching, the task will be 105 * lost leading to various issues including RCU grace period stalls. 106 * 107 * To mask this problem, by default, unhashed tasks are automatically 108 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 109 * depend on pid lookups and wants to handle these tasks directly, the 110 * following flag can be used. 111 */ 112 SCX_OPS_ENQ_EXITING = 1LLU << 2, 113 114 /* 115 * If set, only tasks with policy set to SCHED_EXT are attached to 116 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 117 */ 118 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 119 120 /* 121 * CPU cgroup support flags 122 */ 123 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 124 125 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 126 SCX_OPS_ENQ_LAST | 127 SCX_OPS_ENQ_EXITING | 128 SCX_OPS_SWITCH_PARTIAL | 129 SCX_OPS_HAS_CGROUP_WEIGHT, 130 }; 131 132 /* argument container for ops.init_task() */ 133 struct scx_init_task_args { 134 /* 135 * Set if ops.init_task() is being invoked on the fork path, as opposed 136 * to the scheduler transition path. 137 */ 138 bool fork; 139 #ifdef CONFIG_EXT_GROUP_SCHED 140 /* the cgroup the task is joining */ 141 struct cgroup *cgroup; 142 #endif 143 }; 144 145 /* argument container for ops.exit_task() */ 146 struct scx_exit_task_args { 147 /* Whether the task exited before running on sched_ext. */ 148 bool cancelled; 149 }; 150 151 /* argument container for ops->cgroup_init() */ 152 struct scx_cgroup_init_args { 153 /* the weight of the cgroup [1..10000] */ 154 u32 weight; 155 }; 156 157 enum scx_cpu_preempt_reason { 158 /* next task is being scheduled by &sched_class_rt */ 159 SCX_CPU_PREEMPT_RT, 160 /* next task is being scheduled by &sched_class_dl */ 161 SCX_CPU_PREEMPT_DL, 162 /* next task is being scheduled by &sched_class_stop */ 163 SCX_CPU_PREEMPT_STOP, 164 /* unknown reason for SCX being preempted */ 165 SCX_CPU_PREEMPT_UNKNOWN, 166 }; 167 168 /* 169 * Argument container for ops->cpu_acquire(). Currently empty, but may be 170 * expanded in the future. 171 */ 172 struct scx_cpu_acquire_args {}; 173 174 /* argument container for ops->cpu_release() */ 175 struct scx_cpu_release_args { 176 /* the reason the CPU was preempted */ 177 enum scx_cpu_preempt_reason reason; 178 179 /* the task that's going to be scheduled on the CPU */ 180 struct task_struct *task; 181 }; 182 183 /* 184 * Informational context provided to dump operations. 185 */ 186 struct scx_dump_ctx { 187 enum scx_exit_kind kind; 188 s64 exit_code; 189 const char *reason; 190 u64 at_ns; 191 u64 at_jiffies; 192 }; 193 194 /** 195 * struct sched_ext_ops - Operation table for BPF scheduler implementation 196 * 197 * Userland can implement an arbitrary scheduling policy by implementing and 198 * loading operations in this table. 199 */ 200 struct sched_ext_ops { 201 /** 202 * select_cpu - Pick the target CPU for a task which is being woken up 203 * @p: task being woken up 204 * @prev_cpu: the cpu @p was on before sleeping 205 * @wake_flags: SCX_WAKE_* 206 * 207 * Decision made here isn't final. @p may be moved to any CPU while it 208 * is getting dispatched for execution later. However, as @p is not on 209 * the rq at this point, getting the eventual execution CPU right here 210 * saves a small bit of overhead down the line. 211 * 212 * If an idle CPU is returned, the CPU is kicked and will try to 213 * dispatch. While an explicit custom mechanism can be added, 214 * select_cpu() serves as the default way to wake up idle CPUs. 215 * 216 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p 217 * is dispatched, the ops.enqueue() callback will be skipped. Finally, 218 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the 219 * local DSQ of whatever CPU is returned by this callback. 220 */ 221 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 222 223 /** 224 * enqueue - Enqueue a task on the BPF scheduler 225 * @p: task being enqueued 226 * @enq_flags: %SCX_ENQ_* 227 * 228 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() 229 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf 230 * scheduler owns @p and if it fails to dispatch @p, the task will 231 * stall. 232 * 233 * If @p was dispatched from ops.select_cpu(), this callback is 234 * skipped. 235 */ 236 void (*enqueue)(struct task_struct *p, u64 enq_flags); 237 238 /** 239 * dequeue - Remove a task from the BPF scheduler 240 * @p: task being dequeued 241 * @deq_flags: %SCX_DEQ_* 242 * 243 * Remove @p from the BPF scheduler. This is usually called to isolate 244 * the task while updating its scheduling properties (e.g. priority). 245 * 246 * The ext core keeps track of whether the BPF side owns a given task or 247 * not and can gracefully ignore spurious dispatches from BPF side, 248 * which makes it safe to not implement this method. However, depending 249 * on the scheduling logic, this can lead to confusing behaviors - e.g. 250 * scheduling position not being updated across a priority change. 251 */ 252 void (*dequeue)(struct task_struct *p, u64 deq_flags); 253 254 /** 255 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs 256 * @cpu: CPU to dispatch tasks for 257 * @prev: previous task being switched out 258 * 259 * Called when a CPU's local dsq is empty. The operation should dispatch 260 * one or more tasks from the BPF scheduler into the DSQs using 261 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using 262 * scx_bpf_consume(). 263 * 264 * The maximum number of times scx_bpf_dispatch() can be called without 265 * an intervening scx_bpf_consume() is specified by 266 * ops.dispatch_max_batch. See the comments on top of the two functions 267 * for more details. 268 * 269 * When not %NULL, @prev is an SCX task with its slice depleted. If 270 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 271 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 272 * ops.dispatch() returns. To keep executing @prev, return without 273 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. 274 */ 275 void (*dispatch)(s32 cpu, struct task_struct *prev); 276 277 /** 278 * tick - Periodic tick 279 * @p: task running currently 280 * 281 * This operation is called every 1/HZ seconds on CPUs which are 282 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 283 * immediate dispatch cycle on the CPU. 284 */ 285 void (*tick)(struct task_struct *p); 286 287 /** 288 * runnable - A task is becoming runnable on its associated CPU 289 * @p: task becoming runnable 290 * @enq_flags: %SCX_ENQ_* 291 * 292 * This and the following three functions can be used to track a task's 293 * execution state transitions. A task becomes ->runnable() on a CPU, 294 * and then goes through one or more ->running() and ->stopping() pairs 295 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 296 * done running on the CPU. 297 * 298 * @p is becoming runnable on the CPU because it's 299 * 300 * - waking up (%SCX_ENQ_WAKEUP) 301 * - being moved from another CPU 302 * - being restored after temporarily taken off the queue for an 303 * attribute change. 304 * 305 * This and ->enqueue() are related but not coupled. This operation 306 * notifies @p's state transition and may not be followed by ->enqueue() 307 * e.g. when @p is being dispatched to a remote CPU, or when @p is 308 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 309 * task may be ->enqueue()'d without being preceded by this operation 310 * e.g. after exhausting its slice. 311 */ 312 void (*runnable)(struct task_struct *p, u64 enq_flags); 313 314 /** 315 * running - A task is starting to run on its associated CPU 316 * @p: task starting to run 317 * 318 * See ->runnable() for explanation on the task state notifiers. 319 */ 320 void (*running)(struct task_struct *p); 321 322 /** 323 * stopping - A task is stopping execution 324 * @p: task stopping to run 325 * @runnable: is task @p still runnable? 326 * 327 * See ->runnable() for explanation on the task state notifiers. If 328 * !@runnable, ->quiescent() will be invoked after this operation 329 * returns. 330 */ 331 void (*stopping)(struct task_struct *p, bool runnable); 332 333 /** 334 * quiescent - A task is becoming not runnable on its associated CPU 335 * @p: task becoming not runnable 336 * @deq_flags: %SCX_DEQ_* 337 * 338 * See ->runnable() for explanation on the task state notifiers. 339 * 340 * @p is becoming quiescent on the CPU because it's 341 * 342 * - sleeping (%SCX_DEQ_SLEEP) 343 * - being moved to another CPU 344 * - being temporarily taken off the queue for an attribute change 345 * (%SCX_DEQ_SAVE) 346 * 347 * This and ->dequeue() are related but not coupled. This operation 348 * notifies @p's state transition and may not be preceded by ->dequeue() 349 * e.g. when @p is being dispatched to a remote CPU. 350 */ 351 void (*quiescent)(struct task_struct *p, u64 deq_flags); 352 353 /** 354 * yield - Yield CPU 355 * @from: yielding task 356 * @to: optional yield target task 357 * 358 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 359 * The BPF scheduler should ensure that other available tasks are 360 * dispatched before the yielding task. Return value is ignored in this 361 * case. 362 * 363 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 364 * scheduler can implement the request, return %true; otherwise, %false. 365 */ 366 bool (*yield)(struct task_struct *from, struct task_struct *to); 367 368 /** 369 * core_sched_before - Task ordering for core-sched 370 * @a: task A 371 * @b: task B 372 * 373 * Used by core-sched to determine the ordering between two tasks. See 374 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 375 * core-sched. 376 * 377 * Both @a and @b are runnable and may or may not currently be queued on 378 * the BPF scheduler. Should return %true if @a should run before @b. 379 * %false if there's no required ordering or @b should run before @a. 380 * 381 * If not specified, the default is ordering them according to when they 382 * became runnable. 383 */ 384 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 385 386 /** 387 * set_weight - Set task weight 388 * @p: task to set weight for 389 * @weight: new weight [1..10000] 390 * 391 * Update @p's weight to @weight. 392 */ 393 void (*set_weight)(struct task_struct *p, u32 weight); 394 395 /** 396 * set_cpumask - Set CPU affinity 397 * @p: task to set CPU affinity for 398 * @cpumask: cpumask of cpus that @p can run on 399 * 400 * Update @p's CPU affinity to @cpumask. 401 */ 402 void (*set_cpumask)(struct task_struct *p, 403 const struct cpumask *cpumask); 404 405 /** 406 * update_idle - Update the idle state of a CPU 407 * @cpu: CPU to udpate the idle state for 408 * @idle: whether entering or exiting the idle state 409 * 410 * This operation is called when @rq's CPU goes or leaves the idle 411 * state. By default, implementing this operation disables the built-in 412 * idle CPU tracking and the following helpers become unavailable: 413 * 414 * - scx_bpf_select_cpu_dfl() 415 * - scx_bpf_test_and_clear_cpu_idle() 416 * - scx_bpf_pick_idle_cpu() 417 * 418 * The user also must implement ops.select_cpu() as the default 419 * implementation relies on scx_bpf_select_cpu_dfl(). 420 * 421 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 422 * tracking. 423 */ 424 void (*update_idle)(s32 cpu, bool idle); 425 426 /** 427 * cpu_acquire - A CPU is becoming available to the BPF scheduler 428 * @cpu: The CPU being acquired by the BPF scheduler. 429 * @args: Acquire arguments, see the struct definition. 430 * 431 * A CPU that was previously released from the BPF scheduler is now once 432 * again under its control. 433 */ 434 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 435 436 /** 437 * cpu_release - A CPU is taken away from the BPF scheduler 438 * @cpu: The CPU being released by the BPF scheduler. 439 * @args: Release arguments, see the struct definition. 440 * 441 * The specified CPU is no longer under the control of the BPF 442 * scheduler. This could be because it was preempted by a higher 443 * priority sched_class, though there may be other reasons as well. The 444 * caller should consult @args->reason to determine the cause. 445 */ 446 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 447 448 /** 449 * init_task - Initialize a task to run in a BPF scheduler 450 * @p: task to initialize for BPF scheduling 451 * @args: init arguments, see the struct definition 452 * 453 * Either we're loading a BPF scheduler or a new task is being forked. 454 * Initialize @p for BPF scheduling. This operation may block and can 455 * be used for allocations, and is called exactly once for a task. 456 * 457 * Return 0 for success, -errno for failure. An error return while 458 * loading will abort loading of the BPF scheduler. During a fork, it 459 * will abort that specific fork. 460 */ 461 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 462 463 /** 464 * exit_task - Exit a previously-running task from the system 465 * @p: task to exit 466 * 467 * @p is exiting or the BPF scheduler is being unloaded. Perform any 468 * necessary cleanup for @p. 469 */ 470 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 471 472 /** 473 * enable - Enable BPF scheduling for a task 474 * @p: task to enable BPF scheduling for 475 * 476 * Enable @p for BPF scheduling. enable() is called on @p any time it 477 * enters SCX, and is always paired with a matching disable(). 478 */ 479 void (*enable)(struct task_struct *p); 480 481 /** 482 * disable - Disable BPF scheduling for a task 483 * @p: task to disable BPF scheduling for 484 * 485 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 486 * Disable BPF scheduling for @p. A disable() call is always matched 487 * with a prior enable() call. 488 */ 489 void (*disable)(struct task_struct *p); 490 491 /** 492 * dump - Dump BPF scheduler state on error 493 * @ctx: debug dump context 494 * 495 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 496 */ 497 void (*dump)(struct scx_dump_ctx *ctx); 498 499 /** 500 * dump_cpu - Dump BPF scheduler state for a CPU on error 501 * @ctx: debug dump context 502 * @cpu: CPU to generate debug dump for 503 * @idle: @cpu is currently idle without any runnable tasks 504 * 505 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 506 * @cpu. If @idle is %true and this operation doesn't produce any 507 * output, @cpu is skipped for dump. 508 */ 509 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 510 511 /** 512 * dump_task - Dump BPF scheduler state for a runnable task on error 513 * @ctx: debug dump context 514 * @p: runnable task to generate debug dump for 515 * 516 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 517 * @p. 518 */ 519 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 520 521 #ifdef CONFIG_EXT_GROUP_SCHED 522 /** 523 * cgroup_init - Initialize a cgroup 524 * @cgrp: cgroup being initialized 525 * @args: init arguments, see the struct definition 526 * 527 * Either the BPF scheduler is being loaded or @cgrp created, initialize 528 * @cgrp for sched_ext. This operation may block. 529 * 530 * Return 0 for success, -errno for failure. An error return while 531 * loading will abort loading of the BPF scheduler. During cgroup 532 * creation, it will abort the specific cgroup creation. 533 */ 534 s32 (*cgroup_init)(struct cgroup *cgrp, 535 struct scx_cgroup_init_args *args); 536 537 /** 538 * cgroup_exit - Exit a cgroup 539 * @cgrp: cgroup being exited 540 * 541 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 542 * @cgrp for sched_ext. This operation my block. 543 */ 544 void (*cgroup_exit)(struct cgroup *cgrp); 545 546 /** 547 * cgroup_prep_move - Prepare a task to be moved to a different cgroup 548 * @p: task being moved 549 * @from: cgroup @p is being moved from 550 * @to: cgroup @p is being moved to 551 * 552 * Prepare @p for move from cgroup @from to @to. This operation may 553 * block and can be used for allocations. 554 * 555 * Return 0 for success, -errno for failure. An error return aborts the 556 * migration. 557 */ 558 s32 (*cgroup_prep_move)(struct task_struct *p, 559 struct cgroup *from, struct cgroup *to); 560 561 /** 562 * cgroup_move - Commit cgroup move 563 * @p: task being moved 564 * @from: cgroup @p is being moved from 565 * @to: cgroup @p is being moved to 566 * 567 * Commit the move. @p is dequeued during this operation. 568 */ 569 void (*cgroup_move)(struct task_struct *p, 570 struct cgroup *from, struct cgroup *to); 571 572 /** 573 * cgroup_cancel_move - Cancel cgroup move 574 * @p: task whose cgroup move is being canceled 575 * @from: cgroup @p was being moved from 576 * @to: cgroup @p was being moved to 577 * 578 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 579 * Undo the preparation. 580 */ 581 void (*cgroup_cancel_move)(struct task_struct *p, 582 struct cgroup *from, struct cgroup *to); 583 584 /** 585 * cgroup_set_weight - A cgroup's weight is being changed 586 * @cgrp: cgroup whose weight is being updated 587 * @weight: new weight [1..10000] 588 * 589 * Update @tg's weight to @weight. 590 */ 591 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 592 #endif /* CONFIG_CGROUPS */ 593 594 /* 595 * All online ops must come before ops.cpu_online(). 596 */ 597 598 /** 599 * cpu_online - A CPU became online 600 * @cpu: CPU which just came up 601 * 602 * @cpu just came online. @cpu will not call ops.enqueue() or 603 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 604 */ 605 void (*cpu_online)(s32 cpu); 606 607 /** 608 * cpu_offline - A CPU is going offline 609 * @cpu: CPU which is going offline 610 * 611 * @cpu is going offline. @cpu will not call ops.enqueue() or 612 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 613 */ 614 void (*cpu_offline)(s32 cpu); 615 616 /* 617 * All CPU hotplug ops must come before ops.init(). 618 */ 619 620 /** 621 * init - Initialize the BPF scheduler 622 */ 623 s32 (*init)(void); 624 625 /** 626 * exit - Clean up after the BPF scheduler 627 * @info: Exit info 628 * 629 * ops.exit() is also called on ops.init() failure, which is a bit 630 * unusual. This is to allow rich reporting through @info on how 631 * ops.init() failed. 632 */ 633 void (*exit)(struct scx_exit_info *info); 634 635 /** 636 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 637 */ 638 u32 dispatch_max_batch; 639 640 /** 641 * flags - %SCX_OPS_* flags 642 */ 643 u64 flags; 644 645 /** 646 * timeout_ms - The maximum amount of time, in milliseconds, that a 647 * runnable task should be able to wait before being scheduled. The 648 * maximum timeout may not exceed the default timeout of 30 seconds. 649 * 650 * Defaults to the maximum allowed timeout value of 30 seconds. 651 */ 652 u32 timeout_ms; 653 654 /** 655 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 656 * value of 32768 is used. 657 */ 658 u32 exit_dump_len; 659 660 /** 661 * hotplug_seq - A sequence number that may be set by the scheduler to 662 * detect when a hotplug event has occurred during the loading process. 663 * If 0, no detection occurs. Otherwise, the scheduler will fail to 664 * load if the sequence number does not match @scx_hotplug_seq on the 665 * enable path. 666 */ 667 u64 hotplug_seq; 668 669 /** 670 * name - BPF scheduler's name 671 * 672 * Must be a non-zero valid BPF object name including only isalnum(), 673 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 674 * BPF scheduler is enabled. 675 */ 676 char name[SCX_OPS_NAME_LEN]; 677 }; 678 679 enum scx_opi { 680 SCX_OPI_BEGIN = 0, 681 SCX_OPI_NORMAL_BEGIN = 0, 682 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 683 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 684 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 685 SCX_OPI_END = SCX_OP_IDX(init), 686 }; 687 688 enum scx_wake_flags { 689 /* expose select WF_* flags as enums */ 690 SCX_WAKE_FORK = WF_FORK, 691 SCX_WAKE_TTWU = WF_TTWU, 692 SCX_WAKE_SYNC = WF_SYNC, 693 }; 694 695 enum scx_enq_flags { 696 /* expose select ENQUEUE_* flags as enums */ 697 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 698 SCX_ENQ_HEAD = ENQUEUE_HEAD, 699 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 700 701 /* high 32bits are SCX specific */ 702 703 /* 704 * Set the following to trigger preemption when calling 705 * scx_bpf_dispatch() with a local dsq as the target. The slice of the 706 * current task is cleared to zero and the CPU is kicked into the 707 * scheduling path. Implies %SCX_ENQ_HEAD. 708 */ 709 SCX_ENQ_PREEMPT = 1LLU << 32, 710 711 /* 712 * The task being enqueued was previously enqueued on the current CPU's 713 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 714 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 715 * invoked in a ->cpu_release() callback, and the task is again 716 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 717 * task will not be scheduled on the CPU until at least the next invocation 718 * of the ->cpu_acquire() callback. 719 */ 720 SCX_ENQ_REENQ = 1LLU << 40, 721 722 /* 723 * The task being enqueued is the only task available for the cpu. By 724 * default, ext core keeps executing such tasks but when 725 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 726 * %SCX_ENQ_LAST flag set. 727 * 728 * The BPF scheduler is responsible for triggering a follow-up 729 * scheduling event. Otherwise, Execution may stall. 730 */ 731 SCX_ENQ_LAST = 1LLU << 41, 732 733 /* high 8 bits are internal */ 734 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 735 736 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 737 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 738 }; 739 740 enum scx_deq_flags { 741 /* expose select DEQUEUE_* flags as enums */ 742 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 743 744 /* high 32bits are SCX specific */ 745 746 /* 747 * The generic core-sched layer decided to execute the task even though 748 * it hasn't been dispatched yet. Dequeue from the BPF side. 749 */ 750 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 751 }; 752 753 enum scx_pick_idle_cpu_flags { 754 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 755 }; 756 757 enum scx_kick_flags { 758 /* 759 * Kick the target CPU if idle. Guarantees that the target CPU goes 760 * through at least one full scheduling cycle before going idle. If the 761 * target CPU can be determined to be currently not idle and going to go 762 * through a scheduling cycle before going idle, noop. 763 */ 764 SCX_KICK_IDLE = 1LLU << 0, 765 766 /* 767 * Preempt the current task and execute the dispatch path. If the 768 * current task of the target CPU is an SCX task, its ->scx.slice is 769 * cleared to zero before the scheduling path is invoked so that the 770 * task expires and the dispatch path is invoked. 771 */ 772 SCX_KICK_PREEMPT = 1LLU << 1, 773 774 /* 775 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 776 * return after the target CPU finishes picking the next task. 777 */ 778 SCX_KICK_WAIT = 1LLU << 2, 779 }; 780 781 enum scx_tg_flags { 782 SCX_TG_ONLINE = 1U << 0, 783 SCX_TG_INITED = 1U << 1, 784 }; 785 786 enum scx_ops_enable_state { 787 SCX_OPS_ENABLING, 788 SCX_OPS_ENABLED, 789 SCX_OPS_DISABLING, 790 SCX_OPS_DISABLED, 791 }; 792 793 static const char *scx_ops_enable_state_str[] = { 794 [SCX_OPS_ENABLING] = "enabling", 795 [SCX_OPS_ENABLED] = "enabled", 796 [SCX_OPS_DISABLING] = "disabling", 797 [SCX_OPS_DISABLED] = "disabled", 798 }; 799 800 /* 801 * sched_ext_entity->ops_state 802 * 803 * Used to track the task ownership between the SCX core and the BPF scheduler. 804 * State transitions look as follows: 805 * 806 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 807 * ^ | | 808 * | v v 809 * \-------------------------------/ 810 * 811 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 812 * sites for explanations on the conditions being waited upon and why they are 813 * safe. Transitions out of them into NONE or QUEUED must store_release and the 814 * waiters should load_acquire. 815 * 816 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 817 * any given task can be dispatched by the BPF scheduler at all times and thus 818 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 819 * to try to dispatch any task anytime regardless of its state as the SCX core 820 * can safely reject invalid dispatches. 821 */ 822 enum scx_ops_state { 823 SCX_OPSS_NONE, /* owned by the SCX core */ 824 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 825 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 826 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 827 828 /* 829 * QSEQ brands each QUEUED instance so that, when dispatch races 830 * dequeue/requeue, the dispatcher can tell whether it still has a claim 831 * on the task being dispatched. 832 * 833 * As some 32bit archs can't do 64bit store_release/load_acquire, 834 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 835 * 32bit machines. The dispatch race window QSEQ protects is very narrow 836 * and runs with IRQ disabled. 30 bits should be sufficient. 837 */ 838 SCX_OPSS_QSEQ_SHIFT = 2, 839 }; 840 841 /* Use macros to ensure that the type is unsigned long for the masks */ 842 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 843 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 844 845 /* 846 * During exit, a task may schedule after losing its PIDs. When disabling the 847 * BPF scheduler, we need to be able to iterate tasks in every state to 848 * guarantee system safety. Maintain a dedicated task list which contains every 849 * task between its fork and eventual free. 850 */ 851 static DEFINE_SPINLOCK(scx_tasks_lock); 852 static LIST_HEAD(scx_tasks); 853 854 /* ops enable/disable */ 855 static struct kthread_worker *scx_ops_helper; 856 static DEFINE_MUTEX(scx_ops_enable_mutex); 857 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 858 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 859 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 860 static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); 861 static bool scx_ops_init_task_enabled; 862 static bool scx_switching_all; 863 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 864 865 static struct sched_ext_ops scx_ops; 866 static bool scx_warned_zero_slice; 867 868 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 869 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 870 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 871 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 872 873 static struct static_key_false scx_has_op[SCX_OPI_END] = 874 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 875 876 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 877 static struct scx_exit_info *scx_exit_info; 878 879 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 880 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 881 882 /* 883 * A monotically increasing sequence number that is incremented every time a 884 * scheduler is enabled. This can be used by to check if any custom sched_ext 885 * scheduler has ever been used in the system. 886 */ 887 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 888 889 /* 890 * The maximum amount of time in jiffies that a task may be runnable without 891 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 892 * scx_ops_error(). 893 */ 894 static unsigned long scx_watchdog_timeout; 895 896 /* 897 * The last time the delayed work was run. This delayed work relies on 898 * ksoftirqd being able to run to service timer interrupts, so it's possible 899 * that this work itself could get wedged. To account for this, we check that 900 * it's not stalled in the timer tick, and trigger an error if it is. 901 */ 902 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 903 904 static struct delayed_work scx_watchdog_work; 905 906 /* idle tracking */ 907 #ifdef CONFIG_SMP 908 #ifdef CONFIG_CPUMASK_OFFSTACK 909 #define CL_ALIGNED_IF_ONSTACK 910 #else 911 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 912 #endif 913 914 static struct { 915 cpumask_var_t cpu; 916 cpumask_var_t smt; 917 } idle_masks CL_ALIGNED_IF_ONSTACK; 918 919 #endif /* CONFIG_SMP */ 920 921 /* for %SCX_KICK_WAIT */ 922 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 923 924 /* 925 * Direct dispatch marker. 926 * 927 * Non-NULL values are used for direct dispatch from enqueue path. A valid 928 * pointer points to the task currently being enqueued. An ERR_PTR value is used 929 * to indicate that direct dispatch has already happened. 930 */ 931 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 932 933 /* 934 * Dispatch queues. 935 * 936 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 937 * to avoid live-locking in bypass mode where all tasks are dispatched to 938 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 939 * sufficient, it can be further split. 940 */ 941 static struct scx_dispatch_q **global_dsqs; 942 943 static const struct rhashtable_params dsq_hash_params = { 944 .key_len = 8, 945 .key_offset = offsetof(struct scx_dispatch_q, id), 946 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 947 }; 948 949 static struct rhashtable dsq_hash; 950 static LLIST_HEAD(dsqs_to_free); 951 952 /* dispatch buf */ 953 struct scx_dsp_buf_ent { 954 struct task_struct *task; 955 unsigned long qseq; 956 u64 dsq_id; 957 u64 enq_flags; 958 }; 959 960 static u32 scx_dsp_max_batch; 961 962 struct scx_dsp_ctx { 963 struct rq *rq; 964 u32 cursor; 965 u32 nr_tasks; 966 struct scx_dsp_buf_ent buf[]; 967 }; 968 969 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 970 971 /* string formatting from BPF */ 972 struct scx_bstr_buf { 973 u64 data[MAX_BPRINTF_VARARGS]; 974 char line[SCX_EXIT_MSG_LEN]; 975 }; 976 977 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 978 static struct scx_bstr_buf scx_exit_bstr_buf; 979 980 /* ops debug dump */ 981 struct scx_dump_data { 982 s32 cpu; 983 bool first; 984 s32 cursor; 985 struct seq_buf *s; 986 const char *prefix; 987 struct scx_bstr_buf buf; 988 }; 989 990 static struct scx_dump_data scx_dump_data = { 991 .cpu = -1, 992 }; 993 994 /* /sys/kernel/sched_ext interface */ 995 static struct kset *scx_kset; 996 static struct kobject *scx_root_kobj; 997 998 #define CREATE_TRACE_POINTS 999 #include <trace/events/sched_ext.h> 1000 1001 static void process_ddsp_deferred_locals(struct rq *rq); 1002 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1003 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1004 s64 exit_code, 1005 const char *fmt, ...); 1006 1007 #define scx_ops_error_kind(err, fmt, args...) \ 1008 scx_ops_exit_kind((err), 0, fmt, ##args) 1009 1010 #define scx_ops_exit(code, fmt, args...) \ 1011 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1012 1013 #define scx_ops_error(fmt, args...) \ 1014 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1015 1016 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1017 1018 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1019 { 1020 if (time_after(at, now)) 1021 return jiffies_to_msecs(at - now); 1022 else 1023 return -(long)jiffies_to_msecs(now - at); 1024 } 1025 1026 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1027 static u32 higher_bits(u32 flags) 1028 { 1029 return ~((1 << fls(flags)) - 1); 1030 } 1031 1032 /* return the mask with only the highest bit set */ 1033 static u32 highest_bit(u32 flags) 1034 { 1035 int bit = fls(flags); 1036 return ((u64)1 << bit) >> 1; 1037 } 1038 1039 static bool u32_before(u32 a, u32 b) 1040 { 1041 return (s32)(a - b) < 0; 1042 } 1043 1044 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1045 { 1046 return global_dsqs[cpu_to_node(task_cpu(p))]; 1047 } 1048 1049 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1050 { 1051 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1052 } 1053 1054 /* 1055 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1056 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1057 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1058 * whether it's running from an allowed context. 1059 * 1060 * @mask is constant, always inline to cull the mask calculations. 1061 */ 1062 static __always_inline void scx_kf_allow(u32 mask) 1063 { 1064 /* nesting is allowed only in increasing scx_kf_mask order */ 1065 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1066 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1067 current->scx.kf_mask, mask); 1068 current->scx.kf_mask |= mask; 1069 barrier(); 1070 } 1071 1072 static void scx_kf_disallow(u32 mask) 1073 { 1074 barrier(); 1075 current->scx.kf_mask &= ~mask; 1076 } 1077 1078 #define SCX_CALL_OP(mask, op, args...) \ 1079 do { \ 1080 if (mask) { \ 1081 scx_kf_allow(mask); \ 1082 scx_ops.op(args); \ 1083 scx_kf_disallow(mask); \ 1084 } else { \ 1085 scx_ops.op(args); \ 1086 } \ 1087 } while (0) 1088 1089 #define SCX_CALL_OP_RET(mask, op, args...) \ 1090 ({ \ 1091 __typeof__(scx_ops.op(args)) __ret; \ 1092 if (mask) { \ 1093 scx_kf_allow(mask); \ 1094 __ret = scx_ops.op(args); \ 1095 scx_kf_disallow(mask); \ 1096 } else { \ 1097 __ret = scx_ops.op(args); \ 1098 } \ 1099 __ret; \ 1100 }) 1101 1102 /* 1103 * Some kfuncs are allowed only on the tasks that are subjects of the 1104 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1105 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1106 * invoking scx_ops operations that take task arguments. These can only be used 1107 * for non-nesting operations due to the way the tasks are tracked. 1108 * 1109 * kfuncs which can only operate on such tasks can in turn use 1110 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1111 * the specific task. 1112 */ 1113 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1114 do { \ 1115 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1116 current->scx.kf_tasks[0] = task; \ 1117 SCX_CALL_OP(mask, op, task, ##args); \ 1118 current->scx.kf_tasks[0] = NULL; \ 1119 } while (0) 1120 1121 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1122 ({ \ 1123 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1124 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1125 current->scx.kf_tasks[0] = task; \ 1126 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1127 current->scx.kf_tasks[0] = NULL; \ 1128 __ret; \ 1129 }) 1130 1131 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1132 ({ \ 1133 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1134 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1135 current->scx.kf_tasks[0] = task0; \ 1136 current->scx.kf_tasks[1] = task1; \ 1137 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1138 current->scx.kf_tasks[0] = NULL; \ 1139 current->scx.kf_tasks[1] = NULL; \ 1140 __ret; \ 1141 }) 1142 1143 /* @mask is constant, always inline to cull unnecessary branches */ 1144 static __always_inline bool scx_kf_allowed(u32 mask) 1145 { 1146 if (unlikely(!(current->scx.kf_mask & mask))) { 1147 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1148 mask, current->scx.kf_mask); 1149 return false; 1150 } 1151 1152 /* 1153 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1154 * DISPATCH must not be called if we're running DEQUEUE which is nested 1155 * inside ops.dispatch(). We don't need to check boundaries for any 1156 * blocking kfuncs as the verifier ensures they're only called from 1157 * sleepable progs. 1158 */ 1159 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1160 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1161 scx_ops_error("cpu_release kfunc called from a nested operation"); 1162 return false; 1163 } 1164 1165 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1166 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1167 scx_ops_error("dispatch kfunc called from a nested operation"); 1168 return false; 1169 } 1170 1171 return true; 1172 } 1173 1174 /* see SCX_CALL_OP_TASK() */ 1175 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1176 struct task_struct *p) 1177 { 1178 if (!scx_kf_allowed(mask)) 1179 return false; 1180 1181 if (unlikely((p != current->scx.kf_tasks[0] && 1182 p != current->scx.kf_tasks[1]))) { 1183 scx_ops_error("called on a task not being operated on"); 1184 return false; 1185 } 1186 1187 return true; 1188 } 1189 1190 static bool scx_kf_allowed_if_unlocked(void) 1191 { 1192 return !current->scx.kf_mask; 1193 } 1194 1195 /** 1196 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1197 * @dsq: user dsq being interated 1198 * @cur: current position, %NULL to start iteration 1199 * @rev: walk backwards 1200 * 1201 * Returns %NULL when iteration is finished. 1202 */ 1203 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1204 struct task_struct *cur, bool rev) 1205 { 1206 struct list_head *list_node; 1207 struct scx_dsq_list_node *dsq_lnode; 1208 1209 lockdep_assert_held(&dsq->lock); 1210 1211 if (cur) 1212 list_node = &cur->scx.dsq_list.node; 1213 else 1214 list_node = &dsq->list; 1215 1216 /* find the next task, need to skip BPF iteration cursors */ 1217 do { 1218 if (rev) 1219 list_node = list_node->prev; 1220 else 1221 list_node = list_node->next; 1222 1223 if (list_node == &dsq->list) 1224 return NULL; 1225 1226 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1227 node); 1228 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1229 1230 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1231 } 1232 1233 #define nldsq_for_each_task(p, dsq) \ 1234 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1235 (p) = nldsq_next_task((dsq), (p), false)) 1236 1237 1238 /* 1239 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1240 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1241 * changes without breaking backward compatibility. Can be used with 1242 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1243 */ 1244 enum scx_dsq_iter_flags { 1245 /* iterate in the reverse dispatch order */ 1246 SCX_DSQ_ITER_REV = 1U << 16, 1247 1248 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1249 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1250 1251 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1252 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1253 __SCX_DSQ_ITER_HAS_SLICE | 1254 __SCX_DSQ_ITER_HAS_VTIME, 1255 }; 1256 1257 struct bpf_iter_scx_dsq_kern { 1258 struct scx_dsq_list_node cursor; 1259 struct scx_dispatch_q *dsq; 1260 u64 slice; 1261 u64 vtime; 1262 } __attribute__((aligned(8))); 1263 1264 struct bpf_iter_scx_dsq { 1265 u64 __opaque[6]; 1266 } __attribute__((aligned(8))); 1267 1268 1269 /* 1270 * SCX task iterator. 1271 */ 1272 struct scx_task_iter { 1273 struct sched_ext_entity cursor; 1274 struct task_struct *locked; 1275 struct rq *rq; 1276 struct rq_flags rf; 1277 }; 1278 1279 /** 1280 * scx_task_iter_init - Initialize a task iterator 1281 * @iter: iterator to init 1282 * 1283 * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, 1284 * @iter must eventually be exited with scx_task_iter_exit(). 1285 * 1286 * scx_tasks_lock may be released between this and the first next() call or 1287 * between any two next() calls. If scx_tasks_lock is released between two 1288 * next() calls, the caller is responsible for ensuring that the task being 1289 * iterated remains accessible either through RCU read lock or obtaining a 1290 * reference count. 1291 * 1292 * All tasks which existed when the iteration started are guaranteed to be 1293 * visited as long as they still exist. 1294 */ 1295 static void scx_task_iter_init(struct scx_task_iter *iter) 1296 { 1297 lockdep_assert_held(&scx_tasks_lock); 1298 1299 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1300 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1301 1302 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1303 list_add(&iter->cursor.tasks_node, &scx_tasks); 1304 iter->locked = NULL; 1305 } 1306 1307 /** 1308 * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator 1309 * @iter: iterator to unlock rq for 1310 * 1311 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1312 * the task currently being visited. Unlock the rq if so. This function can be 1313 * safely called anytime during an iteration. 1314 * 1315 * Returns %true if the rq @iter was locking is unlocked. %false if @iter was 1316 * not locking an rq. 1317 */ 1318 static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1319 { 1320 if (iter->locked) { 1321 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1322 iter->locked = NULL; 1323 return true; 1324 } else { 1325 return false; 1326 } 1327 } 1328 1329 /** 1330 * scx_task_iter_exit - Exit a task iterator 1331 * @iter: iterator to exit 1332 * 1333 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. 1334 * If the iterator holds a task's rq lock, that rq lock is released. See 1335 * scx_task_iter_init() for details. 1336 */ 1337 static void scx_task_iter_exit(struct scx_task_iter *iter) 1338 { 1339 lockdep_assert_held(&scx_tasks_lock); 1340 1341 scx_task_iter_rq_unlock(iter); 1342 list_del_init(&iter->cursor.tasks_node); 1343 } 1344 1345 /** 1346 * scx_task_iter_next - Next task 1347 * @iter: iterator to walk 1348 * 1349 * Visit the next task. See scx_task_iter_init() for details. 1350 */ 1351 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1352 { 1353 struct list_head *cursor = &iter->cursor.tasks_node; 1354 struct sched_ext_entity *pos; 1355 1356 lockdep_assert_held(&scx_tasks_lock); 1357 1358 list_for_each_entry(pos, cursor, tasks_node) { 1359 if (&pos->tasks_node == &scx_tasks) 1360 return NULL; 1361 if (!(pos->flags & SCX_TASK_CURSOR)) { 1362 list_move(cursor, &pos->tasks_node); 1363 return container_of(pos, struct task_struct, scx); 1364 } 1365 } 1366 1367 /* can't happen, should always terminate at scx_tasks above */ 1368 BUG(); 1369 } 1370 1371 /** 1372 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1373 * @iter: iterator to walk 1374 * @include_dead: Whether we should include dead tasks in the iteration 1375 * 1376 * Visit the non-idle task with its rq lock held. Allows callers to specify 1377 * whether they would like to filter out dead tasks. See scx_task_iter_init() 1378 * for details. 1379 */ 1380 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1381 { 1382 struct task_struct *p; 1383 1384 scx_task_iter_rq_unlock(iter); 1385 1386 while ((p = scx_task_iter_next(iter))) { 1387 /* 1388 * scx_task_iter is used to prepare and move tasks into SCX 1389 * while loading the BPF scheduler and vice-versa while 1390 * unloading. The init_tasks ("swappers") should be excluded 1391 * from the iteration because: 1392 * 1393 * - It's unsafe to use __setschduler_prio() on an init_task to 1394 * determine the sched_class to use as it won't preserve its 1395 * idle_sched_class. 1396 * 1397 * - ops.init/exit_task() can easily be confused if called with 1398 * init_tasks as they, e.g., share PID 0. 1399 * 1400 * As init_tasks are never scheduled through SCX, they can be 1401 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1402 * doesn't work here: 1403 * 1404 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1405 * yet been onlined. 1406 * 1407 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1408 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1409 * 1410 * Test for idle_sched_class as only init_tasks are on it. 1411 */ 1412 if (p->sched_class != &idle_sched_class) 1413 break; 1414 } 1415 if (!p) 1416 return NULL; 1417 1418 iter->rq = task_rq_lock(p, &iter->rf); 1419 iter->locked = p; 1420 1421 return p; 1422 } 1423 1424 static enum scx_ops_enable_state scx_ops_enable_state(void) 1425 { 1426 return atomic_read(&scx_ops_enable_state_var); 1427 } 1428 1429 static enum scx_ops_enable_state 1430 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1431 { 1432 return atomic_xchg(&scx_ops_enable_state_var, to); 1433 } 1434 1435 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1436 enum scx_ops_enable_state from) 1437 { 1438 int from_v = from; 1439 1440 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1441 } 1442 1443 static bool scx_rq_bypassing(struct rq *rq) 1444 { 1445 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1446 } 1447 1448 /** 1449 * wait_ops_state - Busy-wait the specified ops state to end 1450 * @p: target task 1451 * @opss: state to wait the end of 1452 * 1453 * Busy-wait for @p to transition out of @opss. This can only be used when the 1454 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1455 * has load_acquire semantics to ensure that the caller can see the updates made 1456 * in the enqueueing and dispatching paths. 1457 */ 1458 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1459 { 1460 do { 1461 cpu_relax(); 1462 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1463 } 1464 1465 /** 1466 * ops_cpu_valid - Verify a cpu number 1467 * @cpu: cpu number which came from a BPF ops 1468 * @where: extra information reported on error 1469 * 1470 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1471 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1472 * an ops error. 1473 */ 1474 static bool ops_cpu_valid(s32 cpu, const char *where) 1475 { 1476 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1477 return true; 1478 } else { 1479 scx_ops_error("invalid CPU %d%s%s", cpu, 1480 where ? " " : "", where ?: ""); 1481 return false; 1482 } 1483 } 1484 1485 /** 1486 * ops_sanitize_err - Sanitize a -errno value 1487 * @ops_name: operation to blame on failure 1488 * @err: -errno value to sanitize 1489 * 1490 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1491 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1492 * cause misbehaviors. For an example, a large negative return from 1493 * ops.init_task() triggers an oops when passed up the call chain because the 1494 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1495 * handled as a pointer. 1496 */ 1497 static int ops_sanitize_err(const char *ops_name, s32 err) 1498 { 1499 if (err < 0 && err >= -MAX_ERRNO) 1500 return err; 1501 1502 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1503 return -EPROTO; 1504 } 1505 1506 static void run_deferred(struct rq *rq) 1507 { 1508 process_ddsp_deferred_locals(rq); 1509 } 1510 1511 #ifdef CONFIG_SMP 1512 static void deferred_bal_cb_workfn(struct rq *rq) 1513 { 1514 run_deferred(rq); 1515 } 1516 #endif 1517 1518 static void deferred_irq_workfn(struct irq_work *irq_work) 1519 { 1520 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1521 1522 raw_spin_rq_lock(rq); 1523 run_deferred(rq); 1524 raw_spin_rq_unlock(rq); 1525 } 1526 1527 /** 1528 * schedule_deferred - Schedule execution of deferred actions on an rq 1529 * @rq: target rq 1530 * 1531 * Schedule execution of deferred actions on @rq. Must be called with @rq 1532 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1533 * can unlock @rq to e.g. migrate tasks to other rqs. 1534 */ 1535 static void schedule_deferred(struct rq *rq) 1536 { 1537 lockdep_assert_rq_held(rq); 1538 1539 #ifdef CONFIG_SMP 1540 /* 1541 * If in the middle of waking up a task, task_woken_scx() will be called 1542 * afterwards which will then run the deferred actions, no need to 1543 * schedule anything. 1544 */ 1545 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1546 return; 1547 1548 /* 1549 * If in balance, the balance callbacks will be called before rq lock is 1550 * released. Schedule one. 1551 */ 1552 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1553 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1554 deferred_bal_cb_workfn); 1555 return; 1556 } 1557 #endif 1558 /* 1559 * No scheduler hooks available. Queue an irq work. They are executed on 1560 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1561 * The above WAKEUP and BALANCE paths should cover most of the cases and 1562 * the time to IRQ re-enable shouldn't be long. 1563 */ 1564 irq_work_queue(&rq->scx.deferred_irq_work); 1565 } 1566 1567 /** 1568 * touch_core_sched - Update timestamp used for core-sched task ordering 1569 * @rq: rq to read clock from, must be locked 1570 * @p: task to update the timestamp for 1571 * 1572 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1573 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1574 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1575 * exhaustion). 1576 */ 1577 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1578 { 1579 lockdep_assert_rq_held(rq); 1580 1581 #ifdef CONFIG_SCHED_CORE 1582 /* 1583 * It's okay to update the timestamp spuriously. Use 1584 * sched_core_disabled() which is cheaper than enabled(). 1585 * 1586 * As this is used to determine ordering between tasks of sibling CPUs, 1587 * it may be better to use per-core dispatch sequence instead. 1588 */ 1589 if (!sched_core_disabled()) 1590 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1591 #endif 1592 } 1593 1594 /** 1595 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1596 * @rq: rq to read clock from, must be locked 1597 * @p: task being dispatched 1598 * 1599 * If the BPF scheduler implements custom core-sched ordering via 1600 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1601 * ordering within each local DSQ. This function is called from dispatch paths 1602 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1603 */ 1604 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1605 { 1606 lockdep_assert_rq_held(rq); 1607 1608 #ifdef CONFIG_SCHED_CORE 1609 if (SCX_HAS_OP(core_sched_before)) 1610 touch_core_sched(rq, p); 1611 #endif 1612 } 1613 1614 static void update_curr_scx(struct rq *rq) 1615 { 1616 struct task_struct *curr = rq->curr; 1617 s64 delta_exec; 1618 1619 delta_exec = update_curr_common(rq); 1620 if (unlikely(delta_exec <= 0)) 1621 return; 1622 1623 if (curr->scx.slice != SCX_SLICE_INF) { 1624 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1625 if (!curr->scx.slice) 1626 touch_core_sched(rq, curr); 1627 } 1628 } 1629 1630 static bool scx_dsq_priq_less(struct rb_node *node_a, 1631 const struct rb_node *node_b) 1632 { 1633 const struct task_struct *a = 1634 container_of(node_a, struct task_struct, scx.dsq_priq); 1635 const struct task_struct *b = 1636 container_of(node_b, struct task_struct, scx.dsq_priq); 1637 1638 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1639 } 1640 1641 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1642 { 1643 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1644 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1645 } 1646 1647 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1648 u64 enq_flags) 1649 { 1650 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1651 1652 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1653 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1654 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1655 1656 if (!is_local) { 1657 raw_spin_lock(&dsq->lock); 1658 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1659 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1660 /* fall back to the global dsq */ 1661 raw_spin_unlock(&dsq->lock); 1662 dsq = find_global_dsq(p); 1663 raw_spin_lock(&dsq->lock); 1664 } 1665 } 1666 1667 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1668 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1669 /* 1670 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1671 * their FIFO queues. To avoid confusion and accidentally 1672 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1673 * disallow any internal DSQ from doing vtime ordering of 1674 * tasks. 1675 */ 1676 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1677 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1678 } 1679 1680 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1681 struct rb_node *rbp; 1682 1683 /* 1684 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1685 * linked to both the rbtree and list on PRIQs, this can only be 1686 * tested easily when adding the first task. 1687 */ 1688 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1689 nldsq_next_task(dsq, NULL, false))) 1690 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1691 dsq->id); 1692 1693 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1694 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1695 1696 /* 1697 * Find the previous task and insert after it on the list so 1698 * that @dsq->list is vtime ordered. 1699 */ 1700 rbp = rb_prev(&p->scx.dsq_priq); 1701 if (rbp) { 1702 struct task_struct *prev = 1703 container_of(rbp, struct task_struct, 1704 scx.dsq_priq); 1705 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1706 } else { 1707 list_add(&p->scx.dsq_list.node, &dsq->list); 1708 } 1709 } else { 1710 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1711 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1712 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1713 dsq->id); 1714 1715 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1716 list_add(&p->scx.dsq_list.node, &dsq->list); 1717 else 1718 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1719 } 1720 1721 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1722 dsq->seq++; 1723 p->scx.dsq_seq = dsq->seq; 1724 1725 dsq_mod_nr(dsq, 1); 1726 p->scx.dsq = dsq; 1727 1728 /* 1729 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1730 * direct dispatch path, but we clear them here because the direct 1731 * dispatch verdict may be overridden on the enqueue path during e.g. 1732 * bypass. 1733 */ 1734 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1735 p->scx.ddsp_enq_flags = 0; 1736 1737 /* 1738 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1739 * match waiters' load_acquire. 1740 */ 1741 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1742 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1743 1744 if (is_local) { 1745 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1746 bool preempt = false; 1747 1748 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1749 rq->curr->sched_class == &ext_sched_class) { 1750 rq->curr->scx.slice = 0; 1751 preempt = true; 1752 } 1753 1754 if (preempt || sched_class_above(&ext_sched_class, 1755 rq->curr->sched_class)) 1756 resched_curr(rq); 1757 } else { 1758 raw_spin_unlock(&dsq->lock); 1759 } 1760 } 1761 1762 static void task_unlink_from_dsq(struct task_struct *p, 1763 struct scx_dispatch_q *dsq) 1764 { 1765 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1766 1767 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1768 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1769 RB_CLEAR_NODE(&p->scx.dsq_priq); 1770 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1771 } 1772 1773 list_del_init(&p->scx.dsq_list.node); 1774 dsq_mod_nr(dsq, -1); 1775 } 1776 1777 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1778 { 1779 struct scx_dispatch_q *dsq = p->scx.dsq; 1780 bool is_local = dsq == &rq->scx.local_dsq; 1781 1782 if (!dsq) { 1783 /* 1784 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1785 * Unlinking is all that's needed to cancel. 1786 */ 1787 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1788 list_del_init(&p->scx.dsq_list.node); 1789 1790 /* 1791 * When dispatching directly from the BPF scheduler to a local 1792 * DSQ, the task isn't associated with any DSQ but 1793 * @p->scx.holding_cpu may be set under the protection of 1794 * %SCX_OPSS_DISPATCHING. 1795 */ 1796 if (p->scx.holding_cpu >= 0) 1797 p->scx.holding_cpu = -1; 1798 1799 return; 1800 } 1801 1802 if (!is_local) 1803 raw_spin_lock(&dsq->lock); 1804 1805 /* 1806 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1807 * change underneath us. 1808 */ 1809 if (p->scx.holding_cpu < 0) { 1810 /* @p must still be on @dsq, dequeue */ 1811 task_unlink_from_dsq(p, dsq); 1812 } else { 1813 /* 1814 * We're racing against dispatch_to_local_dsq() which already 1815 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1816 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1817 * the race. 1818 */ 1819 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1820 p->scx.holding_cpu = -1; 1821 } 1822 p->scx.dsq = NULL; 1823 1824 if (!is_local) 1825 raw_spin_unlock(&dsq->lock); 1826 } 1827 1828 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1829 struct task_struct *p) 1830 { 1831 struct scx_dispatch_q *dsq; 1832 1833 if (dsq_id == SCX_DSQ_LOCAL) 1834 return &rq->scx.local_dsq; 1835 1836 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1837 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1838 1839 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1840 return find_global_dsq(p); 1841 1842 return &cpu_rq(cpu)->scx.local_dsq; 1843 } 1844 1845 if (dsq_id == SCX_DSQ_GLOBAL) 1846 dsq = find_global_dsq(p); 1847 else 1848 dsq = find_user_dsq(dsq_id); 1849 1850 if (unlikely(!dsq)) { 1851 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1852 dsq_id, p->comm, p->pid); 1853 return find_global_dsq(p); 1854 } 1855 1856 return dsq; 1857 } 1858 1859 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1860 struct task_struct *p, u64 dsq_id, 1861 u64 enq_flags) 1862 { 1863 /* 1864 * Mark that dispatch already happened from ops.select_cpu() or 1865 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1866 * which can never match a valid task pointer. 1867 */ 1868 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1869 1870 /* @p must match the task on the enqueue path */ 1871 if (unlikely(p != ddsp_task)) { 1872 if (IS_ERR(ddsp_task)) 1873 scx_ops_error("%s[%d] already direct-dispatched", 1874 p->comm, p->pid); 1875 else 1876 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1877 ddsp_task->comm, ddsp_task->pid, 1878 p->comm, p->pid); 1879 return; 1880 } 1881 1882 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1883 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1884 1885 p->scx.ddsp_dsq_id = dsq_id; 1886 p->scx.ddsp_enq_flags = enq_flags; 1887 } 1888 1889 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1890 { 1891 struct rq *rq = task_rq(p); 1892 struct scx_dispatch_q *dsq = 1893 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1894 1895 touch_core_sched_dispatch(rq, p); 1896 1897 p->scx.ddsp_enq_flags |= enq_flags; 1898 1899 /* 1900 * We are in the enqueue path with @rq locked and pinned, and thus can't 1901 * double lock a remote rq and enqueue to its local DSQ. For 1902 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1903 * the enqueue so that it's executed when @rq can be unlocked. 1904 */ 1905 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1906 unsigned long opss; 1907 1908 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1909 1910 switch (opss & SCX_OPSS_STATE_MASK) { 1911 case SCX_OPSS_NONE: 1912 break; 1913 case SCX_OPSS_QUEUEING: 1914 /* 1915 * As @p was never passed to the BPF side, _release is 1916 * not strictly necessary. Still do it for consistency. 1917 */ 1918 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1919 break; 1920 default: 1921 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1922 p->comm, p->pid, opss); 1923 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1924 break; 1925 } 1926 1927 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1928 list_add_tail(&p->scx.dsq_list.node, 1929 &rq->scx.ddsp_deferred_locals); 1930 schedule_deferred(rq); 1931 return; 1932 } 1933 1934 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1935 } 1936 1937 static bool scx_rq_online(struct rq *rq) 1938 { 1939 /* 1940 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1941 * the online state as seen from the BPF scheduler. cpu_active() test 1942 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1943 * stay set until the current scheduling operation is complete even if 1944 * we aren't locking @rq. 1945 */ 1946 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1947 } 1948 1949 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1950 int sticky_cpu) 1951 { 1952 bool bypassing = scx_rq_bypassing(rq); 1953 struct task_struct **ddsp_taskp; 1954 unsigned long qseq; 1955 1956 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1957 1958 /* rq migration */ 1959 if (sticky_cpu == cpu_of(rq)) 1960 goto local_norefill; 1961 1962 /* 1963 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1964 * is offline and are just running the hotplug path. Don't bother the 1965 * BPF scheduler. 1966 */ 1967 if (!scx_rq_online(rq)) 1968 goto local; 1969 1970 if (bypassing) 1971 goto global; 1972 1973 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1974 goto direct; 1975 1976 /* see %SCX_OPS_ENQ_EXITING */ 1977 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 1978 unlikely(p->flags & PF_EXITING)) 1979 goto local; 1980 1981 if (!SCX_HAS_OP(enqueue)) 1982 goto global; 1983 1984 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1985 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1986 1987 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1988 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1989 1990 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1991 WARN_ON_ONCE(*ddsp_taskp); 1992 *ddsp_taskp = p; 1993 1994 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 1995 1996 *ddsp_taskp = NULL; 1997 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1998 goto direct; 1999 2000 /* 2001 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2002 * dequeue may be waiting. The store_release matches their load_acquire. 2003 */ 2004 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2005 return; 2006 2007 direct: 2008 direct_dispatch(p, enq_flags); 2009 return; 2010 2011 local: 2012 /* 2013 * For task-ordering, slice refill must be treated as implying the end 2014 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2015 * higher priority it becomes from scx_prio_less()'s POV. 2016 */ 2017 touch_core_sched(rq, p); 2018 p->scx.slice = SCX_SLICE_DFL; 2019 local_norefill: 2020 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2021 return; 2022 2023 global: 2024 touch_core_sched(rq, p); /* see the comment in local: */ 2025 p->scx.slice = bypassing ? SCX_SLICE_BYPASS : SCX_SLICE_DFL; 2026 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2027 } 2028 2029 static bool task_runnable(const struct task_struct *p) 2030 { 2031 return !list_empty(&p->scx.runnable_node); 2032 } 2033 2034 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2035 { 2036 lockdep_assert_rq_held(rq); 2037 2038 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2039 p->scx.runnable_at = jiffies; 2040 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2041 } 2042 2043 /* 2044 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2045 * appened to the runnable_list. 2046 */ 2047 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2048 } 2049 2050 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2051 { 2052 list_del_init(&p->scx.runnable_node); 2053 if (reset_runnable_at) 2054 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2055 } 2056 2057 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2058 { 2059 int sticky_cpu = p->scx.sticky_cpu; 2060 2061 if (enq_flags & ENQUEUE_WAKEUP) 2062 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2063 2064 enq_flags |= rq->scx.extra_enq_flags; 2065 2066 if (sticky_cpu >= 0) 2067 p->scx.sticky_cpu = -1; 2068 2069 /* 2070 * Restoring a running task will be immediately followed by 2071 * set_next_task_scx() which expects the task to not be on the BPF 2072 * scheduler as tasks can only start running through local DSQs. Force 2073 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2074 */ 2075 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2076 sticky_cpu = cpu_of(rq); 2077 2078 if (p->scx.flags & SCX_TASK_QUEUED) { 2079 WARN_ON_ONCE(!task_runnable(p)); 2080 goto out; 2081 } 2082 2083 set_task_runnable(rq, p); 2084 p->scx.flags |= SCX_TASK_QUEUED; 2085 rq->scx.nr_running++; 2086 add_nr_running(rq, 1); 2087 2088 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2089 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2090 2091 if (enq_flags & SCX_ENQ_WAKEUP) 2092 touch_core_sched(rq, p); 2093 2094 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2095 out: 2096 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2097 } 2098 2099 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2100 { 2101 unsigned long opss; 2102 2103 /* dequeue is always temporary, don't reset runnable_at */ 2104 clr_task_runnable(p, false); 2105 2106 /* acquire ensures that we see the preceding updates on QUEUED */ 2107 opss = atomic_long_read_acquire(&p->scx.ops_state); 2108 2109 switch (opss & SCX_OPSS_STATE_MASK) { 2110 case SCX_OPSS_NONE: 2111 break; 2112 case SCX_OPSS_QUEUEING: 2113 /* 2114 * QUEUEING is started and finished while holding @p's rq lock. 2115 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2116 */ 2117 BUG(); 2118 case SCX_OPSS_QUEUED: 2119 if (SCX_HAS_OP(dequeue)) 2120 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2121 2122 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2123 SCX_OPSS_NONE)) 2124 break; 2125 fallthrough; 2126 case SCX_OPSS_DISPATCHING: 2127 /* 2128 * If @p is being dispatched from the BPF scheduler to a DSQ, 2129 * wait for the transfer to complete so that @p doesn't get 2130 * added to its DSQ after dequeueing is complete. 2131 * 2132 * As we're waiting on DISPATCHING with the rq locked, the 2133 * dispatching side shouldn't try to lock the rq while 2134 * DISPATCHING is set. See dispatch_to_local_dsq(). 2135 * 2136 * DISPATCHING shouldn't have qseq set and control can reach 2137 * here with NONE @opss from the above QUEUED case block. 2138 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2139 */ 2140 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2141 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2142 break; 2143 } 2144 } 2145 2146 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2147 { 2148 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2149 WARN_ON_ONCE(task_runnable(p)); 2150 return true; 2151 } 2152 2153 ops_dequeue(p, deq_flags); 2154 2155 /* 2156 * A currently running task which is going off @rq first gets dequeued 2157 * and then stops running. As we want running <-> stopping transitions 2158 * to be contained within runnable <-> quiescent transitions, trigger 2159 * ->stopping() early here instead of in put_prev_task_scx(). 2160 * 2161 * @p may go through multiple stopping <-> running transitions between 2162 * here and put_prev_task_scx() if task attribute changes occur while 2163 * balance_scx() leaves @rq unlocked. However, they don't contain any 2164 * information meaningful to the BPF scheduler and can be suppressed by 2165 * skipping the callbacks if the task is !QUEUED. 2166 */ 2167 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2168 update_curr_scx(rq); 2169 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2170 } 2171 2172 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2173 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2174 2175 if (deq_flags & SCX_DEQ_SLEEP) 2176 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2177 else 2178 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2179 2180 p->scx.flags &= ~SCX_TASK_QUEUED; 2181 rq->scx.nr_running--; 2182 sub_nr_running(rq, 1); 2183 2184 dispatch_dequeue(rq, p); 2185 return true; 2186 } 2187 2188 static void yield_task_scx(struct rq *rq) 2189 { 2190 struct task_struct *p = rq->curr; 2191 2192 if (SCX_HAS_OP(yield)) 2193 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2194 else 2195 p->scx.slice = 0; 2196 } 2197 2198 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2199 { 2200 struct task_struct *from = rq->curr; 2201 2202 if (SCX_HAS_OP(yield)) 2203 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2204 else 2205 return false; 2206 } 2207 2208 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2209 struct scx_dispatch_q *src_dsq, 2210 struct rq *dst_rq) 2211 { 2212 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2213 2214 /* @dsq is locked and @p is on @dst_rq */ 2215 lockdep_assert_held(&src_dsq->lock); 2216 lockdep_assert_rq_held(dst_rq); 2217 2218 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2219 2220 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2221 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2222 else 2223 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2224 2225 dsq_mod_nr(dst_dsq, 1); 2226 p->scx.dsq = dst_dsq; 2227 } 2228 2229 #ifdef CONFIG_SMP 2230 /** 2231 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2232 * @p: task to move 2233 * @enq_flags: %SCX_ENQ_* 2234 * @src_rq: rq to move the task from, locked on entry, released on return 2235 * @dst_rq: rq to move the task into, locked on return 2236 * 2237 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2238 */ 2239 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2240 struct rq *src_rq, struct rq *dst_rq) 2241 { 2242 lockdep_assert_rq_held(src_rq); 2243 2244 /* the following marks @p MIGRATING which excludes dequeue */ 2245 deactivate_task(src_rq, p, 0); 2246 set_task_cpu(p, cpu_of(dst_rq)); 2247 p->scx.sticky_cpu = cpu_of(dst_rq); 2248 2249 raw_spin_rq_unlock(src_rq); 2250 raw_spin_rq_lock(dst_rq); 2251 2252 /* 2253 * We want to pass scx-specific enq_flags but activate_task() will 2254 * truncate the upper 32 bit. As we own @rq, we can pass them through 2255 * @rq->scx.extra_enq_flags instead. 2256 */ 2257 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2258 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2259 dst_rq->scx.extra_enq_flags = enq_flags; 2260 activate_task(dst_rq, p, 0); 2261 dst_rq->scx.extra_enq_flags = 0; 2262 } 2263 2264 /* 2265 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2266 * differences: 2267 * 2268 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2269 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2270 * this CPU?". 2271 * 2272 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2273 * must be allowed to finish on the CPU that it's currently on regardless of 2274 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2275 * BPF scheduler shouldn't attempt to migrate a task which has migration 2276 * disabled. 2277 * 2278 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2279 * no to the BPF scheduler initiated migrations while offline. 2280 */ 2281 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2282 bool trigger_error) 2283 { 2284 int cpu = cpu_of(rq); 2285 2286 /* 2287 * We don't require the BPF scheduler to avoid dispatching to offline 2288 * CPUs mostly for convenience but also because CPUs can go offline 2289 * between scx_bpf_dispatch() calls and here. Trigger error iff the 2290 * picked CPU is outside the allowed mask. 2291 */ 2292 if (!task_allowed_on_cpu(p, cpu)) { 2293 if (trigger_error) 2294 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2295 cpu_of(rq), p->comm, p->pid); 2296 return false; 2297 } 2298 2299 if (unlikely(is_migration_disabled(p))) 2300 return false; 2301 2302 if (!scx_rq_online(rq)) 2303 return false; 2304 2305 return true; 2306 } 2307 2308 /** 2309 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2310 * @p: target task 2311 * @dsq: locked DSQ @p is currently on 2312 * @src_rq: rq @p is currently on, stable with @dsq locked 2313 * 2314 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2315 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2316 * required when transferring into a local DSQ. Even when transferring into a 2317 * non-local DSQ, it's better to use the same mechanism to protect against 2318 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2319 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2320 * 2321 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2322 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2323 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2324 * dancing from our side. 2325 * 2326 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2327 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2328 * would be cleared to -1. While other cpus may have updated it to different 2329 * values afterwards, as this operation can't be preempted or recurse, the 2330 * holding_cpu can never become this CPU again before we're done. Thus, we can 2331 * tell whether we lost to dequeue by testing whether the holding_cpu still 2332 * points to this CPU. See dispatch_dequeue() for the counterpart. 2333 * 2334 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2335 * still valid. %false if lost to dequeue. 2336 */ 2337 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2338 struct scx_dispatch_q *dsq, 2339 struct rq *src_rq) 2340 { 2341 s32 cpu = raw_smp_processor_id(); 2342 2343 lockdep_assert_held(&dsq->lock); 2344 2345 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2346 task_unlink_from_dsq(p, dsq); 2347 p->scx.holding_cpu = cpu; 2348 2349 raw_spin_unlock(&dsq->lock); 2350 raw_spin_rq_lock(src_rq); 2351 2352 /* task_rq couldn't have changed if we're still the holding cpu */ 2353 return likely(p->scx.holding_cpu == cpu) && 2354 !WARN_ON_ONCE(src_rq != task_rq(p)); 2355 } 2356 2357 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2358 struct scx_dispatch_q *dsq, struct rq *src_rq) 2359 { 2360 raw_spin_rq_unlock(this_rq); 2361 2362 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2363 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2364 return true; 2365 } else { 2366 raw_spin_rq_unlock(src_rq); 2367 raw_spin_rq_lock(this_rq); 2368 return false; 2369 } 2370 } 2371 #else /* CONFIG_SMP */ 2372 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2373 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2374 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2375 #endif /* CONFIG_SMP */ 2376 2377 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2378 { 2379 struct task_struct *p; 2380 retry: 2381 /* 2382 * The caller can't expect to successfully consume a task if the task's 2383 * addition to @dsq isn't guaranteed to be visible somehow. Test 2384 * @dsq->list without locking and skip if it seems empty. 2385 */ 2386 if (list_empty(&dsq->list)) 2387 return false; 2388 2389 raw_spin_lock(&dsq->lock); 2390 2391 nldsq_for_each_task(p, dsq) { 2392 struct rq *task_rq = task_rq(p); 2393 2394 if (rq == task_rq) { 2395 task_unlink_from_dsq(p, dsq); 2396 move_local_task_to_local_dsq(p, 0, dsq, rq); 2397 raw_spin_unlock(&dsq->lock); 2398 return true; 2399 } 2400 2401 if (task_can_run_on_remote_rq(p, rq, false)) { 2402 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2403 return true; 2404 goto retry; 2405 } 2406 } 2407 2408 raw_spin_unlock(&dsq->lock); 2409 return false; 2410 } 2411 2412 static bool consume_global_dsq(struct rq *rq) 2413 { 2414 int node = cpu_to_node(cpu_of(rq)); 2415 2416 return consume_dispatch_q(rq, global_dsqs[node]); 2417 } 2418 2419 /** 2420 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2421 * @rq: current rq which is locked 2422 * @dst_dsq: destination DSQ 2423 * @p: task to dispatch 2424 * @enq_flags: %SCX_ENQ_* 2425 * 2426 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2427 * DSQ. This function performs all the synchronization dancing needed because 2428 * local DSQs are protected with rq locks. 2429 * 2430 * The caller must have exclusive ownership of @p (e.g. through 2431 * %SCX_OPSS_DISPATCHING). 2432 */ 2433 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2434 struct task_struct *p, u64 enq_flags) 2435 { 2436 struct rq *src_rq = task_rq(p); 2437 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2438 2439 /* 2440 * We're synchronized against dequeue through DISPATCHING. As @p can't 2441 * be dequeued, its task_rq and cpus_allowed are stable too. 2442 * 2443 * If dispatching to @rq that @p is already on, no lock dancing needed. 2444 */ 2445 if (rq == src_rq && rq == dst_rq) { 2446 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2447 return; 2448 } 2449 2450 #ifdef CONFIG_SMP 2451 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2452 dispatch_enqueue(find_global_dsq(p), p, 2453 enq_flags | SCX_ENQ_CLEAR_OPSS); 2454 return; 2455 } 2456 2457 /* 2458 * @p is on a possibly remote @src_rq which we need to lock to move the 2459 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2460 * on DISPATCHING, so we can't grab @src_rq lock while holding 2461 * DISPATCHING. 2462 * 2463 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2464 * we're moving from a DSQ and use the same mechanism - mark the task 2465 * under transfer with holding_cpu, release DISPATCHING and then follow 2466 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2467 */ 2468 p->scx.holding_cpu = raw_smp_processor_id(); 2469 2470 /* store_release ensures that dequeue sees the above */ 2471 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2472 2473 /* switch to @src_rq lock */ 2474 if (rq != src_rq) { 2475 raw_spin_rq_unlock(rq); 2476 raw_spin_rq_lock(src_rq); 2477 } 2478 2479 /* task_rq couldn't have changed if we're still the holding cpu */ 2480 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2481 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2482 /* 2483 * If @p is staying on the same rq, there's no need to go 2484 * through the full deactivate/activate cycle. Optimize by 2485 * abbreviating move_remote_task_to_local_dsq(). 2486 */ 2487 if (src_rq == dst_rq) { 2488 p->scx.holding_cpu = -1; 2489 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2490 } else { 2491 move_remote_task_to_local_dsq(p, enq_flags, 2492 src_rq, dst_rq); 2493 } 2494 2495 /* if the destination CPU is idle, wake it up */ 2496 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2497 resched_curr(dst_rq); 2498 } 2499 2500 /* switch back to @rq lock */ 2501 if (rq != dst_rq) { 2502 raw_spin_rq_unlock(dst_rq); 2503 raw_spin_rq_lock(rq); 2504 } 2505 #else /* CONFIG_SMP */ 2506 BUG(); /* control can not reach here on UP */ 2507 #endif /* CONFIG_SMP */ 2508 } 2509 2510 /** 2511 * finish_dispatch - Asynchronously finish dispatching a task 2512 * @rq: current rq which is locked 2513 * @p: task to finish dispatching 2514 * @qseq_at_dispatch: qseq when @p started getting dispatched 2515 * @dsq_id: destination DSQ ID 2516 * @enq_flags: %SCX_ENQ_* 2517 * 2518 * Dispatching to local DSQs may need to wait for queueing to complete or 2519 * require rq lock dancing. As we don't wanna do either while inside 2520 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2521 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the 2522 * task and its qseq. Once ops.dispatch() returns, this function is called to 2523 * finish up. 2524 * 2525 * There is no guarantee that @p is still valid for dispatching or even that it 2526 * was valid in the first place. Make sure that the task is still owned by the 2527 * BPF scheduler and claim the ownership before dispatching. 2528 */ 2529 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2530 unsigned long qseq_at_dispatch, 2531 u64 dsq_id, u64 enq_flags) 2532 { 2533 struct scx_dispatch_q *dsq; 2534 unsigned long opss; 2535 2536 touch_core_sched_dispatch(rq, p); 2537 retry: 2538 /* 2539 * No need for _acquire here. @p is accessed only after a successful 2540 * try_cmpxchg to DISPATCHING. 2541 */ 2542 opss = atomic_long_read(&p->scx.ops_state); 2543 2544 switch (opss & SCX_OPSS_STATE_MASK) { 2545 case SCX_OPSS_DISPATCHING: 2546 case SCX_OPSS_NONE: 2547 /* someone else already got to it */ 2548 return; 2549 case SCX_OPSS_QUEUED: 2550 /* 2551 * If qseq doesn't match, @p has gone through at least one 2552 * dispatch/dequeue and re-enqueue cycle between 2553 * scx_bpf_dispatch() and here and we have no claim on it. 2554 */ 2555 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2556 return; 2557 2558 /* 2559 * While we know @p is accessible, we don't yet have a claim on 2560 * it - the BPF scheduler is allowed to dispatch tasks 2561 * spuriously and there can be a racing dequeue attempt. Let's 2562 * claim @p by atomically transitioning it from QUEUED to 2563 * DISPATCHING. 2564 */ 2565 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2566 SCX_OPSS_DISPATCHING))) 2567 break; 2568 goto retry; 2569 case SCX_OPSS_QUEUEING: 2570 /* 2571 * do_enqueue_task() is in the process of transferring the task 2572 * to the BPF scheduler while holding @p's rq lock. As we aren't 2573 * holding any kernel or BPF resource that the enqueue path may 2574 * depend upon, it's safe to wait. 2575 */ 2576 wait_ops_state(p, opss); 2577 goto retry; 2578 } 2579 2580 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2581 2582 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2583 2584 if (dsq->id == SCX_DSQ_LOCAL) 2585 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2586 else 2587 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2588 } 2589 2590 static void flush_dispatch_buf(struct rq *rq) 2591 { 2592 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2593 u32 u; 2594 2595 for (u = 0; u < dspc->cursor; u++) { 2596 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2597 2598 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2599 ent->enq_flags); 2600 } 2601 2602 dspc->nr_tasks += dspc->cursor; 2603 dspc->cursor = 0; 2604 } 2605 2606 static int balance_one(struct rq *rq, struct task_struct *prev) 2607 { 2608 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2609 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2610 int nr_loops = SCX_DSP_MAX_LOOPS; 2611 2612 lockdep_assert_rq_held(rq); 2613 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2614 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2615 2616 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2617 unlikely(rq->scx.cpu_released)) { 2618 /* 2619 * If the previous sched_class for the current CPU was not SCX, 2620 * notify the BPF scheduler that it again has control of the 2621 * core. This callback complements ->cpu_release(), which is 2622 * emitted in scx_next_task_picked(). 2623 */ 2624 if (SCX_HAS_OP(cpu_acquire)) 2625 SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); 2626 rq->scx.cpu_released = false; 2627 } 2628 2629 if (prev_on_scx) { 2630 update_curr_scx(rq); 2631 2632 /* 2633 * If @prev is runnable & has slice left, it has priority and 2634 * fetching more just increases latency for the fetched tasks. 2635 * Tell pick_task_scx() to keep running @prev. If the BPF 2636 * scheduler wants to handle this explicitly, it should 2637 * implement ->cpu_release(). 2638 * 2639 * See scx_ops_disable_workfn() for the explanation on the 2640 * bypassing test. 2641 */ 2642 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2643 prev->scx.slice && !scx_rq_bypassing(rq)) { 2644 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2645 goto has_tasks; 2646 } 2647 } 2648 2649 /* if there already are tasks to run, nothing to do */ 2650 if (rq->scx.local_dsq.nr) 2651 goto has_tasks; 2652 2653 if (consume_global_dsq(rq)) 2654 goto has_tasks; 2655 2656 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2657 goto no_tasks; 2658 2659 dspc->rq = rq; 2660 2661 /* 2662 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2663 * the local DSQ might still end up empty after a successful 2664 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2665 * produced some tasks, retry. The BPF scheduler may depend on this 2666 * looping behavior to simplify its implementation. 2667 */ 2668 do { 2669 dspc->nr_tasks = 0; 2670 2671 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2672 prev_on_scx ? prev : NULL); 2673 2674 flush_dispatch_buf(rq); 2675 2676 if (rq->scx.local_dsq.nr) 2677 goto has_tasks; 2678 if (consume_global_dsq(rq)) 2679 goto has_tasks; 2680 2681 /* 2682 * ops.dispatch() can trap us in this loop by repeatedly 2683 * dispatching ineligible tasks. Break out once in a while to 2684 * allow the watchdog to run. As IRQ can't be enabled in 2685 * balance(), we want to complete this scheduling cycle and then 2686 * start a new one. IOW, we want to call resched_curr() on the 2687 * next, most likely idle, task, not the current one. Use 2688 * scx_bpf_kick_cpu() for deferred kicking. 2689 */ 2690 if (unlikely(!--nr_loops)) { 2691 scx_bpf_kick_cpu(cpu_of(rq), 0); 2692 break; 2693 } 2694 } while (dspc->nr_tasks); 2695 2696 no_tasks: 2697 /* 2698 * Didn't find another task to run. Keep running @prev unless 2699 * %SCX_OPS_ENQ_LAST is in effect. 2700 */ 2701 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2702 (!static_branch_unlikely(&scx_ops_enq_last) || 2703 scx_rq_bypassing(rq))) { 2704 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2705 goto has_tasks; 2706 } 2707 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2708 return false; 2709 2710 has_tasks: 2711 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2712 return true; 2713 } 2714 2715 static int balance_scx(struct rq *rq, struct task_struct *prev, 2716 struct rq_flags *rf) 2717 { 2718 int ret; 2719 2720 rq_unpin_lock(rq, rf); 2721 2722 ret = balance_one(rq, prev); 2723 2724 #ifdef CONFIG_SCHED_SMT 2725 /* 2726 * When core-sched is enabled, this ops.balance() call will be followed 2727 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2728 * siblings too. 2729 */ 2730 if (sched_core_enabled(rq)) { 2731 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2732 int scpu; 2733 2734 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2735 struct rq *srq = cpu_rq(scpu); 2736 struct task_struct *sprev = srq->curr; 2737 2738 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2739 update_rq_clock(srq); 2740 balance_one(srq, sprev); 2741 } 2742 } 2743 #endif 2744 rq_repin_lock(rq, rf); 2745 2746 return ret; 2747 } 2748 2749 static void process_ddsp_deferred_locals(struct rq *rq) 2750 { 2751 struct task_struct *p; 2752 2753 lockdep_assert_rq_held(rq); 2754 2755 /* 2756 * Now that @rq can be unlocked, execute the deferred enqueueing of 2757 * tasks directly dispatched to the local DSQs of other CPUs. See 2758 * direct_dispatch(). Keep popping from the head instead of using 2759 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2760 * temporarily. 2761 */ 2762 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2763 struct task_struct, scx.dsq_list.node))) { 2764 struct scx_dispatch_q *dsq; 2765 2766 list_del_init(&p->scx.dsq_list.node); 2767 2768 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2769 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2770 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2771 } 2772 } 2773 2774 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2775 { 2776 if (p->scx.flags & SCX_TASK_QUEUED) { 2777 /* 2778 * Core-sched might decide to execute @p before it is 2779 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2780 */ 2781 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2782 dispatch_dequeue(rq, p); 2783 } 2784 2785 p->se.exec_start = rq_clock_task(rq); 2786 2787 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2788 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2789 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2790 2791 clr_task_runnable(p, true); 2792 2793 /* 2794 * @p is getting newly scheduled or got kicked after someone updated its 2795 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2796 */ 2797 if ((p->scx.slice == SCX_SLICE_INF) != 2798 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2799 if (p->scx.slice == SCX_SLICE_INF) 2800 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2801 else 2802 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2803 2804 sched_update_tick_dependency(rq); 2805 2806 /* 2807 * For now, let's refresh the load_avgs just when transitioning 2808 * in and out of nohz. In the future, we might want to add a 2809 * mechanism which calls the following periodically on 2810 * tick-stopped CPUs. 2811 */ 2812 update_other_load_avgs(rq); 2813 } 2814 } 2815 2816 static enum scx_cpu_preempt_reason 2817 preempt_reason_from_class(const struct sched_class *class) 2818 { 2819 #ifdef CONFIG_SMP 2820 if (class == &stop_sched_class) 2821 return SCX_CPU_PREEMPT_STOP; 2822 #endif 2823 if (class == &dl_sched_class) 2824 return SCX_CPU_PREEMPT_DL; 2825 if (class == &rt_sched_class) 2826 return SCX_CPU_PREEMPT_RT; 2827 return SCX_CPU_PREEMPT_UNKNOWN; 2828 } 2829 2830 static void switch_class(struct rq *rq, struct task_struct *next) 2831 { 2832 const struct sched_class *next_class = next->sched_class; 2833 2834 #ifdef CONFIG_SMP 2835 /* 2836 * Pairs with the smp_load_acquire() issued by a CPU in 2837 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2838 * resched. 2839 */ 2840 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2841 #endif 2842 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2843 return; 2844 2845 /* 2846 * The callback is conceptually meant to convey that the CPU is no 2847 * longer under the control of SCX. Therefore, don't invoke the callback 2848 * if the next class is below SCX (in which case the BPF scheduler has 2849 * actively decided not to schedule any tasks on the CPU). 2850 */ 2851 if (sched_class_above(&ext_sched_class, next_class)) 2852 return; 2853 2854 /* 2855 * At this point we know that SCX was preempted by a higher priority 2856 * sched_class, so invoke the ->cpu_release() callback if we have not 2857 * done so already. We only send the callback once between SCX being 2858 * preempted, and it regaining control of the CPU. 2859 * 2860 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2861 * next time that balance_scx() is invoked. 2862 */ 2863 if (!rq->scx.cpu_released) { 2864 if (SCX_HAS_OP(cpu_release)) { 2865 struct scx_cpu_release_args args = { 2866 .reason = preempt_reason_from_class(next_class), 2867 .task = next, 2868 }; 2869 2870 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 2871 cpu_release, cpu_of(rq), &args); 2872 } 2873 rq->scx.cpu_released = true; 2874 } 2875 } 2876 2877 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2878 struct task_struct *next) 2879 { 2880 update_curr_scx(rq); 2881 2882 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2883 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2884 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 2885 2886 if (p->scx.flags & SCX_TASK_QUEUED) { 2887 set_task_runnable(rq, p); 2888 2889 /* 2890 * If @p has slice left and is being put, @p is getting 2891 * preempted by a higher priority scheduler class or core-sched 2892 * forcing a different task. Leave it at the head of the local 2893 * DSQ. 2894 */ 2895 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2896 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2897 return; 2898 } 2899 2900 /* 2901 * If @p is runnable but we're about to enter a lower 2902 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2903 * ops.enqueue() that @p is the only one available for this cpu, 2904 * which should trigger an explicit follow-up scheduling event. 2905 */ 2906 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2907 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 2908 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2909 } else { 2910 do_enqueue_task(rq, p, 0, -1); 2911 } 2912 } 2913 2914 if (next && next->sched_class != &ext_sched_class) 2915 switch_class(rq, next); 2916 } 2917 2918 static struct task_struct *first_local_task(struct rq *rq) 2919 { 2920 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2921 struct task_struct, scx.dsq_list.node); 2922 } 2923 2924 static struct task_struct *pick_task_scx(struct rq *rq) 2925 { 2926 struct task_struct *prev = rq->curr; 2927 struct task_struct *p; 2928 2929 /* 2930 * If balance_scx() is telling us to keep running @prev, replenish slice 2931 * if necessary and keep running @prev. Otherwise, pop the first one 2932 * from the local DSQ. 2933 * 2934 * WORKAROUND: 2935 * 2936 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 2937 * have gone through balance_scx(). Unfortunately, there currently is a 2938 * bug where fair could say yes on balance() but no on pick_task(), 2939 * which then ends up calling pick_task_scx() without preceding 2940 * balance_scx(). 2941 * 2942 * For now, ignore cases where $prev is not on SCX. This isn't great and 2943 * can theoretically lead to stalls. However, for switch_all cases, this 2944 * happens only while a BPF scheduler is being loaded or unloaded, and, 2945 * for partial cases, fair will likely keep triggering this CPU. 2946 * 2947 * Once fair is fixed, restore WARN_ON_ONCE(). 2948 */ 2949 if ((rq->scx.flags & SCX_RQ_BAL_KEEP) && 2950 prev->sched_class == &ext_sched_class) { 2951 p = prev; 2952 if (!p->scx.slice) 2953 p->scx.slice = SCX_SLICE_DFL; 2954 } else { 2955 p = first_local_task(rq); 2956 if (!p) 2957 return NULL; 2958 2959 if (unlikely(!p->scx.slice)) { 2960 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 2961 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", 2962 p->comm, p->pid); 2963 scx_warned_zero_slice = true; 2964 } 2965 p->scx.slice = SCX_SLICE_DFL; 2966 } 2967 } 2968 2969 return p; 2970 } 2971 2972 #ifdef CONFIG_SCHED_CORE 2973 /** 2974 * scx_prio_less - Task ordering for core-sched 2975 * @a: task A 2976 * @b: task B 2977 * 2978 * Core-sched is implemented as an additional scheduling layer on top of the 2979 * usual sched_class'es and needs to find out the expected task ordering. For 2980 * SCX, core-sched calls this function to interrogate the task ordering. 2981 * 2982 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2983 * to implement the default task ordering. The older the timestamp, the higher 2984 * prority the task - the global FIFO ordering matching the default scheduling 2985 * behavior. 2986 * 2987 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2988 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2989 */ 2990 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2991 bool in_fi) 2992 { 2993 /* 2994 * The const qualifiers are dropped from task_struct pointers when 2995 * calling ops.core_sched_before(). Accesses are controlled by the 2996 * verifier. 2997 */ 2998 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 2999 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3000 (struct task_struct *)a, 3001 (struct task_struct *)b); 3002 else 3003 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3004 } 3005 #endif /* CONFIG_SCHED_CORE */ 3006 3007 #ifdef CONFIG_SMP 3008 3009 static bool test_and_clear_cpu_idle(int cpu) 3010 { 3011 #ifdef CONFIG_SCHED_SMT 3012 /* 3013 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3014 * cluster is not wholly idle either way. This also prevents 3015 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3016 */ 3017 if (sched_smt_active()) { 3018 const struct cpumask *smt = cpu_smt_mask(cpu); 3019 3020 /* 3021 * If offline, @cpu is not its own sibling and 3022 * scx_pick_idle_cpu() can get caught in an infinite loop as 3023 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3024 * is eventually cleared. 3025 */ 3026 if (cpumask_intersects(smt, idle_masks.smt)) 3027 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3028 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3029 __cpumask_clear_cpu(cpu, idle_masks.smt); 3030 } 3031 #endif 3032 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3033 } 3034 3035 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3036 { 3037 int cpu; 3038 3039 retry: 3040 if (sched_smt_active()) { 3041 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3042 if (cpu < nr_cpu_ids) 3043 goto found; 3044 3045 if (flags & SCX_PICK_IDLE_CORE) 3046 return -EBUSY; 3047 } 3048 3049 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3050 if (cpu >= nr_cpu_ids) 3051 return -EBUSY; 3052 3053 found: 3054 if (test_and_clear_cpu_idle(cpu)) 3055 return cpu; 3056 else 3057 goto retry; 3058 } 3059 3060 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3061 u64 wake_flags, bool *found) 3062 { 3063 s32 cpu; 3064 3065 *found = false; 3066 3067 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 3068 scx_ops_error("built-in idle tracking is disabled"); 3069 return prev_cpu; 3070 } 3071 3072 /* 3073 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is 3074 * under utilized, wake up @p to the local DSQ of the waker. Checking 3075 * only for an empty local DSQ is insufficient as it could give the 3076 * wakee an unfair advantage when the system is oversaturated. 3077 * Checking only for the presence of idle CPUs is also insufficient as 3078 * the local DSQ of the waker could have tasks piled up on it even if 3079 * there is an idle core elsewhere on the system. 3080 */ 3081 cpu = smp_processor_id(); 3082 if ((wake_flags & SCX_WAKE_SYNC) && 3083 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && 3084 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3085 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3086 goto cpu_found; 3087 } 3088 3089 /* 3090 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3091 * partially idle @prev_cpu. 3092 */ 3093 if (sched_smt_active()) { 3094 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3095 test_and_clear_cpu_idle(prev_cpu)) { 3096 cpu = prev_cpu; 3097 goto cpu_found; 3098 } 3099 3100 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3101 if (cpu >= 0) 3102 goto cpu_found; 3103 } 3104 3105 if (test_and_clear_cpu_idle(prev_cpu)) { 3106 cpu = prev_cpu; 3107 goto cpu_found; 3108 } 3109 3110 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3111 if (cpu >= 0) 3112 goto cpu_found; 3113 3114 return prev_cpu; 3115 3116 cpu_found: 3117 *found = true; 3118 return cpu; 3119 } 3120 3121 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3122 { 3123 /* 3124 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3125 * can be a good migration opportunity with low cache and memory 3126 * footprint. Returning a CPU different than @prev_cpu triggers 3127 * immediate rq migration. However, for SCX, as the current rq 3128 * association doesn't dictate where the task is going to run, this 3129 * doesn't fit well. If necessary, we can later add a dedicated method 3130 * which can decide to preempt self to force it through the regular 3131 * scheduling path. 3132 */ 3133 if (unlikely(wake_flags & WF_EXEC)) 3134 return prev_cpu; 3135 3136 if (SCX_HAS_OP(select_cpu)) { 3137 s32 cpu; 3138 struct task_struct **ddsp_taskp; 3139 3140 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3141 WARN_ON_ONCE(*ddsp_taskp); 3142 *ddsp_taskp = p; 3143 3144 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3145 select_cpu, p, prev_cpu, wake_flags); 3146 *ddsp_taskp = NULL; 3147 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3148 return cpu; 3149 else 3150 return prev_cpu; 3151 } else { 3152 bool found; 3153 s32 cpu; 3154 3155 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3156 if (found) { 3157 p->scx.slice = SCX_SLICE_DFL; 3158 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3159 } 3160 return cpu; 3161 } 3162 } 3163 3164 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3165 { 3166 run_deferred(rq); 3167 } 3168 3169 static void set_cpus_allowed_scx(struct task_struct *p, 3170 struct affinity_context *ac) 3171 { 3172 set_cpus_allowed_common(p, ac); 3173 3174 /* 3175 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3176 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3177 * scheduler the effective one. 3178 * 3179 * Fine-grained memory write control is enforced by BPF making the const 3180 * designation pointless. Cast it away when calling the operation. 3181 */ 3182 if (SCX_HAS_OP(set_cpumask)) 3183 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3184 (struct cpumask *)p->cpus_ptr); 3185 } 3186 3187 static void reset_idle_masks(void) 3188 { 3189 /* 3190 * Consider all online cpus idle. Should converge to the actual state 3191 * quickly. 3192 */ 3193 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3194 cpumask_copy(idle_masks.smt, cpu_online_mask); 3195 } 3196 3197 void __scx_update_idle(struct rq *rq, bool idle) 3198 { 3199 int cpu = cpu_of(rq); 3200 3201 if (SCX_HAS_OP(update_idle)) { 3202 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3203 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 3204 return; 3205 } 3206 3207 if (idle) 3208 cpumask_set_cpu(cpu, idle_masks.cpu); 3209 else 3210 cpumask_clear_cpu(cpu, idle_masks.cpu); 3211 3212 #ifdef CONFIG_SCHED_SMT 3213 if (sched_smt_active()) { 3214 const struct cpumask *smt = cpu_smt_mask(cpu); 3215 3216 if (idle) { 3217 /* 3218 * idle_masks.smt handling is racy but that's fine as 3219 * it's only for optimization and self-correcting. 3220 */ 3221 for_each_cpu(cpu, smt) { 3222 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 3223 return; 3224 } 3225 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3226 } else { 3227 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3228 } 3229 } 3230 #endif 3231 } 3232 3233 static void handle_hotplug(struct rq *rq, bool online) 3234 { 3235 int cpu = cpu_of(rq); 3236 3237 atomic_long_inc(&scx_hotplug_seq); 3238 3239 if (online && SCX_HAS_OP(cpu_online)) 3240 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3241 else if (!online && SCX_HAS_OP(cpu_offline)) 3242 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3243 else 3244 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3245 "cpu %d going %s, exiting scheduler", cpu, 3246 online ? "online" : "offline"); 3247 } 3248 3249 void scx_rq_activate(struct rq *rq) 3250 { 3251 handle_hotplug(rq, true); 3252 } 3253 3254 void scx_rq_deactivate(struct rq *rq) 3255 { 3256 handle_hotplug(rq, false); 3257 } 3258 3259 static void rq_online_scx(struct rq *rq) 3260 { 3261 rq->scx.flags |= SCX_RQ_ONLINE; 3262 } 3263 3264 static void rq_offline_scx(struct rq *rq) 3265 { 3266 rq->scx.flags &= ~SCX_RQ_ONLINE; 3267 } 3268 3269 #else /* CONFIG_SMP */ 3270 3271 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3272 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3273 static void reset_idle_masks(void) {} 3274 3275 #endif /* CONFIG_SMP */ 3276 3277 static bool check_rq_for_timeouts(struct rq *rq) 3278 { 3279 struct task_struct *p; 3280 struct rq_flags rf; 3281 bool timed_out = false; 3282 3283 rq_lock_irqsave(rq, &rf); 3284 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3285 unsigned long last_runnable = p->scx.runnable_at; 3286 3287 if (unlikely(time_after(jiffies, 3288 last_runnable + scx_watchdog_timeout))) { 3289 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3290 3291 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3292 "%s[%d] failed to run for %u.%03us", 3293 p->comm, p->pid, 3294 dur_ms / 1000, dur_ms % 1000); 3295 timed_out = true; 3296 break; 3297 } 3298 } 3299 rq_unlock_irqrestore(rq, &rf); 3300 3301 return timed_out; 3302 } 3303 3304 static void scx_watchdog_workfn(struct work_struct *work) 3305 { 3306 int cpu; 3307 3308 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3309 3310 for_each_online_cpu(cpu) { 3311 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3312 break; 3313 3314 cond_resched(); 3315 } 3316 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3317 scx_watchdog_timeout / 2); 3318 } 3319 3320 void scx_tick(struct rq *rq) 3321 { 3322 unsigned long last_check; 3323 3324 if (!scx_enabled()) 3325 return; 3326 3327 last_check = READ_ONCE(scx_watchdog_timestamp); 3328 if (unlikely(time_after(jiffies, 3329 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3330 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3331 3332 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3333 "watchdog failed to check in for %u.%03us", 3334 dur_ms / 1000, dur_ms % 1000); 3335 } 3336 3337 update_other_load_avgs(rq); 3338 } 3339 3340 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3341 { 3342 update_curr_scx(rq); 3343 3344 /* 3345 * While disabling, always resched and refresh core-sched timestamp as 3346 * we can't trust the slice management or ops.core_sched_before(). 3347 */ 3348 if (scx_rq_bypassing(rq)) { 3349 curr->scx.slice = 0; 3350 touch_core_sched(rq, curr); 3351 } else if (SCX_HAS_OP(tick)) { 3352 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3353 } 3354 3355 if (!curr->scx.slice) 3356 resched_curr(rq); 3357 } 3358 3359 #ifdef CONFIG_EXT_GROUP_SCHED 3360 static struct cgroup *tg_cgrp(struct task_group *tg) 3361 { 3362 /* 3363 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3364 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3365 * root cgroup. 3366 */ 3367 if (tg && tg->css.cgroup) 3368 return tg->css.cgroup; 3369 else 3370 return &cgrp_dfl_root.cgrp; 3371 } 3372 3373 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3374 3375 #else /* CONFIG_EXT_GROUP_SCHED */ 3376 3377 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3378 3379 #endif /* CONFIG_EXT_GROUP_SCHED */ 3380 3381 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3382 { 3383 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3384 } 3385 3386 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3387 { 3388 enum scx_task_state prev_state = scx_get_task_state(p); 3389 bool warn = false; 3390 3391 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3392 3393 switch (state) { 3394 case SCX_TASK_NONE: 3395 break; 3396 case SCX_TASK_INIT: 3397 warn = prev_state != SCX_TASK_NONE; 3398 break; 3399 case SCX_TASK_READY: 3400 warn = prev_state == SCX_TASK_NONE; 3401 break; 3402 case SCX_TASK_ENABLED: 3403 warn = prev_state != SCX_TASK_READY; 3404 break; 3405 default: 3406 warn = true; 3407 return; 3408 } 3409 3410 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3411 prev_state, state, p->comm, p->pid); 3412 3413 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3414 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3415 } 3416 3417 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3418 { 3419 int ret; 3420 3421 p->scx.disallow = false; 3422 3423 if (SCX_HAS_OP(init_task)) { 3424 struct scx_init_task_args args = { 3425 SCX_INIT_TASK_ARGS_CGROUP(tg) 3426 .fork = fork, 3427 }; 3428 3429 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3430 if (unlikely(ret)) { 3431 ret = ops_sanitize_err("init_task", ret); 3432 return ret; 3433 } 3434 } 3435 3436 scx_set_task_state(p, SCX_TASK_INIT); 3437 3438 if (p->scx.disallow) { 3439 if (!fork) { 3440 struct rq *rq; 3441 struct rq_flags rf; 3442 3443 rq = task_rq_lock(p, &rf); 3444 3445 /* 3446 * We're in the load path and @p->policy will be applied 3447 * right after. Reverting @p->policy here and rejecting 3448 * %SCHED_EXT transitions from scx_check_setscheduler() 3449 * guarantees that if ops.init_task() sets @p->disallow, 3450 * @p can never be in SCX. 3451 */ 3452 if (p->policy == SCHED_EXT) { 3453 p->policy = SCHED_NORMAL; 3454 atomic_long_inc(&scx_nr_rejected); 3455 } 3456 3457 task_rq_unlock(rq, p, &rf); 3458 } else if (p->policy == SCHED_EXT) { 3459 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3460 p->comm, p->pid); 3461 } 3462 } 3463 3464 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3465 return 0; 3466 } 3467 3468 static void scx_ops_enable_task(struct task_struct *p) 3469 { 3470 u32 weight; 3471 3472 lockdep_assert_rq_held(task_rq(p)); 3473 3474 /* 3475 * Set the weight before calling ops.enable() so that the scheduler 3476 * doesn't see a stale value if they inspect the task struct. 3477 */ 3478 if (task_has_idle_policy(p)) 3479 weight = WEIGHT_IDLEPRIO; 3480 else 3481 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3482 3483 p->scx.weight = sched_weight_to_cgroup(weight); 3484 3485 if (SCX_HAS_OP(enable)) 3486 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3487 scx_set_task_state(p, SCX_TASK_ENABLED); 3488 3489 if (SCX_HAS_OP(set_weight)) 3490 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3491 } 3492 3493 static void scx_ops_disable_task(struct task_struct *p) 3494 { 3495 lockdep_assert_rq_held(task_rq(p)); 3496 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3497 3498 if (SCX_HAS_OP(disable)) 3499 SCX_CALL_OP(SCX_KF_REST, disable, p); 3500 scx_set_task_state(p, SCX_TASK_READY); 3501 } 3502 3503 static void scx_ops_exit_task(struct task_struct *p) 3504 { 3505 struct scx_exit_task_args args = { 3506 .cancelled = false, 3507 }; 3508 3509 lockdep_assert_rq_held(task_rq(p)); 3510 3511 switch (scx_get_task_state(p)) { 3512 case SCX_TASK_NONE: 3513 return; 3514 case SCX_TASK_INIT: 3515 args.cancelled = true; 3516 break; 3517 case SCX_TASK_READY: 3518 break; 3519 case SCX_TASK_ENABLED: 3520 scx_ops_disable_task(p); 3521 break; 3522 default: 3523 WARN_ON_ONCE(true); 3524 return; 3525 } 3526 3527 if (SCX_HAS_OP(exit_task)) 3528 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3529 scx_set_task_state(p, SCX_TASK_NONE); 3530 } 3531 3532 void init_scx_entity(struct sched_ext_entity *scx) 3533 { 3534 /* 3535 * init_idle() calls this function again after fork sequence is 3536 * complete. Don't touch ->tasks_node as it's already linked. 3537 */ 3538 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); 3539 3540 INIT_LIST_HEAD(&scx->dsq_list.node); 3541 RB_CLEAR_NODE(&scx->dsq_priq); 3542 scx->sticky_cpu = -1; 3543 scx->holding_cpu = -1; 3544 INIT_LIST_HEAD(&scx->runnable_node); 3545 scx->runnable_at = jiffies; 3546 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3547 scx->slice = SCX_SLICE_DFL; 3548 } 3549 3550 void scx_pre_fork(struct task_struct *p) 3551 { 3552 /* 3553 * BPF scheduler enable/disable paths want to be able to iterate and 3554 * update all tasks which can become complex when racing forks. As 3555 * enable/disable are very cold paths, let's use a percpu_rwsem to 3556 * exclude forks. 3557 */ 3558 percpu_down_read(&scx_fork_rwsem); 3559 } 3560 3561 int scx_fork(struct task_struct *p) 3562 { 3563 percpu_rwsem_assert_held(&scx_fork_rwsem); 3564 3565 if (scx_ops_init_task_enabled) 3566 return scx_ops_init_task(p, task_group(p), true); 3567 else 3568 return 0; 3569 } 3570 3571 void scx_post_fork(struct task_struct *p) 3572 { 3573 if (scx_ops_init_task_enabled) { 3574 scx_set_task_state(p, SCX_TASK_READY); 3575 3576 /* 3577 * Enable the task immediately if it's running on sched_ext. 3578 * Otherwise, it'll be enabled in switching_to_scx() if and 3579 * when it's ever configured to run with a SCHED_EXT policy. 3580 */ 3581 if (p->sched_class == &ext_sched_class) { 3582 struct rq_flags rf; 3583 struct rq *rq; 3584 3585 rq = task_rq_lock(p, &rf); 3586 scx_ops_enable_task(p); 3587 task_rq_unlock(rq, p, &rf); 3588 } 3589 } 3590 3591 spin_lock_irq(&scx_tasks_lock); 3592 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3593 spin_unlock_irq(&scx_tasks_lock); 3594 3595 percpu_up_read(&scx_fork_rwsem); 3596 } 3597 3598 void scx_cancel_fork(struct task_struct *p) 3599 { 3600 if (scx_enabled()) { 3601 struct rq *rq; 3602 struct rq_flags rf; 3603 3604 rq = task_rq_lock(p, &rf); 3605 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3606 scx_ops_exit_task(p); 3607 task_rq_unlock(rq, p, &rf); 3608 } 3609 3610 percpu_up_read(&scx_fork_rwsem); 3611 } 3612 3613 void sched_ext_free(struct task_struct *p) 3614 { 3615 unsigned long flags; 3616 3617 spin_lock_irqsave(&scx_tasks_lock, flags); 3618 list_del_init(&p->scx.tasks_node); 3619 spin_unlock_irqrestore(&scx_tasks_lock, flags); 3620 3621 /* 3622 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 3623 * ENABLED transitions can't race us. Disable ops for @p. 3624 */ 3625 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3626 struct rq_flags rf; 3627 struct rq *rq; 3628 3629 rq = task_rq_lock(p, &rf); 3630 scx_ops_exit_task(p); 3631 task_rq_unlock(rq, p, &rf); 3632 } 3633 } 3634 3635 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3636 const struct load_weight *lw) 3637 { 3638 lockdep_assert_rq_held(task_rq(p)); 3639 3640 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3641 if (SCX_HAS_OP(set_weight)) 3642 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3643 } 3644 3645 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 3646 { 3647 } 3648 3649 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3650 { 3651 scx_ops_enable_task(p); 3652 3653 /* 3654 * set_cpus_allowed_scx() is not called while @p is associated with a 3655 * different scheduler class. Keep the BPF scheduler up-to-date. 3656 */ 3657 if (SCX_HAS_OP(set_cpumask)) 3658 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3659 (struct cpumask *)p->cpus_ptr); 3660 } 3661 3662 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3663 { 3664 scx_ops_disable_task(p); 3665 } 3666 3667 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3668 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3669 3670 int scx_check_setscheduler(struct task_struct *p, int policy) 3671 { 3672 lockdep_assert_rq_held(task_rq(p)); 3673 3674 /* if disallow, reject transitioning into SCX */ 3675 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3676 p->policy != policy && policy == SCHED_EXT) 3677 return -EACCES; 3678 3679 return 0; 3680 } 3681 3682 #ifdef CONFIG_NO_HZ_FULL 3683 bool scx_can_stop_tick(struct rq *rq) 3684 { 3685 struct task_struct *p = rq->curr; 3686 3687 if (scx_rq_bypassing(rq)) 3688 return false; 3689 3690 if (p->sched_class != &ext_sched_class) 3691 return true; 3692 3693 /* 3694 * @rq can dispatch from different DSQs, so we can't tell whether it 3695 * needs the tick or not by looking at nr_running. Allow stopping ticks 3696 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3697 */ 3698 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3699 } 3700 #endif 3701 3702 #ifdef CONFIG_EXT_GROUP_SCHED 3703 3704 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 3705 static bool scx_cgroup_enabled; 3706 static bool cgroup_warned_missing_weight; 3707 static bool cgroup_warned_missing_idle; 3708 3709 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 3710 { 3711 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 3712 cgroup_warned_missing_weight) 3713 return; 3714 3715 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 3716 return; 3717 3718 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 3719 scx_ops.name); 3720 cgroup_warned_missing_weight = true; 3721 } 3722 3723 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 3724 { 3725 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 3726 return; 3727 3728 if (!tg->idle) 3729 return; 3730 3731 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 3732 scx_ops.name); 3733 cgroup_warned_missing_idle = true; 3734 } 3735 3736 int scx_tg_online(struct task_group *tg) 3737 { 3738 int ret = 0; 3739 3740 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3741 3742 percpu_down_read(&scx_cgroup_rwsem); 3743 3744 scx_cgroup_warn_missing_weight(tg); 3745 3746 if (scx_cgroup_enabled) { 3747 if (SCX_HAS_OP(cgroup_init)) { 3748 struct scx_cgroup_init_args args = 3749 { .weight = tg->scx_weight }; 3750 3751 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 3752 tg->css.cgroup, &args); 3753 if (ret) 3754 ret = ops_sanitize_err("cgroup_init", ret); 3755 } 3756 if (ret == 0) 3757 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3758 } else { 3759 tg->scx_flags |= SCX_TG_ONLINE; 3760 } 3761 3762 percpu_up_read(&scx_cgroup_rwsem); 3763 return ret; 3764 } 3765 3766 void scx_tg_offline(struct task_group *tg) 3767 { 3768 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 3769 3770 percpu_down_read(&scx_cgroup_rwsem); 3771 3772 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 3773 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 3774 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3775 3776 percpu_up_read(&scx_cgroup_rwsem); 3777 } 3778 3779 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3780 { 3781 struct cgroup_subsys_state *css; 3782 struct task_struct *p; 3783 int ret; 3784 3785 /* released in scx_finish/cancel_attach() */ 3786 percpu_down_read(&scx_cgroup_rwsem); 3787 3788 if (!scx_cgroup_enabled) 3789 return 0; 3790 3791 cgroup_taskset_for_each(p, css, tset) { 3792 struct cgroup *from = tg_cgrp(task_group(p)); 3793 struct cgroup *to = tg_cgrp(css_tg(css)); 3794 3795 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3796 3797 /* 3798 * sched_move_task() omits identity migrations. Let's match the 3799 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3800 * always match one-to-one. 3801 */ 3802 if (from == to) 3803 continue; 3804 3805 if (SCX_HAS_OP(cgroup_prep_move)) { 3806 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 3807 p, from, css->cgroup); 3808 if (ret) 3809 goto err; 3810 } 3811 3812 p->scx.cgrp_moving_from = from; 3813 } 3814 3815 return 0; 3816 3817 err: 3818 cgroup_taskset_for_each(p, css, tset) { 3819 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 3820 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 3821 p->scx.cgrp_moving_from, css->cgroup); 3822 p->scx.cgrp_moving_from = NULL; 3823 } 3824 3825 percpu_up_read(&scx_cgroup_rwsem); 3826 return ops_sanitize_err("cgroup_prep_move", ret); 3827 } 3828 3829 void scx_move_task(struct task_struct *p) 3830 { 3831 if (!scx_cgroup_enabled) 3832 return; 3833 3834 /* 3835 * We're called from sched_move_task() which handles both cgroup and 3836 * autogroup moves. Ignore the latter. 3837 * 3838 * Also ignore exiting tasks, because in the exit path tasks transition 3839 * from the autogroup to the root group, so task_group_is_autogroup() 3840 * alone isn't able to catch exiting autogroup tasks. This is safe for 3841 * cgroup_move(), because cgroup migrations never happen for PF_EXITING 3842 * tasks. 3843 */ 3844 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) 3845 return; 3846 3847 /* 3848 * @p must have ops.cgroup_prep_move() called on it and thus 3849 * cgrp_moving_from set. 3850 */ 3851 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3852 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 3853 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 3854 p->scx.cgrp_moving_from = NULL; 3855 } 3856 3857 void scx_cgroup_finish_attach(void) 3858 { 3859 percpu_up_read(&scx_cgroup_rwsem); 3860 } 3861 3862 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3863 { 3864 struct cgroup_subsys_state *css; 3865 struct task_struct *p; 3866 3867 if (!scx_cgroup_enabled) 3868 goto out_unlock; 3869 3870 cgroup_taskset_for_each(p, css, tset) { 3871 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 3872 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 3873 p->scx.cgrp_moving_from, css->cgroup); 3874 p->scx.cgrp_moving_from = NULL; 3875 } 3876 out_unlock: 3877 percpu_up_read(&scx_cgroup_rwsem); 3878 } 3879 3880 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3881 { 3882 percpu_down_read(&scx_cgroup_rwsem); 3883 3884 if (scx_cgroup_enabled && tg->scx_weight != weight) { 3885 if (SCX_HAS_OP(cgroup_set_weight)) 3886 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 3887 tg_cgrp(tg), weight); 3888 tg->scx_weight = weight; 3889 } 3890 3891 percpu_up_read(&scx_cgroup_rwsem); 3892 } 3893 3894 void scx_group_set_idle(struct task_group *tg, bool idle) 3895 { 3896 percpu_down_read(&scx_cgroup_rwsem); 3897 scx_cgroup_warn_missing_idle(tg); 3898 percpu_up_read(&scx_cgroup_rwsem); 3899 } 3900 3901 static void scx_cgroup_lock(void) 3902 { 3903 percpu_down_write(&scx_cgroup_rwsem); 3904 } 3905 3906 static void scx_cgroup_unlock(void) 3907 { 3908 percpu_up_write(&scx_cgroup_rwsem); 3909 } 3910 3911 #else /* CONFIG_EXT_GROUP_SCHED */ 3912 3913 static inline void scx_cgroup_lock(void) {} 3914 static inline void scx_cgroup_unlock(void) {} 3915 3916 #endif /* CONFIG_EXT_GROUP_SCHED */ 3917 3918 /* 3919 * Omitted operations: 3920 * 3921 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3922 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3923 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3924 * 3925 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3926 * 3927 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3928 * their current sched_class. Call them directly from sched core instead. 3929 */ 3930 DEFINE_SCHED_CLASS(ext) = { 3931 .enqueue_task = enqueue_task_scx, 3932 .dequeue_task = dequeue_task_scx, 3933 .yield_task = yield_task_scx, 3934 .yield_to_task = yield_to_task_scx, 3935 3936 .wakeup_preempt = wakeup_preempt_scx, 3937 3938 .balance = balance_scx, 3939 .pick_task = pick_task_scx, 3940 3941 .put_prev_task = put_prev_task_scx, 3942 .set_next_task = set_next_task_scx, 3943 3944 #ifdef CONFIG_SMP 3945 .select_task_rq = select_task_rq_scx, 3946 .task_woken = task_woken_scx, 3947 .set_cpus_allowed = set_cpus_allowed_scx, 3948 3949 .rq_online = rq_online_scx, 3950 .rq_offline = rq_offline_scx, 3951 #endif 3952 3953 .task_tick = task_tick_scx, 3954 3955 .switching_to = switching_to_scx, 3956 .switched_from = switched_from_scx, 3957 .switched_to = switched_to_scx, 3958 .reweight_task = reweight_task_scx, 3959 .prio_changed = prio_changed_scx, 3960 3961 .update_curr = update_curr_scx, 3962 3963 #ifdef CONFIG_UCLAMP_TASK 3964 .uclamp_enabled = 1, 3965 #endif 3966 }; 3967 3968 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3969 { 3970 memset(dsq, 0, sizeof(*dsq)); 3971 3972 raw_spin_lock_init(&dsq->lock); 3973 INIT_LIST_HEAD(&dsq->list); 3974 dsq->id = dsq_id; 3975 } 3976 3977 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 3978 { 3979 struct scx_dispatch_q *dsq; 3980 int ret; 3981 3982 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 3983 return ERR_PTR(-EINVAL); 3984 3985 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 3986 if (!dsq) 3987 return ERR_PTR(-ENOMEM); 3988 3989 init_dsq(dsq, dsq_id); 3990 3991 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 3992 dsq_hash_params); 3993 if (ret) { 3994 kfree(dsq); 3995 return ERR_PTR(ret); 3996 } 3997 return dsq; 3998 } 3999 4000 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4001 { 4002 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4003 struct scx_dispatch_q *dsq, *tmp_dsq; 4004 4005 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4006 kfree_rcu(dsq, rcu); 4007 } 4008 4009 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4010 4011 static void destroy_dsq(u64 dsq_id) 4012 { 4013 struct scx_dispatch_q *dsq; 4014 unsigned long flags; 4015 4016 rcu_read_lock(); 4017 4018 dsq = find_user_dsq(dsq_id); 4019 if (!dsq) 4020 goto out_unlock_rcu; 4021 4022 raw_spin_lock_irqsave(&dsq->lock, flags); 4023 4024 if (dsq->nr) { 4025 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4026 dsq->id, dsq->nr); 4027 goto out_unlock_dsq; 4028 } 4029 4030 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4031 goto out_unlock_dsq; 4032 4033 /* 4034 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4035 * queueing more tasks. As this function can be called from anywhere, 4036 * freeing is bounced through an irq work to avoid nesting RCU 4037 * operations inside scheduler locks. 4038 */ 4039 dsq->id = SCX_DSQ_INVALID; 4040 llist_add(&dsq->free_node, &dsqs_to_free); 4041 irq_work_queue(&free_dsq_irq_work); 4042 4043 out_unlock_dsq: 4044 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4045 out_unlock_rcu: 4046 rcu_read_unlock(); 4047 } 4048 4049 #ifdef CONFIG_EXT_GROUP_SCHED 4050 static void scx_cgroup_exit(void) 4051 { 4052 struct cgroup_subsys_state *css; 4053 4054 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4055 4056 scx_cgroup_enabled = false; 4057 4058 /* 4059 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4060 * cgroups and exit all the inited ones, all online cgroups are exited. 4061 */ 4062 rcu_read_lock(); 4063 css_for_each_descendant_post(css, &root_task_group.css) { 4064 struct task_group *tg = css_tg(css); 4065 4066 if (!(tg->scx_flags & SCX_TG_INITED)) 4067 continue; 4068 tg->scx_flags &= ~SCX_TG_INITED; 4069 4070 if (!scx_ops.cgroup_exit) 4071 continue; 4072 4073 if (WARN_ON_ONCE(!css_tryget(css))) 4074 continue; 4075 rcu_read_unlock(); 4076 4077 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4078 4079 rcu_read_lock(); 4080 css_put(css); 4081 } 4082 rcu_read_unlock(); 4083 } 4084 4085 static int scx_cgroup_init(void) 4086 { 4087 struct cgroup_subsys_state *css; 4088 int ret; 4089 4090 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4091 4092 cgroup_warned_missing_weight = false; 4093 cgroup_warned_missing_idle = false; 4094 4095 /* 4096 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk 4097 * cgroups and init, all online cgroups are initialized. 4098 */ 4099 rcu_read_lock(); 4100 css_for_each_descendant_pre(css, &root_task_group.css) { 4101 struct task_group *tg = css_tg(css); 4102 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4103 4104 scx_cgroup_warn_missing_weight(tg); 4105 scx_cgroup_warn_missing_idle(tg); 4106 4107 if ((tg->scx_flags & 4108 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4109 continue; 4110 4111 if (!scx_ops.cgroup_init) { 4112 tg->scx_flags |= SCX_TG_INITED; 4113 continue; 4114 } 4115 4116 if (WARN_ON_ONCE(!css_tryget(css))) 4117 continue; 4118 rcu_read_unlock(); 4119 4120 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4121 css->cgroup, &args); 4122 if (ret) { 4123 css_put(css); 4124 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4125 return ret; 4126 } 4127 tg->scx_flags |= SCX_TG_INITED; 4128 4129 rcu_read_lock(); 4130 css_put(css); 4131 } 4132 rcu_read_unlock(); 4133 4134 WARN_ON_ONCE(scx_cgroup_enabled); 4135 scx_cgroup_enabled = true; 4136 4137 return 0; 4138 } 4139 4140 #else 4141 static void scx_cgroup_exit(void) {} 4142 static int scx_cgroup_init(void) { return 0; } 4143 #endif 4144 4145 4146 /******************************************************************************** 4147 * Sysfs interface and ops enable/disable. 4148 */ 4149 4150 #define SCX_ATTR(_name) \ 4151 static struct kobj_attribute scx_attr_##_name = { \ 4152 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4153 .show = scx_attr_##_name##_show, \ 4154 } 4155 4156 static ssize_t scx_attr_state_show(struct kobject *kobj, 4157 struct kobj_attribute *ka, char *buf) 4158 { 4159 return sysfs_emit(buf, "%s\n", 4160 scx_ops_enable_state_str[scx_ops_enable_state()]); 4161 } 4162 SCX_ATTR(state); 4163 4164 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4165 struct kobj_attribute *ka, char *buf) 4166 { 4167 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4168 } 4169 SCX_ATTR(switch_all); 4170 4171 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4172 struct kobj_attribute *ka, char *buf) 4173 { 4174 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4175 } 4176 SCX_ATTR(nr_rejected); 4177 4178 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4179 struct kobj_attribute *ka, char *buf) 4180 { 4181 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4182 } 4183 SCX_ATTR(hotplug_seq); 4184 4185 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4186 struct kobj_attribute *ka, char *buf) 4187 { 4188 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4189 } 4190 SCX_ATTR(enable_seq); 4191 4192 static struct attribute *scx_global_attrs[] = { 4193 &scx_attr_state.attr, 4194 &scx_attr_switch_all.attr, 4195 &scx_attr_nr_rejected.attr, 4196 &scx_attr_hotplug_seq.attr, 4197 &scx_attr_enable_seq.attr, 4198 NULL, 4199 }; 4200 4201 static const struct attribute_group scx_global_attr_group = { 4202 .attrs = scx_global_attrs, 4203 }; 4204 4205 static void scx_kobj_release(struct kobject *kobj) 4206 { 4207 kfree(kobj); 4208 } 4209 4210 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4211 struct kobj_attribute *ka, char *buf) 4212 { 4213 return sysfs_emit(buf, "%s\n", scx_ops.name); 4214 } 4215 SCX_ATTR(ops); 4216 4217 static struct attribute *scx_sched_attrs[] = { 4218 &scx_attr_ops.attr, 4219 NULL, 4220 }; 4221 ATTRIBUTE_GROUPS(scx_sched); 4222 4223 static const struct kobj_type scx_ktype = { 4224 .release = scx_kobj_release, 4225 .sysfs_ops = &kobj_sysfs_ops, 4226 .default_groups = scx_sched_groups, 4227 }; 4228 4229 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4230 { 4231 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4232 } 4233 4234 static const struct kset_uevent_ops scx_uevent_ops = { 4235 .uevent = scx_uevent, 4236 }; 4237 4238 /* 4239 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4240 * sched_class. dl/rt are already handled. 4241 */ 4242 bool task_should_scx(struct task_struct *p) 4243 { 4244 if (!scx_enabled() || 4245 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4246 return false; 4247 if (READ_ONCE(scx_switching_all)) 4248 return true; 4249 return p->policy == SCHED_EXT; 4250 } 4251 4252 /** 4253 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4254 * 4255 * Bypassing guarantees that all runnable tasks make forward progress without 4256 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4257 * be held by tasks that the BPF scheduler is forgetting to run, which 4258 * unfortunately also excludes toggling the static branches. 4259 * 4260 * Let's work around by overriding a couple ops and modifying behaviors based on 4261 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4262 * to force global FIFO scheduling. 4263 * 4264 * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4265 * %SCX_OPS_ENQ_LAST is also ignored. 4266 * 4267 * b. ops.dispatch() is ignored. 4268 * 4269 * c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4270 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4271 * the tail of the queue with core_sched_at touched. 4272 * 4273 * d. pick_next_task() suppresses zero slice warning. 4274 * 4275 * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4276 * operations. 4277 * 4278 * f. scx_prio_less() reverts to the default core_sched_at order. 4279 */ 4280 static void scx_ops_bypass(bool bypass) 4281 { 4282 int depth, cpu; 4283 4284 if (bypass) { 4285 depth = atomic_inc_return(&scx_ops_bypass_depth); 4286 WARN_ON_ONCE(depth <= 0); 4287 if (depth != 1) 4288 return; 4289 } else { 4290 depth = atomic_dec_return(&scx_ops_bypass_depth); 4291 WARN_ON_ONCE(depth < 0); 4292 if (depth != 0) 4293 return; 4294 } 4295 4296 /* 4297 * No task property is changing. We just need to make sure all currently 4298 * queued tasks are re-queued according to the new scx_rq_bypassing() 4299 * state. As an optimization, walk each rq's runnable_list instead of 4300 * the scx_tasks list. 4301 * 4302 * This function can't trust the scheduler and thus can't use 4303 * cpus_read_lock(). Walk all possible CPUs instead of online. 4304 */ 4305 for_each_possible_cpu(cpu) { 4306 struct rq *rq = cpu_rq(cpu); 4307 struct rq_flags rf; 4308 struct task_struct *p, *n; 4309 4310 rq_lock_irqsave(rq, &rf); 4311 4312 if (bypass) { 4313 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4314 rq->scx.flags |= SCX_RQ_BYPASSING; 4315 } else { 4316 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4317 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4318 } 4319 4320 /* 4321 * We need to guarantee that no tasks are on the BPF scheduler 4322 * while bypassing. Either we see enabled or the enable path 4323 * sees scx_rq_bypassing() before moving tasks to SCX. 4324 */ 4325 if (!scx_enabled()) { 4326 rq_unlock_irqrestore(rq, &rf); 4327 continue; 4328 } 4329 4330 /* 4331 * The use of list_for_each_entry_safe_reverse() is required 4332 * because each task is going to be removed from and added back 4333 * to the runnable_list during iteration. Because they're added 4334 * to the tail of the list, safe reverse iteration can still 4335 * visit all nodes. 4336 */ 4337 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4338 scx.runnable_node) { 4339 struct sched_enq_and_set_ctx ctx; 4340 4341 /* cycling deq/enq is enough, see the function comment */ 4342 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4343 sched_enq_and_set_task(&ctx); 4344 } 4345 4346 rq_unlock_irqrestore(rq, &rf); 4347 4348 /* kick to restore ticks */ 4349 resched_cpu(cpu); 4350 } 4351 } 4352 4353 static void free_exit_info(struct scx_exit_info *ei) 4354 { 4355 kfree(ei->dump); 4356 kfree(ei->msg); 4357 kfree(ei->bt); 4358 kfree(ei); 4359 } 4360 4361 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4362 { 4363 struct scx_exit_info *ei; 4364 4365 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4366 if (!ei) 4367 return NULL; 4368 4369 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4370 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4371 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4372 4373 if (!ei->bt || !ei->msg || !ei->dump) { 4374 free_exit_info(ei); 4375 return NULL; 4376 } 4377 4378 return ei; 4379 } 4380 4381 static const char *scx_exit_reason(enum scx_exit_kind kind) 4382 { 4383 switch (kind) { 4384 case SCX_EXIT_UNREG: 4385 return "unregistered from user space"; 4386 case SCX_EXIT_UNREG_BPF: 4387 return "unregistered from BPF"; 4388 case SCX_EXIT_UNREG_KERN: 4389 return "unregistered from the main kernel"; 4390 case SCX_EXIT_SYSRQ: 4391 return "disabled by sysrq-S"; 4392 case SCX_EXIT_ERROR: 4393 return "runtime error"; 4394 case SCX_EXIT_ERROR_BPF: 4395 return "scx_bpf_error"; 4396 case SCX_EXIT_ERROR_STALL: 4397 return "runnable task stall"; 4398 default: 4399 return "<UNKNOWN>"; 4400 } 4401 } 4402 4403 static void scx_ops_disable_workfn(struct kthread_work *work) 4404 { 4405 struct scx_exit_info *ei = scx_exit_info; 4406 struct scx_task_iter sti; 4407 struct task_struct *p; 4408 struct rhashtable_iter rht_iter; 4409 struct scx_dispatch_q *dsq; 4410 int i, kind; 4411 4412 kind = atomic_read(&scx_exit_kind); 4413 while (true) { 4414 /* 4415 * NONE indicates that a new scx_ops has been registered since 4416 * disable was scheduled - don't kill the new ops. DONE 4417 * indicates that the ops has already been disabled. 4418 */ 4419 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4420 return; 4421 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4422 break; 4423 } 4424 ei->kind = kind; 4425 ei->reason = scx_exit_reason(ei->kind); 4426 4427 /* guarantee forward progress by bypassing scx_ops */ 4428 scx_ops_bypass(true); 4429 4430 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4431 case SCX_OPS_DISABLING: 4432 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4433 break; 4434 case SCX_OPS_DISABLED: 4435 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4436 scx_exit_info->msg); 4437 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4438 SCX_OPS_DISABLING); 4439 goto done; 4440 default: 4441 break; 4442 } 4443 4444 /* 4445 * Here, every runnable task is guaranteed to make forward progress and 4446 * we can safely use blocking synchronization constructs. Actually 4447 * disable ops. 4448 */ 4449 mutex_lock(&scx_ops_enable_mutex); 4450 4451 static_branch_disable(&__scx_switched_all); 4452 WRITE_ONCE(scx_switching_all, false); 4453 4454 /* 4455 * Shut down cgroup support before tasks so that the cgroup attach path 4456 * doesn't race against scx_ops_exit_task(). 4457 */ 4458 scx_cgroup_lock(); 4459 scx_cgroup_exit(); 4460 scx_cgroup_unlock(); 4461 4462 /* 4463 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4464 * must be switched out and exited synchronously. 4465 */ 4466 percpu_down_write(&scx_fork_rwsem); 4467 4468 scx_ops_init_task_enabled = false; 4469 4470 spin_lock_irq(&scx_tasks_lock); 4471 scx_task_iter_init(&sti); 4472 while ((p = scx_task_iter_next_locked(&sti))) { 4473 const struct sched_class *old_class = p->sched_class; 4474 struct sched_enq_and_set_ctx ctx; 4475 4476 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4477 4478 p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); 4479 __setscheduler_prio(p, p->prio); 4480 check_class_changing(task_rq(p), p, old_class); 4481 4482 sched_enq_and_set_task(&ctx); 4483 4484 check_class_changed(task_rq(p), p, old_class, p->prio); 4485 scx_ops_exit_task(p); 4486 } 4487 scx_task_iter_exit(&sti); 4488 spin_unlock_irq(&scx_tasks_lock); 4489 percpu_up_write(&scx_fork_rwsem); 4490 4491 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4492 static_branch_disable(&__scx_ops_enabled); 4493 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 4494 static_branch_disable(&scx_has_op[i]); 4495 static_branch_disable(&scx_ops_enq_last); 4496 static_branch_disable(&scx_ops_enq_exiting); 4497 static_branch_disable(&scx_ops_cpu_preempt); 4498 static_branch_disable(&scx_builtin_idle_enabled); 4499 synchronize_rcu(); 4500 4501 if (ei->kind >= SCX_EXIT_ERROR) { 4502 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4503 scx_ops.name, ei->reason); 4504 4505 if (ei->msg[0] != '\0') 4506 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 4507 #ifdef CONFIG_STACKTRACE 4508 stack_trace_print(ei->bt, ei->bt_len, 2); 4509 #endif 4510 } else { 4511 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4512 scx_ops.name, ei->reason); 4513 } 4514 4515 if (scx_ops.exit) 4516 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 4517 4518 cancel_delayed_work_sync(&scx_watchdog_work); 4519 4520 /* 4521 * Delete the kobject from the hierarchy eagerly in addition to just 4522 * dropping a reference. Otherwise, if the object is deleted 4523 * asynchronously, sysfs could observe an object of the same name still 4524 * in the hierarchy when another scheduler is loaded. 4525 */ 4526 kobject_del(scx_root_kobj); 4527 kobject_put(scx_root_kobj); 4528 scx_root_kobj = NULL; 4529 4530 memset(&scx_ops, 0, sizeof(scx_ops)); 4531 4532 rhashtable_walk_enter(&dsq_hash, &rht_iter); 4533 do { 4534 rhashtable_walk_start(&rht_iter); 4535 4536 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 4537 destroy_dsq(dsq->id); 4538 4539 rhashtable_walk_stop(&rht_iter); 4540 } while (dsq == ERR_PTR(-EAGAIN)); 4541 rhashtable_walk_exit(&rht_iter); 4542 4543 free_percpu(scx_dsp_ctx); 4544 scx_dsp_ctx = NULL; 4545 scx_dsp_max_batch = 0; 4546 4547 free_exit_info(scx_exit_info); 4548 scx_exit_info = NULL; 4549 4550 mutex_unlock(&scx_ops_enable_mutex); 4551 4552 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4553 SCX_OPS_DISABLING); 4554 done: 4555 scx_ops_bypass(false); 4556 } 4557 4558 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 4559 4560 static void schedule_scx_ops_disable_work(void) 4561 { 4562 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 4563 4564 /* 4565 * We may be called spuriously before the first bpf_sched_ext_reg(). If 4566 * scx_ops_helper isn't set up yet, there's nothing to do. 4567 */ 4568 if (helper) 4569 kthread_queue_work(helper, &scx_ops_disable_work); 4570 } 4571 4572 static void scx_ops_disable(enum scx_exit_kind kind) 4573 { 4574 int none = SCX_EXIT_NONE; 4575 4576 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4577 kind = SCX_EXIT_ERROR; 4578 4579 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 4580 4581 schedule_scx_ops_disable_work(); 4582 } 4583 4584 static void dump_newline(struct seq_buf *s) 4585 { 4586 trace_sched_ext_dump(""); 4587 4588 /* @s may be zero sized and seq_buf triggers WARN if so */ 4589 if (s->size) 4590 seq_buf_putc(s, '\n'); 4591 } 4592 4593 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4594 { 4595 va_list args; 4596 4597 #ifdef CONFIG_TRACEPOINTS 4598 if (trace_sched_ext_dump_enabled()) { 4599 /* protected by scx_dump_state()::dump_lock */ 4600 static char line_buf[SCX_EXIT_MSG_LEN]; 4601 4602 va_start(args, fmt); 4603 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4604 va_end(args); 4605 4606 trace_sched_ext_dump(line_buf); 4607 } 4608 #endif 4609 /* @s may be zero sized and seq_buf triggers WARN if so */ 4610 if (s->size) { 4611 va_start(args, fmt); 4612 seq_buf_vprintf(s, fmt, args); 4613 va_end(args); 4614 4615 seq_buf_putc(s, '\n'); 4616 } 4617 } 4618 4619 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4620 const unsigned long *bt, unsigned int len) 4621 { 4622 unsigned int i; 4623 4624 for (i = 0; i < len; i++) 4625 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4626 } 4627 4628 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4629 { 4630 struct scx_dump_data *dd = &scx_dump_data; 4631 4632 lockdep_assert_irqs_disabled(); 4633 4634 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4635 dd->first = true; 4636 dd->cursor = 0; 4637 dd->s = s; 4638 dd->prefix = prefix; 4639 } 4640 4641 static void ops_dump_flush(void) 4642 { 4643 struct scx_dump_data *dd = &scx_dump_data; 4644 char *line = dd->buf.line; 4645 4646 if (!dd->cursor) 4647 return; 4648 4649 /* 4650 * There's something to flush and this is the first line. Insert a blank 4651 * line to distinguish ops dump. 4652 */ 4653 if (dd->first) { 4654 dump_newline(dd->s); 4655 dd->first = false; 4656 } 4657 4658 /* 4659 * There may be multiple lines in $line. Scan and emit each line 4660 * separately. 4661 */ 4662 while (true) { 4663 char *end = line; 4664 char c; 4665 4666 while (*end != '\n' && *end != '\0') 4667 end++; 4668 4669 /* 4670 * If $line overflowed, it may not have newline at the end. 4671 * Always emit with a newline. 4672 */ 4673 c = *end; 4674 *end = '\0'; 4675 dump_line(dd->s, "%s%s", dd->prefix, line); 4676 if (c == '\0') 4677 break; 4678 4679 /* move to the next line */ 4680 end++; 4681 if (*end == '\0') 4682 break; 4683 line = end; 4684 } 4685 4686 dd->cursor = 0; 4687 } 4688 4689 static void ops_dump_exit(void) 4690 { 4691 ops_dump_flush(); 4692 scx_dump_data.cpu = -1; 4693 } 4694 4695 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4696 struct task_struct *p, char marker) 4697 { 4698 static unsigned long bt[SCX_EXIT_BT_LEN]; 4699 char dsq_id_buf[19] = "(n/a)"; 4700 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4701 unsigned int bt_len = 0; 4702 4703 if (p->scx.dsq) 4704 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4705 (unsigned long long)p->scx.dsq->id); 4706 4707 dump_newline(s); 4708 dump_line(s, " %c%c %s[%d] %+ldms", 4709 marker, task_state_to_char(p), p->comm, p->pid, 4710 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4711 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4712 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4713 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4714 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4715 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", 4716 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 4717 p->scx.dsq_vtime); 4718 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 4719 4720 if (SCX_HAS_OP(dump_task)) { 4721 ops_dump_init(s, " "); 4722 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 4723 ops_dump_exit(); 4724 } 4725 4726 #ifdef CONFIG_STACKTRACE 4727 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4728 #endif 4729 if (bt_len) { 4730 dump_newline(s); 4731 dump_stack_trace(s, " ", bt, bt_len); 4732 } 4733 } 4734 4735 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4736 { 4737 static DEFINE_SPINLOCK(dump_lock); 4738 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4739 struct scx_dump_ctx dctx = { 4740 .kind = ei->kind, 4741 .exit_code = ei->exit_code, 4742 .reason = ei->reason, 4743 .at_ns = ktime_get_ns(), 4744 .at_jiffies = jiffies, 4745 }; 4746 struct seq_buf s; 4747 unsigned long flags; 4748 char *buf; 4749 int cpu; 4750 4751 spin_lock_irqsave(&dump_lock, flags); 4752 4753 seq_buf_init(&s, ei->dump, dump_len); 4754 4755 if (ei->kind == SCX_EXIT_NONE) { 4756 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4757 } else { 4758 dump_line(&s, "%s[%d] triggered exit kind %d:", 4759 current->comm, current->pid, ei->kind); 4760 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4761 dump_newline(&s); 4762 dump_line(&s, "Backtrace:"); 4763 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4764 } 4765 4766 if (SCX_HAS_OP(dump)) { 4767 ops_dump_init(&s, ""); 4768 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 4769 ops_dump_exit(); 4770 } 4771 4772 dump_newline(&s); 4773 dump_line(&s, "CPU states"); 4774 dump_line(&s, "----------"); 4775 4776 for_each_possible_cpu(cpu) { 4777 struct rq *rq = cpu_rq(cpu); 4778 struct rq_flags rf; 4779 struct task_struct *p; 4780 struct seq_buf ns; 4781 size_t avail, used; 4782 bool idle; 4783 4784 rq_lock(rq, &rf); 4785 4786 idle = list_empty(&rq->scx.runnable_list) && 4787 rq->curr->sched_class == &idle_sched_class; 4788 4789 if (idle && !SCX_HAS_OP(dump_cpu)) 4790 goto next; 4791 4792 /* 4793 * We don't yet know whether ops.dump_cpu() will produce output 4794 * and we may want to skip the default CPU dump if it doesn't. 4795 * Use a nested seq_buf to generate the standard dump so that we 4796 * can decide whether to commit later. 4797 */ 4798 avail = seq_buf_get_buf(&s, &buf); 4799 seq_buf_init(&ns, buf, avail); 4800 4801 dump_newline(&ns); 4802 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4803 cpu, rq->scx.nr_running, rq->scx.flags, 4804 rq->scx.cpu_released, rq->scx.ops_qseq, 4805 rq->scx.pnt_seq); 4806 dump_line(&ns, " curr=%s[%d] class=%ps", 4807 rq->curr->comm, rq->curr->pid, 4808 rq->curr->sched_class); 4809 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4810 dump_line(&ns, " cpus_to_kick : %*pb", 4811 cpumask_pr_args(rq->scx.cpus_to_kick)); 4812 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4813 dump_line(&ns, " idle_to_kick : %*pb", 4814 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4815 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4816 dump_line(&ns, " cpus_to_preempt: %*pb", 4817 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4818 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4819 dump_line(&ns, " cpus_to_wait : %*pb", 4820 cpumask_pr_args(rq->scx.cpus_to_wait)); 4821 4822 used = seq_buf_used(&ns); 4823 if (SCX_HAS_OP(dump_cpu)) { 4824 ops_dump_init(&ns, " "); 4825 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 4826 ops_dump_exit(); 4827 } 4828 4829 /* 4830 * If idle && nothing generated by ops.dump_cpu(), there's 4831 * nothing interesting. Skip. 4832 */ 4833 if (idle && used == seq_buf_used(&ns)) 4834 goto next; 4835 4836 /* 4837 * $s may already have overflowed when $ns was created. If so, 4838 * calling commit on it will trigger BUG. 4839 */ 4840 if (avail) { 4841 seq_buf_commit(&s, seq_buf_used(&ns)); 4842 if (seq_buf_has_overflowed(&ns)) 4843 seq_buf_set_overflow(&s); 4844 } 4845 4846 if (rq->curr->sched_class == &ext_sched_class) 4847 scx_dump_task(&s, &dctx, rq->curr, '*'); 4848 4849 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4850 scx_dump_task(&s, &dctx, p, ' '); 4851 next: 4852 rq_unlock(rq, &rf); 4853 } 4854 4855 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4856 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4857 trunc_marker, sizeof(trunc_marker)); 4858 4859 spin_unlock_irqrestore(&dump_lock, flags); 4860 } 4861 4862 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 4863 { 4864 struct scx_exit_info *ei = scx_exit_info; 4865 4866 if (ei->kind >= SCX_EXIT_ERROR) 4867 scx_dump_state(ei, scx_ops.exit_dump_len); 4868 4869 schedule_scx_ops_disable_work(); 4870 } 4871 4872 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 4873 4874 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 4875 s64 exit_code, 4876 const char *fmt, ...) 4877 { 4878 struct scx_exit_info *ei = scx_exit_info; 4879 int none = SCX_EXIT_NONE; 4880 va_list args; 4881 4882 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 4883 return; 4884 4885 ei->exit_code = exit_code; 4886 #ifdef CONFIG_STACKTRACE 4887 if (kind >= SCX_EXIT_ERROR) 4888 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4889 #endif 4890 va_start(args, fmt); 4891 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4892 va_end(args); 4893 4894 /* 4895 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4896 * in scx_ops_disable_workfn(). 4897 */ 4898 ei->kind = kind; 4899 ei->reason = scx_exit_reason(ei->kind); 4900 4901 irq_work_queue(&scx_ops_error_irq_work); 4902 } 4903 4904 static struct kthread_worker *scx_create_rt_helper(const char *name) 4905 { 4906 struct kthread_worker *helper; 4907 4908 helper = kthread_create_worker(0, name); 4909 if (helper) 4910 sched_set_fifo(helper->task); 4911 return helper; 4912 } 4913 4914 static void check_hotplug_seq(const struct sched_ext_ops *ops) 4915 { 4916 unsigned long long global_hotplug_seq; 4917 4918 /* 4919 * If a hotplug event has occurred between when a scheduler was 4920 * initialized, and when we were able to attach, exit and notify user 4921 * space about it. 4922 */ 4923 if (ops->hotplug_seq) { 4924 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4925 if (ops->hotplug_seq != global_hotplug_seq) { 4926 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4927 "expected hotplug seq %llu did not match actual %llu", 4928 ops->hotplug_seq, global_hotplug_seq); 4929 } 4930 } 4931 } 4932 4933 static int validate_ops(const struct sched_ext_ops *ops) 4934 { 4935 /* 4936 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4937 * ops.enqueue() callback isn't implemented. 4938 */ 4939 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4940 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4941 return -EINVAL; 4942 } 4943 4944 return 0; 4945 } 4946 4947 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4948 { 4949 struct scx_task_iter sti; 4950 struct task_struct *p; 4951 unsigned long timeout; 4952 int i, cpu, node, ret; 4953 4954 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4955 cpu_possible_mask)) { 4956 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation"); 4957 return -EINVAL; 4958 } 4959 4960 mutex_lock(&scx_ops_enable_mutex); 4961 4962 if (!scx_ops_helper) { 4963 WRITE_ONCE(scx_ops_helper, 4964 scx_create_rt_helper("sched_ext_ops_helper")); 4965 if (!scx_ops_helper) { 4966 ret = -ENOMEM; 4967 goto err_unlock; 4968 } 4969 } 4970 4971 if (!global_dsqs) { 4972 struct scx_dispatch_q **dsqs; 4973 4974 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 4975 if (!dsqs) { 4976 ret = -ENOMEM; 4977 goto err_unlock; 4978 } 4979 4980 for_each_node_state(node, N_POSSIBLE) { 4981 struct scx_dispatch_q *dsq; 4982 4983 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4984 if (!dsq) { 4985 for_each_node_state(node, N_POSSIBLE) 4986 kfree(dsqs[node]); 4987 kfree(dsqs); 4988 ret = -ENOMEM; 4989 goto err_unlock; 4990 } 4991 4992 init_dsq(dsq, SCX_DSQ_GLOBAL); 4993 dsqs[node] = dsq; 4994 } 4995 4996 global_dsqs = dsqs; 4997 } 4998 4999 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5000 ret = -EBUSY; 5001 goto err_unlock; 5002 } 5003 5004 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5005 if (!scx_root_kobj) { 5006 ret = -ENOMEM; 5007 goto err_unlock; 5008 } 5009 5010 scx_root_kobj->kset = scx_kset; 5011 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5012 if (ret < 0) 5013 goto err; 5014 5015 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5016 if (!scx_exit_info) { 5017 ret = -ENOMEM; 5018 goto err_del; 5019 } 5020 5021 /* 5022 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5023 * disable path. Failure triggers full disabling from here on. 5024 */ 5025 scx_ops = *ops; 5026 5027 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5028 SCX_OPS_DISABLED); 5029 5030 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5031 scx_warned_zero_slice = false; 5032 5033 atomic_long_set(&scx_nr_rejected, 0); 5034 5035 for_each_possible_cpu(cpu) 5036 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5037 5038 /* 5039 * Keep CPUs stable during enable so that the BPF scheduler can track 5040 * online CPUs by watching ->on/offline_cpu() after ->init(). 5041 */ 5042 cpus_read_lock(); 5043 5044 if (scx_ops.init) { 5045 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5046 if (ret) { 5047 ret = ops_sanitize_err("init", ret); 5048 cpus_read_unlock(); 5049 scx_ops_error("ops.init() failed (%d)", ret); 5050 goto err_disable; 5051 } 5052 } 5053 5054 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5055 if (((void (**)(void))ops)[i]) 5056 static_branch_enable_cpuslocked(&scx_has_op[i]); 5057 5058 check_hotplug_seq(ops); 5059 cpus_read_unlock(); 5060 5061 ret = validate_ops(ops); 5062 if (ret) 5063 goto err_disable; 5064 5065 WARN_ON_ONCE(scx_dsp_ctx); 5066 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5067 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5068 scx_dsp_max_batch), 5069 __alignof__(struct scx_dsp_ctx)); 5070 if (!scx_dsp_ctx) { 5071 ret = -ENOMEM; 5072 goto err_disable; 5073 } 5074 5075 if (ops->timeout_ms) 5076 timeout = msecs_to_jiffies(ops->timeout_ms); 5077 else 5078 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5079 5080 WRITE_ONCE(scx_watchdog_timeout, timeout); 5081 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5082 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5083 scx_watchdog_timeout / 2); 5084 5085 /* 5086 * Once __scx_ops_enabled is set, %current can be switched to SCX 5087 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5088 * userspace scheduling) may not function correctly before all tasks are 5089 * switched. Init in bypass mode to guarantee forward progress. 5090 */ 5091 scx_ops_bypass(true); 5092 5093 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5094 if (((void (**)(void))ops)[i]) 5095 static_branch_enable(&scx_has_op[i]); 5096 5097 if (ops->flags & SCX_OPS_ENQ_LAST) 5098 static_branch_enable(&scx_ops_enq_last); 5099 5100 if (ops->flags & SCX_OPS_ENQ_EXITING) 5101 static_branch_enable(&scx_ops_enq_exiting); 5102 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5103 static_branch_enable(&scx_ops_cpu_preempt); 5104 5105 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5106 reset_idle_masks(); 5107 static_branch_enable(&scx_builtin_idle_enabled); 5108 } else { 5109 static_branch_disable(&scx_builtin_idle_enabled); 5110 } 5111 5112 /* 5113 * Lock out forks, cgroup on/offlining and moves before opening the 5114 * floodgate so that they don't wander into the operations prematurely. 5115 */ 5116 percpu_down_write(&scx_fork_rwsem); 5117 5118 WARN_ON_ONCE(scx_ops_init_task_enabled); 5119 scx_ops_init_task_enabled = true; 5120 5121 /* 5122 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5123 * preventing new tasks from being added. No need to exclude tasks 5124 * leaving as sched_ext_free() can handle both prepped and enabled 5125 * tasks. Prep all tasks first and then enable them with preemption 5126 * disabled. 5127 * 5128 * All cgroups should be initialized before scx_ops_init_task() so that 5129 * the BPF scheduler can reliably track each task's cgroup membership 5130 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5131 * migrations while tasks are being initialized so that 5132 * scx_cgroup_can_attach() never sees uninitialized tasks. 5133 */ 5134 scx_cgroup_lock(); 5135 ret = scx_cgroup_init(); 5136 if (ret) 5137 goto err_disable_unlock_all; 5138 5139 spin_lock_irq(&scx_tasks_lock); 5140 scx_task_iter_init(&sti); 5141 while ((p = scx_task_iter_next_locked(&sti))) { 5142 /* 5143 * @p may already be dead, have lost all its usages counts and 5144 * be waiting for RCU grace period before being freed. @p can't 5145 * be initialized for SCX in such cases and should be ignored. 5146 */ 5147 if (!tryget_task_struct(p)) 5148 continue; 5149 5150 scx_task_iter_rq_unlock(&sti); 5151 spin_unlock_irq(&scx_tasks_lock); 5152 5153 ret = scx_ops_init_task(p, task_group(p), false); 5154 if (ret) { 5155 put_task_struct(p); 5156 spin_lock_irq(&scx_tasks_lock); 5157 scx_task_iter_exit(&sti); 5158 spin_unlock_irq(&scx_tasks_lock); 5159 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5160 ret, p->comm, p->pid); 5161 goto err_disable_unlock_all; 5162 } 5163 5164 scx_set_task_state(p, SCX_TASK_READY); 5165 5166 put_task_struct(p); 5167 spin_lock_irq(&scx_tasks_lock); 5168 } 5169 scx_task_iter_exit(&sti); 5170 spin_unlock_irq(&scx_tasks_lock); 5171 scx_cgroup_unlock(); 5172 percpu_up_write(&scx_fork_rwsem); 5173 5174 /* 5175 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5176 * all eligible tasks. 5177 */ 5178 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5179 static_branch_enable(&__scx_ops_enabled); 5180 5181 /* 5182 * We're fully committed and can't fail. The task READY -> ENABLED 5183 * transitions here are synchronized against sched_ext_free() through 5184 * scx_tasks_lock. 5185 */ 5186 percpu_down_write(&scx_fork_rwsem); 5187 spin_lock_irq(&scx_tasks_lock); 5188 scx_task_iter_init(&sti); 5189 while ((p = scx_task_iter_next_locked(&sti))) { 5190 const struct sched_class *old_class = p->sched_class; 5191 struct sched_enq_and_set_ctx ctx; 5192 5193 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5194 5195 __setscheduler_prio(p, p->prio); 5196 check_class_changing(task_rq(p), p, old_class); 5197 5198 sched_enq_and_set_task(&ctx); 5199 5200 check_class_changed(task_rq(p), p, old_class, p->prio); 5201 } 5202 scx_task_iter_exit(&sti); 5203 spin_unlock_irq(&scx_tasks_lock); 5204 percpu_up_write(&scx_fork_rwsem); 5205 5206 scx_ops_bypass(false); 5207 5208 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5209 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5210 goto err_disable; 5211 } 5212 5213 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5214 static_branch_enable(&__scx_switched_all); 5215 5216 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5217 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5218 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5219 mutex_unlock(&scx_ops_enable_mutex); 5220 5221 atomic_long_inc(&scx_enable_seq); 5222 5223 return 0; 5224 5225 err_del: 5226 kobject_del(scx_root_kobj); 5227 err: 5228 kobject_put(scx_root_kobj); 5229 scx_root_kobj = NULL; 5230 if (scx_exit_info) { 5231 free_exit_info(scx_exit_info); 5232 scx_exit_info = NULL; 5233 } 5234 err_unlock: 5235 mutex_unlock(&scx_ops_enable_mutex); 5236 return ret; 5237 5238 err_disable_unlock_all: 5239 scx_cgroup_unlock(); 5240 percpu_up_write(&scx_fork_rwsem); 5241 scx_ops_bypass(false); 5242 err_disable: 5243 mutex_unlock(&scx_ops_enable_mutex); 5244 /* 5245 * Returning an error code here would not pass all the error information 5246 * to userspace. Record errno using scx_ops_error() for cases 5247 * scx_ops_error() wasn't already invoked and exit indicating success so 5248 * that the error is notified through ops.exit() with all the details. 5249 * 5250 * Flush scx_ops_disable_work to ensure that error is reported before 5251 * init completion. 5252 */ 5253 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5254 kthread_flush_work(&scx_ops_disable_work); 5255 return 0; 5256 } 5257 5258 5259 /******************************************************************************** 5260 * bpf_struct_ops plumbing. 5261 */ 5262 #include <linux/bpf_verifier.h> 5263 #include <linux/bpf.h> 5264 #include <linux/btf.h> 5265 5266 extern struct btf *btf_vmlinux; 5267 static const struct btf_type *task_struct_type; 5268 static u32 task_struct_type_id; 5269 5270 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, 5271 enum bpf_access_type type, 5272 const struct bpf_prog *prog, 5273 struct bpf_insn_access_aux *info) 5274 { 5275 struct btf *btf = bpf_get_btf_vmlinux(); 5276 const struct bpf_struct_ops_desc *st_ops_desc; 5277 const struct btf_member *member; 5278 const struct btf_type *t; 5279 u32 btf_id, member_idx; 5280 const char *mname; 5281 5282 /* struct_ops op args are all sequential, 64-bit numbers */ 5283 if (off != arg_n * sizeof(__u64)) 5284 return false; 5285 5286 /* btf_id should be the type id of struct sched_ext_ops */ 5287 btf_id = prog->aux->attach_btf_id; 5288 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 5289 if (!st_ops_desc) 5290 return false; 5291 5292 /* BTF type of struct sched_ext_ops */ 5293 t = st_ops_desc->type; 5294 5295 member_idx = prog->expected_attach_type; 5296 if (member_idx >= btf_type_vlen(t)) 5297 return false; 5298 5299 /* 5300 * Get the member name of this struct_ops program, which corresponds to 5301 * a field in struct sched_ext_ops. For example, the member name of the 5302 * dispatch struct_ops program (callback) is "dispatch". 5303 */ 5304 member = &btf_type_member(t)[member_idx]; 5305 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 5306 5307 if (!strcmp(mname, op)) { 5308 /* 5309 * The value is a pointer to a type (struct task_struct) given 5310 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), 5311 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program 5312 * should check the pointer to make sure it is not NULL before 5313 * using it, or the verifier will reject the program. 5314 * 5315 * Longer term, this is something that should be addressed by 5316 * BTF, and be fully contained within the verifier. 5317 */ 5318 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; 5319 info->btf = btf_vmlinux; 5320 info->btf_id = task_struct_type_id; 5321 5322 return true; 5323 } 5324 5325 return false; 5326 } 5327 5328 static bool bpf_scx_is_valid_access(int off, int size, 5329 enum bpf_access_type type, 5330 const struct bpf_prog *prog, 5331 struct bpf_insn_access_aux *info) 5332 { 5333 if (type != BPF_READ) 5334 return false; 5335 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || 5336 set_arg_maybe_null("yield", 1, off, size, type, prog, info)) 5337 return true; 5338 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5339 return false; 5340 if (off % size != 0) 5341 return false; 5342 5343 return btf_ctx_access(off, size, type, prog, info); 5344 } 5345 5346 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5347 const struct bpf_reg_state *reg, int off, 5348 int size) 5349 { 5350 const struct btf_type *t; 5351 5352 t = btf_type_by_id(reg->btf, reg->btf_id); 5353 if (t == task_struct_type) { 5354 if (off >= offsetof(struct task_struct, scx.slice) && 5355 off + size <= offsetofend(struct task_struct, scx.slice)) 5356 return SCALAR_VALUE; 5357 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5358 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5359 return SCALAR_VALUE; 5360 if (off >= offsetof(struct task_struct, scx.disallow) && 5361 off + size <= offsetofend(struct task_struct, scx.disallow)) 5362 return SCALAR_VALUE; 5363 } 5364 5365 return -EACCES; 5366 } 5367 5368 static const struct bpf_func_proto * 5369 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5370 { 5371 switch (func_id) { 5372 case BPF_FUNC_task_storage_get: 5373 return &bpf_task_storage_get_proto; 5374 case BPF_FUNC_task_storage_delete: 5375 return &bpf_task_storage_delete_proto; 5376 default: 5377 return bpf_base_func_proto(func_id, prog); 5378 } 5379 } 5380 5381 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5382 .get_func_proto = bpf_scx_get_func_proto, 5383 .is_valid_access = bpf_scx_is_valid_access, 5384 .btf_struct_access = bpf_scx_btf_struct_access, 5385 }; 5386 5387 static int bpf_scx_init_member(const struct btf_type *t, 5388 const struct btf_member *member, 5389 void *kdata, const void *udata) 5390 { 5391 const struct sched_ext_ops *uops = udata; 5392 struct sched_ext_ops *ops = kdata; 5393 u32 moff = __btf_member_bit_offset(t, member) / 8; 5394 int ret; 5395 5396 switch (moff) { 5397 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5398 if (*(u32 *)(udata + moff) > INT_MAX) 5399 return -E2BIG; 5400 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5401 return 1; 5402 case offsetof(struct sched_ext_ops, flags): 5403 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5404 return -EINVAL; 5405 ops->flags = *(u64 *)(udata + moff); 5406 return 1; 5407 case offsetof(struct sched_ext_ops, name): 5408 ret = bpf_obj_name_cpy(ops->name, uops->name, 5409 sizeof(ops->name)); 5410 if (ret < 0) 5411 return ret; 5412 if (ret == 0) 5413 return -EINVAL; 5414 return 1; 5415 case offsetof(struct sched_ext_ops, timeout_ms): 5416 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5417 SCX_WATCHDOG_MAX_TIMEOUT) 5418 return -E2BIG; 5419 ops->timeout_ms = *(u32 *)(udata + moff); 5420 return 1; 5421 case offsetof(struct sched_ext_ops, exit_dump_len): 5422 ops->exit_dump_len = 5423 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5424 return 1; 5425 case offsetof(struct sched_ext_ops, hotplug_seq): 5426 ops->hotplug_seq = *(u64 *)(udata + moff); 5427 return 1; 5428 } 5429 5430 return 0; 5431 } 5432 5433 static int bpf_scx_check_member(const struct btf_type *t, 5434 const struct btf_member *member, 5435 const struct bpf_prog *prog) 5436 { 5437 u32 moff = __btf_member_bit_offset(t, member) / 8; 5438 5439 switch (moff) { 5440 case offsetof(struct sched_ext_ops, init_task): 5441 #ifdef CONFIG_EXT_GROUP_SCHED 5442 case offsetof(struct sched_ext_ops, cgroup_init): 5443 case offsetof(struct sched_ext_ops, cgroup_exit): 5444 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5445 #endif 5446 case offsetof(struct sched_ext_ops, cpu_online): 5447 case offsetof(struct sched_ext_ops, cpu_offline): 5448 case offsetof(struct sched_ext_ops, init): 5449 case offsetof(struct sched_ext_ops, exit): 5450 break; 5451 default: 5452 if (prog->sleepable) 5453 return -EINVAL; 5454 } 5455 5456 return 0; 5457 } 5458 5459 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5460 { 5461 return scx_ops_enable(kdata, link); 5462 } 5463 5464 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5465 { 5466 scx_ops_disable(SCX_EXIT_UNREG); 5467 kthread_flush_work(&scx_ops_disable_work); 5468 } 5469 5470 static int bpf_scx_init(struct btf *btf) 5471 { 5472 s32 type_id; 5473 5474 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); 5475 if (type_id < 0) 5476 return -EINVAL; 5477 task_struct_type = btf_type_by_id(btf, type_id); 5478 task_struct_type_id = type_id; 5479 5480 return 0; 5481 } 5482 5483 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5484 { 5485 /* 5486 * sched_ext does not support updating the actively-loaded BPF 5487 * scheduler, as registering a BPF scheduler can always fail if the 5488 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5489 * etc. Similarly, we can always race with unregistration happening 5490 * elsewhere, such as with sysrq. 5491 */ 5492 return -EOPNOTSUPP; 5493 } 5494 5495 static int bpf_scx_validate(void *kdata) 5496 { 5497 return 0; 5498 } 5499 5500 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5501 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} 5502 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} 5503 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} 5504 static void tick_stub(struct task_struct *p) {} 5505 static void runnable_stub(struct task_struct *p, u64 enq_flags) {} 5506 static void running_stub(struct task_struct *p) {} 5507 static void stopping_stub(struct task_struct *p, bool runnable) {} 5508 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} 5509 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } 5510 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } 5511 static void set_weight_stub(struct task_struct *p, u32 weight) {} 5512 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} 5513 static void update_idle_stub(s32 cpu, bool idle) {} 5514 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} 5515 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} 5516 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5517 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} 5518 static void enable_stub(struct task_struct *p) {} 5519 static void disable_stub(struct task_struct *p) {} 5520 #ifdef CONFIG_EXT_GROUP_SCHED 5521 static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5522 static void cgroup_exit_stub(struct cgroup *cgrp) {} 5523 static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5524 static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5525 static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5526 static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {} 5527 #endif 5528 static void cpu_online_stub(s32 cpu) {} 5529 static void cpu_offline_stub(s32 cpu) {} 5530 static s32 init_stub(void) { return -EINVAL; } 5531 static void exit_stub(struct scx_exit_info *info) {} 5532 static void dump_stub(struct scx_dump_ctx *ctx) {} 5533 static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5534 static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5535 5536 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5537 .select_cpu = select_cpu_stub, 5538 .enqueue = enqueue_stub, 5539 .dequeue = dequeue_stub, 5540 .dispatch = dispatch_stub, 5541 .tick = tick_stub, 5542 .runnable = runnable_stub, 5543 .running = running_stub, 5544 .stopping = stopping_stub, 5545 .quiescent = quiescent_stub, 5546 .yield = yield_stub, 5547 .core_sched_before = core_sched_before_stub, 5548 .set_weight = set_weight_stub, 5549 .set_cpumask = set_cpumask_stub, 5550 .update_idle = update_idle_stub, 5551 .cpu_acquire = cpu_acquire_stub, 5552 .cpu_release = cpu_release_stub, 5553 .init_task = init_task_stub, 5554 .exit_task = exit_task_stub, 5555 .enable = enable_stub, 5556 .disable = disable_stub, 5557 #ifdef CONFIG_EXT_GROUP_SCHED 5558 .cgroup_init = cgroup_init_stub, 5559 .cgroup_exit = cgroup_exit_stub, 5560 .cgroup_prep_move = cgroup_prep_move_stub, 5561 .cgroup_move = cgroup_move_stub, 5562 .cgroup_cancel_move = cgroup_cancel_move_stub, 5563 .cgroup_set_weight = cgroup_set_weight_stub, 5564 #endif 5565 .cpu_online = cpu_online_stub, 5566 .cpu_offline = cpu_offline_stub, 5567 .init = init_stub, 5568 .exit = exit_stub, 5569 .dump = dump_stub, 5570 .dump_cpu = dump_cpu_stub, 5571 .dump_task = dump_task_stub, 5572 }; 5573 5574 static struct bpf_struct_ops bpf_sched_ext_ops = { 5575 .verifier_ops = &bpf_scx_verifier_ops, 5576 .reg = bpf_scx_reg, 5577 .unreg = bpf_scx_unreg, 5578 .check_member = bpf_scx_check_member, 5579 .init_member = bpf_scx_init_member, 5580 .init = bpf_scx_init, 5581 .update = bpf_scx_update, 5582 .validate = bpf_scx_validate, 5583 .name = "sched_ext_ops", 5584 .owner = THIS_MODULE, 5585 .cfi_stubs = &__bpf_ops_sched_ext_ops 5586 }; 5587 5588 5589 /******************************************************************************** 5590 * System integration and init. 5591 */ 5592 5593 static void sysrq_handle_sched_ext_reset(u8 key) 5594 { 5595 if (scx_ops_helper) 5596 scx_ops_disable(SCX_EXIT_SYSRQ); 5597 else 5598 pr_info("sched_ext: BPF scheduler not yet used\n"); 5599 } 5600 5601 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5602 .handler = sysrq_handle_sched_ext_reset, 5603 .help_msg = "reset-sched-ext(S)", 5604 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5605 .enable_mask = SYSRQ_ENABLE_RTNICE, 5606 }; 5607 5608 static void sysrq_handle_sched_ext_dump(u8 key) 5609 { 5610 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5611 5612 if (scx_enabled()) 5613 scx_dump_state(&ei, 0); 5614 } 5615 5616 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5617 .handler = sysrq_handle_sched_ext_dump, 5618 .help_msg = "dump-sched-ext(D)", 5619 .action_msg = "Trigger sched_ext debug dump", 5620 .enable_mask = SYSRQ_ENABLE_RTNICE, 5621 }; 5622 5623 static bool can_skip_idle_kick(struct rq *rq) 5624 { 5625 lockdep_assert_rq_held(rq); 5626 5627 /* 5628 * We can skip idle kicking if @rq is going to go through at least one 5629 * full SCX scheduling cycle before going idle. Just checking whether 5630 * curr is not idle is insufficient because we could be racing 5631 * balance_one() trying to pull the next task from a remote rq, which 5632 * may fail, and @rq may become idle afterwards. 5633 * 5634 * The race window is small and we don't and can't guarantee that @rq is 5635 * only kicked while idle anyway. Skip only when sure. 5636 */ 5637 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5638 } 5639 5640 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5641 { 5642 struct rq *rq = cpu_rq(cpu); 5643 struct scx_rq *this_scx = &this_rq->scx; 5644 bool should_wait = false; 5645 unsigned long flags; 5646 5647 raw_spin_rq_lock_irqsave(rq, flags); 5648 5649 /* 5650 * During CPU hotplug, a CPU may depend on kicking itself to make 5651 * forward progress. Allow kicking self regardless of online state. 5652 */ 5653 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5654 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5655 if (rq->curr->sched_class == &ext_sched_class) 5656 rq->curr->scx.slice = 0; 5657 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5658 } 5659 5660 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5661 pseqs[cpu] = rq->scx.pnt_seq; 5662 should_wait = true; 5663 } 5664 5665 resched_curr(rq); 5666 } else { 5667 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5668 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5669 } 5670 5671 raw_spin_rq_unlock_irqrestore(rq, flags); 5672 5673 return should_wait; 5674 } 5675 5676 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5677 { 5678 struct rq *rq = cpu_rq(cpu); 5679 unsigned long flags; 5680 5681 raw_spin_rq_lock_irqsave(rq, flags); 5682 5683 if (!can_skip_idle_kick(rq) && 5684 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5685 resched_curr(rq); 5686 5687 raw_spin_rq_unlock_irqrestore(rq, flags); 5688 } 5689 5690 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5691 { 5692 struct rq *this_rq = this_rq(); 5693 struct scx_rq *this_scx = &this_rq->scx; 5694 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 5695 bool should_wait = false; 5696 s32 cpu; 5697 5698 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5699 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5700 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5701 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5702 } 5703 5704 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5705 kick_one_cpu_if_idle(cpu, this_rq); 5706 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5707 } 5708 5709 if (!should_wait) 5710 return; 5711 5712 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5713 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5714 5715 if (cpu != cpu_of(this_rq)) { 5716 /* 5717 * Pairs with smp_store_release() issued by this CPU in 5718 * scx_next_task_picked() on the resched path. 5719 * 5720 * We busy-wait here to guarantee that no other task can 5721 * be scheduled on our core before the target CPU has 5722 * entered the resched path. 5723 */ 5724 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5725 cpu_relax(); 5726 } 5727 5728 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5729 } 5730 } 5731 5732 /** 5733 * print_scx_info - print out sched_ext scheduler state 5734 * @log_lvl: the log level to use when printing 5735 * @p: target task 5736 * 5737 * If a sched_ext scheduler is enabled, print the name and state of the 5738 * scheduler. If @p is on sched_ext, print further information about the task. 5739 * 5740 * This function can be safely called on any task as long as the task_struct 5741 * itself is accessible. While safe, this function isn't synchronized and may 5742 * print out mixups or garbages of limited length. 5743 */ 5744 void print_scx_info(const char *log_lvl, struct task_struct *p) 5745 { 5746 enum scx_ops_enable_state state = scx_ops_enable_state(); 5747 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5748 char runnable_at_buf[22] = "?"; 5749 struct sched_class *class; 5750 unsigned long runnable_at; 5751 5752 if (state == SCX_OPS_DISABLED) 5753 return; 5754 5755 /* 5756 * Carefully check if the task was running on sched_ext, and then 5757 * carefully copy the time it's been runnable, and its state. 5758 */ 5759 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5760 class != &ext_sched_class) { 5761 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 5762 scx_ops_enable_state_str[state], all); 5763 return; 5764 } 5765 5766 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5767 sizeof(runnable_at))) 5768 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5769 jiffies_delta_msecs(runnable_at, jiffies)); 5770 5771 /* print everything onto one line to conserve console space */ 5772 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5773 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 5774 runnable_at_buf); 5775 } 5776 5777 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5778 { 5779 /* 5780 * SCX schedulers often have userspace components which are sometimes 5781 * involved in critial scheduling paths. PM operations involve freezing 5782 * userspace which can lead to scheduling misbehaviors including stalls. 5783 * Let's bypass while PM operations are in progress. 5784 */ 5785 switch (event) { 5786 case PM_HIBERNATION_PREPARE: 5787 case PM_SUSPEND_PREPARE: 5788 case PM_RESTORE_PREPARE: 5789 scx_ops_bypass(true); 5790 break; 5791 case PM_POST_HIBERNATION: 5792 case PM_POST_SUSPEND: 5793 case PM_POST_RESTORE: 5794 scx_ops_bypass(false); 5795 break; 5796 } 5797 5798 return NOTIFY_OK; 5799 } 5800 5801 static struct notifier_block scx_pm_notifier = { 5802 .notifier_call = scx_pm_handler, 5803 }; 5804 5805 void __init init_sched_ext_class(void) 5806 { 5807 s32 cpu, v; 5808 5809 /* 5810 * The following is to prevent the compiler from optimizing out the enum 5811 * definitions so that BPF scheduler implementations can use them 5812 * through the generated vmlinux.h. 5813 */ 5814 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5815 SCX_TG_ONLINE); 5816 5817 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 5818 #ifdef CONFIG_SMP 5819 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 5820 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 5821 #endif 5822 scx_kick_cpus_pnt_seqs = 5823 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 5824 __alignof__(scx_kick_cpus_pnt_seqs[0])); 5825 BUG_ON(!scx_kick_cpus_pnt_seqs); 5826 5827 for_each_possible_cpu(cpu) { 5828 struct rq *rq = cpu_rq(cpu); 5829 5830 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5831 INIT_LIST_HEAD(&rq->scx.runnable_list); 5832 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5833 5834 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 5835 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 5836 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 5837 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 5838 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5839 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5840 5841 if (cpu_online(cpu)) 5842 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5843 } 5844 5845 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5846 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5847 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5848 } 5849 5850 5851 /******************************************************************************** 5852 * Helpers that can be called from the BPF scheduler. 5853 */ 5854 #include <linux/btf_ids.h> 5855 5856 __bpf_kfunc_start_defs(); 5857 5858 /** 5859 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 5860 * @p: task_struct to select a CPU for 5861 * @prev_cpu: CPU @p was on previously 5862 * @wake_flags: %SCX_WAKE_* flags 5863 * @is_idle: out parameter indicating whether the returned CPU is idle 5864 * 5865 * Can only be called from ops.select_cpu() if the built-in CPU selection is 5866 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 5867 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 5868 * 5869 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 5870 * currently idle and thus a good candidate for direct dispatching. 5871 */ 5872 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 5873 u64 wake_flags, bool *is_idle) 5874 { 5875 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { 5876 *is_idle = false; 5877 return prev_cpu; 5878 } 5879 #ifdef CONFIG_SMP 5880 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 5881 #else 5882 *is_idle = false; 5883 return prev_cpu; 5884 #endif 5885 } 5886 5887 __bpf_kfunc_end_defs(); 5888 5889 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 5890 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 5891 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 5892 5893 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 5894 .owner = THIS_MODULE, 5895 .set = &scx_kfunc_ids_select_cpu, 5896 }; 5897 5898 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) 5899 { 5900 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5901 return false; 5902 5903 lockdep_assert_irqs_disabled(); 5904 5905 if (unlikely(!p)) { 5906 scx_ops_error("called with NULL task"); 5907 return false; 5908 } 5909 5910 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5911 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 5912 return false; 5913 } 5914 5915 return true; 5916 } 5917 5918 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) 5919 { 5920 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5921 struct task_struct *ddsp_task; 5922 5923 ddsp_task = __this_cpu_read(direct_dispatch_task); 5924 if (ddsp_task) { 5925 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 5926 return; 5927 } 5928 5929 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5930 scx_ops_error("dispatch buffer overflow"); 5931 return; 5932 } 5933 5934 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5935 .task = p, 5936 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5937 .dsq_id = dsq_id, 5938 .enq_flags = enq_flags, 5939 }; 5940 } 5941 5942 __bpf_kfunc_start_defs(); 5943 5944 /** 5945 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ 5946 * @p: task_struct to dispatch 5947 * @dsq_id: DSQ to dispatch to 5948 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5949 * @enq_flags: SCX_ENQ_* 5950 * 5951 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe 5952 * to call this function spuriously. Can be called from ops.enqueue(), 5953 * ops.select_cpu(), and ops.dispatch(). 5954 * 5955 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5956 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 5957 * used to target the local DSQ of a CPU other than the enqueueing one. Use 5958 * ops.select_cpu() to be on the target CPU in the first place. 5959 * 5960 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5961 * will be directly dispatched to the corresponding dispatch queue after 5962 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be 5963 * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). 5964 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5965 * task is dispatched. 5966 * 5967 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5968 * and this function can be called upto ops.dispatch_max_batch times to dispatch 5969 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5970 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 5971 * 5972 * This function doesn't have any locking restrictions and may be called under 5973 * BPF locks (in the future when BPF introduces more flexible locking). 5974 * 5975 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5976 * exhaustion. If zero, the current residual slice is maintained. If 5977 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5978 * scx_bpf_kick_cpu() to trigger scheduling. 5979 */ 5980 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 5981 u64 enq_flags) 5982 { 5983 if (!scx_dispatch_preamble(p, enq_flags)) 5984 return; 5985 5986 if (slice) 5987 p->scx.slice = slice; 5988 else 5989 p->scx.slice = p->scx.slice ?: 1; 5990 5991 scx_dispatch_commit(p, dsq_id, enq_flags); 5992 } 5993 5994 /** 5995 * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ 5996 * @p: task_struct to dispatch 5997 * @dsq_id: DSQ to dispatch to 5998 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5999 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6000 * @enq_flags: SCX_ENQ_* 6001 * 6002 * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. 6003 * Tasks queued into the priority queue are ordered by @vtime and always 6004 * consumed after the tasks in the FIFO queue. All other aspects are identical 6005 * to scx_bpf_dispatch(). 6006 * 6007 * @vtime ordering is according to time_before64() which considers wrapping. A 6008 * numerically larger vtime may indicate an earlier position in the ordering and 6009 * vice-versa. 6010 */ 6011 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6012 u64 slice, u64 vtime, u64 enq_flags) 6013 { 6014 if (!scx_dispatch_preamble(p, enq_flags)) 6015 return; 6016 6017 if (slice) 6018 p->scx.slice = slice; 6019 else 6020 p->scx.slice = p->scx.slice ?: 1; 6021 6022 p->scx.dsq_vtime = vtime; 6023 6024 scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6025 } 6026 6027 __bpf_kfunc_end_defs(); 6028 6029 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6030 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6031 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6032 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6033 6034 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6035 .owner = THIS_MODULE, 6036 .set = &scx_kfunc_ids_enqueue_dispatch, 6037 }; 6038 6039 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit, 6040 struct task_struct *p, u64 dsq_id, 6041 u64 enq_flags) 6042 { 6043 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6044 struct rq *this_rq, *src_rq, *dst_rq, *locked_rq; 6045 bool dispatched = false; 6046 bool in_balance; 6047 unsigned long flags; 6048 6049 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6050 return false; 6051 6052 /* 6053 * Can be called from either ops.dispatch() locking this_rq() or any 6054 * context where no rq lock is held. If latter, lock @p's task_rq which 6055 * we'll likely need anyway. 6056 */ 6057 src_rq = task_rq(p); 6058 6059 local_irq_save(flags); 6060 this_rq = this_rq(); 6061 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6062 6063 if (in_balance) { 6064 if (this_rq != src_rq) { 6065 raw_spin_rq_unlock(this_rq); 6066 raw_spin_rq_lock(src_rq); 6067 } 6068 } else { 6069 raw_spin_rq_lock(src_rq); 6070 } 6071 6072 locked_rq = src_rq; 6073 raw_spin_lock(&src_dsq->lock); 6074 6075 /* 6076 * Did someone else get to it? @p could have already left $src_dsq, got 6077 * re-enqueud, or be in the process of being consumed by someone else. 6078 */ 6079 if (unlikely(p->scx.dsq != src_dsq || 6080 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6081 p->scx.holding_cpu >= 0) || 6082 WARN_ON_ONCE(src_rq != task_rq(p))) { 6083 raw_spin_unlock(&src_dsq->lock); 6084 goto out; 6085 } 6086 6087 /* @p is still on $src_dsq and stable, determine the destination */ 6088 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6089 6090 if (dst_dsq->id == SCX_DSQ_LOCAL) { 6091 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 6092 if (!task_can_run_on_remote_rq(p, dst_rq, true)) { 6093 dst_dsq = find_global_dsq(p); 6094 dst_rq = src_rq; 6095 } 6096 } else { 6097 /* no need to migrate if destination is a non-local DSQ */ 6098 dst_rq = src_rq; 6099 } 6100 6101 /* 6102 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 6103 * CPU, @p will be migrated. 6104 */ 6105 if (dst_dsq->id == SCX_DSQ_LOCAL) { 6106 /* @p is going from a non-local DSQ to a local DSQ */ 6107 if (src_rq == dst_rq) { 6108 task_unlink_from_dsq(p, src_dsq); 6109 move_local_task_to_local_dsq(p, enq_flags, 6110 src_dsq, dst_rq); 6111 raw_spin_unlock(&src_dsq->lock); 6112 } else { 6113 raw_spin_unlock(&src_dsq->lock); 6114 move_remote_task_to_local_dsq(p, enq_flags, 6115 src_rq, dst_rq); 6116 locked_rq = dst_rq; 6117 } 6118 } else { 6119 /* 6120 * @p is going from a non-local DSQ to a non-local DSQ. As 6121 * $src_dsq is already locked, do an abbreviated dequeue. 6122 */ 6123 task_unlink_from_dsq(p, src_dsq); 6124 p->scx.dsq = NULL; 6125 raw_spin_unlock(&src_dsq->lock); 6126 6127 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6128 p->scx.dsq_vtime = kit->vtime; 6129 dispatch_enqueue(dst_dsq, p, enq_flags); 6130 } 6131 6132 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6133 p->scx.slice = kit->slice; 6134 6135 dispatched = true; 6136 out: 6137 if (in_balance) { 6138 if (this_rq != locked_rq) { 6139 raw_spin_rq_unlock(locked_rq); 6140 raw_spin_rq_lock(this_rq); 6141 } 6142 } else { 6143 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6144 } 6145 6146 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6147 __SCX_DSQ_ITER_HAS_VTIME); 6148 return dispatched; 6149 } 6150 6151 __bpf_kfunc_start_defs(); 6152 6153 /** 6154 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6155 * 6156 * Can only be called from ops.dispatch(). 6157 */ 6158 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6159 { 6160 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6161 return 0; 6162 6163 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6164 } 6165 6166 /** 6167 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6168 * 6169 * Cancel the latest dispatch. Can be called multiple times to cancel further 6170 * dispatches. Can only be called from ops.dispatch(). 6171 */ 6172 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6173 { 6174 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6175 6176 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6177 return; 6178 6179 if (dspc->cursor > 0) 6180 dspc->cursor--; 6181 else 6182 scx_ops_error("dispatch buffer underflow"); 6183 } 6184 6185 /** 6186 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ 6187 * @dsq_id: DSQ to consume 6188 * 6189 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it 6190 * to the current CPU's local DSQ for execution. Can only be called from 6191 * ops.dispatch(). 6192 * 6193 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before 6194 * trying to consume the specified DSQ. It may also grab rq locks and thus can't 6195 * be called under any BPF locks. 6196 * 6197 * Returns %true if a task has been consumed, %false if there isn't any task to 6198 * consume. 6199 */ 6200 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6201 { 6202 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6203 struct scx_dispatch_q *dsq; 6204 6205 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6206 return false; 6207 6208 flush_dispatch_buf(dspc->rq); 6209 6210 dsq = find_user_dsq(dsq_id); 6211 if (unlikely(!dsq)) { 6212 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6213 return false; 6214 } 6215 6216 if (consume_dispatch_q(dspc->rq, dsq)) { 6217 /* 6218 * A successfully consumed task can be dequeued before it starts 6219 * running while the CPU is trying to migrate other dispatched 6220 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6221 * local DSQ. 6222 */ 6223 dspc->nr_tasks++; 6224 return true; 6225 } else { 6226 return false; 6227 } 6228 } 6229 6230 /** 6231 * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ 6232 * @it__iter: DSQ iterator in progress 6233 * @slice: duration the dispatched task can run for in nsecs 6234 * 6235 * Override the slice of the next task that will be dispatched from @it__iter 6236 * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called, 6237 * the previous slice duration is kept. 6238 */ 6239 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6240 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6241 { 6242 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6243 6244 kit->slice = slice; 6245 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6246 } 6247 6248 /** 6249 * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ 6250 * @it__iter: DSQ iterator in progress 6251 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6252 * 6253 * Override the vtime of the next task that will be dispatched from @it__iter 6254 * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the 6255 * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to 6256 * dispatch the next task, the override is ignored and cleared. 6257 */ 6258 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6259 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6260 { 6261 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6262 6263 kit->vtime = vtime; 6264 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6265 } 6266 6267 /** 6268 * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ 6269 * @it__iter: DSQ iterator in progress 6270 * @p: task to transfer 6271 * @dsq_id: DSQ to move @p to 6272 * @enq_flags: SCX_ENQ_* 6273 * 6274 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6275 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6276 * be the destination. 6277 * 6278 * For the transfer to be successful, @p must still be on the DSQ and have been 6279 * queued before the DSQ iteration started. This function doesn't care whether 6280 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6281 * been queued before the iteration started. 6282 * 6283 * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to 6284 * update. 6285 * 6286 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6287 * lock (e.g. BPF timers or SYSCALL programs). 6288 * 6289 * Returns %true if @p has been consumed, %false if @p had already been consumed 6290 * or dequeued. 6291 */ 6292 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6293 struct task_struct *p, u64 dsq_id, 6294 u64 enq_flags) 6295 { 6296 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6297 p, dsq_id, enq_flags); 6298 } 6299 6300 /** 6301 * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ 6302 * @it__iter: DSQ iterator in progress 6303 * @p: task to transfer 6304 * @dsq_id: DSQ to move @p to 6305 * @enq_flags: SCX_ENQ_* 6306 * 6307 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6308 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6309 * user DSQ as only user DSQs support priority queue. 6310 * 6311 * @p's slice and vtime are kept by default. Use 6312 * scx_bpf_dispatch_from_dsq_set_slice() and 6313 * scx_bpf_dispatch_from_dsq_set_vtime() to update. 6314 * 6315 * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See 6316 * scx_bpf_dispatch_vtime() for more information on @vtime. 6317 */ 6318 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6319 struct task_struct *p, u64 dsq_id, 6320 u64 enq_flags) 6321 { 6322 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6323 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6324 } 6325 6326 __bpf_kfunc_end_defs(); 6327 6328 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6329 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6330 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6331 BTF_ID_FLAGS(func, scx_bpf_consume) 6332 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6333 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6334 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6335 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6336 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6337 6338 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6339 .owner = THIS_MODULE, 6340 .set = &scx_kfunc_ids_dispatch, 6341 }; 6342 6343 __bpf_kfunc_start_defs(); 6344 6345 /** 6346 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6347 * 6348 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6349 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6350 * processed tasks. Can only be called from ops.cpu_release(). 6351 */ 6352 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6353 { 6354 LIST_HEAD(tasks); 6355 u32 nr_enqueued = 0; 6356 struct rq *rq; 6357 struct task_struct *p, *n; 6358 6359 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6360 return 0; 6361 6362 rq = cpu_rq(smp_processor_id()); 6363 lockdep_assert_rq_held(rq); 6364 6365 /* 6366 * The BPF scheduler may choose to dispatch tasks back to 6367 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6368 * first to avoid processing the same tasks repeatedly. 6369 */ 6370 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6371 scx.dsq_list.node) { 6372 /* 6373 * If @p is being migrated, @p's current CPU may not agree with 6374 * its allowed CPUs and the migration_cpu_stop is about to 6375 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6376 * 6377 * While racing sched property changes may also dequeue and 6378 * re-enqueue a migrating task while its current CPU and allowed 6379 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6380 * the current local DSQ for running tasks and thus are not 6381 * visible to the BPF scheduler. 6382 */ 6383 if (p->migration_pending) 6384 continue; 6385 6386 dispatch_dequeue(rq, p); 6387 list_add_tail(&p->scx.dsq_list.node, &tasks); 6388 } 6389 6390 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6391 list_del_init(&p->scx.dsq_list.node); 6392 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6393 nr_enqueued++; 6394 } 6395 6396 return nr_enqueued; 6397 } 6398 6399 __bpf_kfunc_end_defs(); 6400 6401 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6402 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6403 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6404 6405 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6406 .owner = THIS_MODULE, 6407 .set = &scx_kfunc_ids_cpu_release, 6408 }; 6409 6410 __bpf_kfunc_start_defs(); 6411 6412 /** 6413 * scx_bpf_create_dsq - Create a custom DSQ 6414 * @dsq_id: DSQ to create 6415 * @node: NUMA node to allocate from 6416 * 6417 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6418 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6419 */ 6420 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6421 { 6422 if (unlikely(node >= (int)nr_node_ids || 6423 (node < 0 && node != NUMA_NO_NODE))) 6424 return -EINVAL; 6425 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6426 } 6427 6428 __bpf_kfunc_end_defs(); 6429 6430 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6431 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6432 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6433 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6434 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6435 6436 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6437 .owner = THIS_MODULE, 6438 .set = &scx_kfunc_ids_unlocked, 6439 }; 6440 6441 __bpf_kfunc_start_defs(); 6442 6443 /** 6444 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6445 * @cpu: cpu to kick 6446 * @flags: %SCX_KICK_* flags 6447 * 6448 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6449 * trigger rescheduling on a busy CPU. This can be called from any online 6450 * scx_ops operation and the actual kicking is performed asynchronously through 6451 * an irq work. 6452 */ 6453 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6454 { 6455 struct rq *this_rq; 6456 unsigned long irq_flags; 6457 6458 if (!ops_cpu_valid(cpu, NULL)) 6459 return; 6460 6461 local_irq_save(irq_flags); 6462 6463 this_rq = this_rq(); 6464 6465 /* 6466 * While bypassing for PM ops, IRQ handling may not be online which can 6467 * lead to irq_work_queue() malfunction such as infinite busy wait for 6468 * IRQ status update. Suppress kicking. 6469 */ 6470 if (scx_rq_bypassing(this_rq)) 6471 goto out; 6472 6473 /* 6474 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6475 * rq locks. We can probably be smarter and avoid bouncing if called 6476 * from ops which don't hold a rq lock. 6477 */ 6478 if (flags & SCX_KICK_IDLE) { 6479 struct rq *target_rq = cpu_rq(cpu); 6480 6481 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6482 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6483 6484 if (raw_spin_rq_trylock(target_rq)) { 6485 if (can_skip_idle_kick(target_rq)) { 6486 raw_spin_rq_unlock(target_rq); 6487 goto out; 6488 } 6489 raw_spin_rq_unlock(target_rq); 6490 } 6491 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6492 } else { 6493 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6494 6495 if (flags & SCX_KICK_PREEMPT) 6496 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6497 if (flags & SCX_KICK_WAIT) 6498 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6499 } 6500 6501 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6502 out: 6503 local_irq_restore(irq_flags); 6504 } 6505 6506 /** 6507 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6508 * @dsq_id: id of the DSQ 6509 * 6510 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6511 * -%ENOENT is returned. 6512 */ 6513 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6514 { 6515 struct scx_dispatch_q *dsq; 6516 s32 ret; 6517 6518 preempt_disable(); 6519 6520 if (dsq_id == SCX_DSQ_LOCAL) { 6521 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6522 goto out; 6523 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6524 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6525 6526 if (ops_cpu_valid(cpu, NULL)) { 6527 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6528 goto out; 6529 } 6530 } else { 6531 dsq = find_user_dsq(dsq_id); 6532 if (dsq) { 6533 ret = READ_ONCE(dsq->nr); 6534 goto out; 6535 } 6536 } 6537 ret = -ENOENT; 6538 out: 6539 preempt_enable(); 6540 return ret; 6541 } 6542 6543 /** 6544 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6545 * @dsq_id: DSQ to destroy 6546 * 6547 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6548 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6549 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6550 * which doesn't exist. Can be called from any online scx_ops operations. 6551 */ 6552 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6553 { 6554 destroy_dsq(dsq_id); 6555 } 6556 6557 /** 6558 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6559 * @it: iterator to initialize 6560 * @dsq_id: DSQ to iterate 6561 * @flags: %SCX_DSQ_ITER_* 6562 * 6563 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6564 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6565 * tasks which are already queued when this function is invoked. 6566 */ 6567 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6568 u64 flags) 6569 { 6570 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6571 6572 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6573 sizeof(struct bpf_iter_scx_dsq)); 6574 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6575 __alignof__(struct bpf_iter_scx_dsq)); 6576 6577 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6578 return -EINVAL; 6579 6580 kit->dsq = find_user_dsq(dsq_id); 6581 if (!kit->dsq) 6582 return -ENOENT; 6583 6584 INIT_LIST_HEAD(&kit->cursor.node); 6585 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags; 6586 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6587 6588 return 0; 6589 } 6590 6591 /** 6592 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6593 * @it: iterator to progress 6594 * 6595 * Return the next task. See bpf_iter_scx_dsq_new(). 6596 */ 6597 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6598 { 6599 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6600 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6601 struct task_struct *p; 6602 unsigned long flags; 6603 6604 if (!kit->dsq) 6605 return NULL; 6606 6607 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6608 6609 if (list_empty(&kit->cursor.node)) 6610 p = NULL; 6611 else 6612 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6613 6614 /* 6615 * Only tasks which were queued before the iteration started are 6616 * visible. This bounds BPF iterations and guarantees that vtime never 6617 * jumps in the other direction while iterating. 6618 */ 6619 do { 6620 p = nldsq_next_task(kit->dsq, p, rev); 6621 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6622 6623 if (p) { 6624 if (rev) 6625 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6626 else 6627 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6628 } else { 6629 list_del_init(&kit->cursor.node); 6630 } 6631 6632 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6633 6634 return p; 6635 } 6636 6637 /** 6638 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6639 * @it: iterator to destroy 6640 * 6641 * Undo scx_iter_scx_dsq_new(). 6642 */ 6643 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6644 { 6645 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6646 6647 if (!kit->dsq) 6648 return; 6649 6650 if (!list_empty(&kit->cursor.node)) { 6651 unsigned long flags; 6652 6653 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6654 list_del_init(&kit->cursor.node); 6655 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6656 } 6657 kit->dsq = NULL; 6658 } 6659 6660 __bpf_kfunc_end_defs(); 6661 6662 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 6663 char *fmt, unsigned long long *data, u32 data__sz) 6664 { 6665 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6666 s32 ret; 6667 6668 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6669 (data__sz && !data)) { 6670 scx_ops_error("invalid data=%p and data__sz=%u", 6671 (void *)data, data__sz); 6672 return -EINVAL; 6673 } 6674 6675 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6676 if (ret < 0) { 6677 scx_ops_error("failed to read data fields (%d)", ret); 6678 return ret; 6679 } 6680 6681 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6682 &bprintf_data); 6683 if (ret < 0) { 6684 scx_ops_error("format preparation failed (%d)", ret); 6685 return ret; 6686 } 6687 6688 ret = bstr_printf(line_buf, line_size, fmt, 6689 bprintf_data.bin_args); 6690 bpf_bprintf_cleanup(&bprintf_data); 6691 if (ret < 0) { 6692 scx_ops_error("(\"%s\", %p, %u) failed to format", 6693 fmt, data, data__sz); 6694 return ret; 6695 } 6696 6697 return ret; 6698 } 6699 6700 static s32 bstr_format(struct scx_bstr_buf *buf, 6701 char *fmt, unsigned long long *data, u32 data__sz) 6702 { 6703 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 6704 fmt, data, data__sz); 6705 } 6706 6707 __bpf_kfunc_start_defs(); 6708 6709 /** 6710 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6711 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6712 * @fmt: error message format string 6713 * @data: format string parameters packaged using ___bpf_fill() macro 6714 * @data__sz: @data len, must end in '__sz' for the verifier 6715 * 6716 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6717 * disabling. 6718 */ 6719 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6720 unsigned long long *data, u32 data__sz) 6721 { 6722 unsigned long flags; 6723 6724 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6725 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6726 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 6727 scx_exit_bstr_buf.line); 6728 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6729 } 6730 6731 /** 6732 * scx_bpf_error_bstr - Indicate fatal error 6733 * @fmt: error message format string 6734 * @data: format string parameters packaged using ___bpf_fill() macro 6735 * @data__sz: @data len, must end in '__sz' for the verifier 6736 * 6737 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6738 * disabling. 6739 */ 6740 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6741 u32 data__sz) 6742 { 6743 unsigned long flags; 6744 6745 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6746 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6747 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 6748 scx_exit_bstr_buf.line); 6749 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6750 } 6751 6752 /** 6753 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 6754 * @fmt: format string 6755 * @data: format string parameters packaged using ___bpf_fill() macro 6756 * @data__sz: @data len, must end in '__sz' for the verifier 6757 * 6758 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6759 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6760 * 6761 * The extra dump may be multiple lines. A single line may be split over 6762 * multiple calls. The last line is automatically terminated. 6763 */ 6764 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6765 u32 data__sz) 6766 { 6767 struct scx_dump_data *dd = &scx_dump_data; 6768 struct scx_bstr_buf *buf = &dd->buf; 6769 s32 ret; 6770 6771 if (raw_smp_processor_id() != dd->cpu) { 6772 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 6773 return; 6774 } 6775 6776 /* append the formatted string to the line buf */ 6777 ret = __bstr_format(buf->data, buf->line + dd->cursor, 6778 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6779 if (ret < 0) { 6780 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6781 dd->prefix, fmt, data, data__sz, ret); 6782 return; 6783 } 6784 6785 dd->cursor += ret; 6786 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6787 6788 if (!dd->cursor) 6789 return; 6790 6791 /* 6792 * If the line buf overflowed or ends in a newline, flush it into the 6793 * dump. This is to allow the caller to generate a single line over 6794 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6795 * the line buf, the only case which can lead to an unexpected 6796 * truncation is when the caller keeps generating newlines in the middle 6797 * instead of the end consecutively. Don't do that. 6798 */ 6799 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6800 ops_dump_flush(); 6801 } 6802 6803 /** 6804 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6805 * @cpu: CPU of interest 6806 * 6807 * Return the maximum relative capacity of @cpu in relation to the most 6808 * performant CPU in the system. The return value is in the range [1, 6809 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6810 */ 6811 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6812 { 6813 if (ops_cpu_valid(cpu, NULL)) 6814 return arch_scale_cpu_capacity(cpu); 6815 else 6816 return SCX_CPUPERF_ONE; 6817 } 6818 6819 /** 6820 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6821 * @cpu: CPU of interest 6822 * 6823 * Return the current relative performance of @cpu in relation to its maximum. 6824 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6825 * 6826 * The current performance level of a CPU in relation to the maximum performance 6827 * available in the system can be calculated as follows: 6828 * 6829 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6830 * 6831 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6832 */ 6833 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6834 { 6835 if (ops_cpu_valid(cpu, NULL)) 6836 return arch_scale_freq_capacity(cpu); 6837 else 6838 return SCX_CPUPERF_ONE; 6839 } 6840 6841 /** 6842 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6843 * @cpu: CPU of interest 6844 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6845 * @flags: %SCX_CPUPERF_* flags 6846 * 6847 * Set the target performance level of @cpu to @perf. @perf is in linear 6848 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6849 * schedutil cpufreq governor chooses the target frequency. 6850 * 6851 * The actual performance level chosen, CPU grouping, and the overhead and 6852 * latency of the operations are dependent on the hardware and cpufreq driver in 6853 * use. Consult hardware and cpufreq documentation for more information. The 6854 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6855 */ 6856 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6857 { 6858 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6859 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 6860 return; 6861 } 6862 6863 if (ops_cpu_valid(cpu, NULL)) { 6864 struct rq *rq = cpu_rq(cpu); 6865 6866 rq->scx.cpuperf_target = perf; 6867 6868 rcu_read_lock_sched_notrace(); 6869 cpufreq_update_util(cpu_rq(cpu), 0); 6870 rcu_read_unlock_sched_notrace(); 6871 } 6872 } 6873 6874 /** 6875 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6876 * 6877 * All valid CPU IDs in the system are smaller than the returned value. 6878 */ 6879 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6880 { 6881 return nr_cpu_ids; 6882 } 6883 6884 /** 6885 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6886 */ 6887 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6888 { 6889 return cpu_possible_mask; 6890 } 6891 6892 /** 6893 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6894 */ 6895 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6896 { 6897 return cpu_online_mask; 6898 } 6899 6900 /** 6901 * scx_bpf_put_cpumask - Release a possible/online cpumask 6902 * @cpumask: cpumask to release 6903 */ 6904 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6905 { 6906 /* 6907 * Empty function body because we aren't actually acquiring or releasing 6908 * a reference to a global cpumask, which is read-only in the caller and 6909 * is never released. The acquire / release semantics here are just used 6910 * to make the cpumask is a trusted pointer in the caller. 6911 */ 6912 } 6913 6914 /** 6915 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 6916 * per-CPU cpumask. 6917 * 6918 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 6919 */ 6920 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 6921 { 6922 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6923 scx_ops_error("built-in idle tracking is disabled"); 6924 return cpu_none_mask; 6925 } 6926 6927 #ifdef CONFIG_SMP 6928 return idle_masks.cpu; 6929 #else 6930 return cpu_none_mask; 6931 #endif 6932 } 6933 6934 /** 6935 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 6936 * per-physical-core cpumask. Can be used to determine if an entire physical 6937 * core is free. 6938 * 6939 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 6940 */ 6941 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 6942 { 6943 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6944 scx_ops_error("built-in idle tracking is disabled"); 6945 return cpu_none_mask; 6946 } 6947 6948 #ifdef CONFIG_SMP 6949 if (sched_smt_active()) 6950 return idle_masks.smt; 6951 else 6952 return idle_masks.cpu; 6953 #else 6954 return cpu_none_mask; 6955 #endif 6956 } 6957 6958 /** 6959 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 6960 * either the percpu, or SMT idle-tracking cpumask. 6961 */ 6962 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 6963 { 6964 /* 6965 * Empty function body because we aren't actually acquiring or releasing 6966 * a reference to a global idle cpumask, which is read-only in the 6967 * caller and is never released. The acquire / release semantics here 6968 * are just used to make the cpumask a trusted pointer in the caller. 6969 */ 6970 } 6971 6972 /** 6973 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 6974 * @cpu: cpu to test and clear idle for 6975 * 6976 * Returns %true if @cpu was idle and its idle state was successfully cleared. 6977 * %false otherwise. 6978 * 6979 * Unavailable if ops.update_idle() is implemented and 6980 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 6981 */ 6982 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 6983 { 6984 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6985 scx_ops_error("built-in idle tracking is disabled"); 6986 return false; 6987 } 6988 6989 if (ops_cpu_valid(cpu, NULL)) 6990 return test_and_clear_cpu_idle(cpu); 6991 else 6992 return false; 6993 } 6994 6995 /** 6996 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 6997 * @cpus_allowed: Allowed cpumask 6998 * @flags: %SCX_PICK_IDLE_CPU_* flags 6999 * 7000 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 7001 * number on success. -%EBUSY if no matching cpu was found. 7002 * 7003 * Idle CPU tracking may race against CPU scheduling state transitions. For 7004 * example, this function may return -%EBUSY as CPUs are transitioning into the 7005 * idle state. If the caller then assumes that there will be dispatch events on 7006 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 7007 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7008 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7009 * event in the near future. 7010 * 7011 * Unavailable if ops.update_idle() is implemented and 7012 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7013 */ 7014 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7015 u64 flags) 7016 { 7017 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7018 scx_ops_error("built-in idle tracking is disabled"); 7019 return -EBUSY; 7020 } 7021 7022 return scx_pick_idle_cpu(cpus_allowed, flags); 7023 } 7024 7025 /** 7026 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7027 * @cpus_allowed: Allowed cpumask 7028 * @flags: %SCX_PICK_IDLE_CPU_* flags 7029 * 7030 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7031 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7032 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7033 * empty. 7034 * 7035 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7036 * set, this function can't tell which CPUs are idle and will always pick any 7037 * CPU. 7038 */ 7039 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7040 u64 flags) 7041 { 7042 s32 cpu; 7043 7044 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7045 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7046 if (cpu >= 0) 7047 return cpu; 7048 } 7049 7050 cpu = cpumask_any_distribute(cpus_allowed); 7051 if (cpu < nr_cpu_ids) 7052 return cpu; 7053 else 7054 return -EBUSY; 7055 } 7056 7057 /** 7058 * scx_bpf_task_running - Is task currently running? 7059 * @p: task of interest 7060 */ 7061 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7062 { 7063 return task_rq(p)->curr == p; 7064 } 7065 7066 /** 7067 * scx_bpf_task_cpu - CPU a task is currently associated with 7068 * @p: task of interest 7069 */ 7070 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7071 { 7072 return task_cpu(p); 7073 } 7074 7075 /** 7076 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7077 * @cpu: CPU of the rq 7078 */ 7079 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7080 { 7081 if (!ops_cpu_valid(cpu, NULL)) 7082 return NULL; 7083 7084 return cpu_rq(cpu); 7085 } 7086 7087 /** 7088 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7089 * @p: task of interest 7090 * 7091 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7092 * from the scheduler's POV. SCX operations should use this function to 7093 * determine @p's current cgroup as, unlike following @p->cgroups, 7094 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7095 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7096 * operations. The restriction guarantees that @p's rq is locked by the caller. 7097 */ 7098 #ifdef CONFIG_CGROUP_SCHED 7099 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7100 { 7101 struct task_group *tg = p->sched_task_group; 7102 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7103 7104 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7105 goto out; 7106 7107 /* 7108 * A task_group may either be a cgroup or an autogroup. In the latter 7109 * case, @tg->css.cgroup is %NULL. A task_group can't become the other 7110 * kind once created. 7111 */ 7112 if (tg && tg->css.cgroup) 7113 cgrp = tg->css.cgroup; 7114 else 7115 cgrp = &cgrp_dfl_root.cgrp; 7116 out: 7117 cgroup_get(cgrp); 7118 return cgrp; 7119 } 7120 #endif 7121 7122 __bpf_kfunc_end_defs(); 7123 7124 BTF_KFUNCS_START(scx_kfunc_ids_any) 7125 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7126 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7127 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7128 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7129 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7130 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7131 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7132 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7133 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7134 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7135 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7136 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7137 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7138 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7139 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7140 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7141 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7142 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7143 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7144 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7145 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7146 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7147 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7148 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7149 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7150 #ifdef CONFIG_CGROUP_SCHED 7151 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7152 #endif 7153 BTF_KFUNCS_END(scx_kfunc_ids_any) 7154 7155 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7156 .owner = THIS_MODULE, 7157 .set = &scx_kfunc_ids_any, 7158 }; 7159 7160 static int __init scx_init(void) 7161 { 7162 int ret; 7163 7164 /* 7165 * kfunc registration can't be done from init_sched_ext_class() as 7166 * register_btf_kfunc_id_set() needs most of the system to be up. 7167 * 7168 * Some kfuncs are context-sensitive and can only be called from 7169 * specific SCX ops. They are grouped into BTF sets accordingly. 7170 * Unfortunately, BPF currently doesn't have a way of enforcing such 7171 * restrictions. Eventually, the verifier should be able to enforce 7172 * them. For now, register them the same and make each kfunc explicitly 7173 * check using scx_kf_allowed(). 7174 */ 7175 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7176 &scx_kfunc_set_select_cpu)) || 7177 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7178 &scx_kfunc_set_enqueue_dispatch)) || 7179 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7180 &scx_kfunc_set_dispatch)) || 7181 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7182 &scx_kfunc_set_cpu_release)) || 7183 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7184 &scx_kfunc_set_unlocked)) || 7185 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7186 &scx_kfunc_set_unlocked)) || 7187 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7188 &scx_kfunc_set_any)) || 7189 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7190 &scx_kfunc_set_any)) || 7191 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7192 &scx_kfunc_set_any))) { 7193 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7194 return ret; 7195 } 7196 7197 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7198 if (ret) { 7199 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7200 return ret; 7201 } 7202 7203 ret = register_pm_notifier(&scx_pm_notifier); 7204 if (ret) { 7205 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7206 return ret; 7207 } 7208 7209 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7210 if (!scx_kset) { 7211 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7212 return -ENOMEM; 7213 } 7214 7215 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7216 if (ret < 0) { 7217 pr_err("sched_ext: Failed to add global attributes\n"); 7218 return ret; 7219 } 7220 7221 return 0; 7222 } 7223 __initcall(scx_init); 7224