xref: /linux/kernel/sched/ext.c (revision 5209c03c8ed215357a4827496a71fd32167d83ef)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4  *
5  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8  */
9 #define SCX_OP_IDX(op)		(offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10 
11 enum scx_consts {
12 	SCX_DSP_DFL_MAX_BATCH		= 32,
13 	SCX_DSP_MAX_LOOPS		= 32,
14 	SCX_WATCHDOG_MAX_TIMEOUT	= 30 * HZ,
15 
16 	SCX_EXIT_BT_LEN			= 64,
17 	SCX_EXIT_MSG_LEN		= 1024,
18 	SCX_EXIT_DUMP_DFL_LEN		= 32768,
19 
20 	SCX_CPUPERF_ONE			= SCHED_CAPACITY_SCALE,
21 
22 	/*
23 	 * Iterating all tasks may take a while. Periodically drop
24 	 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 	 */
26 	SCX_OPS_TASK_ITER_BATCH		= 32,
27 };
28 
29 enum scx_exit_kind {
30 	SCX_EXIT_NONE,
31 	SCX_EXIT_DONE,
32 
33 	SCX_EXIT_UNREG = 64,	/* user-space initiated unregistration */
34 	SCX_EXIT_UNREG_BPF,	/* BPF-initiated unregistration */
35 	SCX_EXIT_UNREG_KERN,	/* kernel-initiated unregistration */
36 	SCX_EXIT_SYSRQ,		/* requested by 'S' sysrq */
37 
38 	SCX_EXIT_ERROR = 1024,	/* runtime error, error msg contains details */
39 	SCX_EXIT_ERROR_BPF,	/* ERROR but triggered through scx_bpf_error() */
40 	SCX_EXIT_ERROR_STALL,	/* watchdog detected stalled runnable tasks */
41 };
42 
43 /*
44  * An exit code can be specified when exiting with scx_bpf_exit() or
45  * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46  * respectively. The codes are 64bit of the format:
47  *
48  *   Bits: [63  ..  48 47   ..  32 31 .. 0]
49  *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
50  *
51  *   SYS ACT: System-defined exit actions
52  *   SYS RSN: System-defined exit reasons
53  *   USR    : User-defined exit codes and reasons
54  *
55  * Using the above, users may communicate intention and context by ORing system
56  * actions and/or system reasons with a user-defined exit code.
57  */
58 enum scx_exit_code {
59 	/* Reasons */
60 	SCX_ECODE_RSN_HOTPLUG	= 1LLU << 32,
61 
62 	/* Actions */
63 	SCX_ECODE_ACT_RESTART	= 1LLU << 48,
64 };
65 
66 /*
67  * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68  * being disabled.
69  */
70 struct scx_exit_info {
71 	/* %SCX_EXIT_* - broad category of the exit reason */
72 	enum scx_exit_kind	kind;
73 
74 	/* exit code if gracefully exiting */
75 	s64			exit_code;
76 
77 	/* textual representation of the above */
78 	const char		*reason;
79 
80 	/* backtrace if exiting due to an error */
81 	unsigned long		*bt;
82 	u32			bt_len;
83 
84 	/* informational message */
85 	char			*msg;
86 
87 	/* debug dump */
88 	char			*dump;
89 };
90 
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 	/*
94 	 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 	 */
96 	SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97 
98 	/*
99 	 * By default, if there are no other task to run on the CPU, ext core
100 	 * keeps running the current task even after its slice expires. If this
101 	 * flag is specified, such tasks are passed to ops.enqueue() with
102 	 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 	 */
104 	SCX_OPS_ENQ_LAST	= 1LLU << 1,
105 
106 	/*
107 	 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 	 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 	 * scheduler depends on pid lookup for dispatching, the task will be
110 	 * lost leading to various issues including RCU grace period stalls.
111 	 *
112 	 * To mask this problem, by default, unhashed tasks are automatically
113 	 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 	 * depend on pid lookups and wants to handle these tasks directly, the
115 	 * following flag can be used.
116 	 */
117 	SCX_OPS_ENQ_EXITING	= 1LLU << 2,
118 
119 	/*
120 	 * If set, only tasks with policy set to SCHED_EXT are attached to
121 	 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 	 */
123 	SCX_OPS_SWITCH_PARTIAL	= 1LLU << 3,
124 
125 	/*
126 	 * CPU cgroup support flags
127 	 */
128 	SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16,	/* cpu.weight */
129 
130 	SCX_OPS_ALL_FLAGS	= SCX_OPS_KEEP_BUILTIN_IDLE |
131 				  SCX_OPS_ENQ_LAST |
132 				  SCX_OPS_ENQ_EXITING |
133 				  SCX_OPS_SWITCH_PARTIAL |
134 				  SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136 
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 	/*
140 	 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 	 * to the scheduler transition path.
142 	 */
143 	bool			fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 	/* the cgroup the task is joining */
146 	struct cgroup		*cgroup;
147 #endif
148 };
149 
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 	/* Whether the task exited before running on sched_ext. */
153 	bool cancelled;
154 };
155 
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 	/* the weight of the cgroup [1..10000] */
159 	u32			weight;
160 };
161 
162 enum scx_cpu_preempt_reason {
163 	/* next task is being scheduled by &sched_class_rt */
164 	SCX_CPU_PREEMPT_RT,
165 	/* next task is being scheduled by &sched_class_dl */
166 	SCX_CPU_PREEMPT_DL,
167 	/* next task is being scheduled by &sched_class_stop */
168 	SCX_CPU_PREEMPT_STOP,
169 	/* unknown reason for SCX being preempted */
170 	SCX_CPU_PREEMPT_UNKNOWN,
171 };
172 
173 /*
174  * Argument container for ops->cpu_acquire(). Currently empty, but may be
175  * expanded in the future.
176  */
177 struct scx_cpu_acquire_args {};
178 
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 	/* the reason the CPU was preempted */
182 	enum scx_cpu_preempt_reason reason;
183 
184 	/* the task that's going to be scheduled on the CPU */
185 	struct task_struct	*task;
186 };
187 
188 /*
189  * Informational context provided to dump operations.
190  */
191 struct scx_dump_ctx {
192 	enum scx_exit_kind	kind;
193 	s64			exit_code;
194 	const char		*reason;
195 	u64			at_ns;
196 	u64			at_jiffies;
197 };
198 
199 /**
200  * struct sched_ext_ops - Operation table for BPF scheduler implementation
201  *
202  * A BPF scheduler can implement an arbitrary scheduling policy by
203  * implementing and loading operations in this table. Note that a userland
204  * scheduling policy can also be implemented using the BPF scheduler
205  * as a shim layer.
206  */
207 struct sched_ext_ops {
208 	/**
209 	 * select_cpu - Pick the target CPU for a task which is being woken up
210 	 * @p: task being woken up
211 	 * @prev_cpu: the cpu @p was on before sleeping
212 	 * @wake_flags: SCX_WAKE_*
213 	 *
214 	 * Decision made here isn't final. @p may be moved to any CPU while it
215 	 * is getting dispatched for execution later. However, as @p is not on
216 	 * the rq at this point, getting the eventual execution CPU right here
217 	 * saves a small bit of overhead down the line.
218 	 *
219 	 * If an idle CPU is returned, the CPU is kicked and will try to
220 	 * dispatch. While an explicit custom mechanism can be added,
221 	 * select_cpu() serves as the default way to wake up idle CPUs.
222 	 *
223 	 * @p may be inserted into a DSQ directly by calling
224 	 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
225 	 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
226 	 * of the CPU returned by this operation.
227 	 *
228 	 * Note that select_cpu() is never called for tasks that can only run
229 	 * on a single CPU or tasks with migration disabled, as they don't have
230 	 * the option to select a different CPU. See select_task_rq() for
231 	 * details.
232 	 */
233 	s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
234 
235 	/**
236 	 * enqueue - Enqueue a task on the BPF scheduler
237 	 * @p: task being enqueued
238 	 * @enq_flags: %SCX_ENQ_*
239 	 *
240 	 * @p is ready to run. Insert directly into a DSQ by calling
241 	 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
242 	 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
243 	 * the task will stall.
244 	 *
245 	 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
246 	 * skipped.
247 	 */
248 	void (*enqueue)(struct task_struct *p, u64 enq_flags);
249 
250 	/**
251 	 * dequeue - Remove a task from the BPF scheduler
252 	 * @p: task being dequeued
253 	 * @deq_flags: %SCX_DEQ_*
254 	 *
255 	 * Remove @p from the BPF scheduler. This is usually called to isolate
256 	 * the task while updating its scheduling properties (e.g. priority).
257 	 *
258 	 * The ext core keeps track of whether the BPF side owns a given task or
259 	 * not and can gracefully ignore spurious dispatches from BPF side,
260 	 * which makes it safe to not implement this method. However, depending
261 	 * on the scheduling logic, this can lead to confusing behaviors - e.g.
262 	 * scheduling position not being updated across a priority change.
263 	 */
264 	void (*dequeue)(struct task_struct *p, u64 deq_flags);
265 
266 	/**
267 	 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs
268 	 * @cpu: CPU to dispatch tasks for
269 	 * @prev: previous task being switched out
270 	 *
271 	 * Called when a CPU's local dsq is empty. The operation should dispatch
272 	 * one or more tasks from the BPF scheduler into the DSQs using
273 	 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
274 	 * using scx_bpf_dsq_move_to_local().
275 	 *
276 	 * The maximum number of times scx_bpf_dsq_insert() can be called
277 	 * without an intervening scx_bpf_dsq_move_to_local() is specified by
278 	 * ops.dispatch_max_batch. See the comments on top of the two functions
279 	 * for more details.
280 	 *
281 	 * When not %NULL, @prev is an SCX task with its slice depleted. If
282 	 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
283 	 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
284 	 * ops.dispatch() returns. To keep executing @prev, return without
285 	 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
286 	 */
287 	void (*dispatch)(s32 cpu, struct task_struct *prev);
288 
289 	/**
290 	 * tick - Periodic tick
291 	 * @p: task running currently
292 	 *
293 	 * This operation is called every 1/HZ seconds on CPUs which are
294 	 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
295 	 * immediate dispatch cycle on the CPU.
296 	 */
297 	void (*tick)(struct task_struct *p);
298 
299 	/**
300 	 * runnable - A task is becoming runnable on its associated CPU
301 	 * @p: task becoming runnable
302 	 * @enq_flags: %SCX_ENQ_*
303 	 *
304 	 * This and the following three functions can be used to track a task's
305 	 * execution state transitions. A task becomes ->runnable() on a CPU,
306 	 * and then goes through one or more ->running() and ->stopping() pairs
307 	 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
308 	 * done running on the CPU.
309 	 *
310 	 * @p is becoming runnable on the CPU because it's
311 	 *
312 	 * - waking up (%SCX_ENQ_WAKEUP)
313 	 * - being moved from another CPU
314 	 * - being restored after temporarily taken off the queue for an
315 	 *   attribute change.
316 	 *
317 	 * This and ->enqueue() are related but not coupled. This operation
318 	 * notifies @p's state transition and may not be followed by ->enqueue()
319 	 * e.g. when @p is being dispatched to a remote CPU, or when @p is
320 	 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
321 	 * task may be ->enqueue()'d without being preceded by this operation
322 	 * e.g. after exhausting its slice.
323 	 */
324 	void (*runnable)(struct task_struct *p, u64 enq_flags);
325 
326 	/**
327 	 * running - A task is starting to run on its associated CPU
328 	 * @p: task starting to run
329 	 *
330 	 * See ->runnable() for explanation on the task state notifiers.
331 	 */
332 	void (*running)(struct task_struct *p);
333 
334 	/**
335 	 * stopping - A task is stopping execution
336 	 * @p: task stopping to run
337 	 * @runnable: is task @p still runnable?
338 	 *
339 	 * See ->runnable() for explanation on the task state notifiers. If
340 	 * !@runnable, ->quiescent() will be invoked after this operation
341 	 * returns.
342 	 */
343 	void (*stopping)(struct task_struct *p, bool runnable);
344 
345 	/**
346 	 * quiescent - A task is becoming not runnable on its associated CPU
347 	 * @p: task becoming not runnable
348 	 * @deq_flags: %SCX_DEQ_*
349 	 *
350 	 * See ->runnable() for explanation on the task state notifiers.
351 	 *
352 	 * @p is becoming quiescent on the CPU because it's
353 	 *
354 	 * - sleeping (%SCX_DEQ_SLEEP)
355 	 * - being moved to another CPU
356 	 * - being temporarily taken off the queue for an attribute change
357 	 *   (%SCX_DEQ_SAVE)
358 	 *
359 	 * This and ->dequeue() are related but not coupled. This operation
360 	 * notifies @p's state transition and may not be preceded by ->dequeue()
361 	 * e.g. when @p is being dispatched to a remote CPU.
362 	 */
363 	void (*quiescent)(struct task_struct *p, u64 deq_flags);
364 
365 	/**
366 	 * yield - Yield CPU
367 	 * @from: yielding task
368 	 * @to: optional yield target task
369 	 *
370 	 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
371 	 * The BPF scheduler should ensure that other available tasks are
372 	 * dispatched before the yielding task. Return value is ignored in this
373 	 * case.
374 	 *
375 	 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
376 	 * scheduler can implement the request, return %true; otherwise, %false.
377 	 */
378 	bool (*yield)(struct task_struct *from, struct task_struct *to);
379 
380 	/**
381 	 * core_sched_before - Task ordering for core-sched
382 	 * @a: task A
383 	 * @b: task B
384 	 *
385 	 * Used by core-sched to determine the ordering between two tasks. See
386 	 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
387 	 * core-sched.
388 	 *
389 	 * Both @a and @b are runnable and may or may not currently be queued on
390 	 * the BPF scheduler. Should return %true if @a should run before @b.
391 	 * %false if there's no required ordering or @b should run before @a.
392 	 *
393 	 * If not specified, the default is ordering them according to when they
394 	 * became runnable.
395 	 */
396 	bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
397 
398 	/**
399 	 * set_weight - Set task weight
400 	 * @p: task to set weight for
401 	 * @weight: new weight [1..10000]
402 	 *
403 	 * Update @p's weight to @weight.
404 	 */
405 	void (*set_weight)(struct task_struct *p, u32 weight);
406 
407 	/**
408 	 * set_cpumask - Set CPU affinity
409 	 * @p: task to set CPU affinity for
410 	 * @cpumask: cpumask of cpus that @p can run on
411 	 *
412 	 * Update @p's CPU affinity to @cpumask.
413 	 */
414 	void (*set_cpumask)(struct task_struct *p,
415 			    const struct cpumask *cpumask);
416 
417 	/**
418 	 * update_idle - Update the idle state of a CPU
419 	 * @cpu: CPU to udpate the idle state for
420 	 * @idle: whether entering or exiting the idle state
421 	 *
422 	 * This operation is called when @rq's CPU goes or leaves the idle
423 	 * state. By default, implementing this operation disables the built-in
424 	 * idle CPU tracking and the following helpers become unavailable:
425 	 *
426 	 * - scx_bpf_select_cpu_dfl()
427 	 * - scx_bpf_test_and_clear_cpu_idle()
428 	 * - scx_bpf_pick_idle_cpu()
429 	 *
430 	 * The user also must implement ops.select_cpu() as the default
431 	 * implementation relies on scx_bpf_select_cpu_dfl().
432 	 *
433 	 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
434 	 * tracking.
435 	 */
436 	void (*update_idle)(s32 cpu, bool idle);
437 
438 	/**
439 	 * cpu_acquire - A CPU is becoming available to the BPF scheduler
440 	 * @cpu: The CPU being acquired by the BPF scheduler.
441 	 * @args: Acquire arguments, see the struct definition.
442 	 *
443 	 * A CPU that was previously released from the BPF scheduler is now once
444 	 * again under its control.
445 	 */
446 	void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
447 
448 	/**
449 	 * cpu_release - A CPU is taken away from the BPF scheduler
450 	 * @cpu: The CPU being released by the BPF scheduler.
451 	 * @args: Release arguments, see the struct definition.
452 	 *
453 	 * The specified CPU is no longer under the control of the BPF
454 	 * scheduler. This could be because it was preempted by a higher
455 	 * priority sched_class, though there may be other reasons as well. The
456 	 * caller should consult @args->reason to determine the cause.
457 	 */
458 	void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
459 
460 	/**
461 	 * init_task - Initialize a task to run in a BPF scheduler
462 	 * @p: task to initialize for BPF scheduling
463 	 * @args: init arguments, see the struct definition
464 	 *
465 	 * Either we're loading a BPF scheduler or a new task is being forked.
466 	 * Initialize @p for BPF scheduling. This operation may block and can
467 	 * be used for allocations, and is called exactly once for a task.
468 	 *
469 	 * Return 0 for success, -errno for failure. An error return while
470 	 * loading will abort loading of the BPF scheduler. During a fork, it
471 	 * will abort that specific fork.
472 	 */
473 	s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
474 
475 	/**
476 	 * exit_task - Exit a previously-running task from the system
477 	 * @p: task to exit
478 	 *
479 	 * @p is exiting or the BPF scheduler is being unloaded. Perform any
480 	 * necessary cleanup for @p.
481 	 */
482 	void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
483 
484 	/**
485 	 * enable - Enable BPF scheduling for a task
486 	 * @p: task to enable BPF scheduling for
487 	 *
488 	 * Enable @p for BPF scheduling. enable() is called on @p any time it
489 	 * enters SCX, and is always paired with a matching disable().
490 	 */
491 	void (*enable)(struct task_struct *p);
492 
493 	/**
494 	 * disable - Disable BPF scheduling for a task
495 	 * @p: task to disable BPF scheduling for
496 	 *
497 	 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
498 	 * Disable BPF scheduling for @p. A disable() call is always matched
499 	 * with a prior enable() call.
500 	 */
501 	void (*disable)(struct task_struct *p);
502 
503 	/**
504 	 * dump - Dump BPF scheduler state on error
505 	 * @ctx: debug dump context
506 	 *
507 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
508 	 */
509 	void (*dump)(struct scx_dump_ctx *ctx);
510 
511 	/**
512 	 * dump_cpu - Dump BPF scheduler state for a CPU on error
513 	 * @ctx: debug dump context
514 	 * @cpu: CPU to generate debug dump for
515 	 * @idle: @cpu is currently idle without any runnable tasks
516 	 *
517 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
518 	 * @cpu. If @idle is %true and this operation doesn't produce any
519 	 * output, @cpu is skipped for dump.
520 	 */
521 	void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
522 
523 	/**
524 	 * dump_task - Dump BPF scheduler state for a runnable task on error
525 	 * @ctx: debug dump context
526 	 * @p: runnable task to generate debug dump for
527 	 *
528 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
529 	 * @p.
530 	 */
531 	void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
532 
533 #ifdef CONFIG_EXT_GROUP_SCHED
534 	/**
535 	 * cgroup_init - Initialize a cgroup
536 	 * @cgrp: cgroup being initialized
537 	 * @args: init arguments, see the struct definition
538 	 *
539 	 * Either the BPF scheduler is being loaded or @cgrp created, initialize
540 	 * @cgrp for sched_ext. This operation may block.
541 	 *
542 	 * Return 0 for success, -errno for failure. An error return while
543 	 * loading will abort loading of the BPF scheduler. During cgroup
544 	 * creation, it will abort the specific cgroup creation.
545 	 */
546 	s32 (*cgroup_init)(struct cgroup *cgrp,
547 			   struct scx_cgroup_init_args *args);
548 
549 	/**
550 	 * cgroup_exit - Exit a cgroup
551 	 * @cgrp: cgroup being exited
552 	 *
553 	 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
554 	 * @cgrp for sched_ext. This operation my block.
555 	 */
556 	void (*cgroup_exit)(struct cgroup *cgrp);
557 
558 	/**
559 	 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
560 	 * @p: task being moved
561 	 * @from: cgroup @p is being moved from
562 	 * @to: cgroup @p is being moved to
563 	 *
564 	 * Prepare @p for move from cgroup @from to @to. This operation may
565 	 * block and can be used for allocations.
566 	 *
567 	 * Return 0 for success, -errno for failure. An error return aborts the
568 	 * migration.
569 	 */
570 	s32 (*cgroup_prep_move)(struct task_struct *p,
571 				struct cgroup *from, struct cgroup *to);
572 
573 	/**
574 	 * cgroup_move - Commit cgroup move
575 	 * @p: task being moved
576 	 * @from: cgroup @p is being moved from
577 	 * @to: cgroup @p is being moved to
578 	 *
579 	 * Commit the move. @p is dequeued during this operation.
580 	 */
581 	void (*cgroup_move)(struct task_struct *p,
582 			    struct cgroup *from, struct cgroup *to);
583 
584 	/**
585 	 * cgroup_cancel_move - Cancel cgroup move
586 	 * @p: task whose cgroup move is being canceled
587 	 * @from: cgroup @p was being moved from
588 	 * @to: cgroup @p was being moved to
589 	 *
590 	 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
591 	 * Undo the preparation.
592 	 */
593 	void (*cgroup_cancel_move)(struct task_struct *p,
594 				   struct cgroup *from, struct cgroup *to);
595 
596 	/**
597 	 * cgroup_set_weight - A cgroup's weight is being changed
598 	 * @cgrp: cgroup whose weight is being updated
599 	 * @weight: new weight [1..10000]
600 	 *
601 	 * Update @tg's weight to @weight.
602 	 */
603 	void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
604 #endif	/* CONFIG_EXT_GROUP_SCHED */
605 
606 	/*
607 	 * All online ops must come before ops.cpu_online().
608 	 */
609 
610 	/**
611 	 * cpu_online - A CPU became online
612 	 * @cpu: CPU which just came up
613 	 *
614 	 * @cpu just came online. @cpu will not call ops.enqueue() or
615 	 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
616 	 */
617 	void (*cpu_online)(s32 cpu);
618 
619 	/**
620 	 * cpu_offline - A CPU is going offline
621 	 * @cpu: CPU which is going offline
622 	 *
623 	 * @cpu is going offline. @cpu will not call ops.enqueue() or
624 	 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
625 	 */
626 	void (*cpu_offline)(s32 cpu);
627 
628 	/*
629 	 * All CPU hotplug ops must come before ops.init().
630 	 */
631 
632 	/**
633 	 * init - Initialize the BPF scheduler
634 	 */
635 	s32 (*init)(void);
636 
637 	/**
638 	 * exit - Clean up after the BPF scheduler
639 	 * @info: Exit info
640 	 *
641 	 * ops.exit() is also called on ops.init() failure, which is a bit
642 	 * unusual. This is to allow rich reporting through @info on how
643 	 * ops.init() failed.
644 	 */
645 	void (*exit)(struct scx_exit_info *info);
646 
647 	/**
648 	 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
649 	 */
650 	u32 dispatch_max_batch;
651 
652 	/**
653 	 * flags - %SCX_OPS_* flags
654 	 */
655 	u64 flags;
656 
657 	/**
658 	 * timeout_ms - The maximum amount of time, in milliseconds, that a
659 	 * runnable task should be able to wait before being scheduled. The
660 	 * maximum timeout may not exceed the default timeout of 30 seconds.
661 	 *
662 	 * Defaults to the maximum allowed timeout value of 30 seconds.
663 	 */
664 	u32 timeout_ms;
665 
666 	/**
667 	 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
668 	 * value of 32768 is used.
669 	 */
670 	u32 exit_dump_len;
671 
672 	/**
673 	 * hotplug_seq - A sequence number that may be set by the scheduler to
674 	 * detect when a hotplug event has occurred during the loading process.
675 	 * If 0, no detection occurs. Otherwise, the scheduler will fail to
676 	 * load if the sequence number does not match @scx_hotplug_seq on the
677 	 * enable path.
678 	 */
679 	u64 hotplug_seq;
680 
681 	/**
682 	 * name - BPF scheduler's name
683 	 *
684 	 * Must be a non-zero valid BPF object name including only isalnum(),
685 	 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
686 	 * BPF scheduler is enabled.
687 	 */
688 	char name[SCX_OPS_NAME_LEN];
689 };
690 
691 enum scx_opi {
692 	SCX_OPI_BEGIN			= 0,
693 	SCX_OPI_NORMAL_BEGIN		= 0,
694 	SCX_OPI_NORMAL_END		= SCX_OP_IDX(cpu_online),
695 	SCX_OPI_CPU_HOTPLUG_BEGIN	= SCX_OP_IDX(cpu_online),
696 	SCX_OPI_CPU_HOTPLUG_END		= SCX_OP_IDX(init),
697 	SCX_OPI_END			= SCX_OP_IDX(init),
698 };
699 
700 enum scx_wake_flags {
701 	/* expose select WF_* flags as enums */
702 	SCX_WAKE_FORK		= WF_FORK,
703 	SCX_WAKE_TTWU		= WF_TTWU,
704 	SCX_WAKE_SYNC		= WF_SYNC,
705 };
706 
707 enum scx_enq_flags {
708 	/* expose select ENQUEUE_* flags as enums */
709 	SCX_ENQ_WAKEUP		= ENQUEUE_WAKEUP,
710 	SCX_ENQ_HEAD		= ENQUEUE_HEAD,
711 	SCX_ENQ_CPU_SELECTED	= ENQUEUE_RQ_SELECTED,
712 
713 	/* high 32bits are SCX specific */
714 
715 	/*
716 	 * Set the following to trigger preemption when calling
717 	 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
718 	 * current task is cleared to zero and the CPU is kicked into the
719 	 * scheduling path. Implies %SCX_ENQ_HEAD.
720 	 */
721 	SCX_ENQ_PREEMPT		= 1LLU << 32,
722 
723 	/*
724 	 * The task being enqueued was previously enqueued on the current CPU's
725 	 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
726 	 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
727 	 * invoked in a ->cpu_release() callback, and the task is again
728 	 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
729 	 * task will not be scheduled on the CPU until at least the next invocation
730 	 * of the ->cpu_acquire() callback.
731 	 */
732 	SCX_ENQ_REENQ		= 1LLU << 40,
733 
734 	/*
735 	 * The task being enqueued is the only task available for the cpu. By
736 	 * default, ext core keeps executing such tasks but when
737 	 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
738 	 * %SCX_ENQ_LAST flag set.
739 	 *
740 	 * The BPF scheduler is responsible for triggering a follow-up
741 	 * scheduling event. Otherwise, Execution may stall.
742 	 */
743 	SCX_ENQ_LAST		= 1LLU << 41,
744 
745 	/* high 8 bits are internal */
746 	__SCX_ENQ_INTERNAL_MASK	= 0xffLLU << 56,
747 
748 	SCX_ENQ_CLEAR_OPSS	= 1LLU << 56,
749 	SCX_ENQ_DSQ_PRIQ	= 1LLU << 57,
750 };
751 
752 enum scx_deq_flags {
753 	/* expose select DEQUEUE_* flags as enums */
754 	SCX_DEQ_SLEEP		= DEQUEUE_SLEEP,
755 
756 	/* high 32bits are SCX specific */
757 
758 	/*
759 	 * The generic core-sched layer decided to execute the task even though
760 	 * it hasn't been dispatched yet. Dequeue from the BPF side.
761 	 */
762 	SCX_DEQ_CORE_SCHED_EXEC	= 1LLU << 32,
763 };
764 
765 enum scx_pick_idle_cpu_flags {
766 	SCX_PICK_IDLE_CORE	= 1LLU << 0,	/* pick a CPU whose SMT siblings are also idle */
767 };
768 
769 enum scx_kick_flags {
770 	/*
771 	 * Kick the target CPU if idle. Guarantees that the target CPU goes
772 	 * through at least one full scheduling cycle before going idle. If the
773 	 * target CPU can be determined to be currently not idle and going to go
774 	 * through a scheduling cycle before going idle, noop.
775 	 */
776 	SCX_KICK_IDLE		= 1LLU << 0,
777 
778 	/*
779 	 * Preempt the current task and execute the dispatch path. If the
780 	 * current task of the target CPU is an SCX task, its ->scx.slice is
781 	 * cleared to zero before the scheduling path is invoked so that the
782 	 * task expires and the dispatch path is invoked.
783 	 */
784 	SCX_KICK_PREEMPT	= 1LLU << 1,
785 
786 	/*
787 	 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
788 	 * return after the target CPU finishes picking the next task.
789 	 */
790 	SCX_KICK_WAIT		= 1LLU << 2,
791 };
792 
793 enum scx_tg_flags {
794 	SCX_TG_ONLINE		= 1U << 0,
795 	SCX_TG_INITED		= 1U << 1,
796 };
797 
798 enum scx_ops_enable_state {
799 	SCX_OPS_ENABLING,
800 	SCX_OPS_ENABLED,
801 	SCX_OPS_DISABLING,
802 	SCX_OPS_DISABLED,
803 };
804 
805 static const char *scx_ops_enable_state_str[] = {
806 	[SCX_OPS_ENABLING]	= "enabling",
807 	[SCX_OPS_ENABLED]	= "enabled",
808 	[SCX_OPS_DISABLING]	= "disabling",
809 	[SCX_OPS_DISABLED]	= "disabled",
810 };
811 
812 /*
813  * sched_ext_entity->ops_state
814  *
815  * Used to track the task ownership between the SCX core and the BPF scheduler.
816  * State transitions look as follows:
817  *
818  * NONE -> QUEUEING -> QUEUED -> DISPATCHING
819  *   ^              |                 |
820  *   |              v                 v
821  *   \-------------------------------/
822  *
823  * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
824  * sites for explanations on the conditions being waited upon and why they are
825  * safe. Transitions out of them into NONE or QUEUED must store_release and the
826  * waiters should load_acquire.
827  *
828  * Tracking scx_ops_state enables sched_ext core to reliably determine whether
829  * any given task can be dispatched by the BPF scheduler at all times and thus
830  * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
831  * to try to dispatch any task anytime regardless of its state as the SCX core
832  * can safely reject invalid dispatches.
833  */
834 enum scx_ops_state {
835 	SCX_OPSS_NONE,		/* owned by the SCX core */
836 	SCX_OPSS_QUEUEING,	/* in transit to the BPF scheduler */
837 	SCX_OPSS_QUEUED,	/* owned by the BPF scheduler */
838 	SCX_OPSS_DISPATCHING,	/* in transit back to the SCX core */
839 
840 	/*
841 	 * QSEQ brands each QUEUED instance so that, when dispatch races
842 	 * dequeue/requeue, the dispatcher can tell whether it still has a claim
843 	 * on the task being dispatched.
844 	 *
845 	 * As some 32bit archs can't do 64bit store_release/load_acquire,
846 	 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
847 	 * 32bit machines. The dispatch race window QSEQ protects is very narrow
848 	 * and runs with IRQ disabled. 30 bits should be sufficient.
849 	 */
850 	SCX_OPSS_QSEQ_SHIFT	= 2,
851 };
852 
853 /* Use macros to ensure that the type is unsigned long for the masks */
854 #define SCX_OPSS_STATE_MASK	((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
855 #define SCX_OPSS_QSEQ_MASK	(~SCX_OPSS_STATE_MASK)
856 
857 /*
858  * During exit, a task may schedule after losing its PIDs. When disabling the
859  * BPF scheduler, we need to be able to iterate tasks in every state to
860  * guarantee system safety. Maintain a dedicated task list which contains every
861  * task between its fork and eventual free.
862  */
863 static DEFINE_SPINLOCK(scx_tasks_lock);
864 static LIST_HEAD(scx_tasks);
865 
866 /* ops enable/disable */
867 static struct kthread_worker *scx_ops_helper;
868 static DEFINE_MUTEX(scx_ops_enable_mutex);
869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
871 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
872 static unsigned long scx_in_softlockup;
873 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0);
874 static int scx_ops_bypass_depth;
875 static bool scx_ops_init_task_enabled;
876 static bool scx_switching_all;
877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
878 
879 static struct sched_ext_ops scx_ops;
880 static bool scx_warned_zero_slice;
881 
882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
886 
887 #ifdef CONFIG_SMP
888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
890 #endif
891 
892 static struct static_key_false scx_has_op[SCX_OPI_END] =
893 	{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
894 
895 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
896 static struct scx_exit_info *scx_exit_info;
897 
898 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
899 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
900 
901 /*
902  * A monotically increasing sequence number that is incremented every time a
903  * scheduler is enabled. This can be used by to check if any custom sched_ext
904  * scheduler has ever been used in the system.
905  */
906 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
907 
908 /*
909  * The maximum amount of time in jiffies that a task may be runnable without
910  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
911  * scx_ops_error().
912  */
913 static unsigned long scx_watchdog_timeout;
914 
915 /*
916  * The last time the delayed work was run. This delayed work relies on
917  * ksoftirqd being able to run to service timer interrupts, so it's possible
918  * that this work itself could get wedged. To account for this, we check that
919  * it's not stalled in the timer tick, and trigger an error if it is.
920  */
921 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
922 
923 static struct delayed_work scx_watchdog_work;
924 
925 /* idle tracking */
926 #ifdef CONFIG_SMP
927 #ifdef CONFIG_CPUMASK_OFFSTACK
928 #define CL_ALIGNED_IF_ONSTACK
929 #else
930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
931 #endif
932 
933 static struct {
934 	cpumask_var_t cpu;
935 	cpumask_var_t smt;
936 } idle_masks CL_ALIGNED_IF_ONSTACK;
937 
938 #endif	/* CONFIG_SMP */
939 
940 /* for %SCX_KICK_WAIT */
941 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
942 
943 /*
944  * Direct dispatch marker.
945  *
946  * Non-NULL values are used for direct dispatch from enqueue path. A valid
947  * pointer points to the task currently being enqueued. An ERR_PTR value is used
948  * to indicate that direct dispatch has already happened.
949  */
950 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
951 
952 /*
953  * Dispatch queues.
954  *
955  * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
956  * to avoid live-locking in bypass mode where all tasks are dispatched to
957  * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
958  * sufficient, it can be further split.
959  */
960 static struct scx_dispatch_q **global_dsqs;
961 
962 static const struct rhashtable_params dsq_hash_params = {
963 	.key_len		= 8,
964 	.key_offset		= offsetof(struct scx_dispatch_q, id),
965 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
966 };
967 
968 static struct rhashtable dsq_hash;
969 static LLIST_HEAD(dsqs_to_free);
970 
971 /* dispatch buf */
972 struct scx_dsp_buf_ent {
973 	struct task_struct	*task;
974 	unsigned long		qseq;
975 	u64			dsq_id;
976 	u64			enq_flags;
977 };
978 
979 static u32 scx_dsp_max_batch;
980 
981 struct scx_dsp_ctx {
982 	struct rq		*rq;
983 	u32			cursor;
984 	u32			nr_tasks;
985 	struct scx_dsp_buf_ent	buf[];
986 };
987 
988 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
989 
990 /* string formatting from BPF */
991 struct scx_bstr_buf {
992 	u64			data[MAX_BPRINTF_VARARGS];
993 	char			line[SCX_EXIT_MSG_LEN];
994 };
995 
996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
997 static struct scx_bstr_buf scx_exit_bstr_buf;
998 
999 /* ops debug dump */
1000 struct scx_dump_data {
1001 	s32			cpu;
1002 	bool			first;
1003 	s32			cursor;
1004 	struct seq_buf		*s;
1005 	const char		*prefix;
1006 	struct scx_bstr_buf	buf;
1007 };
1008 
1009 static struct scx_dump_data scx_dump_data = {
1010 	.cpu			= -1,
1011 };
1012 
1013 /* /sys/kernel/sched_ext interface */
1014 static struct kset *scx_kset;
1015 static struct kobject *scx_root_kobj;
1016 
1017 #define CREATE_TRACE_POINTS
1018 #include <trace/events/sched_ext.h>
1019 
1020 static void process_ddsp_deferred_locals(struct rq *rq);
1021 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1023 					     s64 exit_code,
1024 					     const char *fmt, ...);
1025 
1026 #define scx_ops_error_kind(err, fmt, args...)					\
1027 	scx_ops_exit_kind((err), 0, fmt, ##args)
1028 
1029 #define scx_ops_exit(code, fmt, args...)					\
1030 	scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1031 
1032 #define scx_ops_error(fmt, args...)						\
1033 	scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1034 
1035 #define SCX_HAS_OP(op)	static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1036 
1037 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1038 {
1039 	if (time_after(at, now))
1040 		return jiffies_to_msecs(at - now);
1041 	else
1042 		return -(long)jiffies_to_msecs(now - at);
1043 }
1044 
1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
1046 static u32 higher_bits(u32 flags)
1047 {
1048 	return ~((1 << fls(flags)) - 1);
1049 }
1050 
1051 /* return the mask with only the highest bit set */
1052 static u32 highest_bit(u32 flags)
1053 {
1054 	int bit = fls(flags);
1055 	return ((u64)1 << bit) >> 1;
1056 }
1057 
1058 static bool u32_before(u32 a, u32 b)
1059 {
1060 	return (s32)(a - b) < 0;
1061 }
1062 
1063 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1064 {
1065 	return global_dsqs[cpu_to_node(task_cpu(p))];
1066 }
1067 
1068 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1069 {
1070 	return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1071 }
1072 
1073 /*
1074  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1075  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1076  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1077  * whether it's running from an allowed context.
1078  *
1079  * @mask is constant, always inline to cull the mask calculations.
1080  */
1081 static __always_inline void scx_kf_allow(u32 mask)
1082 {
1083 	/* nesting is allowed only in increasing scx_kf_mask order */
1084 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1085 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1086 		  current->scx.kf_mask, mask);
1087 	current->scx.kf_mask |= mask;
1088 	barrier();
1089 }
1090 
1091 static void scx_kf_disallow(u32 mask)
1092 {
1093 	barrier();
1094 	current->scx.kf_mask &= ~mask;
1095 }
1096 
1097 #define SCX_CALL_OP(mask, op, args...)						\
1098 do {										\
1099 	if (mask) {								\
1100 		scx_kf_allow(mask);						\
1101 		scx_ops.op(args);						\
1102 		scx_kf_disallow(mask);						\
1103 	} else {								\
1104 		scx_ops.op(args);						\
1105 	}									\
1106 } while (0)
1107 
1108 #define SCX_CALL_OP_RET(mask, op, args...)					\
1109 ({										\
1110 	__typeof__(scx_ops.op(args)) __ret;					\
1111 	if (mask) {								\
1112 		scx_kf_allow(mask);						\
1113 		__ret = scx_ops.op(args);					\
1114 		scx_kf_disallow(mask);						\
1115 	} else {								\
1116 		__ret = scx_ops.op(args);					\
1117 	}									\
1118 	__ret;									\
1119 })
1120 
1121 /*
1122  * Some kfuncs are allowed only on the tasks that are subjects of the
1123  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1124  * restrictions, the following SCX_CALL_OP_*() variants should be used when
1125  * invoking scx_ops operations that take task arguments. These can only be used
1126  * for non-nesting operations due to the way the tasks are tracked.
1127  *
1128  * kfuncs which can only operate on such tasks can in turn use
1129  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1130  * the specific task.
1131  */
1132 #define SCX_CALL_OP_TASK(mask, op, task, args...)				\
1133 do {										\
1134 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1135 	current->scx.kf_tasks[0] = task;					\
1136 	SCX_CALL_OP(mask, op, task, ##args);					\
1137 	current->scx.kf_tasks[0] = NULL;					\
1138 } while (0)
1139 
1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...)				\
1141 ({										\
1142 	__typeof__(scx_ops.op(task, ##args)) __ret;				\
1143 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1144 	current->scx.kf_tasks[0] = task;					\
1145 	__ret = SCX_CALL_OP_RET(mask, op, task, ##args);			\
1146 	current->scx.kf_tasks[0] = NULL;					\
1147 	__ret;									\
1148 })
1149 
1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)			\
1151 ({										\
1152 	__typeof__(scx_ops.op(task0, task1, ##args)) __ret;			\
1153 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1154 	current->scx.kf_tasks[0] = task0;					\
1155 	current->scx.kf_tasks[1] = task1;					\
1156 	__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);		\
1157 	current->scx.kf_tasks[0] = NULL;					\
1158 	current->scx.kf_tasks[1] = NULL;					\
1159 	__ret;									\
1160 })
1161 
1162 /* @mask is constant, always inline to cull unnecessary branches */
1163 static __always_inline bool scx_kf_allowed(u32 mask)
1164 {
1165 	if (unlikely(!(current->scx.kf_mask & mask))) {
1166 		scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1167 			      mask, current->scx.kf_mask);
1168 		return false;
1169 	}
1170 
1171 	/*
1172 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1173 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
1174 	 * inside ops.dispatch(). We don't need to check boundaries for any
1175 	 * blocking kfuncs as the verifier ensures they're only called from
1176 	 * sleepable progs.
1177 	 */
1178 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1179 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1180 		scx_ops_error("cpu_release kfunc called from a nested operation");
1181 		return false;
1182 	}
1183 
1184 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1185 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1186 		scx_ops_error("dispatch kfunc called from a nested operation");
1187 		return false;
1188 	}
1189 
1190 	return true;
1191 }
1192 
1193 /* see SCX_CALL_OP_TASK() */
1194 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1195 							struct task_struct *p)
1196 {
1197 	if (!scx_kf_allowed(mask))
1198 		return false;
1199 
1200 	if (unlikely((p != current->scx.kf_tasks[0] &&
1201 		      p != current->scx.kf_tasks[1]))) {
1202 		scx_ops_error("called on a task not being operated on");
1203 		return false;
1204 	}
1205 
1206 	return true;
1207 }
1208 
1209 static bool scx_kf_allowed_if_unlocked(void)
1210 {
1211 	return !current->scx.kf_mask;
1212 }
1213 
1214 /**
1215  * nldsq_next_task - Iterate to the next task in a non-local DSQ
1216  * @dsq: user dsq being interated
1217  * @cur: current position, %NULL to start iteration
1218  * @rev: walk backwards
1219  *
1220  * Returns %NULL when iteration is finished.
1221  */
1222 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1223 					   struct task_struct *cur, bool rev)
1224 {
1225 	struct list_head *list_node;
1226 	struct scx_dsq_list_node *dsq_lnode;
1227 
1228 	lockdep_assert_held(&dsq->lock);
1229 
1230 	if (cur)
1231 		list_node = &cur->scx.dsq_list.node;
1232 	else
1233 		list_node = &dsq->list;
1234 
1235 	/* find the next task, need to skip BPF iteration cursors */
1236 	do {
1237 		if (rev)
1238 			list_node = list_node->prev;
1239 		else
1240 			list_node = list_node->next;
1241 
1242 		if (list_node == &dsq->list)
1243 			return NULL;
1244 
1245 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1246 					 node);
1247 	} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1248 
1249 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1250 }
1251 
1252 #define nldsq_for_each_task(p, dsq)						\
1253 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
1254 	     (p) = nldsq_next_task((dsq), (p), false))
1255 
1256 
1257 /*
1258  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1259  * dispatch order. BPF-visible iterator is opaque and larger to allow future
1260  * changes without breaking backward compatibility. Can be used with
1261  * bpf_for_each(). See bpf_iter_scx_dsq_*().
1262  */
1263 enum scx_dsq_iter_flags {
1264 	/* iterate in the reverse dispatch order */
1265 	SCX_DSQ_ITER_REV		= 1U << 16,
1266 
1267 	__SCX_DSQ_ITER_HAS_SLICE	= 1U << 30,
1268 	__SCX_DSQ_ITER_HAS_VTIME	= 1U << 31,
1269 
1270 	__SCX_DSQ_ITER_USER_FLAGS	= SCX_DSQ_ITER_REV,
1271 	__SCX_DSQ_ITER_ALL_FLAGS	= __SCX_DSQ_ITER_USER_FLAGS |
1272 					  __SCX_DSQ_ITER_HAS_SLICE |
1273 					  __SCX_DSQ_ITER_HAS_VTIME,
1274 };
1275 
1276 struct bpf_iter_scx_dsq_kern {
1277 	struct scx_dsq_list_node	cursor;
1278 	struct scx_dispatch_q		*dsq;
1279 	u64				slice;
1280 	u64				vtime;
1281 } __attribute__((aligned(8)));
1282 
1283 struct bpf_iter_scx_dsq {
1284 	u64				__opaque[6];
1285 } __attribute__((aligned(8)));
1286 
1287 
1288 /*
1289  * SCX task iterator.
1290  */
1291 struct scx_task_iter {
1292 	struct sched_ext_entity		cursor;
1293 	struct task_struct		*locked;
1294 	struct rq			*rq;
1295 	struct rq_flags			rf;
1296 	u32				cnt;
1297 };
1298 
1299 /**
1300  * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1301  * @iter: iterator to init
1302  *
1303  * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1304  * must eventually be stopped with scx_task_iter_stop().
1305  *
1306  * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1307  * between this and the first next() call or between any two next() calls. If
1308  * the locks are released between two next() calls, the caller is responsible
1309  * for ensuring that the task being iterated remains accessible either through
1310  * RCU read lock or obtaining a reference count.
1311  *
1312  * All tasks which existed when the iteration started are guaranteed to be
1313  * visited as long as they still exist.
1314  */
1315 static void scx_task_iter_start(struct scx_task_iter *iter)
1316 {
1317 	BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1318 		     ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1319 
1320 	spin_lock_irq(&scx_tasks_lock);
1321 
1322 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1323 	list_add(&iter->cursor.tasks_node, &scx_tasks);
1324 	iter->locked = NULL;
1325 	iter->cnt = 0;
1326 }
1327 
1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1329 {
1330 	if (iter->locked) {
1331 		task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1332 		iter->locked = NULL;
1333 	}
1334 }
1335 
1336 /**
1337  * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1338  * @iter: iterator to unlock
1339  *
1340  * If @iter is in the middle of a locked iteration, it may be locking the rq of
1341  * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1342  * This function can be safely called anytime during an iteration.
1343  */
1344 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1345 {
1346 	__scx_task_iter_rq_unlock(iter);
1347 	spin_unlock_irq(&scx_tasks_lock);
1348 }
1349 
1350 /**
1351  * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1352  * @iter: iterator to re-lock
1353  *
1354  * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1355  * doesn't re-lock the rq lock. Must be called before other iterator operations.
1356  */
1357 static void scx_task_iter_relock(struct scx_task_iter *iter)
1358 {
1359 	spin_lock_irq(&scx_tasks_lock);
1360 }
1361 
1362 /**
1363  * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1364  * @iter: iterator to exit
1365  *
1366  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1367  * which is released on return. If the iterator holds a task's rq lock, that rq
1368  * lock is also released. See scx_task_iter_start() for details.
1369  */
1370 static void scx_task_iter_stop(struct scx_task_iter *iter)
1371 {
1372 	list_del_init(&iter->cursor.tasks_node);
1373 	scx_task_iter_unlock(iter);
1374 }
1375 
1376 /**
1377  * scx_task_iter_next - Next task
1378  * @iter: iterator to walk
1379  *
1380  * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1381  * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1382  * stalls by holding scx_tasks_lock for too long.
1383  */
1384 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1385 {
1386 	struct list_head *cursor = &iter->cursor.tasks_node;
1387 	struct sched_ext_entity *pos;
1388 
1389 	if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1390 		scx_task_iter_unlock(iter);
1391 		cond_resched();
1392 		scx_task_iter_relock(iter);
1393 	}
1394 
1395 	list_for_each_entry(pos, cursor, tasks_node) {
1396 		if (&pos->tasks_node == &scx_tasks)
1397 			return NULL;
1398 		if (!(pos->flags & SCX_TASK_CURSOR)) {
1399 			list_move(cursor, &pos->tasks_node);
1400 			return container_of(pos, struct task_struct, scx);
1401 		}
1402 	}
1403 
1404 	/* can't happen, should always terminate at scx_tasks above */
1405 	BUG();
1406 }
1407 
1408 /**
1409  * scx_task_iter_next_locked - Next non-idle task with its rq locked
1410  * @iter: iterator to walk
1411  * @include_dead: Whether we should include dead tasks in the iteration
1412  *
1413  * Visit the non-idle task with its rq lock held. Allows callers to specify
1414  * whether they would like to filter out dead tasks. See scx_task_iter_start()
1415  * for details.
1416  */
1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1418 {
1419 	struct task_struct *p;
1420 
1421 	__scx_task_iter_rq_unlock(iter);
1422 
1423 	while ((p = scx_task_iter_next(iter))) {
1424 		/*
1425 		 * scx_task_iter is used to prepare and move tasks into SCX
1426 		 * while loading the BPF scheduler and vice-versa while
1427 		 * unloading. The init_tasks ("swappers") should be excluded
1428 		 * from the iteration because:
1429 		 *
1430 		 * - It's unsafe to use __setschduler_prio() on an init_task to
1431 		 *   determine the sched_class to use as it won't preserve its
1432 		 *   idle_sched_class.
1433 		 *
1434 		 * - ops.init/exit_task() can easily be confused if called with
1435 		 *   init_tasks as they, e.g., share PID 0.
1436 		 *
1437 		 * As init_tasks are never scheduled through SCX, they can be
1438 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1439 		 * doesn't work here:
1440 		 *
1441 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1442 		 *   yet been onlined.
1443 		 *
1444 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1445 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
1446 		 *
1447 		 * Test for idle_sched_class as only init_tasks are on it.
1448 		 */
1449 		if (p->sched_class != &idle_sched_class)
1450 			break;
1451 	}
1452 	if (!p)
1453 		return NULL;
1454 
1455 	iter->rq = task_rq_lock(p, &iter->rf);
1456 	iter->locked = p;
1457 
1458 	return p;
1459 }
1460 
1461 static enum scx_ops_enable_state scx_ops_enable_state(void)
1462 {
1463 	return atomic_read(&scx_ops_enable_state_var);
1464 }
1465 
1466 static enum scx_ops_enable_state
1467 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1468 {
1469 	return atomic_xchg(&scx_ops_enable_state_var, to);
1470 }
1471 
1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1473 					enum scx_ops_enable_state from)
1474 {
1475 	int from_v = from;
1476 
1477 	return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1478 }
1479 
1480 static bool scx_rq_bypassing(struct rq *rq)
1481 {
1482 	return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1483 }
1484 
1485 /**
1486  * wait_ops_state - Busy-wait the specified ops state to end
1487  * @p: target task
1488  * @opss: state to wait the end of
1489  *
1490  * Busy-wait for @p to transition out of @opss. This can only be used when the
1491  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1492  * has load_acquire semantics to ensure that the caller can see the updates made
1493  * in the enqueueing and dispatching paths.
1494  */
1495 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1496 {
1497 	do {
1498 		cpu_relax();
1499 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1500 }
1501 
1502 /**
1503  * ops_cpu_valid - Verify a cpu number
1504  * @cpu: cpu number which came from a BPF ops
1505  * @where: extra information reported on error
1506  *
1507  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1508  * Verify that it is in range and one of the possible cpus. If invalid, trigger
1509  * an ops error.
1510  */
1511 static bool ops_cpu_valid(s32 cpu, const char *where)
1512 {
1513 	if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1514 		return true;
1515 	} else {
1516 		scx_ops_error("invalid CPU %d%s%s", cpu,
1517 			      where ? " " : "", where ?: "");
1518 		return false;
1519 	}
1520 }
1521 
1522 /**
1523  * ops_sanitize_err - Sanitize a -errno value
1524  * @ops_name: operation to blame on failure
1525  * @err: -errno value to sanitize
1526  *
1527  * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1528  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1529  * cause misbehaviors. For an example, a large negative return from
1530  * ops.init_task() triggers an oops when passed up the call chain because the
1531  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1532  * handled as a pointer.
1533  */
1534 static int ops_sanitize_err(const char *ops_name, s32 err)
1535 {
1536 	if (err < 0 && err >= -MAX_ERRNO)
1537 		return err;
1538 
1539 	scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1540 	return -EPROTO;
1541 }
1542 
1543 static void run_deferred(struct rq *rq)
1544 {
1545 	process_ddsp_deferred_locals(rq);
1546 }
1547 
1548 #ifdef CONFIG_SMP
1549 static void deferred_bal_cb_workfn(struct rq *rq)
1550 {
1551 	run_deferred(rq);
1552 }
1553 #endif
1554 
1555 static void deferred_irq_workfn(struct irq_work *irq_work)
1556 {
1557 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1558 
1559 	raw_spin_rq_lock(rq);
1560 	run_deferred(rq);
1561 	raw_spin_rq_unlock(rq);
1562 }
1563 
1564 /**
1565  * schedule_deferred - Schedule execution of deferred actions on an rq
1566  * @rq: target rq
1567  *
1568  * Schedule execution of deferred actions on @rq. Must be called with @rq
1569  * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1570  * can unlock @rq to e.g. migrate tasks to other rqs.
1571  */
1572 static void schedule_deferred(struct rq *rq)
1573 {
1574 	lockdep_assert_rq_held(rq);
1575 
1576 #ifdef CONFIG_SMP
1577 	/*
1578 	 * If in the middle of waking up a task, task_woken_scx() will be called
1579 	 * afterwards which will then run the deferred actions, no need to
1580 	 * schedule anything.
1581 	 */
1582 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1583 		return;
1584 
1585 	/*
1586 	 * If in balance, the balance callbacks will be called before rq lock is
1587 	 * released. Schedule one.
1588 	 */
1589 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1590 		queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1591 				       deferred_bal_cb_workfn);
1592 		return;
1593 	}
1594 #endif
1595 	/*
1596 	 * No scheduler hooks available. Queue an irq work. They are executed on
1597 	 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1598 	 * The above WAKEUP and BALANCE paths should cover most of the cases and
1599 	 * the time to IRQ re-enable shouldn't be long.
1600 	 */
1601 	irq_work_queue(&rq->scx.deferred_irq_work);
1602 }
1603 
1604 /**
1605  * touch_core_sched - Update timestamp used for core-sched task ordering
1606  * @rq: rq to read clock from, must be locked
1607  * @p: task to update the timestamp for
1608  *
1609  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1610  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1611  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1612  * exhaustion).
1613  */
1614 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1615 {
1616 	lockdep_assert_rq_held(rq);
1617 
1618 #ifdef CONFIG_SCHED_CORE
1619 	/*
1620 	 * It's okay to update the timestamp spuriously. Use
1621 	 * sched_core_disabled() which is cheaper than enabled().
1622 	 *
1623 	 * As this is used to determine ordering between tasks of sibling CPUs,
1624 	 * it may be better to use per-core dispatch sequence instead.
1625 	 */
1626 	if (!sched_core_disabled())
1627 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1628 #endif
1629 }
1630 
1631 /**
1632  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1633  * @rq: rq to read clock from, must be locked
1634  * @p: task being dispatched
1635  *
1636  * If the BPF scheduler implements custom core-sched ordering via
1637  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1638  * ordering within each local DSQ. This function is called from dispatch paths
1639  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1640  */
1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1642 {
1643 	lockdep_assert_rq_held(rq);
1644 
1645 #ifdef CONFIG_SCHED_CORE
1646 	if (SCX_HAS_OP(core_sched_before))
1647 		touch_core_sched(rq, p);
1648 #endif
1649 }
1650 
1651 static void update_curr_scx(struct rq *rq)
1652 {
1653 	struct task_struct *curr = rq->curr;
1654 	s64 delta_exec;
1655 
1656 	delta_exec = update_curr_common(rq);
1657 	if (unlikely(delta_exec <= 0))
1658 		return;
1659 
1660 	if (curr->scx.slice != SCX_SLICE_INF) {
1661 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1662 		if (!curr->scx.slice)
1663 			touch_core_sched(rq, curr);
1664 	}
1665 }
1666 
1667 static bool scx_dsq_priq_less(struct rb_node *node_a,
1668 			      const struct rb_node *node_b)
1669 {
1670 	const struct task_struct *a =
1671 		container_of(node_a, struct task_struct, scx.dsq_priq);
1672 	const struct task_struct *b =
1673 		container_of(node_b, struct task_struct, scx.dsq_priq);
1674 
1675 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1676 }
1677 
1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1679 {
1680 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1681 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
1682 }
1683 
1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1685 			     u64 enq_flags)
1686 {
1687 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
1688 
1689 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1690 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1691 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
1692 
1693 	if (!is_local) {
1694 		raw_spin_lock(&dsq->lock);
1695 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1696 			scx_ops_error("attempting to dispatch to a destroyed dsq");
1697 			/* fall back to the global dsq */
1698 			raw_spin_unlock(&dsq->lock);
1699 			dsq = find_global_dsq(p);
1700 			raw_spin_lock(&dsq->lock);
1701 		}
1702 	}
1703 
1704 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1705 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1706 		/*
1707 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1708 		 * their FIFO queues. To avoid confusion and accidentally
1709 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1710 		 * disallow any internal DSQ from doing vtime ordering of
1711 		 * tasks.
1712 		 */
1713 		scx_ops_error("cannot use vtime ordering for built-in DSQs");
1714 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1715 	}
1716 
1717 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1718 		struct rb_node *rbp;
1719 
1720 		/*
1721 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1722 		 * linked to both the rbtree and list on PRIQs, this can only be
1723 		 * tested easily when adding the first task.
1724 		 */
1725 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1726 			     nldsq_next_task(dsq, NULL, false)))
1727 			scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1728 				      dsq->id);
1729 
1730 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1731 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1732 
1733 		/*
1734 		 * Find the previous task and insert after it on the list so
1735 		 * that @dsq->list is vtime ordered.
1736 		 */
1737 		rbp = rb_prev(&p->scx.dsq_priq);
1738 		if (rbp) {
1739 			struct task_struct *prev =
1740 				container_of(rbp, struct task_struct,
1741 					     scx.dsq_priq);
1742 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1743 		} else {
1744 			list_add(&p->scx.dsq_list.node, &dsq->list);
1745 		}
1746 	} else {
1747 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1748 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1749 			scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1750 				      dsq->id);
1751 
1752 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1753 			list_add(&p->scx.dsq_list.node, &dsq->list);
1754 		else
1755 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1756 	}
1757 
1758 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
1759 	dsq->seq++;
1760 	p->scx.dsq_seq = dsq->seq;
1761 
1762 	dsq_mod_nr(dsq, 1);
1763 	p->scx.dsq = dsq;
1764 
1765 	/*
1766 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1767 	 * direct dispatch path, but we clear them here because the direct
1768 	 * dispatch verdict may be overridden on the enqueue path during e.g.
1769 	 * bypass.
1770 	 */
1771 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1772 	p->scx.ddsp_enq_flags = 0;
1773 
1774 	/*
1775 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1776 	 * match waiters' load_acquire.
1777 	 */
1778 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1779 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1780 
1781 	if (is_local) {
1782 		struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1783 		bool preempt = false;
1784 
1785 		if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1786 		    rq->curr->sched_class == &ext_sched_class) {
1787 			rq->curr->scx.slice = 0;
1788 			preempt = true;
1789 		}
1790 
1791 		if (preempt || sched_class_above(&ext_sched_class,
1792 						 rq->curr->sched_class))
1793 			resched_curr(rq);
1794 	} else {
1795 		raw_spin_unlock(&dsq->lock);
1796 	}
1797 }
1798 
1799 static void task_unlink_from_dsq(struct task_struct *p,
1800 				 struct scx_dispatch_q *dsq)
1801 {
1802 	WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1803 
1804 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1805 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
1806 		RB_CLEAR_NODE(&p->scx.dsq_priq);
1807 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1808 	}
1809 
1810 	list_del_init(&p->scx.dsq_list.node);
1811 	dsq_mod_nr(dsq, -1);
1812 }
1813 
1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1815 {
1816 	struct scx_dispatch_q *dsq = p->scx.dsq;
1817 	bool is_local = dsq == &rq->scx.local_dsq;
1818 
1819 	if (!dsq) {
1820 		/*
1821 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1822 		 * Unlinking is all that's needed to cancel.
1823 		 */
1824 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1825 			list_del_init(&p->scx.dsq_list.node);
1826 
1827 		/*
1828 		 * When dispatching directly from the BPF scheduler to a local
1829 		 * DSQ, the task isn't associated with any DSQ but
1830 		 * @p->scx.holding_cpu may be set under the protection of
1831 		 * %SCX_OPSS_DISPATCHING.
1832 		 */
1833 		if (p->scx.holding_cpu >= 0)
1834 			p->scx.holding_cpu = -1;
1835 
1836 		return;
1837 	}
1838 
1839 	if (!is_local)
1840 		raw_spin_lock(&dsq->lock);
1841 
1842 	/*
1843 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1844 	 * change underneath us.
1845 	*/
1846 	if (p->scx.holding_cpu < 0) {
1847 		/* @p must still be on @dsq, dequeue */
1848 		task_unlink_from_dsq(p, dsq);
1849 	} else {
1850 		/*
1851 		 * We're racing against dispatch_to_local_dsq() which already
1852 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1853 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1854 		 * the race.
1855 		 */
1856 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1857 		p->scx.holding_cpu = -1;
1858 	}
1859 	p->scx.dsq = NULL;
1860 
1861 	if (!is_local)
1862 		raw_spin_unlock(&dsq->lock);
1863 }
1864 
1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1866 						    struct task_struct *p)
1867 {
1868 	struct scx_dispatch_q *dsq;
1869 
1870 	if (dsq_id == SCX_DSQ_LOCAL)
1871 		return &rq->scx.local_dsq;
1872 
1873 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1874 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1875 
1876 		if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1877 			return find_global_dsq(p);
1878 
1879 		return &cpu_rq(cpu)->scx.local_dsq;
1880 	}
1881 
1882 	if (dsq_id == SCX_DSQ_GLOBAL)
1883 		dsq = find_global_dsq(p);
1884 	else
1885 		dsq = find_user_dsq(dsq_id);
1886 
1887 	if (unlikely(!dsq)) {
1888 		scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1889 			      dsq_id, p->comm, p->pid);
1890 		return find_global_dsq(p);
1891 	}
1892 
1893 	return dsq;
1894 }
1895 
1896 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1897 				 struct task_struct *p, u64 dsq_id,
1898 				 u64 enq_flags)
1899 {
1900 	/*
1901 	 * Mark that dispatch already happened from ops.select_cpu() or
1902 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1903 	 * which can never match a valid task pointer.
1904 	 */
1905 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1906 
1907 	/* @p must match the task on the enqueue path */
1908 	if (unlikely(p != ddsp_task)) {
1909 		if (IS_ERR(ddsp_task))
1910 			scx_ops_error("%s[%d] already direct-dispatched",
1911 				      p->comm, p->pid);
1912 		else
1913 			scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1914 				      ddsp_task->comm, ddsp_task->pid,
1915 				      p->comm, p->pid);
1916 		return;
1917 	}
1918 
1919 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1920 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1921 
1922 	p->scx.ddsp_dsq_id = dsq_id;
1923 	p->scx.ddsp_enq_flags = enq_flags;
1924 }
1925 
1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1927 {
1928 	struct rq *rq = task_rq(p);
1929 	struct scx_dispatch_q *dsq =
1930 		find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1931 
1932 	touch_core_sched_dispatch(rq, p);
1933 
1934 	p->scx.ddsp_enq_flags |= enq_flags;
1935 
1936 	/*
1937 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
1938 	 * double lock a remote rq and enqueue to its local DSQ. For
1939 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1940 	 * the enqueue so that it's executed when @rq can be unlocked.
1941 	 */
1942 	if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1943 		unsigned long opss;
1944 
1945 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1946 
1947 		switch (opss & SCX_OPSS_STATE_MASK) {
1948 		case SCX_OPSS_NONE:
1949 			break;
1950 		case SCX_OPSS_QUEUEING:
1951 			/*
1952 			 * As @p was never passed to the BPF side, _release is
1953 			 * not strictly necessary. Still do it for consistency.
1954 			 */
1955 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1956 			break;
1957 		default:
1958 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1959 				  p->comm, p->pid, opss);
1960 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1961 			break;
1962 		}
1963 
1964 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1965 		list_add_tail(&p->scx.dsq_list.node,
1966 			      &rq->scx.ddsp_deferred_locals);
1967 		schedule_deferred(rq);
1968 		return;
1969 	}
1970 
1971 	dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1972 }
1973 
1974 static bool scx_rq_online(struct rq *rq)
1975 {
1976 	/*
1977 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1978 	 * the online state as seen from the BPF scheduler. cpu_active() test
1979 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1980 	 * stay set until the current scheduling operation is complete even if
1981 	 * we aren't locking @rq.
1982 	 */
1983 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1984 }
1985 
1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1987 			    int sticky_cpu)
1988 {
1989 	struct task_struct **ddsp_taskp;
1990 	unsigned long qseq;
1991 
1992 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1993 
1994 	/* rq migration */
1995 	if (sticky_cpu == cpu_of(rq))
1996 		goto local_norefill;
1997 
1998 	/*
1999 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
2000 	 * is offline and are just running the hotplug path. Don't bother the
2001 	 * BPF scheduler.
2002 	 */
2003 	if (!scx_rq_online(rq))
2004 		goto local;
2005 
2006 	if (scx_rq_bypassing(rq))
2007 		goto global;
2008 
2009 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2010 		goto direct;
2011 
2012 	/* see %SCX_OPS_ENQ_EXITING */
2013 	if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2014 	    unlikely(p->flags & PF_EXITING))
2015 		goto local;
2016 
2017 	if (!SCX_HAS_OP(enqueue))
2018 		goto global;
2019 
2020 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2021 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2022 
2023 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2024 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2025 
2026 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2027 	WARN_ON_ONCE(*ddsp_taskp);
2028 	*ddsp_taskp = p;
2029 
2030 	SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2031 
2032 	*ddsp_taskp = NULL;
2033 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2034 		goto direct;
2035 
2036 	/*
2037 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2038 	 * dequeue may be waiting. The store_release matches their load_acquire.
2039 	 */
2040 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2041 	return;
2042 
2043 direct:
2044 	direct_dispatch(p, enq_flags);
2045 	return;
2046 
2047 local:
2048 	/*
2049 	 * For task-ordering, slice refill must be treated as implying the end
2050 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2051 	 * higher priority it becomes from scx_prio_less()'s POV.
2052 	 */
2053 	touch_core_sched(rq, p);
2054 	p->scx.slice = SCX_SLICE_DFL;
2055 local_norefill:
2056 	dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2057 	return;
2058 
2059 global:
2060 	touch_core_sched(rq, p);	/* see the comment in local: */
2061 	p->scx.slice = SCX_SLICE_DFL;
2062 	dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2063 }
2064 
2065 static bool task_runnable(const struct task_struct *p)
2066 {
2067 	return !list_empty(&p->scx.runnable_node);
2068 }
2069 
2070 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2071 {
2072 	lockdep_assert_rq_held(rq);
2073 
2074 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2075 		p->scx.runnable_at = jiffies;
2076 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2077 	}
2078 
2079 	/*
2080 	 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2081 	 * appened to the runnable_list.
2082 	 */
2083 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2084 }
2085 
2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2087 {
2088 	list_del_init(&p->scx.runnable_node);
2089 	if (reset_runnable_at)
2090 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2091 }
2092 
2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2094 {
2095 	int sticky_cpu = p->scx.sticky_cpu;
2096 
2097 	if (enq_flags & ENQUEUE_WAKEUP)
2098 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2099 
2100 	enq_flags |= rq->scx.extra_enq_flags;
2101 
2102 	if (sticky_cpu >= 0)
2103 		p->scx.sticky_cpu = -1;
2104 
2105 	/*
2106 	 * Restoring a running task will be immediately followed by
2107 	 * set_next_task_scx() which expects the task to not be on the BPF
2108 	 * scheduler as tasks can only start running through local DSQs. Force
2109 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2110 	 */
2111 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2112 		sticky_cpu = cpu_of(rq);
2113 
2114 	if (p->scx.flags & SCX_TASK_QUEUED) {
2115 		WARN_ON_ONCE(!task_runnable(p));
2116 		goto out;
2117 	}
2118 
2119 	set_task_runnable(rq, p);
2120 	p->scx.flags |= SCX_TASK_QUEUED;
2121 	rq->scx.nr_running++;
2122 	add_nr_running(rq, 1);
2123 
2124 	if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2125 		SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2126 
2127 	if (enq_flags & SCX_ENQ_WAKEUP)
2128 		touch_core_sched(rq, p);
2129 
2130 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2131 out:
2132 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2133 }
2134 
2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2136 {
2137 	unsigned long opss;
2138 
2139 	/* dequeue is always temporary, don't reset runnable_at */
2140 	clr_task_runnable(p, false);
2141 
2142 	/* acquire ensures that we see the preceding updates on QUEUED */
2143 	opss = atomic_long_read_acquire(&p->scx.ops_state);
2144 
2145 	switch (opss & SCX_OPSS_STATE_MASK) {
2146 	case SCX_OPSS_NONE:
2147 		break;
2148 	case SCX_OPSS_QUEUEING:
2149 		/*
2150 		 * QUEUEING is started and finished while holding @p's rq lock.
2151 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2152 		 */
2153 		BUG();
2154 	case SCX_OPSS_QUEUED:
2155 		if (SCX_HAS_OP(dequeue))
2156 			SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2157 
2158 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2159 					    SCX_OPSS_NONE))
2160 			break;
2161 		fallthrough;
2162 	case SCX_OPSS_DISPATCHING:
2163 		/*
2164 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
2165 		 * wait for the transfer to complete so that @p doesn't get
2166 		 * added to its DSQ after dequeueing is complete.
2167 		 *
2168 		 * As we're waiting on DISPATCHING with the rq locked, the
2169 		 * dispatching side shouldn't try to lock the rq while
2170 		 * DISPATCHING is set. See dispatch_to_local_dsq().
2171 		 *
2172 		 * DISPATCHING shouldn't have qseq set and control can reach
2173 		 * here with NONE @opss from the above QUEUED case block.
2174 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2175 		 */
2176 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
2177 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2178 		break;
2179 	}
2180 }
2181 
2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2183 {
2184 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2185 		WARN_ON_ONCE(task_runnable(p));
2186 		return true;
2187 	}
2188 
2189 	ops_dequeue(p, deq_flags);
2190 
2191 	/*
2192 	 * A currently running task which is going off @rq first gets dequeued
2193 	 * and then stops running. As we want running <-> stopping transitions
2194 	 * to be contained within runnable <-> quiescent transitions, trigger
2195 	 * ->stopping() early here instead of in put_prev_task_scx().
2196 	 *
2197 	 * @p may go through multiple stopping <-> running transitions between
2198 	 * here and put_prev_task_scx() if task attribute changes occur while
2199 	 * balance_scx() leaves @rq unlocked. However, they don't contain any
2200 	 * information meaningful to the BPF scheduler and can be suppressed by
2201 	 * skipping the callbacks if the task is !QUEUED.
2202 	 */
2203 	if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2204 		update_curr_scx(rq);
2205 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2206 	}
2207 
2208 	if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2209 		SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2210 
2211 	if (deq_flags & SCX_DEQ_SLEEP)
2212 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2213 	else
2214 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2215 
2216 	p->scx.flags &= ~SCX_TASK_QUEUED;
2217 	rq->scx.nr_running--;
2218 	sub_nr_running(rq, 1);
2219 
2220 	dispatch_dequeue(rq, p);
2221 	return true;
2222 }
2223 
2224 static void yield_task_scx(struct rq *rq)
2225 {
2226 	struct task_struct *p = rq->curr;
2227 
2228 	if (SCX_HAS_OP(yield))
2229 		SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2230 	else
2231 		p->scx.slice = 0;
2232 }
2233 
2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2235 {
2236 	struct task_struct *from = rq->curr;
2237 
2238 	if (SCX_HAS_OP(yield))
2239 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2240 	else
2241 		return false;
2242 }
2243 
2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2245 					 struct scx_dispatch_q *src_dsq,
2246 					 struct rq *dst_rq)
2247 {
2248 	struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2249 
2250 	/* @dsq is locked and @p is on @dst_rq */
2251 	lockdep_assert_held(&src_dsq->lock);
2252 	lockdep_assert_rq_held(dst_rq);
2253 
2254 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2255 
2256 	if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2257 		list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2258 	else
2259 		list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2260 
2261 	dsq_mod_nr(dst_dsq, 1);
2262 	p->scx.dsq = dst_dsq;
2263 }
2264 
2265 #ifdef CONFIG_SMP
2266 /**
2267  * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2268  * @p: task to move
2269  * @enq_flags: %SCX_ENQ_*
2270  * @src_rq: rq to move the task from, locked on entry, released on return
2271  * @dst_rq: rq to move the task into, locked on return
2272  *
2273  * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2274  */
2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2276 					  struct rq *src_rq, struct rq *dst_rq)
2277 {
2278 	lockdep_assert_rq_held(src_rq);
2279 
2280 	/* the following marks @p MIGRATING which excludes dequeue */
2281 	deactivate_task(src_rq, p, 0);
2282 	set_task_cpu(p, cpu_of(dst_rq));
2283 	p->scx.sticky_cpu = cpu_of(dst_rq);
2284 
2285 	raw_spin_rq_unlock(src_rq);
2286 	raw_spin_rq_lock(dst_rq);
2287 
2288 	/*
2289 	 * We want to pass scx-specific enq_flags but activate_task() will
2290 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
2291 	 * @rq->scx.extra_enq_flags instead.
2292 	 */
2293 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2294 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2295 	dst_rq->scx.extra_enq_flags = enq_flags;
2296 	activate_task(dst_rq, p, 0);
2297 	dst_rq->scx.extra_enq_flags = 0;
2298 }
2299 
2300 /*
2301  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2302  * differences:
2303  *
2304  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2305  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2306  *   this CPU?".
2307  *
2308  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2309  *   must be allowed to finish on the CPU that it's currently on regardless of
2310  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2311  *   BPF scheduler shouldn't attempt to migrate a task which has migration
2312  *   disabled.
2313  *
2314  * - The BPF scheduler is bypassed while the rq is offline and we can always say
2315  *   no to the BPF scheduler initiated migrations while offline.
2316  */
2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2318 				      bool trigger_error)
2319 {
2320 	int cpu = cpu_of(rq);
2321 
2322 	/*
2323 	 * We don't require the BPF scheduler to avoid dispatching to offline
2324 	 * CPUs mostly for convenience but also because CPUs can go offline
2325 	 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
2326 	 * picked CPU is outside the allowed mask.
2327 	 */
2328 	if (!task_allowed_on_cpu(p, cpu)) {
2329 		if (trigger_error)
2330 			scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2331 				      cpu_of(rq), p->comm, p->pid);
2332 		return false;
2333 	}
2334 
2335 	if (unlikely(is_migration_disabled(p)))
2336 		return false;
2337 
2338 	if (!scx_rq_online(rq))
2339 		return false;
2340 
2341 	return true;
2342 }
2343 
2344 /**
2345  * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2346  * @p: target task
2347  * @dsq: locked DSQ @p is currently on
2348  * @src_rq: rq @p is currently on, stable with @dsq locked
2349  *
2350  * Called with @dsq locked but no rq's locked. We want to move @p to a different
2351  * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2352  * required when transferring into a local DSQ. Even when transferring into a
2353  * non-local DSQ, it's better to use the same mechanism to protect against
2354  * dequeues and maintain the invariant that @p->scx.dsq can only change while
2355  * @src_rq is locked, which e.g. scx_dump_task() depends on.
2356  *
2357  * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2358  * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2359  * this may race with dequeue, which can't drop the rq lock or fail, do a little
2360  * dancing from our side.
2361  *
2362  * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2363  * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2364  * would be cleared to -1. While other cpus may have updated it to different
2365  * values afterwards, as this operation can't be preempted or recurse, the
2366  * holding_cpu can never become this CPU again before we're done. Thus, we can
2367  * tell whether we lost to dequeue by testing whether the holding_cpu still
2368  * points to this CPU. See dispatch_dequeue() for the counterpart.
2369  *
2370  * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2371  * still valid. %false if lost to dequeue.
2372  */
2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2374 				       struct scx_dispatch_q *dsq,
2375 				       struct rq *src_rq)
2376 {
2377 	s32 cpu = raw_smp_processor_id();
2378 
2379 	lockdep_assert_held(&dsq->lock);
2380 
2381 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2382 	task_unlink_from_dsq(p, dsq);
2383 	p->scx.holding_cpu = cpu;
2384 
2385 	raw_spin_unlock(&dsq->lock);
2386 	raw_spin_rq_lock(src_rq);
2387 
2388 	/* task_rq couldn't have changed if we're still the holding cpu */
2389 	return likely(p->scx.holding_cpu == cpu) &&
2390 		!WARN_ON_ONCE(src_rq != task_rq(p));
2391 }
2392 
2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2394 				struct scx_dispatch_q *dsq, struct rq *src_rq)
2395 {
2396 	raw_spin_rq_unlock(this_rq);
2397 
2398 	if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2399 		move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2400 		return true;
2401 	} else {
2402 		raw_spin_rq_unlock(src_rq);
2403 		raw_spin_rq_lock(this_rq);
2404 		return false;
2405 	}
2406 }
2407 #else	/* CONFIG_SMP */
2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2411 #endif	/* CONFIG_SMP */
2412 
2413 /**
2414  * move_task_between_dsqs() - Move a task from one DSQ to another
2415  * @p: target task
2416  * @enq_flags: %SCX_ENQ_*
2417  * @src_dsq: DSQ @p is currently on, must not be a local DSQ
2418  * @dst_dsq: DSQ @p is being moved to, can be any DSQ
2419  *
2420  * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
2421  * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
2422  * will change. As @p's task_rq is locked, this function doesn't need to use the
2423  * holding_cpu mechanism.
2424  *
2425  * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
2426  * return value, is locked.
2427  */
2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
2429 					 struct scx_dispatch_q *src_dsq,
2430 					 struct scx_dispatch_q *dst_dsq)
2431 {
2432 	struct rq *src_rq = task_rq(p), *dst_rq;
2433 
2434 	BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
2435 	lockdep_assert_held(&src_dsq->lock);
2436 	lockdep_assert_rq_held(src_rq);
2437 
2438 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
2439 		dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2440 		if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
2441 			dst_dsq = find_global_dsq(p);
2442 			dst_rq = src_rq;
2443 		}
2444 	} else {
2445 		/* no need to migrate if destination is a non-local DSQ */
2446 		dst_rq = src_rq;
2447 	}
2448 
2449 	/*
2450 	 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
2451 	 * CPU, @p will be migrated.
2452 	 */
2453 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
2454 		/* @p is going from a non-local DSQ to a local DSQ */
2455 		if (src_rq == dst_rq) {
2456 			task_unlink_from_dsq(p, src_dsq);
2457 			move_local_task_to_local_dsq(p, enq_flags,
2458 						     src_dsq, dst_rq);
2459 			raw_spin_unlock(&src_dsq->lock);
2460 		} else {
2461 			raw_spin_unlock(&src_dsq->lock);
2462 			move_remote_task_to_local_dsq(p, enq_flags,
2463 						      src_rq, dst_rq);
2464 		}
2465 	} else {
2466 		/*
2467 		 * @p is going from a non-local DSQ to a non-local DSQ. As
2468 		 * $src_dsq is already locked, do an abbreviated dequeue.
2469 		 */
2470 		task_unlink_from_dsq(p, src_dsq);
2471 		p->scx.dsq = NULL;
2472 		raw_spin_unlock(&src_dsq->lock);
2473 
2474 		dispatch_enqueue(dst_dsq, p, enq_flags);
2475 	}
2476 
2477 	return dst_rq;
2478 }
2479 
2480 /*
2481  * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
2482  * banging on the same DSQ on a large NUMA system to the point where switching
2483  * to the bypass mode can take a long time. Inject artifical delays while the
2484  * bypass mode is switching to guarantee timely completion.
2485  */
2486 static void scx_ops_breather(struct rq *rq)
2487 {
2488 	u64 until;
2489 
2490 	lockdep_assert_rq_held(rq);
2491 
2492 	if (likely(!atomic_read(&scx_ops_breather_depth)))
2493 		return;
2494 
2495 	raw_spin_rq_unlock(rq);
2496 
2497 	until = ktime_get_ns() + NSEC_PER_MSEC;
2498 
2499 	do {
2500 		int cnt = 1024;
2501 		while (atomic_read(&scx_ops_breather_depth) && --cnt)
2502 			cpu_relax();
2503 	} while (atomic_read(&scx_ops_breather_depth) &&
2504 		 time_before64(ktime_get_ns(), until));
2505 
2506 	raw_spin_rq_lock(rq);
2507 }
2508 
2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2510 {
2511 	struct task_struct *p;
2512 retry:
2513 	/*
2514 	 * This retry loop can repeatedly race against scx_ops_bypass()
2515 	 * dequeueing tasks from @dsq trying to put the system into the bypass
2516 	 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can
2517 	 * live-lock the machine into soft lockups. Give a breather.
2518 	 */
2519 	scx_ops_breather(rq);
2520 
2521 	/*
2522 	 * The caller can't expect to successfully consume a task if the task's
2523 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
2524 	 * @dsq->list without locking and skip if it seems empty.
2525 	 */
2526 	if (list_empty(&dsq->list))
2527 		return false;
2528 
2529 	raw_spin_lock(&dsq->lock);
2530 
2531 	nldsq_for_each_task(p, dsq) {
2532 		struct rq *task_rq = task_rq(p);
2533 
2534 		if (rq == task_rq) {
2535 			task_unlink_from_dsq(p, dsq);
2536 			move_local_task_to_local_dsq(p, 0, dsq, rq);
2537 			raw_spin_unlock(&dsq->lock);
2538 			return true;
2539 		}
2540 
2541 		if (task_can_run_on_remote_rq(p, rq, false)) {
2542 			if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2543 				return true;
2544 			goto retry;
2545 		}
2546 	}
2547 
2548 	raw_spin_unlock(&dsq->lock);
2549 	return false;
2550 }
2551 
2552 static bool consume_global_dsq(struct rq *rq)
2553 {
2554 	int node = cpu_to_node(cpu_of(rq));
2555 
2556 	return consume_dispatch_q(rq, global_dsqs[node]);
2557 }
2558 
2559 /**
2560  * dispatch_to_local_dsq - Dispatch a task to a local dsq
2561  * @rq: current rq which is locked
2562  * @dst_dsq: destination DSQ
2563  * @p: task to dispatch
2564  * @enq_flags: %SCX_ENQ_*
2565  *
2566  * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2567  * DSQ. This function performs all the synchronization dancing needed because
2568  * local DSQs are protected with rq locks.
2569  *
2570  * The caller must have exclusive ownership of @p (e.g. through
2571  * %SCX_OPSS_DISPATCHING).
2572  */
2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2574 				  struct task_struct *p, u64 enq_flags)
2575 {
2576 	struct rq *src_rq = task_rq(p);
2577 	struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2578 
2579 	/*
2580 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
2581 	 * be dequeued, its task_rq and cpus_allowed are stable too.
2582 	 *
2583 	 * If dispatching to @rq that @p is already on, no lock dancing needed.
2584 	 */
2585 	if (rq == src_rq && rq == dst_rq) {
2586 		dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2587 		return;
2588 	}
2589 
2590 #ifdef CONFIG_SMP
2591 	if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2592 		dispatch_enqueue(find_global_dsq(p), p,
2593 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
2594 		return;
2595 	}
2596 
2597 	/*
2598 	 * @p is on a possibly remote @src_rq which we need to lock to move the
2599 	 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2600 	 * on DISPATCHING, so we can't grab @src_rq lock while holding
2601 	 * DISPATCHING.
2602 	 *
2603 	 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2604 	 * we're moving from a DSQ and use the same mechanism - mark the task
2605 	 * under transfer with holding_cpu, release DISPATCHING and then follow
2606 	 * the same protocol. See unlink_dsq_and_lock_src_rq().
2607 	 */
2608 	p->scx.holding_cpu = raw_smp_processor_id();
2609 
2610 	/* store_release ensures that dequeue sees the above */
2611 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2612 
2613 	/* switch to @src_rq lock */
2614 	if (rq != src_rq) {
2615 		raw_spin_rq_unlock(rq);
2616 		raw_spin_rq_lock(src_rq);
2617 	}
2618 
2619 	/* task_rq couldn't have changed if we're still the holding cpu */
2620 	if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2621 	    !WARN_ON_ONCE(src_rq != task_rq(p))) {
2622 		/*
2623 		 * If @p is staying on the same rq, there's no need to go
2624 		 * through the full deactivate/activate cycle. Optimize by
2625 		 * abbreviating move_remote_task_to_local_dsq().
2626 		 */
2627 		if (src_rq == dst_rq) {
2628 			p->scx.holding_cpu = -1;
2629 			dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2630 		} else {
2631 			move_remote_task_to_local_dsq(p, enq_flags,
2632 						      src_rq, dst_rq);
2633 		}
2634 
2635 		/* if the destination CPU is idle, wake it up */
2636 		if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2637 			resched_curr(dst_rq);
2638 	}
2639 
2640 	/* switch back to @rq lock */
2641 	if (rq != dst_rq) {
2642 		raw_spin_rq_unlock(dst_rq);
2643 		raw_spin_rq_lock(rq);
2644 	}
2645 #else	/* CONFIG_SMP */
2646 	BUG();	/* control can not reach here on UP */
2647 #endif	/* CONFIG_SMP */
2648 }
2649 
2650 /**
2651  * finish_dispatch - Asynchronously finish dispatching a task
2652  * @rq: current rq which is locked
2653  * @p: task to finish dispatching
2654  * @qseq_at_dispatch: qseq when @p started getting dispatched
2655  * @dsq_id: destination DSQ ID
2656  * @enq_flags: %SCX_ENQ_*
2657  *
2658  * Dispatching to local DSQs may need to wait for queueing to complete or
2659  * require rq lock dancing. As we don't wanna do either while inside
2660  * ops.dispatch() to avoid locking order inversion, we split dispatching into
2661  * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2662  * task and its qseq. Once ops.dispatch() returns, this function is called to
2663  * finish up.
2664  *
2665  * There is no guarantee that @p is still valid for dispatching or even that it
2666  * was valid in the first place. Make sure that the task is still owned by the
2667  * BPF scheduler and claim the ownership before dispatching.
2668  */
2669 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2670 			    unsigned long qseq_at_dispatch,
2671 			    u64 dsq_id, u64 enq_flags)
2672 {
2673 	struct scx_dispatch_q *dsq;
2674 	unsigned long opss;
2675 
2676 	touch_core_sched_dispatch(rq, p);
2677 retry:
2678 	/*
2679 	 * No need for _acquire here. @p is accessed only after a successful
2680 	 * try_cmpxchg to DISPATCHING.
2681 	 */
2682 	opss = atomic_long_read(&p->scx.ops_state);
2683 
2684 	switch (opss & SCX_OPSS_STATE_MASK) {
2685 	case SCX_OPSS_DISPATCHING:
2686 	case SCX_OPSS_NONE:
2687 		/* someone else already got to it */
2688 		return;
2689 	case SCX_OPSS_QUEUED:
2690 		/*
2691 		 * If qseq doesn't match, @p has gone through at least one
2692 		 * dispatch/dequeue and re-enqueue cycle between
2693 		 * scx_bpf_dsq_insert() and here and we have no claim on it.
2694 		 */
2695 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2696 			return;
2697 
2698 		/*
2699 		 * While we know @p is accessible, we don't yet have a claim on
2700 		 * it - the BPF scheduler is allowed to dispatch tasks
2701 		 * spuriously and there can be a racing dequeue attempt. Let's
2702 		 * claim @p by atomically transitioning it from QUEUED to
2703 		 * DISPATCHING.
2704 		 */
2705 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2706 						   SCX_OPSS_DISPATCHING)))
2707 			break;
2708 		goto retry;
2709 	case SCX_OPSS_QUEUEING:
2710 		/*
2711 		 * do_enqueue_task() is in the process of transferring the task
2712 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
2713 		 * holding any kernel or BPF resource that the enqueue path may
2714 		 * depend upon, it's safe to wait.
2715 		 */
2716 		wait_ops_state(p, opss);
2717 		goto retry;
2718 	}
2719 
2720 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2721 
2722 	dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2723 
2724 	if (dsq->id == SCX_DSQ_LOCAL)
2725 		dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2726 	else
2727 		dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2728 }
2729 
2730 static void flush_dispatch_buf(struct rq *rq)
2731 {
2732 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2733 	u32 u;
2734 
2735 	for (u = 0; u < dspc->cursor; u++) {
2736 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2737 
2738 		finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2739 				ent->enq_flags);
2740 	}
2741 
2742 	dspc->nr_tasks += dspc->cursor;
2743 	dspc->cursor = 0;
2744 }
2745 
2746 static int balance_one(struct rq *rq, struct task_struct *prev)
2747 {
2748 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2749 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
2750 	int nr_loops = SCX_DSP_MAX_LOOPS;
2751 
2752 	lockdep_assert_rq_held(rq);
2753 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
2754 	rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2755 
2756 	if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2757 	    unlikely(rq->scx.cpu_released)) {
2758 		/*
2759 		 * If the previous sched_class for the current CPU was not SCX,
2760 		 * notify the BPF scheduler that it again has control of the
2761 		 * core. This callback complements ->cpu_release(), which is
2762 		 * emitted in scx_next_task_picked().
2763 		 */
2764 		if (SCX_HAS_OP(cpu_acquire))
2765 			SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
2766 		rq->scx.cpu_released = false;
2767 	}
2768 
2769 	if (prev_on_scx) {
2770 		update_curr_scx(rq);
2771 
2772 		/*
2773 		 * If @prev is runnable & has slice left, it has priority and
2774 		 * fetching more just increases latency for the fetched tasks.
2775 		 * Tell pick_task_scx() to keep running @prev. If the BPF
2776 		 * scheduler wants to handle this explicitly, it should
2777 		 * implement ->cpu_release().
2778 		 *
2779 		 * See scx_ops_disable_workfn() for the explanation on the
2780 		 * bypassing test.
2781 		 */
2782 		if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2783 		    prev->scx.slice && !scx_rq_bypassing(rq)) {
2784 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2785 			goto has_tasks;
2786 		}
2787 	}
2788 
2789 	/* if there already are tasks to run, nothing to do */
2790 	if (rq->scx.local_dsq.nr)
2791 		goto has_tasks;
2792 
2793 	if (consume_global_dsq(rq))
2794 		goto has_tasks;
2795 
2796 	if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2797 		goto no_tasks;
2798 
2799 	dspc->rq = rq;
2800 
2801 	/*
2802 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2803 	 * the local DSQ might still end up empty after a successful
2804 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2805 	 * produced some tasks, retry. The BPF scheduler may depend on this
2806 	 * looping behavior to simplify its implementation.
2807 	 */
2808 	do {
2809 		dspc->nr_tasks = 0;
2810 
2811 		SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2812 			    prev_on_scx ? prev : NULL);
2813 
2814 		flush_dispatch_buf(rq);
2815 
2816 		if (rq->scx.local_dsq.nr)
2817 			goto has_tasks;
2818 		if (consume_global_dsq(rq))
2819 			goto has_tasks;
2820 
2821 		/*
2822 		 * ops.dispatch() can trap us in this loop by repeatedly
2823 		 * dispatching ineligible tasks. Break out once in a while to
2824 		 * allow the watchdog to run. As IRQ can't be enabled in
2825 		 * balance(), we want to complete this scheduling cycle and then
2826 		 * start a new one. IOW, we want to call resched_curr() on the
2827 		 * next, most likely idle, task, not the current one. Use
2828 		 * scx_bpf_kick_cpu() for deferred kicking.
2829 		 */
2830 		if (unlikely(!--nr_loops)) {
2831 			scx_bpf_kick_cpu(cpu_of(rq), 0);
2832 			break;
2833 		}
2834 	} while (dspc->nr_tasks);
2835 
2836 no_tasks:
2837 	/*
2838 	 * Didn't find another task to run. Keep running @prev unless
2839 	 * %SCX_OPS_ENQ_LAST is in effect.
2840 	 */
2841 	if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2842 	    (!static_branch_unlikely(&scx_ops_enq_last) ||
2843 	     scx_rq_bypassing(rq))) {
2844 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
2845 		goto has_tasks;
2846 	}
2847 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2848 	return false;
2849 
2850 has_tasks:
2851 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2852 	return true;
2853 }
2854 
2855 static int balance_scx(struct rq *rq, struct task_struct *prev,
2856 		       struct rq_flags *rf)
2857 {
2858 	int ret;
2859 
2860 	rq_unpin_lock(rq, rf);
2861 
2862 	ret = balance_one(rq, prev);
2863 
2864 #ifdef CONFIG_SCHED_SMT
2865 	/*
2866 	 * When core-sched is enabled, this ops.balance() call will be followed
2867 	 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2868 	 * siblings too.
2869 	 */
2870 	if (sched_core_enabled(rq)) {
2871 		const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2872 		int scpu;
2873 
2874 		for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2875 			struct rq *srq = cpu_rq(scpu);
2876 			struct task_struct *sprev = srq->curr;
2877 
2878 			WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2879 			update_rq_clock(srq);
2880 			balance_one(srq, sprev);
2881 		}
2882 	}
2883 #endif
2884 	rq_repin_lock(rq, rf);
2885 
2886 	return ret;
2887 }
2888 
2889 static void process_ddsp_deferred_locals(struct rq *rq)
2890 {
2891 	struct task_struct *p;
2892 
2893 	lockdep_assert_rq_held(rq);
2894 
2895 	/*
2896 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
2897 	 * tasks directly dispatched to the local DSQs of other CPUs. See
2898 	 * direct_dispatch(). Keep popping from the head instead of using
2899 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2900 	 * temporarily.
2901 	 */
2902 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2903 				struct task_struct, scx.dsq_list.node))) {
2904 		struct scx_dispatch_q *dsq;
2905 
2906 		list_del_init(&p->scx.dsq_list.node);
2907 
2908 		dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2909 		if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2910 			dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2911 	}
2912 }
2913 
2914 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2915 {
2916 	if (p->scx.flags & SCX_TASK_QUEUED) {
2917 		/*
2918 		 * Core-sched might decide to execute @p before it is
2919 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2920 		 */
2921 		ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2922 		dispatch_dequeue(rq, p);
2923 	}
2924 
2925 	p->se.exec_start = rq_clock_task(rq);
2926 
2927 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2928 	if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2929 		SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2930 
2931 	clr_task_runnable(p, true);
2932 
2933 	/*
2934 	 * @p is getting newly scheduled or got kicked after someone updated its
2935 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2936 	 */
2937 	if ((p->scx.slice == SCX_SLICE_INF) !=
2938 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2939 		if (p->scx.slice == SCX_SLICE_INF)
2940 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2941 		else
2942 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2943 
2944 		sched_update_tick_dependency(rq);
2945 
2946 		/*
2947 		 * For now, let's refresh the load_avgs just when transitioning
2948 		 * in and out of nohz. In the future, we might want to add a
2949 		 * mechanism which calls the following periodically on
2950 		 * tick-stopped CPUs.
2951 		 */
2952 		update_other_load_avgs(rq);
2953 	}
2954 }
2955 
2956 static enum scx_cpu_preempt_reason
2957 preempt_reason_from_class(const struct sched_class *class)
2958 {
2959 #ifdef CONFIG_SMP
2960 	if (class == &stop_sched_class)
2961 		return SCX_CPU_PREEMPT_STOP;
2962 #endif
2963 	if (class == &dl_sched_class)
2964 		return SCX_CPU_PREEMPT_DL;
2965 	if (class == &rt_sched_class)
2966 		return SCX_CPU_PREEMPT_RT;
2967 	return SCX_CPU_PREEMPT_UNKNOWN;
2968 }
2969 
2970 static void switch_class(struct rq *rq, struct task_struct *next)
2971 {
2972 	const struct sched_class *next_class = next->sched_class;
2973 
2974 #ifdef CONFIG_SMP
2975 	/*
2976 	 * Pairs with the smp_load_acquire() issued by a CPU in
2977 	 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2978 	 * resched.
2979 	 */
2980 	smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2981 #endif
2982 	if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2983 		return;
2984 
2985 	/*
2986 	 * The callback is conceptually meant to convey that the CPU is no
2987 	 * longer under the control of SCX. Therefore, don't invoke the callback
2988 	 * if the next class is below SCX (in which case the BPF scheduler has
2989 	 * actively decided not to schedule any tasks on the CPU).
2990 	 */
2991 	if (sched_class_above(&ext_sched_class, next_class))
2992 		return;
2993 
2994 	/*
2995 	 * At this point we know that SCX was preempted by a higher priority
2996 	 * sched_class, so invoke the ->cpu_release() callback if we have not
2997 	 * done so already. We only send the callback once between SCX being
2998 	 * preempted, and it regaining control of the CPU.
2999 	 *
3000 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
3001 	 *  next time that balance_scx() is invoked.
3002 	 */
3003 	if (!rq->scx.cpu_released) {
3004 		if (SCX_HAS_OP(cpu_release)) {
3005 			struct scx_cpu_release_args args = {
3006 				.reason = preempt_reason_from_class(next_class),
3007 				.task = next,
3008 			};
3009 
3010 			SCX_CALL_OP(SCX_KF_CPU_RELEASE,
3011 				    cpu_release, cpu_of(rq), &args);
3012 		}
3013 		rq->scx.cpu_released = true;
3014 	}
3015 }
3016 
3017 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
3018 			      struct task_struct *next)
3019 {
3020 	update_curr_scx(rq);
3021 
3022 	/* see dequeue_task_scx() on why we skip when !QUEUED */
3023 	if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
3024 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
3025 
3026 	if (p->scx.flags & SCX_TASK_QUEUED) {
3027 		set_task_runnable(rq, p);
3028 
3029 		/*
3030 		 * If @p has slice left and is being put, @p is getting
3031 		 * preempted by a higher priority scheduler class or core-sched
3032 		 * forcing a different task. Leave it at the head of the local
3033 		 * DSQ.
3034 		 */
3035 		if (p->scx.slice && !scx_rq_bypassing(rq)) {
3036 			dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
3037 			return;
3038 		}
3039 
3040 		/*
3041 		 * If @p is runnable but we're about to enter a lower
3042 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
3043 		 * ops.enqueue() that @p is the only one available for this cpu,
3044 		 * which should trigger an explicit follow-up scheduling event.
3045 		 */
3046 		if (sched_class_above(&ext_sched_class, next->sched_class)) {
3047 			WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
3048 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
3049 		} else {
3050 			do_enqueue_task(rq, p, 0, -1);
3051 		}
3052 	}
3053 
3054 	if (next && next->sched_class != &ext_sched_class)
3055 		switch_class(rq, next);
3056 }
3057 
3058 static struct task_struct *first_local_task(struct rq *rq)
3059 {
3060 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
3061 					struct task_struct, scx.dsq_list.node);
3062 }
3063 
3064 static struct task_struct *pick_task_scx(struct rq *rq)
3065 {
3066 	struct task_struct *prev = rq->curr;
3067 	struct task_struct *p;
3068 
3069 	/*
3070 	 * If balance_scx() is telling us to keep running @prev, replenish slice
3071 	 * if necessary and keep running @prev. Otherwise, pop the first one
3072 	 * from the local DSQ.
3073 	 *
3074 	 * WORKAROUND:
3075 	 *
3076 	 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
3077 	 * have gone through balance_scx(). Unfortunately, there currently is a
3078 	 * bug where fair could say yes on balance() but no on pick_task(),
3079 	 * which then ends up calling pick_task_scx() without preceding
3080 	 * balance_scx().
3081 	 *
3082 	 * For now, ignore cases where $prev is not on SCX. This isn't great and
3083 	 * can theoretically lead to stalls. However, for switch_all cases, this
3084 	 * happens only while a BPF scheduler is being loaded or unloaded, and,
3085 	 * for partial cases, fair will likely keep triggering this CPU.
3086 	 *
3087 	 * Once fair is fixed, restore WARN_ON_ONCE().
3088 	 */
3089 	if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
3090 	    prev->sched_class == &ext_sched_class) {
3091 		p = prev;
3092 		if (!p->scx.slice)
3093 			p->scx.slice = SCX_SLICE_DFL;
3094 	} else {
3095 		p = first_local_task(rq);
3096 		if (!p)
3097 			return NULL;
3098 
3099 		if (unlikely(!p->scx.slice)) {
3100 			if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
3101 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
3102 						p->comm, p->pid, __func__);
3103 				scx_warned_zero_slice = true;
3104 			}
3105 			p->scx.slice = SCX_SLICE_DFL;
3106 		}
3107 	}
3108 
3109 	return p;
3110 }
3111 
3112 #ifdef CONFIG_SCHED_CORE
3113 /**
3114  * scx_prio_less - Task ordering for core-sched
3115  * @a: task A
3116  * @b: task B
3117  *
3118  * Core-sched is implemented as an additional scheduling layer on top of the
3119  * usual sched_class'es and needs to find out the expected task ordering. For
3120  * SCX, core-sched calls this function to interrogate the task ordering.
3121  *
3122  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3123  * to implement the default task ordering. The older the timestamp, the higher
3124  * prority the task - the global FIFO ordering matching the default scheduling
3125  * behavior.
3126  *
3127  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3128  * implement FIFO ordering within each local DSQ. See pick_task_scx().
3129  */
3130 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3131 		   bool in_fi)
3132 {
3133 	/*
3134 	 * The const qualifiers are dropped from task_struct pointers when
3135 	 * calling ops.core_sched_before(). Accesses are controlled by the
3136 	 * verifier.
3137 	 */
3138 	if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3139 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3140 					      (struct task_struct *)a,
3141 					      (struct task_struct *)b);
3142 	else
3143 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3144 }
3145 #endif	/* CONFIG_SCHED_CORE */
3146 
3147 #ifdef CONFIG_SMP
3148 
3149 static bool test_and_clear_cpu_idle(int cpu)
3150 {
3151 #ifdef CONFIG_SCHED_SMT
3152 	/*
3153 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3154 	 * cluster is not wholly idle either way. This also prevents
3155 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3156 	 */
3157 	if (sched_smt_active()) {
3158 		const struct cpumask *smt = cpu_smt_mask(cpu);
3159 
3160 		/*
3161 		 * If offline, @cpu is not its own sibling and
3162 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
3163 		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3164 		 * is eventually cleared.
3165 		 */
3166 		if (cpumask_intersects(smt, idle_masks.smt))
3167 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3168 		else if (cpumask_test_cpu(cpu, idle_masks.smt))
3169 			__cpumask_clear_cpu(cpu, idle_masks.smt);
3170 	}
3171 #endif
3172 	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3173 }
3174 
3175 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3176 {
3177 	int cpu;
3178 
3179 retry:
3180 	if (sched_smt_active()) {
3181 		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3182 		if (cpu < nr_cpu_ids)
3183 			goto found;
3184 
3185 		if (flags & SCX_PICK_IDLE_CORE)
3186 			return -EBUSY;
3187 	}
3188 
3189 	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3190 	if (cpu >= nr_cpu_ids)
3191 		return -EBUSY;
3192 
3193 found:
3194 	if (test_and_clear_cpu_idle(cpu))
3195 		return cpu;
3196 	else
3197 		goto retry;
3198 }
3199 
3200 /*
3201  * Return true if the LLC domains do not perfectly overlap with the NUMA
3202  * domains, false otherwise.
3203  */
3204 static bool llc_numa_mismatch(void)
3205 {
3206 	int cpu;
3207 
3208 	/*
3209 	 * We need to scan all online CPUs to verify whether their scheduling
3210 	 * domains overlap.
3211 	 *
3212 	 * While it is rare to encounter architectures with asymmetric NUMA
3213 	 * topologies, CPU hotplugging or virtualized environments can result
3214 	 * in asymmetric configurations.
3215 	 *
3216 	 * For example:
3217 	 *
3218 	 *  NUMA 0:
3219 	 *    - LLC 0: cpu0..cpu7
3220 	 *    - LLC 1: cpu8..cpu15 [offline]
3221 	 *
3222 	 *  NUMA 1:
3223 	 *    - LLC 0: cpu16..cpu23
3224 	 *    - LLC 1: cpu24..cpu31
3225 	 *
3226 	 * In this case, if we only check the first online CPU (cpu0), we might
3227 	 * incorrectly assume that the LLC and NUMA domains are fully
3228 	 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
3229 	 * domains).
3230 	 */
3231 	for_each_online_cpu(cpu) {
3232 		const struct cpumask *numa_cpus;
3233 		struct sched_domain *sd;
3234 
3235 		sd = rcu_dereference(per_cpu(sd_llc, cpu));
3236 		if (!sd)
3237 			return true;
3238 
3239 		numa_cpus = cpumask_of_node(cpu_to_node(cpu));
3240 		if (sd->span_weight != cpumask_weight(numa_cpus))
3241 			return true;
3242 	}
3243 
3244 	return false;
3245 }
3246 
3247 /*
3248  * Initialize topology-aware scheduling.
3249  *
3250  * Detect if the system has multiple LLC or multiple NUMA domains and enable
3251  * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
3252  * selection policy.
3253  *
3254  * Assumption: the kernel's internal topology representation assumes that each
3255  * CPU belongs to a single LLC domain, and that each LLC domain is entirely
3256  * contained within a single NUMA node.
3257  */
3258 static void update_selcpu_topology(void)
3259 {
3260 	bool enable_llc = false, enable_numa = false;
3261 	struct sched_domain *sd;
3262 	const struct cpumask *cpus;
3263 	s32 cpu = cpumask_first(cpu_online_mask);
3264 
3265 	/*
3266 	 * Enable LLC domain optimization only when there are multiple LLC
3267 	 * domains among the online CPUs. If all online CPUs are part of a
3268 	 * single LLC domain, the idle CPU selection logic can choose any
3269 	 * online CPU without bias.
3270 	 *
3271 	 * Note that it is sufficient to check the LLC domain of the first
3272 	 * online CPU to determine whether a single LLC domain includes all
3273 	 * CPUs.
3274 	 */
3275 	rcu_read_lock();
3276 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
3277 	if (sd) {
3278 		if (sd->span_weight < num_online_cpus())
3279 			enable_llc = true;
3280 	}
3281 
3282 	/*
3283 	 * Enable NUMA optimization only when there are multiple NUMA domains
3284 	 * among the online CPUs and the NUMA domains don't perfectly overlaps
3285 	 * with the LLC domains.
3286 	 *
3287 	 * If all CPUs belong to the same NUMA node and the same LLC domain,
3288 	 * enabling both NUMA and LLC optimizations is unnecessary, as checking
3289 	 * for an idle CPU in the same domain twice is redundant.
3290 	 */
3291 	cpus = cpumask_of_node(cpu_to_node(cpu));
3292 	if ((cpumask_weight(cpus) < num_online_cpus()) && llc_numa_mismatch())
3293 		enable_numa = true;
3294 	rcu_read_unlock();
3295 
3296 	pr_debug("sched_ext: LLC idle selection %s\n",
3297 		 enable_llc ? "enabled" : "disabled");
3298 	pr_debug("sched_ext: NUMA idle selection %s\n",
3299 		 enable_numa ? "enabled" : "disabled");
3300 
3301 	if (enable_llc)
3302 		static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
3303 	else
3304 		static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
3305 	if (enable_numa)
3306 		static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
3307 	else
3308 		static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
3309 }
3310 
3311 /*
3312  * Built-in CPU idle selection policy:
3313  *
3314  * 1. Prioritize full-idle cores:
3315  *   - always prioritize CPUs from fully idle cores (both logical CPUs are
3316  *     idle) to avoid interference caused by SMT.
3317  *
3318  * 2. Reuse the same CPU:
3319  *   - prefer the last used CPU to take advantage of cached data (L1, L2) and
3320  *     branch prediction optimizations.
3321  *
3322  * 3. Pick a CPU within the same LLC (Last-Level Cache):
3323  *   - if the above conditions aren't met, pick a CPU that shares the same LLC
3324  *     to maintain cache locality.
3325  *
3326  * 4. Pick a CPU within the same NUMA node, if enabled:
3327  *   - choose a CPU from the same NUMA node to reduce memory access latency.
3328  *
3329  * Step 3 and 4 are performed only if the system has, respectively, multiple
3330  * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
3331  * scx_selcpu_topo_numa).
3332  *
3333  * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
3334  * we never call ops.select_cpu() for them, see select_task_rq().
3335  */
3336 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3337 			      u64 wake_flags, bool *found)
3338 {
3339 	const struct cpumask *llc_cpus = NULL;
3340 	const struct cpumask *numa_cpus = NULL;
3341 	s32 cpu;
3342 
3343 	*found = false;
3344 
3345 
3346 	/*
3347 	 * This is necessary to protect llc_cpus.
3348 	 */
3349 	rcu_read_lock();
3350 
3351 	/*
3352 	 * Determine the scheduling domain only if the task is allowed to run
3353 	 * on all CPUs.
3354 	 *
3355 	 * This is done primarily for efficiency, as it avoids the overhead of
3356 	 * updating a cpumask every time we need to select an idle CPU (which
3357 	 * can be costly in large SMP systems), but it also aligns logically:
3358 	 * if a task's scheduling domain is restricted by user-space (through
3359 	 * CPU affinity), the task will simply use the flat scheduling domain
3360 	 * defined by user-space.
3361 	 */
3362 	if (p->nr_cpus_allowed >= num_possible_cpus()) {
3363 		if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
3364 			numa_cpus = cpumask_of_node(cpu_to_node(prev_cpu));
3365 
3366 		if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
3367 			struct sched_domain *sd;
3368 
3369 			sd = rcu_dereference(per_cpu(sd_llc, prev_cpu));
3370 			if (sd)
3371 				llc_cpus = sched_domain_span(sd);
3372 		}
3373 	}
3374 
3375 	/*
3376 	 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
3377 	 */
3378 	if (wake_flags & SCX_WAKE_SYNC) {
3379 		cpu = smp_processor_id();
3380 
3381 		/*
3382 		 * If the waker's CPU is cache affine and prev_cpu is idle,
3383 		 * then avoid a migration.
3384 		 */
3385 		if (cpus_share_cache(cpu, prev_cpu) &&
3386 		    test_and_clear_cpu_idle(prev_cpu)) {
3387 			cpu = prev_cpu;
3388 			goto cpu_found;
3389 		}
3390 
3391 		/*
3392 		 * If the waker's local DSQ is empty, and the system is under
3393 		 * utilized, try to wake up @p to the local DSQ of the waker.
3394 		 *
3395 		 * Checking only for an empty local DSQ is insufficient as it
3396 		 * could give the wakee an unfair advantage when the system is
3397 		 * oversaturated.
3398 		 *
3399 		 * Checking only for the presence of idle CPUs is also
3400 		 * insufficient as the local DSQ of the waker could have tasks
3401 		 * piled up on it even if there is an idle core elsewhere on
3402 		 * the system.
3403 		 */
3404 		if (!cpumask_empty(idle_masks.cpu) &&
3405 		    !(current->flags & PF_EXITING) &&
3406 		    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3407 			if (cpumask_test_cpu(cpu, p->cpus_ptr))
3408 				goto cpu_found;
3409 		}
3410 	}
3411 
3412 	/*
3413 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3414 	 * partially idle @prev_cpu.
3415 	 */
3416 	if (sched_smt_active()) {
3417 		/*
3418 		 * Keep using @prev_cpu if it's part of a fully idle core.
3419 		 */
3420 		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3421 		    test_and_clear_cpu_idle(prev_cpu)) {
3422 			cpu = prev_cpu;
3423 			goto cpu_found;
3424 		}
3425 
3426 		/*
3427 		 * Search for any fully idle core in the same LLC domain.
3428 		 */
3429 		if (llc_cpus) {
3430 			cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE);
3431 			if (cpu >= 0)
3432 				goto cpu_found;
3433 		}
3434 
3435 		/*
3436 		 * Search for any fully idle core in the same NUMA node.
3437 		 */
3438 		if (numa_cpus) {
3439 			cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE);
3440 			if (cpu >= 0)
3441 				goto cpu_found;
3442 		}
3443 
3444 		/*
3445 		 * Search for any full idle core usable by the task.
3446 		 */
3447 		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3448 		if (cpu >= 0)
3449 			goto cpu_found;
3450 	}
3451 
3452 	/*
3453 	 * Use @prev_cpu if it's idle.
3454 	 */
3455 	if (test_and_clear_cpu_idle(prev_cpu)) {
3456 		cpu = prev_cpu;
3457 		goto cpu_found;
3458 	}
3459 
3460 	/*
3461 	 * Search for any idle CPU in the same LLC domain.
3462 	 */
3463 	if (llc_cpus) {
3464 		cpu = scx_pick_idle_cpu(llc_cpus, 0);
3465 		if (cpu >= 0)
3466 			goto cpu_found;
3467 	}
3468 
3469 	/*
3470 	 * Search for any idle CPU in the same NUMA node.
3471 	 */
3472 	if (numa_cpus) {
3473 		cpu = scx_pick_idle_cpu(numa_cpus, 0);
3474 		if (cpu >= 0)
3475 			goto cpu_found;
3476 	}
3477 
3478 	/*
3479 	 * Search for any idle CPU usable by the task.
3480 	 */
3481 	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3482 	if (cpu >= 0)
3483 		goto cpu_found;
3484 
3485 	rcu_read_unlock();
3486 	return prev_cpu;
3487 
3488 cpu_found:
3489 	rcu_read_unlock();
3490 
3491 	*found = true;
3492 	return cpu;
3493 }
3494 
3495 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3496 {
3497 	/*
3498 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3499 	 * can be a good migration opportunity with low cache and memory
3500 	 * footprint. Returning a CPU different than @prev_cpu triggers
3501 	 * immediate rq migration. However, for SCX, as the current rq
3502 	 * association doesn't dictate where the task is going to run, this
3503 	 * doesn't fit well. If necessary, we can later add a dedicated method
3504 	 * which can decide to preempt self to force it through the regular
3505 	 * scheduling path.
3506 	 */
3507 	if (unlikely(wake_flags & WF_EXEC))
3508 		return prev_cpu;
3509 
3510 	if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3511 		s32 cpu;
3512 		struct task_struct **ddsp_taskp;
3513 
3514 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3515 		WARN_ON_ONCE(*ddsp_taskp);
3516 		*ddsp_taskp = p;
3517 
3518 		cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3519 					   select_cpu, p, prev_cpu, wake_flags);
3520 		*ddsp_taskp = NULL;
3521 		if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3522 			return cpu;
3523 		else
3524 			return prev_cpu;
3525 	} else {
3526 		bool found;
3527 		s32 cpu;
3528 
3529 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3530 		if (found) {
3531 			p->scx.slice = SCX_SLICE_DFL;
3532 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3533 		}
3534 		return cpu;
3535 	}
3536 }
3537 
3538 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3539 {
3540 	run_deferred(rq);
3541 }
3542 
3543 static void set_cpus_allowed_scx(struct task_struct *p,
3544 				 struct affinity_context *ac)
3545 {
3546 	set_cpus_allowed_common(p, ac);
3547 
3548 	/*
3549 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3550 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3551 	 * scheduler the effective one.
3552 	 *
3553 	 * Fine-grained memory write control is enforced by BPF making the const
3554 	 * designation pointless. Cast it away when calling the operation.
3555 	 */
3556 	if (SCX_HAS_OP(set_cpumask))
3557 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3558 				 (struct cpumask *)p->cpus_ptr);
3559 }
3560 
3561 static void reset_idle_masks(void)
3562 {
3563 	/*
3564 	 * Consider all online cpus idle. Should converge to the actual state
3565 	 * quickly.
3566 	 */
3567 	cpumask_copy(idle_masks.cpu, cpu_online_mask);
3568 	cpumask_copy(idle_masks.smt, cpu_online_mask);
3569 }
3570 
3571 void __scx_update_idle(struct rq *rq, bool idle)
3572 {
3573 	int cpu = cpu_of(rq);
3574 
3575 	if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
3576 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3577 		if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3578 			return;
3579 	}
3580 
3581 	if (idle)
3582 		cpumask_set_cpu(cpu, idle_masks.cpu);
3583 	else
3584 		cpumask_clear_cpu(cpu, idle_masks.cpu);
3585 
3586 #ifdef CONFIG_SCHED_SMT
3587 	if (sched_smt_active()) {
3588 		const struct cpumask *smt = cpu_smt_mask(cpu);
3589 
3590 		if (idle) {
3591 			/*
3592 			 * idle_masks.smt handling is racy but that's fine as
3593 			 * it's only for optimization and self-correcting.
3594 			 */
3595 			for_each_cpu(cpu, smt) {
3596 				if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3597 					return;
3598 			}
3599 			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3600 		} else {
3601 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3602 		}
3603 	}
3604 #endif
3605 }
3606 
3607 static void handle_hotplug(struct rq *rq, bool online)
3608 {
3609 	int cpu = cpu_of(rq);
3610 
3611 	atomic_long_inc(&scx_hotplug_seq);
3612 
3613 	if (scx_enabled())
3614 		update_selcpu_topology();
3615 
3616 	if (online && SCX_HAS_OP(cpu_online))
3617 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3618 	else if (!online && SCX_HAS_OP(cpu_offline))
3619 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3620 	else
3621 		scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3622 			     "cpu %d going %s, exiting scheduler", cpu,
3623 			     online ? "online" : "offline");
3624 }
3625 
3626 void scx_rq_activate(struct rq *rq)
3627 {
3628 	handle_hotplug(rq, true);
3629 }
3630 
3631 void scx_rq_deactivate(struct rq *rq)
3632 {
3633 	handle_hotplug(rq, false);
3634 }
3635 
3636 static void rq_online_scx(struct rq *rq)
3637 {
3638 	rq->scx.flags |= SCX_RQ_ONLINE;
3639 }
3640 
3641 static void rq_offline_scx(struct rq *rq)
3642 {
3643 	rq->scx.flags &= ~SCX_RQ_ONLINE;
3644 }
3645 
3646 #else	/* CONFIG_SMP */
3647 
3648 static bool test_and_clear_cpu_idle(int cpu) { return false; }
3649 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
3650 static void reset_idle_masks(void) {}
3651 
3652 #endif	/* CONFIG_SMP */
3653 
3654 static bool check_rq_for_timeouts(struct rq *rq)
3655 {
3656 	struct task_struct *p;
3657 	struct rq_flags rf;
3658 	bool timed_out = false;
3659 
3660 	rq_lock_irqsave(rq, &rf);
3661 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3662 		unsigned long last_runnable = p->scx.runnable_at;
3663 
3664 		if (unlikely(time_after(jiffies,
3665 					last_runnable + scx_watchdog_timeout))) {
3666 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3667 
3668 			scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3669 					   "%s[%d] failed to run for %u.%03us",
3670 					   p->comm, p->pid,
3671 					   dur_ms / 1000, dur_ms % 1000);
3672 			timed_out = true;
3673 			break;
3674 		}
3675 	}
3676 	rq_unlock_irqrestore(rq, &rf);
3677 
3678 	return timed_out;
3679 }
3680 
3681 static void scx_watchdog_workfn(struct work_struct *work)
3682 {
3683 	int cpu;
3684 
3685 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3686 
3687 	for_each_online_cpu(cpu) {
3688 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3689 			break;
3690 
3691 		cond_resched();
3692 	}
3693 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3694 			   scx_watchdog_timeout / 2);
3695 }
3696 
3697 void scx_tick(struct rq *rq)
3698 {
3699 	unsigned long last_check;
3700 
3701 	if (!scx_enabled())
3702 		return;
3703 
3704 	last_check = READ_ONCE(scx_watchdog_timestamp);
3705 	if (unlikely(time_after(jiffies,
3706 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
3707 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3708 
3709 		scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3710 				   "watchdog failed to check in for %u.%03us",
3711 				   dur_ms / 1000, dur_ms % 1000);
3712 	}
3713 
3714 	update_other_load_avgs(rq);
3715 }
3716 
3717 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3718 {
3719 	update_curr_scx(rq);
3720 
3721 	/*
3722 	 * While disabling, always resched and refresh core-sched timestamp as
3723 	 * we can't trust the slice management or ops.core_sched_before().
3724 	 */
3725 	if (scx_rq_bypassing(rq)) {
3726 		curr->scx.slice = 0;
3727 		touch_core_sched(rq, curr);
3728 	} else if (SCX_HAS_OP(tick)) {
3729 		SCX_CALL_OP(SCX_KF_REST, tick, curr);
3730 	}
3731 
3732 	if (!curr->scx.slice)
3733 		resched_curr(rq);
3734 }
3735 
3736 #ifdef CONFIG_EXT_GROUP_SCHED
3737 static struct cgroup *tg_cgrp(struct task_group *tg)
3738 {
3739 	/*
3740 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3741 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3742 	 * root cgroup.
3743 	 */
3744 	if (tg && tg->css.cgroup)
3745 		return tg->css.cgroup;
3746 	else
3747 		return &cgrp_dfl_root.cgrp;
3748 }
3749 
3750 #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
3751 
3752 #else	/* CONFIG_EXT_GROUP_SCHED */
3753 
3754 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3755 
3756 #endif	/* CONFIG_EXT_GROUP_SCHED */
3757 
3758 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3759 {
3760 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3761 }
3762 
3763 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3764 {
3765 	enum scx_task_state prev_state = scx_get_task_state(p);
3766 	bool warn = false;
3767 
3768 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3769 
3770 	switch (state) {
3771 	case SCX_TASK_NONE:
3772 		break;
3773 	case SCX_TASK_INIT:
3774 		warn = prev_state != SCX_TASK_NONE;
3775 		break;
3776 	case SCX_TASK_READY:
3777 		warn = prev_state == SCX_TASK_NONE;
3778 		break;
3779 	case SCX_TASK_ENABLED:
3780 		warn = prev_state != SCX_TASK_READY;
3781 		break;
3782 	default:
3783 		warn = true;
3784 		return;
3785 	}
3786 
3787 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3788 		  prev_state, state, p->comm, p->pid);
3789 
3790 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
3791 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3792 }
3793 
3794 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3795 {
3796 	int ret;
3797 
3798 	p->scx.disallow = false;
3799 
3800 	if (SCX_HAS_OP(init_task)) {
3801 		struct scx_init_task_args args = {
3802 			SCX_INIT_TASK_ARGS_CGROUP(tg)
3803 			.fork = fork,
3804 		};
3805 
3806 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3807 		if (unlikely(ret)) {
3808 			ret = ops_sanitize_err("init_task", ret);
3809 			return ret;
3810 		}
3811 	}
3812 
3813 	scx_set_task_state(p, SCX_TASK_INIT);
3814 
3815 	if (p->scx.disallow) {
3816 		if (!fork) {
3817 			struct rq *rq;
3818 			struct rq_flags rf;
3819 
3820 			rq = task_rq_lock(p, &rf);
3821 
3822 			/*
3823 			 * We're in the load path and @p->policy will be applied
3824 			 * right after. Reverting @p->policy here and rejecting
3825 			 * %SCHED_EXT transitions from scx_check_setscheduler()
3826 			 * guarantees that if ops.init_task() sets @p->disallow,
3827 			 * @p can never be in SCX.
3828 			 */
3829 			if (p->policy == SCHED_EXT) {
3830 				p->policy = SCHED_NORMAL;
3831 				atomic_long_inc(&scx_nr_rejected);
3832 			}
3833 
3834 			task_rq_unlock(rq, p, &rf);
3835 		} else if (p->policy == SCHED_EXT) {
3836 			scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3837 				      p->comm, p->pid);
3838 		}
3839 	}
3840 
3841 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3842 	return 0;
3843 }
3844 
3845 static void scx_ops_enable_task(struct task_struct *p)
3846 {
3847 	u32 weight;
3848 
3849 	lockdep_assert_rq_held(task_rq(p));
3850 
3851 	/*
3852 	 * Set the weight before calling ops.enable() so that the scheduler
3853 	 * doesn't see a stale value if they inspect the task struct.
3854 	 */
3855 	if (task_has_idle_policy(p))
3856 		weight = WEIGHT_IDLEPRIO;
3857 	else
3858 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3859 
3860 	p->scx.weight = sched_weight_to_cgroup(weight);
3861 
3862 	if (SCX_HAS_OP(enable))
3863 		SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3864 	scx_set_task_state(p, SCX_TASK_ENABLED);
3865 
3866 	if (SCX_HAS_OP(set_weight))
3867 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3868 }
3869 
3870 static void scx_ops_disable_task(struct task_struct *p)
3871 {
3872 	lockdep_assert_rq_held(task_rq(p));
3873 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3874 
3875 	if (SCX_HAS_OP(disable))
3876 		SCX_CALL_OP(SCX_KF_REST, disable, p);
3877 	scx_set_task_state(p, SCX_TASK_READY);
3878 }
3879 
3880 static void scx_ops_exit_task(struct task_struct *p)
3881 {
3882 	struct scx_exit_task_args args = {
3883 		.cancelled = false,
3884 	};
3885 
3886 	lockdep_assert_rq_held(task_rq(p));
3887 
3888 	switch (scx_get_task_state(p)) {
3889 	case SCX_TASK_NONE:
3890 		return;
3891 	case SCX_TASK_INIT:
3892 		args.cancelled = true;
3893 		break;
3894 	case SCX_TASK_READY:
3895 		break;
3896 	case SCX_TASK_ENABLED:
3897 		scx_ops_disable_task(p);
3898 		break;
3899 	default:
3900 		WARN_ON_ONCE(true);
3901 		return;
3902 	}
3903 
3904 	if (SCX_HAS_OP(exit_task))
3905 		SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3906 	scx_set_task_state(p, SCX_TASK_NONE);
3907 }
3908 
3909 void init_scx_entity(struct sched_ext_entity *scx)
3910 {
3911 	/*
3912 	 * init_idle() calls this function again after fork sequence is
3913 	 * complete. Don't touch ->tasks_node as it's already linked.
3914 	 */
3915 	memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
3916 
3917 	INIT_LIST_HEAD(&scx->dsq_list.node);
3918 	RB_CLEAR_NODE(&scx->dsq_priq);
3919 	scx->sticky_cpu = -1;
3920 	scx->holding_cpu = -1;
3921 	INIT_LIST_HEAD(&scx->runnable_node);
3922 	scx->runnable_at = jiffies;
3923 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3924 	scx->slice = SCX_SLICE_DFL;
3925 }
3926 
3927 void scx_pre_fork(struct task_struct *p)
3928 {
3929 	/*
3930 	 * BPF scheduler enable/disable paths want to be able to iterate and
3931 	 * update all tasks which can become complex when racing forks. As
3932 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
3933 	 * exclude forks.
3934 	 */
3935 	percpu_down_read(&scx_fork_rwsem);
3936 }
3937 
3938 int scx_fork(struct task_struct *p)
3939 {
3940 	percpu_rwsem_assert_held(&scx_fork_rwsem);
3941 
3942 	if (scx_ops_init_task_enabled)
3943 		return scx_ops_init_task(p, task_group(p), true);
3944 	else
3945 		return 0;
3946 }
3947 
3948 void scx_post_fork(struct task_struct *p)
3949 {
3950 	if (scx_ops_init_task_enabled) {
3951 		scx_set_task_state(p, SCX_TASK_READY);
3952 
3953 		/*
3954 		 * Enable the task immediately if it's running on sched_ext.
3955 		 * Otherwise, it'll be enabled in switching_to_scx() if and
3956 		 * when it's ever configured to run with a SCHED_EXT policy.
3957 		 */
3958 		if (p->sched_class == &ext_sched_class) {
3959 			struct rq_flags rf;
3960 			struct rq *rq;
3961 
3962 			rq = task_rq_lock(p, &rf);
3963 			scx_ops_enable_task(p);
3964 			task_rq_unlock(rq, p, &rf);
3965 		}
3966 	}
3967 
3968 	spin_lock_irq(&scx_tasks_lock);
3969 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
3970 	spin_unlock_irq(&scx_tasks_lock);
3971 
3972 	percpu_up_read(&scx_fork_rwsem);
3973 }
3974 
3975 void scx_cancel_fork(struct task_struct *p)
3976 {
3977 	if (scx_enabled()) {
3978 		struct rq *rq;
3979 		struct rq_flags rf;
3980 
3981 		rq = task_rq_lock(p, &rf);
3982 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3983 		scx_ops_exit_task(p);
3984 		task_rq_unlock(rq, p, &rf);
3985 	}
3986 
3987 	percpu_up_read(&scx_fork_rwsem);
3988 }
3989 
3990 void sched_ext_free(struct task_struct *p)
3991 {
3992 	unsigned long flags;
3993 
3994 	spin_lock_irqsave(&scx_tasks_lock, flags);
3995 	list_del_init(&p->scx.tasks_node);
3996 	spin_unlock_irqrestore(&scx_tasks_lock, flags);
3997 
3998 	/*
3999 	 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
4000 	 * ENABLED transitions can't race us. Disable ops for @p.
4001 	 */
4002 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
4003 		struct rq_flags rf;
4004 		struct rq *rq;
4005 
4006 		rq = task_rq_lock(p, &rf);
4007 		scx_ops_exit_task(p);
4008 		task_rq_unlock(rq, p, &rf);
4009 	}
4010 }
4011 
4012 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
4013 			      const struct load_weight *lw)
4014 {
4015 	lockdep_assert_rq_held(task_rq(p));
4016 
4017 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
4018 	if (SCX_HAS_OP(set_weight))
4019 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
4020 }
4021 
4022 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
4023 {
4024 }
4025 
4026 static void switching_to_scx(struct rq *rq, struct task_struct *p)
4027 {
4028 	scx_ops_enable_task(p);
4029 
4030 	/*
4031 	 * set_cpus_allowed_scx() is not called while @p is associated with a
4032 	 * different scheduler class. Keep the BPF scheduler up-to-date.
4033 	 */
4034 	if (SCX_HAS_OP(set_cpumask))
4035 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
4036 				 (struct cpumask *)p->cpus_ptr);
4037 }
4038 
4039 static void switched_from_scx(struct rq *rq, struct task_struct *p)
4040 {
4041 	scx_ops_disable_task(p);
4042 }
4043 
4044 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
4045 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
4046 
4047 int scx_check_setscheduler(struct task_struct *p, int policy)
4048 {
4049 	lockdep_assert_rq_held(task_rq(p));
4050 
4051 	/* if disallow, reject transitioning into SCX */
4052 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
4053 	    p->policy != policy && policy == SCHED_EXT)
4054 		return -EACCES;
4055 
4056 	return 0;
4057 }
4058 
4059 #ifdef CONFIG_NO_HZ_FULL
4060 bool scx_can_stop_tick(struct rq *rq)
4061 {
4062 	struct task_struct *p = rq->curr;
4063 
4064 	if (scx_rq_bypassing(rq))
4065 		return false;
4066 
4067 	if (p->sched_class != &ext_sched_class)
4068 		return true;
4069 
4070 	/*
4071 	 * @rq can dispatch from different DSQs, so we can't tell whether it
4072 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
4073 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
4074 	 */
4075 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
4076 }
4077 #endif
4078 
4079 #ifdef CONFIG_EXT_GROUP_SCHED
4080 
4081 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
4082 static bool scx_cgroup_enabled;
4083 static bool cgroup_warned_missing_weight;
4084 static bool cgroup_warned_missing_idle;
4085 
4086 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
4087 {
4088 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
4089 	    cgroup_warned_missing_weight)
4090 		return;
4091 
4092 	if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
4093 		return;
4094 
4095 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
4096 		scx_ops.name);
4097 	cgroup_warned_missing_weight = true;
4098 }
4099 
4100 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
4101 {
4102 	if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
4103 		return;
4104 
4105 	if (!tg->idle)
4106 		return;
4107 
4108 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
4109 		scx_ops.name);
4110 	cgroup_warned_missing_idle = true;
4111 }
4112 
4113 int scx_tg_online(struct task_group *tg)
4114 {
4115 	int ret = 0;
4116 
4117 	WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
4118 
4119 	percpu_down_read(&scx_cgroup_rwsem);
4120 
4121 	scx_cgroup_warn_missing_weight(tg);
4122 
4123 	if (scx_cgroup_enabled) {
4124 		if (SCX_HAS_OP(cgroup_init)) {
4125 			struct scx_cgroup_init_args args =
4126 				{ .weight = tg->scx_weight };
4127 
4128 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4129 					      tg->css.cgroup, &args);
4130 			if (ret)
4131 				ret = ops_sanitize_err("cgroup_init", ret);
4132 		}
4133 		if (ret == 0)
4134 			tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
4135 	} else {
4136 		tg->scx_flags |= SCX_TG_ONLINE;
4137 	}
4138 
4139 	percpu_up_read(&scx_cgroup_rwsem);
4140 	return ret;
4141 }
4142 
4143 void scx_tg_offline(struct task_group *tg)
4144 {
4145 	WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
4146 
4147 	percpu_down_read(&scx_cgroup_rwsem);
4148 
4149 	if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
4150 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
4151 	tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
4152 
4153 	percpu_up_read(&scx_cgroup_rwsem);
4154 }
4155 
4156 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
4157 {
4158 	struct cgroup_subsys_state *css;
4159 	struct task_struct *p;
4160 	int ret;
4161 
4162 	/* released in scx_finish/cancel_attach() */
4163 	percpu_down_read(&scx_cgroup_rwsem);
4164 
4165 	if (!scx_cgroup_enabled)
4166 		return 0;
4167 
4168 	cgroup_taskset_for_each(p, css, tset) {
4169 		struct cgroup *from = tg_cgrp(task_group(p));
4170 		struct cgroup *to = tg_cgrp(css_tg(css));
4171 
4172 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
4173 
4174 		/*
4175 		 * sched_move_task() omits identity migrations. Let's match the
4176 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
4177 		 * always match one-to-one.
4178 		 */
4179 		if (from == to)
4180 			continue;
4181 
4182 		if (SCX_HAS_OP(cgroup_prep_move)) {
4183 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
4184 					      p, from, css->cgroup);
4185 			if (ret)
4186 				goto err;
4187 		}
4188 
4189 		p->scx.cgrp_moving_from = from;
4190 	}
4191 
4192 	return 0;
4193 
4194 err:
4195 	cgroup_taskset_for_each(p, css, tset) {
4196 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4197 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4198 				    p->scx.cgrp_moving_from, css->cgroup);
4199 		p->scx.cgrp_moving_from = NULL;
4200 	}
4201 
4202 	percpu_up_read(&scx_cgroup_rwsem);
4203 	return ops_sanitize_err("cgroup_prep_move", ret);
4204 }
4205 
4206 void scx_move_task(struct task_struct *p)
4207 {
4208 	if (!scx_cgroup_enabled)
4209 		return;
4210 
4211 	/*
4212 	 * We're called from sched_move_task() which handles both cgroup and
4213 	 * autogroup moves. Ignore the latter.
4214 	 *
4215 	 * Also ignore exiting tasks, because in the exit path tasks transition
4216 	 * from the autogroup to the root group, so task_group_is_autogroup()
4217 	 * alone isn't able to catch exiting autogroup tasks. This is safe for
4218 	 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
4219 	 * tasks.
4220 	 */
4221 	if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
4222 		return;
4223 
4224 	/*
4225 	 * @p must have ops.cgroup_prep_move() called on it and thus
4226 	 * cgrp_moving_from set.
4227 	 */
4228 	if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
4229 		SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
4230 			p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
4231 	p->scx.cgrp_moving_from = NULL;
4232 }
4233 
4234 void scx_cgroup_finish_attach(void)
4235 {
4236 	percpu_up_read(&scx_cgroup_rwsem);
4237 }
4238 
4239 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
4240 {
4241 	struct cgroup_subsys_state *css;
4242 	struct task_struct *p;
4243 
4244 	if (!scx_cgroup_enabled)
4245 		goto out_unlock;
4246 
4247 	cgroup_taskset_for_each(p, css, tset) {
4248 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4249 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4250 				    p->scx.cgrp_moving_from, css->cgroup);
4251 		p->scx.cgrp_moving_from = NULL;
4252 	}
4253 out_unlock:
4254 	percpu_up_read(&scx_cgroup_rwsem);
4255 }
4256 
4257 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
4258 {
4259 	percpu_down_read(&scx_cgroup_rwsem);
4260 
4261 	if (scx_cgroup_enabled && tg->scx_weight != weight) {
4262 		if (SCX_HAS_OP(cgroup_set_weight))
4263 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
4264 				    tg_cgrp(tg), weight);
4265 		tg->scx_weight = weight;
4266 	}
4267 
4268 	percpu_up_read(&scx_cgroup_rwsem);
4269 }
4270 
4271 void scx_group_set_idle(struct task_group *tg, bool idle)
4272 {
4273 	percpu_down_read(&scx_cgroup_rwsem);
4274 	scx_cgroup_warn_missing_idle(tg);
4275 	percpu_up_read(&scx_cgroup_rwsem);
4276 }
4277 
4278 static void scx_cgroup_lock(void)
4279 {
4280 	percpu_down_write(&scx_cgroup_rwsem);
4281 }
4282 
4283 static void scx_cgroup_unlock(void)
4284 {
4285 	percpu_up_write(&scx_cgroup_rwsem);
4286 }
4287 
4288 #else	/* CONFIG_EXT_GROUP_SCHED */
4289 
4290 static inline void scx_cgroup_lock(void) {}
4291 static inline void scx_cgroup_unlock(void) {}
4292 
4293 #endif	/* CONFIG_EXT_GROUP_SCHED */
4294 
4295 /*
4296  * Omitted operations:
4297  *
4298  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
4299  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
4300  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
4301  *
4302  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
4303  *
4304  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
4305  *   their current sched_class. Call them directly from sched core instead.
4306  */
4307 DEFINE_SCHED_CLASS(ext) = {
4308 	.enqueue_task		= enqueue_task_scx,
4309 	.dequeue_task		= dequeue_task_scx,
4310 	.yield_task		= yield_task_scx,
4311 	.yield_to_task		= yield_to_task_scx,
4312 
4313 	.wakeup_preempt		= wakeup_preempt_scx,
4314 
4315 	.balance		= balance_scx,
4316 	.pick_task		= pick_task_scx,
4317 
4318 	.put_prev_task		= put_prev_task_scx,
4319 	.set_next_task		= set_next_task_scx,
4320 
4321 #ifdef CONFIG_SMP
4322 	.select_task_rq		= select_task_rq_scx,
4323 	.task_woken		= task_woken_scx,
4324 	.set_cpus_allowed	= set_cpus_allowed_scx,
4325 
4326 	.rq_online		= rq_online_scx,
4327 	.rq_offline		= rq_offline_scx,
4328 #endif
4329 
4330 	.task_tick		= task_tick_scx,
4331 
4332 	.switching_to		= switching_to_scx,
4333 	.switched_from		= switched_from_scx,
4334 	.switched_to		= switched_to_scx,
4335 	.reweight_task		= reweight_task_scx,
4336 	.prio_changed		= prio_changed_scx,
4337 
4338 	.update_curr		= update_curr_scx,
4339 
4340 #ifdef CONFIG_UCLAMP_TASK
4341 	.uclamp_enabled		= 1,
4342 #endif
4343 };
4344 
4345 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
4346 {
4347 	memset(dsq, 0, sizeof(*dsq));
4348 
4349 	raw_spin_lock_init(&dsq->lock);
4350 	INIT_LIST_HEAD(&dsq->list);
4351 	dsq->id = dsq_id;
4352 }
4353 
4354 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
4355 {
4356 	struct scx_dispatch_q *dsq;
4357 	int ret;
4358 
4359 	if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4360 		return ERR_PTR(-EINVAL);
4361 
4362 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4363 	if (!dsq)
4364 		return ERR_PTR(-ENOMEM);
4365 
4366 	init_dsq(dsq, dsq_id);
4367 
4368 	ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
4369 				     dsq_hash_params);
4370 	if (ret) {
4371 		kfree(dsq);
4372 		return ERR_PTR(ret);
4373 	}
4374 	return dsq;
4375 }
4376 
4377 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4378 {
4379 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4380 	struct scx_dispatch_q *dsq, *tmp_dsq;
4381 
4382 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4383 		kfree_rcu(dsq, rcu);
4384 }
4385 
4386 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4387 
4388 static void destroy_dsq(u64 dsq_id)
4389 {
4390 	struct scx_dispatch_q *dsq;
4391 	unsigned long flags;
4392 
4393 	rcu_read_lock();
4394 
4395 	dsq = find_user_dsq(dsq_id);
4396 	if (!dsq)
4397 		goto out_unlock_rcu;
4398 
4399 	raw_spin_lock_irqsave(&dsq->lock, flags);
4400 
4401 	if (dsq->nr) {
4402 		scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4403 			      dsq->id, dsq->nr);
4404 		goto out_unlock_dsq;
4405 	}
4406 
4407 	if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4408 		goto out_unlock_dsq;
4409 
4410 	/*
4411 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4412 	 * queueing more tasks. As this function can be called from anywhere,
4413 	 * freeing is bounced through an irq work to avoid nesting RCU
4414 	 * operations inside scheduler locks.
4415 	 */
4416 	dsq->id = SCX_DSQ_INVALID;
4417 	llist_add(&dsq->free_node, &dsqs_to_free);
4418 	irq_work_queue(&free_dsq_irq_work);
4419 
4420 out_unlock_dsq:
4421 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
4422 out_unlock_rcu:
4423 	rcu_read_unlock();
4424 }
4425 
4426 #ifdef CONFIG_EXT_GROUP_SCHED
4427 static void scx_cgroup_exit(void)
4428 {
4429 	struct cgroup_subsys_state *css;
4430 
4431 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4432 
4433 	scx_cgroup_enabled = false;
4434 
4435 	/*
4436 	 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4437 	 * cgroups and exit all the inited ones, all online cgroups are exited.
4438 	 */
4439 	rcu_read_lock();
4440 	css_for_each_descendant_post(css, &root_task_group.css) {
4441 		struct task_group *tg = css_tg(css);
4442 
4443 		if (!(tg->scx_flags & SCX_TG_INITED))
4444 			continue;
4445 		tg->scx_flags &= ~SCX_TG_INITED;
4446 
4447 		if (!scx_ops.cgroup_exit)
4448 			continue;
4449 
4450 		if (WARN_ON_ONCE(!css_tryget(css)))
4451 			continue;
4452 		rcu_read_unlock();
4453 
4454 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4455 
4456 		rcu_read_lock();
4457 		css_put(css);
4458 	}
4459 	rcu_read_unlock();
4460 }
4461 
4462 static int scx_cgroup_init(void)
4463 {
4464 	struct cgroup_subsys_state *css;
4465 	int ret;
4466 
4467 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4468 
4469 	cgroup_warned_missing_weight = false;
4470 	cgroup_warned_missing_idle = false;
4471 
4472 	/*
4473 	 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4474 	 * cgroups and init, all online cgroups are initialized.
4475 	 */
4476 	rcu_read_lock();
4477 	css_for_each_descendant_pre(css, &root_task_group.css) {
4478 		struct task_group *tg = css_tg(css);
4479 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4480 
4481 		scx_cgroup_warn_missing_weight(tg);
4482 		scx_cgroup_warn_missing_idle(tg);
4483 
4484 		if ((tg->scx_flags &
4485 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4486 			continue;
4487 
4488 		if (!scx_ops.cgroup_init) {
4489 			tg->scx_flags |= SCX_TG_INITED;
4490 			continue;
4491 		}
4492 
4493 		if (WARN_ON_ONCE(!css_tryget(css)))
4494 			continue;
4495 		rcu_read_unlock();
4496 
4497 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4498 				      css->cgroup, &args);
4499 		if (ret) {
4500 			css_put(css);
4501 			scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4502 			return ret;
4503 		}
4504 		tg->scx_flags |= SCX_TG_INITED;
4505 
4506 		rcu_read_lock();
4507 		css_put(css);
4508 	}
4509 	rcu_read_unlock();
4510 
4511 	WARN_ON_ONCE(scx_cgroup_enabled);
4512 	scx_cgroup_enabled = true;
4513 
4514 	return 0;
4515 }
4516 
4517 #else
4518 static void scx_cgroup_exit(void) {}
4519 static int scx_cgroup_init(void) { return 0; }
4520 #endif
4521 
4522 
4523 /********************************************************************************
4524  * Sysfs interface and ops enable/disable.
4525  */
4526 
4527 #define SCX_ATTR(_name)								\
4528 	static struct kobj_attribute scx_attr_##_name = {			\
4529 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
4530 		.show = scx_attr_##_name##_show,				\
4531 	}
4532 
4533 static ssize_t scx_attr_state_show(struct kobject *kobj,
4534 				   struct kobj_attribute *ka, char *buf)
4535 {
4536 	return sysfs_emit(buf, "%s\n",
4537 			  scx_ops_enable_state_str[scx_ops_enable_state()]);
4538 }
4539 SCX_ATTR(state);
4540 
4541 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4542 					struct kobj_attribute *ka, char *buf)
4543 {
4544 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4545 }
4546 SCX_ATTR(switch_all);
4547 
4548 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4549 					 struct kobj_attribute *ka, char *buf)
4550 {
4551 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4552 }
4553 SCX_ATTR(nr_rejected);
4554 
4555 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4556 					 struct kobj_attribute *ka, char *buf)
4557 {
4558 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4559 }
4560 SCX_ATTR(hotplug_seq);
4561 
4562 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4563 					struct kobj_attribute *ka, char *buf)
4564 {
4565 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4566 }
4567 SCX_ATTR(enable_seq);
4568 
4569 static struct attribute *scx_global_attrs[] = {
4570 	&scx_attr_state.attr,
4571 	&scx_attr_switch_all.attr,
4572 	&scx_attr_nr_rejected.attr,
4573 	&scx_attr_hotplug_seq.attr,
4574 	&scx_attr_enable_seq.attr,
4575 	NULL,
4576 };
4577 
4578 static const struct attribute_group scx_global_attr_group = {
4579 	.attrs = scx_global_attrs,
4580 };
4581 
4582 static void scx_kobj_release(struct kobject *kobj)
4583 {
4584 	kfree(kobj);
4585 }
4586 
4587 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4588 				 struct kobj_attribute *ka, char *buf)
4589 {
4590 	return sysfs_emit(buf, "%s\n", scx_ops.name);
4591 }
4592 SCX_ATTR(ops);
4593 
4594 static struct attribute *scx_sched_attrs[] = {
4595 	&scx_attr_ops.attr,
4596 	NULL,
4597 };
4598 ATTRIBUTE_GROUPS(scx_sched);
4599 
4600 static const struct kobj_type scx_ktype = {
4601 	.release = scx_kobj_release,
4602 	.sysfs_ops = &kobj_sysfs_ops,
4603 	.default_groups = scx_sched_groups,
4604 };
4605 
4606 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4607 {
4608 	return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4609 }
4610 
4611 static const struct kset_uevent_ops scx_uevent_ops = {
4612 	.uevent = scx_uevent,
4613 };
4614 
4615 /*
4616  * Used by sched_fork() and __setscheduler_prio() to pick the matching
4617  * sched_class. dl/rt are already handled.
4618  */
4619 bool task_should_scx(struct task_struct *p)
4620 {
4621 	if (!scx_enabled() ||
4622 	    unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4623 		return false;
4624 	if (READ_ONCE(scx_switching_all))
4625 		return true;
4626 	return p->policy == SCHED_EXT;
4627 }
4628 
4629 /**
4630  * scx_softlockup - sched_ext softlockup handler
4631  *
4632  * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
4633  * live-lock the system by making many CPUs target the same DSQ to the point
4634  * where soft-lockup detection triggers. This function is called from
4635  * soft-lockup watchdog when the triggering point is close and tries to unjam
4636  * the system by enabling the breather and aborting the BPF scheduler.
4637  */
4638 void scx_softlockup(u32 dur_s)
4639 {
4640 	switch (scx_ops_enable_state()) {
4641 	case SCX_OPS_ENABLING:
4642 	case SCX_OPS_ENABLED:
4643 		break;
4644 	default:
4645 		return;
4646 	}
4647 
4648 	/* allow only one instance, cleared at the end of scx_ops_bypass() */
4649 	if (test_and_set_bit(0, &scx_in_softlockup))
4650 		return;
4651 
4652 	printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
4653 			smp_processor_id(), dur_s, scx_ops.name);
4654 
4655 	/*
4656 	 * Some CPUs may be trapped in the dispatch paths. Enable breather
4657 	 * immediately; otherwise, we might even be able to get to
4658 	 * scx_ops_bypass().
4659 	 */
4660 	atomic_inc(&scx_ops_breather_depth);
4661 
4662 	scx_ops_error("soft lockup - CPU#%d stuck for %us",
4663 		      smp_processor_id(), dur_s);
4664 }
4665 
4666 static void scx_clear_softlockup(void)
4667 {
4668 	if (test_and_clear_bit(0, &scx_in_softlockup))
4669 		atomic_dec(&scx_ops_breather_depth);
4670 }
4671 
4672 /**
4673  * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4674  *
4675  * Bypassing guarantees that all runnable tasks make forward progress without
4676  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4677  * be held by tasks that the BPF scheduler is forgetting to run, which
4678  * unfortunately also excludes toggling the static branches.
4679  *
4680  * Let's work around by overriding a couple ops and modifying behaviors based on
4681  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4682  * to force global FIFO scheduling.
4683  *
4684  * - ops.select_cpu() is ignored and the default select_cpu() is used.
4685  *
4686  * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4687  *   %SCX_OPS_ENQ_LAST is also ignored.
4688  *
4689  * - ops.dispatch() is ignored.
4690  *
4691  * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4692  *   can't be trusted. Whenever a tick triggers, the running task is rotated to
4693  *   the tail of the queue with core_sched_at touched.
4694  *
4695  * - pick_next_task() suppresses zero slice warning.
4696  *
4697  * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4698  *   operations.
4699  *
4700  * - scx_prio_less() reverts to the default core_sched_at order.
4701  */
4702 static void scx_ops_bypass(bool bypass)
4703 {
4704 	static DEFINE_RAW_SPINLOCK(bypass_lock);
4705 	int cpu;
4706 	unsigned long flags;
4707 
4708 	raw_spin_lock_irqsave(&bypass_lock, flags);
4709 	if (bypass) {
4710 		scx_ops_bypass_depth++;
4711 		WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4712 		if (scx_ops_bypass_depth != 1)
4713 			goto unlock;
4714 	} else {
4715 		scx_ops_bypass_depth--;
4716 		WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4717 		if (scx_ops_bypass_depth != 0)
4718 			goto unlock;
4719 	}
4720 
4721 	atomic_inc(&scx_ops_breather_depth);
4722 
4723 	/*
4724 	 * No task property is changing. We just need to make sure all currently
4725 	 * queued tasks are re-queued according to the new scx_rq_bypassing()
4726 	 * state. As an optimization, walk each rq's runnable_list instead of
4727 	 * the scx_tasks list.
4728 	 *
4729 	 * This function can't trust the scheduler and thus can't use
4730 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
4731 	 */
4732 	for_each_possible_cpu(cpu) {
4733 		struct rq *rq = cpu_rq(cpu);
4734 		struct rq_flags rf;
4735 		struct task_struct *p, *n;
4736 
4737 		rq_lock(rq, &rf);
4738 
4739 		if (bypass) {
4740 			WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4741 			rq->scx.flags |= SCX_RQ_BYPASSING;
4742 		} else {
4743 			WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4744 			rq->scx.flags &= ~SCX_RQ_BYPASSING;
4745 		}
4746 
4747 		/*
4748 		 * We need to guarantee that no tasks are on the BPF scheduler
4749 		 * while bypassing. Either we see enabled or the enable path
4750 		 * sees scx_rq_bypassing() before moving tasks to SCX.
4751 		 */
4752 		if (!scx_enabled()) {
4753 			rq_unlock_irqrestore(rq, &rf);
4754 			continue;
4755 		}
4756 
4757 		/*
4758 		 * The use of list_for_each_entry_safe_reverse() is required
4759 		 * because each task is going to be removed from and added back
4760 		 * to the runnable_list during iteration. Because they're added
4761 		 * to the tail of the list, safe reverse iteration can still
4762 		 * visit all nodes.
4763 		 */
4764 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4765 						 scx.runnable_node) {
4766 			struct sched_enq_and_set_ctx ctx;
4767 
4768 			/* cycling deq/enq is enough, see the function comment */
4769 			sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4770 			sched_enq_and_set_task(&ctx);
4771 		}
4772 
4773 		rq_unlock(rq, &rf);
4774 
4775 		/* resched to restore ticks and idle state */
4776 		resched_cpu(cpu);
4777 	}
4778 
4779 	atomic_dec(&scx_ops_breather_depth);
4780 unlock:
4781 	raw_spin_unlock_irqrestore(&bypass_lock, flags);
4782 	scx_clear_softlockup();
4783 }
4784 
4785 static void free_exit_info(struct scx_exit_info *ei)
4786 {
4787 	kfree(ei->dump);
4788 	kfree(ei->msg);
4789 	kfree(ei->bt);
4790 	kfree(ei);
4791 }
4792 
4793 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4794 {
4795 	struct scx_exit_info *ei;
4796 
4797 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4798 	if (!ei)
4799 		return NULL;
4800 
4801 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4802 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4803 	ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4804 
4805 	if (!ei->bt || !ei->msg || !ei->dump) {
4806 		free_exit_info(ei);
4807 		return NULL;
4808 	}
4809 
4810 	return ei;
4811 }
4812 
4813 static const char *scx_exit_reason(enum scx_exit_kind kind)
4814 {
4815 	switch (kind) {
4816 	case SCX_EXIT_UNREG:
4817 		return "unregistered from user space";
4818 	case SCX_EXIT_UNREG_BPF:
4819 		return "unregistered from BPF";
4820 	case SCX_EXIT_UNREG_KERN:
4821 		return "unregistered from the main kernel";
4822 	case SCX_EXIT_SYSRQ:
4823 		return "disabled by sysrq-S";
4824 	case SCX_EXIT_ERROR:
4825 		return "runtime error";
4826 	case SCX_EXIT_ERROR_BPF:
4827 		return "scx_bpf_error";
4828 	case SCX_EXIT_ERROR_STALL:
4829 		return "runnable task stall";
4830 	default:
4831 		return "<UNKNOWN>";
4832 	}
4833 }
4834 
4835 static void scx_ops_disable_workfn(struct kthread_work *work)
4836 {
4837 	struct scx_exit_info *ei = scx_exit_info;
4838 	struct scx_task_iter sti;
4839 	struct task_struct *p;
4840 	struct rhashtable_iter rht_iter;
4841 	struct scx_dispatch_q *dsq;
4842 	int i, kind;
4843 
4844 	kind = atomic_read(&scx_exit_kind);
4845 	while (true) {
4846 		/*
4847 		 * NONE indicates that a new scx_ops has been registered since
4848 		 * disable was scheduled - don't kill the new ops. DONE
4849 		 * indicates that the ops has already been disabled.
4850 		 */
4851 		if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4852 			return;
4853 		if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4854 			break;
4855 	}
4856 	ei->kind = kind;
4857 	ei->reason = scx_exit_reason(ei->kind);
4858 
4859 	/* guarantee forward progress by bypassing scx_ops */
4860 	scx_ops_bypass(true);
4861 
4862 	switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4863 	case SCX_OPS_DISABLING:
4864 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4865 		break;
4866 	case SCX_OPS_DISABLED:
4867 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
4868 			scx_exit_info->msg);
4869 		WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4870 			     SCX_OPS_DISABLING);
4871 		goto done;
4872 	default:
4873 		break;
4874 	}
4875 
4876 	/*
4877 	 * Here, every runnable task is guaranteed to make forward progress and
4878 	 * we can safely use blocking synchronization constructs. Actually
4879 	 * disable ops.
4880 	 */
4881 	mutex_lock(&scx_ops_enable_mutex);
4882 
4883 	static_branch_disable(&__scx_switched_all);
4884 	WRITE_ONCE(scx_switching_all, false);
4885 
4886 	/*
4887 	 * Shut down cgroup support before tasks so that the cgroup attach path
4888 	 * doesn't race against scx_ops_exit_task().
4889 	 */
4890 	scx_cgroup_lock();
4891 	scx_cgroup_exit();
4892 	scx_cgroup_unlock();
4893 
4894 	/*
4895 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4896 	 * must be switched out and exited synchronously.
4897 	 */
4898 	percpu_down_write(&scx_fork_rwsem);
4899 
4900 	scx_ops_init_task_enabled = false;
4901 
4902 	scx_task_iter_start(&sti);
4903 	while ((p = scx_task_iter_next_locked(&sti))) {
4904 		const struct sched_class *old_class = p->sched_class;
4905 		struct sched_enq_and_set_ctx ctx;
4906 
4907 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4908 
4909 		__setscheduler_prio(p, p->prio);
4910 		check_class_changing(task_rq(p), p, old_class);
4911 
4912 		sched_enq_and_set_task(&ctx);
4913 
4914 		check_class_changed(task_rq(p), p, old_class, p->prio);
4915 		scx_ops_exit_task(p);
4916 	}
4917 	scx_task_iter_stop(&sti);
4918 	percpu_up_write(&scx_fork_rwsem);
4919 
4920 	/* no task is on scx, turn off all the switches and flush in-progress calls */
4921 	static_branch_disable(&__scx_ops_enabled);
4922 	for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4923 		static_branch_disable(&scx_has_op[i]);
4924 	static_branch_disable(&scx_ops_enq_last);
4925 	static_branch_disable(&scx_ops_enq_exiting);
4926 	static_branch_disable(&scx_ops_cpu_preempt);
4927 	static_branch_disable(&scx_builtin_idle_enabled);
4928 	synchronize_rcu();
4929 
4930 	if (ei->kind >= SCX_EXIT_ERROR) {
4931 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4932 		       scx_ops.name, ei->reason);
4933 
4934 		if (ei->msg[0] != '\0')
4935 			pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
4936 #ifdef CONFIG_STACKTRACE
4937 		stack_trace_print(ei->bt, ei->bt_len, 2);
4938 #endif
4939 	} else {
4940 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4941 			scx_ops.name, ei->reason);
4942 	}
4943 
4944 	if (scx_ops.exit)
4945 		SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
4946 
4947 	cancel_delayed_work_sync(&scx_watchdog_work);
4948 
4949 	/*
4950 	 * Delete the kobject from the hierarchy eagerly in addition to just
4951 	 * dropping a reference. Otherwise, if the object is deleted
4952 	 * asynchronously, sysfs could observe an object of the same name still
4953 	 * in the hierarchy when another scheduler is loaded.
4954 	 */
4955 	kobject_del(scx_root_kobj);
4956 	kobject_put(scx_root_kobj);
4957 	scx_root_kobj = NULL;
4958 
4959 	memset(&scx_ops, 0, sizeof(scx_ops));
4960 
4961 	rhashtable_walk_enter(&dsq_hash, &rht_iter);
4962 	do {
4963 		rhashtable_walk_start(&rht_iter);
4964 
4965 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
4966 			destroy_dsq(dsq->id);
4967 
4968 		rhashtable_walk_stop(&rht_iter);
4969 	} while (dsq == ERR_PTR(-EAGAIN));
4970 	rhashtable_walk_exit(&rht_iter);
4971 
4972 	free_percpu(scx_dsp_ctx);
4973 	scx_dsp_ctx = NULL;
4974 	scx_dsp_max_batch = 0;
4975 
4976 	free_exit_info(scx_exit_info);
4977 	scx_exit_info = NULL;
4978 
4979 	mutex_unlock(&scx_ops_enable_mutex);
4980 
4981 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4982 		     SCX_OPS_DISABLING);
4983 done:
4984 	scx_ops_bypass(false);
4985 }
4986 
4987 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
4988 
4989 static void schedule_scx_ops_disable_work(void)
4990 {
4991 	struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
4992 
4993 	/*
4994 	 * We may be called spuriously before the first bpf_sched_ext_reg(). If
4995 	 * scx_ops_helper isn't set up yet, there's nothing to do.
4996 	 */
4997 	if (helper)
4998 		kthread_queue_work(helper, &scx_ops_disable_work);
4999 }
5000 
5001 static void scx_ops_disable(enum scx_exit_kind kind)
5002 {
5003 	int none = SCX_EXIT_NONE;
5004 
5005 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
5006 		kind = SCX_EXIT_ERROR;
5007 
5008 	atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
5009 
5010 	schedule_scx_ops_disable_work();
5011 }
5012 
5013 static void dump_newline(struct seq_buf *s)
5014 {
5015 	trace_sched_ext_dump("");
5016 
5017 	/* @s may be zero sized and seq_buf triggers WARN if so */
5018 	if (s->size)
5019 		seq_buf_putc(s, '\n');
5020 }
5021 
5022 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
5023 {
5024 	va_list args;
5025 
5026 #ifdef CONFIG_TRACEPOINTS
5027 	if (trace_sched_ext_dump_enabled()) {
5028 		/* protected by scx_dump_state()::dump_lock */
5029 		static char line_buf[SCX_EXIT_MSG_LEN];
5030 
5031 		va_start(args, fmt);
5032 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
5033 		va_end(args);
5034 
5035 		trace_sched_ext_dump(line_buf);
5036 	}
5037 #endif
5038 	/* @s may be zero sized and seq_buf triggers WARN if so */
5039 	if (s->size) {
5040 		va_start(args, fmt);
5041 		seq_buf_vprintf(s, fmt, args);
5042 		va_end(args);
5043 
5044 		seq_buf_putc(s, '\n');
5045 	}
5046 }
5047 
5048 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
5049 			     const unsigned long *bt, unsigned int len)
5050 {
5051 	unsigned int i;
5052 
5053 	for (i = 0; i < len; i++)
5054 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
5055 }
5056 
5057 static void ops_dump_init(struct seq_buf *s, const char *prefix)
5058 {
5059 	struct scx_dump_data *dd = &scx_dump_data;
5060 
5061 	lockdep_assert_irqs_disabled();
5062 
5063 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
5064 	dd->first = true;
5065 	dd->cursor = 0;
5066 	dd->s = s;
5067 	dd->prefix = prefix;
5068 }
5069 
5070 static void ops_dump_flush(void)
5071 {
5072 	struct scx_dump_data *dd = &scx_dump_data;
5073 	char *line = dd->buf.line;
5074 
5075 	if (!dd->cursor)
5076 		return;
5077 
5078 	/*
5079 	 * There's something to flush and this is the first line. Insert a blank
5080 	 * line to distinguish ops dump.
5081 	 */
5082 	if (dd->first) {
5083 		dump_newline(dd->s);
5084 		dd->first = false;
5085 	}
5086 
5087 	/*
5088 	 * There may be multiple lines in $line. Scan and emit each line
5089 	 * separately.
5090 	 */
5091 	while (true) {
5092 		char *end = line;
5093 		char c;
5094 
5095 		while (*end != '\n' && *end != '\0')
5096 			end++;
5097 
5098 		/*
5099 		 * If $line overflowed, it may not have newline at the end.
5100 		 * Always emit with a newline.
5101 		 */
5102 		c = *end;
5103 		*end = '\0';
5104 		dump_line(dd->s, "%s%s", dd->prefix, line);
5105 		if (c == '\0')
5106 			break;
5107 
5108 		/* move to the next line */
5109 		end++;
5110 		if (*end == '\0')
5111 			break;
5112 		line = end;
5113 	}
5114 
5115 	dd->cursor = 0;
5116 }
5117 
5118 static void ops_dump_exit(void)
5119 {
5120 	ops_dump_flush();
5121 	scx_dump_data.cpu = -1;
5122 }
5123 
5124 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
5125 			  struct task_struct *p, char marker)
5126 {
5127 	static unsigned long bt[SCX_EXIT_BT_LEN];
5128 	char dsq_id_buf[19] = "(n/a)";
5129 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
5130 	unsigned int bt_len = 0;
5131 
5132 	if (p->scx.dsq)
5133 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
5134 			  (unsigned long long)p->scx.dsq->id);
5135 
5136 	dump_newline(s);
5137 	dump_line(s, " %c%c %s[%d] %+ldms",
5138 		  marker, task_state_to_char(p), p->comm, p->pid,
5139 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
5140 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
5141 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
5142 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
5143 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
5144 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
5145 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
5146 		  p->scx.dsq_vtime);
5147 	dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
5148 
5149 	if (SCX_HAS_OP(dump_task)) {
5150 		ops_dump_init(s, "    ");
5151 		SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
5152 		ops_dump_exit();
5153 	}
5154 
5155 #ifdef CONFIG_STACKTRACE
5156 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
5157 #endif
5158 	if (bt_len) {
5159 		dump_newline(s);
5160 		dump_stack_trace(s, "    ", bt, bt_len);
5161 	}
5162 }
5163 
5164 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
5165 {
5166 	static DEFINE_SPINLOCK(dump_lock);
5167 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
5168 	struct scx_dump_ctx dctx = {
5169 		.kind = ei->kind,
5170 		.exit_code = ei->exit_code,
5171 		.reason = ei->reason,
5172 		.at_ns = ktime_get_ns(),
5173 		.at_jiffies = jiffies,
5174 	};
5175 	struct seq_buf s;
5176 	unsigned long flags;
5177 	char *buf;
5178 	int cpu;
5179 
5180 	spin_lock_irqsave(&dump_lock, flags);
5181 
5182 	seq_buf_init(&s, ei->dump, dump_len);
5183 
5184 	if (ei->kind == SCX_EXIT_NONE) {
5185 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
5186 	} else {
5187 		dump_line(&s, "%s[%d] triggered exit kind %d:",
5188 			  current->comm, current->pid, ei->kind);
5189 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
5190 		dump_newline(&s);
5191 		dump_line(&s, "Backtrace:");
5192 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
5193 	}
5194 
5195 	if (SCX_HAS_OP(dump)) {
5196 		ops_dump_init(&s, "");
5197 		SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
5198 		ops_dump_exit();
5199 	}
5200 
5201 	dump_newline(&s);
5202 	dump_line(&s, "CPU states");
5203 	dump_line(&s, "----------");
5204 
5205 	for_each_possible_cpu(cpu) {
5206 		struct rq *rq = cpu_rq(cpu);
5207 		struct rq_flags rf;
5208 		struct task_struct *p;
5209 		struct seq_buf ns;
5210 		size_t avail, used;
5211 		bool idle;
5212 
5213 		rq_lock(rq, &rf);
5214 
5215 		idle = list_empty(&rq->scx.runnable_list) &&
5216 			rq->curr->sched_class == &idle_sched_class;
5217 
5218 		if (idle && !SCX_HAS_OP(dump_cpu))
5219 			goto next;
5220 
5221 		/*
5222 		 * We don't yet know whether ops.dump_cpu() will produce output
5223 		 * and we may want to skip the default CPU dump if it doesn't.
5224 		 * Use a nested seq_buf to generate the standard dump so that we
5225 		 * can decide whether to commit later.
5226 		 */
5227 		avail = seq_buf_get_buf(&s, &buf);
5228 		seq_buf_init(&ns, buf, avail);
5229 
5230 		dump_newline(&ns);
5231 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
5232 			  cpu, rq->scx.nr_running, rq->scx.flags,
5233 			  rq->scx.cpu_released, rq->scx.ops_qseq,
5234 			  rq->scx.pnt_seq);
5235 		dump_line(&ns, "          curr=%s[%d] class=%ps",
5236 			  rq->curr->comm, rq->curr->pid,
5237 			  rq->curr->sched_class);
5238 		if (!cpumask_empty(rq->scx.cpus_to_kick))
5239 			dump_line(&ns, "  cpus_to_kick   : %*pb",
5240 				  cpumask_pr_args(rq->scx.cpus_to_kick));
5241 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
5242 			dump_line(&ns, "  idle_to_kick   : %*pb",
5243 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
5244 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
5245 			dump_line(&ns, "  cpus_to_preempt: %*pb",
5246 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
5247 		if (!cpumask_empty(rq->scx.cpus_to_wait))
5248 			dump_line(&ns, "  cpus_to_wait   : %*pb",
5249 				  cpumask_pr_args(rq->scx.cpus_to_wait));
5250 
5251 		used = seq_buf_used(&ns);
5252 		if (SCX_HAS_OP(dump_cpu)) {
5253 			ops_dump_init(&ns, "  ");
5254 			SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
5255 			ops_dump_exit();
5256 		}
5257 
5258 		/*
5259 		 * If idle && nothing generated by ops.dump_cpu(), there's
5260 		 * nothing interesting. Skip.
5261 		 */
5262 		if (idle && used == seq_buf_used(&ns))
5263 			goto next;
5264 
5265 		/*
5266 		 * $s may already have overflowed when $ns was created. If so,
5267 		 * calling commit on it will trigger BUG.
5268 		 */
5269 		if (avail) {
5270 			seq_buf_commit(&s, seq_buf_used(&ns));
5271 			if (seq_buf_has_overflowed(&ns))
5272 				seq_buf_set_overflow(&s);
5273 		}
5274 
5275 		if (rq->curr->sched_class == &ext_sched_class)
5276 			scx_dump_task(&s, &dctx, rq->curr, '*');
5277 
5278 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
5279 			scx_dump_task(&s, &dctx, p, ' ');
5280 	next:
5281 		rq_unlock(rq, &rf);
5282 	}
5283 
5284 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
5285 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
5286 		       trunc_marker, sizeof(trunc_marker));
5287 
5288 	spin_unlock_irqrestore(&dump_lock, flags);
5289 }
5290 
5291 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
5292 {
5293 	struct scx_exit_info *ei = scx_exit_info;
5294 
5295 	if (ei->kind >= SCX_EXIT_ERROR)
5296 		scx_dump_state(ei, scx_ops.exit_dump_len);
5297 
5298 	schedule_scx_ops_disable_work();
5299 }
5300 
5301 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
5302 
5303 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
5304 					     s64 exit_code,
5305 					     const char *fmt, ...)
5306 {
5307 	struct scx_exit_info *ei = scx_exit_info;
5308 	int none = SCX_EXIT_NONE;
5309 	va_list args;
5310 
5311 	if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
5312 		return;
5313 
5314 	ei->exit_code = exit_code;
5315 #ifdef CONFIG_STACKTRACE
5316 	if (kind >= SCX_EXIT_ERROR)
5317 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
5318 #endif
5319 	va_start(args, fmt);
5320 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
5321 	va_end(args);
5322 
5323 	/*
5324 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
5325 	 * in scx_ops_disable_workfn().
5326 	 */
5327 	ei->kind = kind;
5328 	ei->reason = scx_exit_reason(ei->kind);
5329 
5330 	irq_work_queue(&scx_ops_error_irq_work);
5331 }
5332 
5333 static struct kthread_worker *scx_create_rt_helper(const char *name)
5334 {
5335 	struct kthread_worker *helper;
5336 
5337 	helper = kthread_create_worker(0, name);
5338 	if (helper)
5339 		sched_set_fifo(helper->task);
5340 	return helper;
5341 }
5342 
5343 static void check_hotplug_seq(const struct sched_ext_ops *ops)
5344 {
5345 	unsigned long long global_hotplug_seq;
5346 
5347 	/*
5348 	 * If a hotplug event has occurred between when a scheduler was
5349 	 * initialized, and when we were able to attach, exit and notify user
5350 	 * space about it.
5351 	 */
5352 	if (ops->hotplug_seq) {
5353 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
5354 		if (ops->hotplug_seq != global_hotplug_seq) {
5355 			scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
5356 				     "expected hotplug seq %llu did not match actual %llu",
5357 				     ops->hotplug_seq, global_hotplug_seq);
5358 		}
5359 	}
5360 }
5361 
5362 static int validate_ops(const struct sched_ext_ops *ops)
5363 {
5364 	/*
5365 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
5366 	 * ops.enqueue() callback isn't implemented.
5367 	 */
5368 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
5369 		scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
5370 		return -EINVAL;
5371 	}
5372 
5373 	return 0;
5374 }
5375 
5376 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
5377 {
5378 	struct scx_task_iter sti;
5379 	struct task_struct *p;
5380 	unsigned long timeout;
5381 	int i, cpu, node, ret;
5382 
5383 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
5384 			   cpu_possible_mask)) {
5385 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
5386 		return -EINVAL;
5387 	}
5388 
5389 	mutex_lock(&scx_ops_enable_mutex);
5390 
5391 	if (!scx_ops_helper) {
5392 		WRITE_ONCE(scx_ops_helper,
5393 			   scx_create_rt_helper("sched_ext_ops_helper"));
5394 		if (!scx_ops_helper) {
5395 			ret = -ENOMEM;
5396 			goto err_unlock;
5397 		}
5398 	}
5399 
5400 	if (!global_dsqs) {
5401 		struct scx_dispatch_q **dsqs;
5402 
5403 		dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
5404 		if (!dsqs) {
5405 			ret = -ENOMEM;
5406 			goto err_unlock;
5407 		}
5408 
5409 		for_each_node_state(node, N_POSSIBLE) {
5410 			struct scx_dispatch_q *dsq;
5411 
5412 			dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5413 			if (!dsq) {
5414 				for_each_node_state(node, N_POSSIBLE)
5415 					kfree(dsqs[node]);
5416 				kfree(dsqs);
5417 				ret = -ENOMEM;
5418 				goto err_unlock;
5419 			}
5420 
5421 			init_dsq(dsq, SCX_DSQ_GLOBAL);
5422 			dsqs[node] = dsq;
5423 		}
5424 
5425 		global_dsqs = dsqs;
5426 	}
5427 
5428 	if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5429 		ret = -EBUSY;
5430 		goto err_unlock;
5431 	}
5432 
5433 	scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5434 	if (!scx_root_kobj) {
5435 		ret = -ENOMEM;
5436 		goto err_unlock;
5437 	}
5438 
5439 	scx_root_kobj->kset = scx_kset;
5440 	ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5441 	if (ret < 0)
5442 		goto err;
5443 
5444 	scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5445 	if (!scx_exit_info) {
5446 		ret = -ENOMEM;
5447 		goto err_del;
5448 	}
5449 
5450 	/*
5451 	 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5452 	 * disable path. Failure triggers full disabling from here on.
5453 	 */
5454 	scx_ops = *ops;
5455 
5456 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5457 		     SCX_OPS_DISABLED);
5458 
5459 	atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5460 	scx_warned_zero_slice = false;
5461 
5462 	atomic_long_set(&scx_nr_rejected, 0);
5463 
5464 	for_each_possible_cpu(cpu)
5465 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5466 
5467 	/*
5468 	 * Keep CPUs stable during enable so that the BPF scheduler can track
5469 	 * online CPUs by watching ->on/offline_cpu() after ->init().
5470 	 */
5471 	cpus_read_lock();
5472 
5473 	if (scx_ops.init) {
5474 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5475 		if (ret) {
5476 			ret = ops_sanitize_err("init", ret);
5477 			cpus_read_unlock();
5478 			scx_ops_error("ops.init() failed (%d)", ret);
5479 			goto err_disable;
5480 		}
5481 	}
5482 
5483 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5484 		if (((void (**)(void))ops)[i])
5485 			static_branch_enable_cpuslocked(&scx_has_op[i]);
5486 
5487 	check_hotplug_seq(ops);
5488 #ifdef CONFIG_SMP
5489 	update_selcpu_topology();
5490 #endif
5491 	cpus_read_unlock();
5492 
5493 	ret = validate_ops(ops);
5494 	if (ret)
5495 		goto err_disable;
5496 
5497 	WARN_ON_ONCE(scx_dsp_ctx);
5498 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5499 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5500 						   scx_dsp_max_batch),
5501 				     __alignof__(struct scx_dsp_ctx));
5502 	if (!scx_dsp_ctx) {
5503 		ret = -ENOMEM;
5504 		goto err_disable;
5505 	}
5506 
5507 	if (ops->timeout_ms)
5508 		timeout = msecs_to_jiffies(ops->timeout_ms);
5509 	else
5510 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5511 
5512 	WRITE_ONCE(scx_watchdog_timeout, timeout);
5513 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5514 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5515 			   scx_watchdog_timeout / 2);
5516 
5517 	/*
5518 	 * Once __scx_ops_enabled is set, %current can be switched to SCX
5519 	 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5520 	 * userspace scheduling) may not function correctly before all tasks are
5521 	 * switched. Init in bypass mode to guarantee forward progress.
5522 	 */
5523 	scx_ops_bypass(true);
5524 
5525 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5526 		if (((void (**)(void))ops)[i])
5527 			static_branch_enable(&scx_has_op[i]);
5528 
5529 	if (ops->flags & SCX_OPS_ENQ_LAST)
5530 		static_branch_enable(&scx_ops_enq_last);
5531 
5532 	if (ops->flags & SCX_OPS_ENQ_EXITING)
5533 		static_branch_enable(&scx_ops_enq_exiting);
5534 	if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5535 		static_branch_enable(&scx_ops_cpu_preempt);
5536 
5537 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5538 		reset_idle_masks();
5539 		static_branch_enable(&scx_builtin_idle_enabled);
5540 	} else {
5541 		static_branch_disable(&scx_builtin_idle_enabled);
5542 	}
5543 
5544 	/*
5545 	 * Lock out forks, cgroup on/offlining and moves before opening the
5546 	 * floodgate so that they don't wander into the operations prematurely.
5547 	 */
5548 	percpu_down_write(&scx_fork_rwsem);
5549 
5550 	WARN_ON_ONCE(scx_ops_init_task_enabled);
5551 	scx_ops_init_task_enabled = true;
5552 
5553 	/*
5554 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5555 	 * preventing new tasks from being added. No need to exclude tasks
5556 	 * leaving as sched_ext_free() can handle both prepped and enabled
5557 	 * tasks. Prep all tasks first and then enable them with preemption
5558 	 * disabled.
5559 	 *
5560 	 * All cgroups should be initialized before scx_ops_init_task() so that
5561 	 * the BPF scheduler can reliably track each task's cgroup membership
5562 	 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5563 	 * migrations while tasks are being initialized so that
5564 	 * scx_cgroup_can_attach() never sees uninitialized tasks.
5565 	 */
5566 	scx_cgroup_lock();
5567 	ret = scx_cgroup_init();
5568 	if (ret)
5569 		goto err_disable_unlock_all;
5570 
5571 	scx_task_iter_start(&sti);
5572 	while ((p = scx_task_iter_next_locked(&sti))) {
5573 		/*
5574 		 * @p may already be dead, have lost all its usages counts and
5575 		 * be waiting for RCU grace period before being freed. @p can't
5576 		 * be initialized for SCX in such cases and should be ignored.
5577 		 */
5578 		if (!tryget_task_struct(p))
5579 			continue;
5580 
5581 		scx_task_iter_unlock(&sti);
5582 
5583 		ret = scx_ops_init_task(p, task_group(p), false);
5584 		if (ret) {
5585 			put_task_struct(p);
5586 			scx_task_iter_relock(&sti);
5587 			scx_task_iter_stop(&sti);
5588 			scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5589 				      ret, p->comm, p->pid);
5590 			goto err_disable_unlock_all;
5591 		}
5592 
5593 		scx_set_task_state(p, SCX_TASK_READY);
5594 
5595 		put_task_struct(p);
5596 		scx_task_iter_relock(&sti);
5597 	}
5598 	scx_task_iter_stop(&sti);
5599 	scx_cgroup_unlock();
5600 	percpu_up_write(&scx_fork_rwsem);
5601 
5602 	/*
5603 	 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5604 	 * all eligible tasks.
5605 	 */
5606 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5607 	static_branch_enable(&__scx_ops_enabled);
5608 
5609 	/*
5610 	 * We're fully committed and can't fail. The task READY -> ENABLED
5611 	 * transitions here are synchronized against sched_ext_free() through
5612 	 * scx_tasks_lock.
5613 	 */
5614 	percpu_down_write(&scx_fork_rwsem);
5615 	scx_task_iter_start(&sti);
5616 	while ((p = scx_task_iter_next_locked(&sti))) {
5617 		const struct sched_class *old_class = p->sched_class;
5618 		struct sched_enq_and_set_ctx ctx;
5619 
5620 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5621 
5622 		p->scx.slice = SCX_SLICE_DFL;
5623 		__setscheduler_prio(p, p->prio);
5624 		check_class_changing(task_rq(p), p, old_class);
5625 
5626 		sched_enq_and_set_task(&ctx);
5627 
5628 		check_class_changed(task_rq(p), p, old_class, p->prio);
5629 	}
5630 	scx_task_iter_stop(&sti);
5631 	percpu_up_write(&scx_fork_rwsem);
5632 
5633 	scx_ops_bypass(false);
5634 
5635 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5636 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5637 		goto err_disable;
5638 	}
5639 
5640 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5641 		static_branch_enable(&__scx_switched_all);
5642 
5643 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5644 		scx_ops.name, scx_switched_all() ? "" : " (partial)");
5645 	kobject_uevent(scx_root_kobj, KOBJ_ADD);
5646 	mutex_unlock(&scx_ops_enable_mutex);
5647 
5648 	atomic_long_inc(&scx_enable_seq);
5649 
5650 	return 0;
5651 
5652 err_del:
5653 	kobject_del(scx_root_kobj);
5654 err:
5655 	kobject_put(scx_root_kobj);
5656 	scx_root_kobj = NULL;
5657 	if (scx_exit_info) {
5658 		free_exit_info(scx_exit_info);
5659 		scx_exit_info = NULL;
5660 	}
5661 err_unlock:
5662 	mutex_unlock(&scx_ops_enable_mutex);
5663 	return ret;
5664 
5665 err_disable_unlock_all:
5666 	scx_cgroup_unlock();
5667 	percpu_up_write(&scx_fork_rwsem);
5668 	scx_ops_bypass(false);
5669 err_disable:
5670 	mutex_unlock(&scx_ops_enable_mutex);
5671 	/*
5672 	 * Returning an error code here would not pass all the error information
5673 	 * to userspace. Record errno using scx_ops_error() for cases
5674 	 * scx_ops_error() wasn't already invoked and exit indicating success so
5675 	 * that the error is notified through ops.exit() with all the details.
5676 	 *
5677 	 * Flush scx_ops_disable_work to ensure that error is reported before
5678 	 * init completion.
5679 	 */
5680 	scx_ops_error("scx_ops_enable() failed (%d)", ret);
5681 	kthread_flush_work(&scx_ops_disable_work);
5682 	return 0;
5683 }
5684 
5685 
5686 /********************************************************************************
5687  * bpf_struct_ops plumbing.
5688  */
5689 #include <linux/bpf_verifier.h>
5690 #include <linux/bpf.h>
5691 #include <linux/btf.h>
5692 
5693 static const struct btf_type *task_struct_type;
5694 
5695 static bool bpf_scx_is_valid_access(int off, int size,
5696 				    enum bpf_access_type type,
5697 				    const struct bpf_prog *prog,
5698 				    struct bpf_insn_access_aux *info)
5699 {
5700 	if (type != BPF_READ)
5701 		return false;
5702 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5703 		return false;
5704 	if (off % size != 0)
5705 		return false;
5706 
5707 	return btf_ctx_access(off, size, type, prog, info);
5708 }
5709 
5710 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5711 				     const struct bpf_reg_state *reg, int off,
5712 				     int size)
5713 {
5714 	const struct btf_type *t;
5715 
5716 	t = btf_type_by_id(reg->btf, reg->btf_id);
5717 	if (t == task_struct_type) {
5718 		if (off >= offsetof(struct task_struct, scx.slice) &&
5719 		    off + size <= offsetofend(struct task_struct, scx.slice))
5720 			return SCALAR_VALUE;
5721 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5722 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5723 			return SCALAR_VALUE;
5724 		if (off >= offsetof(struct task_struct, scx.disallow) &&
5725 		    off + size <= offsetofend(struct task_struct, scx.disallow))
5726 			return SCALAR_VALUE;
5727 	}
5728 
5729 	return -EACCES;
5730 }
5731 
5732 static const struct bpf_func_proto *
5733 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5734 {
5735 	switch (func_id) {
5736 	case BPF_FUNC_task_storage_get:
5737 		return &bpf_task_storage_get_proto;
5738 	case BPF_FUNC_task_storage_delete:
5739 		return &bpf_task_storage_delete_proto;
5740 	default:
5741 		return bpf_base_func_proto(func_id, prog);
5742 	}
5743 }
5744 
5745 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5746 	.get_func_proto = bpf_scx_get_func_proto,
5747 	.is_valid_access = bpf_scx_is_valid_access,
5748 	.btf_struct_access = bpf_scx_btf_struct_access,
5749 };
5750 
5751 static int bpf_scx_init_member(const struct btf_type *t,
5752 			       const struct btf_member *member,
5753 			       void *kdata, const void *udata)
5754 {
5755 	const struct sched_ext_ops *uops = udata;
5756 	struct sched_ext_ops *ops = kdata;
5757 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5758 	int ret;
5759 
5760 	switch (moff) {
5761 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
5762 		if (*(u32 *)(udata + moff) > INT_MAX)
5763 			return -E2BIG;
5764 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
5765 		return 1;
5766 	case offsetof(struct sched_ext_ops, flags):
5767 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5768 			return -EINVAL;
5769 		ops->flags = *(u64 *)(udata + moff);
5770 		return 1;
5771 	case offsetof(struct sched_ext_ops, name):
5772 		ret = bpf_obj_name_cpy(ops->name, uops->name,
5773 				       sizeof(ops->name));
5774 		if (ret < 0)
5775 			return ret;
5776 		if (ret == 0)
5777 			return -EINVAL;
5778 		return 1;
5779 	case offsetof(struct sched_ext_ops, timeout_ms):
5780 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5781 		    SCX_WATCHDOG_MAX_TIMEOUT)
5782 			return -E2BIG;
5783 		ops->timeout_ms = *(u32 *)(udata + moff);
5784 		return 1;
5785 	case offsetof(struct sched_ext_ops, exit_dump_len):
5786 		ops->exit_dump_len =
5787 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5788 		return 1;
5789 	case offsetof(struct sched_ext_ops, hotplug_seq):
5790 		ops->hotplug_seq = *(u64 *)(udata + moff);
5791 		return 1;
5792 	}
5793 
5794 	return 0;
5795 }
5796 
5797 static int bpf_scx_check_member(const struct btf_type *t,
5798 				const struct btf_member *member,
5799 				const struct bpf_prog *prog)
5800 {
5801 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5802 
5803 	switch (moff) {
5804 	case offsetof(struct sched_ext_ops, init_task):
5805 #ifdef CONFIG_EXT_GROUP_SCHED
5806 	case offsetof(struct sched_ext_ops, cgroup_init):
5807 	case offsetof(struct sched_ext_ops, cgroup_exit):
5808 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
5809 #endif
5810 	case offsetof(struct sched_ext_ops, cpu_online):
5811 	case offsetof(struct sched_ext_ops, cpu_offline):
5812 	case offsetof(struct sched_ext_ops, init):
5813 	case offsetof(struct sched_ext_ops, exit):
5814 		break;
5815 	default:
5816 		if (prog->sleepable)
5817 			return -EINVAL;
5818 	}
5819 
5820 	return 0;
5821 }
5822 
5823 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5824 {
5825 	return scx_ops_enable(kdata, link);
5826 }
5827 
5828 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5829 {
5830 	scx_ops_disable(SCX_EXIT_UNREG);
5831 	kthread_flush_work(&scx_ops_disable_work);
5832 }
5833 
5834 static int bpf_scx_init(struct btf *btf)
5835 {
5836 	task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5837 
5838 	return 0;
5839 }
5840 
5841 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5842 {
5843 	/*
5844 	 * sched_ext does not support updating the actively-loaded BPF
5845 	 * scheduler, as registering a BPF scheduler can always fail if the
5846 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5847 	 * etc. Similarly, we can always race with unregistration happening
5848 	 * elsewhere, such as with sysrq.
5849 	 */
5850 	return -EOPNOTSUPP;
5851 }
5852 
5853 static int bpf_scx_validate(void *kdata)
5854 {
5855 	return 0;
5856 }
5857 
5858 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
5859 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
5860 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
5861 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
5862 static void sched_ext_ops__tick(struct task_struct *p) {}
5863 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
5864 static void sched_ext_ops__running(struct task_struct *p) {}
5865 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
5866 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
5867 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
5868 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
5869 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
5870 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
5871 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
5872 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
5873 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
5874 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
5875 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
5876 static void sched_ext_ops__enable(struct task_struct *p) {}
5877 static void sched_ext_ops__disable(struct task_struct *p) {}
5878 #ifdef CONFIG_EXT_GROUP_SCHED
5879 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
5880 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
5881 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
5882 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5883 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5884 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
5885 #endif
5886 static void sched_ext_ops__cpu_online(s32 cpu) {}
5887 static void sched_ext_ops__cpu_offline(s32 cpu) {}
5888 static s32 sched_ext_ops__init(void) { return -EINVAL; }
5889 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
5890 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
5891 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
5892 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5893 
5894 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5895 	.select_cpu		= sched_ext_ops__select_cpu,
5896 	.enqueue		= sched_ext_ops__enqueue,
5897 	.dequeue		= sched_ext_ops__dequeue,
5898 	.dispatch		= sched_ext_ops__dispatch,
5899 	.tick			= sched_ext_ops__tick,
5900 	.runnable		= sched_ext_ops__runnable,
5901 	.running		= sched_ext_ops__running,
5902 	.stopping		= sched_ext_ops__stopping,
5903 	.quiescent		= sched_ext_ops__quiescent,
5904 	.yield			= sched_ext_ops__yield,
5905 	.core_sched_before	= sched_ext_ops__core_sched_before,
5906 	.set_weight		= sched_ext_ops__set_weight,
5907 	.set_cpumask		= sched_ext_ops__set_cpumask,
5908 	.update_idle		= sched_ext_ops__update_idle,
5909 	.cpu_acquire		= sched_ext_ops__cpu_acquire,
5910 	.cpu_release		= sched_ext_ops__cpu_release,
5911 	.init_task		= sched_ext_ops__init_task,
5912 	.exit_task		= sched_ext_ops__exit_task,
5913 	.enable			= sched_ext_ops__enable,
5914 	.disable		= sched_ext_ops__disable,
5915 #ifdef CONFIG_EXT_GROUP_SCHED
5916 	.cgroup_init		= sched_ext_ops__cgroup_init,
5917 	.cgroup_exit		= sched_ext_ops__cgroup_exit,
5918 	.cgroup_prep_move	= sched_ext_ops__cgroup_prep_move,
5919 	.cgroup_move		= sched_ext_ops__cgroup_move,
5920 	.cgroup_cancel_move	= sched_ext_ops__cgroup_cancel_move,
5921 	.cgroup_set_weight	= sched_ext_ops__cgroup_set_weight,
5922 #endif
5923 	.cpu_online		= sched_ext_ops__cpu_online,
5924 	.cpu_offline		= sched_ext_ops__cpu_offline,
5925 	.init			= sched_ext_ops__init,
5926 	.exit			= sched_ext_ops__exit,
5927 	.dump			= sched_ext_ops__dump,
5928 	.dump_cpu		= sched_ext_ops__dump_cpu,
5929 	.dump_task		= sched_ext_ops__dump_task,
5930 };
5931 
5932 static struct bpf_struct_ops bpf_sched_ext_ops = {
5933 	.verifier_ops = &bpf_scx_verifier_ops,
5934 	.reg = bpf_scx_reg,
5935 	.unreg = bpf_scx_unreg,
5936 	.check_member = bpf_scx_check_member,
5937 	.init_member = bpf_scx_init_member,
5938 	.init = bpf_scx_init,
5939 	.update = bpf_scx_update,
5940 	.validate = bpf_scx_validate,
5941 	.name = "sched_ext_ops",
5942 	.owner = THIS_MODULE,
5943 	.cfi_stubs = &__bpf_ops_sched_ext_ops
5944 };
5945 
5946 
5947 /********************************************************************************
5948  * System integration and init.
5949  */
5950 
5951 static void sysrq_handle_sched_ext_reset(u8 key)
5952 {
5953 	if (scx_ops_helper)
5954 		scx_ops_disable(SCX_EXIT_SYSRQ);
5955 	else
5956 		pr_info("sched_ext: BPF scheduler not yet used\n");
5957 }
5958 
5959 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5960 	.handler	= sysrq_handle_sched_ext_reset,
5961 	.help_msg	= "reset-sched-ext(S)",
5962 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
5963 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5964 };
5965 
5966 static void sysrq_handle_sched_ext_dump(u8 key)
5967 {
5968 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5969 
5970 	if (scx_enabled())
5971 		scx_dump_state(&ei, 0);
5972 }
5973 
5974 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5975 	.handler	= sysrq_handle_sched_ext_dump,
5976 	.help_msg	= "dump-sched-ext(D)",
5977 	.action_msg	= "Trigger sched_ext debug dump",
5978 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
5979 };
5980 
5981 static bool can_skip_idle_kick(struct rq *rq)
5982 {
5983 	lockdep_assert_rq_held(rq);
5984 
5985 	/*
5986 	 * We can skip idle kicking if @rq is going to go through at least one
5987 	 * full SCX scheduling cycle before going idle. Just checking whether
5988 	 * curr is not idle is insufficient because we could be racing
5989 	 * balance_one() trying to pull the next task from a remote rq, which
5990 	 * may fail, and @rq may become idle afterwards.
5991 	 *
5992 	 * The race window is small and we don't and can't guarantee that @rq is
5993 	 * only kicked while idle anyway. Skip only when sure.
5994 	 */
5995 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5996 }
5997 
5998 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5999 {
6000 	struct rq *rq = cpu_rq(cpu);
6001 	struct scx_rq *this_scx = &this_rq->scx;
6002 	bool should_wait = false;
6003 	unsigned long flags;
6004 
6005 	raw_spin_rq_lock_irqsave(rq, flags);
6006 
6007 	/*
6008 	 * During CPU hotplug, a CPU may depend on kicking itself to make
6009 	 * forward progress. Allow kicking self regardless of online state.
6010 	 */
6011 	if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
6012 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
6013 			if (rq->curr->sched_class == &ext_sched_class)
6014 				rq->curr->scx.slice = 0;
6015 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6016 		}
6017 
6018 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
6019 			pseqs[cpu] = rq->scx.pnt_seq;
6020 			should_wait = true;
6021 		}
6022 
6023 		resched_curr(rq);
6024 	} else {
6025 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6026 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6027 	}
6028 
6029 	raw_spin_rq_unlock_irqrestore(rq, flags);
6030 
6031 	return should_wait;
6032 }
6033 
6034 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
6035 {
6036 	struct rq *rq = cpu_rq(cpu);
6037 	unsigned long flags;
6038 
6039 	raw_spin_rq_lock_irqsave(rq, flags);
6040 
6041 	if (!can_skip_idle_kick(rq) &&
6042 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
6043 		resched_curr(rq);
6044 
6045 	raw_spin_rq_unlock_irqrestore(rq, flags);
6046 }
6047 
6048 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
6049 {
6050 	struct rq *this_rq = this_rq();
6051 	struct scx_rq *this_scx = &this_rq->scx;
6052 	unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
6053 	bool should_wait = false;
6054 	s32 cpu;
6055 
6056 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
6057 		should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
6058 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
6059 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6060 	}
6061 
6062 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
6063 		kick_one_cpu_if_idle(cpu, this_rq);
6064 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6065 	}
6066 
6067 	if (!should_wait)
6068 		return;
6069 
6070 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
6071 		unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
6072 
6073 		if (cpu != cpu_of(this_rq)) {
6074 			/*
6075 			 * Pairs with smp_store_release() issued by this CPU in
6076 			 * scx_next_task_picked() on the resched path.
6077 			 *
6078 			 * We busy-wait here to guarantee that no other task can
6079 			 * be scheduled on our core before the target CPU has
6080 			 * entered the resched path.
6081 			 */
6082 			while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
6083 				cpu_relax();
6084 		}
6085 
6086 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6087 	}
6088 }
6089 
6090 /**
6091  * print_scx_info - print out sched_ext scheduler state
6092  * @log_lvl: the log level to use when printing
6093  * @p: target task
6094  *
6095  * If a sched_ext scheduler is enabled, print the name and state of the
6096  * scheduler. If @p is on sched_ext, print further information about the task.
6097  *
6098  * This function can be safely called on any task as long as the task_struct
6099  * itself is accessible. While safe, this function isn't synchronized and may
6100  * print out mixups or garbages of limited length.
6101  */
6102 void print_scx_info(const char *log_lvl, struct task_struct *p)
6103 {
6104 	enum scx_ops_enable_state state = scx_ops_enable_state();
6105 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
6106 	char runnable_at_buf[22] = "?";
6107 	struct sched_class *class;
6108 	unsigned long runnable_at;
6109 
6110 	if (state == SCX_OPS_DISABLED)
6111 		return;
6112 
6113 	/*
6114 	 * Carefully check if the task was running on sched_ext, and then
6115 	 * carefully copy the time it's been runnable, and its state.
6116 	 */
6117 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
6118 	    class != &ext_sched_class) {
6119 		printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
6120 		       scx_ops_enable_state_str[state], all);
6121 		return;
6122 	}
6123 
6124 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
6125 				      sizeof(runnable_at)))
6126 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
6127 			  jiffies_delta_msecs(runnable_at, jiffies));
6128 
6129 	/* print everything onto one line to conserve console space */
6130 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
6131 	       log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
6132 	       runnable_at_buf);
6133 }
6134 
6135 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
6136 {
6137 	/*
6138 	 * SCX schedulers often have userspace components which are sometimes
6139 	 * involved in critial scheduling paths. PM operations involve freezing
6140 	 * userspace which can lead to scheduling misbehaviors including stalls.
6141 	 * Let's bypass while PM operations are in progress.
6142 	 */
6143 	switch (event) {
6144 	case PM_HIBERNATION_PREPARE:
6145 	case PM_SUSPEND_PREPARE:
6146 	case PM_RESTORE_PREPARE:
6147 		scx_ops_bypass(true);
6148 		break;
6149 	case PM_POST_HIBERNATION:
6150 	case PM_POST_SUSPEND:
6151 	case PM_POST_RESTORE:
6152 		scx_ops_bypass(false);
6153 		break;
6154 	}
6155 
6156 	return NOTIFY_OK;
6157 }
6158 
6159 static struct notifier_block scx_pm_notifier = {
6160 	.notifier_call = scx_pm_handler,
6161 };
6162 
6163 void __init init_sched_ext_class(void)
6164 {
6165 	s32 cpu, v;
6166 
6167 	/*
6168 	 * The following is to prevent the compiler from optimizing out the enum
6169 	 * definitions so that BPF scheduler implementations can use them
6170 	 * through the generated vmlinux.h.
6171 	 */
6172 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
6173 		   SCX_TG_ONLINE);
6174 
6175 	BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
6176 #ifdef CONFIG_SMP
6177 	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
6178 	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
6179 #endif
6180 	scx_kick_cpus_pnt_seqs =
6181 		__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
6182 			       __alignof__(scx_kick_cpus_pnt_seqs[0]));
6183 	BUG_ON(!scx_kick_cpus_pnt_seqs);
6184 
6185 	for_each_possible_cpu(cpu) {
6186 		struct rq *rq = cpu_rq(cpu);
6187 
6188 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
6189 		INIT_LIST_HEAD(&rq->scx.runnable_list);
6190 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
6191 
6192 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
6193 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
6194 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
6195 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
6196 		init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
6197 		init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
6198 
6199 		if (cpu_online(cpu))
6200 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
6201 	}
6202 
6203 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
6204 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
6205 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
6206 }
6207 
6208 
6209 /********************************************************************************
6210  * Helpers that can be called from the BPF scheduler.
6211  */
6212 #include <linux/btf_ids.h>
6213 
6214 __bpf_kfunc_start_defs();
6215 
6216 /**
6217  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
6218  * @p: task_struct to select a CPU for
6219  * @prev_cpu: CPU @p was on previously
6220  * @wake_flags: %SCX_WAKE_* flags
6221  * @is_idle: out parameter indicating whether the returned CPU is idle
6222  *
6223  * Can only be called from ops.select_cpu() if the built-in CPU selection is
6224  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
6225  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
6226  *
6227  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
6228  * currently idle and thus a good candidate for direct dispatching.
6229  */
6230 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
6231 				       u64 wake_flags, bool *is_idle)
6232 {
6233 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6234 		scx_ops_error("built-in idle tracking is disabled");
6235 		goto prev_cpu;
6236 	}
6237 
6238 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
6239 		goto prev_cpu;
6240 
6241 #ifdef CONFIG_SMP
6242 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
6243 #endif
6244 
6245 prev_cpu:
6246 	*is_idle = false;
6247 	return prev_cpu;
6248 }
6249 
6250 __bpf_kfunc_end_defs();
6251 
6252 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
6253 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
6254 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
6255 
6256 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
6257 	.owner			= THIS_MODULE,
6258 	.set			= &scx_kfunc_ids_select_cpu,
6259 };
6260 
6261 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags)
6262 {
6263 	if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
6264 		return false;
6265 
6266 	lockdep_assert_irqs_disabled();
6267 
6268 	if (unlikely(!p)) {
6269 		scx_ops_error("called with NULL task");
6270 		return false;
6271 	}
6272 
6273 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
6274 		scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
6275 		return false;
6276 	}
6277 
6278 	return true;
6279 }
6280 
6281 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id,
6282 				  u64 enq_flags)
6283 {
6284 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6285 	struct task_struct *ddsp_task;
6286 
6287 	ddsp_task = __this_cpu_read(direct_dispatch_task);
6288 	if (ddsp_task) {
6289 		mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
6290 		return;
6291 	}
6292 
6293 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
6294 		scx_ops_error("dispatch buffer overflow");
6295 		return;
6296 	}
6297 
6298 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
6299 		.task = p,
6300 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
6301 		.dsq_id = dsq_id,
6302 		.enq_flags = enq_flags,
6303 	};
6304 }
6305 
6306 __bpf_kfunc_start_defs();
6307 
6308 /**
6309  * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
6310  * @p: task_struct to insert
6311  * @dsq_id: DSQ to insert into
6312  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6313  * @enq_flags: SCX_ENQ_*
6314  *
6315  * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
6316  * call this function spuriously. Can be called from ops.enqueue(),
6317  * ops.select_cpu(), and ops.dispatch().
6318  *
6319  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
6320  * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
6321  * used to target the local DSQ of a CPU other than the enqueueing one. Use
6322  * ops.select_cpu() to be on the target CPU in the first place.
6323  *
6324  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
6325  * will be directly inserted into the corresponding dispatch queue after
6326  * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
6327  * inserted into the local DSQ of the CPU returned by ops.select_cpu().
6328  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
6329  * task is inserted.
6330  *
6331  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
6332  * and this function can be called upto ops.dispatch_max_batch times to insert
6333  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6334  * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6335  *
6336  * This function doesn't have any locking restrictions and may be called under
6337  * BPF locks (in the future when BPF introduces more flexible locking).
6338  *
6339  * @p is allowed to run for @slice. The scheduling path is triggered on slice
6340  * exhaustion. If zero, the current residual slice is maintained. If
6341  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6342  * scx_bpf_kick_cpu() to trigger scheduling.
6343  */
6344 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
6345 				    u64 enq_flags)
6346 {
6347 	if (!scx_dsq_insert_preamble(p, enq_flags))
6348 		return;
6349 
6350 	if (slice)
6351 		p->scx.slice = slice;
6352 	else
6353 		p->scx.slice = p->scx.slice ?: 1;
6354 
6355 	scx_dsq_insert_commit(p, dsq_id, enq_flags);
6356 }
6357 
6358 /* for backward compatibility, will be removed in v6.15 */
6359 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6360 				  u64 enq_flags)
6361 {
6362 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()");
6363 	scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags);
6364 }
6365 
6366 /**
6367  * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
6368  * @p: task_struct to insert
6369  * @dsq_id: DSQ to insert into
6370  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6371  * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6372  * @enq_flags: SCX_ENQ_*
6373  *
6374  * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
6375  * Tasks queued into the priority queue are ordered by @vtime. All other aspects
6376  * are identical to scx_bpf_dsq_insert().
6377  *
6378  * @vtime ordering is according to time_before64() which considers wrapping. A
6379  * numerically larger vtime may indicate an earlier position in the ordering and
6380  * vice-versa.
6381  *
6382  * A DSQ can only be used as a FIFO or priority queue at any given time and this
6383  * function must not be called on a DSQ which already has one or more FIFO tasks
6384  * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
6385  * SCX_DSQ_GLOBAL) cannot be used as priority queues.
6386  */
6387 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
6388 					  u64 slice, u64 vtime, u64 enq_flags)
6389 {
6390 	if (!scx_dsq_insert_preamble(p, enq_flags))
6391 		return;
6392 
6393 	if (slice)
6394 		p->scx.slice = slice;
6395 	else
6396 		p->scx.slice = p->scx.slice ?: 1;
6397 
6398 	p->scx.dsq_vtime = vtime;
6399 
6400 	scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6401 }
6402 
6403 /* for backward compatibility, will be removed in v6.15 */
6404 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6405 					u64 slice, u64 vtime, u64 enq_flags)
6406 {
6407 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()");
6408 	scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags);
6409 }
6410 
6411 __bpf_kfunc_end_defs();
6412 
6413 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6414 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
6415 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
6416 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6417 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6418 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6419 
6420 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6421 	.owner			= THIS_MODULE,
6422 	.set			= &scx_kfunc_ids_enqueue_dispatch,
6423 };
6424 
6425 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit,
6426 				  struct task_struct *p, u64 dsq_id,
6427 				  u64 enq_flags)
6428 {
6429 	struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6430 	struct rq *this_rq, *src_rq, *locked_rq;
6431 	bool dispatched = false;
6432 	bool in_balance;
6433 	unsigned long flags;
6434 
6435 	if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6436 		return false;
6437 
6438 	/*
6439 	 * Can be called from either ops.dispatch() locking this_rq() or any
6440 	 * context where no rq lock is held. If latter, lock @p's task_rq which
6441 	 * we'll likely need anyway.
6442 	 */
6443 	src_rq = task_rq(p);
6444 
6445 	local_irq_save(flags);
6446 	this_rq = this_rq();
6447 	in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6448 
6449 	if (in_balance) {
6450 		if (this_rq != src_rq) {
6451 			raw_spin_rq_unlock(this_rq);
6452 			raw_spin_rq_lock(src_rq);
6453 		}
6454 	} else {
6455 		raw_spin_rq_lock(src_rq);
6456 	}
6457 
6458 	/*
6459 	 * If the BPF scheduler keeps calling this function repeatedly, it can
6460 	 * cause similar live-lock conditions as consume_dispatch_q(). Insert a
6461 	 * breather if necessary.
6462 	 */
6463 	scx_ops_breather(src_rq);
6464 
6465 	locked_rq = src_rq;
6466 	raw_spin_lock(&src_dsq->lock);
6467 
6468 	/*
6469 	 * Did someone else get to it? @p could have already left $src_dsq, got
6470 	 * re-enqueud, or be in the process of being consumed by someone else.
6471 	 */
6472 	if (unlikely(p->scx.dsq != src_dsq ||
6473 		     u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6474 		     p->scx.holding_cpu >= 0) ||
6475 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
6476 		raw_spin_unlock(&src_dsq->lock);
6477 		goto out;
6478 	}
6479 
6480 	/* @p is still on $src_dsq and stable, determine the destination */
6481 	dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6482 
6483 	/*
6484 	 * Apply vtime and slice updates before moving so that the new time is
6485 	 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
6486 	 * this is safe as we're locking it.
6487 	 */
6488 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6489 		p->scx.dsq_vtime = kit->vtime;
6490 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6491 		p->scx.slice = kit->slice;
6492 
6493 	/* execute move */
6494 	locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
6495 	dispatched = true;
6496 out:
6497 	if (in_balance) {
6498 		if (this_rq != locked_rq) {
6499 			raw_spin_rq_unlock(locked_rq);
6500 			raw_spin_rq_lock(this_rq);
6501 		}
6502 	} else {
6503 		raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6504 	}
6505 
6506 	kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6507 			       __SCX_DSQ_ITER_HAS_VTIME);
6508 	return dispatched;
6509 }
6510 
6511 __bpf_kfunc_start_defs();
6512 
6513 /**
6514  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6515  *
6516  * Can only be called from ops.dispatch().
6517  */
6518 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6519 {
6520 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6521 		return 0;
6522 
6523 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6524 }
6525 
6526 /**
6527  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6528  *
6529  * Cancel the latest dispatch. Can be called multiple times to cancel further
6530  * dispatches. Can only be called from ops.dispatch().
6531  */
6532 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6533 {
6534 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6535 
6536 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6537 		return;
6538 
6539 	if (dspc->cursor > 0)
6540 		dspc->cursor--;
6541 	else
6542 		scx_ops_error("dispatch buffer underflow");
6543 }
6544 
6545 /**
6546  * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6547  * @dsq_id: DSQ to move task from
6548  *
6549  * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6550  * local DSQ for execution. Can only be called from ops.dispatch().
6551  *
6552  * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6553  * before trying to move from the specified DSQ. It may also grab rq locks and
6554  * thus can't be called under any BPF locks.
6555  *
6556  * Returns %true if a task has been moved, %false if there isn't any task to
6557  * move.
6558  */
6559 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6560 {
6561 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6562 	struct scx_dispatch_q *dsq;
6563 
6564 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6565 		return false;
6566 
6567 	flush_dispatch_buf(dspc->rq);
6568 
6569 	dsq = find_user_dsq(dsq_id);
6570 	if (unlikely(!dsq)) {
6571 		scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6572 		return false;
6573 	}
6574 
6575 	if (consume_dispatch_q(dspc->rq, dsq)) {
6576 		/*
6577 		 * A successfully consumed task can be dequeued before it starts
6578 		 * running while the CPU is trying to migrate other dispatched
6579 		 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6580 		 * local DSQ.
6581 		 */
6582 		dspc->nr_tasks++;
6583 		return true;
6584 	} else {
6585 		return false;
6586 	}
6587 }
6588 
6589 /* for backward compatibility, will be removed in v6.15 */
6590 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6591 {
6592 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()");
6593 	return scx_bpf_dsq_move_to_local(dsq_id);
6594 }
6595 
6596 /**
6597  * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ
6598  * @it__iter: DSQ iterator in progress
6599  * @slice: duration the dispatched task can run for in nsecs
6600  *
6601  * Override the slice of the next task that will be dispatched from @it__iter
6602  * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called,
6603  * the previous slice duration is kept.
6604  */
6605 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6606 				struct bpf_iter_scx_dsq *it__iter, u64 slice)
6607 {
6608 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6609 
6610 	kit->slice = slice;
6611 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6612 }
6613 
6614 /**
6615  * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ
6616  * @it__iter: DSQ iterator in progress
6617  * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6618  *
6619  * Override the vtime of the next task that will be dispatched from @it__iter
6620  * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the
6621  * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to
6622  * dispatch the next task, the override is ignored and cleared.
6623  */
6624 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6625 				struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6626 {
6627 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6628 
6629 	kit->vtime = vtime;
6630 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6631 }
6632 
6633 /**
6634  * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ
6635  * @it__iter: DSQ iterator in progress
6636  * @p: task to transfer
6637  * @dsq_id: DSQ to move @p to
6638  * @enq_flags: SCX_ENQ_*
6639  *
6640  * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6641  * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6642  * be the destination.
6643  *
6644  * For the transfer to be successful, @p must still be on the DSQ and have been
6645  * queued before the DSQ iteration started. This function doesn't care whether
6646  * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6647  * been queued before the iteration started.
6648  *
6649  * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to
6650  * update.
6651  *
6652  * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6653  * lock (e.g. BPF timers or SYSCALL programs).
6654  *
6655  * Returns %true if @p has been consumed, %false if @p had already been consumed
6656  * or dequeued.
6657  */
6658 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6659 					   struct task_struct *p, u64 dsq_id,
6660 					   u64 enq_flags)
6661 {
6662 	return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6663 				     p, dsq_id, enq_flags);
6664 }
6665 
6666 /**
6667  * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ
6668  * @it__iter: DSQ iterator in progress
6669  * @p: task to transfer
6670  * @dsq_id: DSQ to move @p to
6671  * @enq_flags: SCX_ENQ_*
6672  *
6673  * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6674  * priority queue of the DSQ specified by @dsq_id. The destination must be a
6675  * user DSQ as only user DSQs support priority queue.
6676  *
6677  * @p's slice and vtime are kept by default. Use
6678  * scx_bpf_dispatch_from_dsq_set_slice() and
6679  * scx_bpf_dispatch_from_dsq_set_vtime() to update.
6680  *
6681  * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See
6682  * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6683  */
6684 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6685 						 struct task_struct *p, u64 dsq_id,
6686 						 u64 enq_flags)
6687 {
6688 	return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter,
6689 				     p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6690 }
6691 
6692 __bpf_kfunc_end_defs();
6693 
6694 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6695 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6696 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6697 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6698 BTF_ID_FLAGS(func, scx_bpf_consume)
6699 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6700 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6701 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6702 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6703 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6704 
6705 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6706 	.owner			= THIS_MODULE,
6707 	.set			= &scx_kfunc_ids_dispatch,
6708 };
6709 
6710 __bpf_kfunc_start_defs();
6711 
6712 /**
6713  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6714  *
6715  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6716  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6717  * processed tasks. Can only be called from ops.cpu_release().
6718  */
6719 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6720 {
6721 	LIST_HEAD(tasks);
6722 	u32 nr_enqueued = 0;
6723 	struct rq *rq;
6724 	struct task_struct *p, *n;
6725 
6726 	if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6727 		return 0;
6728 
6729 	rq = cpu_rq(smp_processor_id());
6730 	lockdep_assert_rq_held(rq);
6731 
6732 	/*
6733 	 * The BPF scheduler may choose to dispatch tasks back to
6734 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6735 	 * first to avoid processing the same tasks repeatedly.
6736 	 */
6737 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6738 				 scx.dsq_list.node) {
6739 		/*
6740 		 * If @p is being migrated, @p's current CPU may not agree with
6741 		 * its allowed CPUs and the migration_cpu_stop is about to
6742 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6743 		 *
6744 		 * While racing sched property changes may also dequeue and
6745 		 * re-enqueue a migrating task while its current CPU and allowed
6746 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6747 		 * the current local DSQ for running tasks and thus are not
6748 		 * visible to the BPF scheduler.
6749 		 */
6750 		if (p->migration_pending)
6751 			continue;
6752 
6753 		dispatch_dequeue(rq, p);
6754 		list_add_tail(&p->scx.dsq_list.node, &tasks);
6755 	}
6756 
6757 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6758 		list_del_init(&p->scx.dsq_list.node);
6759 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6760 		nr_enqueued++;
6761 	}
6762 
6763 	return nr_enqueued;
6764 }
6765 
6766 __bpf_kfunc_end_defs();
6767 
6768 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6769 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6770 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6771 
6772 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6773 	.owner			= THIS_MODULE,
6774 	.set			= &scx_kfunc_ids_cpu_release,
6775 };
6776 
6777 __bpf_kfunc_start_defs();
6778 
6779 /**
6780  * scx_bpf_create_dsq - Create a custom DSQ
6781  * @dsq_id: DSQ to create
6782  * @node: NUMA node to allocate from
6783  *
6784  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6785  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6786  */
6787 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6788 {
6789 	if (unlikely(node >= (int)nr_node_ids ||
6790 		     (node < 0 && node != NUMA_NO_NODE)))
6791 		return -EINVAL;
6792 	return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6793 }
6794 
6795 __bpf_kfunc_end_defs();
6796 
6797 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6798 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6799 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6800 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6801 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6802 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6803 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6804 
6805 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6806 	.owner			= THIS_MODULE,
6807 	.set			= &scx_kfunc_ids_unlocked,
6808 };
6809 
6810 __bpf_kfunc_start_defs();
6811 
6812 /**
6813  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6814  * @cpu: cpu to kick
6815  * @flags: %SCX_KICK_* flags
6816  *
6817  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6818  * trigger rescheduling on a busy CPU. This can be called from any online
6819  * scx_ops operation and the actual kicking is performed asynchronously through
6820  * an irq work.
6821  */
6822 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6823 {
6824 	struct rq *this_rq;
6825 	unsigned long irq_flags;
6826 
6827 	if (!ops_cpu_valid(cpu, NULL))
6828 		return;
6829 
6830 	local_irq_save(irq_flags);
6831 
6832 	this_rq = this_rq();
6833 
6834 	/*
6835 	 * While bypassing for PM ops, IRQ handling may not be online which can
6836 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
6837 	 * IRQ status update. Suppress kicking.
6838 	 */
6839 	if (scx_rq_bypassing(this_rq))
6840 		goto out;
6841 
6842 	/*
6843 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6844 	 * rq locks. We can probably be smarter and avoid bouncing if called
6845 	 * from ops which don't hold a rq lock.
6846 	 */
6847 	if (flags & SCX_KICK_IDLE) {
6848 		struct rq *target_rq = cpu_rq(cpu);
6849 
6850 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6851 			scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6852 
6853 		if (raw_spin_rq_trylock(target_rq)) {
6854 			if (can_skip_idle_kick(target_rq)) {
6855 				raw_spin_rq_unlock(target_rq);
6856 				goto out;
6857 			}
6858 			raw_spin_rq_unlock(target_rq);
6859 		}
6860 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6861 	} else {
6862 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6863 
6864 		if (flags & SCX_KICK_PREEMPT)
6865 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6866 		if (flags & SCX_KICK_WAIT)
6867 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6868 	}
6869 
6870 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6871 out:
6872 	local_irq_restore(irq_flags);
6873 }
6874 
6875 /**
6876  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6877  * @dsq_id: id of the DSQ
6878  *
6879  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6880  * -%ENOENT is returned.
6881  */
6882 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6883 {
6884 	struct scx_dispatch_q *dsq;
6885 	s32 ret;
6886 
6887 	preempt_disable();
6888 
6889 	if (dsq_id == SCX_DSQ_LOCAL) {
6890 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6891 		goto out;
6892 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6893 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6894 
6895 		if (ops_cpu_valid(cpu, NULL)) {
6896 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6897 			goto out;
6898 		}
6899 	} else {
6900 		dsq = find_user_dsq(dsq_id);
6901 		if (dsq) {
6902 			ret = READ_ONCE(dsq->nr);
6903 			goto out;
6904 		}
6905 	}
6906 	ret = -ENOENT;
6907 out:
6908 	preempt_enable();
6909 	return ret;
6910 }
6911 
6912 /**
6913  * scx_bpf_destroy_dsq - Destroy a custom DSQ
6914  * @dsq_id: DSQ to destroy
6915  *
6916  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6917  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6918  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6919  * which doesn't exist. Can be called from any online scx_ops operations.
6920  */
6921 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6922 {
6923 	destroy_dsq(dsq_id);
6924 }
6925 
6926 /**
6927  * bpf_iter_scx_dsq_new - Create a DSQ iterator
6928  * @it: iterator to initialize
6929  * @dsq_id: DSQ to iterate
6930  * @flags: %SCX_DSQ_ITER_*
6931  *
6932  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6933  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6934  * tasks which are already queued when this function is invoked.
6935  */
6936 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6937 				     u64 flags)
6938 {
6939 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6940 
6941 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6942 		     sizeof(struct bpf_iter_scx_dsq));
6943 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6944 		     __alignof__(struct bpf_iter_scx_dsq));
6945 
6946 	if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6947 		return -EINVAL;
6948 
6949 	kit->dsq = find_user_dsq(dsq_id);
6950 	if (!kit->dsq)
6951 		return -ENOENT;
6952 
6953 	INIT_LIST_HEAD(&kit->cursor.node);
6954 	kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
6955 	kit->cursor.priv = READ_ONCE(kit->dsq->seq);
6956 
6957 	return 0;
6958 }
6959 
6960 /**
6961  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6962  * @it: iterator to progress
6963  *
6964  * Return the next task. See bpf_iter_scx_dsq_new().
6965  */
6966 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6967 {
6968 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6969 	bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6970 	struct task_struct *p;
6971 	unsigned long flags;
6972 
6973 	if (!kit->dsq)
6974 		return NULL;
6975 
6976 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6977 
6978 	if (list_empty(&kit->cursor.node))
6979 		p = NULL;
6980 	else
6981 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6982 
6983 	/*
6984 	 * Only tasks which were queued before the iteration started are
6985 	 * visible. This bounds BPF iterations and guarantees that vtime never
6986 	 * jumps in the other direction while iterating.
6987 	 */
6988 	do {
6989 		p = nldsq_next_task(kit->dsq, p, rev);
6990 	} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6991 
6992 	if (p) {
6993 		if (rev)
6994 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6995 		else
6996 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6997 	} else {
6998 		list_del_init(&kit->cursor.node);
6999 	}
7000 
7001 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7002 
7003 	return p;
7004 }
7005 
7006 /**
7007  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
7008  * @it: iterator to destroy
7009  *
7010  * Undo scx_iter_scx_dsq_new().
7011  */
7012 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
7013 {
7014 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7015 
7016 	if (!kit->dsq)
7017 		return;
7018 
7019 	if (!list_empty(&kit->cursor.node)) {
7020 		unsigned long flags;
7021 
7022 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7023 		list_del_init(&kit->cursor.node);
7024 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7025 	}
7026 	kit->dsq = NULL;
7027 }
7028 
7029 __bpf_kfunc_end_defs();
7030 
7031 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
7032 			 char *fmt, unsigned long long *data, u32 data__sz)
7033 {
7034 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
7035 	s32 ret;
7036 
7037 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
7038 	    (data__sz && !data)) {
7039 		scx_ops_error("invalid data=%p and data__sz=%u",
7040 			      (void *)data, data__sz);
7041 		return -EINVAL;
7042 	}
7043 
7044 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
7045 	if (ret < 0) {
7046 		scx_ops_error("failed to read data fields (%d)", ret);
7047 		return ret;
7048 	}
7049 
7050 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
7051 				  &bprintf_data);
7052 	if (ret < 0) {
7053 		scx_ops_error("format preparation failed (%d)", ret);
7054 		return ret;
7055 	}
7056 
7057 	ret = bstr_printf(line_buf, line_size, fmt,
7058 			  bprintf_data.bin_args);
7059 	bpf_bprintf_cleanup(&bprintf_data);
7060 	if (ret < 0) {
7061 		scx_ops_error("(\"%s\", %p, %u) failed to format",
7062 			      fmt, data, data__sz);
7063 		return ret;
7064 	}
7065 
7066 	return ret;
7067 }
7068 
7069 static s32 bstr_format(struct scx_bstr_buf *buf,
7070 		       char *fmt, unsigned long long *data, u32 data__sz)
7071 {
7072 	return __bstr_format(buf->data, buf->line, sizeof(buf->line),
7073 			     fmt, data, data__sz);
7074 }
7075 
7076 __bpf_kfunc_start_defs();
7077 
7078 /**
7079  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
7080  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
7081  * @fmt: error message format string
7082  * @data: format string parameters packaged using ___bpf_fill() macro
7083  * @data__sz: @data len, must end in '__sz' for the verifier
7084  *
7085  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
7086  * disabling.
7087  */
7088 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
7089 				   unsigned long long *data, u32 data__sz)
7090 {
7091 	unsigned long flags;
7092 
7093 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7094 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7095 		scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
7096 				  scx_exit_bstr_buf.line);
7097 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7098 }
7099 
7100 /**
7101  * scx_bpf_error_bstr - Indicate fatal error
7102  * @fmt: error message format string
7103  * @data: format string parameters packaged using ___bpf_fill() macro
7104  * @data__sz: @data len, must end in '__sz' for the verifier
7105  *
7106  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
7107  * disabling.
7108  */
7109 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
7110 				    u32 data__sz)
7111 {
7112 	unsigned long flags;
7113 
7114 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7115 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7116 		scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
7117 				  scx_exit_bstr_buf.line);
7118 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7119 }
7120 
7121 /**
7122  * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
7123  * @fmt: format string
7124  * @data: format string parameters packaged using ___bpf_fill() macro
7125  * @data__sz: @data len, must end in '__sz' for the verifier
7126  *
7127  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
7128  * dump_task() to generate extra debug dump specific to the BPF scheduler.
7129  *
7130  * The extra dump may be multiple lines. A single line may be split over
7131  * multiple calls. The last line is automatically terminated.
7132  */
7133 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
7134 				   u32 data__sz)
7135 {
7136 	struct scx_dump_data *dd = &scx_dump_data;
7137 	struct scx_bstr_buf *buf = &dd->buf;
7138 	s32 ret;
7139 
7140 	if (raw_smp_processor_id() != dd->cpu) {
7141 		scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
7142 		return;
7143 	}
7144 
7145 	/* append the formatted string to the line buf */
7146 	ret = __bstr_format(buf->data, buf->line + dd->cursor,
7147 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
7148 	if (ret < 0) {
7149 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
7150 			  dd->prefix, fmt, data, data__sz, ret);
7151 		return;
7152 	}
7153 
7154 	dd->cursor += ret;
7155 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
7156 
7157 	if (!dd->cursor)
7158 		return;
7159 
7160 	/*
7161 	 * If the line buf overflowed or ends in a newline, flush it into the
7162 	 * dump. This is to allow the caller to generate a single line over
7163 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
7164 	 * the line buf, the only case which can lead to an unexpected
7165 	 * truncation is when the caller keeps generating newlines in the middle
7166 	 * instead of the end consecutively. Don't do that.
7167 	 */
7168 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
7169 		ops_dump_flush();
7170 }
7171 
7172 /**
7173  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
7174  * @cpu: CPU of interest
7175  *
7176  * Return the maximum relative capacity of @cpu in relation to the most
7177  * performant CPU in the system. The return value is in the range [1,
7178  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
7179  */
7180 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
7181 {
7182 	if (ops_cpu_valid(cpu, NULL))
7183 		return arch_scale_cpu_capacity(cpu);
7184 	else
7185 		return SCX_CPUPERF_ONE;
7186 }
7187 
7188 /**
7189  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
7190  * @cpu: CPU of interest
7191  *
7192  * Return the current relative performance of @cpu in relation to its maximum.
7193  * The return value is in the range [1, %SCX_CPUPERF_ONE].
7194  *
7195  * The current performance level of a CPU in relation to the maximum performance
7196  * available in the system can be calculated as follows:
7197  *
7198  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
7199  *
7200  * The result is in the range [1, %SCX_CPUPERF_ONE].
7201  */
7202 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
7203 {
7204 	if (ops_cpu_valid(cpu, NULL))
7205 		return arch_scale_freq_capacity(cpu);
7206 	else
7207 		return SCX_CPUPERF_ONE;
7208 }
7209 
7210 /**
7211  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
7212  * @cpu: CPU of interest
7213  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
7214  * @flags: %SCX_CPUPERF_* flags
7215  *
7216  * Set the target performance level of @cpu to @perf. @perf is in linear
7217  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
7218  * schedutil cpufreq governor chooses the target frequency.
7219  *
7220  * The actual performance level chosen, CPU grouping, and the overhead and
7221  * latency of the operations are dependent on the hardware and cpufreq driver in
7222  * use. Consult hardware and cpufreq documentation for more information. The
7223  * current performance level can be monitored using scx_bpf_cpuperf_cur().
7224  */
7225 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
7226 {
7227 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
7228 		scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
7229 		return;
7230 	}
7231 
7232 	if (ops_cpu_valid(cpu, NULL)) {
7233 		struct rq *rq = cpu_rq(cpu);
7234 
7235 		rq->scx.cpuperf_target = perf;
7236 
7237 		rcu_read_lock_sched_notrace();
7238 		cpufreq_update_util(cpu_rq(cpu), 0);
7239 		rcu_read_unlock_sched_notrace();
7240 	}
7241 }
7242 
7243 /**
7244  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
7245  *
7246  * All valid CPU IDs in the system are smaller than the returned value.
7247  */
7248 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
7249 {
7250 	return nr_cpu_ids;
7251 }
7252 
7253 /**
7254  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
7255  */
7256 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
7257 {
7258 	return cpu_possible_mask;
7259 }
7260 
7261 /**
7262  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
7263  */
7264 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
7265 {
7266 	return cpu_online_mask;
7267 }
7268 
7269 /**
7270  * scx_bpf_put_cpumask - Release a possible/online cpumask
7271  * @cpumask: cpumask to release
7272  */
7273 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
7274 {
7275 	/*
7276 	 * Empty function body because we aren't actually acquiring or releasing
7277 	 * a reference to a global cpumask, which is read-only in the caller and
7278 	 * is never released. The acquire / release semantics here are just used
7279 	 * to make the cpumask is a trusted pointer in the caller.
7280 	 */
7281 }
7282 
7283 /**
7284  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
7285  * per-CPU cpumask.
7286  *
7287  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7288  */
7289 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
7290 {
7291 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7292 		scx_ops_error("built-in idle tracking is disabled");
7293 		return cpu_none_mask;
7294 	}
7295 
7296 #ifdef CONFIG_SMP
7297 	return idle_masks.cpu;
7298 #else
7299 	return cpu_none_mask;
7300 #endif
7301 }
7302 
7303 /**
7304  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
7305  * per-physical-core cpumask. Can be used to determine if an entire physical
7306  * core is free.
7307  *
7308  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7309  */
7310 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
7311 {
7312 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7313 		scx_ops_error("built-in idle tracking is disabled");
7314 		return cpu_none_mask;
7315 	}
7316 
7317 #ifdef CONFIG_SMP
7318 	if (sched_smt_active())
7319 		return idle_masks.smt;
7320 	else
7321 		return idle_masks.cpu;
7322 #else
7323 	return cpu_none_mask;
7324 #endif
7325 }
7326 
7327 /**
7328  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
7329  * either the percpu, or SMT idle-tracking cpumask.
7330  */
7331 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
7332 {
7333 	/*
7334 	 * Empty function body because we aren't actually acquiring or releasing
7335 	 * a reference to a global idle cpumask, which is read-only in the
7336 	 * caller and is never released. The acquire / release semantics here
7337 	 * are just used to make the cpumask a trusted pointer in the caller.
7338 	 */
7339 }
7340 
7341 /**
7342  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7343  * @cpu: cpu to test and clear idle for
7344  *
7345  * Returns %true if @cpu was idle and its idle state was successfully cleared.
7346  * %false otherwise.
7347  *
7348  * Unavailable if ops.update_idle() is implemented and
7349  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7350  */
7351 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7352 {
7353 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7354 		scx_ops_error("built-in idle tracking is disabled");
7355 		return false;
7356 	}
7357 
7358 	if (ops_cpu_valid(cpu, NULL))
7359 		return test_and_clear_cpu_idle(cpu);
7360 	else
7361 		return false;
7362 }
7363 
7364 /**
7365  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7366  * @cpus_allowed: Allowed cpumask
7367  * @flags: %SCX_PICK_IDLE_CPU_* flags
7368  *
7369  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7370  * number on success. -%EBUSY if no matching cpu was found.
7371  *
7372  * Idle CPU tracking may race against CPU scheduling state transitions. For
7373  * example, this function may return -%EBUSY as CPUs are transitioning into the
7374  * idle state. If the caller then assumes that there will be dispatch events on
7375  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7376  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7377  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7378  * event in the near future.
7379  *
7380  * Unavailable if ops.update_idle() is implemented and
7381  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7382  */
7383 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7384 				      u64 flags)
7385 {
7386 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7387 		scx_ops_error("built-in idle tracking is disabled");
7388 		return -EBUSY;
7389 	}
7390 
7391 	return scx_pick_idle_cpu(cpus_allowed, flags);
7392 }
7393 
7394 /**
7395  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7396  * @cpus_allowed: Allowed cpumask
7397  * @flags: %SCX_PICK_IDLE_CPU_* flags
7398  *
7399  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7400  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7401  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7402  * empty.
7403  *
7404  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7405  * set, this function can't tell which CPUs are idle and will always pick any
7406  * CPU.
7407  */
7408 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7409 				     u64 flags)
7410 {
7411 	s32 cpu;
7412 
7413 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
7414 		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7415 		if (cpu >= 0)
7416 			return cpu;
7417 	}
7418 
7419 	cpu = cpumask_any_distribute(cpus_allowed);
7420 	if (cpu < nr_cpu_ids)
7421 		return cpu;
7422 	else
7423 		return -EBUSY;
7424 }
7425 
7426 /**
7427  * scx_bpf_task_running - Is task currently running?
7428  * @p: task of interest
7429  */
7430 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7431 {
7432 	return task_rq(p)->curr == p;
7433 }
7434 
7435 /**
7436  * scx_bpf_task_cpu - CPU a task is currently associated with
7437  * @p: task of interest
7438  */
7439 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7440 {
7441 	return task_cpu(p);
7442 }
7443 
7444 /**
7445  * scx_bpf_cpu_rq - Fetch the rq of a CPU
7446  * @cpu: CPU of the rq
7447  */
7448 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7449 {
7450 	if (!ops_cpu_valid(cpu, NULL))
7451 		return NULL;
7452 
7453 	return cpu_rq(cpu);
7454 }
7455 
7456 /**
7457  * scx_bpf_task_cgroup - Return the sched cgroup of a task
7458  * @p: task of interest
7459  *
7460  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7461  * from the scheduler's POV. SCX operations should use this function to
7462  * determine @p's current cgroup as, unlike following @p->cgroups,
7463  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7464  * rq-locked operations. Can be called on the parameter tasks of rq-locked
7465  * operations. The restriction guarantees that @p's rq is locked by the caller.
7466  */
7467 #ifdef CONFIG_CGROUP_SCHED
7468 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7469 {
7470 	struct task_group *tg = p->sched_task_group;
7471 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7472 
7473 	if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7474 		goto out;
7475 
7476 	cgrp = tg_cgrp(tg);
7477 
7478 out:
7479 	cgroup_get(cgrp);
7480 	return cgrp;
7481 }
7482 #endif
7483 
7484 __bpf_kfunc_end_defs();
7485 
7486 BTF_KFUNCS_START(scx_kfunc_ids_any)
7487 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7488 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7489 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7490 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7491 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7492 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7493 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7494 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7495 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7496 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7497 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7498 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7499 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7500 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7501 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7502 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7503 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7504 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7505 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7506 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7507 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7508 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7509 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7510 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7511 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7512 #ifdef CONFIG_CGROUP_SCHED
7513 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7514 #endif
7515 BTF_KFUNCS_END(scx_kfunc_ids_any)
7516 
7517 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7518 	.owner			= THIS_MODULE,
7519 	.set			= &scx_kfunc_ids_any,
7520 };
7521 
7522 static int __init scx_init(void)
7523 {
7524 	int ret;
7525 
7526 	/*
7527 	 * kfunc registration can't be done from init_sched_ext_class() as
7528 	 * register_btf_kfunc_id_set() needs most of the system to be up.
7529 	 *
7530 	 * Some kfuncs are context-sensitive and can only be called from
7531 	 * specific SCX ops. They are grouped into BTF sets accordingly.
7532 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
7533 	 * restrictions. Eventually, the verifier should be able to enforce
7534 	 * them. For now, register them the same and make each kfunc explicitly
7535 	 * check using scx_kf_allowed().
7536 	 */
7537 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7538 					     &scx_kfunc_set_select_cpu)) ||
7539 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7540 					     &scx_kfunc_set_enqueue_dispatch)) ||
7541 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7542 					     &scx_kfunc_set_dispatch)) ||
7543 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7544 					     &scx_kfunc_set_cpu_release)) ||
7545 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7546 					     &scx_kfunc_set_unlocked)) ||
7547 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7548 					     &scx_kfunc_set_unlocked)) ||
7549 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7550 					     &scx_kfunc_set_any)) ||
7551 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7552 					     &scx_kfunc_set_any)) ||
7553 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7554 					     &scx_kfunc_set_any))) {
7555 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7556 		return ret;
7557 	}
7558 
7559 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7560 	if (ret) {
7561 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7562 		return ret;
7563 	}
7564 
7565 	ret = register_pm_notifier(&scx_pm_notifier);
7566 	if (ret) {
7567 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7568 		return ret;
7569 	}
7570 
7571 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7572 	if (!scx_kset) {
7573 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7574 		return -ENOMEM;
7575 	}
7576 
7577 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7578 	if (ret < 0) {
7579 		pr_err("sched_ext: Failed to add global attributes\n");
7580 		return ret;
7581 	}
7582 
7583 	return 0;
7584 }
7585 __initcall(scx_init);
7586