1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_DSP_DFL_MAX_BATCH = 32, 13 SCX_DSP_MAX_LOOPS = 32, 14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 15 16 SCX_EXIT_BT_LEN = 64, 17 SCX_EXIT_MSG_LEN = 1024, 18 SCX_EXIT_DUMP_DFL_LEN = 32768, 19 20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 21 22 /* 23 * Iterating all tasks may take a while. Periodically drop 24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 25 */ 26 SCX_OPS_TASK_ITER_BATCH = 32, 27 }; 28 29 enum scx_exit_kind { 30 SCX_EXIT_NONE, 31 SCX_EXIT_DONE, 32 33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 37 38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 41 }; 42 43 /* 44 * An exit code can be specified when exiting with scx_bpf_exit() or 45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 46 * respectively. The codes are 64bit of the format: 47 * 48 * Bits: [63 .. 48 47 .. 32 31 .. 0] 49 * [ SYS ACT ] [ SYS RSN ] [ USR ] 50 * 51 * SYS ACT: System-defined exit actions 52 * SYS RSN: System-defined exit reasons 53 * USR : User-defined exit codes and reasons 54 * 55 * Using the above, users may communicate intention and context by ORing system 56 * actions and/or system reasons with a user-defined exit code. 57 */ 58 enum scx_exit_code { 59 /* Reasons */ 60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 61 62 /* Actions */ 63 SCX_ECODE_ACT_RESTART = 1LLU << 48, 64 }; 65 66 /* 67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 68 * being disabled. 69 */ 70 struct scx_exit_info { 71 /* %SCX_EXIT_* - broad category of the exit reason */ 72 enum scx_exit_kind kind; 73 74 /* exit code if gracefully exiting */ 75 s64 exit_code; 76 77 /* textual representation of the above */ 78 const char *reason; 79 80 /* backtrace if exiting due to an error */ 81 unsigned long *bt; 82 u32 bt_len; 83 84 /* informational message */ 85 char *msg; 86 87 /* debug dump */ 88 char *dump; 89 }; 90 91 /* sched_ext_ops.flags */ 92 enum scx_ops_flags { 93 /* 94 * Keep built-in idle tracking even if ops.update_idle() is implemented. 95 */ 96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 97 98 /* 99 * By default, if there are no other task to run on the CPU, ext core 100 * keeps running the current task even after its slice expires. If this 101 * flag is specified, such tasks are passed to ops.enqueue() with 102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 103 */ 104 SCX_OPS_ENQ_LAST = 1LLU << 1, 105 106 /* 107 * An exiting task may schedule after PF_EXITING is set. In such cases, 108 * bpf_task_from_pid() may not be able to find the task and if the BPF 109 * scheduler depends on pid lookup for dispatching, the task will be 110 * lost leading to various issues including RCU grace period stalls. 111 * 112 * To mask this problem, by default, unhashed tasks are automatically 113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 114 * depend on pid lookups and wants to handle these tasks directly, the 115 * following flag can be used. 116 */ 117 SCX_OPS_ENQ_EXITING = 1LLU << 2, 118 119 /* 120 * If set, only tasks with policy set to SCHED_EXT are attached to 121 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 122 */ 123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 124 125 /* 126 * CPU cgroup support flags 127 */ 128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 129 130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 131 SCX_OPS_ENQ_LAST | 132 SCX_OPS_ENQ_EXITING | 133 SCX_OPS_SWITCH_PARTIAL | 134 SCX_OPS_HAS_CGROUP_WEIGHT, 135 }; 136 137 /* argument container for ops.init_task() */ 138 struct scx_init_task_args { 139 /* 140 * Set if ops.init_task() is being invoked on the fork path, as opposed 141 * to the scheduler transition path. 142 */ 143 bool fork; 144 #ifdef CONFIG_EXT_GROUP_SCHED 145 /* the cgroup the task is joining */ 146 struct cgroup *cgroup; 147 #endif 148 }; 149 150 /* argument container for ops.exit_task() */ 151 struct scx_exit_task_args { 152 /* Whether the task exited before running on sched_ext. */ 153 bool cancelled; 154 }; 155 156 /* argument container for ops->cgroup_init() */ 157 struct scx_cgroup_init_args { 158 /* the weight of the cgroup [1..10000] */ 159 u32 weight; 160 }; 161 162 enum scx_cpu_preempt_reason { 163 /* next task is being scheduled by &sched_class_rt */ 164 SCX_CPU_PREEMPT_RT, 165 /* next task is being scheduled by &sched_class_dl */ 166 SCX_CPU_PREEMPT_DL, 167 /* next task is being scheduled by &sched_class_stop */ 168 SCX_CPU_PREEMPT_STOP, 169 /* unknown reason for SCX being preempted */ 170 SCX_CPU_PREEMPT_UNKNOWN, 171 }; 172 173 /* 174 * Argument container for ops->cpu_acquire(). Currently empty, but may be 175 * expanded in the future. 176 */ 177 struct scx_cpu_acquire_args {}; 178 179 /* argument container for ops->cpu_release() */ 180 struct scx_cpu_release_args { 181 /* the reason the CPU was preempted */ 182 enum scx_cpu_preempt_reason reason; 183 184 /* the task that's going to be scheduled on the CPU */ 185 struct task_struct *task; 186 }; 187 188 /* 189 * Informational context provided to dump operations. 190 */ 191 struct scx_dump_ctx { 192 enum scx_exit_kind kind; 193 s64 exit_code; 194 const char *reason; 195 u64 at_ns; 196 u64 at_jiffies; 197 }; 198 199 /** 200 * struct sched_ext_ops - Operation table for BPF scheduler implementation 201 * 202 * A BPF scheduler can implement an arbitrary scheduling policy by 203 * implementing and loading operations in this table. Note that a userland 204 * scheduling policy can also be implemented using the BPF scheduler 205 * as a shim layer. 206 */ 207 struct sched_ext_ops { 208 /** 209 * select_cpu - Pick the target CPU for a task which is being woken up 210 * @p: task being woken up 211 * @prev_cpu: the cpu @p was on before sleeping 212 * @wake_flags: SCX_WAKE_* 213 * 214 * Decision made here isn't final. @p may be moved to any CPU while it 215 * is getting dispatched for execution later. However, as @p is not on 216 * the rq at this point, getting the eventual execution CPU right here 217 * saves a small bit of overhead down the line. 218 * 219 * If an idle CPU is returned, the CPU is kicked and will try to 220 * dispatch. While an explicit custom mechanism can be added, 221 * select_cpu() serves as the default way to wake up idle CPUs. 222 * 223 * @p may be inserted into a DSQ directly by calling 224 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 225 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 226 * of the CPU returned by this operation. 227 * 228 * Note that select_cpu() is never called for tasks that can only run 229 * on a single CPU or tasks with migration disabled, as they don't have 230 * the option to select a different CPU. See select_task_rq() for 231 * details. 232 */ 233 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 234 235 /** 236 * enqueue - Enqueue a task on the BPF scheduler 237 * @p: task being enqueued 238 * @enq_flags: %SCX_ENQ_* 239 * 240 * @p is ready to run. Insert directly into a DSQ by calling 241 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 242 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 243 * the task will stall. 244 * 245 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 246 * skipped. 247 */ 248 void (*enqueue)(struct task_struct *p, u64 enq_flags); 249 250 /** 251 * dequeue - Remove a task from the BPF scheduler 252 * @p: task being dequeued 253 * @deq_flags: %SCX_DEQ_* 254 * 255 * Remove @p from the BPF scheduler. This is usually called to isolate 256 * the task while updating its scheduling properties (e.g. priority). 257 * 258 * The ext core keeps track of whether the BPF side owns a given task or 259 * not and can gracefully ignore spurious dispatches from BPF side, 260 * which makes it safe to not implement this method. However, depending 261 * on the scheduling logic, this can lead to confusing behaviors - e.g. 262 * scheduling position not being updated across a priority change. 263 */ 264 void (*dequeue)(struct task_struct *p, u64 deq_flags); 265 266 /** 267 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs 268 * @cpu: CPU to dispatch tasks for 269 * @prev: previous task being switched out 270 * 271 * Called when a CPU's local dsq is empty. The operation should dispatch 272 * one or more tasks from the BPF scheduler into the DSQs using 273 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 274 * using scx_bpf_dsq_move_to_local(). 275 * 276 * The maximum number of times scx_bpf_dsq_insert() can be called 277 * without an intervening scx_bpf_dsq_move_to_local() is specified by 278 * ops.dispatch_max_batch. See the comments on top of the two functions 279 * for more details. 280 * 281 * When not %NULL, @prev is an SCX task with its slice depleted. If 282 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 283 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 284 * ops.dispatch() returns. To keep executing @prev, return without 285 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 286 */ 287 void (*dispatch)(s32 cpu, struct task_struct *prev); 288 289 /** 290 * tick - Periodic tick 291 * @p: task running currently 292 * 293 * This operation is called every 1/HZ seconds on CPUs which are 294 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 295 * immediate dispatch cycle on the CPU. 296 */ 297 void (*tick)(struct task_struct *p); 298 299 /** 300 * runnable - A task is becoming runnable on its associated CPU 301 * @p: task becoming runnable 302 * @enq_flags: %SCX_ENQ_* 303 * 304 * This and the following three functions can be used to track a task's 305 * execution state transitions. A task becomes ->runnable() on a CPU, 306 * and then goes through one or more ->running() and ->stopping() pairs 307 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 308 * done running on the CPU. 309 * 310 * @p is becoming runnable on the CPU because it's 311 * 312 * - waking up (%SCX_ENQ_WAKEUP) 313 * - being moved from another CPU 314 * - being restored after temporarily taken off the queue for an 315 * attribute change. 316 * 317 * This and ->enqueue() are related but not coupled. This operation 318 * notifies @p's state transition and may not be followed by ->enqueue() 319 * e.g. when @p is being dispatched to a remote CPU, or when @p is 320 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 321 * task may be ->enqueue()'d without being preceded by this operation 322 * e.g. after exhausting its slice. 323 */ 324 void (*runnable)(struct task_struct *p, u64 enq_flags); 325 326 /** 327 * running - A task is starting to run on its associated CPU 328 * @p: task starting to run 329 * 330 * See ->runnable() for explanation on the task state notifiers. 331 */ 332 void (*running)(struct task_struct *p); 333 334 /** 335 * stopping - A task is stopping execution 336 * @p: task stopping to run 337 * @runnable: is task @p still runnable? 338 * 339 * See ->runnable() for explanation on the task state notifiers. If 340 * !@runnable, ->quiescent() will be invoked after this operation 341 * returns. 342 */ 343 void (*stopping)(struct task_struct *p, bool runnable); 344 345 /** 346 * quiescent - A task is becoming not runnable on its associated CPU 347 * @p: task becoming not runnable 348 * @deq_flags: %SCX_DEQ_* 349 * 350 * See ->runnable() for explanation on the task state notifiers. 351 * 352 * @p is becoming quiescent on the CPU because it's 353 * 354 * - sleeping (%SCX_DEQ_SLEEP) 355 * - being moved to another CPU 356 * - being temporarily taken off the queue for an attribute change 357 * (%SCX_DEQ_SAVE) 358 * 359 * This and ->dequeue() are related but not coupled. This operation 360 * notifies @p's state transition and may not be preceded by ->dequeue() 361 * e.g. when @p is being dispatched to a remote CPU. 362 */ 363 void (*quiescent)(struct task_struct *p, u64 deq_flags); 364 365 /** 366 * yield - Yield CPU 367 * @from: yielding task 368 * @to: optional yield target task 369 * 370 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 371 * The BPF scheduler should ensure that other available tasks are 372 * dispatched before the yielding task. Return value is ignored in this 373 * case. 374 * 375 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 376 * scheduler can implement the request, return %true; otherwise, %false. 377 */ 378 bool (*yield)(struct task_struct *from, struct task_struct *to); 379 380 /** 381 * core_sched_before - Task ordering for core-sched 382 * @a: task A 383 * @b: task B 384 * 385 * Used by core-sched to determine the ordering between two tasks. See 386 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 387 * core-sched. 388 * 389 * Both @a and @b are runnable and may or may not currently be queued on 390 * the BPF scheduler. Should return %true if @a should run before @b. 391 * %false if there's no required ordering or @b should run before @a. 392 * 393 * If not specified, the default is ordering them according to when they 394 * became runnable. 395 */ 396 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 397 398 /** 399 * set_weight - Set task weight 400 * @p: task to set weight for 401 * @weight: new weight [1..10000] 402 * 403 * Update @p's weight to @weight. 404 */ 405 void (*set_weight)(struct task_struct *p, u32 weight); 406 407 /** 408 * set_cpumask - Set CPU affinity 409 * @p: task to set CPU affinity for 410 * @cpumask: cpumask of cpus that @p can run on 411 * 412 * Update @p's CPU affinity to @cpumask. 413 */ 414 void (*set_cpumask)(struct task_struct *p, 415 const struct cpumask *cpumask); 416 417 /** 418 * update_idle - Update the idle state of a CPU 419 * @cpu: CPU to udpate the idle state for 420 * @idle: whether entering or exiting the idle state 421 * 422 * This operation is called when @rq's CPU goes or leaves the idle 423 * state. By default, implementing this operation disables the built-in 424 * idle CPU tracking and the following helpers become unavailable: 425 * 426 * - scx_bpf_select_cpu_dfl() 427 * - scx_bpf_test_and_clear_cpu_idle() 428 * - scx_bpf_pick_idle_cpu() 429 * 430 * The user also must implement ops.select_cpu() as the default 431 * implementation relies on scx_bpf_select_cpu_dfl(). 432 * 433 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 434 * tracking. 435 */ 436 void (*update_idle)(s32 cpu, bool idle); 437 438 /** 439 * cpu_acquire - A CPU is becoming available to the BPF scheduler 440 * @cpu: The CPU being acquired by the BPF scheduler. 441 * @args: Acquire arguments, see the struct definition. 442 * 443 * A CPU that was previously released from the BPF scheduler is now once 444 * again under its control. 445 */ 446 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 447 448 /** 449 * cpu_release - A CPU is taken away from the BPF scheduler 450 * @cpu: The CPU being released by the BPF scheduler. 451 * @args: Release arguments, see the struct definition. 452 * 453 * The specified CPU is no longer under the control of the BPF 454 * scheduler. This could be because it was preempted by a higher 455 * priority sched_class, though there may be other reasons as well. The 456 * caller should consult @args->reason to determine the cause. 457 */ 458 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 459 460 /** 461 * init_task - Initialize a task to run in a BPF scheduler 462 * @p: task to initialize for BPF scheduling 463 * @args: init arguments, see the struct definition 464 * 465 * Either we're loading a BPF scheduler or a new task is being forked. 466 * Initialize @p for BPF scheduling. This operation may block and can 467 * be used for allocations, and is called exactly once for a task. 468 * 469 * Return 0 for success, -errno for failure. An error return while 470 * loading will abort loading of the BPF scheduler. During a fork, it 471 * will abort that specific fork. 472 */ 473 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 474 475 /** 476 * exit_task - Exit a previously-running task from the system 477 * @p: task to exit 478 * 479 * @p is exiting or the BPF scheduler is being unloaded. Perform any 480 * necessary cleanup for @p. 481 */ 482 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 483 484 /** 485 * enable - Enable BPF scheduling for a task 486 * @p: task to enable BPF scheduling for 487 * 488 * Enable @p for BPF scheduling. enable() is called on @p any time it 489 * enters SCX, and is always paired with a matching disable(). 490 */ 491 void (*enable)(struct task_struct *p); 492 493 /** 494 * disable - Disable BPF scheduling for a task 495 * @p: task to disable BPF scheduling for 496 * 497 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 498 * Disable BPF scheduling for @p. A disable() call is always matched 499 * with a prior enable() call. 500 */ 501 void (*disable)(struct task_struct *p); 502 503 /** 504 * dump - Dump BPF scheduler state on error 505 * @ctx: debug dump context 506 * 507 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 508 */ 509 void (*dump)(struct scx_dump_ctx *ctx); 510 511 /** 512 * dump_cpu - Dump BPF scheduler state for a CPU on error 513 * @ctx: debug dump context 514 * @cpu: CPU to generate debug dump for 515 * @idle: @cpu is currently idle without any runnable tasks 516 * 517 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 518 * @cpu. If @idle is %true and this operation doesn't produce any 519 * output, @cpu is skipped for dump. 520 */ 521 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 522 523 /** 524 * dump_task - Dump BPF scheduler state for a runnable task on error 525 * @ctx: debug dump context 526 * @p: runnable task to generate debug dump for 527 * 528 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 529 * @p. 530 */ 531 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 532 533 #ifdef CONFIG_EXT_GROUP_SCHED 534 /** 535 * cgroup_init - Initialize a cgroup 536 * @cgrp: cgroup being initialized 537 * @args: init arguments, see the struct definition 538 * 539 * Either the BPF scheduler is being loaded or @cgrp created, initialize 540 * @cgrp for sched_ext. This operation may block. 541 * 542 * Return 0 for success, -errno for failure. An error return while 543 * loading will abort loading of the BPF scheduler. During cgroup 544 * creation, it will abort the specific cgroup creation. 545 */ 546 s32 (*cgroup_init)(struct cgroup *cgrp, 547 struct scx_cgroup_init_args *args); 548 549 /** 550 * cgroup_exit - Exit a cgroup 551 * @cgrp: cgroup being exited 552 * 553 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 554 * @cgrp for sched_ext. This operation my block. 555 */ 556 void (*cgroup_exit)(struct cgroup *cgrp); 557 558 /** 559 * cgroup_prep_move - Prepare a task to be moved to a different cgroup 560 * @p: task being moved 561 * @from: cgroup @p is being moved from 562 * @to: cgroup @p is being moved to 563 * 564 * Prepare @p for move from cgroup @from to @to. This operation may 565 * block and can be used for allocations. 566 * 567 * Return 0 for success, -errno for failure. An error return aborts the 568 * migration. 569 */ 570 s32 (*cgroup_prep_move)(struct task_struct *p, 571 struct cgroup *from, struct cgroup *to); 572 573 /** 574 * cgroup_move - Commit cgroup move 575 * @p: task being moved 576 * @from: cgroup @p is being moved from 577 * @to: cgroup @p is being moved to 578 * 579 * Commit the move. @p is dequeued during this operation. 580 */ 581 void (*cgroup_move)(struct task_struct *p, 582 struct cgroup *from, struct cgroup *to); 583 584 /** 585 * cgroup_cancel_move - Cancel cgroup move 586 * @p: task whose cgroup move is being canceled 587 * @from: cgroup @p was being moved from 588 * @to: cgroup @p was being moved to 589 * 590 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 591 * Undo the preparation. 592 */ 593 void (*cgroup_cancel_move)(struct task_struct *p, 594 struct cgroup *from, struct cgroup *to); 595 596 /** 597 * cgroup_set_weight - A cgroup's weight is being changed 598 * @cgrp: cgroup whose weight is being updated 599 * @weight: new weight [1..10000] 600 * 601 * Update @tg's weight to @weight. 602 */ 603 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 604 #endif /* CONFIG_EXT_GROUP_SCHED */ 605 606 /* 607 * All online ops must come before ops.cpu_online(). 608 */ 609 610 /** 611 * cpu_online - A CPU became online 612 * @cpu: CPU which just came up 613 * 614 * @cpu just came online. @cpu will not call ops.enqueue() or 615 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 616 */ 617 void (*cpu_online)(s32 cpu); 618 619 /** 620 * cpu_offline - A CPU is going offline 621 * @cpu: CPU which is going offline 622 * 623 * @cpu is going offline. @cpu will not call ops.enqueue() or 624 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 625 */ 626 void (*cpu_offline)(s32 cpu); 627 628 /* 629 * All CPU hotplug ops must come before ops.init(). 630 */ 631 632 /** 633 * init - Initialize the BPF scheduler 634 */ 635 s32 (*init)(void); 636 637 /** 638 * exit - Clean up after the BPF scheduler 639 * @info: Exit info 640 * 641 * ops.exit() is also called on ops.init() failure, which is a bit 642 * unusual. This is to allow rich reporting through @info on how 643 * ops.init() failed. 644 */ 645 void (*exit)(struct scx_exit_info *info); 646 647 /** 648 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 649 */ 650 u32 dispatch_max_batch; 651 652 /** 653 * flags - %SCX_OPS_* flags 654 */ 655 u64 flags; 656 657 /** 658 * timeout_ms - The maximum amount of time, in milliseconds, that a 659 * runnable task should be able to wait before being scheduled. The 660 * maximum timeout may not exceed the default timeout of 30 seconds. 661 * 662 * Defaults to the maximum allowed timeout value of 30 seconds. 663 */ 664 u32 timeout_ms; 665 666 /** 667 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 668 * value of 32768 is used. 669 */ 670 u32 exit_dump_len; 671 672 /** 673 * hotplug_seq - A sequence number that may be set by the scheduler to 674 * detect when a hotplug event has occurred during the loading process. 675 * If 0, no detection occurs. Otherwise, the scheduler will fail to 676 * load if the sequence number does not match @scx_hotplug_seq on the 677 * enable path. 678 */ 679 u64 hotplug_seq; 680 681 /** 682 * name - BPF scheduler's name 683 * 684 * Must be a non-zero valid BPF object name including only isalnum(), 685 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 686 * BPF scheduler is enabled. 687 */ 688 char name[SCX_OPS_NAME_LEN]; 689 }; 690 691 enum scx_opi { 692 SCX_OPI_BEGIN = 0, 693 SCX_OPI_NORMAL_BEGIN = 0, 694 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 695 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 696 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 697 SCX_OPI_END = SCX_OP_IDX(init), 698 }; 699 700 enum scx_wake_flags { 701 /* expose select WF_* flags as enums */ 702 SCX_WAKE_FORK = WF_FORK, 703 SCX_WAKE_TTWU = WF_TTWU, 704 SCX_WAKE_SYNC = WF_SYNC, 705 }; 706 707 enum scx_enq_flags { 708 /* expose select ENQUEUE_* flags as enums */ 709 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 710 SCX_ENQ_HEAD = ENQUEUE_HEAD, 711 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 712 713 /* high 32bits are SCX specific */ 714 715 /* 716 * Set the following to trigger preemption when calling 717 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 718 * current task is cleared to zero and the CPU is kicked into the 719 * scheduling path. Implies %SCX_ENQ_HEAD. 720 */ 721 SCX_ENQ_PREEMPT = 1LLU << 32, 722 723 /* 724 * The task being enqueued was previously enqueued on the current CPU's 725 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 726 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 727 * invoked in a ->cpu_release() callback, and the task is again 728 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 729 * task will not be scheduled on the CPU until at least the next invocation 730 * of the ->cpu_acquire() callback. 731 */ 732 SCX_ENQ_REENQ = 1LLU << 40, 733 734 /* 735 * The task being enqueued is the only task available for the cpu. By 736 * default, ext core keeps executing such tasks but when 737 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 738 * %SCX_ENQ_LAST flag set. 739 * 740 * The BPF scheduler is responsible for triggering a follow-up 741 * scheduling event. Otherwise, Execution may stall. 742 */ 743 SCX_ENQ_LAST = 1LLU << 41, 744 745 /* high 8 bits are internal */ 746 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 747 748 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 749 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 750 }; 751 752 enum scx_deq_flags { 753 /* expose select DEQUEUE_* flags as enums */ 754 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 755 756 /* high 32bits are SCX specific */ 757 758 /* 759 * The generic core-sched layer decided to execute the task even though 760 * it hasn't been dispatched yet. Dequeue from the BPF side. 761 */ 762 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 763 }; 764 765 enum scx_pick_idle_cpu_flags { 766 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 767 }; 768 769 enum scx_kick_flags { 770 /* 771 * Kick the target CPU if idle. Guarantees that the target CPU goes 772 * through at least one full scheduling cycle before going idle. If the 773 * target CPU can be determined to be currently not idle and going to go 774 * through a scheduling cycle before going idle, noop. 775 */ 776 SCX_KICK_IDLE = 1LLU << 0, 777 778 /* 779 * Preempt the current task and execute the dispatch path. If the 780 * current task of the target CPU is an SCX task, its ->scx.slice is 781 * cleared to zero before the scheduling path is invoked so that the 782 * task expires and the dispatch path is invoked. 783 */ 784 SCX_KICK_PREEMPT = 1LLU << 1, 785 786 /* 787 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 788 * return after the target CPU finishes picking the next task. 789 */ 790 SCX_KICK_WAIT = 1LLU << 2, 791 }; 792 793 enum scx_tg_flags { 794 SCX_TG_ONLINE = 1U << 0, 795 SCX_TG_INITED = 1U << 1, 796 }; 797 798 enum scx_ops_enable_state { 799 SCX_OPS_ENABLING, 800 SCX_OPS_ENABLED, 801 SCX_OPS_DISABLING, 802 SCX_OPS_DISABLED, 803 }; 804 805 static const char *scx_ops_enable_state_str[] = { 806 [SCX_OPS_ENABLING] = "enabling", 807 [SCX_OPS_ENABLED] = "enabled", 808 [SCX_OPS_DISABLING] = "disabling", 809 [SCX_OPS_DISABLED] = "disabled", 810 }; 811 812 /* 813 * sched_ext_entity->ops_state 814 * 815 * Used to track the task ownership between the SCX core and the BPF scheduler. 816 * State transitions look as follows: 817 * 818 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 819 * ^ | | 820 * | v v 821 * \-------------------------------/ 822 * 823 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 824 * sites for explanations on the conditions being waited upon and why they are 825 * safe. Transitions out of them into NONE or QUEUED must store_release and the 826 * waiters should load_acquire. 827 * 828 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 829 * any given task can be dispatched by the BPF scheduler at all times and thus 830 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 831 * to try to dispatch any task anytime regardless of its state as the SCX core 832 * can safely reject invalid dispatches. 833 */ 834 enum scx_ops_state { 835 SCX_OPSS_NONE, /* owned by the SCX core */ 836 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 837 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 838 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 839 840 /* 841 * QSEQ brands each QUEUED instance so that, when dispatch races 842 * dequeue/requeue, the dispatcher can tell whether it still has a claim 843 * on the task being dispatched. 844 * 845 * As some 32bit archs can't do 64bit store_release/load_acquire, 846 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 847 * 32bit machines. The dispatch race window QSEQ protects is very narrow 848 * and runs with IRQ disabled. 30 bits should be sufficient. 849 */ 850 SCX_OPSS_QSEQ_SHIFT = 2, 851 }; 852 853 /* Use macros to ensure that the type is unsigned long for the masks */ 854 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 855 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 856 857 /* 858 * During exit, a task may schedule after losing its PIDs. When disabling the 859 * BPF scheduler, we need to be able to iterate tasks in every state to 860 * guarantee system safety. Maintain a dedicated task list which contains every 861 * task between its fork and eventual free. 862 */ 863 static DEFINE_SPINLOCK(scx_tasks_lock); 864 static LIST_HEAD(scx_tasks); 865 866 /* ops enable/disable */ 867 static struct kthread_worker *scx_ops_helper; 868 static DEFINE_MUTEX(scx_ops_enable_mutex); 869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 871 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 872 static unsigned long scx_in_softlockup; 873 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0); 874 static int scx_ops_bypass_depth; 875 static bool scx_ops_init_task_enabled; 876 static bool scx_switching_all; 877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 878 879 static struct sched_ext_ops scx_ops; 880 static bool scx_warned_zero_slice; 881 882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 886 887 #ifdef CONFIG_SMP 888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); 889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); 890 #endif 891 892 static struct static_key_false scx_has_op[SCX_OPI_END] = 893 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 894 895 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 896 static struct scx_exit_info *scx_exit_info; 897 898 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 899 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 900 901 /* 902 * A monotically increasing sequence number that is incremented every time a 903 * scheduler is enabled. This can be used by to check if any custom sched_ext 904 * scheduler has ever been used in the system. 905 */ 906 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 907 908 /* 909 * The maximum amount of time in jiffies that a task may be runnable without 910 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 911 * scx_ops_error(). 912 */ 913 static unsigned long scx_watchdog_timeout; 914 915 /* 916 * The last time the delayed work was run. This delayed work relies on 917 * ksoftirqd being able to run to service timer interrupts, so it's possible 918 * that this work itself could get wedged. To account for this, we check that 919 * it's not stalled in the timer tick, and trigger an error if it is. 920 */ 921 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 922 923 static struct delayed_work scx_watchdog_work; 924 925 /* idle tracking */ 926 #ifdef CONFIG_SMP 927 #ifdef CONFIG_CPUMASK_OFFSTACK 928 #define CL_ALIGNED_IF_ONSTACK 929 #else 930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 931 #endif 932 933 static struct { 934 cpumask_var_t cpu; 935 cpumask_var_t smt; 936 } idle_masks CL_ALIGNED_IF_ONSTACK; 937 938 #endif /* CONFIG_SMP */ 939 940 /* for %SCX_KICK_WAIT */ 941 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 942 943 /* 944 * Direct dispatch marker. 945 * 946 * Non-NULL values are used for direct dispatch from enqueue path. A valid 947 * pointer points to the task currently being enqueued. An ERR_PTR value is used 948 * to indicate that direct dispatch has already happened. 949 */ 950 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 951 952 /* 953 * Dispatch queues. 954 * 955 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 956 * to avoid live-locking in bypass mode where all tasks are dispatched to 957 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 958 * sufficient, it can be further split. 959 */ 960 static struct scx_dispatch_q **global_dsqs; 961 962 static const struct rhashtable_params dsq_hash_params = { 963 .key_len = 8, 964 .key_offset = offsetof(struct scx_dispatch_q, id), 965 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 966 }; 967 968 static struct rhashtable dsq_hash; 969 static LLIST_HEAD(dsqs_to_free); 970 971 /* dispatch buf */ 972 struct scx_dsp_buf_ent { 973 struct task_struct *task; 974 unsigned long qseq; 975 u64 dsq_id; 976 u64 enq_flags; 977 }; 978 979 static u32 scx_dsp_max_batch; 980 981 struct scx_dsp_ctx { 982 struct rq *rq; 983 u32 cursor; 984 u32 nr_tasks; 985 struct scx_dsp_buf_ent buf[]; 986 }; 987 988 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 989 990 /* string formatting from BPF */ 991 struct scx_bstr_buf { 992 u64 data[MAX_BPRINTF_VARARGS]; 993 char line[SCX_EXIT_MSG_LEN]; 994 }; 995 996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 997 static struct scx_bstr_buf scx_exit_bstr_buf; 998 999 /* ops debug dump */ 1000 struct scx_dump_data { 1001 s32 cpu; 1002 bool first; 1003 s32 cursor; 1004 struct seq_buf *s; 1005 const char *prefix; 1006 struct scx_bstr_buf buf; 1007 }; 1008 1009 static struct scx_dump_data scx_dump_data = { 1010 .cpu = -1, 1011 }; 1012 1013 /* /sys/kernel/sched_ext interface */ 1014 static struct kset *scx_kset; 1015 static struct kobject *scx_root_kobj; 1016 1017 #define CREATE_TRACE_POINTS 1018 #include <trace/events/sched_ext.h> 1019 1020 static void process_ddsp_deferred_locals(struct rq *rq); 1021 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1023 s64 exit_code, 1024 const char *fmt, ...); 1025 1026 #define scx_ops_error_kind(err, fmt, args...) \ 1027 scx_ops_exit_kind((err), 0, fmt, ##args) 1028 1029 #define scx_ops_exit(code, fmt, args...) \ 1030 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1031 1032 #define scx_ops_error(fmt, args...) \ 1033 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1034 1035 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1036 1037 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1038 { 1039 if (time_after(at, now)) 1040 return jiffies_to_msecs(at - now); 1041 else 1042 return -(long)jiffies_to_msecs(now - at); 1043 } 1044 1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1046 static u32 higher_bits(u32 flags) 1047 { 1048 return ~((1 << fls(flags)) - 1); 1049 } 1050 1051 /* return the mask with only the highest bit set */ 1052 static u32 highest_bit(u32 flags) 1053 { 1054 int bit = fls(flags); 1055 return ((u64)1 << bit) >> 1; 1056 } 1057 1058 static bool u32_before(u32 a, u32 b) 1059 { 1060 return (s32)(a - b) < 0; 1061 } 1062 1063 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1064 { 1065 return global_dsqs[cpu_to_node(task_cpu(p))]; 1066 } 1067 1068 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1069 { 1070 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1071 } 1072 1073 /* 1074 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1075 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1076 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1077 * whether it's running from an allowed context. 1078 * 1079 * @mask is constant, always inline to cull the mask calculations. 1080 */ 1081 static __always_inline void scx_kf_allow(u32 mask) 1082 { 1083 /* nesting is allowed only in increasing scx_kf_mask order */ 1084 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1085 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1086 current->scx.kf_mask, mask); 1087 current->scx.kf_mask |= mask; 1088 barrier(); 1089 } 1090 1091 static void scx_kf_disallow(u32 mask) 1092 { 1093 barrier(); 1094 current->scx.kf_mask &= ~mask; 1095 } 1096 1097 #define SCX_CALL_OP(mask, op, args...) \ 1098 do { \ 1099 if (mask) { \ 1100 scx_kf_allow(mask); \ 1101 scx_ops.op(args); \ 1102 scx_kf_disallow(mask); \ 1103 } else { \ 1104 scx_ops.op(args); \ 1105 } \ 1106 } while (0) 1107 1108 #define SCX_CALL_OP_RET(mask, op, args...) \ 1109 ({ \ 1110 __typeof__(scx_ops.op(args)) __ret; \ 1111 if (mask) { \ 1112 scx_kf_allow(mask); \ 1113 __ret = scx_ops.op(args); \ 1114 scx_kf_disallow(mask); \ 1115 } else { \ 1116 __ret = scx_ops.op(args); \ 1117 } \ 1118 __ret; \ 1119 }) 1120 1121 /* 1122 * Some kfuncs are allowed only on the tasks that are subjects of the 1123 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1124 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1125 * invoking scx_ops operations that take task arguments. These can only be used 1126 * for non-nesting operations due to the way the tasks are tracked. 1127 * 1128 * kfuncs which can only operate on such tasks can in turn use 1129 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1130 * the specific task. 1131 */ 1132 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1133 do { \ 1134 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1135 current->scx.kf_tasks[0] = task; \ 1136 SCX_CALL_OP(mask, op, task, ##args); \ 1137 current->scx.kf_tasks[0] = NULL; \ 1138 } while (0) 1139 1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1141 ({ \ 1142 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1143 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1144 current->scx.kf_tasks[0] = task; \ 1145 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1146 current->scx.kf_tasks[0] = NULL; \ 1147 __ret; \ 1148 }) 1149 1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1151 ({ \ 1152 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1153 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1154 current->scx.kf_tasks[0] = task0; \ 1155 current->scx.kf_tasks[1] = task1; \ 1156 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1157 current->scx.kf_tasks[0] = NULL; \ 1158 current->scx.kf_tasks[1] = NULL; \ 1159 __ret; \ 1160 }) 1161 1162 /* @mask is constant, always inline to cull unnecessary branches */ 1163 static __always_inline bool scx_kf_allowed(u32 mask) 1164 { 1165 if (unlikely(!(current->scx.kf_mask & mask))) { 1166 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1167 mask, current->scx.kf_mask); 1168 return false; 1169 } 1170 1171 /* 1172 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1173 * DISPATCH must not be called if we're running DEQUEUE which is nested 1174 * inside ops.dispatch(). We don't need to check boundaries for any 1175 * blocking kfuncs as the verifier ensures they're only called from 1176 * sleepable progs. 1177 */ 1178 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1179 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1180 scx_ops_error("cpu_release kfunc called from a nested operation"); 1181 return false; 1182 } 1183 1184 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1185 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1186 scx_ops_error("dispatch kfunc called from a nested operation"); 1187 return false; 1188 } 1189 1190 return true; 1191 } 1192 1193 /* see SCX_CALL_OP_TASK() */ 1194 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1195 struct task_struct *p) 1196 { 1197 if (!scx_kf_allowed(mask)) 1198 return false; 1199 1200 if (unlikely((p != current->scx.kf_tasks[0] && 1201 p != current->scx.kf_tasks[1]))) { 1202 scx_ops_error("called on a task not being operated on"); 1203 return false; 1204 } 1205 1206 return true; 1207 } 1208 1209 static bool scx_kf_allowed_if_unlocked(void) 1210 { 1211 return !current->scx.kf_mask; 1212 } 1213 1214 /** 1215 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1216 * @dsq: user dsq being interated 1217 * @cur: current position, %NULL to start iteration 1218 * @rev: walk backwards 1219 * 1220 * Returns %NULL when iteration is finished. 1221 */ 1222 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1223 struct task_struct *cur, bool rev) 1224 { 1225 struct list_head *list_node; 1226 struct scx_dsq_list_node *dsq_lnode; 1227 1228 lockdep_assert_held(&dsq->lock); 1229 1230 if (cur) 1231 list_node = &cur->scx.dsq_list.node; 1232 else 1233 list_node = &dsq->list; 1234 1235 /* find the next task, need to skip BPF iteration cursors */ 1236 do { 1237 if (rev) 1238 list_node = list_node->prev; 1239 else 1240 list_node = list_node->next; 1241 1242 if (list_node == &dsq->list) 1243 return NULL; 1244 1245 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1246 node); 1247 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1248 1249 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1250 } 1251 1252 #define nldsq_for_each_task(p, dsq) \ 1253 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1254 (p) = nldsq_next_task((dsq), (p), false)) 1255 1256 1257 /* 1258 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1259 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1260 * changes without breaking backward compatibility. Can be used with 1261 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1262 */ 1263 enum scx_dsq_iter_flags { 1264 /* iterate in the reverse dispatch order */ 1265 SCX_DSQ_ITER_REV = 1U << 16, 1266 1267 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1268 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1269 1270 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1271 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1272 __SCX_DSQ_ITER_HAS_SLICE | 1273 __SCX_DSQ_ITER_HAS_VTIME, 1274 }; 1275 1276 struct bpf_iter_scx_dsq_kern { 1277 struct scx_dsq_list_node cursor; 1278 struct scx_dispatch_q *dsq; 1279 u64 slice; 1280 u64 vtime; 1281 } __attribute__((aligned(8))); 1282 1283 struct bpf_iter_scx_dsq { 1284 u64 __opaque[6]; 1285 } __attribute__((aligned(8))); 1286 1287 1288 /* 1289 * SCX task iterator. 1290 */ 1291 struct scx_task_iter { 1292 struct sched_ext_entity cursor; 1293 struct task_struct *locked; 1294 struct rq *rq; 1295 struct rq_flags rf; 1296 u32 cnt; 1297 }; 1298 1299 /** 1300 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1301 * @iter: iterator to init 1302 * 1303 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1304 * must eventually be stopped with scx_task_iter_stop(). 1305 * 1306 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1307 * between this and the first next() call or between any two next() calls. If 1308 * the locks are released between two next() calls, the caller is responsible 1309 * for ensuring that the task being iterated remains accessible either through 1310 * RCU read lock or obtaining a reference count. 1311 * 1312 * All tasks which existed when the iteration started are guaranteed to be 1313 * visited as long as they still exist. 1314 */ 1315 static void scx_task_iter_start(struct scx_task_iter *iter) 1316 { 1317 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1318 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1319 1320 spin_lock_irq(&scx_tasks_lock); 1321 1322 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1323 list_add(&iter->cursor.tasks_node, &scx_tasks); 1324 iter->locked = NULL; 1325 iter->cnt = 0; 1326 } 1327 1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1329 { 1330 if (iter->locked) { 1331 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1332 iter->locked = NULL; 1333 } 1334 } 1335 1336 /** 1337 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1338 * @iter: iterator to unlock 1339 * 1340 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1341 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1342 * This function can be safely called anytime during an iteration. 1343 */ 1344 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1345 { 1346 __scx_task_iter_rq_unlock(iter); 1347 spin_unlock_irq(&scx_tasks_lock); 1348 } 1349 1350 /** 1351 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1352 * @iter: iterator to re-lock 1353 * 1354 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1355 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1356 */ 1357 static void scx_task_iter_relock(struct scx_task_iter *iter) 1358 { 1359 spin_lock_irq(&scx_tasks_lock); 1360 } 1361 1362 /** 1363 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1364 * @iter: iterator to exit 1365 * 1366 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1367 * which is released on return. If the iterator holds a task's rq lock, that rq 1368 * lock is also released. See scx_task_iter_start() for details. 1369 */ 1370 static void scx_task_iter_stop(struct scx_task_iter *iter) 1371 { 1372 list_del_init(&iter->cursor.tasks_node); 1373 scx_task_iter_unlock(iter); 1374 } 1375 1376 /** 1377 * scx_task_iter_next - Next task 1378 * @iter: iterator to walk 1379 * 1380 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1381 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing 1382 * stalls by holding scx_tasks_lock for too long. 1383 */ 1384 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1385 { 1386 struct list_head *cursor = &iter->cursor.tasks_node; 1387 struct sched_ext_entity *pos; 1388 1389 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) { 1390 scx_task_iter_unlock(iter); 1391 cond_resched(); 1392 scx_task_iter_relock(iter); 1393 } 1394 1395 list_for_each_entry(pos, cursor, tasks_node) { 1396 if (&pos->tasks_node == &scx_tasks) 1397 return NULL; 1398 if (!(pos->flags & SCX_TASK_CURSOR)) { 1399 list_move(cursor, &pos->tasks_node); 1400 return container_of(pos, struct task_struct, scx); 1401 } 1402 } 1403 1404 /* can't happen, should always terminate at scx_tasks above */ 1405 BUG(); 1406 } 1407 1408 /** 1409 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1410 * @iter: iterator to walk 1411 * @include_dead: Whether we should include dead tasks in the iteration 1412 * 1413 * Visit the non-idle task with its rq lock held. Allows callers to specify 1414 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1415 * for details. 1416 */ 1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1418 { 1419 struct task_struct *p; 1420 1421 __scx_task_iter_rq_unlock(iter); 1422 1423 while ((p = scx_task_iter_next(iter))) { 1424 /* 1425 * scx_task_iter is used to prepare and move tasks into SCX 1426 * while loading the BPF scheduler and vice-versa while 1427 * unloading. The init_tasks ("swappers") should be excluded 1428 * from the iteration because: 1429 * 1430 * - It's unsafe to use __setschduler_prio() on an init_task to 1431 * determine the sched_class to use as it won't preserve its 1432 * idle_sched_class. 1433 * 1434 * - ops.init/exit_task() can easily be confused if called with 1435 * init_tasks as they, e.g., share PID 0. 1436 * 1437 * As init_tasks are never scheduled through SCX, they can be 1438 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1439 * doesn't work here: 1440 * 1441 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1442 * yet been onlined. 1443 * 1444 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1445 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1446 * 1447 * Test for idle_sched_class as only init_tasks are on it. 1448 */ 1449 if (p->sched_class != &idle_sched_class) 1450 break; 1451 } 1452 if (!p) 1453 return NULL; 1454 1455 iter->rq = task_rq_lock(p, &iter->rf); 1456 iter->locked = p; 1457 1458 return p; 1459 } 1460 1461 static enum scx_ops_enable_state scx_ops_enable_state(void) 1462 { 1463 return atomic_read(&scx_ops_enable_state_var); 1464 } 1465 1466 static enum scx_ops_enable_state 1467 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1468 { 1469 return atomic_xchg(&scx_ops_enable_state_var, to); 1470 } 1471 1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1473 enum scx_ops_enable_state from) 1474 { 1475 int from_v = from; 1476 1477 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1478 } 1479 1480 static bool scx_rq_bypassing(struct rq *rq) 1481 { 1482 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1483 } 1484 1485 /** 1486 * wait_ops_state - Busy-wait the specified ops state to end 1487 * @p: target task 1488 * @opss: state to wait the end of 1489 * 1490 * Busy-wait for @p to transition out of @opss. This can only be used when the 1491 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1492 * has load_acquire semantics to ensure that the caller can see the updates made 1493 * in the enqueueing and dispatching paths. 1494 */ 1495 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1496 { 1497 do { 1498 cpu_relax(); 1499 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1500 } 1501 1502 /** 1503 * ops_cpu_valid - Verify a cpu number 1504 * @cpu: cpu number which came from a BPF ops 1505 * @where: extra information reported on error 1506 * 1507 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1508 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1509 * an ops error. 1510 */ 1511 static bool ops_cpu_valid(s32 cpu, const char *where) 1512 { 1513 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1514 return true; 1515 } else { 1516 scx_ops_error("invalid CPU %d%s%s", cpu, 1517 where ? " " : "", where ?: ""); 1518 return false; 1519 } 1520 } 1521 1522 /** 1523 * ops_sanitize_err - Sanitize a -errno value 1524 * @ops_name: operation to blame on failure 1525 * @err: -errno value to sanitize 1526 * 1527 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1528 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1529 * cause misbehaviors. For an example, a large negative return from 1530 * ops.init_task() triggers an oops when passed up the call chain because the 1531 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1532 * handled as a pointer. 1533 */ 1534 static int ops_sanitize_err(const char *ops_name, s32 err) 1535 { 1536 if (err < 0 && err >= -MAX_ERRNO) 1537 return err; 1538 1539 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1540 return -EPROTO; 1541 } 1542 1543 static void run_deferred(struct rq *rq) 1544 { 1545 process_ddsp_deferred_locals(rq); 1546 } 1547 1548 #ifdef CONFIG_SMP 1549 static void deferred_bal_cb_workfn(struct rq *rq) 1550 { 1551 run_deferred(rq); 1552 } 1553 #endif 1554 1555 static void deferred_irq_workfn(struct irq_work *irq_work) 1556 { 1557 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1558 1559 raw_spin_rq_lock(rq); 1560 run_deferred(rq); 1561 raw_spin_rq_unlock(rq); 1562 } 1563 1564 /** 1565 * schedule_deferred - Schedule execution of deferred actions on an rq 1566 * @rq: target rq 1567 * 1568 * Schedule execution of deferred actions on @rq. Must be called with @rq 1569 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1570 * can unlock @rq to e.g. migrate tasks to other rqs. 1571 */ 1572 static void schedule_deferred(struct rq *rq) 1573 { 1574 lockdep_assert_rq_held(rq); 1575 1576 #ifdef CONFIG_SMP 1577 /* 1578 * If in the middle of waking up a task, task_woken_scx() will be called 1579 * afterwards which will then run the deferred actions, no need to 1580 * schedule anything. 1581 */ 1582 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1583 return; 1584 1585 /* 1586 * If in balance, the balance callbacks will be called before rq lock is 1587 * released. Schedule one. 1588 */ 1589 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1590 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1591 deferred_bal_cb_workfn); 1592 return; 1593 } 1594 #endif 1595 /* 1596 * No scheduler hooks available. Queue an irq work. They are executed on 1597 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1598 * The above WAKEUP and BALANCE paths should cover most of the cases and 1599 * the time to IRQ re-enable shouldn't be long. 1600 */ 1601 irq_work_queue(&rq->scx.deferred_irq_work); 1602 } 1603 1604 /** 1605 * touch_core_sched - Update timestamp used for core-sched task ordering 1606 * @rq: rq to read clock from, must be locked 1607 * @p: task to update the timestamp for 1608 * 1609 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1610 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1611 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1612 * exhaustion). 1613 */ 1614 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1615 { 1616 lockdep_assert_rq_held(rq); 1617 1618 #ifdef CONFIG_SCHED_CORE 1619 /* 1620 * It's okay to update the timestamp spuriously. Use 1621 * sched_core_disabled() which is cheaper than enabled(). 1622 * 1623 * As this is used to determine ordering between tasks of sibling CPUs, 1624 * it may be better to use per-core dispatch sequence instead. 1625 */ 1626 if (!sched_core_disabled()) 1627 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1628 #endif 1629 } 1630 1631 /** 1632 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1633 * @rq: rq to read clock from, must be locked 1634 * @p: task being dispatched 1635 * 1636 * If the BPF scheduler implements custom core-sched ordering via 1637 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1638 * ordering within each local DSQ. This function is called from dispatch paths 1639 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1640 */ 1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1642 { 1643 lockdep_assert_rq_held(rq); 1644 1645 #ifdef CONFIG_SCHED_CORE 1646 if (SCX_HAS_OP(core_sched_before)) 1647 touch_core_sched(rq, p); 1648 #endif 1649 } 1650 1651 static void update_curr_scx(struct rq *rq) 1652 { 1653 struct task_struct *curr = rq->curr; 1654 s64 delta_exec; 1655 1656 delta_exec = update_curr_common(rq); 1657 if (unlikely(delta_exec <= 0)) 1658 return; 1659 1660 if (curr->scx.slice != SCX_SLICE_INF) { 1661 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1662 if (!curr->scx.slice) 1663 touch_core_sched(rq, curr); 1664 } 1665 } 1666 1667 static bool scx_dsq_priq_less(struct rb_node *node_a, 1668 const struct rb_node *node_b) 1669 { 1670 const struct task_struct *a = 1671 container_of(node_a, struct task_struct, scx.dsq_priq); 1672 const struct task_struct *b = 1673 container_of(node_b, struct task_struct, scx.dsq_priq); 1674 1675 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1676 } 1677 1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1679 { 1680 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1681 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1682 } 1683 1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1685 u64 enq_flags) 1686 { 1687 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1688 1689 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1690 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1691 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1692 1693 if (!is_local) { 1694 raw_spin_lock(&dsq->lock); 1695 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1696 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1697 /* fall back to the global dsq */ 1698 raw_spin_unlock(&dsq->lock); 1699 dsq = find_global_dsq(p); 1700 raw_spin_lock(&dsq->lock); 1701 } 1702 } 1703 1704 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1705 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1706 /* 1707 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1708 * their FIFO queues. To avoid confusion and accidentally 1709 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1710 * disallow any internal DSQ from doing vtime ordering of 1711 * tasks. 1712 */ 1713 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1714 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1715 } 1716 1717 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1718 struct rb_node *rbp; 1719 1720 /* 1721 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1722 * linked to both the rbtree and list on PRIQs, this can only be 1723 * tested easily when adding the first task. 1724 */ 1725 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1726 nldsq_next_task(dsq, NULL, false))) 1727 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1728 dsq->id); 1729 1730 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1731 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1732 1733 /* 1734 * Find the previous task and insert after it on the list so 1735 * that @dsq->list is vtime ordered. 1736 */ 1737 rbp = rb_prev(&p->scx.dsq_priq); 1738 if (rbp) { 1739 struct task_struct *prev = 1740 container_of(rbp, struct task_struct, 1741 scx.dsq_priq); 1742 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1743 } else { 1744 list_add(&p->scx.dsq_list.node, &dsq->list); 1745 } 1746 } else { 1747 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1748 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1749 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1750 dsq->id); 1751 1752 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1753 list_add(&p->scx.dsq_list.node, &dsq->list); 1754 else 1755 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1756 } 1757 1758 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1759 dsq->seq++; 1760 p->scx.dsq_seq = dsq->seq; 1761 1762 dsq_mod_nr(dsq, 1); 1763 p->scx.dsq = dsq; 1764 1765 /* 1766 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1767 * direct dispatch path, but we clear them here because the direct 1768 * dispatch verdict may be overridden on the enqueue path during e.g. 1769 * bypass. 1770 */ 1771 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1772 p->scx.ddsp_enq_flags = 0; 1773 1774 /* 1775 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1776 * match waiters' load_acquire. 1777 */ 1778 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1779 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1780 1781 if (is_local) { 1782 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1783 bool preempt = false; 1784 1785 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1786 rq->curr->sched_class == &ext_sched_class) { 1787 rq->curr->scx.slice = 0; 1788 preempt = true; 1789 } 1790 1791 if (preempt || sched_class_above(&ext_sched_class, 1792 rq->curr->sched_class)) 1793 resched_curr(rq); 1794 } else { 1795 raw_spin_unlock(&dsq->lock); 1796 } 1797 } 1798 1799 static void task_unlink_from_dsq(struct task_struct *p, 1800 struct scx_dispatch_q *dsq) 1801 { 1802 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1803 1804 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1805 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1806 RB_CLEAR_NODE(&p->scx.dsq_priq); 1807 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1808 } 1809 1810 list_del_init(&p->scx.dsq_list.node); 1811 dsq_mod_nr(dsq, -1); 1812 } 1813 1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1815 { 1816 struct scx_dispatch_q *dsq = p->scx.dsq; 1817 bool is_local = dsq == &rq->scx.local_dsq; 1818 1819 if (!dsq) { 1820 /* 1821 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1822 * Unlinking is all that's needed to cancel. 1823 */ 1824 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1825 list_del_init(&p->scx.dsq_list.node); 1826 1827 /* 1828 * When dispatching directly from the BPF scheduler to a local 1829 * DSQ, the task isn't associated with any DSQ but 1830 * @p->scx.holding_cpu may be set under the protection of 1831 * %SCX_OPSS_DISPATCHING. 1832 */ 1833 if (p->scx.holding_cpu >= 0) 1834 p->scx.holding_cpu = -1; 1835 1836 return; 1837 } 1838 1839 if (!is_local) 1840 raw_spin_lock(&dsq->lock); 1841 1842 /* 1843 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1844 * change underneath us. 1845 */ 1846 if (p->scx.holding_cpu < 0) { 1847 /* @p must still be on @dsq, dequeue */ 1848 task_unlink_from_dsq(p, dsq); 1849 } else { 1850 /* 1851 * We're racing against dispatch_to_local_dsq() which already 1852 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1853 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1854 * the race. 1855 */ 1856 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1857 p->scx.holding_cpu = -1; 1858 } 1859 p->scx.dsq = NULL; 1860 1861 if (!is_local) 1862 raw_spin_unlock(&dsq->lock); 1863 } 1864 1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1866 struct task_struct *p) 1867 { 1868 struct scx_dispatch_q *dsq; 1869 1870 if (dsq_id == SCX_DSQ_LOCAL) 1871 return &rq->scx.local_dsq; 1872 1873 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1874 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1875 1876 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1877 return find_global_dsq(p); 1878 1879 return &cpu_rq(cpu)->scx.local_dsq; 1880 } 1881 1882 if (dsq_id == SCX_DSQ_GLOBAL) 1883 dsq = find_global_dsq(p); 1884 else 1885 dsq = find_user_dsq(dsq_id); 1886 1887 if (unlikely(!dsq)) { 1888 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1889 dsq_id, p->comm, p->pid); 1890 return find_global_dsq(p); 1891 } 1892 1893 return dsq; 1894 } 1895 1896 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1897 struct task_struct *p, u64 dsq_id, 1898 u64 enq_flags) 1899 { 1900 /* 1901 * Mark that dispatch already happened from ops.select_cpu() or 1902 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1903 * which can never match a valid task pointer. 1904 */ 1905 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1906 1907 /* @p must match the task on the enqueue path */ 1908 if (unlikely(p != ddsp_task)) { 1909 if (IS_ERR(ddsp_task)) 1910 scx_ops_error("%s[%d] already direct-dispatched", 1911 p->comm, p->pid); 1912 else 1913 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1914 ddsp_task->comm, ddsp_task->pid, 1915 p->comm, p->pid); 1916 return; 1917 } 1918 1919 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1920 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1921 1922 p->scx.ddsp_dsq_id = dsq_id; 1923 p->scx.ddsp_enq_flags = enq_flags; 1924 } 1925 1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1927 { 1928 struct rq *rq = task_rq(p); 1929 struct scx_dispatch_q *dsq = 1930 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1931 1932 touch_core_sched_dispatch(rq, p); 1933 1934 p->scx.ddsp_enq_flags |= enq_flags; 1935 1936 /* 1937 * We are in the enqueue path with @rq locked and pinned, and thus can't 1938 * double lock a remote rq and enqueue to its local DSQ. For 1939 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1940 * the enqueue so that it's executed when @rq can be unlocked. 1941 */ 1942 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1943 unsigned long opss; 1944 1945 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1946 1947 switch (opss & SCX_OPSS_STATE_MASK) { 1948 case SCX_OPSS_NONE: 1949 break; 1950 case SCX_OPSS_QUEUEING: 1951 /* 1952 * As @p was never passed to the BPF side, _release is 1953 * not strictly necessary. Still do it for consistency. 1954 */ 1955 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1956 break; 1957 default: 1958 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1959 p->comm, p->pid, opss); 1960 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1961 break; 1962 } 1963 1964 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1965 list_add_tail(&p->scx.dsq_list.node, 1966 &rq->scx.ddsp_deferred_locals); 1967 schedule_deferred(rq); 1968 return; 1969 } 1970 1971 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1972 } 1973 1974 static bool scx_rq_online(struct rq *rq) 1975 { 1976 /* 1977 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1978 * the online state as seen from the BPF scheduler. cpu_active() test 1979 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1980 * stay set until the current scheduling operation is complete even if 1981 * we aren't locking @rq. 1982 */ 1983 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1984 } 1985 1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1987 int sticky_cpu) 1988 { 1989 struct task_struct **ddsp_taskp; 1990 unsigned long qseq; 1991 1992 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1993 1994 /* rq migration */ 1995 if (sticky_cpu == cpu_of(rq)) 1996 goto local_norefill; 1997 1998 /* 1999 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2000 * is offline and are just running the hotplug path. Don't bother the 2001 * BPF scheduler. 2002 */ 2003 if (!scx_rq_online(rq)) 2004 goto local; 2005 2006 if (scx_rq_bypassing(rq)) 2007 goto global; 2008 2009 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2010 goto direct; 2011 2012 /* see %SCX_OPS_ENQ_EXITING */ 2013 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 2014 unlikely(p->flags & PF_EXITING)) 2015 goto local; 2016 2017 if (!SCX_HAS_OP(enqueue)) 2018 goto global; 2019 2020 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2021 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2022 2023 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2024 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2025 2026 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2027 WARN_ON_ONCE(*ddsp_taskp); 2028 *ddsp_taskp = p; 2029 2030 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 2031 2032 *ddsp_taskp = NULL; 2033 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2034 goto direct; 2035 2036 /* 2037 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2038 * dequeue may be waiting. The store_release matches their load_acquire. 2039 */ 2040 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2041 return; 2042 2043 direct: 2044 direct_dispatch(p, enq_flags); 2045 return; 2046 2047 local: 2048 /* 2049 * For task-ordering, slice refill must be treated as implying the end 2050 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2051 * higher priority it becomes from scx_prio_less()'s POV. 2052 */ 2053 touch_core_sched(rq, p); 2054 p->scx.slice = SCX_SLICE_DFL; 2055 local_norefill: 2056 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2057 return; 2058 2059 global: 2060 touch_core_sched(rq, p); /* see the comment in local: */ 2061 p->scx.slice = SCX_SLICE_DFL; 2062 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2063 } 2064 2065 static bool task_runnable(const struct task_struct *p) 2066 { 2067 return !list_empty(&p->scx.runnable_node); 2068 } 2069 2070 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2071 { 2072 lockdep_assert_rq_held(rq); 2073 2074 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2075 p->scx.runnable_at = jiffies; 2076 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2077 } 2078 2079 /* 2080 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2081 * appened to the runnable_list. 2082 */ 2083 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2084 } 2085 2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2087 { 2088 list_del_init(&p->scx.runnable_node); 2089 if (reset_runnable_at) 2090 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2091 } 2092 2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2094 { 2095 int sticky_cpu = p->scx.sticky_cpu; 2096 2097 if (enq_flags & ENQUEUE_WAKEUP) 2098 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2099 2100 enq_flags |= rq->scx.extra_enq_flags; 2101 2102 if (sticky_cpu >= 0) 2103 p->scx.sticky_cpu = -1; 2104 2105 /* 2106 * Restoring a running task will be immediately followed by 2107 * set_next_task_scx() which expects the task to not be on the BPF 2108 * scheduler as tasks can only start running through local DSQs. Force 2109 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2110 */ 2111 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2112 sticky_cpu = cpu_of(rq); 2113 2114 if (p->scx.flags & SCX_TASK_QUEUED) { 2115 WARN_ON_ONCE(!task_runnable(p)); 2116 goto out; 2117 } 2118 2119 set_task_runnable(rq, p); 2120 p->scx.flags |= SCX_TASK_QUEUED; 2121 rq->scx.nr_running++; 2122 add_nr_running(rq, 1); 2123 2124 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2125 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2126 2127 if (enq_flags & SCX_ENQ_WAKEUP) 2128 touch_core_sched(rq, p); 2129 2130 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2131 out: 2132 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2133 } 2134 2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2136 { 2137 unsigned long opss; 2138 2139 /* dequeue is always temporary, don't reset runnable_at */ 2140 clr_task_runnable(p, false); 2141 2142 /* acquire ensures that we see the preceding updates on QUEUED */ 2143 opss = atomic_long_read_acquire(&p->scx.ops_state); 2144 2145 switch (opss & SCX_OPSS_STATE_MASK) { 2146 case SCX_OPSS_NONE: 2147 break; 2148 case SCX_OPSS_QUEUEING: 2149 /* 2150 * QUEUEING is started and finished while holding @p's rq lock. 2151 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2152 */ 2153 BUG(); 2154 case SCX_OPSS_QUEUED: 2155 if (SCX_HAS_OP(dequeue)) 2156 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2157 2158 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2159 SCX_OPSS_NONE)) 2160 break; 2161 fallthrough; 2162 case SCX_OPSS_DISPATCHING: 2163 /* 2164 * If @p is being dispatched from the BPF scheduler to a DSQ, 2165 * wait for the transfer to complete so that @p doesn't get 2166 * added to its DSQ after dequeueing is complete. 2167 * 2168 * As we're waiting on DISPATCHING with the rq locked, the 2169 * dispatching side shouldn't try to lock the rq while 2170 * DISPATCHING is set. See dispatch_to_local_dsq(). 2171 * 2172 * DISPATCHING shouldn't have qseq set and control can reach 2173 * here with NONE @opss from the above QUEUED case block. 2174 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2175 */ 2176 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2177 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2178 break; 2179 } 2180 } 2181 2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2183 { 2184 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2185 WARN_ON_ONCE(task_runnable(p)); 2186 return true; 2187 } 2188 2189 ops_dequeue(p, deq_flags); 2190 2191 /* 2192 * A currently running task which is going off @rq first gets dequeued 2193 * and then stops running. As we want running <-> stopping transitions 2194 * to be contained within runnable <-> quiescent transitions, trigger 2195 * ->stopping() early here instead of in put_prev_task_scx(). 2196 * 2197 * @p may go through multiple stopping <-> running transitions between 2198 * here and put_prev_task_scx() if task attribute changes occur while 2199 * balance_scx() leaves @rq unlocked. However, they don't contain any 2200 * information meaningful to the BPF scheduler and can be suppressed by 2201 * skipping the callbacks if the task is !QUEUED. 2202 */ 2203 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2204 update_curr_scx(rq); 2205 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2206 } 2207 2208 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2209 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2210 2211 if (deq_flags & SCX_DEQ_SLEEP) 2212 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2213 else 2214 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2215 2216 p->scx.flags &= ~SCX_TASK_QUEUED; 2217 rq->scx.nr_running--; 2218 sub_nr_running(rq, 1); 2219 2220 dispatch_dequeue(rq, p); 2221 return true; 2222 } 2223 2224 static void yield_task_scx(struct rq *rq) 2225 { 2226 struct task_struct *p = rq->curr; 2227 2228 if (SCX_HAS_OP(yield)) 2229 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2230 else 2231 p->scx.slice = 0; 2232 } 2233 2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2235 { 2236 struct task_struct *from = rq->curr; 2237 2238 if (SCX_HAS_OP(yield)) 2239 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2240 else 2241 return false; 2242 } 2243 2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2245 struct scx_dispatch_q *src_dsq, 2246 struct rq *dst_rq) 2247 { 2248 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2249 2250 /* @dsq is locked and @p is on @dst_rq */ 2251 lockdep_assert_held(&src_dsq->lock); 2252 lockdep_assert_rq_held(dst_rq); 2253 2254 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2255 2256 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2257 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2258 else 2259 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2260 2261 dsq_mod_nr(dst_dsq, 1); 2262 p->scx.dsq = dst_dsq; 2263 } 2264 2265 #ifdef CONFIG_SMP 2266 /** 2267 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2268 * @p: task to move 2269 * @enq_flags: %SCX_ENQ_* 2270 * @src_rq: rq to move the task from, locked on entry, released on return 2271 * @dst_rq: rq to move the task into, locked on return 2272 * 2273 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2274 */ 2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2276 struct rq *src_rq, struct rq *dst_rq) 2277 { 2278 lockdep_assert_rq_held(src_rq); 2279 2280 /* the following marks @p MIGRATING which excludes dequeue */ 2281 deactivate_task(src_rq, p, 0); 2282 set_task_cpu(p, cpu_of(dst_rq)); 2283 p->scx.sticky_cpu = cpu_of(dst_rq); 2284 2285 raw_spin_rq_unlock(src_rq); 2286 raw_spin_rq_lock(dst_rq); 2287 2288 /* 2289 * We want to pass scx-specific enq_flags but activate_task() will 2290 * truncate the upper 32 bit. As we own @rq, we can pass them through 2291 * @rq->scx.extra_enq_flags instead. 2292 */ 2293 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2294 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2295 dst_rq->scx.extra_enq_flags = enq_flags; 2296 activate_task(dst_rq, p, 0); 2297 dst_rq->scx.extra_enq_flags = 0; 2298 } 2299 2300 /* 2301 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2302 * differences: 2303 * 2304 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2305 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2306 * this CPU?". 2307 * 2308 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2309 * must be allowed to finish on the CPU that it's currently on regardless of 2310 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2311 * BPF scheduler shouldn't attempt to migrate a task which has migration 2312 * disabled. 2313 * 2314 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2315 * no to the BPF scheduler initiated migrations while offline. 2316 */ 2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2318 bool trigger_error) 2319 { 2320 int cpu = cpu_of(rq); 2321 2322 /* 2323 * We don't require the BPF scheduler to avoid dispatching to offline 2324 * CPUs mostly for convenience but also because CPUs can go offline 2325 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2326 * picked CPU is outside the allowed mask. 2327 */ 2328 if (!task_allowed_on_cpu(p, cpu)) { 2329 if (trigger_error) 2330 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2331 cpu_of(rq), p->comm, p->pid); 2332 return false; 2333 } 2334 2335 if (unlikely(is_migration_disabled(p))) 2336 return false; 2337 2338 if (!scx_rq_online(rq)) 2339 return false; 2340 2341 return true; 2342 } 2343 2344 /** 2345 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2346 * @p: target task 2347 * @dsq: locked DSQ @p is currently on 2348 * @src_rq: rq @p is currently on, stable with @dsq locked 2349 * 2350 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2351 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2352 * required when transferring into a local DSQ. Even when transferring into a 2353 * non-local DSQ, it's better to use the same mechanism to protect against 2354 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2355 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2356 * 2357 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2358 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2359 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2360 * dancing from our side. 2361 * 2362 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2363 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2364 * would be cleared to -1. While other cpus may have updated it to different 2365 * values afterwards, as this operation can't be preempted or recurse, the 2366 * holding_cpu can never become this CPU again before we're done. Thus, we can 2367 * tell whether we lost to dequeue by testing whether the holding_cpu still 2368 * points to this CPU. See dispatch_dequeue() for the counterpart. 2369 * 2370 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2371 * still valid. %false if lost to dequeue. 2372 */ 2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2374 struct scx_dispatch_q *dsq, 2375 struct rq *src_rq) 2376 { 2377 s32 cpu = raw_smp_processor_id(); 2378 2379 lockdep_assert_held(&dsq->lock); 2380 2381 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2382 task_unlink_from_dsq(p, dsq); 2383 p->scx.holding_cpu = cpu; 2384 2385 raw_spin_unlock(&dsq->lock); 2386 raw_spin_rq_lock(src_rq); 2387 2388 /* task_rq couldn't have changed if we're still the holding cpu */ 2389 return likely(p->scx.holding_cpu == cpu) && 2390 !WARN_ON_ONCE(src_rq != task_rq(p)); 2391 } 2392 2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2394 struct scx_dispatch_q *dsq, struct rq *src_rq) 2395 { 2396 raw_spin_rq_unlock(this_rq); 2397 2398 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2399 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2400 return true; 2401 } else { 2402 raw_spin_rq_unlock(src_rq); 2403 raw_spin_rq_lock(this_rq); 2404 return false; 2405 } 2406 } 2407 #else /* CONFIG_SMP */ 2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2411 #endif /* CONFIG_SMP */ 2412 2413 /** 2414 * move_task_between_dsqs() - Move a task from one DSQ to another 2415 * @p: target task 2416 * @enq_flags: %SCX_ENQ_* 2417 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2418 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2419 * 2420 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2421 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2422 * will change. As @p's task_rq is locked, this function doesn't need to use the 2423 * holding_cpu mechanism. 2424 * 2425 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2426 * return value, is locked. 2427 */ 2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags, 2429 struct scx_dispatch_q *src_dsq, 2430 struct scx_dispatch_q *dst_dsq) 2431 { 2432 struct rq *src_rq = task_rq(p), *dst_rq; 2433 2434 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2435 lockdep_assert_held(&src_dsq->lock); 2436 lockdep_assert_rq_held(src_rq); 2437 2438 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2439 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2440 if (!task_can_run_on_remote_rq(p, dst_rq, true)) { 2441 dst_dsq = find_global_dsq(p); 2442 dst_rq = src_rq; 2443 } 2444 } else { 2445 /* no need to migrate if destination is a non-local DSQ */ 2446 dst_rq = src_rq; 2447 } 2448 2449 /* 2450 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2451 * CPU, @p will be migrated. 2452 */ 2453 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2454 /* @p is going from a non-local DSQ to a local DSQ */ 2455 if (src_rq == dst_rq) { 2456 task_unlink_from_dsq(p, src_dsq); 2457 move_local_task_to_local_dsq(p, enq_flags, 2458 src_dsq, dst_rq); 2459 raw_spin_unlock(&src_dsq->lock); 2460 } else { 2461 raw_spin_unlock(&src_dsq->lock); 2462 move_remote_task_to_local_dsq(p, enq_flags, 2463 src_rq, dst_rq); 2464 } 2465 } else { 2466 /* 2467 * @p is going from a non-local DSQ to a non-local DSQ. As 2468 * $src_dsq is already locked, do an abbreviated dequeue. 2469 */ 2470 task_unlink_from_dsq(p, src_dsq); 2471 p->scx.dsq = NULL; 2472 raw_spin_unlock(&src_dsq->lock); 2473 2474 dispatch_enqueue(dst_dsq, p, enq_flags); 2475 } 2476 2477 return dst_rq; 2478 } 2479 2480 /* 2481 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2482 * banging on the same DSQ on a large NUMA system to the point where switching 2483 * to the bypass mode can take a long time. Inject artifical delays while the 2484 * bypass mode is switching to guarantee timely completion. 2485 */ 2486 static void scx_ops_breather(struct rq *rq) 2487 { 2488 u64 until; 2489 2490 lockdep_assert_rq_held(rq); 2491 2492 if (likely(!atomic_read(&scx_ops_breather_depth))) 2493 return; 2494 2495 raw_spin_rq_unlock(rq); 2496 2497 until = ktime_get_ns() + NSEC_PER_MSEC; 2498 2499 do { 2500 int cnt = 1024; 2501 while (atomic_read(&scx_ops_breather_depth) && --cnt) 2502 cpu_relax(); 2503 } while (atomic_read(&scx_ops_breather_depth) && 2504 time_before64(ktime_get_ns(), until)); 2505 2506 raw_spin_rq_lock(rq); 2507 } 2508 2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2510 { 2511 struct task_struct *p; 2512 retry: 2513 /* 2514 * This retry loop can repeatedly race against scx_ops_bypass() 2515 * dequeueing tasks from @dsq trying to put the system into the bypass 2516 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can 2517 * live-lock the machine into soft lockups. Give a breather. 2518 */ 2519 scx_ops_breather(rq); 2520 2521 /* 2522 * The caller can't expect to successfully consume a task if the task's 2523 * addition to @dsq isn't guaranteed to be visible somehow. Test 2524 * @dsq->list without locking and skip if it seems empty. 2525 */ 2526 if (list_empty(&dsq->list)) 2527 return false; 2528 2529 raw_spin_lock(&dsq->lock); 2530 2531 nldsq_for_each_task(p, dsq) { 2532 struct rq *task_rq = task_rq(p); 2533 2534 if (rq == task_rq) { 2535 task_unlink_from_dsq(p, dsq); 2536 move_local_task_to_local_dsq(p, 0, dsq, rq); 2537 raw_spin_unlock(&dsq->lock); 2538 return true; 2539 } 2540 2541 if (task_can_run_on_remote_rq(p, rq, false)) { 2542 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2543 return true; 2544 goto retry; 2545 } 2546 } 2547 2548 raw_spin_unlock(&dsq->lock); 2549 return false; 2550 } 2551 2552 static bool consume_global_dsq(struct rq *rq) 2553 { 2554 int node = cpu_to_node(cpu_of(rq)); 2555 2556 return consume_dispatch_q(rq, global_dsqs[node]); 2557 } 2558 2559 /** 2560 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2561 * @rq: current rq which is locked 2562 * @dst_dsq: destination DSQ 2563 * @p: task to dispatch 2564 * @enq_flags: %SCX_ENQ_* 2565 * 2566 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2567 * DSQ. This function performs all the synchronization dancing needed because 2568 * local DSQs are protected with rq locks. 2569 * 2570 * The caller must have exclusive ownership of @p (e.g. through 2571 * %SCX_OPSS_DISPATCHING). 2572 */ 2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2574 struct task_struct *p, u64 enq_flags) 2575 { 2576 struct rq *src_rq = task_rq(p); 2577 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2578 2579 /* 2580 * We're synchronized against dequeue through DISPATCHING. As @p can't 2581 * be dequeued, its task_rq and cpus_allowed are stable too. 2582 * 2583 * If dispatching to @rq that @p is already on, no lock dancing needed. 2584 */ 2585 if (rq == src_rq && rq == dst_rq) { 2586 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2587 return; 2588 } 2589 2590 #ifdef CONFIG_SMP 2591 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2592 dispatch_enqueue(find_global_dsq(p), p, 2593 enq_flags | SCX_ENQ_CLEAR_OPSS); 2594 return; 2595 } 2596 2597 /* 2598 * @p is on a possibly remote @src_rq which we need to lock to move the 2599 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2600 * on DISPATCHING, so we can't grab @src_rq lock while holding 2601 * DISPATCHING. 2602 * 2603 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2604 * we're moving from a DSQ and use the same mechanism - mark the task 2605 * under transfer with holding_cpu, release DISPATCHING and then follow 2606 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2607 */ 2608 p->scx.holding_cpu = raw_smp_processor_id(); 2609 2610 /* store_release ensures that dequeue sees the above */ 2611 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2612 2613 /* switch to @src_rq lock */ 2614 if (rq != src_rq) { 2615 raw_spin_rq_unlock(rq); 2616 raw_spin_rq_lock(src_rq); 2617 } 2618 2619 /* task_rq couldn't have changed if we're still the holding cpu */ 2620 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2621 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2622 /* 2623 * If @p is staying on the same rq, there's no need to go 2624 * through the full deactivate/activate cycle. Optimize by 2625 * abbreviating move_remote_task_to_local_dsq(). 2626 */ 2627 if (src_rq == dst_rq) { 2628 p->scx.holding_cpu = -1; 2629 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2630 } else { 2631 move_remote_task_to_local_dsq(p, enq_flags, 2632 src_rq, dst_rq); 2633 } 2634 2635 /* if the destination CPU is idle, wake it up */ 2636 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2637 resched_curr(dst_rq); 2638 } 2639 2640 /* switch back to @rq lock */ 2641 if (rq != dst_rq) { 2642 raw_spin_rq_unlock(dst_rq); 2643 raw_spin_rq_lock(rq); 2644 } 2645 #else /* CONFIG_SMP */ 2646 BUG(); /* control can not reach here on UP */ 2647 #endif /* CONFIG_SMP */ 2648 } 2649 2650 /** 2651 * finish_dispatch - Asynchronously finish dispatching a task 2652 * @rq: current rq which is locked 2653 * @p: task to finish dispatching 2654 * @qseq_at_dispatch: qseq when @p started getting dispatched 2655 * @dsq_id: destination DSQ ID 2656 * @enq_flags: %SCX_ENQ_* 2657 * 2658 * Dispatching to local DSQs may need to wait for queueing to complete or 2659 * require rq lock dancing. As we don't wanna do either while inside 2660 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2661 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2662 * task and its qseq. Once ops.dispatch() returns, this function is called to 2663 * finish up. 2664 * 2665 * There is no guarantee that @p is still valid for dispatching or even that it 2666 * was valid in the first place. Make sure that the task is still owned by the 2667 * BPF scheduler and claim the ownership before dispatching. 2668 */ 2669 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2670 unsigned long qseq_at_dispatch, 2671 u64 dsq_id, u64 enq_flags) 2672 { 2673 struct scx_dispatch_q *dsq; 2674 unsigned long opss; 2675 2676 touch_core_sched_dispatch(rq, p); 2677 retry: 2678 /* 2679 * No need for _acquire here. @p is accessed only after a successful 2680 * try_cmpxchg to DISPATCHING. 2681 */ 2682 opss = atomic_long_read(&p->scx.ops_state); 2683 2684 switch (opss & SCX_OPSS_STATE_MASK) { 2685 case SCX_OPSS_DISPATCHING: 2686 case SCX_OPSS_NONE: 2687 /* someone else already got to it */ 2688 return; 2689 case SCX_OPSS_QUEUED: 2690 /* 2691 * If qseq doesn't match, @p has gone through at least one 2692 * dispatch/dequeue and re-enqueue cycle between 2693 * scx_bpf_dsq_insert() and here and we have no claim on it. 2694 */ 2695 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2696 return; 2697 2698 /* 2699 * While we know @p is accessible, we don't yet have a claim on 2700 * it - the BPF scheduler is allowed to dispatch tasks 2701 * spuriously and there can be a racing dequeue attempt. Let's 2702 * claim @p by atomically transitioning it from QUEUED to 2703 * DISPATCHING. 2704 */ 2705 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2706 SCX_OPSS_DISPATCHING))) 2707 break; 2708 goto retry; 2709 case SCX_OPSS_QUEUEING: 2710 /* 2711 * do_enqueue_task() is in the process of transferring the task 2712 * to the BPF scheduler while holding @p's rq lock. As we aren't 2713 * holding any kernel or BPF resource that the enqueue path may 2714 * depend upon, it's safe to wait. 2715 */ 2716 wait_ops_state(p, opss); 2717 goto retry; 2718 } 2719 2720 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2721 2722 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2723 2724 if (dsq->id == SCX_DSQ_LOCAL) 2725 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2726 else 2727 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2728 } 2729 2730 static void flush_dispatch_buf(struct rq *rq) 2731 { 2732 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2733 u32 u; 2734 2735 for (u = 0; u < dspc->cursor; u++) { 2736 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2737 2738 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2739 ent->enq_flags); 2740 } 2741 2742 dspc->nr_tasks += dspc->cursor; 2743 dspc->cursor = 0; 2744 } 2745 2746 static int balance_one(struct rq *rq, struct task_struct *prev) 2747 { 2748 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2749 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2750 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2751 int nr_loops = SCX_DSP_MAX_LOOPS; 2752 2753 lockdep_assert_rq_held(rq); 2754 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2755 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2756 2757 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2758 unlikely(rq->scx.cpu_released)) { 2759 /* 2760 * If the previous sched_class for the current CPU was not SCX, 2761 * notify the BPF scheduler that it again has control of the 2762 * core. This callback complements ->cpu_release(), which is 2763 * emitted in switch_class(). 2764 */ 2765 if (SCX_HAS_OP(cpu_acquire)) 2766 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL); 2767 rq->scx.cpu_released = false; 2768 } 2769 2770 if (prev_on_scx) { 2771 update_curr_scx(rq); 2772 2773 /* 2774 * If @prev is runnable & has slice left, it has priority and 2775 * fetching more just increases latency for the fetched tasks. 2776 * Tell pick_task_scx() to keep running @prev. If the BPF 2777 * scheduler wants to handle this explicitly, it should 2778 * implement ->cpu_release(). 2779 * 2780 * See scx_ops_disable_workfn() for the explanation on the 2781 * bypassing test. 2782 */ 2783 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2784 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2785 goto has_tasks; 2786 } 2787 } 2788 2789 /* if there already are tasks to run, nothing to do */ 2790 if (rq->scx.local_dsq.nr) 2791 goto has_tasks; 2792 2793 if (consume_global_dsq(rq)) 2794 goto has_tasks; 2795 2796 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2797 goto no_tasks; 2798 2799 dspc->rq = rq; 2800 2801 /* 2802 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2803 * the local DSQ might still end up empty after a successful 2804 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2805 * produced some tasks, retry. The BPF scheduler may depend on this 2806 * looping behavior to simplify its implementation. 2807 */ 2808 do { 2809 dspc->nr_tasks = 0; 2810 2811 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2812 prev_on_scx ? prev : NULL); 2813 2814 flush_dispatch_buf(rq); 2815 2816 if (prev_on_rq && prev->scx.slice) { 2817 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2818 goto has_tasks; 2819 } 2820 if (rq->scx.local_dsq.nr) 2821 goto has_tasks; 2822 if (consume_global_dsq(rq)) 2823 goto has_tasks; 2824 2825 /* 2826 * ops.dispatch() can trap us in this loop by repeatedly 2827 * dispatching ineligible tasks. Break out once in a while to 2828 * allow the watchdog to run. As IRQ can't be enabled in 2829 * balance(), we want to complete this scheduling cycle and then 2830 * start a new one. IOW, we want to call resched_curr() on the 2831 * next, most likely idle, task, not the current one. Use 2832 * scx_bpf_kick_cpu() for deferred kicking. 2833 */ 2834 if (unlikely(!--nr_loops)) { 2835 scx_bpf_kick_cpu(cpu_of(rq), 0); 2836 break; 2837 } 2838 } while (dspc->nr_tasks); 2839 2840 no_tasks: 2841 /* 2842 * Didn't find another task to run. Keep running @prev unless 2843 * %SCX_OPS_ENQ_LAST is in effect. 2844 */ 2845 if (prev_on_rq && (!static_branch_unlikely(&scx_ops_enq_last) || 2846 scx_rq_bypassing(rq))) { 2847 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2848 goto has_tasks; 2849 } 2850 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2851 return false; 2852 2853 has_tasks: 2854 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2855 return true; 2856 } 2857 2858 static int balance_scx(struct rq *rq, struct task_struct *prev, 2859 struct rq_flags *rf) 2860 { 2861 int ret; 2862 2863 rq_unpin_lock(rq, rf); 2864 2865 ret = balance_one(rq, prev); 2866 2867 #ifdef CONFIG_SCHED_SMT 2868 /* 2869 * When core-sched is enabled, this ops.balance() call will be followed 2870 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2871 * siblings too. 2872 */ 2873 if (sched_core_enabled(rq)) { 2874 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2875 int scpu; 2876 2877 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2878 struct rq *srq = cpu_rq(scpu); 2879 struct task_struct *sprev = srq->curr; 2880 2881 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2882 update_rq_clock(srq); 2883 balance_one(srq, sprev); 2884 } 2885 } 2886 #endif 2887 rq_repin_lock(rq, rf); 2888 2889 return ret; 2890 } 2891 2892 static void process_ddsp_deferred_locals(struct rq *rq) 2893 { 2894 struct task_struct *p; 2895 2896 lockdep_assert_rq_held(rq); 2897 2898 /* 2899 * Now that @rq can be unlocked, execute the deferred enqueueing of 2900 * tasks directly dispatched to the local DSQs of other CPUs. See 2901 * direct_dispatch(). Keep popping from the head instead of using 2902 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2903 * temporarily. 2904 */ 2905 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2906 struct task_struct, scx.dsq_list.node))) { 2907 struct scx_dispatch_q *dsq; 2908 2909 list_del_init(&p->scx.dsq_list.node); 2910 2911 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2912 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2913 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2914 } 2915 } 2916 2917 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2918 { 2919 if (p->scx.flags & SCX_TASK_QUEUED) { 2920 /* 2921 * Core-sched might decide to execute @p before it is 2922 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2923 */ 2924 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2925 dispatch_dequeue(rq, p); 2926 } 2927 2928 p->se.exec_start = rq_clock_task(rq); 2929 2930 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2931 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2932 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2933 2934 clr_task_runnable(p, true); 2935 2936 /* 2937 * @p is getting newly scheduled or got kicked after someone updated its 2938 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2939 */ 2940 if ((p->scx.slice == SCX_SLICE_INF) != 2941 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2942 if (p->scx.slice == SCX_SLICE_INF) 2943 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2944 else 2945 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2946 2947 sched_update_tick_dependency(rq); 2948 2949 /* 2950 * For now, let's refresh the load_avgs just when transitioning 2951 * in and out of nohz. In the future, we might want to add a 2952 * mechanism which calls the following periodically on 2953 * tick-stopped CPUs. 2954 */ 2955 update_other_load_avgs(rq); 2956 } 2957 } 2958 2959 static enum scx_cpu_preempt_reason 2960 preempt_reason_from_class(const struct sched_class *class) 2961 { 2962 #ifdef CONFIG_SMP 2963 if (class == &stop_sched_class) 2964 return SCX_CPU_PREEMPT_STOP; 2965 #endif 2966 if (class == &dl_sched_class) 2967 return SCX_CPU_PREEMPT_DL; 2968 if (class == &rt_sched_class) 2969 return SCX_CPU_PREEMPT_RT; 2970 return SCX_CPU_PREEMPT_UNKNOWN; 2971 } 2972 2973 static void switch_class(struct rq *rq, struct task_struct *next) 2974 { 2975 const struct sched_class *next_class = next->sched_class; 2976 2977 #ifdef CONFIG_SMP 2978 /* 2979 * Pairs with the smp_load_acquire() issued by a CPU in 2980 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2981 * resched. 2982 */ 2983 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2984 #endif 2985 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2986 return; 2987 2988 /* 2989 * The callback is conceptually meant to convey that the CPU is no 2990 * longer under the control of SCX. Therefore, don't invoke the callback 2991 * if the next class is below SCX (in which case the BPF scheduler has 2992 * actively decided not to schedule any tasks on the CPU). 2993 */ 2994 if (sched_class_above(&ext_sched_class, next_class)) 2995 return; 2996 2997 /* 2998 * At this point we know that SCX was preempted by a higher priority 2999 * sched_class, so invoke the ->cpu_release() callback if we have not 3000 * done so already. We only send the callback once between SCX being 3001 * preempted, and it regaining control of the CPU. 3002 * 3003 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3004 * next time that balance_scx() is invoked. 3005 */ 3006 if (!rq->scx.cpu_released) { 3007 if (SCX_HAS_OP(cpu_release)) { 3008 struct scx_cpu_release_args args = { 3009 .reason = preempt_reason_from_class(next_class), 3010 .task = next, 3011 }; 3012 3013 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 3014 cpu_release, cpu_of(rq), &args); 3015 } 3016 rq->scx.cpu_released = true; 3017 } 3018 } 3019 3020 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3021 struct task_struct *next) 3022 { 3023 update_curr_scx(rq); 3024 3025 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3026 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3027 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 3028 3029 if (p->scx.flags & SCX_TASK_QUEUED) { 3030 set_task_runnable(rq, p); 3031 3032 /* 3033 * If @p has slice left and is being put, @p is getting 3034 * preempted by a higher priority scheduler class or core-sched 3035 * forcing a different task. Leave it at the head of the local 3036 * DSQ. 3037 */ 3038 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3039 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 3040 goto switch_class; 3041 } 3042 3043 /* 3044 * If @p is runnable but we're about to enter a lower 3045 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3046 * ops.enqueue() that @p is the only one available for this cpu, 3047 * which should trigger an explicit follow-up scheduling event. 3048 */ 3049 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3050 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 3051 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3052 } else { 3053 do_enqueue_task(rq, p, 0, -1); 3054 } 3055 } 3056 3057 switch_class: 3058 if (next && next->sched_class != &ext_sched_class) 3059 switch_class(rq, next); 3060 } 3061 3062 static struct task_struct *first_local_task(struct rq *rq) 3063 { 3064 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3065 struct task_struct, scx.dsq_list.node); 3066 } 3067 3068 static struct task_struct *pick_task_scx(struct rq *rq) 3069 { 3070 struct task_struct *prev = rq->curr; 3071 struct task_struct *p; 3072 bool prev_on_scx = prev->sched_class == &ext_sched_class; 3073 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 3074 bool kick_idle = false; 3075 3076 /* 3077 * WORKAROUND: 3078 * 3079 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3080 * have gone through balance_scx(). Unfortunately, there currently is a 3081 * bug where fair could say yes on balance() but no on pick_task(), 3082 * which then ends up calling pick_task_scx() without preceding 3083 * balance_scx(). 3084 * 3085 * Keep running @prev if possible and avoid stalling from entering idle 3086 * without balancing. 3087 * 3088 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 3089 * if pick_task_scx() is called without preceding balance_scx(). 3090 */ 3091 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 3092 if (prev_on_scx) { 3093 keep_prev = true; 3094 } else { 3095 keep_prev = false; 3096 kick_idle = true; 3097 } 3098 } else if (unlikely(keep_prev && !prev_on_scx)) { 3099 /* only allowed during transitions */ 3100 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED); 3101 keep_prev = false; 3102 } 3103 3104 /* 3105 * If balance_scx() is telling us to keep running @prev, replenish slice 3106 * if necessary and keep running @prev. Otherwise, pop the first one 3107 * from the local DSQ. 3108 */ 3109 if (keep_prev) { 3110 p = prev; 3111 if (!p->scx.slice) 3112 p->scx.slice = SCX_SLICE_DFL; 3113 } else { 3114 p = first_local_task(rq); 3115 if (!p) { 3116 if (kick_idle) 3117 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 3118 return NULL; 3119 } 3120 3121 if (unlikely(!p->scx.slice)) { 3122 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 3123 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3124 p->comm, p->pid, __func__); 3125 scx_warned_zero_slice = true; 3126 } 3127 p->scx.slice = SCX_SLICE_DFL; 3128 } 3129 } 3130 3131 return p; 3132 } 3133 3134 #ifdef CONFIG_SCHED_CORE 3135 /** 3136 * scx_prio_less - Task ordering for core-sched 3137 * @a: task A 3138 * @b: task B 3139 * 3140 * Core-sched is implemented as an additional scheduling layer on top of the 3141 * usual sched_class'es and needs to find out the expected task ordering. For 3142 * SCX, core-sched calls this function to interrogate the task ordering. 3143 * 3144 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3145 * to implement the default task ordering. The older the timestamp, the higher 3146 * prority the task - the global FIFO ordering matching the default scheduling 3147 * behavior. 3148 * 3149 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3150 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3151 */ 3152 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3153 bool in_fi) 3154 { 3155 /* 3156 * The const qualifiers are dropped from task_struct pointers when 3157 * calling ops.core_sched_before(). Accesses are controlled by the 3158 * verifier. 3159 */ 3160 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 3161 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3162 (struct task_struct *)a, 3163 (struct task_struct *)b); 3164 else 3165 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3166 } 3167 #endif /* CONFIG_SCHED_CORE */ 3168 3169 #ifdef CONFIG_SMP 3170 3171 static bool test_and_clear_cpu_idle(int cpu) 3172 { 3173 #ifdef CONFIG_SCHED_SMT 3174 /* 3175 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3176 * cluster is not wholly idle either way. This also prevents 3177 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3178 */ 3179 if (sched_smt_active()) { 3180 const struct cpumask *smt = cpu_smt_mask(cpu); 3181 3182 /* 3183 * If offline, @cpu is not its own sibling and 3184 * scx_pick_idle_cpu() can get caught in an infinite loop as 3185 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3186 * is eventually cleared. 3187 */ 3188 if (cpumask_intersects(smt, idle_masks.smt)) 3189 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3190 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3191 __cpumask_clear_cpu(cpu, idle_masks.smt); 3192 } 3193 #endif 3194 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3195 } 3196 3197 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3198 { 3199 int cpu; 3200 3201 retry: 3202 if (sched_smt_active()) { 3203 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3204 if (cpu < nr_cpu_ids) 3205 goto found; 3206 3207 if (flags & SCX_PICK_IDLE_CORE) 3208 return -EBUSY; 3209 } 3210 3211 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3212 if (cpu >= nr_cpu_ids) 3213 return -EBUSY; 3214 3215 found: 3216 if (test_and_clear_cpu_idle(cpu)) 3217 return cpu; 3218 else 3219 goto retry; 3220 } 3221 3222 /* 3223 * Return true if the LLC domains do not perfectly overlap with the NUMA 3224 * domains, false otherwise. 3225 */ 3226 static bool llc_numa_mismatch(void) 3227 { 3228 int cpu; 3229 3230 /* 3231 * We need to scan all online CPUs to verify whether their scheduling 3232 * domains overlap. 3233 * 3234 * While it is rare to encounter architectures with asymmetric NUMA 3235 * topologies, CPU hotplugging or virtualized environments can result 3236 * in asymmetric configurations. 3237 * 3238 * For example: 3239 * 3240 * NUMA 0: 3241 * - LLC 0: cpu0..cpu7 3242 * - LLC 1: cpu8..cpu15 [offline] 3243 * 3244 * NUMA 1: 3245 * - LLC 0: cpu16..cpu23 3246 * - LLC 1: cpu24..cpu31 3247 * 3248 * In this case, if we only check the first online CPU (cpu0), we might 3249 * incorrectly assume that the LLC and NUMA domains are fully 3250 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC 3251 * domains). 3252 */ 3253 for_each_online_cpu(cpu) { 3254 const struct cpumask *numa_cpus; 3255 struct sched_domain *sd; 3256 3257 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3258 if (!sd) 3259 return true; 3260 3261 numa_cpus = cpumask_of_node(cpu_to_node(cpu)); 3262 if (sd->span_weight != cpumask_weight(numa_cpus)) 3263 return true; 3264 } 3265 3266 return false; 3267 } 3268 3269 /* 3270 * Initialize topology-aware scheduling. 3271 * 3272 * Detect if the system has multiple LLC or multiple NUMA domains and enable 3273 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle 3274 * selection policy. 3275 * 3276 * Assumption: the kernel's internal topology representation assumes that each 3277 * CPU belongs to a single LLC domain, and that each LLC domain is entirely 3278 * contained within a single NUMA node. 3279 */ 3280 static void update_selcpu_topology(void) 3281 { 3282 bool enable_llc = false, enable_numa = false; 3283 struct sched_domain *sd; 3284 const struct cpumask *cpus; 3285 s32 cpu = cpumask_first(cpu_online_mask); 3286 3287 /* 3288 * Enable LLC domain optimization only when there are multiple LLC 3289 * domains among the online CPUs. If all online CPUs are part of a 3290 * single LLC domain, the idle CPU selection logic can choose any 3291 * online CPU without bias. 3292 * 3293 * Note that it is sufficient to check the LLC domain of the first 3294 * online CPU to determine whether a single LLC domain includes all 3295 * CPUs. 3296 */ 3297 rcu_read_lock(); 3298 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3299 if (sd) { 3300 if (sd->span_weight < num_online_cpus()) 3301 enable_llc = true; 3302 } 3303 3304 /* 3305 * Enable NUMA optimization only when there are multiple NUMA domains 3306 * among the online CPUs and the NUMA domains don't perfectly overlaps 3307 * with the LLC domains. 3308 * 3309 * If all CPUs belong to the same NUMA node and the same LLC domain, 3310 * enabling both NUMA and LLC optimizations is unnecessary, as checking 3311 * for an idle CPU in the same domain twice is redundant. 3312 */ 3313 cpus = cpumask_of_node(cpu_to_node(cpu)); 3314 if ((cpumask_weight(cpus) < num_online_cpus()) && llc_numa_mismatch()) 3315 enable_numa = true; 3316 rcu_read_unlock(); 3317 3318 pr_debug("sched_ext: LLC idle selection %s\n", 3319 enable_llc ? "enabled" : "disabled"); 3320 pr_debug("sched_ext: NUMA idle selection %s\n", 3321 enable_numa ? "enabled" : "disabled"); 3322 3323 if (enable_llc) 3324 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc); 3325 else 3326 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc); 3327 if (enable_numa) 3328 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa); 3329 else 3330 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa); 3331 } 3332 3333 /* 3334 * Built-in CPU idle selection policy: 3335 * 3336 * 1. Prioritize full-idle cores: 3337 * - always prioritize CPUs from fully idle cores (both logical CPUs are 3338 * idle) to avoid interference caused by SMT. 3339 * 3340 * 2. Reuse the same CPU: 3341 * - prefer the last used CPU to take advantage of cached data (L1, L2) and 3342 * branch prediction optimizations. 3343 * 3344 * 3. Pick a CPU within the same LLC (Last-Level Cache): 3345 * - if the above conditions aren't met, pick a CPU that shares the same LLC 3346 * to maintain cache locality. 3347 * 3348 * 4. Pick a CPU within the same NUMA node, if enabled: 3349 * - choose a CPU from the same NUMA node to reduce memory access latency. 3350 * 3351 * Step 3 and 4 are performed only if the system has, respectively, multiple 3352 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and 3353 * scx_selcpu_topo_numa). 3354 * 3355 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because 3356 * we never call ops.select_cpu() for them, see select_task_rq(). 3357 */ 3358 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3359 u64 wake_flags, bool *found) 3360 { 3361 const struct cpumask *llc_cpus = NULL; 3362 const struct cpumask *numa_cpus = NULL; 3363 s32 cpu; 3364 3365 *found = false; 3366 3367 3368 /* 3369 * This is necessary to protect llc_cpus. 3370 */ 3371 rcu_read_lock(); 3372 3373 /* 3374 * Determine the scheduling domain only if the task is allowed to run 3375 * on all CPUs. 3376 * 3377 * This is done primarily for efficiency, as it avoids the overhead of 3378 * updating a cpumask every time we need to select an idle CPU (which 3379 * can be costly in large SMP systems), but it also aligns logically: 3380 * if a task's scheduling domain is restricted by user-space (through 3381 * CPU affinity), the task will simply use the flat scheduling domain 3382 * defined by user-space. 3383 */ 3384 if (p->nr_cpus_allowed >= num_possible_cpus()) { 3385 if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) 3386 numa_cpus = cpumask_of_node(cpu_to_node(prev_cpu)); 3387 3388 if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) { 3389 struct sched_domain *sd; 3390 3391 sd = rcu_dereference(per_cpu(sd_llc, prev_cpu)); 3392 if (sd) 3393 llc_cpus = sched_domain_span(sd); 3394 } 3395 } 3396 3397 /* 3398 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU. 3399 */ 3400 if (wake_flags & SCX_WAKE_SYNC) { 3401 cpu = smp_processor_id(); 3402 3403 /* 3404 * If the waker's CPU is cache affine and prev_cpu is idle, 3405 * then avoid a migration. 3406 */ 3407 if (cpus_share_cache(cpu, prev_cpu) && 3408 test_and_clear_cpu_idle(prev_cpu)) { 3409 cpu = prev_cpu; 3410 goto cpu_found; 3411 } 3412 3413 /* 3414 * If the waker's local DSQ is empty, and the system is under 3415 * utilized, try to wake up @p to the local DSQ of the waker. 3416 * 3417 * Checking only for an empty local DSQ is insufficient as it 3418 * could give the wakee an unfair advantage when the system is 3419 * oversaturated. 3420 * 3421 * Checking only for the presence of idle CPUs is also 3422 * insufficient as the local DSQ of the waker could have tasks 3423 * piled up on it even if there is an idle core elsewhere on 3424 * the system. 3425 */ 3426 if (!cpumask_empty(idle_masks.cpu) && 3427 !(current->flags & PF_EXITING) && 3428 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3429 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3430 goto cpu_found; 3431 } 3432 } 3433 3434 /* 3435 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3436 * partially idle @prev_cpu. 3437 */ 3438 if (sched_smt_active()) { 3439 /* 3440 * Keep using @prev_cpu if it's part of a fully idle core. 3441 */ 3442 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3443 test_and_clear_cpu_idle(prev_cpu)) { 3444 cpu = prev_cpu; 3445 goto cpu_found; 3446 } 3447 3448 /* 3449 * Search for any fully idle core in the same LLC domain. 3450 */ 3451 if (llc_cpus) { 3452 cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE); 3453 if (cpu >= 0) 3454 goto cpu_found; 3455 } 3456 3457 /* 3458 * Search for any fully idle core in the same NUMA node. 3459 */ 3460 if (numa_cpus) { 3461 cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE); 3462 if (cpu >= 0) 3463 goto cpu_found; 3464 } 3465 3466 /* 3467 * Search for any full idle core usable by the task. 3468 */ 3469 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3470 if (cpu >= 0) 3471 goto cpu_found; 3472 } 3473 3474 /* 3475 * Use @prev_cpu if it's idle. 3476 */ 3477 if (test_and_clear_cpu_idle(prev_cpu)) { 3478 cpu = prev_cpu; 3479 goto cpu_found; 3480 } 3481 3482 /* 3483 * Search for any idle CPU in the same LLC domain. 3484 */ 3485 if (llc_cpus) { 3486 cpu = scx_pick_idle_cpu(llc_cpus, 0); 3487 if (cpu >= 0) 3488 goto cpu_found; 3489 } 3490 3491 /* 3492 * Search for any idle CPU in the same NUMA node. 3493 */ 3494 if (numa_cpus) { 3495 cpu = scx_pick_idle_cpu(numa_cpus, 0); 3496 if (cpu >= 0) 3497 goto cpu_found; 3498 } 3499 3500 /* 3501 * Search for any idle CPU usable by the task. 3502 */ 3503 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3504 if (cpu >= 0) 3505 goto cpu_found; 3506 3507 rcu_read_unlock(); 3508 return prev_cpu; 3509 3510 cpu_found: 3511 rcu_read_unlock(); 3512 3513 *found = true; 3514 return cpu; 3515 } 3516 3517 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3518 { 3519 /* 3520 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3521 * can be a good migration opportunity with low cache and memory 3522 * footprint. Returning a CPU different than @prev_cpu triggers 3523 * immediate rq migration. However, for SCX, as the current rq 3524 * association doesn't dictate where the task is going to run, this 3525 * doesn't fit well. If necessary, we can later add a dedicated method 3526 * which can decide to preempt self to force it through the regular 3527 * scheduling path. 3528 */ 3529 if (unlikely(wake_flags & WF_EXEC)) 3530 return prev_cpu; 3531 3532 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) { 3533 s32 cpu; 3534 struct task_struct **ddsp_taskp; 3535 3536 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3537 WARN_ON_ONCE(*ddsp_taskp); 3538 *ddsp_taskp = p; 3539 3540 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3541 select_cpu, p, prev_cpu, wake_flags); 3542 *ddsp_taskp = NULL; 3543 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3544 return cpu; 3545 else 3546 return prev_cpu; 3547 } else { 3548 bool found; 3549 s32 cpu; 3550 3551 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3552 if (found) { 3553 p->scx.slice = SCX_SLICE_DFL; 3554 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3555 } 3556 return cpu; 3557 } 3558 } 3559 3560 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3561 { 3562 run_deferred(rq); 3563 } 3564 3565 static void set_cpus_allowed_scx(struct task_struct *p, 3566 struct affinity_context *ac) 3567 { 3568 set_cpus_allowed_common(p, ac); 3569 3570 /* 3571 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3572 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3573 * scheduler the effective one. 3574 * 3575 * Fine-grained memory write control is enforced by BPF making the const 3576 * designation pointless. Cast it away when calling the operation. 3577 */ 3578 if (SCX_HAS_OP(set_cpumask)) 3579 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3580 (struct cpumask *)p->cpus_ptr); 3581 } 3582 3583 static void reset_idle_masks(void) 3584 { 3585 /* 3586 * Consider all online cpus idle. Should converge to the actual state 3587 * quickly. 3588 */ 3589 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3590 cpumask_copy(idle_masks.smt, cpu_online_mask); 3591 } 3592 3593 static void update_builtin_idle(int cpu, bool idle) 3594 { 3595 if (idle) 3596 cpumask_set_cpu(cpu, idle_masks.cpu); 3597 else 3598 cpumask_clear_cpu(cpu, idle_masks.cpu); 3599 3600 #ifdef CONFIG_SCHED_SMT 3601 if (sched_smt_active()) { 3602 const struct cpumask *smt = cpu_smt_mask(cpu); 3603 3604 if (idle) { 3605 /* 3606 * idle_masks.smt handling is racy but that's fine as 3607 * it's only for optimization and self-correcting. 3608 */ 3609 for_each_cpu(cpu, smt) { 3610 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 3611 return; 3612 } 3613 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3614 } else { 3615 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3616 } 3617 } 3618 #endif 3619 } 3620 3621 /* 3622 * Update the idle state of a CPU to @idle. 3623 * 3624 * If @do_notify is true, ops.update_idle() is invoked to notify the scx 3625 * scheduler of an actual idle state transition (idle to busy or vice 3626 * versa). If @do_notify is false, only the idle state in the idle masks is 3627 * refreshed without invoking ops.update_idle(). 3628 * 3629 * This distinction is necessary, because an idle CPU can be "reserved" and 3630 * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as 3631 * busy even if no tasks are dispatched. In this case, the CPU may return 3632 * to idle without a true state transition. Refreshing the idle masks 3633 * without invoking ops.update_idle() ensures accurate idle state tracking 3634 * while avoiding unnecessary updates and maintaining balanced state 3635 * transitions. 3636 */ 3637 void __scx_update_idle(struct rq *rq, bool idle, bool do_notify) 3638 { 3639 int cpu = cpu_of(rq); 3640 3641 lockdep_assert_rq_held(rq); 3642 3643 /* 3644 * Trigger ops.update_idle() only when transitioning from a task to 3645 * the idle thread and vice versa. 3646 * 3647 * Idle transitions are indicated by do_notify being set to true, 3648 * managed by put_prev_task_idle()/set_next_task_idle(). 3649 */ 3650 if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq)) 3651 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3652 3653 /* 3654 * Update the idle masks: 3655 * - for real idle transitions (do_notify == true) 3656 * - for idle-to-idle transitions (indicated by the previous task 3657 * being the idle thread, managed by pick_task_idle()) 3658 * 3659 * Skip updating idle masks if the previous task is not the idle 3660 * thread, since set_next_task_idle() has already handled it when 3661 * transitioning from a task to the idle thread (calling this 3662 * function with do_notify == true). 3663 * 3664 * In this way we can avoid updating the idle masks twice, 3665 * unnecessarily. 3666 */ 3667 if (static_branch_likely(&scx_builtin_idle_enabled)) 3668 if (do_notify || is_idle_task(rq->curr)) 3669 update_builtin_idle(cpu, idle); 3670 } 3671 3672 static void handle_hotplug(struct rq *rq, bool online) 3673 { 3674 int cpu = cpu_of(rq); 3675 3676 atomic_long_inc(&scx_hotplug_seq); 3677 3678 if (scx_enabled()) 3679 update_selcpu_topology(); 3680 3681 if (online && SCX_HAS_OP(cpu_online)) 3682 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3683 else if (!online && SCX_HAS_OP(cpu_offline)) 3684 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3685 else 3686 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3687 "cpu %d going %s, exiting scheduler", cpu, 3688 online ? "online" : "offline"); 3689 } 3690 3691 void scx_rq_activate(struct rq *rq) 3692 { 3693 handle_hotplug(rq, true); 3694 } 3695 3696 void scx_rq_deactivate(struct rq *rq) 3697 { 3698 handle_hotplug(rq, false); 3699 } 3700 3701 static void rq_online_scx(struct rq *rq) 3702 { 3703 rq->scx.flags |= SCX_RQ_ONLINE; 3704 } 3705 3706 static void rq_offline_scx(struct rq *rq) 3707 { 3708 rq->scx.flags &= ~SCX_RQ_ONLINE; 3709 } 3710 3711 #else /* CONFIG_SMP */ 3712 3713 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3714 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3715 static void reset_idle_masks(void) {} 3716 3717 #endif /* CONFIG_SMP */ 3718 3719 static bool check_rq_for_timeouts(struct rq *rq) 3720 { 3721 struct task_struct *p; 3722 struct rq_flags rf; 3723 bool timed_out = false; 3724 3725 rq_lock_irqsave(rq, &rf); 3726 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3727 unsigned long last_runnable = p->scx.runnable_at; 3728 3729 if (unlikely(time_after(jiffies, 3730 last_runnable + scx_watchdog_timeout))) { 3731 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3732 3733 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3734 "%s[%d] failed to run for %u.%03us", 3735 p->comm, p->pid, 3736 dur_ms / 1000, dur_ms % 1000); 3737 timed_out = true; 3738 break; 3739 } 3740 } 3741 rq_unlock_irqrestore(rq, &rf); 3742 3743 return timed_out; 3744 } 3745 3746 static void scx_watchdog_workfn(struct work_struct *work) 3747 { 3748 int cpu; 3749 3750 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3751 3752 for_each_online_cpu(cpu) { 3753 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3754 break; 3755 3756 cond_resched(); 3757 } 3758 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3759 scx_watchdog_timeout / 2); 3760 } 3761 3762 void scx_tick(struct rq *rq) 3763 { 3764 unsigned long last_check; 3765 3766 if (!scx_enabled()) 3767 return; 3768 3769 last_check = READ_ONCE(scx_watchdog_timestamp); 3770 if (unlikely(time_after(jiffies, 3771 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3772 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3773 3774 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3775 "watchdog failed to check in for %u.%03us", 3776 dur_ms / 1000, dur_ms % 1000); 3777 } 3778 3779 update_other_load_avgs(rq); 3780 } 3781 3782 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3783 { 3784 update_curr_scx(rq); 3785 3786 /* 3787 * While disabling, always resched and refresh core-sched timestamp as 3788 * we can't trust the slice management or ops.core_sched_before(). 3789 */ 3790 if (scx_rq_bypassing(rq)) { 3791 curr->scx.slice = 0; 3792 touch_core_sched(rq, curr); 3793 } else if (SCX_HAS_OP(tick)) { 3794 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3795 } 3796 3797 if (!curr->scx.slice) 3798 resched_curr(rq); 3799 } 3800 3801 #ifdef CONFIG_EXT_GROUP_SCHED 3802 static struct cgroup *tg_cgrp(struct task_group *tg) 3803 { 3804 /* 3805 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3806 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3807 * root cgroup. 3808 */ 3809 if (tg && tg->css.cgroup) 3810 return tg->css.cgroup; 3811 else 3812 return &cgrp_dfl_root.cgrp; 3813 } 3814 3815 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3816 3817 #else /* CONFIG_EXT_GROUP_SCHED */ 3818 3819 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3820 3821 #endif /* CONFIG_EXT_GROUP_SCHED */ 3822 3823 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3824 { 3825 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3826 } 3827 3828 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3829 { 3830 enum scx_task_state prev_state = scx_get_task_state(p); 3831 bool warn = false; 3832 3833 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3834 3835 switch (state) { 3836 case SCX_TASK_NONE: 3837 break; 3838 case SCX_TASK_INIT: 3839 warn = prev_state != SCX_TASK_NONE; 3840 break; 3841 case SCX_TASK_READY: 3842 warn = prev_state == SCX_TASK_NONE; 3843 break; 3844 case SCX_TASK_ENABLED: 3845 warn = prev_state != SCX_TASK_READY; 3846 break; 3847 default: 3848 warn = true; 3849 return; 3850 } 3851 3852 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3853 prev_state, state, p->comm, p->pid); 3854 3855 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3856 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3857 } 3858 3859 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3860 { 3861 int ret; 3862 3863 p->scx.disallow = false; 3864 3865 if (SCX_HAS_OP(init_task)) { 3866 struct scx_init_task_args args = { 3867 SCX_INIT_TASK_ARGS_CGROUP(tg) 3868 .fork = fork, 3869 }; 3870 3871 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3872 if (unlikely(ret)) { 3873 ret = ops_sanitize_err("init_task", ret); 3874 return ret; 3875 } 3876 } 3877 3878 scx_set_task_state(p, SCX_TASK_INIT); 3879 3880 if (p->scx.disallow) { 3881 if (!fork) { 3882 struct rq *rq; 3883 struct rq_flags rf; 3884 3885 rq = task_rq_lock(p, &rf); 3886 3887 /* 3888 * We're in the load path and @p->policy will be applied 3889 * right after. Reverting @p->policy here and rejecting 3890 * %SCHED_EXT transitions from scx_check_setscheduler() 3891 * guarantees that if ops.init_task() sets @p->disallow, 3892 * @p can never be in SCX. 3893 */ 3894 if (p->policy == SCHED_EXT) { 3895 p->policy = SCHED_NORMAL; 3896 atomic_long_inc(&scx_nr_rejected); 3897 } 3898 3899 task_rq_unlock(rq, p, &rf); 3900 } else if (p->policy == SCHED_EXT) { 3901 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3902 p->comm, p->pid); 3903 } 3904 } 3905 3906 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3907 return 0; 3908 } 3909 3910 static void scx_ops_enable_task(struct task_struct *p) 3911 { 3912 u32 weight; 3913 3914 lockdep_assert_rq_held(task_rq(p)); 3915 3916 /* 3917 * Set the weight before calling ops.enable() so that the scheduler 3918 * doesn't see a stale value if they inspect the task struct. 3919 */ 3920 if (task_has_idle_policy(p)) 3921 weight = WEIGHT_IDLEPRIO; 3922 else 3923 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3924 3925 p->scx.weight = sched_weight_to_cgroup(weight); 3926 3927 if (SCX_HAS_OP(enable)) 3928 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3929 scx_set_task_state(p, SCX_TASK_ENABLED); 3930 3931 if (SCX_HAS_OP(set_weight)) 3932 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3933 } 3934 3935 static void scx_ops_disable_task(struct task_struct *p) 3936 { 3937 lockdep_assert_rq_held(task_rq(p)); 3938 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3939 3940 if (SCX_HAS_OP(disable)) 3941 SCX_CALL_OP(SCX_KF_REST, disable, p); 3942 scx_set_task_state(p, SCX_TASK_READY); 3943 } 3944 3945 static void scx_ops_exit_task(struct task_struct *p) 3946 { 3947 struct scx_exit_task_args args = { 3948 .cancelled = false, 3949 }; 3950 3951 lockdep_assert_rq_held(task_rq(p)); 3952 3953 switch (scx_get_task_state(p)) { 3954 case SCX_TASK_NONE: 3955 return; 3956 case SCX_TASK_INIT: 3957 args.cancelled = true; 3958 break; 3959 case SCX_TASK_READY: 3960 break; 3961 case SCX_TASK_ENABLED: 3962 scx_ops_disable_task(p); 3963 break; 3964 default: 3965 WARN_ON_ONCE(true); 3966 return; 3967 } 3968 3969 if (SCX_HAS_OP(exit_task)) 3970 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3971 scx_set_task_state(p, SCX_TASK_NONE); 3972 } 3973 3974 void init_scx_entity(struct sched_ext_entity *scx) 3975 { 3976 memset(scx, 0, sizeof(*scx)); 3977 INIT_LIST_HEAD(&scx->dsq_list.node); 3978 RB_CLEAR_NODE(&scx->dsq_priq); 3979 scx->sticky_cpu = -1; 3980 scx->holding_cpu = -1; 3981 INIT_LIST_HEAD(&scx->runnable_node); 3982 scx->runnable_at = jiffies; 3983 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3984 scx->slice = SCX_SLICE_DFL; 3985 } 3986 3987 void scx_pre_fork(struct task_struct *p) 3988 { 3989 /* 3990 * BPF scheduler enable/disable paths want to be able to iterate and 3991 * update all tasks which can become complex when racing forks. As 3992 * enable/disable are very cold paths, let's use a percpu_rwsem to 3993 * exclude forks. 3994 */ 3995 percpu_down_read(&scx_fork_rwsem); 3996 } 3997 3998 int scx_fork(struct task_struct *p) 3999 { 4000 percpu_rwsem_assert_held(&scx_fork_rwsem); 4001 4002 if (scx_ops_init_task_enabled) 4003 return scx_ops_init_task(p, task_group(p), true); 4004 else 4005 return 0; 4006 } 4007 4008 void scx_post_fork(struct task_struct *p) 4009 { 4010 if (scx_ops_init_task_enabled) { 4011 scx_set_task_state(p, SCX_TASK_READY); 4012 4013 /* 4014 * Enable the task immediately if it's running on sched_ext. 4015 * Otherwise, it'll be enabled in switching_to_scx() if and 4016 * when it's ever configured to run with a SCHED_EXT policy. 4017 */ 4018 if (p->sched_class == &ext_sched_class) { 4019 struct rq_flags rf; 4020 struct rq *rq; 4021 4022 rq = task_rq_lock(p, &rf); 4023 scx_ops_enable_task(p); 4024 task_rq_unlock(rq, p, &rf); 4025 } 4026 } 4027 4028 spin_lock_irq(&scx_tasks_lock); 4029 list_add_tail(&p->scx.tasks_node, &scx_tasks); 4030 spin_unlock_irq(&scx_tasks_lock); 4031 4032 percpu_up_read(&scx_fork_rwsem); 4033 } 4034 4035 void scx_cancel_fork(struct task_struct *p) 4036 { 4037 if (scx_enabled()) { 4038 struct rq *rq; 4039 struct rq_flags rf; 4040 4041 rq = task_rq_lock(p, &rf); 4042 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 4043 scx_ops_exit_task(p); 4044 task_rq_unlock(rq, p, &rf); 4045 } 4046 4047 percpu_up_read(&scx_fork_rwsem); 4048 } 4049 4050 void sched_ext_free(struct task_struct *p) 4051 { 4052 unsigned long flags; 4053 4054 spin_lock_irqsave(&scx_tasks_lock, flags); 4055 list_del_init(&p->scx.tasks_node); 4056 spin_unlock_irqrestore(&scx_tasks_lock, flags); 4057 4058 /* 4059 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 4060 * ENABLED transitions can't race us. Disable ops for @p. 4061 */ 4062 if (scx_get_task_state(p) != SCX_TASK_NONE) { 4063 struct rq_flags rf; 4064 struct rq *rq; 4065 4066 rq = task_rq_lock(p, &rf); 4067 scx_ops_exit_task(p); 4068 task_rq_unlock(rq, p, &rf); 4069 } 4070 } 4071 4072 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 4073 const struct load_weight *lw) 4074 { 4075 lockdep_assert_rq_held(task_rq(p)); 4076 4077 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 4078 if (SCX_HAS_OP(set_weight)) 4079 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 4080 } 4081 4082 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 4083 { 4084 } 4085 4086 static void switching_to_scx(struct rq *rq, struct task_struct *p) 4087 { 4088 scx_ops_enable_task(p); 4089 4090 /* 4091 * set_cpus_allowed_scx() is not called while @p is associated with a 4092 * different scheduler class. Keep the BPF scheduler up-to-date. 4093 */ 4094 if (SCX_HAS_OP(set_cpumask)) 4095 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 4096 (struct cpumask *)p->cpus_ptr); 4097 } 4098 4099 static void switched_from_scx(struct rq *rq, struct task_struct *p) 4100 { 4101 scx_ops_disable_task(p); 4102 } 4103 4104 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 4105 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 4106 4107 int scx_check_setscheduler(struct task_struct *p, int policy) 4108 { 4109 lockdep_assert_rq_held(task_rq(p)); 4110 4111 /* if disallow, reject transitioning into SCX */ 4112 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 4113 p->policy != policy && policy == SCHED_EXT) 4114 return -EACCES; 4115 4116 return 0; 4117 } 4118 4119 #ifdef CONFIG_NO_HZ_FULL 4120 bool scx_can_stop_tick(struct rq *rq) 4121 { 4122 struct task_struct *p = rq->curr; 4123 4124 if (scx_rq_bypassing(rq)) 4125 return false; 4126 4127 if (p->sched_class != &ext_sched_class) 4128 return true; 4129 4130 /* 4131 * @rq can dispatch from different DSQs, so we can't tell whether it 4132 * needs the tick or not by looking at nr_running. Allow stopping ticks 4133 * iff the BPF scheduler indicated so. See set_next_task_scx(). 4134 */ 4135 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 4136 } 4137 #endif 4138 4139 #ifdef CONFIG_EXT_GROUP_SCHED 4140 4141 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 4142 static bool scx_cgroup_enabled; 4143 static bool cgroup_warned_missing_weight; 4144 static bool cgroup_warned_missing_idle; 4145 4146 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 4147 { 4148 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 4149 cgroup_warned_missing_weight) 4150 return; 4151 4152 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 4153 return; 4154 4155 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 4156 scx_ops.name); 4157 cgroup_warned_missing_weight = true; 4158 } 4159 4160 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 4161 { 4162 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 4163 return; 4164 4165 if (!tg->idle) 4166 return; 4167 4168 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 4169 scx_ops.name); 4170 cgroup_warned_missing_idle = true; 4171 } 4172 4173 int scx_tg_online(struct task_group *tg) 4174 { 4175 int ret = 0; 4176 4177 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 4178 4179 percpu_down_read(&scx_cgroup_rwsem); 4180 4181 scx_cgroup_warn_missing_weight(tg); 4182 4183 if (scx_cgroup_enabled) { 4184 if (SCX_HAS_OP(cgroup_init)) { 4185 struct scx_cgroup_init_args args = 4186 { .weight = tg->scx_weight }; 4187 4188 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4189 tg->css.cgroup, &args); 4190 if (ret) 4191 ret = ops_sanitize_err("cgroup_init", ret); 4192 } 4193 if (ret == 0) 4194 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 4195 } else { 4196 tg->scx_flags |= SCX_TG_ONLINE; 4197 } 4198 4199 percpu_up_read(&scx_cgroup_rwsem); 4200 return ret; 4201 } 4202 4203 void scx_tg_offline(struct task_group *tg) 4204 { 4205 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 4206 4207 percpu_down_read(&scx_cgroup_rwsem); 4208 4209 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 4210 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 4211 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 4212 4213 percpu_up_read(&scx_cgroup_rwsem); 4214 } 4215 4216 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 4217 { 4218 struct cgroup_subsys_state *css; 4219 struct task_struct *p; 4220 int ret; 4221 4222 /* released in scx_finish/cancel_attach() */ 4223 percpu_down_read(&scx_cgroup_rwsem); 4224 4225 if (!scx_cgroup_enabled) 4226 return 0; 4227 4228 cgroup_taskset_for_each(p, css, tset) { 4229 struct cgroup *from = tg_cgrp(task_group(p)); 4230 struct cgroup *to = tg_cgrp(css_tg(css)); 4231 4232 WARN_ON_ONCE(p->scx.cgrp_moving_from); 4233 4234 /* 4235 * sched_move_task() omits identity migrations. Let's match the 4236 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 4237 * always match one-to-one. 4238 */ 4239 if (from == to) 4240 continue; 4241 4242 if (SCX_HAS_OP(cgroup_prep_move)) { 4243 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 4244 p, from, css->cgroup); 4245 if (ret) 4246 goto err; 4247 } 4248 4249 p->scx.cgrp_moving_from = from; 4250 } 4251 4252 return 0; 4253 4254 err: 4255 cgroup_taskset_for_each(p, css, tset) { 4256 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4257 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4258 p->scx.cgrp_moving_from, css->cgroup); 4259 p->scx.cgrp_moving_from = NULL; 4260 } 4261 4262 percpu_up_read(&scx_cgroup_rwsem); 4263 return ops_sanitize_err("cgroup_prep_move", ret); 4264 } 4265 4266 void scx_move_task(struct task_struct *p) 4267 { 4268 if (!scx_cgroup_enabled) 4269 return; 4270 4271 /* 4272 * We're called from sched_move_task() which handles both cgroup and 4273 * autogroup moves. Ignore the latter. 4274 * 4275 * Also ignore exiting tasks, because in the exit path tasks transition 4276 * from the autogroup to the root group, so task_group_is_autogroup() 4277 * alone isn't able to catch exiting autogroup tasks. This is safe for 4278 * cgroup_move(), because cgroup migrations never happen for PF_EXITING 4279 * tasks. 4280 */ 4281 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) 4282 return; 4283 4284 /* 4285 * @p must have ops.cgroup_prep_move() called on it and thus 4286 * cgrp_moving_from set. 4287 */ 4288 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4289 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 4290 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 4291 p->scx.cgrp_moving_from = NULL; 4292 } 4293 4294 void scx_cgroup_finish_attach(void) 4295 { 4296 percpu_up_read(&scx_cgroup_rwsem); 4297 } 4298 4299 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4300 { 4301 struct cgroup_subsys_state *css; 4302 struct task_struct *p; 4303 4304 if (!scx_cgroup_enabled) 4305 goto out_unlock; 4306 4307 cgroup_taskset_for_each(p, css, tset) { 4308 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4309 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4310 p->scx.cgrp_moving_from, css->cgroup); 4311 p->scx.cgrp_moving_from = NULL; 4312 } 4313 out_unlock: 4314 percpu_up_read(&scx_cgroup_rwsem); 4315 } 4316 4317 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4318 { 4319 percpu_down_read(&scx_cgroup_rwsem); 4320 4321 if (scx_cgroup_enabled && tg->scx_weight != weight) { 4322 if (SCX_HAS_OP(cgroup_set_weight)) 4323 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 4324 tg_cgrp(tg), weight); 4325 tg->scx_weight = weight; 4326 } 4327 4328 percpu_up_read(&scx_cgroup_rwsem); 4329 } 4330 4331 void scx_group_set_idle(struct task_group *tg, bool idle) 4332 { 4333 percpu_down_read(&scx_cgroup_rwsem); 4334 scx_cgroup_warn_missing_idle(tg); 4335 percpu_up_read(&scx_cgroup_rwsem); 4336 } 4337 4338 static void scx_cgroup_lock(void) 4339 { 4340 percpu_down_write(&scx_cgroup_rwsem); 4341 } 4342 4343 static void scx_cgroup_unlock(void) 4344 { 4345 percpu_up_write(&scx_cgroup_rwsem); 4346 } 4347 4348 #else /* CONFIG_EXT_GROUP_SCHED */ 4349 4350 static inline void scx_cgroup_lock(void) {} 4351 static inline void scx_cgroup_unlock(void) {} 4352 4353 #endif /* CONFIG_EXT_GROUP_SCHED */ 4354 4355 /* 4356 * Omitted operations: 4357 * 4358 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4359 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4360 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4361 * 4362 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4363 * 4364 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4365 * their current sched_class. Call them directly from sched core instead. 4366 */ 4367 DEFINE_SCHED_CLASS(ext) = { 4368 .enqueue_task = enqueue_task_scx, 4369 .dequeue_task = dequeue_task_scx, 4370 .yield_task = yield_task_scx, 4371 .yield_to_task = yield_to_task_scx, 4372 4373 .wakeup_preempt = wakeup_preempt_scx, 4374 4375 .balance = balance_scx, 4376 .pick_task = pick_task_scx, 4377 4378 .put_prev_task = put_prev_task_scx, 4379 .set_next_task = set_next_task_scx, 4380 4381 #ifdef CONFIG_SMP 4382 .select_task_rq = select_task_rq_scx, 4383 .task_woken = task_woken_scx, 4384 .set_cpus_allowed = set_cpus_allowed_scx, 4385 4386 .rq_online = rq_online_scx, 4387 .rq_offline = rq_offline_scx, 4388 #endif 4389 4390 .task_tick = task_tick_scx, 4391 4392 .switching_to = switching_to_scx, 4393 .switched_from = switched_from_scx, 4394 .switched_to = switched_to_scx, 4395 .reweight_task = reweight_task_scx, 4396 .prio_changed = prio_changed_scx, 4397 4398 .update_curr = update_curr_scx, 4399 4400 #ifdef CONFIG_UCLAMP_TASK 4401 .uclamp_enabled = 1, 4402 #endif 4403 }; 4404 4405 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4406 { 4407 memset(dsq, 0, sizeof(*dsq)); 4408 4409 raw_spin_lock_init(&dsq->lock); 4410 INIT_LIST_HEAD(&dsq->list); 4411 dsq->id = dsq_id; 4412 } 4413 4414 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 4415 { 4416 struct scx_dispatch_q *dsq; 4417 int ret; 4418 4419 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 4420 return ERR_PTR(-EINVAL); 4421 4422 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4423 if (!dsq) 4424 return ERR_PTR(-ENOMEM); 4425 4426 init_dsq(dsq, dsq_id); 4427 4428 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 4429 dsq_hash_params); 4430 if (ret) { 4431 kfree(dsq); 4432 return ERR_PTR(ret); 4433 } 4434 return dsq; 4435 } 4436 4437 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4438 { 4439 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4440 struct scx_dispatch_q *dsq, *tmp_dsq; 4441 4442 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4443 kfree_rcu(dsq, rcu); 4444 } 4445 4446 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4447 4448 static void destroy_dsq(u64 dsq_id) 4449 { 4450 struct scx_dispatch_q *dsq; 4451 unsigned long flags; 4452 4453 rcu_read_lock(); 4454 4455 dsq = find_user_dsq(dsq_id); 4456 if (!dsq) 4457 goto out_unlock_rcu; 4458 4459 raw_spin_lock_irqsave(&dsq->lock, flags); 4460 4461 if (dsq->nr) { 4462 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4463 dsq->id, dsq->nr); 4464 goto out_unlock_dsq; 4465 } 4466 4467 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4468 goto out_unlock_dsq; 4469 4470 /* 4471 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4472 * queueing more tasks. As this function can be called from anywhere, 4473 * freeing is bounced through an irq work to avoid nesting RCU 4474 * operations inside scheduler locks. 4475 */ 4476 dsq->id = SCX_DSQ_INVALID; 4477 llist_add(&dsq->free_node, &dsqs_to_free); 4478 irq_work_queue(&free_dsq_irq_work); 4479 4480 out_unlock_dsq: 4481 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4482 out_unlock_rcu: 4483 rcu_read_unlock(); 4484 } 4485 4486 #ifdef CONFIG_EXT_GROUP_SCHED 4487 static void scx_cgroup_exit(void) 4488 { 4489 struct cgroup_subsys_state *css; 4490 4491 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4492 4493 scx_cgroup_enabled = false; 4494 4495 /* 4496 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4497 * cgroups and exit all the inited ones, all online cgroups are exited. 4498 */ 4499 rcu_read_lock(); 4500 css_for_each_descendant_post(css, &root_task_group.css) { 4501 struct task_group *tg = css_tg(css); 4502 4503 if (!(tg->scx_flags & SCX_TG_INITED)) 4504 continue; 4505 tg->scx_flags &= ~SCX_TG_INITED; 4506 4507 if (!scx_ops.cgroup_exit) 4508 continue; 4509 4510 if (WARN_ON_ONCE(!css_tryget(css))) 4511 continue; 4512 rcu_read_unlock(); 4513 4514 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4515 4516 rcu_read_lock(); 4517 css_put(css); 4518 } 4519 rcu_read_unlock(); 4520 } 4521 4522 static int scx_cgroup_init(void) 4523 { 4524 struct cgroup_subsys_state *css; 4525 int ret; 4526 4527 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4528 4529 cgroup_warned_missing_weight = false; 4530 cgroup_warned_missing_idle = false; 4531 4532 /* 4533 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk 4534 * cgroups and init, all online cgroups are initialized. 4535 */ 4536 rcu_read_lock(); 4537 css_for_each_descendant_pre(css, &root_task_group.css) { 4538 struct task_group *tg = css_tg(css); 4539 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4540 4541 scx_cgroup_warn_missing_weight(tg); 4542 scx_cgroup_warn_missing_idle(tg); 4543 4544 if ((tg->scx_flags & 4545 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4546 continue; 4547 4548 if (!scx_ops.cgroup_init) { 4549 tg->scx_flags |= SCX_TG_INITED; 4550 continue; 4551 } 4552 4553 if (WARN_ON_ONCE(!css_tryget(css))) 4554 continue; 4555 rcu_read_unlock(); 4556 4557 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4558 css->cgroup, &args); 4559 if (ret) { 4560 css_put(css); 4561 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4562 return ret; 4563 } 4564 tg->scx_flags |= SCX_TG_INITED; 4565 4566 rcu_read_lock(); 4567 css_put(css); 4568 } 4569 rcu_read_unlock(); 4570 4571 WARN_ON_ONCE(scx_cgroup_enabled); 4572 scx_cgroup_enabled = true; 4573 4574 return 0; 4575 } 4576 4577 #else 4578 static void scx_cgroup_exit(void) {} 4579 static int scx_cgroup_init(void) { return 0; } 4580 #endif 4581 4582 4583 /******************************************************************************** 4584 * Sysfs interface and ops enable/disable. 4585 */ 4586 4587 #define SCX_ATTR(_name) \ 4588 static struct kobj_attribute scx_attr_##_name = { \ 4589 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4590 .show = scx_attr_##_name##_show, \ 4591 } 4592 4593 static ssize_t scx_attr_state_show(struct kobject *kobj, 4594 struct kobj_attribute *ka, char *buf) 4595 { 4596 return sysfs_emit(buf, "%s\n", 4597 scx_ops_enable_state_str[scx_ops_enable_state()]); 4598 } 4599 SCX_ATTR(state); 4600 4601 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4602 struct kobj_attribute *ka, char *buf) 4603 { 4604 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4605 } 4606 SCX_ATTR(switch_all); 4607 4608 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4609 struct kobj_attribute *ka, char *buf) 4610 { 4611 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4612 } 4613 SCX_ATTR(nr_rejected); 4614 4615 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4616 struct kobj_attribute *ka, char *buf) 4617 { 4618 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4619 } 4620 SCX_ATTR(hotplug_seq); 4621 4622 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4623 struct kobj_attribute *ka, char *buf) 4624 { 4625 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4626 } 4627 SCX_ATTR(enable_seq); 4628 4629 static struct attribute *scx_global_attrs[] = { 4630 &scx_attr_state.attr, 4631 &scx_attr_switch_all.attr, 4632 &scx_attr_nr_rejected.attr, 4633 &scx_attr_hotplug_seq.attr, 4634 &scx_attr_enable_seq.attr, 4635 NULL, 4636 }; 4637 4638 static const struct attribute_group scx_global_attr_group = { 4639 .attrs = scx_global_attrs, 4640 }; 4641 4642 static void scx_kobj_release(struct kobject *kobj) 4643 { 4644 kfree(kobj); 4645 } 4646 4647 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4648 struct kobj_attribute *ka, char *buf) 4649 { 4650 return sysfs_emit(buf, "%s\n", scx_ops.name); 4651 } 4652 SCX_ATTR(ops); 4653 4654 static struct attribute *scx_sched_attrs[] = { 4655 &scx_attr_ops.attr, 4656 NULL, 4657 }; 4658 ATTRIBUTE_GROUPS(scx_sched); 4659 4660 static const struct kobj_type scx_ktype = { 4661 .release = scx_kobj_release, 4662 .sysfs_ops = &kobj_sysfs_ops, 4663 .default_groups = scx_sched_groups, 4664 }; 4665 4666 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4667 { 4668 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4669 } 4670 4671 static const struct kset_uevent_ops scx_uevent_ops = { 4672 .uevent = scx_uevent, 4673 }; 4674 4675 /* 4676 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4677 * sched_class. dl/rt are already handled. 4678 */ 4679 bool task_should_scx(int policy) 4680 { 4681 if (!scx_enabled() || 4682 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4683 return false; 4684 if (READ_ONCE(scx_switching_all)) 4685 return true; 4686 return policy == SCHED_EXT; 4687 } 4688 4689 /** 4690 * scx_softlockup - sched_ext softlockup handler 4691 * 4692 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4693 * live-lock the system by making many CPUs target the same DSQ to the point 4694 * where soft-lockup detection triggers. This function is called from 4695 * soft-lockup watchdog when the triggering point is close and tries to unjam 4696 * the system by enabling the breather and aborting the BPF scheduler. 4697 */ 4698 void scx_softlockup(u32 dur_s) 4699 { 4700 switch (scx_ops_enable_state()) { 4701 case SCX_OPS_ENABLING: 4702 case SCX_OPS_ENABLED: 4703 break; 4704 default: 4705 return; 4706 } 4707 4708 /* allow only one instance, cleared at the end of scx_ops_bypass() */ 4709 if (test_and_set_bit(0, &scx_in_softlockup)) 4710 return; 4711 4712 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4713 smp_processor_id(), dur_s, scx_ops.name); 4714 4715 /* 4716 * Some CPUs may be trapped in the dispatch paths. Enable breather 4717 * immediately; otherwise, we might even be able to get to 4718 * scx_ops_bypass(). 4719 */ 4720 atomic_inc(&scx_ops_breather_depth); 4721 4722 scx_ops_error("soft lockup - CPU#%d stuck for %us", 4723 smp_processor_id(), dur_s); 4724 } 4725 4726 static void scx_clear_softlockup(void) 4727 { 4728 if (test_and_clear_bit(0, &scx_in_softlockup)) 4729 atomic_dec(&scx_ops_breather_depth); 4730 } 4731 4732 /** 4733 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4734 * 4735 * Bypassing guarantees that all runnable tasks make forward progress without 4736 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4737 * be held by tasks that the BPF scheduler is forgetting to run, which 4738 * unfortunately also excludes toggling the static branches. 4739 * 4740 * Let's work around by overriding a couple ops and modifying behaviors based on 4741 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4742 * to force global FIFO scheduling. 4743 * 4744 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4745 * 4746 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4747 * %SCX_OPS_ENQ_LAST is also ignored. 4748 * 4749 * - ops.dispatch() is ignored. 4750 * 4751 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4752 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4753 * the tail of the queue with core_sched_at touched. 4754 * 4755 * - pick_next_task() suppresses zero slice warning. 4756 * 4757 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4758 * operations. 4759 * 4760 * - scx_prio_less() reverts to the default core_sched_at order. 4761 */ 4762 static void scx_ops_bypass(bool bypass) 4763 { 4764 static DEFINE_RAW_SPINLOCK(bypass_lock); 4765 int cpu; 4766 unsigned long flags; 4767 4768 raw_spin_lock_irqsave(&bypass_lock, flags); 4769 if (bypass) { 4770 scx_ops_bypass_depth++; 4771 WARN_ON_ONCE(scx_ops_bypass_depth <= 0); 4772 if (scx_ops_bypass_depth != 1) 4773 goto unlock; 4774 } else { 4775 scx_ops_bypass_depth--; 4776 WARN_ON_ONCE(scx_ops_bypass_depth < 0); 4777 if (scx_ops_bypass_depth != 0) 4778 goto unlock; 4779 } 4780 4781 atomic_inc(&scx_ops_breather_depth); 4782 4783 /* 4784 * No task property is changing. We just need to make sure all currently 4785 * queued tasks are re-queued according to the new scx_rq_bypassing() 4786 * state. As an optimization, walk each rq's runnable_list instead of 4787 * the scx_tasks list. 4788 * 4789 * This function can't trust the scheduler and thus can't use 4790 * cpus_read_lock(). Walk all possible CPUs instead of online. 4791 */ 4792 for_each_possible_cpu(cpu) { 4793 struct rq *rq = cpu_rq(cpu); 4794 struct task_struct *p, *n; 4795 4796 raw_spin_rq_lock(rq); 4797 4798 if (bypass) { 4799 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4800 rq->scx.flags |= SCX_RQ_BYPASSING; 4801 } else { 4802 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4803 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4804 } 4805 4806 /* 4807 * We need to guarantee that no tasks are on the BPF scheduler 4808 * while bypassing. Either we see enabled or the enable path 4809 * sees scx_rq_bypassing() before moving tasks to SCX. 4810 */ 4811 if (!scx_enabled()) { 4812 raw_spin_rq_unlock(rq); 4813 continue; 4814 } 4815 4816 /* 4817 * The use of list_for_each_entry_safe_reverse() is required 4818 * because each task is going to be removed from and added back 4819 * to the runnable_list during iteration. Because they're added 4820 * to the tail of the list, safe reverse iteration can still 4821 * visit all nodes. 4822 */ 4823 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4824 scx.runnable_node) { 4825 struct sched_enq_and_set_ctx ctx; 4826 4827 /* cycling deq/enq is enough, see the function comment */ 4828 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4829 sched_enq_and_set_task(&ctx); 4830 } 4831 4832 /* resched to restore ticks and idle state */ 4833 if (cpu_online(cpu) || cpu == smp_processor_id()) 4834 resched_curr(rq); 4835 4836 raw_spin_rq_unlock(rq); 4837 } 4838 4839 atomic_dec(&scx_ops_breather_depth); 4840 unlock: 4841 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4842 scx_clear_softlockup(); 4843 } 4844 4845 static void free_exit_info(struct scx_exit_info *ei) 4846 { 4847 kfree(ei->dump); 4848 kfree(ei->msg); 4849 kfree(ei->bt); 4850 kfree(ei); 4851 } 4852 4853 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4854 { 4855 struct scx_exit_info *ei; 4856 4857 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4858 if (!ei) 4859 return NULL; 4860 4861 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4862 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4863 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4864 4865 if (!ei->bt || !ei->msg || !ei->dump) { 4866 free_exit_info(ei); 4867 return NULL; 4868 } 4869 4870 return ei; 4871 } 4872 4873 static const char *scx_exit_reason(enum scx_exit_kind kind) 4874 { 4875 switch (kind) { 4876 case SCX_EXIT_UNREG: 4877 return "unregistered from user space"; 4878 case SCX_EXIT_UNREG_BPF: 4879 return "unregistered from BPF"; 4880 case SCX_EXIT_UNREG_KERN: 4881 return "unregistered from the main kernel"; 4882 case SCX_EXIT_SYSRQ: 4883 return "disabled by sysrq-S"; 4884 case SCX_EXIT_ERROR: 4885 return "runtime error"; 4886 case SCX_EXIT_ERROR_BPF: 4887 return "scx_bpf_error"; 4888 case SCX_EXIT_ERROR_STALL: 4889 return "runnable task stall"; 4890 default: 4891 return "<UNKNOWN>"; 4892 } 4893 } 4894 4895 static void scx_ops_disable_workfn(struct kthread_work *work) 4896 { 4897 struct scx_exit_info *ei = scx_exit_info; 4898 struct scx_task_iter sti; 4899 struct task_struct *p; 4900 struct rhashtable_iter rht_iter; 4901 struct scx_dispatch_q *dsq; 4902 int i, kind; 4903 4904 kind = atomic_read(&scx_exit_kind); 4905 while (true) { 4906 /* 4907 * NONE indicates that a new scx_ops has been registered since 4908 * disable was scheduled - don't kill the new ops. DONE 4909 * indicates that the ops has already been disabled. 4910 */ 4911 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4912 return; 4913 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4914 break; 4915 } 4916 ei->kind = kind; 4917 ei->reason = scx_exit_reason(ei->kind); 4918 4919 /* guarantee forward progress by bypassing scx_ops */ 4920 scx_ops_bypass(true); 4921 4922 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4923 case SCX_OPS_DISABLING: 4924 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4925 break; 4926 case SCX_OPS_DISABLED: 4927 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4928 scx_exit_info->msg); 4929 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4930 SCX_OPS_DISABLING); 4931 goto done; 4932 default: 4933 break; 4934 } 4935 4936 /* 4937 * Here, every runnable task is guaranteed to make forward progress and 4938 * we can safely use blocking synchronization constructs. Actually 4939 * disable ops. 4940 */ 4941 mutex_lock(&scx_ops_enable_mutex); 4942 4943 static_branch_disable(&__scx_switched_all); 4944 WRITE_ONCE(scx_switching_all, false); 4945 4946 /* 4947 * Shut down cgroup support before tasks so that the cgroup attach path 4948 * doesn't race against scx_ops_exit_task(). 4949 */ 4950 scx_cgroup_lock(); 4951 scx_cgroup_exit(); 4952 scx_cgroup_unlock(); 4953 4954 /* 4955 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4956 * must be switched out and exited synchronously. 4957 */ 4958 percpu_down_write(&scx_fork_rwsem); 4959 4960 scx_ops_init_task_enabled = false; 4961 4962 scx_task_iter_start(&sti); 4963 while ((p = scx_task_iter_next_locked(&sti))) { 4964 const struct sched_class *old_class = p->sched_class; 4965 const struct sched_class *new_class = 4966 __setscheduler_class(p->policy, p->prio); 4967 struct sched_enq_and_set_ctx ctx; 4968 4969 if (old_class != new_class && p->se.sched_delayed) 4970 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4971 4972 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4973 4974 p->sched_class = new_class; 4975 check_class_changing(task_rq(p), p, old_class); 4976 4977 sched_enq_and_set_task(&ctx); 4978 4979 check_class_changed(task_rq(p), p, old_class, p->prio); 4980 scx_ops_exit_task(p); 4981 } 4982 scx_task_iter_stop(&sti); 4983 percpu_up_write(&scx_fork_rwsem); 4984 4985 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4986 static_branch_disable(&__scx_ops_enabled); 4987 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 4988 static_branch_disable(&scx_has_op[i]); 4989 static_branch_disable(&scx_ops_enq_last); 4990 static_branch_disable(&scx_ops_enq_exiting); 4991 static_branch_disable(&scx_ops_cpu_preempt); 4992 static_branch_disable(&scx_builtin_idle_enabled); 4993 synchronize_rcu(); 4994 4995 if (ei->kind >= SCX_EXIT_ERROR) { 4996 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4997 scx_ops.name, ei->reason); 4998 4999 if (ei->msg[0] != '\0') 5000 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 5001 #ifdef CONFIG_STACKTRACE 5002 stack_trace_print(ei->bt, ei->bt_len, 2); 5003 #endif 5004 } else { 5005 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5006 scx_ops.name, ei->reason); 5007 } 5008 5009 if (scx_ops.exit) 5010 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 5011 5012 cancel_delayed_work_sync(&scx_watchdog_work); 5013 5014 /* 5015 * Delete the kobject from the hierarchy eagerly in addition to just 5016 * dropping a reference. Otherwise, if the object is deleted 5017 * asynchronously, sysfs could observe an object of the same name still 5018 * in the hierarchy when another scheduler is loaded. 5019 */ 5020 kobject_del(scx_root_kobj); 5021 kobject_put(scx_root_kobj); 5022 scx_root_kobj = NULL; 5023 5024 memset(&scx_ops, 0, sizeof(scx_ops)); 5025 5026 rhashtable_walk_enter(&dsq_hash, &rht_iter); 5027 do { 5028 rhashtable_walk_start(&rht_iter); 5029 5030 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 5031 destroy_dsq(dsq->id); 5032 5033 rhashtable_walk_stop(&rht_iter); 5034 } while (dsq == ERR_PTR(-EAGAIN)); 5035 rhashtable_walk_exit(&rht_iter); 5036 5037 free_percpu(scx_dsp_ctx); 5038 scx_dsp_ctx = NULL; 5039 scx_dsp_max_batch = 0; 5040 5041 free_exit_info(scx_exit_info); 5042 scx_exit_info = NULL; 5043 5044 mutex_unlock(&scx_ops_enable_mutex); 5045 5046 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 5047 SCX_OPS_DISABLING); 5048 done: 5049 scx_ops_bypass(false); 5050 } 5051 5052 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 5053 5054 static void schedule_scx_ops_disable_work(void) 5055 { 5056 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 5057 5058 /* 5059 * We may be called spuriously before the first bpf_sched_ext_reg(). If 5060 * scx_ops_helper isn't set up yet, there's nothing to do. 5061 */ 5062 if (helper) 5063 kthread_queue_work(helper, &scx_ops_disable_work); 5064 } 5065 5066 static void scx_ops_disable(enum scx_exit_kind kind) 5067 { 5068 int none = SCX_EXIT_NONE; 5069 5070 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 5071 kind = SCX_EXIT_ERROR; 5072 5073 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 5074 5075 schedule_scx_ops_disable_work(); 5076 } 5077 5078 static void dump_newline(struct seq_buf *s) 5079 { 5080 trace_sched_ext_dump(""); 5081 5082 /* @s may be zero sized and seq_buf triggers WARN if so */ 5083 if (s->size) 5084 seq_buf_putc(s, '\n'); 5085 } 5086 5087 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 5088 { 5089 va_list args; 5090 5091 #ifdef CONFIG_TRACEPOINTS 5092 if (trace_sched_ext_dump_enabled()) { 5093 /* protected by scx_dump_state()::dump_lock */ 5094 static char line_buf[SCX_EXIT_MSG_LEN]; 5095 5096 va_start(args, fmt); 5097 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 5098 va_end(args); 5099 5100 trace_sched_ext_dump(line_buf); 5101 } 5102 #endif 5103 /* @s may be zero sized and seq_buf triggers WARN if so */ 5104 if (s->size) { 5105 va_start(args, fmt); 5106 seq_buf_vprintf(s, fmt, args); 5107 va_end(args); 5108 5109 seq_buf_putc(s, '\n'); 5110 } 5111 } 5112 5113 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 5114 const unsigned long *bt, unsigned int len) 5115 { 5116 unsigned int i; 5117 5118 for (i = 0; i < len; i++) 5119 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 5120 } 5121 5122 static void ops_dump_init(struct seq_buf *s, const char *prefix) 5123 { 5124 struct scx_dump_data *dd = &scx_dump_data; 5125 5126 lockdep_assert_irqs_disabled(); 5127 5128 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 5129 dd->first = true; 5130 dd->cursor = 0; 5131 dd->s = s; 5132 dd->prefix = prefix; 5133 } 5134 5135 static void ops_dump_flush(void) 5136 { 5137 struct scx_dump_data *dd = &scx_dump_data; 5138 char *line = dd->buf.line; 5139 5140 if (!dd->cursor) 5141 return; 5142 5143 /* 5144 * There's something to flush and this is the first line. Insert a blank 5145 * line to distinguish ops dump. 5146 */ 5147 if (dd->first) { 5148 dump_newline(dd->s); 5149 dd->first = false; 5150 } 5151 5152 /* 5153 * There may be multiple lines in $line. Scan and emit each line 5154 * separately. 5155 */ 5156 while (true) { 5157 char *end = line; 5158 char c; 5159 5160 while (*end != '\n' && *end != '\0') 5161 end++; 5162 5163 /* 5164 * If $line overflowed, it may not have newline at the end. 5165 * Always emit with a newline. 5166 */ 5167 c = *end; 5168 *end = '\0'; 5169 dump_line(dd->s, "%s%s", dd->prefix, line); 5170 if (c == '\0') 5171 break; 5172 5173 /* move to the next line */ 5174 end++; 5175 if (*end == '\0') 5176 break; 5177 line = end; 5178 } 5179 5180 dd->cursor = 0; 5181 } 5182 5183 static void ops_dump_exit(void) 5184 { 5185 ops_dump_flush(); 5186 scx_dump_data.cpu = -1; 5187 } 5188 5189 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 5190 struct task_struct *p, char marker) 5191 { 5192 static unsigned long bt[SCX_EXIT_BT_LEN]; 5193 char dsq_id_buf[19] = "(n/a)"; 5194 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 5195 unsigned int bt_len = 0; 5196 5197 if (p->scx.dsq) 5198 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 5199 (unsigned long long)p->scx.dsq->id); 5200 5201 dump_newline(s); 5202 dump_line(s, " %c%c %s[%d] %+ldms", 5203 marker, task_state_to_char(p), p->comm, p->pid, 5204 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 5205 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 5206 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 5207 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 5208 ops_state >> SCX_OPSS_QSEQ_SHIFT); 5209 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", 5210 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 5211 p->scx.dsq_vtime); 5212 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 5213 5214 if (SCX_HAS_OP(dump_task)) { 5215 ops_dump_init(s, " "); 5216 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 5217 ops_dump_exit(); 5218 } 5219 5220 #ifdef CONFIG_STACKTRACE 5221 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 5222 #endif 5223 if (bt_len) { 5224 dump_newline(s); 5225 dump_stack_trace(s, " ", bt, bt_len); 5226 } 5227 } 5228 5229 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5230 { 5231 static DEFINE_SPINLOCK(dump_lock); 5232 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5233 struct scx_dump_ctx dctx = { 5234 .kind = ei->kind, 5235 .exit_code = ei->exit_code, 5236 .reason = ei->reason, 5237 .at_ns = ktime_get_ns(), 5238 .at_jiffies = jiffies, 5239 }; 5240 struct seq_buf s; 5241 unsigned long flags; 5242 char *buf; 5243 int cpu; 5244 5245 spin_lock_irqsave(&dump_lock, flags); 5246 5247 seq_buf_init(&s, ei->dump, dump_len); 5248 5249 if (ei->kind == SCX_EXIT_NONE) { 5250 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5251 } else { 5252 dump_line(&s, "%s[%d] triggered exit kind %d:", 5253 current->comm, current->pid, ei->kind); 5254 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5255 dump_newline(&s); 5256 dump_line(&s, "Backtrace:"); 5257 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5258 } 5259 5260 if (SCX_HAS_OP(dump)) { 5261 ops_dump_init(&s, ""); 5262 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 5263 ops_dump_exit(); 5264 } 5265 5266 dump_newline(&s); 5267 dump_line(&s, "CPU states"); 5268 dump_line(&s, "----------"); 5269 5270 for_each_possible_cpu(cpu) { 5271 struct rq *rq = cpu_rq(cpu); 5272 struct rq_flags rf; 5273 struct task_struct *p; 5274 struct seq_buf ns; 5275 size_t avail, used; 5276 bool idle; 5277 5278 rq_lock(rq, &rf); 5279 5280 idle = list_empty(&rq->scx.runnable_list) && 5281 rq->curr->sched_class == &idle_sched_class; 5282 5283 if (idle && !SCX_HAS_OP(dump_cpu)) 5284 goto next; 5285 5286 /* 5287 * We don't yet know whether ops.dump_cpu() will produce output 5288 * and we may want to skip the default CPU dump if it doesn't. 5289 * Use a nested seq_buf to generate the standard dump so that we 5290 * can decide whether to commit later. 5291 */ 5292 avail = seq_buf_get_buf(&s, &buf); 5293 seq_buf_init(&ns, buf, avail); 5294 5295 dump_newline(&ns); 5296 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5297 cpu, rq->scx.nr_running, rq->scx.flags, 5298 rq->scx.cpu_released, rq->scx.ops_qseq, 5299 rq->scx.pnt_seq); 5300 dump_line(&ns, " curr=%s[%d] class=%ps", 5301 rq->curr->comm, rq->curr->pid, 5302 rq->curr->sched_class); 5303 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5304 dump_line(&ns, " cpus_to_kick : %*pb", 5305 cpumask_pr_args(rq->scx.cpus_to_kick)); 5306 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5307 dump_line(&ns, " idle_to_kick : %*pb", 5308 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5309 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5310 dump_line(&ns, " cpus_to_preempt: %*pb", 5311 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5312 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5313 dump_line(&ns, " cpus_to_wait : %*pb", 5314 cpumask_pr_args(rq->scx.cpus_to_wait)); 5315 5316 used = seq_buf_used(&ns); 5317 if (SCX_HAS_OP(dump_cpu)) { 5318 ops_dump_init(&ns, " "); 5319 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 5320 ops_dump_exit(); 5321 } 5322 5323 /* 5324 * If idle && nothing generated by ops.dump_cpu(), there's 5325 * nothing interesting. Skip. 5326 */ 5327 if (idle && used == seq_buf_used(&ns)) 5328 goto next; 5329 5330 /* 5331 * $s may already have overflowed when $ns was created. If so, 5332 * calling commit on it will trigger BUG. 5333 */ 5334 if (avail) { 5335 seq_buf_commit(&s, seq_buf_used(&ns)); 5336 if (seq_buf_has_overflowed(&ns)) 5337 seq_buf_set_overflow(&s); 5338 } 5339 5340 if (rq->curr->sched_class == &ext_sched_class) 5341 scx_dump_task(&s, &dctx, rq->curr, '*'); 5342 5343 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5344 scx_dump_task(&s, &dctx, p, ' '); 5345 next: 5346 rq_unlock(rq, &rf); 5347 } 5348 5349 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5350 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5351 trunc_marker, sizeof(trunc_marker)); 5352 5353 spin_unlock_irqrestore(&dump_lock, flags); 5354 } 5355 5356 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 5357 { 5358 struct scx_exit_info *ei = scx_exit_info; 5359 5360 if (ei->kind >= SCX_EXIT_ERROR) 5361 scx_dump_state(ei, scx_ops.exit_dump_len); 5362 5363 schedule_scx_ops_disable_work(); 5364 } 5365 5366 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 5367 5368 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 5369 s64 exit_code, 5370 const char *fmt, ...) 5371 { 5372 struct scx_exit_info *ei = scx_exit_info; 5373 int none = SCX_EXIT_NONE; 5374 va_list args; 5375 5376 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 5377 return; 5378 5379 ei->exit_code = exit_code; 5380 #ifdef CONFIG_STACKTRACE 5381 if (kind >= SCX_EXIT_ERROR) 5382 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5383 #endif 5384 va_start(args, fmt); 5385 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5386 va_end(args); 5387 5388 /* 5389 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5390 * in scx_ops_disable_workfn(). 5391 */ 5392 ei->kind = kind; 5393 ei->reason = scx_exit_reason(ei->kind); 5394 5395 irq_work_queue(&scx_ops_error_irq_work); 5396 } 5397 5398 static struct kthread_worker *scx_create_rt_helper(const char *name) 5399 { 5400 struct kthread_worker *helper; 5401 5402 helper = kthread_create_worker(0, name); 5403 if (helper) 5404 sched_set_fifo(helper->task); 5405 return helper; 5406 } 5407 5408 static void check_hotplug_seq(const struct sched_ext_ops *ops) 5409 { 5410 unsigned long long global_hotplug_seq; 5411 5412 /* 5413 * If a hotplug event has occurred between when a scheduler was 5414 * initialized, and when we were able to attach, exit and notify user 5415 * space about it. 5416 */ 5417 if (ops->hotplug_seq) { 5418 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5419 if (ops->hotplug_seq != global_hotplug_seq) { 5420 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5421 "expected hotplug seq %llu did not match actual %llu", 5422 ops->hotplug_seq, global_hotplug_seq); 5423 } 5424 } 5425 } 5426 5427 static int validate_ops(const struct sched_ext_ops *ops) 5428 { 5429 /* 5430 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5431 * ops.enqueue() callback isn't implemented. 5432 */ 5433 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5434 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5435 return -EINVAL; 5436 } 5437 5438 return 0; 5439 } 5440 5441 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5442 { 5443 struct scx_task_iter sti; 5444 struct task_struct *p; 5445 unsigned long timeout; 5446 int i, cpu, node, ret; 5447 5448 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5449 cpu_possible_mask)) { 5450 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5451 return -EINVAL; 5452 } 5453 5454 mutex_lock(&scx_ops_enable_mutex); 5455 5456 if (!scx_ops_helper) { 5457 WRITE_ONCE(scx_ops_helper, 5458 scx_create_rt_helper("sched_ext_ops_helper")); 5459 if (!scx_ops_helper) { 5460 ret = -ENOMEM; 5461 goto err_unlock; 5462 } 5463 } 5464 5465 if (!global_dsqs) { 5466 struct scx_dispatch_q **dsqs; 5467 5468 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 5469 if (!dsqs) { 5470 ret = -ENOMEM; 5471 goto err_unlock; 5472 } 5473 5474 for_each_node_state(node, N_POSSIBLE) { 5475 struct scx_dispatch_q *dsq; 5476 5477 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5478 if (!dsq) { 5479 for_each_node_state(node, N_POSSIBLE) 5480 kfree(dsqs[node]); 5481 kfree(dsqs); 5482 ret = -ENOMEM; 5483 goto err_unlock; 5484 } 5485 5486 init_dsq(dsq, SCX_DSQ_GLOBAL); 5487 dsqs[node] = dsq; 5488 } 5489 5490 global_dsqs = dsqs; 5491 } 5492 5493 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5494 ret = -EBUSY; 5495 goto err_unlock; 5496 } 5497 5498 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5499 if (!scx_root_kobj) { 5500 ret = -ENOMEM; 5501 goto err_unlock; 5502 } 5503 5504 scx_root_kobj->kset = scx_kset; 5505 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5506 if (ret < 0) 5507 goto err; 5508 5509 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5510 if (!scx_exit_info) { 5511 ret = -ENOMEM; 5512 goto err_del; 5513 } 5514 5515 /* 5516 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5517 * disable path. Failure triggers full disabling from here on. 5518 */ 5519 scx_ops = *ops; 5520 5521 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5522 SCX_OPS_DISABLED); 5523 5524 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5525 scx_warned_zero_slice = false; 5526 5527 atomic_long_set(&scx_nr_rejected, 0); 5528 5529 for_each_possible_cpu(cpu) 5530 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5531 5532 /* 5533 * Keep CPUs stable during enable so that the BPF scheduler can track 5534 * online CPUs by watching ->on/offline_cpu() after ->init(). 5535 */ 5536 cpus_read_lock(); 5537 5538 if (scx_ops.init) { 5539 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5540 if (ret) { 5541 ret = ops_sanitize_err("init", ret); 5542 cpus_read_unlock(); 5543 scx_ops_error("ops.init() failed (%d)", ret); 5544 goto err_disable; 5545 } 5546 } 5547 5548 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5549 if (((void (**)(void))ops)[i]) 5550 static_branch_enable_cpuslocked(&scx_has_op[i]); 5551 5552 check_hotplug_seq(ops); 5553 #ifdef CONFIG_SMP 5554 update_selcpu_topology(); 5555 #endif 5556 cpus_read_unlock(); 5557 5558 ret = validate_ops(ops); 5559 if (ret) 5560 goto err_disable; 5561 5562 WARN_ON_ONCE(scx_dsp_ctx); 5563 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5564 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5565 scx_dsp_max_batch), 5566 __alignof__(struct scx_dsp_ctx)); 5567 if (!scx_dsp_ctx) { 5568 ret = -ENOMEM; 5569 goto err_disable; 5570 } 5571 5572 if (ops->timeout_ms) 5573 timeout = msecs_to_jiffies(ops->timeout_ms); 5574 else 5575 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5576 5577 WRITE_ONCE(scx_watchdog_timeout, timeout); 5578 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5579 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5580 scx_watchdog_timeout / 2); 5581 5582 /* 5583 * Once __scx_ops_enabled is set, %current can be switched to SCX 5584 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5585 * userspace scheduling) may not function correctly before all tasks are 5586 * switched. Init in bypass mode to guarantee forward progress. 5587 */ 5588 scx_ops_bypass(true); 5589 5590 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5591 if (((void (**)(void))ops)[i]) 5592 static_branch_enable(&scx_has_op[i]); 5593 5594 if (ops->flags & SCX_OPS_ENQ_LAST) 5595 static_branch_enable(&scx_ops_enq_last); 5596 5597 if (ops->flags & SCX_OPS_ENQ_EXITING) 5598 static_branch_enable(&scx_ops_enq_exiting); 5599 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5600 static_branch_enable(&scx_ops_cpu_preempt); 5601 5602 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5603 reset_idle_masks(); 5604 static_branch_enable(&scx_builtin_idle_enabled); 5605 } else { 5606 static_branch_disable(&scx_builtin_idle_enabled); 5607 } 5608 5609 /* 5610 * Lock out forks, cgroup on/offlining and moves before opening the 5611 * floodgate so that they don't wander into the operations prematurely. 5612 */ 5613 percpu_down_write(&scx_fork_rwsem); 5614 5615 WARN_ON_ONCE(scx_ops_init_task_enabled); 5616 scx_ops_init_task_enabled = true; 5617 5618 /* 5619 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5620 * preventing new tasks from being added. No need to exclude tasks 5621 * leaving as sched_ext_free() can handle both prepped and enabled 5622 * tasks. Prep all tasks first and then enable them with preemption 5623 * disabled. 5624 * 5625 * All cgroups should be initialized before scx_ops_init_task() so that 5626 * the BPF scheduler can reliably track each task's cgroup membership 5627 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5628 * migrations while tasks are being initialized so that 5629 * scx_cgroup_can_attach() never sees uninitialized tasks. 5630 */ 5631 scx_cgroup_lock(); 5632 ret = scx_cgroup_init(); 5633 if (ret) 5634 goto err_disable_unlock_all; 5635 5636 scx_task_iter_start(&sti); 5637 while ((p = scx_task_iter_next_locked(&sti))) { 5638 /* 5639 * @p may already be dead, have lost all its usages counts and 5640 * be waiting for RCU grace period before being freed. @p can't 5641 * be initialized for SCX in such cases and should be ignored. 5642 */ 5643 if (!tryget_task_struct(p)) 5644 continue; 5645 5646 scx_task_iter_unlock(&sti); 5647 5648 ret = scx_ops_init_task(p, task_group(p), false); 5649 if (ret) { 5650 put_task_struct(p); 5651 scx_task_iter_relock(&sti); 5652 scx_task_iter_stop(&sti); 5653 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5654 ret, p->comm, p->pid); 5655 goto err_disable_unlock_all; 5656 } 5657 5658 scx_set_task_state(p, SCX_TASK_READY); 5659 5660 put_task_struct(p); 5661 scx_task_iter_relock(&sti); 5662 } 5663 scx_task_iter_stop(&sti); 5664 scx_cgroup_unlock(); 5665 percpu_up_write(&scx_fork_rwsem); 5666 5667 /* 5668 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5669 * all eligible tasks. 5670 */ 5671 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5672 static_branch_enable(&__scx_ops_enabled); 5673 5674 /* 5675 * We're fully committed and can't fail. The task READY -> ENABLED 5676 * transitions here are synchronized against sched_ext_free() through 5677 * scx_tasks_lock. 5678 */ 5679 percpu_down_write(&scx_fork_rwsem); 5680 scx_task_iter_start(&sti); 5681 while ((p = scx_task_iter_next_locked(&sti))) { 5682 const struct sched_class *old_class = p->sched_class; 5683 const struct sched_class *new_class = 5684 __setscheduler_class(p->policy, p->prio); 5685 struct sched_enq_and_set_ctx ctx; 5686 5687 if (old_class != new_class && p->se.sched_delayed) 5688 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5689 5690 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5691 5692 p->scx.slice = SCX_SLICE_DFL; 5693 p->sched_class = new_class; 5694 check_class_changing(task_rq(p), p, old_class); 5695 5696 sched_enq_and_set_task(&ctx); 5697 5698 check_class_changed(task_rq(p), p, old_class, p->prio); 5699 } 5700 scx_task_iter_stop(&sti); 5701 percpu_up_write(&scx_fork_rwsem); 5702 5703 scx_ops_bypass(false); 5704 5705 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5706 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5707 goto err_disable; 5708 } 5709 5710 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5711 static_branch_enable(&__scx_switched_all); 5712 5713 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5714 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5715 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5716 mutex_unlock(&scx_ops_enable_mutex); 5717 5718 atomic_long_inc(&scx_enable_seq); 5719 5720 return 0; 5721 5722 err_del: 5723 kobject_del(scx_root_kobj); 5724 err: 5725 kobject_put(scx_root_kobj); 5726 scx_root_kobj = NULL; 5727 if (scx_exit_info) { 5728 free_exit_info(scx_exit_info); 5729 scx_exit_info = NULL; 5730 } 5731 err_unlock: 5732 mutex_unlock(&scx_ops_enable_mutex); 5733 return ret; 5734 5735 err_disable_unlock_all: 5736 scx_cgroup_unlock(); 5737 percpu_up_write(&scx_fork_rwsem); 5738 scx_ops_bypass(false); 5739 err_disable: 5740 mutex_unlock(&scx_ops_enable_mutex); 5741 /* 5742 * Returning an error code here would not pass all the error information 5743 * to userspace. Record errno using scx_ops_error() for cases 5744 * scx_ops_error() wasn't already invoked and exit indicating success so 5745 * that the error is notified through ops.exit() with all the details. 5746 * 5747 * Flush scx_ops_disable_work to ensure that error is reported before 5748 * init completion. 5749 */ 5750 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5751 kthread_flush_work(&scx_ops_disable_work); 5752 return 0; 5753 } 5754 5755 5756 /******************************************************************************** 5757 * bpf_struct_ops plumbing. 5758 */ 5759 #include <linux/bpf_verifier.h> 5760 #include <linux/bpf.h> 5761 #include <linux/btf.h> 5762 5763 static const struct btf_type *task_struct_type; 5764 5765 static bool bpf_scx_is_valid_access(int off, int size, 5766 enum bpf_access_type type, 5767 const struct bpf_prog *prog, 5768 struct bpf_insn_access_aux *info) 5769 { 5770 if (type != BPF_READ) 5771 return false; 5772 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5773 return false; 5774 if (off % size != 0) 5775 return false; 5776 5777 return btf_ctx_access(off, size, type, prog, info); 5778 } 5779 5780 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5781 const struct bpf_reg_state *reg, int off, 5782 int size) 5783 { 5784 const struct btf_type *t; 5785 5786 t = btf_type_by_id(reg->btf, reg->btf_id); 5787 if (t == task_struct_type) { 5788 if (off >= offsetof(struct task_struct, scx.slice) && 5789 off + size <= offsetofend(struct task_struct, scx.slice)) 5790 return SCALAR_VALUE; 5791 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5792 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5793 return SCALAR_VALUE; 5794 if (off >= offsetof(struct task_struct, scx.disallow) && 5795 off + size <= offsetofend(struct task_struct, scx.disallow)) 5796 return SCALAR_VALUE; 5797 } 5798 5799 return -EACCES; 5800 } 5801 5802 static const struct bpf_func_proto * 5803 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5804 { 5805 switch (func_id) { 5806 case BPF_FUNC_task_storage_get: 5807 return &bpf_task_storage_get_proto; 5808 case BPF_FUNC_task_storage_delete: 5809 return &bpf_task_storage_delete_proto; 5810 default: 5811 return bpf_base_func_proto(func_id, prog); 5812 } 5813 } 5814 5815 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5816 .get_func_proto = bpf_scx_get_func_proto, 5817 .is_valid_access = bpf_scx_is_valid_access, 5818 .btf_struct_access = bpf_scx_btf_struct_access, 5819 }; 5820 5821 static int bpf_scx_init_member(const struct btf_type *t, 5822 const struct btf_member *member, 5823 void *kdata, const void *udata) 5824 { 5825 const struct sched_ext_ops *uops = udata; 5826 struct sched_ext_ops *ops = kdata; 5827 u32 moff = __btf_member_bit_offset(t, member) / 8; 5828 int ret; 5829 5830 switch (moff) { 5831 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5832 if (*(u32 *)(udata + moff) > INT_MAX) 5833 return -E2BIG; 5834 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5835 return 1; 5836 case offsetof(struct sched_ext_ops, flags): 5837 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5838 return -EINVAL; 5839 ops->flags = *(u64 *)(udata + moff); 5840 return 1; 5841 case offsetof(struct sched_ext_ops, name): 5842 ret = bpf_obj_name_cpy(ops->name, uops->name, 5843 sizeof(ops->name)); 5844 if (ret < 0) 5845 return ret; 5846 if (ret == 0) 5847 return -EINVAL; 5848 return 1; 5849 case offsetof(struct sched_ext_ops, timeout_ms): 5850 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5851 SCX_WATCHDOG_MAX_TIMEOUT) 5852 return -E2BIG; 5853 ops->timeout_ms = *(u32 *)(udata + moff); 5854 return 1; 5855 case offsetof(struct sched_ext_ops, exit_dump_len): 5856 ops->exit_dump_len = 5857 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5858 return 1; 5859 case offsetof(struct sched_ext_ops, hotplug_seq): 5860 ops->hotplug_seq = *(u64 *)(udata + moff); 5861 return 1; 5862 } 5863 5864 return 0; 5865 } 5866 5867 static int bpf_scx_check_member(const struct btf_type *t, 5868 const struct btf_member *member, 5869 const struct bpf_prog *prog) 5870 { 5871 u32 moff = __btf_member_bit_offset(t, member) / 8; 5872 5873 switch (moff) { 5874 case offsetof(struct sched_ext_ops, init_task): 5875 #ifdef CONFIG_EXT_GROUP_SCHED 5876 case offsetof(struct sched_ext_ops, cgroup_init): 5877 case offsetof(struct sched_ext_ops, cgroup_exit): 5878 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5879 #endif 5880 case offsetof(struct sched_ext_ops, cpu_online): 5881 case offsetof(struct sched_ext_ops, cpu_offline): 5882 case offsetof(struct sched_ext_ops, init): 5883 case offsetof(struct sched_ext_ops, exit): 5884 break; 5885 default: 5886 if (prog->sleepable) 5887 return -EINVAL; 5888 } 5889 5890 return 0; 5891 } 5892 5893 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5894 { 5895 return scx_ops_enable(kdata, link); 5896 } 5897 5898 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5899 { 5900 scx_ops_disable(SCX_EXIT_UNREG); 5901 kthread_flush_work(&scx_ops_disable_work); 5902 } 5903 5904 static int bpf_scx_init(struct btf *btf) 5905 { 5906 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5907 5908 return 0; 5909 } 5910 5911 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5912 { 5913 /* 5914 * sched_ext does not support updating the actively-loaded BPF 5915 * scheduler, as registering a BPF scheduler can always fail if the 5916 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5917 * etc. Similarly, we can always race with unregistration happening 5918 * elsewhere, such as with sysrq. 5919 */ 5920 return -EOPNOTSUPP; 5921 } 5922 5923 static int bpf_scx_validate(void *kdata) 5924 { 5925 return 0; 5926 } 5927 5928 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5929 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5930 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5931 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5932 static void sched_ext_ops__tick(struct task_struct *p) {} 5933 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5934 static void sched_ext_ops__running(struct task_struct *p) {} 5935 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5936 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5937 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5938 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5939 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5940 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5941 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5942 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5943 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5944 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5945 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5946 static void sched_ext_ops__enable(struct task_struct *p) {} 5947 static void sched_ext_ops__disable(struct task_struct *p) {} 5948 #ifdef CONFIG_EXT_GROUP_SCHED 5949 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5950 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5951 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5952 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5953 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5954 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5955 #endif 5956 static void sched_ext_ops__cpu_online(s32 cpu) {} 5957 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5958 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5959 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5960 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5961 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5962 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5963 5964 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5965 .select_cpu = sched_ext_ops__select_cpu, 5966 .enqueue = sched_ext_ops__enqueue, 5967 .dequeue = sched_ext_ops__dequeue, 5968 .dispatch = sched_ext_ops__dispatch, 5969 .tick = sched_ext_ops__tick, 5970 .runnable = sched_ext_ops__runnable, 5971 .running = sched_ext_ops__running, 5972 .stopping = sched_ext_ops__stopping, 5973 .quiescent = sched_ext_ops__quiescent, 5974 .yield = sched_ext_ops__yield, 5975 .core_sched_before = sched_ext_ops__core_sched_before, 5976 .set_weight = sched_ext_ops__set_weight, 5977 .set_cpumask = sched_ext_ops__set_cpumask, 5978 .update_idle = sched_ext_ops__update_idle, 5979 .cpu_acquire = sched_ext_ops__cpu_acquire, 5980 .cpu_release = sched_ext_ops__cpu_release, 5981 .init_task = sched_ext_ops__init_task, 5982 .exit_task = sched_ext_ops__exit_task, 5983 .enable = sched_ext_ops__enable, 5984 .disable = sched_ext_ops__disable, 5985 #ifdef CONFIG_EXT_GROUP_SCHED 5986 .cgroup_init = sched_ext_ops__cgroup_init, 5987 .cgroup_exit = sched_ext_ops__cgroup_exit, 5988 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5989 .cgroup_move = sched_ext_ops__cgroup_move, 5990 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5991 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5992 #endif 5993 .cpu_online = sched_ext_ops__cpu_online, 5994 .cpu_offline = sched_ext_ops__cpu_offline, 5995 .init = sched_ext_ops__init, 5996 .exit = sched_ext_ops__exit, 5997 .dump = sched_ext_ops__dump, 5998 .dump_cpu = sched_ext_ops__dump_cpu, 5999 .dump_task = sched_ext_ops__dump_task, 6000 }; 6001 6002 static struct bpf_struct_ops bpf_sched_ext_ops = { 6003 .verifier_ops = &bpf_scx_verifier_ops, 6004 .reg = bpf_scx_reg, 6005 .unreg = bpf_scx_unreg, 6006 .check_member = bpf_scx_check_member, 6007 .init_member = bpf_scx_init_member, 6008 .init = bpf_scx_init, 6009 .update = bpf_scx_update, 6010 .validate = bpf_scx_validate, 6011 .name = "sched_ext_ops", 6012 .owner = THIS_MODULE, 6013 .cfi_stubs = &__bpf_ops_sched_ext_ops 6014 }; 6015 6016 6017 /******************************************************************************** 6018 * System integration and init. 6019 */ 6020 6021 static void sysrq_handle_sched_ext_reset(u8 key) 6022 { 6023 if (scx_ops_helper) 6024 scx_ops_disable(SCX_EXIT_SYSRQ); 6025 else 6026 pr_info("sched_ext: BPF scheduler not yet used\n"); 6027 } 6028 6029 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 6030 .handler = sysrq_handle_sched_ext_reset, 6031 .help_msg = "reset-sched-ext(S)", 6032 .action_msg = "Disable sched_ext and revert all tasks to CFS", 6033 .enable_mask = SYSRQ_ENABLE_RTNICE, 6034 }; 6035 6036 static void sysrq_handle_sched_ext_dump(u8 key) 6037 { 6038 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 6039 6040 if (scx_enabled()) 6041 scx_dump_state(&ei, 0); 6042 } 6043 6044 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 6045 .handler = sysrq_handle_sched_ext_dump, 6046 .help_msg = "dump-sched-ext(D)", 6047 .action_msg = "Trigger sched_ext debug dump", 6048 .enable_mask = SYSRQ_ENABLE_RTNICE, 6049 }; 6050 6051 static bool can_skip_idle_kick(struct rq *rq) 6052 { 6053 lockdep_assert_rq_held(rq); 6054 6055 /* 6056 * We can skip idle kicking if @rq is going to go through at least one 6057 * full SCX scheduling cycle before going idle. Just checking whether 6058 * curr is not idle is insufficient because we could be racing 6059 * balance_one() trying to pull the next task from a remote rq, which 6060 * may fail, and @rq may become idle afterwards. 6061 * 6062 * The race window is small and we don't and can't guarantee that @rq is 6063 * only kicked while idle anyway. Skip only when sure. 6064 */ 6065 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 6066 } 6067 6068 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 6069 { 6070 struct rq *rq = cpu_rq(cpu); 6071 struct scx_rq *this_scx = &this_rq->scx; 6072 bool should_wait = false; 6073 unsigned long flags; 6074 6075 raw_spin_rq_lock_irqsave(rq, flags); 6076 6077 /* 6078 * During CPU hotplug, a CPU may depend on kicking itself to make 6079 * forward progress. Allow kicking self regardless of online state. 6080 */ 6081 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 6082 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 6083 if (rq->curr->sched_class == &ext_sched_class) 6084 rq->curr->scx.slice = 0; 6085 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6086 } 6087 6088 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 6089 pseqs[cpu] = rq->scx.pnt_seq; 6090 should_wait = true; 6091 } 6092 6093 resched_curr(rq); 6094 } else { 6095 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6096 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6097 } 6098 6099 raw_spin_rq_unlock_irqrestore(rq, flags); 6100 6101 return should_wait; 6102 } 6103 6104 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 6105 { 6106 struct rq *rq = cpu_rq(cpu); 6107 unsigned long flags; 6108 6109 raw_spin_rq_lock_irqsave(rq, flags); 6110 6111 if (!can_skip_idle_kick(rq) && 6112 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 6113 resched_curr(rq); 6114 6115 raw_spin_rq_unlock_irqrestore(rq, flags); 6116 } 6117 6118 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 6119 { 6120 struct rq *this_rq = this_rq(); 6121 struct scx_rq *this_scx = &this_rq->scx; 6122 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 6123 bool should_wait = false; 6124 s32 cpu; 6125 6126 for_each_cpu(cpu, this_scx->cpus_to_kick) { 6127 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 6128 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 6129 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6130 } 6131 6132 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 6133 kick_one_cpu_if_idle(cpu, this_rq); 6134 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6135 } 6136 6137 if (!should_wait) 6138 return; 6139 6140 for_each_cpu(cpu, this_scx->cpus_to_wait) { 6141 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 6142 6143 if (cpu != cpu_of(this_rq)) { 6144 /* 6145 * Pairs with smp_store_release() issued by this CPU in 6146 * switch_class() on the resched path. 6147 * 6148 * We busy-wait here to guarantee that no other task can 6149 * be scheduled on our core before the target CPU has 6150 * entered the resched path. 6151 */ 6152 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 6153 cpu_relax(); 6154 } 6155 6156 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6157 } 6158 } 6159 6160 /** 6161 * print_scx_info - print out sched_ext scheduler state 6162 * @log_lvl: the log level to use when printing 6163 * @p: target task 6164 * 6165 * If a sched_ext scheduler is enabled, print the name and state of the 6166 * scheduler. If @p is on sched_ext, print further information about the task. 6167 * 6168 * This function can be safely called on any task as long as the task_struct 6169 * itself is accessible. While safe, this function isn't synchronized and may 6170 * print out mixups or garbages of limited length. 6171 */ 6172 void print_scx_info(const char *log_lvl, struct task_struct *p) 6173 { 6174 enum scx_ops_enable_state state = scx_ops_enable_state(); 6175 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 6176 char runnable_at_buf[22] = "?"; 6177 struct sched_class *class; 6178 unsigned long runnable_at; 6179 6180 if (state == SCX_OPS_DISABLED) 6181 return; 6182 6183 /* 6184 * Carefully check if the task was running on sched_ext, and then 6185 * carefully copy the time it's been runnable, and its state. 6186 */ 6187 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 6188 class != &ext_sched_class) { 6189 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 6190 scx_ops_enable_state_str[state], all); 6191 return; 6192 } 6193 6194 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 6195 sizeof(runnable_at))) 6196 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6197 jiffies_delta_msecs(runnable_at, jiffies)); 6198 6199 /* print everything onto one line to conserve console space */ 6200 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6201 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 6202 runnable_at_buf); 6203 } 6204 6205 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6206 { 6207 /* 6208 * SCX schedulers often have userspace components which are sometimes 6209 * involved in critial scheduling paths. PM operations involve freezing 6210 * userspace which can lead to scheduling misbehaviors including stalls. 6211 * Let's bypass while PM operations are in progress. 6212 */ 6213 switch (event) { 6214 case PM_HIBERNATION_PREPARE: 6215 case PM_SUSPEND_PREPARE: 6216 case PM_RESTORE_PREPARE: 6217 scx_ops_bypass(true); 6218 break; 6219 case PM_POST_HIBERNATION: 6220 case PM_POST_SUSPEND: 6221 case PM_POST_RESTORE: 6222 scx_ops_bypass(false); 6223 break; 6224 } 6225 6226 return NOTIFY_OK; 6227 } 6228 6229 static struct notifier_block scx_pm_notifier = { 6230 .notifier_call = scx_pm_handler, 6231 }; 6232 6233 void __init init_sched_ext_class(void) 6234 { 6235 s32 cpu, v; 6236 6237 /* 6238 * The following is to prevent the compiler from optimizing out the enum 6239 * definitions so that BPF scheduler implementations can use them 6240 * through the generated vmlinux.h. 6241 */ 6242 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6243 SCX_TG_ONLINE); 6244 6245 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 6246 #ifdef CONFIG_SMP 6247 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 6248 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 6249 #endif 6250 scx_kick_cpus_pnt_seqs = 6251 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6252 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6253 BUG_ON(!scx_kick_cpus_pnt_seqs); 6254 6255 for_each_possible_cpu(cpu) { 6256 struct rq *rq = cpu_rq(cpu); 6257 6258 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6259 INIT_LIST_HEAD(&rq->scx.runnable_list); 6260 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6261 6262 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 6263 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 6264 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 6265 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 6266 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6267 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6268 6269 if (cpu_online(cpu)) 6270 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6271 } 6272 6273 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6274 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6275 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6276 } 6277 6278 6279 /******************************************************************************** 6280 * Helpers that can be called from the BPF scheduler. 6281 */ 6282 #include <linux/btf_ids.h> 6283 6284 __bpf_kfunc_start_defs(); 6285 6286 /** 6287 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 6288 * @p: task_struct to select a CPU for 6289 * @prev_cpu: CPU @p was on previously 6290 * @wake_flags: %SCX_WAKE_* flags 6291 * @is_idle: out parameter indicating whether the returned CPU is idle 6292 * 6293 * Can only be called from ops.select_cpu() if the built-in CPU selection is 6294 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 6295 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 6296 * 6297 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 6298 * currently idle and thus a good candidate for direct dispatching. 6299 */ 6300 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 6301 u64 wake_flags, bool *is_idle) 6302 { 6303 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6304 scx_ops_error("built-in idle tracking is disabled"); 6305 goto prev_cpu; 6306 } 6307 6308 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) 6309 goto prev_cpu; 6310 6311 #ifdef CONFIG_SMP 6312 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 6313 #endif 6314 6315 prev_cpu: 6316 *is_idle = false; 6317 return prev_cpu; 6318 } 6319 6320 __bpf_kfunc_end_defs(); 6321 6322 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 6323 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 6324 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 6325 6326 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 6327 .owner = THIS_MODULE, 6328 .set = &scx_kfunc_ids_select_cpu, 6329 }; 6330 6331 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6332 { 6333 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6334 return false; 6335 6336 lockdep_assert_irqs_disabled(); 6337 6338 if (unlikely(!p)) { 6339 scx_ops_error("called with NULL task"); 6340 return false; 6341 } 6342 6343 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6344 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 6345 return false; 6346 } 6347 6348 return true; 6349 } 6350 6351 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6352 u64 enq_flags) 6353 { 6354 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6355 struct task_struct *ddsp_task; 6356 6357 ddsp_task = __this_cpu_read(direct_dispatch_task); 6358 if (ddsp_task) { 6359 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6360 return; 6361 } 6362 6363 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6364 scx_ops_error("dispatch buffer overflow"); 6365 return; 6366 } 6367 6368 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6369 .task = p, 6370 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6371 .dsq_id = dsq_id, 6372 .enq_flags = enq_flags, 6373 }; 6374 } 6375 6376 __bpf_kfunc_start_defs(); 6377 6378 /** 6379 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6380 * @p: task_struct to insert 6381 * @dsq_id: DSQ to insert into 6382 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6383 * @enq_flags: SCX_ENQ_* 6384 * 6385 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6386 * call this function spuriously. Can be called from ops.enqueue(), 6387 * ops.select_cpu(), and ops.dispatch(). 6388 * 6389 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6390 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 6391 * used to target the local DSQ of a CPU other than the enqueueing one. Use 6392 * ops.select_cpu() to be on the target CPU in the first place. 6393 * 6394 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6395 * will be directly inserted into the corresponding dispatch queue after 6396 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6397 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6398 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6399 * task is inserted. 6400 * 6401 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6402 * and this function can be called upto ops.dispatch_max_batch times to insert 6403 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6404 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6405 * 6406 * This function doesn't have any locking restrictions and may be called under 6407 * BPF locks (in the future when BPF introduces more flexible locking). 6408 * 6409 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6410 * exhaustion. If zero, the current residual slice is maintained. If 6411 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6412 * scx_bpf_kick_cpu() to trigger scheduling. 6413 */ 6414 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6415 u64 enq_flags) 6416 { 6417 if (!scx_dsq_insert_preamble(p, enq_flags)) 6418 return; 6419 6420 if (slice) 6421 p->scx.slice = slice; 6422 else 6423 p->scx.slice = p->scx.slice ?: 1; 6424 6425 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6426 } 6427 6428 /* for backward compatibility, will be removed in v6.15 */ 6429 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6430 u64 enq_flags) 6431 { 6432 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6433 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6434 } 6435 6436 /** 6437 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6438 * @p: task_struct to insert 6439 * @dsq_id: DSQ to insert into 6440 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6441 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6442 * @enq_flags: SCX_ENQ_* 6443 * 6444 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6445 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6446 * are identical to scx_bpf_dsq_insert(). 6447 * 6448 * @vtime ordering is according to time_before64() which considers wrapping. A 6449 * numerically larger vtime may indicate an earlier position in the ordering and 6450 * vice-versa. 6451 * 6452 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6453 * function must not be called on a DSQ which already has one or more FIFO tasks 6454 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6455 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6456 */ 6457 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6458 u64 slice, u64 vtime, u64 enq_flags) 6459 { 6460 if (!scx_dsq_insert_preamble(p, enq_flags)) 6461 return; 6462 6463 if (slice) 6464 p->scx.slice = slice; 6465 else 6466 p->scx.slice = p->scx.slice ?: 1; 6467 6468 p->scx.dsq_vtime = vtime; 6469 6470 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6471 } 6472 6473 /* for backward compatibility, will be removed in v6.15 */ 6474 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6475 u64 slice, u64 vtime, u64 enq_flags) 6476 { 6477 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6478 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6479 } 6480 6481 __bpf_kfunc_end_defs(); 6482 6483 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6484 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6485 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6486 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6487 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6488 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6489 6490 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6491 .owner = THIS_MODULE, 6492 .set = &scx_kfunc_ids_enqueue_dispatch, 6493 }; 6494 6495 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 6496 struct task_struct *p, u64 dsq_id, u64 enq_flags) 6497 { 6498 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6499 struct rq *this_rq, *src_rq, *locked_rq; 6500 bool dispatched = false; 6501 bool in_balance; 6502 unsigned long flags; 6503 6504 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6505 return false; 6506 6507 /* 6508 * Can be called from either ops.dispatch() locking this_rq() or any 6509 * context where no rq lock is held. If latter, lock @p's task_rq which 6510 * we'll likely need anyway. 6511 */ 6512 src_rq = task_rq(p); 6513 6514 local_irq_save(flags); 6515 this_rq = this_rq(); 6516 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6517 6518 if (in_balance) { 6519 if (this_rq != src_rq) { 6520 raw_spin_rq_unlock(this_rq); 6521 raw_spin_rq_lock(src_rq); 6522 } 6523 } else { 6524 raw_spin_rq_lock(src_rq); 6525 } 6526 6527 /* 6528 * If the BPF scheduler keeps calling this function repeatedly, it can 6529 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6530 * breather if necessary. 6531 */ 6532 scx_ops_breather(src_rq); 6533 6534 locked_rq = src_rq; 6535 raw_spin_lock(&src_dsq->lock); 6536 6537 /* 6538 * Did someone else get to it? @p could have already left $src_dsq, got 6539 * re-enqueud, or be in the process of being consumed by someone else. 6540 */ 6541 if (unlikely(p->scx.dsq != src_dsq || 6542 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6543 p->scx.holding_cpu >= 0) || 6544 WARN_ON_ONCE(src_rq != task_rq(p))) { 6545 raw_spin_unlock(&src_dsq->lock); 6546 goto out; 6547 } 6548 6549 /* @p is still on $src_dsq and stable, determine the destination */ 6550 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6551 6552 /* 6553 * Apply vtime and slice updates before moving so that the new time is 6554 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6555 * this is safe as we're locking it. 6556 */ 6557 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6558 p->scx.dsq_vtime = kit->vtime; 6559 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6560 p->scx.slice = kit->slice; 6561 6562 /* execute move */ 6563 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq); 6564 dispatched = true; 6565 out: 6566 if (in_balance) { 6567 if (this_rq != locked_rq) { 6568 raw_spin_rq_unlock(locked_rq); 6569 raw_spin_rq_lock(this_rq); 6570 } 6571 } else { 6572 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6573 } 6574 6575 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6576 __SCX_DSQ_ITER_HAS_VTIME); 6577 return dispatched; 6578 } 6579 6580 __bpf_kfunc_start_defs(); 6581 6582 /** 6583 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6584 * 6585 * Can only be called from ops.dispatch(). 6586 */ 6587 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6588 { 6589 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6590 return 0; 6591 6592 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6593 } 6594 6595 /** 6596 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6597 * 6598 * Cancel the latest dispatch. Can be called multiple times to cancel further 6599 * dispatches. Can only be called from ops.dispatch(). 6600 */ 6601 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6602 { 6603 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6604 6605 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6606 return; 6607 6608 if (dspc->cursor > 0) 6609 dspc->cursor--; 6610 else 6611 scx_ops_error("dispatch buffer underflow"); 6612 } 6613 6614 /** 6615 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6616 * @dsq_id: DSQ to move task from 6617 * 6618 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6619 * local DSQ for execution. Can only be called from ops.dispatch(). 6620 * 6621 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6622 * before trying to move from the specified DSQ. It may also grab rq locks and 6623 * thus can't be called under any BPF locks. 6624 * 6625 * Returns %true if a task has been moved, %false if there isn't any task to 6626 * move. 6627 */ 6628 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6629 { 6630 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6631 struct scx_dispatch_q *dsq; 6632 6633 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6634 return false; 6635 6636 flush_dispatch_buf(dspc->rq); 6637 6638 dsq = find_user_dsq(dsq_id); 6639 if (unlikely(!dsq)) { 6640 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6641 return false; 6642 } 6643 6644 if (consume_dispatch_q(dspc->rq, dsq)) { 6645 /* 6646 * A successfully consumed task can be dequeued before it starts 6647 * running while the CPU is trying to migrate other dispatched 6648 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6649 * local DSQ. 6650 */ 6651 dspc->nr_tasks++; 6652 return true; 6653 } else { 6654 return false; 6655 } 6656 } 6657 6658 /* for backward compatibility, will be removed in v6.15 */ 6659 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6660 { 6661 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6662 return scx_bpf_dsq_move_to_local(dsq_id); 6663 } 6664 6665 /** 6666 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6667 * @it__iter: DSQ iterator in progress 6668 * @slice: duration the moved task can run for in nsecs 6669 * 6670 * Override the slice of the next task that will be moved from @it__iter using 6671 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6672 * slice duration is kept. 6673 */ 6674 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6675 u64 slice) 6676 { 6677 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6678 6679 kit->slice = slice; 6680 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6681 } 6682 6683 /* for backward compatibility, will be removed in v6.15 */ 6684 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6685 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6686 { 6687 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()"); 6688 scx_bpf_dsq_move_set_slice(it__iter, slice); 6689 } 6690 6691 /** 6692 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6693 * @it__iter: DSQ iterator in progress 6694 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6695 * 6696 * Override the vtime of the next task that will be moved from @it__iter using 6697 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6698 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6699 * override is ignored and cleared. 6700 */ 6701 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6702 u64 vtime) 6703 { 6704 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6705 6706 kit->vtime = vtime; 6707 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6708 } 6709 6710 /* for backward compatibility, will be removed in v6.15 */ 6711 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6712 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6713 { 6714 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()"); 6715 scx_bpf_dsq_move_set_vtime(it__iter, vtime); 6716 } 6717 6718 /** 6719 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6720 * @it__iter: DSQ iterator in progress 6721 * @p: task to transfer 6722 * @dsq_id: DSQ to move @p to 6723 * @enq_flags: SCX_ENQ_* 6724 * 6725 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6726 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6727 * be the destination. 6728 * 6729 * For the transfer to be successful, @p must still be on the DSQ and have been 6730 * queued before the DSQ iteration started. This function doesn't care whether 6731 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6732 * been queued before the iteration started. 6733 * 6734 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6735 * 6736 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6737 * lock (e.g. BPF timers or SYSCALL programs). 6738 * 6739 * Returns %true if @p has been consumed, %false if @p had already been consumed 6740 * or dequeued. 6741 */ 6742 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6743 struct task_struct *p, u64 dsq_id, 6744 u64 enq_flags) 6745 { 6746 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6747 p, dsq_id, enq_flags); 6748 } 6749 6750 /* for backward compatibility, will be removed in v6.15 */ 6751 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6752 struct task_struct *p, u64 dsq_id, 6753 u64 enq_flags) 6754 { 6755 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()"); 6756 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags); 6757 } 6758 6759 /** 6760 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6761 * @it__iter: DSQ iterator in progress 6762 * @p: task to transfer 6763 * @dsq_id: DSQ to move @p to 6764 * @enq_flags: SCX_ENQ_* 6765 * 6766 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6767 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6768 * user DSQ as only user DSQs support priority queue. 6769 * 6770 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6771 * and scx_bpf_dsq_move_set_vtime() to update. 6772 * 6773 * All other aspects are identical to scx_bpf_dsq_move(). See 6774 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6775 */ 6776 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6777 struct task_struct *p, u64 dsq_id, 6778 u64 enq_flags) 6779 { 6780 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6781 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6782 } 6783 6784 /* for backward compatibility, will be removed in v6.15 */ 6785 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6786 struct task_struct *p, u64 dsq_id, 6787 u64 enq_flags) 6788 { 6789 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()"); 6790 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags); 6791 } 6792 6793 __bpf_kfunc_end_defs(); 6794 6795 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6796 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6797 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6798 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6799 BTF_ID_FLAGS(func, scx_bpf_consume) 6800 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6801 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6802 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6803 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6804 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6805 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6806 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6807 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6808 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6809 6810 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6811 .owner = THIS_MODULE, 6812 .set = &scx_kfunc_ids_dispatch, 6813 }; 6814 6815 __bpf_kfunc_start_defs(); 6816 6817 /** 6818 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6819 * 6820 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6821 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6822 * processed tasks. Can only be called from ops.cpu_release(). 6823 */ 6824 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6825 { 6826 LIST_HEAD(tasks); 6827 u32 nr_enqueued = 0; 6828 struct rq *rq; 6829 struct task_struct *p, *n; 6830 6831 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6832 return 0; 6833 6834 rq = cpu_rq(smp_processor_id()); 6835 lockdep_assert_rq_held(rq); 6836 6837 /* 6838 * The BPF scheduler may choose to dispatch tasks back to 6839 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6840 * first to avoid processing the same tasks repeatedly. 6841 */ 6842 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6843 scx.dsq_list.node) { 6844 /* 6845 * If @p is being migrated, @p's current CPU may not agree with 6846 * its allowed CPUs and the migration_cpu_stop is about to 6847 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6848 * 6849 * While racing sched property changes may also dequeue and 6850 * re-enqueue a migrating task while its current CPU and allowed 6851 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6852 * the current local DSQ for running tasks and thus are not 6853 * visible to the BPF scheduler. 6854 */ 6855 if (p->migration_pending) 6856 continue; 6857 6858 dispatch_dequeue(rq, p); 6859 list_add_tail(&p->scx.dsq_list.node, &tasks); 6860 } 6861 6862 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6863 list_del_init(&p->scx.dsq_list.node); 6864 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6865 nr_enqueued++; 6866 } 6867 6868 return nr_enqueued; 6869 } 6870 6871 __bpf_kfunc_end_defs(); 6872 6873 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6874 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6875 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6876 6877 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6878 .owner = THIS_MODULE, 6879 .set = &scx_kfunc_ids_cpu_release, 6880 }; 6881 6882 __bpf_kfunc_start_defs(); 6883 6884 /** 6885 * scx_bpf_create_dsq - Create a custom DSQ 6886 * @dsq_id: DSQ to create 6887 * @node: NUMA node to allocate from 6888 * 6889 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6890 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6891 */ 6892 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6893 { 6894 if (unlikely(node >= (int)nr_node_ids || 6895 (node < 0 && node != NUMA_NO_NODE))) 6896 return -EINVAL; 6897 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6898 } 6899 6900 __bpf_kfunc_end_defs(); 6901 6902 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6903 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6904 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6905 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6906 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6907 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6908 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6909 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6910 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6911 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6912 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6913 6914 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6915 .owner = THIS_MODULE, 6916 .set = &scx_kfunc_ids_unlocked, 6917 }; 6918 6919 __bpf_kfunc_start_defs(); 6920 6921 /** 6922 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6923 * @cpu: cpu to kick 6924 * @flags: %SCX_KICK_* flags 6925 * 6926 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6927 * trigger rescheduling on a busy CPU. This can be called from any online 6928 * scx_ops operation and the actual kicking is performed asynchronously through 6929 * an irq work. 6930 */ 6931 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6932 { 6933 struct rq *this_rq; 6934 unsigned long irq_flags; 6935 6936 if (!ops_cpu_valid(cpu, NULL)) 6937 return; 6938 6939 local_irq_save(irq_flags); 6940 6941 this_rq = this_rq(); 6942 6943 /* 6944 * While bypassing for PM ops, IRQ handling may not be online which can 6945 * lead to irq_work_queue() malfunction such as infinite busy wait for 6946 * IRQ status update. Suppress kicking. 6947 */ 6948 if (scx_rq_bypassing(this_rq)) 6949 goto out; 6950 6951 /* 6952 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6953 * rq locks. We can probably be smarter and avoid bouncing if called 6954 * from ops which don't hold a rq lock. 6955 */ 6956 if (flags & SCX_KICK_IDLE) { 6957 struct rq *target_rq = cpu_rq(cpu); 6958 6959 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6960 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6961 6962 if (raw_spin_rq_trylock(target_rq)) { 6963 if (can_skip_idle_kick(target_rq)) { 6964 raw_spin_rq_unlock(target_rq); 6965 goto out; 6966 } 6967 raw_spin_rq_unlock(target_rq); 6968 } 6969 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6970 } else { 6971 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6972 6973 if (flags & SCX_KICK_PREEMPT) 6974 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6975 if (flags & SCX_KICK_WAIT) 6976 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6977 } 6978 6979 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6980 out: 6981 local_irq_restore(irq_flags); 6982 } 6983 6984 /** 6985 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6986 * @dsq_id: id of the DSQ 6987 * 6988 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6989 * -%ENOENT is returned. 6990 */ 6991 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6992 { 6993 struct scx_dispatch_q *dsq; 6994 s32 ret; 6995 6996 preempt_disable(); 6997 6998 if (dsq_id == SCX_DSQ_LOCAL) { 6999 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 7000 goto out; 7001 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 7002 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 7003 7004 if (ops_cpu_valid(cpu, NULL)) { 7005 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 7006 goto out; 7007 } 7008 } else { 7009 dsq = find_user_dsq(dsq_id); 7010 if (dsq) { 7011 ret = READ_ONCE(dsq->nr); 7012 goto out; 7013 } 7014 } 7015 ret = -ENOENT; 7016 out: 7017 preempt_enable(); 7018 return ret; 7019 } 7020 7021 /** 7022 * scx_bpf_destroy_dsq - Destroy a custom DSQ 7023 * @dsq_id: DSQ to destroy 7024 * 7025 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 7026 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 7027 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 7028 * which doesn't exist. Can be called from any online scx_ops operations. 7029 */ 7030 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 7031 { 7032 destroy_dsq(dsq_id); 7033 } 7034 7035 /** 7036 * bpf_iter_scx_dsq_new - Create a DSQ iterator 7037 * @it: iterator to initialize 7038 * @dsq_id: DSQ to iterate 7039 * @flags: %SCX_DSQ_ITER_* 7040 * 7041 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 7042 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 7043 * tasks which are already queued when this function is invoked. 7044 */ 7045 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 7046 u64 flags) 7047 { 7048 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7049 7050 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 7051 sizeof(struct bpf_iter_scx_dsq)); 7052 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 7053 __alignof__(struct bpf_iter_scx_dsq)); 7054 7055 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 7056 return -EINVAL; 7057 7058 kit->dsq = find_user_dsq(dsq_id); 7059 if (!kit->dsq) 7060 return -ENOENT; 7061 7062 INIT_LIST_HEAD(&kit->cursor.node); 7063 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 7064 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 7065 7066 return 0; 7067 } 7068 7069 /** 7070 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 7071 * @it: iterator to progress 7072 * 7073 * Return the next task. See bpf_iter_scx_dsq_new(). 7074 */ 7075 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 7076 { 7077 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7078 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 7079 struct task_struct *p; 7080 unsigned long flags; 7081 7082 if (!kit->dsq) 7083 return NULL; 7084 7085 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7086 7087 if (list_empty(&kit->cursor.node)) 7088 p = NULL; 7089 else 7090 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 7091 7092 /* 7093 * Only tasks which were queued before the iteration started are 7094 * visible. This bounds BPF iterations and guarantees that vtime never 7095 * jumps in the other direction while iterating. 7096 */ 7097 do { 7098 p = nldsq_next_task(kit->dsq, p, rev); 7099 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 7100 7101 if (p) { 7102 if (rev) 7103 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 7104 else 7105 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 7106 } else { 7107 list_del_init(&kit->cursor.node); 7108 } 7109 7110 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7111 7112 return p; 7113 } 7114 7115 /** 7116 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 7117 * @it: iterator to destroy 7118 * 7119 * Undo scx_iter_scx_dsq_new(). 7120 */ 7121 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 7122 { 7123 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7124 7125 if (!kit->dsq) 7126 return; 7127 7128 if (!list_empty(&kit->cursor.node)) { 7129 unsigned long flags; 7130 7131 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7132 list_del_init(&kit->cursor.node); 7133 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7134 } 7135 kit->dsq = NULL; 7136 } 7137 7138 __bpf_kfunc_end_defs(); 7139 7140 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 7141 char *fmt, unsigned long long *data, u32 data__sz) 7142 { 7143 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 7144 s32 ret; 7145 7146 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 7147 (data__sz && !data)) { 7148 scx_ops_error("invalid data=%p and data__sz=%u", 7149 (void *)data, data__sz); 7150 return -EINVAL; 7151 } 7152 7153 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 7154 if (ret < 0) { 7155 scx_ops_error("failed to read data fields (%d)", ret); 7156 return ret; 7157 } 7158 7159 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 7160 &bprintf_data); 7161 if (ret < 0) { 7162 scx_ops_error("format preparation failed (%d)", ret); 7163 return ret; 7164 } 7165 7166 ret = bstr_printf(line_buf, line_size, fmt, 7167 bprintf_data.bin_args); 7168 bpf_bprintf_cleanup(&bprintf_data); 7169 if (ret < 0) { 7170 scx_ops_error("(\"%s\", %p, %u) failed to format", 7171 fmt, data, data__sz); 7172 return ret; 7173 } 7174 7175 return ret; 7176 } 7177 7178 static s32 bstr_format(struct scx_bstr_buf *buf, 7179 char *fmt, unsigned long long *data, u32 data__sz) 7180 { 7181 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 7182 fmt, data, data__sz); 7183 } 7184 7185 __bpf_kfunc_start_defs(); 7186 7187 /** 7188 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 7189 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 7190 * @fmt: error message format string 7191 * @data: format string parameters packaged using ___bpf_fill() macro 7192 * @data__sz: @data len, must end in '__sz' for the verifier 7193 * 7194 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 7195 * disabling. 7196 */ 7197 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 7198 unsigned long long *data, u32 data__sz) 7199 { 7200 unsigned long flags; 7201 7202 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7203 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7204 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 7205 scx_exit_bstr_buf.line); 7206 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7207 } 7208 7209 /** 7210 * scx_bpf_error_bstr - Indicate fatal error 7211 * @fmt: error message format string 7212 * @data: format string parameters packaged using ___bpf_fill() macro 7213 * @data__sz: @data len, must end in '__sz' for the verifier 7214 * 7215 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 7216 * disabling. 7217 */ 7218 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 7219 u32 data__sz) 7220 { 7221 unsigned long flags; 7222 7223 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7224 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7225 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 7226 scx_exit_bstr_buf.line); 7227 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7228 } 7229 7230 /** 7231 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 7232 * @fmt: format string 7233 * @data: format string parameters packaged using ___bpf_fill() macro 7234 * @data__sz: @data len, must end in '__sz' for the verifier 7235 * 7236 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 7237 * dump_task() to generate extra debug dump specific to the BPF scheduler. 7238 * 7239 * The extra dump may be multiple lines. A single line may be split over 7240 * multiple calls. The last line is automatically terminated. 7241 */ 7242 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 7243 u32 data__sz) 7244 { 7245 struct scx_dump_data *dd = &scx_dump_data; 7246 struct scx_bstr_buf *buf = &dd->buf; 7247 s32 ret; 7248 7249 if (raw_smp_processor_id() != dd->cpu) { 7250 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7251 return; 7252 } 7253 7254 /* append the formatted string to the line buf */ 7255 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7256 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7257 if (ret < 0) { 7258 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7259 dd->prefix, fmt, data, data__sz, ret); 7260 return; 7261 } 7262 7263 dd->cursor += ret; 7264 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7265 7266 if (!dd->cursor) 7267 return; 7268 7269 /* 7270 * If the line buf overflowed or ends in a newline, flush it into the 7271 * dump. This is to allow the caller to generate a single line over 7272 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7273 * the line buf, the only case which can lead to an unexpected 7274 * truncation is when the caller keeps generating newlines in the middle 7275 * instead of the end consecutively. Don't do that. 7276 */ 7277 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7278 ops_dump_flush(); 7279 } 7280 7281 /** 7282 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7283 * @cpu: CPU of interest 7284 * 7285 * Return the maximum relative capacity of @cpu in relation to the most 7286 * performant CPU in the system. The return value is in the range [1, 7287 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7288 */ 7289 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7290 { 7291 if (ops_cpu_valid(cpu, NULL)) 7292 return arch_scale_cpu_capacity(cpu); 7293 else 7294 return SCX_CPUPERF_ONE; 7295 } 7296 7297 /** 7298 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7299 * @cpu: CPU of interest 7300 * 7301 * Return the current relative performance of @cpu in relation to its maximum. 7302 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7303 * 7304 * The current performance level of a CPU in relation to the maximum performance 7305 * available in the system can be calculated as follows: 7306 * 7307 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7308 * 7309 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7310 */ 7311 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7312 { 7313 if (ops_cpu_valid(cpu, NULL)) 7314 return arch_scale_freq_capacity(cpu); 7315 else 7316 return SCX_CPUPERF_ONE; 7317 } 7318 7319 /** 7320 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7321 * @cpu: CPU of interest 7322 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7323 * @flags: %SCX_CPUPERF_* flags 7324 * 7325 * Set the target performance level of @cpu to @perf. @perf is in linear 7326 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7327 * schedutil cpufreq governor chooses the target frequency. 7328 * 7329 * The actual performance level chosen, CPU grouping, and the overhead and 7330 * latency of the operations are dependent on the hardware and cpufreq driver in 7331 * use. Consult hardware and cpufreq documentation for more information. The 7332 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7333 */ 7334 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7335 { 7336 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7337 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7338 return; 7339 } 7340 7341 if (ops_cpu_valid(cpu, NULL)) { 7342 struct rq *rq = cpu_rq(cpu); 7343 7344 rq->scx.cpuperf_target = perf; 7345 7346 rcu_read_lock_sched_notrace(); 7347 cpufreq_update_util(cpu_rq(cpu), 0); 7348 rcu_read_unlock_sched_notrace(); 7349 } 7350 } 7351 7352 /** 7353 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7354 * 7355 * All valid CPU IDs in the system are smaller than the returned value. 7356 */ 7357 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7358 { 7359 return nr_cpu_ids; 7360 } 7361 7362 /** 7363 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7364 */ 7365 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7366 { 7367 return cpu_possible_mask; 7368 } 7369 7370 /** 7371 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7372 */ 7373 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7374 { 7375 return cpu_online_mask; 7376 } 7377 7378 /** 7379 * scx_bpf_put_cpumask - Release a possible/online cpumask 7380 * @cpumask: cpumask to release 7381 */ 7382 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7383 { 7384 /* 7385 * Empty function body because we aren't actually acquiring or releasing 7386 * a reference to a global cpumask, which is read-only in the caller and 7387 * is never released. The acquire / release semantics here are just used 7388 * to make the cpumask is a trusted pointer in the caller. 7389 */ 7390 } 7391 7392 /** 7393 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 7394 * per-CPU cpumask. 7395 * 7396 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7397 */ 7398 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 7399 { 7400 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7401 scx_ops_error("built-in idle tracking is disabled"); 7402 return cpu_none_mask; 7403 } 7404 7405 #ifdef CONFIG_SMP 7406 return idle_masks.cpu; 7407 #else 7408 return cpu_none_mask; 7409 #endif 7410 } 7411 7412 /** 7413 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 7414 * per-physical-core cpumask. Can be used to determine if an entire physical 7415 * core is free. 7416 * 7417 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7418 */ 7419 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 7420 { 7421 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7422 scx_ops_error("built-in idle tracking is disabled"); 7423 return cpu_none_mask; 7424 } 7425 7426 #ifdef CONFIG_SMP 7427 if (sched_smt_active()) 7428 return idle_masks.smt; 7429 else 7430 return idle_masks.cpu; 7431 #else 7432 return cpu_none_mask; 7433 #endif 7434 } 7435 7436 /** 7437 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 7438 * either the percpu, or SMT idle-tracking cpumask. 7439 */ 7440 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 7441 { 7442 /* 7443 * Empty function body because we aren't actually acquiring or releasing 7444 * a reference to a global idle cpumask, which is read-only in the 7445 * caller and is never released. The acquire / release semantics here 7446 * are just used to make the cpumask a trusted pointer in the caller. 7447 */ 7448 } 7449 7450 /** 7451 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 7452 * @cpu: cpu to test and clear idle for 7453 * 7454 * Returns %true if @cpu was idle and its idle state was successfully cleared. 7455 * %false otherwise. 7456 * 7457 * Unavailable if ops.update_idle() is implemented and 7458 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7459 */ 7460 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 7461 { 7462 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7463 scx_ops_error("built-in idle tracking is disabled"); 7464 return false; 7465 } 7466 7467 if (ops_cpu_valid(cpu, NULL)) 7468 return test_and_clear_cpu_idle(cpu); 7469 else 7470 return false; 7471 } 7472 7473 /** 7474 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 7475 * @cpus_allowed: Allowed cpumask 7476 * @flags: %SCX_PICK_IDLE_CPU_* flags 7477 * 7478 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 7479 * number on success. -%EBUSY if no matching cpu was found. 7480 * 7481 * Idle CPU tracking may race against CPU scheduling state transitions. For 7482 * example, this function may return -%EBUSY as CPUs are transitioning into the 7483 * idle state. If the caller then assumes that there will be dispatch events on 7484 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 7485 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7486 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7487 * event in the near future. 7488 * 7489 * Unavailable if ops.update_idle() is implemented and 7490 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7491 */ 7492 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7493 u64 flags) 7494 { 7495 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7496 scx_ops_error("built-in idle tracking is disabled"); 7497 return -EBUSY; 7498 } 7499 7500 return scx_pick_idle_cpu(cpus_allowed, flags); 7501 } 7502 7503 /** 7504 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7505 * @cpus_allowed: Allowed cpumask 7506 * @flags: %SCX_PICK_IDLE_CPU_* flags 7507 * 7508 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7509 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7510 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7511 * empty. 7512 * 7513 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7514 * set, this function can't tell which CPUs are idle and will always pick any 7515 * CPU. 7516 */ 7517 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7518 u64 flags) 7519 { 7520 s32 cpu; 7521 7522 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7523 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7524 if (cpu >= 0) 7525 return cpu; 7526 } 7527 7528 cpu = cpumask_any_distribute(cpus_allowed); 7529 if (cpu < nr_cpu_ids) 7530 return cpu; 7531 else 7532 return -EBUSY; 7533 } 7534 7535 /** 7536 * scx_bpf_task_running - Is task currently running? 7537 * @p: task of interest 7538 */ 7539 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7540 { 7541 return task_rq(p)->curr == p; 7542 } 7543 7544 /** 7545 * scx_bpf_task_cpu - CPU a task is currently associated with 7546 * @p: task of interest 7547 */ 7548 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7549 { 7550 return task_cpu(p); 7551 } 7552 7553 /** 7554 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7555 * @cpu: CPU of the rq 7556 */ 7557 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7558 { 7559 if (!ops_cpu_valid(cpu, NULL)) 7560 return NULL; 7561 7562 return cpu_rq(cpu); 7563 } 7564 7565 /** 7566 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7567 * @p: task of interest 7568 * 7569 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7570 * from the scheduler's POV. SCX operations should use this function to 7571 * determine @p's current cgroup as, unlike following @p->cgroups, 7572 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7573 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7574 * operations. The restriction guarantees that @p's rq is locked by the caller. 7575 */ 7576 #ifdef CONFIG_CGROUP_SCHED 7577 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7578 { 7579 struct task_group *tg = p->sched_task_group; 7580 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7581 7582 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7583 goto out; 7584 7585 cgrp = tg_cgrp(tg); 7586 7587 out: 7588 cgroup_get(cgrp); 7589 return cgrp; 7590 } 7591 #endif 7592 7593 __bpf_kfunc_end_defs(); 7594 7595 BTF_KFUNCS_START(scx_kfunc_ids_any) 7596 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7597 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7598 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7599 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7600 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7601 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7602 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7603 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7604 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7605 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7606 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7607 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7608 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7609 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7610 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7611 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7612 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7613 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7614 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7615 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7616 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7617 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7618 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7619 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7620 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7621 #ifdef CONFIG_CGROUP_SCHED 7622 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7623 #endif 7624 BTF_KFUNCS_END(scx_kfunc_ids_any) 7625 7626 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7627 .owner = THIS_MODULE, 7628 .set = &scx_kfunc_ids_any, 7629 }; 7630 7631 static int __init scx_init(void) 7632 { 7633 int ret; 7634 7635 /* 7636 * kfunc registration can't be done from init_sched_ext_class() as 7637 * register_btf_kfunc_id_set() needs most of the system to be up. 7638 * 7639 * Some kfuncs are context-sensitive and can only be called from 7640 * specific SCX ops. They are grouped into BTF sets accordingly. 7641 * Unfortunately, BPF currently doesn't have a way of enforcing such 7642 * restrictions. Eventually, the verifier should be able to enforce 7643 * them. For now, register them the same and make each kfunc explicitly 7644 * check using scx_kf_allowed(). 7645 */ 7646 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7647 &scx_kfunc_set_select_cpu)) || 7648 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7649 &scx_kfunc_set_enqueue_dispatch)) || 7650 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7651 &scx_kfunc_set_dispatch)) || 7652 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7653 &scx_kfunc_set_cpu_release)) || 7654 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7655 &scx_kfunc_set_unlocked)) || 7656 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7657 &scx_kfunc_set_unlocked)) || 7658 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7659 &scx_kfunc_set_any)) || 7660 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7661 &scx_kfunc_set_any)) || 7662 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7663 &scx_kfunc_set_any))) { 7664 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7665 return ret; 7666 } 7667 7668 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7669 if (ret) { 7670 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7671 return ret; 7672 } 7673 7674 ret = register_pm_notifier(&scx_pm_notifier); 7675 if (ret) { 7676 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7677 return ret; 7678 } 7679 7680 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7681 if (!scx_kset) { 7682 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7683 return -ENOMEM; 7684 } 7685 7686 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7687 if (ret < 0) { 7688 pr_err("sched_ext: Failed to add global attributes\n"); 7689 return ret; 7690 } 7691 7692 return 0; 7693 } 7694 __initcall(scx_init); 7695