1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_DSP_DFL_MAX_BATCH = 32, 13 SCX_DSP_MAX_LOOPS = 32, 14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 15 16 SCX_EXIT_BT_LEN = 64, 17 SCX_EXIT_MSG_LEN = 1024, 18 SCX_EXIT_DUMP_DFL_LEN = 32768, 19 20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 21 22 /* 23 * Iterating all tasks may take a while. Periodically drop 24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 25 */ 26 SCX_OPS_TASK_ITER_BATCH = 32, 27 }; 28 29 enum scx_exit_kind { 30 SCX_EXIT_NONE, 31 SCX_EXIT_DONE, 32 33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 37 38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 41 }; 42 43 /* 44 * An exit code can be specified when exiting with scx_bpf_exit() or 45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 46 * respectively. The codes are 64bit of the format: 47 * 48 * Bits: [63 .. 48 47 .. 32 31 .. 0] 49 * [ SYS ACT ] [ SYS RSN ] [ USR ] 50 * 51 * SYS ACT: System-defined exit actions 52 * SYS RSN: System-defined exit reasons 53 * USR : User-defined exit codes and reasons 54 * 55 * Using the above, users may communicate intention and context by ORing system 56 * actions and/or system reasons with a user-defined exit code. 57 */ 58 enum scx_exit_code { 59 /* Reasons */ 60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 61 62 /* Actions */ 63 SCX_ECODE_ACT_RESTART = 1LLU << 48, 64 }; 65 66 /* 67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 68 * being disabled. 69 */ 70 struct scx_exit_info { 71 /* %SCX_EXIT_* - broad category of the exit reason */ 72 enum scx_exit_kind kind; 73 74 /* exit code if gracefully exiting */ 75 s64 exit_code; 76 77 /* textual representation of the above */ 78 const char *reason; 79 80 /* backtrace if exiting due to an error */ 81 unsigned long *bt; 82 u32 bt_len; 83 84 /* informational message */ 85 char *msg; 86 87 /* debug dump */ 88 char *dump; 89 }; 90 91 /* sched_ext_ops.flags */ 92 enum scx_ops_flags { 93 /* 94 * Keep built-in idle tracking even if ops.update_idle() is implemented. 95 */ 96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 97 98 /* 99 * By default, if there are no other task to run on the CPU, ext core 100 * keeps running the current task even after its slice expires. If this 101 * flag is specified, such tasks are passed to ops.enqueue() with 102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 103 */ 104 SCX_OPS_ENQ_LAST = 1LLU << 1, 105 106 /* 107 * An exiting task may schedule after PF_EXITING is set. In such cases, 108 * bpf_task_from_pid() may not be able to find the task and if the BPF 109 * scheduler depends on pid lookup for dispatching, the task will be 110 * lost leading to various issues including RCU grace period stalls. 111 * 112 * To mask this problem, by default, unhashed tasks are automatically 113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 114 * depend on pid lookups and wants to handle these tasks directly, the 115 * following flag can be used. 116 */ 117 SCX_OPS_ENQ_EXITING = 1LLU << 2, 118 119 /* 120 * If set, only tasks with policy set to SCHED_EXT are attached to 121 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 122 */ 123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 124 125 /* 126 * CPU cgroup support flags 127 */ 128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 129 130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 131 SCX_OPS_ENQ_LAST | 132 SCX_OPS_ENQ_EXITING | 133 SCX_OPS_SWITCH_PARTIAL | 134 SCX_OPS_HAS_CGROUP_WEIGHT, 135 }; 136 137 /* argument container for ops.init_task() */ 138 struct scx_init_task_args { 139 /* 140 * Set if ops.init_task() is being invoked on the fork path, as opposed 141 * to the scheduler transition path. 142 */ 143 bool fork; 144 #ifdef CONFIG_EXT_GROUP_SCHED 145 /* the cgroup the task is joining */ 146 struct cgroup *cgroup; 147 #endif 148 }; 149 150 /* argument container for ops.exit_task() */ 151 struct scx_exit_task_args { 152 /* Whether the task exited before running on sched_ext. */ 153 bool cancelled; 154 }; 155 156 /* argument container for ops->cgroup_init() */ 157 struct scx_cgroup_init_args { 158 /* the weight of the cgroup [1..10000] */ 159 u32 weight; 160 }; 161 162 enum scx_cpu_preempt_reason { 163 /* next task is being scheduled by &sched_class_rt */ 164 SCX_CPU_PREEMPT_RT, 165 /* next task is being scheduled by &sched_class_dl */ 166 SCX_CPU_PREEMPT_DL, 167 /* next task is being scheduled by &sched_class_stop */ 168 SCX_CPU_PREEMPT_STOP, 169 /* unknown reason for SCX being preempted */ 170 SCX_CPU_PREEMPT_UNKNOWN, 171 }; 172 173 /* 174 * Argument container for ops->cpu_acquire(). Currently empty, but may be 175 * expanded in the future. 176 */ 177 struct scx_cpu_acquire_args {}; 178 179 /* argument container for ops->cpu_release() */ 180 struct scx_cpu_release_args { 181 /* the reason the CPU was preempted */ 182 enum scx_cpu_preempt_reason reason; 183 184 /* the task that's going to be scheduled on the CPU */ 185 struct task_struct *task; 186 }; 187 188 /* 189 * Informational context provided to dump operations. 190 */ 191 struct scx_dump_ctx { 192 enum scx_exit_kind kind; 193 s64 exit_code; 194 const char *reason; 195 u64 at_ns; 196 u64 at_jiffies; 197 }; 198 199 /** 200 * struct sched_ext_ops - Operation table for BPF scheduler implementation 201 * 202 * A BPF scheduler can implement an arbitrary scheduling policy by 203 * implementing and loading operations in this table. Note that a userland 204 * scheduling policy can also be implemented using the BPF scheduler 205 * as a shim layer. 206 */ 207 struct sched_ext_ops { 208 /** 209 * select_cpu - Pick the target CPU for a task which is being woken up 210 * @p: task being woken up 211 * @prev_cpu: the cpu @p was on before sleeping 212 * @wake_flags: SCX_WAKE_* 213 * 214 * Decision made here isn't final. @p may be moved to any CPU while it 215 * is getting dispatched for execution later. However, as @p is not on 216 * the rq at this point, getting the eventual execution CPU right here 217 * saves a small bit of overhead down the line. 218 * 219 * If an idle CPU is returned, the CPU is kicked and will try to 220 * dispatch. While an explicit custom mechanism can be added, 221 * select_cpu() serves as the default way to wake up idle CPUs. 222 * 223 * @p may be inserted into a DSQ directly by calling 224 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 225 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 226 * of the CPU returned by this operation. 227 * 228 * Note that select_cpu() is never called for tasks that can only run 229 * on a single CPU or tasks with migration disabled, as they don't have 230 * the option to select a different CPU. See select_task_rq() for 231 * details. 232 */ 233 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 234 235 /** 236 * enqueue - Enqueue a task on the BPF scheduler 237 * @p: task being enqueued 238 * @enq_flags: %SCX_ENQ_* 239 * 240 * @p is ready to run. Insert directly into a DSQ by calling 241 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 242 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 243 * the task will stall. 244 * 245 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 246 * skipped. 247 */ 248 void (*enqueue)(struct task_struct *p, u64 enq_flags); 249 250 /** 251 * dequeue - Remove a task from the BPF scheduler 252 * @p: task being dequeued 253 * @deq_flags: %SCX_DEQ_* 254 * 255 * Remove @p from the BPF scheduler. This is usually called to isolate 256 * the task while updating its scheduling properties (e.g. priority). 257 * 258 * The ext core keeps track of whether the BPF side owns a given task or 259 * not and can gracefully ignore spurious dispatches from BPF side, 260 * which makes it safe to not implement this method. However, depending 261 * on the scheduling logic, this can lead to confusing behaviors - e.g. 262 * scheduling position not being updated across a priority change. 263 */ 264 void (*dequeue)(struct task_struct *p, u64 deq_flags); 265 266 /** 267 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs 268 * @cpu: CPU to dispatch tasks for 269 * @prev: previous task being switched out 270 * 271 * Called when a CPU's local dsq is empty. The operation should dispatch 272 * one or more tasks from the BPF scheduler into the DSQs using 273 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 274 * using scx_bpf_dsq_move_to_local(). 275 * 276 * The maximum number of times scx_bpf_dsq_insert() can be called 277 * without an intervening scx_bpf_dsq_move_to_local() is specified by 278 * ops.dispatch_max_batch. See the comments on top of the two functions 279 * for more details. 280 * 281 * When not %NULL, @prev is an SCX task with its slice depleted. If 282 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 283 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 284 * ops.dispatch() returns. To keep executing @prev, return without 285 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 286 */ 287 void (*dispatch)(s32 cpu, struct task_struct *prev); 288 289 /** 290 * tick - Periodic tick 291 * @p: task running currently 292 * 293 * This operation is called every 1/HZ seconds on CPUs which are 294 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 295 * immediate dispatch cycle on the CPU. 296 */ 297 void (*tick)(struct task_struct *p); 298 299 /** 300 * runnable - A task is becoming runnable on its associated CPU 301 * @p: task becoming runnable 302 * @enq_flags: %SCX_ENQ_* 303 * 304 * This and the following three functions can be used to track a task's 305 * execution state transitions. A task becomes ->runnable() on a CPU, 306 * and then goes through one or more ->running() and ->stopping() pairs 307 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 308 * done running on the CPU. 309 * 310 * @p is becoming runnable on the CPU because it's 311 * 312 * - waking up (%SCX_ENQ_WAKEUP) 313 * - being moved from another CPU 314 * - being restored after temporarily taken off the queue for an 315 * attribute change. 316 * 317 * This and ->enqueue() are related but not coupled. This operation 318 * notifies @p's state transition and may not be followed by ->enqueue() 319 * e.g. when @p is being dispatched to a remote CPU, or when @p is 320 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 321 * task may be ->enqueue()'d without being preceded by this operation 322 * e.g. after exhausting its slice. 323 */ 324 void (*runnable)(struct task_struct *p, u64 enq_flags); 325 326 /** 327 * running - A task is starting to run on its associated CPU 328 * @p: task starting to run 329 * 330 * See ->runnable() for explanation on the task state notifiers. 331 */ 332 void (*running)(struct task_struct *p); 333 334 /** 335 * stopping - A task is stopping execution 336 * @p: task stopping to run 337 * @runnable: is task @p still runnable? 338 * 339 * See ->runnable() for explanation on the task state notifiers. If 340 * !@runnable, ->quiescent() will be invoked after this operation 341 * returns. 342 */ 343 void (*stopping)(struct task_struct *p, bool runnable); 344 345 /** 346 * quiescent - A task is becoming not runnable on its associated CPU 347 * @p: task becoming not runnable 348 * @deq_flags: %SCX_DEQ_* 349 * 350 * See ->runnable() for explanation on the task state notifiers. 351 * 352 * @p is becoming quiescent on the CPU because it's 353 * 354 * - sleeping (%SCX_DEQ_SLEEP) 355 * - being moved to another CPU 356 * - being temporarily taken off the queue for an attribute change 357 * (%SCX_DEQ_SAVE) 358 * 359 * This and ->dequeue() are related but not coupled. This operation 360 * notifies @p's state transition and may not be preceded by ->dequeue() 361 * e.g. when @p is being dispatched to a remote CPU. 362 */ 363 void (*quiescent)(struct task_struct *p, u64 deq_flags); 364 365 /** 366 * yield - Yield CPU 367 * @from: yielding task 368 * @to: optional yield target task 369 * 370 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 371 * The BPF scheduler should ensure that other available tasks are 372 * dispatched before the yielding task. Return value is ignored in this 373 * case. 374 * 375 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 376 * scheduler can implement the request, return %true; otherwise, %false. 377 */ 378 bool (*yield)(struct task_struct *from, struct task_struct *to); 379 380 /** 381 * core_sched_before - Task ordering for core-sched 382 * @a: task A 383 * @b: task B 384 * 385 * Used by core-sched to determine the ordering between two tasks. See 386 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 387 * core-sched. 388 * 389 * Both @a and @b are runnable and may or may not currently be queued on 390 * the BPF scheduler. Should return %true if @a should run before @b. 391 * %false if there's no required ordering or @b should run before @a. 392 * 393 * If not specified, the default is ordering them according to when they 394 * became runnable. 395 */ 396 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 397 398 /** 399 * set_weight - Set task weight 400 * @p: task to set weight for 401 * @weight: new weight [1..10000] 402 * 403 * Update @p's weight to @weight. 404 */ 405 void (*set_weight)(struct task_struct *p, u32 weight); 406 407 /** 408 * set_cpumask - Set CPU affinity 409 * @p: task to set CPU affinity for 410 * @cpumask: cpumask of cpus that @p can run on 411 * 412 * Update @p's CPU affinity to @cpumask. 413 */ 414 void (*set_cpumask)(struct task_struct *p, 415 const struct cpumask *cpumask); 416 417 /** 418 * update_idle - Update the idle state of a CPU 419 * @cpu: CPU to udpate the idle state for 420 * @idle: whether entering or exiting the idle state 421 * 422 * This operation is called when @rq's CPU goes or leaves the idle 423 * state. By default, implementing this operation disables the built-in 424 * idle CPU tracking and the following helpers become unavailable: 425 * 426 * - scx_bpf_select_cpu_dfl() 427 * - scx_bpf_test_and_clear_cpu_idle() 428 * - scx_bpf_pick_idle_cpu() 429 * 430 * The user also must implement ops.select_cpu() as the default 431 * implementation relies on scx_bpf_select_cpu_dfl(). 432 * 433 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 434 * tracking. 435 */ 436 void (*update_idle)(s32 cpu, bool idle); 437 438 /** 439 * cpu_acquire - A CPU is becoming available to the BPF scheduler 440 * @cpu: The CPU being acquired by the BPF scheduler. 441 * @args: Acquire arguments, see the struct definition. 442 * 443 * A CPU that was previously released from the BPF scheduler is now once 444 * again under its control. 445 */ 446 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 447 448 /** 449 * cpu_release - A CPU is taken away from the BPF scheduler 450 * @cpu: The CPU being released by the BPF scheduler. 451 * @args: Release arguments, see the struct definition. 452 * 453 * The specified CPU is no longer under the control of the BPF 454 * scheduler. This could be because it was preempted by a higher 455 * priority sched_class, though there may be other reasons as well. The 456 * caller should consult @args->reason to determine the cause. 457 */ 458 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 459 460 /** 461 * init_task - Initialize a task to run in a BPF scheduler 462 * @p: task to initialize for BPF scheduling 463 * @args: init arguments, see the struct definition 464 * 465 * Either we're loading a BPF scheduler or a new task is being forked. 466 * Initialize @p for BPF scheduling. This operation may block and can 467 * be used for allocations, and is called exactly once for a task. 468 * 469 * Return 0 for success, -errno for failure. An error return while 470 * loading will abort loading of the BPF scheduler. During a fork, it 471 * will abort that specific fork. 472 */ 473 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 474 475 /** 476 * exit_task - Exit a previously-running task from the system 477 * @p: task to exit 478 * 479 * @p is exiting or the BPF scheduler is being unloaded. Perform any 480 * necessary cleanup for @p. 481 */ 482 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 483 484 /** 485 * enable - Enable BPF scheduling for a task 486 * @p: task to enable BPF scheduling for 487 * 488 * Enable @p for BPF scheduling. enable() is called on @p any time it 489 * enters SCX, and is always paired with a matching disable(). 490 */ 491 void (*enable)(struct task_struct *p); 492 493 /** 494 * disable - Disable BPF scheduling for a task 495 * @p: task to disable BPF scheduling for 496 * 497 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 498 * Disable BPF scheduling for @p. A disable() call is always matched 499 * with a prior enable() call. 500 */ 501 void (*disable)(struct task_struct *p); 502 503 /** 504 * dump - Dump BPF scheduler state on error 505 * @ctx: debug dump context 506 * 507 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 508 */ 509 void (*dump)(struct scx_dump_ctx *ctx); 510 511 /** 512 * dump_cpu - Dump BPF scheduler state for a CPU on error 513 * @ctx: debug dump context 514 * @cpu: CPU to generate debug dump for 515 * @idle: @cpu is currently idle without any runnable tasks 516 * 517 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 518 * @cpu. If @idle is %true and this operation doesn't produce any 519 * output, @cpu is skipped for dump. 520 */ 521 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 522 523 /** 524 * dump_task - Dump BPF scheduler state for a runnable task on error 525 * @ctx: debug dump context 526 * @p: runnable task to generate debug dump for 527 * 528 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 529 * @p. 530 */ 531 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 532 533 #ifdef CONFIG_EXT_GROUP_SCHED 534 /** 535 * cgroup_init - Initialize a cgroup 536 * @cgrp: cgroup being initialized 537 * @args: init arguments, see the struct definition 538 * 539 * Either the BPF scheduler is being loaded or @cgrp created, initialize 540 * @cgrp for sched_ext. This operation may block. 541 * 542 * Return 0 for success, -errno for failure. An error return while 543 * loading will abort loading of the BPF scheduler. During cgroup 544 * creation, it will abort the specific cgroup creation. 545 */ 546 s32 (*cgroup_init)(struct cgroup *cgrp, 547 struct scx_cgroup_init_args *args); 548 549 /** 550 * cgroup_exit - Exit a cgroup 551 * @cgrp: cgroup being exited 552 * 553 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 554 * @cgrp for sched_ext. This operation my block. 555 */ 556 void (*cgroup_exit)(struct cgroup *cgrp); 557 558 /** 559 * cgroup_prep_move - Prepare a task to be moved to a different cgroup 560 * @p: task being moved 561 * @from: cgroup @p is being moved from 562 * @to: cgroup @p is being moved to 563 * 564 * Prepare @p for move from cgroup @from to @to. This operation may 565 * block and can be used for allocations. 566 * 567 * Return 0 for success, -errno for failure. An error return aborts the 568 * migration. 569 */ 570 s32 (*cgroup_prep_move)(struct task_struct *p, 571 struct cgroup *from, struct cgroup *to); 572 573 /** 574 * cgroup_move - Commit cgroup move 575 * @p: task being moved 576 * @from: cgroup @p is being moved from 577 * @to: cgroup @p is being moved to 578 * 579 * Commit the move. @p is dequeued during this operation. 580 */ 581 void (*cgroup_move)(struct task_struct *p, 582 struct cgroup *from, struct cgroup *to); 583 584 /** 585 * cgroup_cancel_move - Cancel cgroup move 586 * @p: task whose cgroup move is being canceled 587 * @from: cgroup @p was being moved from 588 * @to: cgroup @p was being moved to 589 * 590 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 591 * Undo the preparation. 592 */ 593 void (*cgroup_cancel_move)(struct task_struct *p, 594 struct cgroup *from, struct cgroup *to); 595 596 /** 597 * cgroup_set_weight - A cgroup's weight is being changed 598 * @cgrp: cgroup whose weight is being updated 599 * @weight: new weight [1..10000] 600 * 601 * Update @tg's weight to @weight. 602 */ 603 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 604 #endif /* CONFIG_EXT_GROUP_SCHED */ 605 606 /* 607 * All online ops must come before ops.cpu_online(). 608 */ 609 610 /** 611 * cpu_online - A CPU became online 612 * @cpu: CPU which just came up 613 * 614 * @cpu just came online. @cpu will not call ops.enqueue() or 615 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 616 */ 617 void (*cpu_online)(s32 cpu); 618 619 /** 620 * cpu_offline - A CPU is going offline 621 * @cpu: CPU which is going offline 622 * 623 * @cpu is going offline. @cpu will not call ops.enqueue() or 624 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 625 */ 626 void (*cpu_offline)(s32 cpu); 627 628 /* 629 * All CPU hotplug ops must come before ops.init(). 630 */ 631 632 /** 633 * init - Initialize the BPF scheduler 634 */ 635 s32 (*init)(void); 636 637 /** 638 * exit - Clean up after the BPF scheduler 639 * @info: Exit info 640 * 641 * ops.exit() is also called on ops.init() failure, which is a bit 642 * unusual. This is to allow rich reporting through @info on how 643 * ops.init() failed. 644 */ 645 void (*exit)(struct scx_exit_info *info); 646 647 /** 648 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 649 */ 650 u32 dispatch_max_batch; 651 652 /** 653 * flags - %SCX_OPS_* flags 654 */ 655 u64 flags; 656 657 /** 658 * timeout_ms - The maximum amount of time, in milliseconds, that a 659 * runnable task should be able to wait before being scheduled. The 660 * maximum timeout may not exceed the default timeout of 30 seconds. 661 * 662 * Defaults to the maximum allowed timeout value of 30 seconds. 663 */ 664 u32 timeout_ms; 665 666 /** 667 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 668 * value of 32768 is used. 669 */ 670 u32 exit_dump_len; 671 672 /** 673 * hotplug_seq - A sequence number that may be set by the scheduler to 674 * detect when a hotplug event has occurred during the loading process. 675 * If 0, no detection occurs. Otherwise, the scheduler will fail to 676 * load if the sequence number does not match @scx_hotplug_seq on the 677 * enable path. 678 */ 679 u64 hotplug_seq; 680 681 /** 682 * name - BPF scheduler's name 683 * 684 * Must be a non-zero valid BPF object name including only isalnum(), 685 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 686 * BPF scheduler is enabled. 687 */ 688 char name[SCX_OPS_NAME_LEN]; 689 }; 690 691 enum scx_opi { 692 SCX_OPI_BEGIN = 0, 693 SCX_OPI_NORMAL_BEGIN = 0, 694 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 695 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 696 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 697 SCX_OPI_END = SCX_OP_IDX(init), 698 }; 699 700 enum scx_wake_flags { 701 /* expose select WF_* flags as enums */ 702 SCX_WAKE_FORK = WF_FORK, 703 SCX_WAKE_TTWU = WF_TTWU, 704 SCX_WAKE_SYNC = WF_SYNC, 705 }; 706 707 enum scx_enq_flags { 708 /* expose select ENQUEUE_* flags as enums */ 709 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 710 SCX_ENQ_HEAD = ENQUEUE_HEAD, 711 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 712 713 /* high 32bits are SCX specific */ 714 715 /* 716 * Set the following to trigger preemption when calling 717 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 718 * current task is cleared to zero and the CPU is kicked into the 719 * scheduling path. Implies %SCX_ENQ_HEAD. 720 */ 721 SCX_ENQ_PREEMPT = 1LLU << 32, 722 723 /* 724 * The task being enqueued was previously enqueued on the current CPU's 725 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 726 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 727 * invoked in a ->cpu_release() callback, and the task is again 728 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 729 * task will not be scheduled on the CPU until at least the next invocation 730 * of the ->cpu_acquire() callback. 731 */ 732 SCX_ENQ_REENQ = 1LLU << 40, 733 734 /* 735 * The task being enqueued is the only task available for the cpu. By 736 * default, ext core keeps executing such tasks but when 737 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 738 * %SCX_ENQ_LAST flag set. 739 * 740 * The BPF scheduler is responsible for triggering a follow-up 741 * scheduling event. Otherwise, Execution may stall. 742 */ 743 SCX_ENQ_LAST = 1LLU << 41, 744 745 /* high 8 bits are internal */ 746 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 747 748 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 749 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 750 }; 751 752 enum scx_deq_flags { 753 /* expose select DEQUEUE_* flags as enums */ 754 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 755 756 /* high 32bits are SCX specific */ 757 758 /* 759 * The generic core-sched layer decided to execute the task even though 760 * it hasn't been dispatched yet. Dequeue from the BPF side. 761 */ 762 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 763 }; 764 765 enum scx_pick_idle_cpu_flags { 766 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 767 }; 768 769 enum scx_kick_flags { 770 /* 771 * Kick the target CPU if idle. Guarantees that the target CPU goes 772 * through at least one full scheduling cycle before going idle. If the 773 * target CPU can be determined to be currently not idle and going to go 774 * through a scheduling cycle before going idle, noop. 775 */ 776 SCX_KICK_IDLE = 1LLU << 0, 777 778 /* 779 * Preempt the current task and execute the dispatch path. If the 780 * current task of the target CPU is an SCX task, its ->scx.slice is 781 * cleared to zero before the scheduling path is invoked so that the 782 * task expires and the dispatch path is invoked. 783 */ 784 SCX_KICK_PREEMPT = 1LLU << 1, 785 786 /* 787 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 788 * return after the target CPU finishes picking the next task. 789 */ 790 SCX_KICK_WAIT = 1LLU << 2, 791 }; 792 793 enum scx_tg_flags { 794 SCX_TG_ONLINE = 1U << 0, 795 SCX_TG_INITED = 1U << 1, 796 }; 797 798 enum scx_ops_enable_state { 799 SCX_OPS_ENABLING, 800 SCX_OPS_ENABLED, 801 SCX_OPS_DISABLING, 802 SCX_OPS_DISABLED, 803 }; 804 805 static const char *scx_ops_enable_state_str[] = { 806 [SCX_OPS_ENABLING] = "enabling", 807 [SCX_OPS_ENABLED] = "enabled", 808 [SCX_OPS_DISABLING] = "disabling", 809 [SCX_OPS_DISABLED] = "disabled", 810 }; 811 812 /* 813 * sched_ext_entity->ops_state 814 * 815 * Used to track the task ownership between the SCX core and the BPF scheduler. 816 * State transitions look as follows: 817 * 818 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 819 * ^ | | 820 * | v v 821 * \-------------------------------/ 822 * 823 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 824 * sites for explanations on the conditions being waited upon and why they are 825 * safe. Transitions out of them into NONE or QUEUED must store_release and the 826 * waiters should load_acquire. 827 * 828 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 829 * any given task can be dispatched by the BPF scheduler at all times and thus 830 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 831 * to try to dispatch any task anytime regardless of its state as the SCX core 832 * can safely reject invalid dispatches. 833 */ 834 enum scx_ops_state { 835 SCX_OPSS_NONE, /* owned by the SCX core */ 836 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 837 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 838 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 839 840 /* 841 * QSEQ brands each QUEUED instance so that, when dispatch races 842 * dequeue/requeue, the dispatcher can tell whether it still has a claim 843 * on the task being dispatched. 844 * 845 * As some 32bit archs can't do 64bit store_release/load_acquire, 846 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 847 * 32bit machines. The dispatch race window QSEQ protects is very narrow 848 * and runs with IRQ disabled. 30 bits should be sufficient. 849 */ 850 SCX_OPSS_QSEQ_SHIFT = 2, 851 }; 852 853 /* Use macros to ensure that the type is unsigned long for the masks */ 854 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 855 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 856 857 /* 858 * During exit, a task may schedule after losing its PIDs. When disabling the 859 * BPF scheduler, we need to be able to iterate tasks in every state to 860 * guarantee system safety. Maintain a dedicated task list which contains every 861 * task between its fork and eventual free. 862 */ 863 static DEFINE_SPINLOCK(scx_tasks_lock); 864 static LIST_HEAD(scx_tasks); 865 866 /* ops enable/disable */ 867 static struct kthread_worker *scx_ops_helper; 868 static DEFINE_MUTEX(scx_ops_enable_mutex); 869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 871 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 872 static unsigned long scx_in_softlockup; 873 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0); 874 static int scx_ops_bypass_depth; 875 static bool scx_ops_init_task_enabled; 876 static bool scx_switching_all; 877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 878 879 static struct sched_ext_ops scx_ops; 880 static bool scx_warned_zero_slice; 881 882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 886 887 #ifdef CONFIG_SMP 888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); 889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); 890 #endif 891 892 static struct static_key_false scx_has_op[SCX_OPI_END] = 893 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 894 895 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 896 static struct scx_exit_info *scx_exit_info; 897 898 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 899 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 900 901 /* 902 * A monotically increasing sequence number that is incremented every time a 903 * scheduler is enabled. This can be used by to check if any custom sched_ext 904 * scheduler has ever been used in the system. 905 */ 906 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 907 908 /* 909 * The maximum amount of time in jiffies that a task may be runnable without 910 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 911 * scx_ops_error(). 912 */ 913 static unsigned long scx_watchdog_timeout; 914 915 /* 916 * The last time the delayed work was run. This delayed work relies on 917 * ksoftirqd being able to run to service timer interrupts, so it's possible 918 * that this work itself could get wedged. To account for this, we check that 919 * it's not stalled in the timer tick, and trigger an error if it is. 920 */ 921 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 922 923 static struct delayed_work scx_watchdog_work; 924 925 /* idle tracking */ 926 #ifdef CONFIG_SMP 927 #ifdef CONFIG_CPUMASK_OFFSTACK 928 #define CL_ALIGNED_IF_ONSTACK 929 #else 930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 931 #endif 932 933 static struct { 934 cpumask_var_t cpu; 935 cpumask_var_t smt; 936 } idle_masks CL_ALIGNED_IF_ONSTACK; 937 938 #endif /* CONFIG_SMP */ 939 940 /* for %SCX_KICK_WAIT */ 941 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 942 943 /* 944 * Direct dispatch marker. 945 * 946 * Non-NULL values are used for direct dispatch from enqueue path. A valid 947 * pointer points to the task currently being enqueued. An ERR_PTR value is used 948 * to indicate that direct dispatch has already happened. 949 */ 950 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 951 952 /* 953 * Dispatch queues. 954 * 955 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 956 * to avoid live-locking in bypass mode where all tasks are dispatched to 957 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 958 * sufficient, it can be further split. 959 */ 960 static struct scx_dispatch_q **global_dsqs; 961 962 static const struct rhashtable_params dsq_hash_params = { 963 .key_len = 8, 964 .key_offset = offsetof(struct scx_dispatch_q, id), 965 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 966 }; 967 968 static struct rhashtable dsq_hash; 969 static LLIST_HEAD(dsqs_to_free); 970 971 /* dispatch buf */ 972 struct scx_dsp_buf_ent { 973 struct task_struct *task; 974 unsigned long qseq; 975 u64 dsq_id; 976 u64 enq_flags; 977 }; 978 979 static u32 scx_dsp_max_batch; 980 981 struct scx_dsp_ctx { 982 struct rq *rq; 983 u32 cursor; 984 u32 nr_tasks; 985 struct scx_dsp_buf_ent buf[]; 986 }; 987 988 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 989 990 /* string formatting from BPF */ 991 struct scx_bstr_buf { 992 u64 data[MAX_BPRINTF_VARARGS]; 993 char line[SCX_EXIT_MSG_LEN]; 994 }; 995 996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 997 static struct scx_bstr_buf scx_exit_bstr_buf; 998 999 /* ops debug dump */ 1000 struct scx_dump_data { 1001 s32 cpu; 1002 bool first; 1003 s32 cursor; 1004 struct seq_buf *s; 1005 const char *prefix; 1006 struct scx_bstr_buf buf; 1007 }; 1008 1009 static struct scx_dump_data scx_dump_data = { 1010 .cpu = -1, 1011 }; 1012 1013 /* /sys/kernel/sched_ext interface */ 1014 static struct kset *scx_kset; 1015 static struct kobject *scx_root_kobj; 1016 1017 #define CREATE_TRACE_POINTS 1018 #include <trace/events/sched_ext.h> 1019 1020 static void process_ddsp_deferred_locals(struct rq *rq); 1021 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1023 s64 exit_code, 1024 const char *fmt, ...); 1025 1026 #define scx_ops_error_kind(err, fmt, args...) \ 1027 scx_ops_exit_kind((err), 0, fmt, ##args) 1028 1029 #define scx_ops_exit(code, fmt, args...) \ 1030 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1031 1032 #define scx_ops_error(fmt, args...) \ 1033 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1034 1035 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1036 1037 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1038 { 1039 if (time_after(at, now)) 1040 return jiffies_to_msecs(at - now); 1041 else 1042 return -(long)jiffies_to_msecs(now - at); 1043 } 1044 1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1046 static u32 higher_bits(u32 flags) 1047 { 1048 return ~((1 << fls(flags)) - 1); 1049 } 1050 1051 /* return the mask with only the highest bit set */ 1052 static u32 highest_bit(u32 flags) 1053 { 1054 int bit = fls(flags); 1055 return ((u64)1 << bit) >> 1; 1056 } 1057 1058 static bool u32_before(u32 a, u32 b) 1059 { 1060 return (s32)(a - b) < 0; 1061 } 1062 1063 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1064 { 1065 return global_dsqs[cpu_to_node(task_cpu(p))]; 1066 } 1067 1068 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1069 { 1070 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1071 } 1072 1073 /* 1074 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1075 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1076 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1077 * whether it's running from an allowed context. 1078 * 1079 * @mask is constant, always inline to cull the mask calculations. 1080 */ 1081 static __always_inline void scx_kf_allow(u32 mask) 1082 { 1083 /* nesting is allowed only in increasing scx_kf_mask order */ 1084 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1085 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1086 current->scx.kf_mask, mask); 1087 current->scx.kf_mask |= mask; 1088 barrier(); 1089 } 1090 1091 static void scx_kf_disallow(u32 mask) 1092 { 1093 barrier(); 1094 current->scx.kf_mask &= ~mask; 1095 } 1096 1097 #define SCX_CALL_OP(mask, op, args...) \ 1098 do { \ 1099 if (mask) { \ 1100 scx_kf_allow(mask); \ 1101 scx_ops.op(args); \ 1102 scx_kf_disallow(mask); \ 1103 } else { \ 1104 scx_ops.op(args); \ 1105 } \ 1106 } while (0) 1107 1108 #define SCX_CALL_OP_RET(mask, op, args...) \ 1109 ({ \ 1110 __typeof__(scx_ops.op(args)) __ret; \ 1111 if (mask) { \ 1112 scx_kf_allow(mask); \ 1113 __ret = scx_ops.op(args); \ 1114 scx_kf_disallow(mask); \ 1115 } else { \ 1116 __ret = scx_ops.op(args); \ 1117 } \ 1118 __ret; \ 1119 }) 1120 1121 /* 1122 * Some kfuncs are allowed only on the tasks that are subjects of the 1123 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1124 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1125 * invoking scx_ops operations that take task arguments. These can only be used 1126 * for non-nesting operations due to the way the tasks are tracked. 1127 * 1128 * kfuncs which can only operate on such tasks can in turn use 1129 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1130 * the specific task. 1131 */ 1132 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1133 do { \ 1134 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1135 current->scx.kf_tasks[0] = task; \ 1136 SCX_CALL_OP(mask, op, task, ##args); \ 1137 current->scx.kf_tasks[0] = NULL; \ 1138 } while (0) 1139 1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1141 ({ \ 1142 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1143 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1144 current->scx.kf_tasks[0] = task; \ 1145 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1146 current->scx.kf_tasks[0] = NULL; \ 1147 __ret; \ 1148 }) 1149 1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1151 ({ \ 1152 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1153 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1154 current->scx.kf_tasks[0] = task0; \ 1155 current->scx.kf_tasks[1] = task1; \ 1156 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1157 current->scx.kf_tasks[0] = NULL; \ 1158 current->scx.kf_tasks[1] = NULL; \ 1159 __ret; \ 1160 }) 1161 1162 /* @mask is constant, always inline to cull unnecessary branches */ 1163 static __always_inline bool scx_kf_allowed(u32 mask) 1164 { 1165 if (unlikely(!(current->scx.kf_mask & mask))) { 1166 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1167 mask, current->scx.kf_mask); 1168 return false; 1169 } 1170 1171 /* 1172 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1173 * DISPATCH must not be called if we're running DEQUEUE which is nested 1174 * inside ops.dispatch(). We don't need to check boundaries for any 1175 * blocking kfuncs as the verifier ensures they're only called from 1176 * sleepable progs. 1177 */ 1178 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1179 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1180 scx_ops_error("cpu_release kfunc called from a nested operation"); 1181 return false; 1182 } 1183 1184 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1185 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1186 scx_ops_error("dispatch kfunc called from a nested operation"); 1187 return false; 1188 } 1189 1190 return true; 1191 } 1192 1193 /* see SCX_CALL_OP_TASK() */ 1194 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1195 struct task_struct *p) 1196 { 1197 if (!scx_kf_allowed(mask)) 1198 return false; 1199 1200 if (unlikely((p != current->scx.kf_tasks[0] && 1201 p != current->scx.kf_tasks[1]))) { 1202 scx_ops_error("called on a task not being operated on"); 1203 return false; 1204 } 1205 1206 return true; 1207 } 1208 1209 static bool scx_kf_allowed_if_unlocked(void) 1210 { 1211 return !current->scx.kf_mask; 1212 } 1213 1214 /** 1215 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1216 * @dsq: user dsq being interated 1217 * @cur: current position, %NULL to start iteration 1218 * @rev: walk backwards 1219 * 1220 * Returns %NULL when iteration is finished. 1221 */ 1222 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1223 struct task_struct *cur, bool rev) 1224 { 1225 struct list_head *list_node; 1226 struct scx_dsq_list_node *dsq_lnode; 1227 1228 lockdep_assert_held(&dsq->lock); 1229 1230 if (cur) 1231 list_node = &cur->scx.dsq_list.node; 1232 else 1233 list_node = &dsq->list; 1234 1235 /* find the next task, need to skip BPF iteration cursors */ 1236 do { 1237 if (rev) 1238 list_node = list_node->prev; 1239 else 1240 list_node = list_node->next; 1241 1242 if (list_node == &dsq->list) 1243 return NULL; 1244 1245 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1246 node); 1247 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1248 1249 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1250 } 1251 1252 #define nldsq_for_each_task(p, dsq) \ 1253 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1254 (p) = nldsq_next_task((dsq), (p), false)) 1255 1256 1257 /* 1258 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1259 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1260 * changes without breaking backward compatibility. Can be used with 1261 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1262 */ 1263 enum scx_dsq_iter_flags { 1264 /* iterate in the reverse dispatch order */ 1265 SCX_DSQ_ITER_REV = 1U << 16, 1266 1267 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1268 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1269 1270 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1271 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1272 __SCX_DSQ_ITER_HAS_SLICE | 1273 __SCX_DSQ_ITER_HAS_VTIME, 1274 }; 1275 1276 struct bpf_iter_scx_dsq_kern { 1277 struct scx_dsq_list_node cursor; 1278 struct scx_dispatch_q *dsq; 1279 u64 slice; 1280 u64 vtime; 1281 } __attribute__((aligned(8))); 1282 1283 struct bpf_iter_scx_dsq { 1284 u64 __opaque[6]; 1285 } __attribute__((aligned(8))); 1286 1287 1288 /* 1289 * SCX task iterator. 1290 */ 1291 struct scx_task_iter { 1292 struct sched_ext_entity cursor; 1293 struct task_struct *locked; 1294 struct rq *rq; 1295 struct rq_flags rf; 1296 u32 cnt; 1297 }; 1298 1299 /** 1300 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1301 * @iter: iterator to init 1302 * 1303 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1304 * must eventually be stopped with scx_task_iter_stop(). 1305 * 1306 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1307 * between this and the first next() call or between any two next() calls. If 1308 * the locks are released between two next() calls, the caller is responsible 1309 * for ensuring that the task being iterated remains accessible either through 1310 * RCU read lock or obtaining a reference count. 1311 * 1312 * All tasks which existed when the iteration started are guaranteed to be 1313 * visited as long as they still exist. 1314 */ 1315 static void scx_task_iter_start(struct scx_task_iter *iter) 1316 { 1317 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1318 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1319 1320 spin_lock_irq(&scx_tasks_lock); 1321 1322 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1323 list_add(&iter->cursor.tasks_node, &scx_tasks); 1324 iter->locked = NULL; 1325 iter->cnt = 0; 1326 } 1327 1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1329 { 1330 if (iter->locked) { 1331 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1332 iter->locked = NULL; 1333 } 1334 } 1335 1336 /** 1337 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1338 * @iter: iterator to unlock 1339 * 1340 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1341 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1342 * This function can be safely called anytime during an iteration. 1343 */ 1344 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1345 { 1346 __scx_task_iter_rq_unlock(iter); 1347 spin_unlock_irq(&scx_tasks_lock); 1348 } 1349 1350 /** 1351 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1352 * @iter: iterator to re-lock 1353 * 1354 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1355 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1356 */ 1357 static void scx_task_iter_relock(struct scx_task_iter *iter) 1358 { 1359 spin_lock_irq(&scx_tasks_lock); 1360 } 1361 1362 /** 1363 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1364 * @iter: iterator to exit 1365 * 1366 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1367 * which is released on return. If the iterator holds a task's rq lock, that rq 1368 * lock is also released. See scx_task_iter_start() for details. 1369 */ 1370 static void scx_task_iter_stop(struct scx_task_iter *iter) 1371 { 1372 list_del_init(&iter->cursor.tasks_node); 1373 scx_task_iter_unlock(iter); 1374 } 1375 1376 /** 1377 * scx_task_iter_next - Next task 1378 * @iter: iterator to walk 1379 * 1380 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1381 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing 1382 * stalls by holding scx_tasks_lock for too long. 1383 */ 1384 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1385 { 1386 struct list_head *cursor = &iter->cursor.tasks_node; 1387 struct sched_ext_entity *pos; 1388 1389 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) { 1390 scx_task_iter_unlock(iter); 1391 cond_resched(); 1392 scx_task_iter_relock(iter); 1393 } 1394 1395 list_for_each_entry(pos, cursor, tasks_node) { 1396 if (&pos->tasks_node == &scx_tasks) 1397 return NULL; 1398 if (!(pos->flags & SCX_TASK_CURSOR)) { 1399 list_move(cursor, &pos->tasks_node); 1400 return container_of(pos, struct task_struct, scx); 1401 } 1402 } 1403 1404 /* can't happen, should always terminate at scx_tasks above */ 1405 BUG(); 1406 } 1407 1408 /** 1409 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1410 * @iter: iterator to walk 1411 * @include_dead: Whether we should include dead tasks in the iteration 1412 * 1413 * Visit the non-idle task with its rq lock held. Allows callers to specify 1414 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1415 * for details. 1416 */ 1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1418 { 1419 struct task_struct *p; 1420 1421 __scx_task_iter_rq_unlock(iter); 1422 1423 while ((p = scx_task_iter_next(iter))) { 1424 /* 1425 * scx_task_iter is used to prepare and move tasks into SCX 1426 * while loading the BPF scheduler and vice-versa while 1427 * unloading. The init_tasks ("swappers") should be excluded 1428 * from the iteration because: 1429 * 1430 * - It's unsafe to use __setschduler_prio() on an init_task to 1431 * determine the sched_class to use as it won't preserve its 1432 * idle_sched_class. 1433 * 1434 * - ops.init/exit_task() can easily be confused if called with 1435 * init_tasks as they, e.g., share PID 0. 1436 * 1437 * As init_tasks are never scheduled through SCX, they can be 1438 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1439 * doesn't work here: 1440 * 1441 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1442 * yet been onlined. 1443 * 1444 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1445 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1446 * 1447 * Test for idle_sched_class as only init_tasks are on it. 1448 */ 1449 if (p->sched_class != &idle_sched_class) 1450 break; 1451 } 1452 if (!p) 1453 return NULL; 1454 1455 iter->rq = task_rq_lock(p, &iter->rf); 1456 iter->locked = p; 1457 1458 return p; 1459 } 1460 1461 static enum scx_ops_enable_state scx_ops_enable_state(void) 1462 { 1463 return atomic_read(&scx_ops_enable_state_var); 1464 } 1465 1466 static enum scx_ops_enable_state 1467 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1468 { 1469 return atomic_xchg(&scx_ops_enable_state_var, to); 1470 } 1471 1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1473 enum scx_ops_enable_state from) 1474 { 1475 int from_v = from; 1476 1477 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1478 } 1479 1480 static bool scx_rq_bypassing(struct rq *rq) 1481 { 1482 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1483 } 1484 1485 /** 1486 * wait_ops_state - Busy-wait the specified ops state to end 1487 * @p: target task 1488 * @opss: state to wait the end of 1489 * 1490 * Busy-wait for @p to transition out of @opss. This can only be used when the 1491 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1492 * has load_acquire semantics to ensure that the caller can see the updates made 1493 * in the enqueueing and dispatching paths. 1494 */ 1495 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1496 { 1497 do { 1498 cpu_relax(); 1499 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1500 } 1501 1502 /** 1503 * ops_cpu_valid - Verify a cpu number 1504 * @cpu: cpu number which came from a BPF ops 1505 * @where: extra information reported on error 1506 * 1507 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1508 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1509 * an ops error. 1510 */ 1511 static bool ops_cpu_valid(s32 cpu, const char *where) 1512 { 1513 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1514 return true; 1515 } else { 1516 scx_ops_error("invalid CPU %d%s%s", cpu, 1517 where ? " " : "", where ?: ""); 1518 return false; 1519 } 1520 } 1521 1522 /** 1523 * ops_sanitize_err - Sanitize a -errno value 1524 * @ops_name: operation to blame on failure 1525 * @err: -errno value to sanitize 1526 * 1527 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1528 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1529 * cause misbehaviors. For an example, a large negative return from 1530 * ops.init_task() triggers an oops when passed up the call chain because the 1531 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1532 * handled as a pointer. 1533 */ 1534 static int ops_sanitize_err(const char *ops_name, s32 err) 1535 { 1536 if (err < 0 && err >= -MAX_ERRNO) 1537 return err; 1538 1539 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1540 return -EPROTO; 1541 } 1542 1543 static void run_deferred(struct rq *rq) 1544 { 1545 process_ddsp_deferred_locals(rq); 1546 } 1547 1548 #ifdef CONFIG_SMP 1549 static void deferred_bal_cb_workfn(struct rq *rq) 1550 { 1551 run_deferred(rq); 1552 } 1553 #endif 1554 1555 static void deferred_irq_workfn(struct irq_work *irq_work) 1556 { 1557 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1558 1559 raw_spin_rq_lock(rq); 1560 run_deferred(rq); 1561 raw_spin_rq_unlock(rq); 1562 } 1563 1564 /** 1565 * schedule_deferred - Schedule execution of deferred actions on an rq 1566 * @rq: target rq 1567 * 1568 * Schedule execution of deferred actions on @rq. Must be called with @rq 1569 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1570 * can unlock @rq to e.g. migrate tasks to other rqs. 1571 */ 1572 static void schedule_deferred(struct rq *rq) 1573 { 1574 lockdep_assert_rq_held(rq); 1575 1576 #ifdef CONFIG_SMP 1577 /* 1578 * If in the middle of waking up a task, task_woken_scx() will be called 1579 * afterwards which will then run the deferred actions, no need to 1580 * schedule anything. 1581 */ 1582 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1583 return; 1584 1585 /* 1586 * If in balance, the balance callbacks will be called before rq lock is 1587 * released. Schedule one. 1588 */ 1589 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1590 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1591 deferred_bal_cb_workfn); 1592 return; 1593 } 1594 #endif 1595 /* 1596 * No scheduler hooks available. Queue an irq work. They are executed on 1597 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1598 * The above WAKEUP and BALANCE paths should cover most of the cases and 1599 * the time to IRQ re-enable shouldn't be long. 1600 */ 1601 irq_work_queue(&rq->scx.deferred_irq_work); 1602 } 1603 1604 /** 1605 * touch_core_sched - Update timestamp used for core-sched task ordering 1606 * @rq: rq to read clock from, must be locked 1607 * @p: task to update the timestamp for 1608 * 1609 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1610 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1611 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1612 * exhaustion). 1613 */ 1614 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1615 { 1616 lockdep_assert_rq_held(rq); 1617 1618 #ifdef CONFIG_SCHED_CORE 1619 /* 1620 * It's okay to update the timestamp spuriously. Use 1621 * sched_core_disabled() which is cheaper than enabled(). 1622 * 1623 * As this is used to determine ordering between tasks of sibling CPUs, 1624 * it may be better to use per-core dispatch sequence instead. 1625 */ 1626 if (!sched_core_disabled()) 1627 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1628 #endif 1629 } 1630 1631 /** 1632 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1633 * @rq: rq to read clock from, must be locked 1634 * @p: task being dispatched 1635 * 1636 * If the BPF scheduler implements custom core-sched ordering via 1637 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1638 * ordering within each local DSQ. This function is called from dispatch paths 1639 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1640 */ 1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1642 { 1643 lockdep_assert_rq_held(rq); 1644 1645 #ifdef CONFIG_SCHED_CORE 1646 if (SCX_HAS_OP(core_sched_before)) 1647 touch_core_sched(rq, p); 1648 #endif 1649 } 1650 1651 static void update_curr_scx(struct rq *rq) 1652 { 1653 struct task_struct *curr = rq->curr; 1654 s64 delta_exec; 1655 1656 delta_exec = update_curr_common(rq); 1657 if (unlikely(delta_exec <= 0)) 1658 return; 1659 1660 if (curr->scx.slice != SCX_SLICE_INF) { 1661 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1662 if (!curr->scx.slice) 1663 touch_core_sched(rq, curr); 1664 } 1665 } 1666 1667 static bool scx_dsq_priq_less(struct rb_node *node_a, 1668 const struct rb_node *node_b) 1669 { 1670 const struct task_struct *a = 1671 container_of(node_a, struct task_struct, scx.dsq_priq); 1672 const struct task_struct *b = 1673 container_of(node_b, struct task_struct, scx.dsq_priq); 1674 1675 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1676 } 1677 1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1679 { 1680 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1681 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1682 } 1683 1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1685 u64 enq_flags) 1686 { 1687 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1688 1689 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1690 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1691 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1692 1693 if (!is_local) { 1694 raw_spin_lock(&dsq->lock); 1695 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1696 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1697 /* fall back to the global dsq */ 1698 raw_spin_unlock(&dsq->lock); 1699 dsq = find_global_dsq(p); 1700 raw_spin_lock(&dsq->lock); 1701 } 1702 } 1703 1704 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1705 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1706 /* 1707 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1708 * their FIFO queues. To avoid confusion and accidentally 1709 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1710 * disallow any internal DSQ from doing vtime ordering of 1711 * tasks. 1712 */ 1713 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1714 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1715 } 1716 1717 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1718 struct rb_node *rbp; 1719 1720 /* 1721 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1722 * linked to both the rbtree and list on PRIQs, this can only be 1723 * tested easily when adding the first task. 1724 */ 1725 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1726 nldsq_next_task(dsq, NULL, false))) 1727 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1728 dsq->id); 1729 1730 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1731 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1732 1733 /* 1734 * Find the previous task and insert after it on the list so 1735 * that @dsq->list is vtime ordered. 1736 */ 1737 rbp = rb_prev(&p->scx.dsq_priq); 1738 if (rbp) { 1739 struct task_struct *prev = 1740 container_of(rbp, struct task_struct, 1741 scx.dsq_priq); 1742 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1743 } else { 1744 list_add(&p->scx.dsq_list.node, &dsq->list); 1745 } 1746 } else { 1747 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1748 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1749 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1750 dsq->id); 1751 1752 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1753 list_add(&p->scx.dsq_list.node, &dsq->list); 1754 else 1755 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1756 } 1757 1758 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1759 dsq->seq++; 1760 p->scx.dsq_seq = dsq->seq; 1761 1762 dsq_mod_nr(dsq, 1); 1763 p->scx.dsq = dsq; 1764 1765 /* 1766 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1767 * direct dispatch path, but we clear them here because the direct 1768 * dispatch verdict may be overridden on the enqueue path during e.g. 1769 * bypass. 1770 */ 1771 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1772 p->scx.ddsp_enq_flags = 0; 1773 1774 /* 1775 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1776 * match waiters' load_acquire. 1777 */ 1778 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1779 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1780 1781 if (is_local) { 1782 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1783 bool preempt = false; 1784 1785 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1786 rq->curr->sched_class == &ext_sched_class) { 1787 rq->curr->scx.slice = 0; 1788 preempt = true; 1789 } 1790 1791 if (preempt || sched_class_above(&ext_sched_class, 1792 rq->curr->sched_class)) 1793 resched_curr(rq); 1794 } else { 1795 raw_spin_unlock(&dsq->lock); 1796 } 1797 } 1798 1799 static void task_unlink_from_dsq(struct task_struct *p, 1800 struct scx_dispatch_q *dsq) 1801 { 1802 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1803 1804 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1805 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1806 RB_CLEAR_NODE(&p->scx.dsq_priq); 1807 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1808 } 1809 1810 list_del_init(&p->scx.dsq_list.node); 1811 dsq_mod_nr(dsq, -1); 1812 } 1813 1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1815 { 1816 struct scx_dispatch_q *dsq = p->scx.dsq; 1817 bool is_local = dsq == &rq->scx.local_dsq; 1818 1819 if (!dsq) { 1820 /* 1821 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1822 * Unlinking is all that's needed to cancel. 1823 */ 1824 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1825 list_del_init(&p->scx.dsq_list.node); 1826 1827 /* 1828 * When dispatching directly from the BPF scheduler to a local 1829 * DSQ, the task isn't associated with any DSQ but 1830 * @p->scx.holding_cpu may be set under the protection of 1831 * %SCX_OPSS_DISPATCHING. 1832 */ 1833 if (p->scx.holding_cpu >= 0) 1834 p->scx.holding_cpu = -1; 1835 1836 return; 1837 } 1838 1839 if (!is_local) 1840 raw_spin_lock(&dsq->lock); 1841 1842 /* 1843 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1844 * change underneath us. 1845 */ 1846 if (p->scx.holding_cpu < 0) { 1847 /* @p must still be on @dsq, dequeue */ 1848 task_unlink_from_dsq(p, dsq); 1849 } else { 1850 /* 1851 * We're racing against dispatch_to_local_dsq() which already 1852 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1853 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1854 * the race. 1855 */ 1856 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1857 p->scx.holding_cpu = -1; 1858 } 1859 p->scx.dsq = NULL; 1860 1861 if (!is_local) 1862 raw_spin_unlock(&dsq->lock); 1863 } 1864 1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1866 struct task_struct *p) 1867 { 1868 struct scx_dispatch_q *dsq; 1869 1870 if (dsq_id == SCX_DSQ_LOCAL) 1871 return &rq->scx.local_dsq; 1872 1873 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1874 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1875 1876 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1877 return find_global_dsq(p); 1878 1879 return &cpu_rq(cpu)->scx.local_dsq; 1880 } 1881 1882 if (dsq_id == SCX_DSQ_GLOBAL) 1883 dsq = find_global_dsq(p); 1884 else 1885 dsq = find_user_dsq(dsq_id); 1886 1887 if (unlikely(!dsq)) { 1888 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1889 dsq_id, p->comm, p->pid); 1890 return find_global_dsq(p); 1891 } 1892 1893 return dsq; 1894 } 1895 1896 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1897 struct task_struct *p, u64 dsq_id, 1898 u64 enq_flags) 1899 { 1900 /* 1901 * Mark that dispatch already happened from ops.select_cpu() or 1902 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1903 * which can never match a valid task pointer. 1904 */ 1905 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1906 1907 /* @p must match the task on the enqueue path */ 1908 if (unlikely(p != ddsp_task)) { 1909 if (IS_ERR(ddsp_task)) 1910 scx_ops_error("%s[%d] already direct-dispatched", 1911 p->comm, p->pid); 1912 else 1913 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1914 ddsp_task->comm, ddsp_task->pid, 1915 p->comm, p->pid); 1916 return; 1917 } 1918 1919 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1920 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1921 1922 p->scx.ddsp_dsq_id = dsq_id; 1923 p->scx.ddsp_enq_flags = enq_flags; 1924 } 1925 1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1927 { 1928 struct rq *rq = task_rq(p); 1929 struct scx_dispatch_q *dsq = 1930 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1931 1932 touch_core_sched_dispatch(rq, p); 1933 1934 p->scx.ddsp_enq_flags |= enq_flags; 1935 1936 /* 1937 * We are in the enqueue path with @rq locked and pinned, and thus can't 1938 * double lock a remote rq and enqueue to its local DSQ. For 1939 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1940 * the enqueue so that it's executed when @rq can be unlocked. 1941 */ 1942 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1943 unsigned long opss; 1944 1945 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1946 1947 switch (opss & SCX_OPSS_STATE_MASK) { 1948 case SCX_OPSS_NONE: 1949 break; 1950 case SCX_OPSS_QUEUEING: 1951 /* 1952 * As @p was never passed to the BPF side, _release is 1953 * not strictly necessary. Still do it for consistency. 1954 */ 1955 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1956 break; 1957 default: 1958 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1959 p->comm, p->pid, opss); 1960 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1961 break; 1962 } 1963 1964 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1965 list_add_tail(&p->scx.dsq_list.node, 1966 &rq->scx.ddsp_deferred_locals); 1967 schedule_deferred(rq); 1968 return; 1969 } 1970 1971 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1972 } 1973 1974 static bool scx_rq_online(struct rq *rq) 1975 { 1976 /* 1977 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1978 * the online state as seen from the BPF scheduler. cpu_active() test 1979 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1980 * stay set until the current scheduling operation is complete even if 1981 * we aren't locking @rq. 1982 */ 1983 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1984 } 1985 1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1987 int sticky_cpu) 1988 { 1989 struct task_struct **ddsp_taskp; 1990 unsigned long qseq; 1991 1992 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1993 1994 /* rq migration */ 1995 if (sticky_cpu == cpu_of(rq)) 1996 goto local_norefill; 1997 1998 /* 1999 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2000 * is offline and are just running the hotplug path. Don't bother the 2001 * BPF scheduler. 2002 */ 2003 if (!scx_rq_online(rq)) 2004 goto local; 2005 2006 if (scx_rq_bypassing(rq)) 2007 goto global; 2008 2009 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2010 goto direct; 2011 2012 /* see %SCX_OPS_ENQ_EXITING */ 2013 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 2014 unlikely(p->flags & PF_EXITING)) 2015 goto local; 2016 2017 if (!SCX_HAS_OP(enqueue)) 2018 goto global; 2019 2020 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2021 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2022 2023 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2024 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2025 2026 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2027 WARN_ON_ONCE(*ddsp_taskp); 2028 *ddsp_taskp = p; 2029 2030 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 2031 2032 *ddsp_taskp = NULL; 2033 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2034 goto direct; 2035 2036 /* 2037 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2038 * dequeue may be waiting. The store_release matches their load_acquire. 2039 */ 2040 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2041 return; 2042 2043 direct: 2044 direct_dispatch(p, enq_flags); 2045 return; 2046 2047 local: 2048 /* 2049 * For task-ordering, slice refill must be treated as implying the end 2050 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2051 * higher priority it becomes from scx_prio_less()'s POV. 2052 */ 2053 touch_core_sched(rq, p); 2054 p->scx.slice = SCX_SLICE_DFL; 2055 local_norefill: 2056 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2057 return; 2058 2059 global: 2060 touch_core_sched(rq, p); /* see the comment in local: */ 2061 p->scx.slice = SCX_SLICE_DFL; 2062 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2063 } 2064 2065 static bool task_runnable(const struct task_struct *p) 2066 { 2067 return !list_empty(&p->scx.runnable_node); 2068 } 2069 2070 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2071 { 2072 lockdep_assert_rq_held(rq); 2073 2074 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2075 p->scx.runnable_at = jiffies; 2076 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2077 } 2078 2079 /* 2080 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2081 * appened to the runnable_list. 2082 */ 2083 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2084 } 2085 2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2087 { 2088 list_del_init(&p->scx.runnable_node); 2089 if (reset_runnable_at) 2090 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2091 } 2092 2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2094 { 2095 int sticky_cpu = p->scx.sticky_cpu; 2096 2097 if (enq_flags & ENQUEUE_WAKEUP) 2098 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2099 2100 enq_flags |= rq->scx.extra_enq_flags; 2101 2102 if (sticky_cpu >= 0) 2103 p->scx.sticky_cpu = -1; 2104 2105 /* 2106 * Restoring a running task will be immediately followed by 2107 * set_next_task_scx() which expects the task to not be on the BPF 2108 * scheduler as tasks can only start running through local DSQs. Force 2109 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2110 */ 2111 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2112 sticky_cpu = cpu_of(rq); 2113 2114 if (p->scx.flags & SCX_TASK_QUEUED) { 2115 WARN_ON_ONCE(!task_runnable(p)); 2116 goto out; 2117 } 2118 2119 set_task_runnable(rq, p); 2120 p->scx.flags |= SCX_TASK_QUEUED; 2121 rq->scx.nr_running++; 2122 add_nr_running(rq, 1); 2123 2124 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2125 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2126 2127 if (enq_flags & SCX_ENQ_WAKEUP) 2128 touch_core_sched(rq, p); 2129 2130 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2131 out: 2132 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2133 } 2134 2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2136 { 2137 unsigned long opss; 2138 2139 /* dequeue is always temporary, don't reset runnable_at */ 2140 clr_task_runnable(p, false); 2141 2142 /* acquire ensures that we see the preceding updates on QUEUED */ 2143 opss = atomic_long_read_acquire(&p->scx.ops_state); 2144 2145 switch (opss & SCX_OPSS_STATE_MASK) { 2146 case SCX_OPSS_NONE: 2147 break; 2148 case SCX_OPSS_QUEUEING: 2149 /* 2150 * QUEUEING is started and finished while holding @p's rq lock. 2151 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2152 */ 2153 BUG(); 2154 case SCX_OPSS_QUEUED: 2155 if (SCX_HAS_OP(dequeue)) 2156 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2157 2158 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2159 SCX_OPSS_NONE)) 2160 break; 2161 fallthrough; 2162 case SCX_OPSS_DISPATCHING: 2163 /* 2164 * If @p is being dispatched from the BPF scheduler to a DSQ, 2165 * wait for the transfer to complete so that @p doesn't get 2166 * added to its DSQ after dequeueing is complete. 2167 * 2168 * As we're waiting on DISPATCHING with the rq locked, the 2169 * dispatching side shouldn't try to lock the rq while 2170 * DISPATCHING is set. See dispatch_to_local_dsq(). 2171 * 2172 * DISPATCHING shouldn't have qseq set and control can reach 2173 * here with NONE @opss from the above QUEUED case block. 2174 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2175 */ 2176 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2177 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2178 break; 2179 } 2180 } 2181 2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2183 { 2184 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2185 WARN_ON_ONCE(task_runnable(p)); 2186 return true; 2187 } 2188 2189 ops_dequeue(p, deq_flags); 2190 2191 /* 2192 * A currently running task which is going off @rq first gets dequeued 2193 * and then stops running. As we want running <-> stopping transitions 2194 * to be contained within runnable <-> quiescent transitions, trigger 2195 * ->stopping() early here instead of in put_prev_task_scx(). 2196 * 2197 * @p may go through multiple stopping <-> running transitions between 2198 * here and put_prev_task_scx() if task attribute changes occur while 2199 * balance_scx() leaves @rq unlocked. However, they don't contain any 2200 * information meaningful to the BPF scheduler and can be suppressed by 2201 * skipping the callbacks if the task is !QUEUED. 2202 */ 2203 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2204 update_curr_scx(rq); 2205 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2206 } 2207 2208 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2209 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2210 2211 if (deq_flags & SCX_DEQ_SLEEP) 2212 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2213 else 2214 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2215 2216 p->scx.flags &= ~SCX_TASK_QUEUED; 2217 rq->scx.nr_running--; 2218 sub_nr_running(rq, 1); 2219 2220 dispatch_dequeue(rq, p); 2221 return true; 2222 } 2223 2224 static void yield_task_scx(struct rq *rq) 2225 { 2226 struct task_struct *p = rq->curr; 2227 2228 if (SCX_HAS_OP(yield)) 2229 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2230 else 2231 p->scx.slice = 0; 2232 } 2233 2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2235 { 2236 struct task_struct *from = rq->curr; 2237 2238 if (SCX_HAS_OP(yield)) 2239 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2240 else 2241 return false; 2242 } 2243 2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2245 struct scx_dispatch_q *src_dsq, 2246 struct rq *dst_rq) 2247 { 2248 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2249 2250 /* @dsq is locked and @p is on @dst_rq */ 2251 lockdep_assert_held(&src_dsq->lock); 2252 lockdep_assert_rq_held(dst_rq); 2253 2254 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2255 2256 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2257 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2258 else 2259 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2260 2261 dsq_mod_nr(dst_dsq, 1); 2262 p->scx.dsq = dst_dsq; 2263 } 2264 2265 #ifdef CONFIG_SMP 2266 /** 2267 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2268 * @p: task to move 2269 * @enq_flags: %SCX_ENQ_* 2270 * @src_rq: rq to move the task from, locked on entry, released on return 2271 * @dst_rq: rq to move the task into, locked on return 2272 * 2273 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2274 */ 2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2276 struct rq *src_rq, struct rq *dst_rq) 2277 { 2278 lockdep_assert_rq_held(src_rq); 2279 2280 /* the following marks @p MIGRATING which excludes dequeue */ 2281 deactivate_task(src_rq, p, 0); 2282 set_task_cpu(p, cpu_of(dst_rq)); 2283 p->scx.sticky_cpu = cpu_of(dst_rq); 2284 2285 raw_spin_rq_unlock(src_rq); 2286 raw_spin_rq_lock(dst_rq); 2287 2288 /* 2289 * We want to pass scx-specific enq_flags but activate_task() will 2290 * truncate the upper 32 bit. As we own @rq, we can pass them through 2291 * @rq->scx.extra_enq_flags instead. 2292 */ 2293 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2294 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2295 dst_rq->scx.extra_enq_flags = enq_flags; 2296 activate_task(dst_rq, p, 0); 2297 dst_rq->scx.extra_enq_flags = 0; 2298 } 2299 2300 /* 2301 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2302 * differences: 2303 * 2304 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2305 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2306 * this CPU?". 2307 * 2308 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2309 * must be allowed to finish on the CPU that it's currently on regardless of 2310 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2311 * BPF scheduler shouldn't attempt to migrate a task which has migration 2312 * disabled. 2313 * 2314 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2315 * no to the BPF scheduler initiated migrations while offline. 2316 */ 2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2318 bool trigger_error) 2319 { 2320 int cpu = cpu_of(rq); 2321 2322 /* 2323 * We don't require the BPF scheduler to avoid dispatching to offline 2324 * CPUs mostly for convenience but also because CPUs can go offline 2325 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2326 * picked CPU is outside the allowed mask. 2327 */ 2328 if (!task_allowed_on_cpu(p, cpu)) { 2329 if (trigger_error) 2330 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2331 cpu_of(rq), p->comm, p->pid); 2332 return false; 2333 } 2334 2335 if (unlikely(is_migration_disabled(p))) 2336 return false; 2337 2338 if (!scx_rq_online(rq)) 2339 return false; 2340 2341 return true; 2342 } 2343 2344 /** 2345 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2346 * @p: target task 2347 * @dsq: locked DSQ @p is currently on 2348 * @src_rq: rq @p is currently on, stable with @dsq locked 2349 * 2350 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2351 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2352 * required when transferring into a local DSQ. Even when transferring into a 2353 * non-local DSQ, it's better to use the same mechanism to protect against 2354 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2355 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2356 * 2357 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2358 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2359 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2360 * dancing from our side. 2361 * 2362 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2363 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2364 * would be cleared to -1. While other cpus may have updated it to different 2365 * values afterwards, as this operation can't be preempted or recurse, the 2366 * holding_cpu can never become this CPU again before we're done. Thus, we can 2367 * tell whether we lost to dequeue by testing whether the holding_cpu still 2368 * points to this CPU. See dispatch_dequeue() for the counterpart. 2369 * 2370 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2371 * still valid. %false if lost to dequeue. 2372 */ 2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2374 struct scx_dispatch_q *dsq, 2375 struct rq *src_rq) 2376 { 2377 s32 cpu = raw_smp_processor_id(); 2378 2379 lockdep_assert_held(&dsq->lock); 2380 2381 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2382 task_unlink_from_dsq(p, dsq); 2383 p->scx.holding_cpu = cpu; 2384 2385 raw_spin_unlock(&dsq->lock); 2386 raw_spin_rq_lock(src_rq); 2387 2388 /* task_rq couldn't have changed if we're still the holding cpu */ 2389 return likely(p->scx.holding_cpu == cpu) && 2390 !WARN_ON_ONCE(src_rq != task_rq(p)); 2391 } 2392 2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2394 struct scx_dispatch_q *dsq, struct rq *src_rq) 2395 { 2396 raw_spin_rq_unlock(this_rq); 2397 2398 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2399 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2400 return true; 2401 } else { 2402 raw_spin_rq_unlock(src_rq); 2403 raw_spin_rq_lock(this_rq); 2404 return false; 2405 } 2406 } 2407 #else /* CONFIG_SMP */ 2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2411 #endif /* CONFIG_SMP */ 2412 2413 /** 2414 * move_task_between_dsqs() - Move a task from one DSQ to another 2415 * @p: target task 2416 * @enq_flags: %SCX_ENQ_* 2417 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2418 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2419 * 2420 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2421 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2422 * will change. As @p's task_rq is locked, this function doesn't need to use the 2423 * holding_cpu mechanism. 2424 * 2425 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2426 * return value, is locked. 2427 */ 2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags, 2429 struct scx_dispatch_q *src_dsq, 2430 struct scx_dispatch_q *dst_dsq) 2431 { 2432 struct rq *src_rq = task_rq(p), *dst_rq; 2433 2434 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2435 lockdep_assert_held(&src_dsq->lock); 2436 lockdep_assert_rq_held(src_rq); 2437 2438 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2439 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2440 if (!task_can_run_on_remote_rq(p, dst_rq, true)) { 2441 dst_dsq = find_global_dsq(p); 2442 dst_rq = src_rq; 2443 } 2444 } else { 2445 /* no need to migrate if destination is a non-local DSQ */ 2446 dst_rq = src_rq; 2447 } 2448 2449 /* 2450 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2451 * CPU, @p will be migrated. 2452 */ 2453 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2454 /* @p is going from a non-local DSQ to a local DSQ */ 2455 if (src_rq == dst_rq) { 2456 task_unlink_from_dsq(p, src_dsq); 2457 move_local_task_to_local_dsq(p, enq_flags, 2458 src_dsq, dst_rq); 2459 raw_spin_unlock(&src_dsq->lock); 2460 } else { 2461 raw_spin_unlock(&src_dsq->lock); 2462 move_remote_task_to_local_dsq(p, enq_flags, 2463 src_rq, dst_rq); 2464 } 2465 } else { 2466 /* 2467 * @p is going from a non-local DSQ to a non-local DSQ. As 2468 * $src_dsq is already locked, do an abbreviated dequeue. 2469 */ 2470 task_unlink_from_dsq(p, src_dsq); 2471 p->scx.dsq = NULL; 2472 raw_spin_unlock(&src_dsq->lock); 2473 2474 dispatch_enqueue(dst_dsq, p, enq_flags); 2475 } 2476 2477 return dst_rq; 2478 } 2479 2480 /* 2481 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2482 * banging on the same DSQ on a large NUMA system to the point where switching 2483 * to the bypass mode can take a long time. Inject artifical delays while the 2484 * bypass mode is switching to guarantee timely completion. 2485 */ 2486 static void scx_ops_breather(struct rq *rq) 2487 { 2488 u64 until; 2489 2490 lockdep_assert_rq_held(rq); 2491 2492 if (likely(!atomic_read(&scx_ops_breather_depth))) 2493 return; 2494 2495 raw_spin_rq_unlock(rq); 2496 2497 until = ktime_get_ns() + NSEC_PER_MSEC; 2498 2499 do { 2500 int cnt = 1024; 2501 while (atomic_read(&scx_ops_breather_depth) && --cnt) 2502 cpu_relax(); 2503 } while (atomic_read(&scx_ops_breather_depth) && 2504 time_before64(ktime_get_ns(), until)); 2505 2506 raw_spin_rq_lock(rq); 2507 } 2508 2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2510 { 2511 struct task_struct *p; 2512 retry: 2513 /* 2514 * This retry loop can repeatedly race against scx_ops_bypass() 2515 * dequeueing tasks from @dsq trying to put the system into the bypass 2516 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can 2517 * live-lock the machine into soft lockups. Give a breather. 2518 */ 2519 scx_ops_breather(rq); 2520 2521 /* 2522 * The caller can't expect to successfully consume a task if the task's 2523 * addition to @dsq isn't guaranteed to be visible somehow. Test 2524 * @dsq->list without locking and skip if it seems empty. 2525 */ 2526 if (list_empty(&dsq->list)) 2527 return false; 2528 2529 raw_spin_lock(&dsq->lock); 2530 2531 nldsq_for_each_task(p, dsq) { 2532 struct rq *task_rq = task_rq(p); 2533 2534 if (rq == task_rq) { 2535 task_unlink_from_dsq(p, dsq); 2536 move_local_task_to_local_dsq(p, 0, dsq, rq); 2537 raw_spin_unlock(&dsq->lock); 2538 return true; 2539 } 2540 2541 if (task_can_run_on_remote_rq(p, rq, false)) { 2542 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2543 return true; 2544 goto retry; 2545 } 2546 } 2547 2548 raw_spin_unlock(&dsq->lock); 2549 return false; 2550 } 2551 2552 static bool consume_global_dsq(struct rq *rq) 2553 { 2554 int node = cpu_to_node(cpu_of(rq)); 2555 2556 return consume_dispatch_q(rq, global_dsqs[node]); 2557 } 2558 2559 /** 2560 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2561 * @rq: current rq which is locked 2562 * @dst_dsq: destination DSQ 2563 * @p: task to dispatch 2564 * @enq_flags: %SCX_ENQ_* 2565 * 2566 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2567 * DSQ. This function performs all the synchronization dancing needed because 2568 * local DSQs are protected with rq locks. 2569 * 2570 * The caller must have exclusive ownership of @p (e.g. through 2571 * %SCX_OPSS_DISPATCHING). 2572 */ 2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2574 struct task_struct *p, u64 enq_flags) 2575 { 2576 struct rq *src_rq = task_rq(p); 2577 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2578 2579 /* 2580 * We're synchronized against dequeue through DISPATCHING. As @p can't 2581 * be dequeued, its task_rq and cpus_allowed are stable too. 2582 * 2583 * If dispatching to @rq that @p is already on, no lock dancing needed. 2584 */ 2585 if (rq == src_rq && rq == dst_rq) { 2586 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2587 return; 2588 } 2589 2590 #ifdef CONFIG_SMP 2591 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2592 dispatch_enqueue(find_global_dsq(p), p, 2593 enq_flags | SCX_ENQ_CLEAR_OPSS); 2594 return; 2595 } 2596 2597 /* 2598 * @p is on a possibly remote @src_rq which we need to lock to move the 2599 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2600 * on DISPATCHING, so we can't grab @src_rq lock while holding 2601 * DISPATCHING. 2602 * 2603 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2604 * we're moving from a DSQ and use the same mechanism - mark the task 2605 * under transfer with holding_cpu, release DISPATCHING and then follow 2606 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2607 */ 2608 p->scx.holding_cpu = raw_smp_processor_id(); 2609 2610 /* store_release ensures that dequeue sees the above */ 2611 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2612 2613 /* switch to @src_rq lock */ 2614 if (rq != src_rq) { 2615 raw_spin_rq_unlock(rq); 2616 raw_spin_rq_lock(src_rq); 2617 } 2618 2619 /* task_rq couldn't have changed if we're still the holding cpu */ 2620 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2621 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2622 /* 2623 * If @p is staying on the same rq, there's no need to go 2624 * through the full deactivate/activate cycle. Optimize by 2625 * abbreviating move_remote_task_to_local_dsq(). 2626 */ 2627 if (src_rq == dst_rq) { 2628 p->scx.holding_cpu = -1; 2629 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2630 } else { 2631 move_remote_task_to_local_dsq(p, enq_flags, 2632 src_rq, dst_rq); 2633 } 2634 2635 /* if the destination CPU is idle, wake it up */ 2636 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2637 resched_curr(dst_rq); 2638 } 2639 2640 /* switch back to @rq lock */ 2641 if (rq != dst_rq) { 2642 raw_spin_rq_unlock(dst_rq); 2643 raw_spin_rq_lock(rq); 2644 } 2645 #else /* CONFIG_SMP */ 2646 BUG(); /* control can not reach here on UP */ 2647 #endif /* CONFIG_SMP */ 2648 } 2649 2650 /** 2651 * finish_dispatch - Asynchronously finish dispatching a task 2652 * @rq: current rq which is locked 2653 * @p: task to finish dispatching 2654 * @qseq_at_dispatch: qseq when @p started getting dispatched 2655 * @dsq_id: destination DSQ ID 2656 * @enq_flags: %SCX_ENQ_* 2657 * 2658 * Dispatching to local DSQs may need to wait for queueing to complete or 2659 * require rq lock dancing. As we don't wanna do either while inside 2660 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2661 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2662 * task and its qseq. Once ops.dispatch() returns, this function is called to 2663 * finish up. 2664 * 2665 * There is no guarantee that @p is still valid for dispatching or even that it 2666 * was valid in the first place. Make sure that the task is still owned by the 2667 * BPF scheduler and claim the ownership before dispatching. 2668 */ 2669 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2670 unsigned long qseq_at_dispatch, 2671 u64 dsq_id, u64 enq_flags) 2672 { 2673 struct scx_dispatch_q *dsq; 2674 unsigned long opss; 2675 2676 touch_core_sched_dispatch(rq, p); 2677 retry: 2678 /* 2679 * No need for _acquire here. @p is accessed only after a successful 2680 * try_cmpxchg to DISPATCHING. 2681 */ 2682 opss = atomic_long_read(&p->scx.ops_state); 2683 2684 switch (opss & SCX_OPSS_STATE_MASK) { 2685 case SCX_OPSS_DISPATCHING: 2686 case SCX_OPSS_NONE: 2687 /* someone else already got to it */ 2688 return; 2689 case SCX_OPSS_QUEUED: 2690 /* 2691 * If qseq doesn't match, @p has gone through at least one 2692 * dispatch/dequeue and re-enqueue cycle between 2693 * scx_bpf_dsq_insert() and here and we have no claim on it. 2694 */ 2695 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2696 return; 2697 2698 /* 2699 * While we know @p is accessible, we don't yet have a claim on 2700 * it - the BPF scheduler is allowed to dispatch tasks 2701 * spuriously and there can be a racing dequeue attempt. Let's 2702 * claim @p by atomically transitioning it from QUEUED to 2703 * DISPATCHING. 2704 */ 2705 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2706 SCX_OPSS_DISPATCHING))) 2707 break; 2708 goto retry; 2709 case SCX_OPSS_QUEUEING: 2710 /* 2711 * do_enqueue_task() is in the process of transferring the task 2712 * to the BPF scheduler while holding @p's rq lock. As we aren't 2713 * holding any kernel or BPF resource that the enqueue path may 2714 * depend upon, it's safe to wait. 2715 */ 2716 wait_ops_state(p, opss); 2717 goto retry; 2718 } 2719 2720 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2721 2722 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2723 2724 if (dsq->id == SCX_DSQ_LOCAL) 2725 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2726 else 2727 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2728 } 2729 2730 static void flush_dispatch_buf(struct rq *rq) 2731 { 2732 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2733 u32 u; 2734 2735 for (u = 0; u < dspc->cursor; u++) { 2736 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2737 2738 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2739 ent->enq_flags); 2740 } 2741 2742 dspc->nr_tasks += dspc->cursor; 2743 dspc->cursor = 0; 2744 } 2745 2746 static int balance_one(struct rq *rq, struct task_struct *prev) 2747 { 2748 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2749 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2750 int nr_loops = SCX_DSP_MAX_LOOPS; 2751 2752 lockdep_assert_rq_held(rq); 2753 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2754 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2755 2756 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2757 unlikely(rq->scx.cpu_released)) { 2758 /* 2759 * If the previous sched_class for the current CPU was not SCX, 2760 * notify the BPF scheduler that it again has control of the 2761 * core. This callback complements ->cpu_release(), which is 2762 * emitted in scx_next_task_picked(). 2763 */ 2764 if (SCX_HAS_OP(cpu_acquire)) 2765 SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); 2766 rq->scx.cpu_released = false; 2767 } 2768 2769 if (prev_on_scx) { 2770 update_curr_scx(rq); 2771 2772 /* 2773 * If @prev is runnable & has slice left, it has priority and 2774 * fetching more just increases latency for the fetched tasks. 2775 * Tell pick_task_scx() to keep running @prev. If the BPF 2776 * scheduler wants to handle this explicitly, it should 2777 * implement ->cpu_release(). 2778 * 2779 * See scx_ops_disable_workfn() for the explanation on the 2780 * bypassing test. 2781 */ 2782 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2783 prev->scx.slice && !scx_rq_bypassing(rq)) { 2784 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2785 goto has_tasks; 2786 } 2787 } 2788 2789 /* if there already are tasks to run, nothing to do */ 2790 if (rq->scx.local_dsq.nr) 2791 goto has_tasks; 2792 2793 if (consume_global_dsq(rq)) 2794 goto has_tasks; 2795 2796 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2797 goto no_tasks; 2798 2799 dspc->rq = rq; 2800 2801 /* 2802 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2803 * the local DSQ might still end up empty after a successful 2804 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2805 * produced some tasks, retry. The BPF scheduler may depend on this 2806 * looping behavior to simplify its implementation. 2807 */ 2808 do { 2809 dspc->nr_tasks = 0; 2810 2811 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2812 prev_on_scx ? prev : NULL); 2813 2814 flush_dispatch_buf(rq); 2815 2816 if (rq->scx.local_dsq.nr) 2817 goto has_tasks; 2818 if (consume_global_dsq(rq)) 2819 goto has_tasks; 2820 2821 /* 2822 * ops.dispatch() can trap us in this loop by repeatedly 2823 * dispatching ineligible tasks. Break out once in a while to 2824 * allow the watchdog to run. As IRQ can't be enabled in 2825 * balance(), we want to complete this scheduling cycle and then 2826 * start a new one. IOW, we want to call resched_curr() on the 2827 * next, most likely idle, task, not the current one. Use 2828 * scx_bpf_kick_cpu() for deferred kicking. 2829 */ 2830 if (unlikely(!--nr_loops)) { 2831 scx_bpf_kick_cpu(cpu_of(rq), 0); 2832 break; 2833 } 2834 } while (dspc->nr_tasks); 2835 2836 no_tasks: 2837 /* 2838 * Didn't find another task to run. Keep running @prev unless 2839 * %SCX_OPS_ENQ_LAST is in effect. 2840 */ 2841 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2842 (!static_branch_unlikely(&scx_ops_enq_last) || 2843 scx_rq_bypassing(rq))) { 2844 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2845 goto has_tasks; 2846 } 2847 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2848 return false; 2849 2850 has_tasks: 2851 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2852 return true; 2853 } 2854 2855 static int balance_scx(struct rq *rq, struct task_struct *prev, 2856 struct rq_flags *rf) 2857 { 2858 int ret; 2859 2860 rq_unpin_lock(rq, rf); 2861 2862 ret = balance_one(rq, prev); 2863 2864 #ifdef CONFIG_SCHED_SMT 2865 /* 2866 * When core-sched is enabled, this ops.balance() call will be followed 2867 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2868 * siblings too. 2869 */ 2870 if (sched_core_enabled(rq)) { 2871 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2872 int scpu; 2873 2874 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2875 struct rq *srq = cpu_rq(scpu); 2876 struct task_struct *sprev = srq->curr; 2877 2878 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2879 update_rq_clock(srq); 2880 balance_one(srq, sprev); 2881 } 2882 } 2883 #endif 2884 rq_repin_lock(rq, rf); 2885 2886 return ret; 2887 } 2888 2889 static void process_ddsp_deferred_locals(struct rq *rq) 2890 { 2891 struct task_struct *p; 2892 2893 lockdep_assert_rq_held(rq); 2894 2895 /* 2896 * Now that @rq can be unlocked, execute the deferred enqueueing of 2897 * tasks directly dispatched to the local DSQs of other CPUs. See 2898 * direct_dispatch(). Keep popping from the head instead of using 2899 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2900 * temporarily. 2901 */ 2902 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2903 struct task_struct, scx.dsq_list.node))) { 2904 struct scx_dispatch_q *dsq; 2905 2906 list_del_init(&p->scx.dsq_list.node); 2907 2908 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2909 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2910 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2911 } 2912 } 2913 2914 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2915 { 2916 if (p->scx.flags & SCX_TASK_QUEUED) { 2917 /* 2918 * Core-sched might decide to execute @p before it is 2919 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2920 */ 2921 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2922 dispatch_dequeue(rq, p); 2923 } 2924 2925 p->se.exec_start = rq_clock_task(rq); 2926 2927 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2928 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2929 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2930 2931 clr_task_runnable(p, true); 2932 2933 /* 2934 * @p is getting newly scheduled or got kicked after someone updated its 2935 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2936 */ 2937 if ((p->scx.slice == SCX_SLICE_INF) != 2938 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2939 if (p->scx.slice == SCX_SLICE_INF) 2940 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2941 else 2942 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2943 2944 sched_update_tick_dependency(rq); 2945 2946 /* 2947 * For now, let's refresh the load_avgs just when transitioning 2948 * in and out of nohz. In the future, we might want to add a 2949 * mechanism which calls the following periodically on 2950 * tick-stopped CPUs. 2951 */ 2952 update_other_load_avgs(rq); 2953 } 2954 } 2955 2956 static enum scx_cpu_preempt_reason 2957 preempt_reason_from_class(const struct sched_class *class) 2958 { 2959 #ifdef CONFIG_SMP 2960 if (class == &stop_sched_class) 2961 return SCX_CPU_PREEMPT_STOP; 2962 #endif 2963 if (class == &dl_sched_class) 2964 return SCX_CPU_PREEMPT_DL; 2965 if (class == &rt_sched_class) 2966 return SCX_CPU_PREEMPT_RT; 2967 return SCX_CPU_PREEMPT_UNKNOWN; 2968 } 2969 2970 static void switch_class(struct rq *rq, struct task_struct *next) 2971 { 2972 const struct sched_class *next_class = next->sched_class; 2973 2974 #ifdef CONFIG_SMP 2975 /* 2976 * Pairs with the smp_load_acquire() issued by a CPU in 2977 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2978 * resched. 2979 */ 2980 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2981 #endif 2982 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2983 return; 2984 2985 /* 2986 * The callback is conceptually meant to convey that the CPU is no 2987 * longer under the control of SCX. Therefore, don't invoke the callback 2988 * if the next class is below SCX (in which case the BPF scheduler has 2989 * actively decided not to schedule any tasks on the CPU). 2990 */ 2991 if (sched_class_above(&ext_sched_class, next_class)) 2992 return; 2993 2994 /* 2995 * At this point we know that SCX was preempted by a higher priority 2996 * sched_class, so invoke the ->cpu_release() callback if we have not 2997 * done so already. We only send the callback once between SCX being 2998 * preempted, and it regaining control of the CPU. 2999 * 3000 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3001 * next time that balance_scx() is invoked. 3002 */ 3003 if (!rq->scx.cpu_released) { 3004 if (SCX_HAS_OP(cpu_release)) { 3005 struct scx_cpu_release_args args = { 3006 .reason = preempt_reason_from_class(next_class), 3007 .task = next, 3008 }; 3009 3010 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 3011 cpu_release, cpu_of(rq), &args); 3012 } 3013 rq->scx.cpu_released = true; 3014 } 3015 } 3016 3017 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3018 struct task_struct *next) 3019 { 3020 update_curr_scx(rq); 3021 3022 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3023 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3024 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 3025 3026 if (p->scx.flags & SCX_TASK_QUEUED) { 3027 set_task_runnable(rq, p); 3028 3029 /* 3030 * If @p has slice left and is being put, @p is getting 3031 * preempted by a higher priority scheduler class or core-sched 3032 * forcing a different task. Leave it at the head of the local 3033 * DSQ. 3034 */ 3035 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3036 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 3037 return; 3038 } 3039 3040 /* 3041 * If @p is runnable but we're about to enter a lower 3042 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3043 * ops.enqueue() that @p is the only one available for this cpu, 3044 * which should trigger an explicit follow-up scheduling event. 3045 */ 3046 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3047 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 3048 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3049 } else { 3050 do_enqueue_task(rq, p, 0, -1); 3051 } 3052 } 3053 3054 if (next && next->sched_class != &ext_sched_class) 3055 switch_class(rq, next); 3056 } 3057 3058 static struct task_struct *first_local_task(struct rq *rq) 3059 { 3060 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3061 struct task_struct, scx.dsq_list.node); 3062 } 3063 3064 static struct task_struct *pick_task_scx(struct rq *rq) 3065 { 3066 struct task_struct *prev = rq->curr; 3067 struct task_struct *p; 3068 3069 /* 3070 * If balance_scx() is telling us to keep running @prev, replenish slice 3071 * if necessary and keep running @prev. Otherwise, pop the first one 3072 * from the local DSQ. 3073 * 3074 * WORKAROUND: 3075 * 3076 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3077 * have gone through balance_scx(). Unfortunately, there currently is a 3078 * bug where fair could say yes on balance() but no on pick_task(), 3079 * which then ends up calling pick_task_scx() without preceding 3080 * balance_scx(). 3081 * 3082 * For now, ignore cases where $prev is not on SCX. This isn't great and 3083 * can theoretically lead to stalls. However, for switch_all cases, this 3084 * happens only while a BPF scheduler is being loaded or unloaded, and, 3085 * for partial cases, fair will likely keep triggering this CPU. 3086 * 3087 * Once fair is fixed, restore WARN_ON_ONCE(). 3088 */ 3089 if ((rq->scx.flags & SCX_RQ_BAL_KEEP) && 3090 prev->sched_class == &ext_sched_class) { 3091 p = prev; 3092 if (!p->scx.slice) 3093 p->scx.slice = SCX_SLICE_DFL; 3094 } else { 3095 p = first_local_task(rq); 3096 if (!p) 3097 return NULL; 3098 3099 if (unlikely(!p->scx.slice)) { 3100 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 3101 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3102 p->comm, p->pid, __func__); 3103 scx_warned_zero_slice = true; 3104 } 3105 p->scx.slice = SCX_SLICE_DFL; 3106 } 3107 } 3108 3109 return p; 3110 } 3111 3112 #ifdef CONFIG_SCHED_CORE 3113 /** 3114 * scx_prio_less - Task ordering for core-sched 3115 * @a: task A 3116 * @b: task B 3117 * 3118 * Core-sched is implemented as an additional scheduling layer on top of the 3119 * usual sched_class'es and needs to find out the expected task ordering. For 3120 * SCX, core-sched calls this function to interrogate the task ordering. 3121 * 3122 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3123 * to implement the default task ordering. The older the timestamp, the higher 3124 * prority the task - the global FIFO ordering matching the default scheduling 3125 * behavior. 3126 * 3127 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3128 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3129 */ 3130 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3131 bool in_fi) 3132 { 3133 /* 3134 * The const qualifiers are dropped from task_struct pointers when 3135 * calling ops.core_sched_before(). Accesses are controlled by the 3136 * verifier. 3137 */ 3138 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 3139 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3140 (struct task_struct *)a, 3141 (struct task_struct *)b); 3142 else 3143 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3144 } 3145 #endif /* CONFIG_SCHED_CORE */ 3146 3147 #ifdef CONFIG_SMP 3148 3149 static bool test_and_clear_cpu_idle(int cpu) 3150 { 3151 #ifdef CONFIG_SCHED_SMT 3152 /* 3153 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3154 * cluster is not wholly idle either way. This also prevents 3155 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3156 */ 3157 if (sched_smt_active()) { 3158 const struct cpumask *smt = cpu_smt_mask(cpu); 3159 3160 /* 3161 * If offline, @cpu is not its own sibling and 3162 * scx_pick_idle_cpu() can get caught in an infinite loop as 3163 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3164 * is eventually cleared. 3165 */ 3166 if (cpumask_intersects(smt, idle_masks.smt)) 3167 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3168 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3169 __cpumask_clear_cpu(cpu, idle_masks.smt); 3170 } 3171 #endif 3172 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3173 } 3174 3175 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3176 { 3177 int cpu; 3178 3179 retry: 3180 if (sched_smt_active()) { 3181 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3182 if (cpu < nr_cpu_ids) 3183 goto found; 3184 3185 if (flags & SCX_PICK_IDLE_CORE) 3186 return -EBUSY; 3187 } 3188 3189 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3190 if (cpu >= nr_cpu_ids) 3191 return -EBUSY; 3192 3193 found: 3194 if (test_and_clear_cpu_idle(cpu)) 3195 return cpu; 3196 else 3197 goto retry; 3198 } 3199 3200 /* 3201 * Return true if the LLC domains do not perfectly overlap with the NUMA 3202 * domains, false otherwise. 3203 */ 3204 static bool llc_numa_mismatch(void) 3205 { 3206 int cpu; 3207 3208 /* 3209 * We need to scan all online CPUs to verify whether their scheduling 3210 * domains overlap. 3211 * 3212 * While it is rare to encounter architectures with asymmetric NUMA 3213 * topologies, CPU hotplugging or virtualized environments can result 3214 * in asymmetric configurations. 3215 * 3216 * For example: 3217 * 3218 * NUMA 0: 3219 * - LLC 0: cpu0..cpu7 3220 * - LLC 1: cpu8..cpu15 [offline] 3221 * 3222 * NUMA 1: 3223 * - LLC 0: cpu16..cpu23 3224 * - LLC 1: cpu24..cpu31 3225 * 3226 * In this case, if we only check the first online CPU (cpu0), we might 3227 * incorrectly assume that the LLC and NUMA domains are fully 3228 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC 3229 * domains). 3230 */ 3231 for_each_online_cpu(cpu) { 3232 const struct cpumask *numa_cpus; 3233 struct sched_domain *sd; 3234 3235 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3236 if (!sd) 3237 return true; 3238 3239 numa_cpus = cpumask_of_node(cpu_to_node(cpu)); 3240 if (sd->span_weight != cpumask_weight(numa_cpus)) 3241 return true; 3242 } 3243 3244 return false; 3245 } 3246 3247 /* 3248 * Initialize topology-aware scheduling. 3249 * 3250 * Detect if the system has multiple LLC or multiple NUMA domains and enable 3251 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle 3252 * selection policy. 3253 * 3254 * Assumption: the kernel's internal topology representation assumes that each 3255 * CPU belongs to a single LLC domain, and that each LLC domain is entirely 3256 * contained within a single NUMA node. 3257 */ 3258 static void update_selcpu_topology(void) 3259 { 3260 bool enable_llc = false, enable_numa = false; 3261 struct sched_domain *sd; 3262 const struct cpumask *cpus; 3263 s32 cpu = cpumask_first(cpu_online_mask); 3264 3265 /* 3266 * Enable LLC domain optimization only when there are multiple LLC 3267 * domains among the online CPUs. If all online CPUs are part of a 3268 * single LLC domain, the idle CPU selection logic can choose any 3269 * online CPU without bias. 3270 * 3271 * Note that it is sufficient to check the LLC domain of the first 3272 * online CPU to determine whether a single LLC domain includes all 3273 * CPUs. 3274 */ 3275 rcu_read_lock(); 3276 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3277 if (sd) { 3278 if (sd->span_weight < num_online_cpus()) 3279 enable_llc = true; 3280 } 3281 3282 /* 3283 * Enable NUMA optimization only when there are multiple NUMA domains 3284 * among the online CPUs and the NUMA domains don't perfectly overlaps 3285 * with the LLC domains. 3286 * 3287 * If all CPUs belong to the same NUMA node and the same LLC domain, 3288 * enabling both NUMA and LLC optimizations is unnecessary, as checking 3289 * for an idle CPU in the same domain twice is redundant. 3290 */ 3291 cpus = cpumask_of_node(cpu_to_node(cpu)); 3292 if ((cpumask_weight(cpus) < num_online_cpus()) && llc_numa_mismatch()) 3293 enable_numa = true; 3294 rcu_read_unlock(); 3295 3296 pr_debug("sched_ext: LLC idle selection %s\n", 3297 enable_llc ? "enabled" : "disabled"); 3298 pr_debug("sched_ext: NUMA idle selection %s\n", 3299 enable_numa ? "enabled" : "disabled"); 3300 3301 if (enable_llc) 3302 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc); 3303 else 3304 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc); 3305 if (enable_numa) 3306 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa); 3307 else 3308 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa); 3309 } 3310 3311 /* 3312 * Built-in CPU idle selection policy: 3313 * 3314 * 1. Prioritize full-idle cores: 3315 * - always prioritize CPUs from fully idle cores (both logical CPUs are 3316 * idle) to avoid interference caused by SMT. 3317 * 3318 * 2. Reuse the same CPU: 3319 * - prefer the last used CPU to take advantage of cached data (L1, L2) and 3320 * branch prediction optimizations. 3321 * 3322 * 3. Pick a CPU within the same LLC (Last-Level Cache): 3323 * - if the above conditions aren't met, pick a CPU that shares the same LLC 3324 * to maintain cache locality. 3325 * 3326 * 4. Pick a CPU within the same NUMA node, if enabled: 3327 * - choose a CPU from the same NUMA node to reduce memory access latency. 3328 * 3329 * Step 3 and 4 are performed only if the system has, respectively, multiple 3330 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and 3331 * scx_selcpu_topo_numa). 3332 * 3333 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because 3334 * we never call ops.select_cpu() for them, see select_task_rq(). 3335 */ 3336 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3337 u64 wake_flags, bool *found) 3338 { 3339 const struct cpumask *llc_cpus = NULL; 3340 const struct cpumask *numa_cpus = NULL; 3341 s32 cpu; 3342 3343 *found = false; 3344 3345 3346 /* 3347 * This is necessary to protect llc_cpus. 3348 */ 3349 rcu_read_lock(); 3350 3351 /* 3352 * Determine the scheduling domain only if the task is allowed to run 3353 * on all CPUs. 3354 * 3355 * This is done primarily for efficiency, as it avoids the overhead of 3356 * updating a cpumask every time we need to select an idle CPU (which 3357 * can be costly in large SMP systems), but it also aligns logically: 3358 * if a task's scheduling domain is restricted by user-space (through 3359 * CPU affinity), the task will simply use the flat scheduling domain 3360 * defined by user-space. 3361 */ 3362 if (p->nr_cpus_allowed >= num_possible_cpus()) { 3363 if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) 3364 numa_cpus = cpumask_of_node(cpu_to_node(prev_cpu)); 3365 3366 if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) { 3367 struct sched_domain *sd; 3368 3369 sd = rcu_dereference(per_cpu(sd_llc, prev_cpu)); 3370 if (sd) 3371 llc_cpus = sched_domain_span(sd); 3372 } 3373 } 3374 3375 /* 3376 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU. 3377 */ 3378 if (wake_flags & SCX_WAKE_SYNC) { 3379 cpu = smp_processor_id(); 3380 3381 /* 3382 * If the waker's CPU is cache affine and prev_cpu is idle, 3383 * then avoid a migration. 3384 */ 3385 if (cpus_share_cache(cpu, prev_cpu) && 3386 test_and_clear_cpu_idle(prev_cpu)) { 3387 cpu = prev_cpu; 3388 goto cpu_found; 3389 } 3390 3391 /* 3392 * If the waker's local DSQ is empty, and the system is under 3393 * utilized, try to wake up @p to the local DSQ of the waker. 3394 * 3395 * Checking only for an empty local DSQ is insufficient as it 3396 * could give the wakee an unfair advantage when the system is 3397 * oversaturated. 3398 * 3399 * Checking only for the presence of idle CPUs is also 3400 * insufficient as the local DSQ of the waker could have tasks 3401 * piled up on it even if there is an idle core elsewhere on 3402 * the system. 3403 */ 3404 if (!cpumask_empty(idle_masks.cpu) && 3405 !(current->flags & PF_EXITING) && 3406 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3407 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3408 goto cpu_found; 3409 } 3410 } 3411 3412 /* 3413 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3414 * partially idle @prev_cpu. 3415 */ 3416 if (sched_smt_active()) { 3417 /* 3418 * Keep using @prev_cpu if it's part of a fully idle core. 3419 */ 3420 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3421 test_and_clear_cpu_idle(prev_cpu)) { 3422 cpu = prev_cpu; 3423 goto cpu_found; 3424 } 3425 3426 /* 3427 * Search for any fully idle core in the same LLC domain. 3428 */ 3429 if (llc_cpus) { 3430 cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE); 3431 if (cpu >= 0) 3432 goto cpu_found; 3433 } 3434 3435 /* 3436 * Search for any fully idle core in the same NUMA node. 3437 */ 3438 if (numa_cpus) { 3439 cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE); 3440 if (cpu >= 0) 3441 goto cpu_found; 3442 } 3443 3444 /* 3445 * Search for any full idle core usable by the task. 3446 */ 3447 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3448 if (cpu >= 0) 3449 goto cpu_found; 3450 } 3451 3452 /* 3453 * Use @prev_cpu if it's idle. 3454 */ 3455 if (test_and_clear_cpu_idle(prev_cpu)) { 3456 cpu = prev_cpu; 3457 goto cpu_found; 3458 } 3459 3460 /* 3461 * Search for any idle CPU in the same LLC domain. 3462 */ 3463 if (llc_cpus) { 3464 cpu = scx_pick_idle_cpu(llc_cpus, 0); 3465 if (cpu >= 0) 3466 goto cpu_found; 3467 } 3468 3469 /* 3470 * Search for any idle CPU in the same NUMA node. 3471 */ 3472 if (numa_cpus) { 3473 cpu = scx_pick_idle_cpu(numa_cpus, 0); 3474 if (cpu >= 0) 3475 goto cpu_found; 3476 } 3477 3478 /* 3479 * Search for any idle CPU usable by the task. 3480 */ 3481 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3482 if (cpu >= 0) 3483 goto cpu_found; 3484 3485 rcu_read_unlock(); 3486 return prev_cpu; 3487 3488 cpu_found: 3489 rcu_read_unlock(); 3490 3491 *found = true; 3492 return cpu; 3493 } 3494 3495 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3496 { 3497 /* 3498 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3499 * can be a good migration opportunity with low cache and memory 3500 * footprint. Returning a CPU different than @prev_cpu triggers 3501 * immediate rq migration. However, for SCX, as the current rq 3502 * association doesn't dictate where the task is going to run, this 3503 * doesn't fit well. If necessary, we can later add a dedicated method 3504 * which can decide to preempt self to force it through the regular 3505 * scheduling path. 3506 */ 3507 if (unlikely(wake_flags & WF_EXEC)) 3508 return prev_cpu; 3509 3510 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) { 3511 s32 cpu; 3512 struct task_struct **ddsp_taskp; 3513 3514 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3515 WARN_ON_ONCE(*ddsp_taskp); 3516 *ddsp_taskp = p; 3517 3518 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3519 select_cpu, p, prev_cpu, wake_flags); 3520 *ddsp_taskp = NULL; 3521 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3522 return cpu; 3523 else 3524 return prev_cpu; 3525 } else { 3526 bool found; 3527 s32 cpu; 3528 3529 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3530 if (found) { 3531 p->scx.slice = SCX_SLICE_DFL; 3532 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3533 } 3534 return cpu; 3535 } 3536 } 3537 3538 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3539 { 3540 run_deferred(rq); 3541 } 3542 3543 static void set_cpus_allowed_scx(struct task_struct *p, 3544 struct affinity_context *ac) 3545 { 3546 set_cpus_allowed_common(p, ac); 3547 3548 /* 3549 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3550 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3551 * scheduler the effective one. 3552 * 3553 * Fine-grained memory write control is enforced by BPF making the const 3554 * designation pointless. Cast it away when calling the operation. 3555 */ 3556 if (SCX_HAS_OP(set_cpumask)) 3557 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3558 (struct cpumask *)p->cpus_ptr); 3559 } 3560 3561 static void reset_idle_masks(void) 3562 { 3563 /* 3564 * Consider all online cpus idle. Should converge to the actual state 3565 * quickly. 3566 */ 3567 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3568 cpumask_copy(idle_masks.smt, cpu_online_mask); 3569 } 3570 3571 void __scx_update_idle(struct rq *rq, bool idle) 3572 { 3573 int cpu = cpu_of(rq); 3574 3575 if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) { 3576 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3577 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 3578 return; 3579 } 3580 3581 if (idle) 3582 cpumask_set_cpu(cpu, idle_masks.cpu); 3583 else 3584 cpumask_clear_cpu(cpu, idle_masks.cpu); 3585 3586 #ifdef CONFIG_SCHED_SMT 3587 if (sched_smt_active()) { 3588 const struct cpumask *smt = cpu_smt_mask(cpu); 3589 3590 if (idle) { 3591 /* 3592 * idle_masks.smt handling is racy but that's fine as 3593 * it's only for optimization and self-correcting. 3594 */ 3595 for_each_cpu(cpu, smt) { 3596 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 3597 return; 3598 } 3599 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3600 } else { 3601 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3602 } 3603 } 3604 #endif 3605 } 3606 3607 static void handle_hotplug(struct rq *rq, bool online) 3608 { 3609 int cpu = cpu_of(rq); 3610 3611 atomic_long_inc(&scx_hotplug_seq); 3612 3613 if (scx_enabled()) 3614 update_selcpu_topology(); 3615 3616 if (online && SCX_HAS_OP(cpu_online)) 3617 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3618 else if (!online && SCX_HAS_OP(cpu_offline)) 3619 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3620 else 3621 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3622 "cpu %d going %s, exiting scheduler", cpu, 3623 online ? "online" : "offline"); 3624 } 3625 3626 void scx_rq_activate(struct rq *rq) 3627 { 3628 handle_hotplug(rq, true); 3629 } 3630 3631 void scx_rq_deactivate(struct rq *rq) 3632 { 3633 handle_hotplug(rq, false); 3634 } 3635 3636 static void rq_online_scx(struct rq *rq) 3637 { 3638 rq->scx.flags |= SCX_RQ_ONLINE; 3639 } 3640 3641 static void rq_offline_scx(struct rq *rq) 3642 { 3643 rq->scx.flags &= ~SCX_RQ_ONLINE; 3644 } 3645 3646 #else /* CONFIG_SMP */ 3647 3648 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3649 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3650 static void reset_idle_masks(void) {} 3651 3652 #endif /* CONFIG_SMP */ 3653 3654 static bool check_rq_for_timeouts(struct rq *rq) 3655 { 3656 struct task_struct *p; 3657 struct rq_flags rf; 3658 bool timed_out = false; 3659 3660 rq_lock_irqsave(rq, &rf); 3661 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3662 unsigned long last_runnable = p->scx.runnable_at; 3663 3664 if (unlikely(time_after(jiffies, 3665 last_runnable + scx_watchdog_timeout))) { 3666 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3667 3668 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3669 "%s[%d] failed to run for %u.%03us", 3670 p->comm, p->pid, 3671 dur_ms / 1000, dur_ms % 1000); 3672 timed_out = true; 3673 break; 3674 } 3675 } 3676 rq_unlock_irqrestore(rq, &rf); 3677 3678 return timed_out; 3679 } 3680 3681 static void scx_watchdog_workfn(struct work_struct *work) 3682 { 3683 int cpu; 3684 3685 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3686 3687 for_each_online_cpu(cpu) { 3688 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3689 break; 3690 3691 cond_resched(); 3692 } 3693 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3694 scx_watchdog_timeout / 2); 3695 } 3696 3697 void scx_tick(struct rq *rq) 3698 { 3699 unsigned long last_check; 3700 3701 if (!scx_enabled()) 3702 return; 3703 3704 last_check = READ_ONCE(scx_watchdog_timestamp); 3705 if (unlikely(time_after(jiffies, 3706 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3707 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3708 3709 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3710 "watchdog failed to check in for %u.%03us", 3711 dur_ms / 1000, dur_ms % 1000); 3712 } 3713 3714 update_other_load_avgs(rq); 3715 } 3716 3717 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3718 { 3719 update_curr_scx(rq); 3720 3721 /* 3722 * While disabling, always resched and refresh core-sched timestamp as 3723 * we can't trust the slice management or ops.core_sched_before(). 3724 */ 3725 if (scx_rq_bypassing(rq)) { 3726 curr->scx.slice = 0; 3727 touch_core_sched(rq, curr); 3728 } else if (SCX_HAS_OP(tick)) { 3729 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3730 } 3731 3732 if (!curr->scx.slice) 3733 resched_curr(rq); 3734 } 3735 3736 #ifdef CONFIG_EXT_GROUP_SCHED 3737 static struct cgroup *tg_cgrp(struct task_group *tg) 3738 { 3739 /* 3740 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3741 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3742 * root cgroup. 3743 */ 3744 if (tg && tg->css.cgroup) 3745 return tg->css.cgroup; 3746 else 3747 return &cgrp_dfl_root.cgrp; 3748 } 3749 3750 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3751 3752 #else /* CONFIG_EXT_GROUP_SCHED */ 3753 3754 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3755 3756 #endif /* CONFIG_EXT_GROUP_SCHED */ 3757 3758 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3759 { 3760 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3761 } 3762 3763 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3764 { 3765 enum scx_task_state prev_state = scx_get_task_state(p); 3766 bool warn = false; 3767 3768 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3769 3770 switch (state) { 3771 case SCX_TASK_NONE: 3772 break; 3773 case SCX_TASK_INIT: 3774 warn = prev_state != SCX_TASK_NONE; 3775 break; 3776 case SCX_TASK_READY: 3777 warn = prev_state == SCX_TASK_NONE; 3778 break; 3779 case SCX_TASK_ENABLED: 3780 warn = prev_state != SCX_TASK_READY; 3781 break; 3782 default: 3783 warn = true; 3784 return; 3785 } 3786 3787 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3788 prev_state, state, p->comm, p->pid); 3789 3790 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3791 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3792 } 3793 3794 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3795 { 3796 int ret; 3797 3798 p->scx.disallow = false; 3799 3800 if (SCX_HAS_OP(init_task)) { 3801 struct scx_init_task_args args = { 3802 SCX_INIT_TASK_ARGS_CGROUP(tg) 3803 .fork = fork, 3804 }; 3805 3806 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3807 if (unlikely(ret)) { 3808 ret = ops_sanitize_err("init_task", ret); 3809 return ret; 3810 } 3811 } 3812 3813 scx_set_task_state(p, SCX_TASK_INIT); 3814 3815 if (p->scx.disallow) { 3816 if (!fork) { 3817 struct rq *rq; 3818 struct rq_flags rf; 3819 3820 rq = task_rq_lock(p, &rf); 3821 3822 /* 3823 * We're in the load path and @p->policy will be applied 3824 * right after. Reverting @p->policy here and rejecting 3825 * %SCHED_EXT transitions from scx_check_setscheduler() 3826 * guarantees that if ops.init_task() sets @p->disallow, 3827 * @p can never be in SCX. 3828 */ 3829 if (p->policy == SCHED_EXT) { 3830 p->policy = SCHED_NORMAL; 3831 atomic_long_inc(&scx_nr_rejected); 3832 } 3833 3834 task_rq_unlock(rq, p, &rf); 3835 } else if (p->policy == SCHED_EXT) { 3836 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3837 p->comm, p->pid); 3838 } 3839 } 3840 3841 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3842 return 0; 3843 } 3844 3845 static void scx_ops_enable_task(struct task_struct *p) 3846 { 3847 u32 weight; 3848 3849 lockdep_assert_rq_held(task_rq(p)); 3850 3851 /* 3852 * Set the weight before calling ops.enable() so that the scheduler 3853 * doesn't see a stale value if they inspect the task struct. 3854 */ 3855 if (task_has_idle_policy(p)) 3856 weight = WEIGHT_IDLEPRIO; 3857 else 3858 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3859 3860 p->scx.weight = sched_weight_to_cgroup(weight); 3861 3862 if (SCX_HAS_OP(enable)) 3863 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3864 scx_set_task_state(p, SCX_TASK_ENABLED); 3865 3866 if (SCX_HAS_OP(set_weight)) 3867 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3868 } 3869 3870 static void scx_ops_disable_task(struct task_struct *p) 3871 { 3872 lockdep_assert_rq_held(task_rq(p)); 3873 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3874 3875 if (SCX_HAS_OP(disable)) 3876 SCX_CALL_OP(SCX_KF_REST, disable, p); 3877 scx_set_task_state(p, SCX_TASK_READY); 3878 } 3879 3880 static void scx_ops_exit_task(struct task_struct *p) 3881 { 3882 struct scx_exit_task_args args = { 3883 .cancelled = false, 3884 }; 3885 3886 lockdep_assert_rq_held(task_rq(p)); 3887 3888 switch (scx_get_task_state(p)) { 3889 case SCX_TASK_NONE: 3890 return; 3891 case SCX_TASK_INIT: 3892 args.cancelled = true; 3893 break; 3894 case SCX_TASK_READY: 3895 break; 3896 case SCX_TASK_ENABLED: 3897 scx_ops_disable_task(p); 3898 break; 3899 default: 3900 WARN_ON_ONCE(true); 3901 return; 3902 } 3903 3904 if (SCX_HAS_OP(exit_task)) 3905 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3906 scx_set_task_state(p, SCX_TASK_NONE); 3907 } 3908 3909 void init_scx_entity(struct sched_ext_entity *scx) 3910 { 3911 /* 3912 * init_idle() calls this function again after fork sequence is 3913 * complete. Don't touch ->tasks_node as it's already linked. 3914 */ 3915 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); 3916 3917 INIT_LIST_HEAD(&scx->dsq_list.node); 3918 RB_CLEAR_NODE(&scx->dsq_priq); 3919 scx->sticky_cpu = -1; 3920 scx->holding_cpu = -1; 3921 INIT_LIST_HEAD(&scx->runnable_node); 3922 scx->runnable_at = jiffies; 3923 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3924 scx->slice = SCX_SLICE_DFL; 3925 } 3926 3927 void scx_pre_fork(struct task_struct *p) 3928 { 3929 /* 3930 * BPF scheduler enable/disable paths want to be able to iterate and 3931 * update all tasks which can become complex when racing forks. As 3932 * enable/disable are very cold paths, let's use a percpu_rwsem to 3933 * exclude forks. 3934 */ 3935 percpu_down_read(&scx_fork_rwsem); 3936 } 3937 3938 int scx_fork(struct task_struct *p) 3939 { 3940 percpu_rwsem_assert_held(&scx_fork_rwsem); 3941 3942 if (scx_ops_init_task_enabled) 3943 return scx_ops_init_task(p, task_group(p), true); 3944 else 3945 return 0; 3946 } 3947 3948 void scx_post_fork(struct task_struct *p) 3949 { 3950 if (scx_ops_init_task_enabled) { 3951 scx_set_task_state(p, SCX_TASK_READY); 3952 3953 /* 3954 * Enable the task immediately if it's running on sched_ext. 3955 * Otherwise, it'll be enabled in switching_to_scx() if and 3956 * when it's ever configured to run with a SCHED_EXT policy. 3957 */ 3958 if (p->sched_class == &ext_sched_class) { 3959 struct rq_flags rf; 3960 struct rq *rq; 3961 3962 rq = task_rq_lock(p, &rf); 3963 scx_ops_enable_task(p); 3964 task_rq_unlock(rq, p, &rf); 3965 } 3966 } 3967 3968 spin_lock_irq(&scx_tasks_lock); 3969 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3970 spin_unlock_irq(&scx_tasks_lock); 3971 3972 percpu_up_read(&scx_fork_rwsem); 3973 } 3974 3975 void scx_cancel_fork(struct task_struct *p) 3976 { 3977 if (scx_enabled()) { 3978 struct rq *rq; 3979 struct rq_flags rf; 3980 3981 rq = task_rq_lock(p, &rf); 3982 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3983 scx_ops_exit_task(p); 3984 task_rq_unlock(rq, p, &rf); 3985 } 3986 3987 percpu_up_read(&scx_fork_rwsem); 3988 } 3989 3990 void sched_ext_free(struct task_struct *p) 3991 { 3992 unsigned long flags; 3993 3994 spin_lock_irqsave(&scx_tasks_lock, flags); 3995 list_del_init(&p->scx.tasks_node); 3996 spin_unlock_irqrestore(&scx_tasks_lock, flags); 3997 3998 /* 3999 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 4000 * ENABLED transitions can't race us. Disable ops for @p. 4001 */ 4002 if (scx_get_task_state(p) != SCX_TASK_NONE) { 4003 struct rq_flags rf; 4004 struct rq *rq; 4005 4006 rq = task_rq_lock(p, &rf); 4007 scx_ops_exit_task(p); 4008 task_rq_unlock(rq, p, &rf); 4009 } 4010 } 4011 4012 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 4013 const struct load_weight *lw) 4014 { 4015 lockdep_assert_rq_held(task_rq(p)); 4016 4017 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 4018 if (SCX_HAS_OP(set_weight)) 4019 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 4020 } 4021 4022 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 4023 { 4024 } 4025 4026 static void switching_to_scx(struct rq *rq, struct task_struct *p) 4027 { 4028 scx_ops_enable_task(p); 4029 4030 /* 4031 * set_cpus_allowed_scx() is not called while @p is associated with a 4032 * different scheduler class. Keep the BPF scheduler up-to-date. 4033 */ 4034 if (SCX_HAS_OP(set_cpumask)) 4035 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 4036 (struct cpumask *)p->cpus_ptr); 4037 } 4038 4039 static void switched_from_scx(struct rq *rq, struct task_struct *p) 4040 { 4041 scx_ops_disable_task(p); 4042 } 4043 4044 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 4045 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 4046 4047 int scx_check_setscheduler(struct task_struct *p, int policy) 4048 { 4049 lockdep_assert_rq_held(task_rq(p)); 4050 4051 /* if disallow, reject transitioning into SCX */ 4052 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 4053 p->policy != policy && policy == SCHED_EXT) 4054 return -EACCES; 4055 4056 return 0; 4057 } 4058 4059 #ifdef CONFIG_NO_HZ_FULL 4060 bool scx_can_stop_tick(struct rq *rq) 4061 { 4062 struct task_struct *p = rq->curr; 4063 4064 if (scx_rq_bypassing(rq)) 4065 return false; 4066 4067 if (p->sched_class != &ext_sched_class) 4068 return true; 4069 4070 /* 4071 * @rq can dispatch from different DSQs, so we can't tell whether it 4072 * needs the tick or not by looking at nr_running. Allow stopping ticks 4073 * iff the BPF scheduler indicated so. See set_next_task_scx(). 4074 */ 4075 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 4076 } 4077 #endif 4078 4079 #ifdef CONFIG_EXT_GROUP_SCHED 4080 4081 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 4082 static bool scx_cgroup_enabled; 4083 static bool cgroup_warned_missing_weight; 4084 static bool cgroup_warned_missing_idle; 4085 4086 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 4087 { 4088 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 4089 cgroup_warned_missing_weight) 4090 return; 4091 4092 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 4093 return; 4094 4095 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 4096 scx_ops.name); 4097 cgroup_warned_missing_weight = true; 4098 } 4099 4100 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 4101 { 4102 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 4103 return; 4104 4105 if (!tg->idle) 4106 return; 4107 4108 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 4109 scx_ops.name); 4110 cgroup_warned_missing_idle = true; 4111 } 4112 4113 int scx_tg_online(struct task_group *tg) 4114 { 4115 int ret = 0; 4116 4117 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 4118 4119 percpu_down_read(&scx_cgroup_rwsem); 4120 4121 scx_cgroup_warn_missing_weight(tg); 4122 4123 if (scx_cgroup_enabled) { 4124 if (SCX_HAS_OP(cgroup_init)) { 4125 struct scx_cgroup_init_args args = 4126 { .weight = tg->scx_weight }; 4127 4128 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4129 tg->css.cgroup, &args); 4130 if (ret) 4131 ret = ops_sanitize_err("cgroup_init", ret); 4132 } 4133 if (ret == 0) 4134 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 4135 } else { 4136 tg->scx_flags |= SCX_TG_ONLINE; 4137 } 4138 4139 percpu_up_read(&scx_cgroup_rwsem); 4140 return ret; 4141 } 4142 4143 void scx_tg_offline(struct task_group *tg) 4144 { 4145 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 4146 4147 percpu_down_read(&scx_cgroup_rwsem); 4148 4149 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 4150 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 4151 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 4152 4153 percpu_up_read(&scx_cgroup_rwsem); 4154 } 4155 4156 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 4157 { 4158 struct cgroup_subsys_state *css; 4159 struct task_struct *p; 4160 int ret; 4161 4162 /* released in scx_finish/cancel_attach() */ 4163 percpu_down_read(&scx_cgroup_rwsem); 4164 4165 if (!scx_cgroup_enabled) 4166 return 0; 4167 4168 cgroup_taskset_for_each(p, css, tset) { 4169 struct cgroup *from = tg_cgrp(task_group(p)); 4170 struct cgroup *to = tg_cgrp(css_tg(css)); 4171 4172 WARN_ON_ONCE(p->scx.cgrp_moving_from); 4173 4174 /* 4175 * sched_move_task() omits identity migrations. Let's match the 4176 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 4177 * always match one-to-one. 4178 */ 4179 if (from == to) 4180 continue; 4181 4182 if (SCX_HAS_OP(cgroup_prep_move)) { 4183 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 4184 p, from, css->cgroup); 4185 if (ret) 4186 goto err; 4187 } 4188 4189 p->scx.cgrp_moving_from = from; 4190 } 4191 4192 return 0; 4193 4194 err: 4195 cgroup_taskset_for_each(p, css, tset) { 4196 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4197 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4198 p->scx.cgrp_moving_from, css->cgroup); 4199 p->scx.cgrp_moving_from = NULL; 4200 } 4201 4202 percpu_up_read(&scx_cgroup_rwsem); 4203 return ops_sanitize_err("cgroup_prep_move", ret); 4204 } 4205 4206 void scx_move_task(struct task_struct *p) 4207 { 4208 if (!scx_cgroup_enabled) 4209 return; 4210 4211 /* 4212 * We're called from sched_move_task() which handles both cgroup and 4213 * autogroup moves. Ignore the latter. 4214 * 4215 * Also ignore exiting tasks, because in the exit path tasks transition 4216 * from the autogroup to the root group, so task_group_is_autogroup() 4217 * alone isn't able to catch exiting autogroup tasks. This is safe for 4218 * cgroup_move(), because cgroup migrations never happen for PF_EXITING 4219 * tasks. 4220 */ 4221 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) 4222 return; 4223 4224 /* 4225 * @p must have ops.cgroup_prep_move() called on it and thus 4226 * cgrp_moving_from set. 4227 */ 4228 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4229 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 4230 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 4231 p->scx.cgrp_moving_from = NULL; 4232 } 4233 4234 void scx_cgroup_finish_attach(void) 4235 { 4236 percpu_up_read(&scx_cgroup_rwsem); 4237 } 4238 4239 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4240 { 4241 struct cgroup_subsys_state *css; 4242 struct task_struct *p; 4243 4244 if (!scx_cgroup_enabled) 4245 goto out_unlock; 4246 4247 cgroup_taskset_for_each(p, css, tset) { 4248 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4249 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4250 p->scx.cgrp_moving_from, css->cgroup); 4251 p->scx.cgrp_moving_from = NULL; 4252 } 4253 out_unlock: 4254 percpu_up_read(&scx_cgroup_rwsem); 4255 } 4256 4257 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4258 { 4259 percpu_down_read(&scx_cgroup_rwsem); 4260 4261 if (scx_cgroup_enabled && tg->scx_weight != weight) { 4262 if (SCX_HAS_OP(cgroup_set_weight)) 4263 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 4264 tg_cgrp(tg), weight); 4265 tg->scx_weight = weight; 4266 } 4267 4268 percpu_up_read(&scx_cgroup_rwsem); 4269 } 4270 4271 void scx_group_set_idle(struct task_group *tg, bool idle) 4272 { 4273 percpu_down_read(&scx_cgroup_rwsem); 4274 scx_cgroup_warn_missing_idle(tg); 4275 percpu_up_read(&scx_cgroup_rwsem); 4276 } 4277 4278 static void scx_cgroup_lock(void) 4279 { 4280 percpu_down_write(&scx_cgroup_rwsem); 4281 } 4282 4283 static void scx_cgroup_unlock(void) 4284 { 4285 percpu_up_write(&scx_cgroup_rwsem); 4286 } 4287 4288 #else /* CONFIG_EXT_GROUP_SCHED */ 4289 4290 static inline void scx_cgroup_lock(void) {} 4291 static inline void scx_cgroup_unlock(void) {} 4292 4293 #endif /* CONFIG_EXT_GROUP_SCHED */ 4294 4295 /* 4296 * Omitted operations: 4297 * 4298 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4299 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4300 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4301 * 4302 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4303 * 4304 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4305 * their current sched_class. Call them directly from sched core instead. 4306 */ 4307 DEFINE_SCHED_CLASS(ext) = { 4308 .enqueue_task = enqueue_task_scx, 4309 .dequeue_task = dequeue_task_scx, 4310 .yield_task = yield_task_scx, 4311 .yield_to_task = yield_to_task_scx, 4312 4313 .wakeup_preempt = wakeup_preempt_scx, 4314 4315 .balance = balance_scx, 4316 .pick_task = pick_task_scx, 4317 4318 .put_prev_task = put_prev_task_scx, 4319 .set_next_task = set_next_task_scx, 4320 4321 #ifdef CONFIG_SMP 4322 .select_task_rq = select_task_rq_scx, 4323 .task_woken = task_woken_scx, 4324 .set_cpus_allowed = set_cpus_allowed_scx, 4325 4326 .rq_online = rq_online_scx, 4327 .rq_offline = rq_offline_scx, 4328 #endif 4329 4330 .task_tick = task_tick_scx, 4331 4332 .switching_to = switching_to_scx, 4333 .switched_from = switched_from_scx, 4334 .switched_to = switched_to_scx, 4335 .reweight_task = reweight_task_scx, 4336 .prio_changed = prio_changed_scx, 4337 4338 .update_curr = update_curr_scx, 4339 4340 #ifdef CONFIG_UCLAMP_TASK 4341 .uclamp_enabled = 1, 4342 #endif 4343 }; 4344 4345 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4346 { 4347 memset(dsq, 0, sizeof(*dsq)); 4348 4349 raw_spin_lock_init(&dsq->lock); 4350 INIT_LIST_HEAD(&dsq->list); 4351 dsq->id = dsq_id; 4352 } 4353 4354 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 4355 { 4356 struct scx_dispatch_q *dsq; 4357 int ret; 4358 4359 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 4360 return ERR_PTR(-EINVAL); 4361 4362 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4363 if (!dsq) 4364 return ERR_PTR(-ENOMEM); 4365 4366 init_dsq(dsq, dsq_id); 4367 4368 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 4369 dsq_hash_params); 4370 if (ret) { 4371 kfree(dsq); 4372 return ERR_PTR(ret); 4373 } 4374 return dsq; 4375 } 4376 4377 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4378 { 4379 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4380 struct scx_dispatch_q *dsq, *tmp_dsq; 4381 4382 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4383 kfree_rcu(dsq, rcu); 4384 } 4385 4386 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4387 4388 static void destroy_dsq(u64 dsq_id) 4389 { 4390 struct scx_dispatch_q *dsq; 4391 unsigned long flags; 4392 4393 rcu_read_lock(); 4394 4395 dsq = find_user_dsq(dsq_id); 4396 if (!dsq) 4397 goto out_unlock_rcu; 4398 4399 raw_spin_lock_irqsave(&dsq->lock, flags); 4400 4401 if (dsq->nr) { 4402 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4403 dsq->id, dsq->nr); 4404 goto out_unlock_dsq; 4405 } 4406 4407 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4408 goto out_unlock_dsq; 4409 4410 /* 4411 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4412 * queueing more tasks. As this function can be called from anywhere, 4413 * freeing is bounced through an irq work to avoid nesting RCU 4414 * operations inside scheduler locks. 4415 */ 4416 dsq->id = SCX_DSQ_INVALID; 4417 llist_add(&dsq->free_node, &dsqs_to_free); 4418 irq_work_queue(&free_dsq_irq_work); 4419 4420 out_unlock_dsq: 4421 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4422 out_unlock_rcu: 4423 rcu_read_unlock(); 4424 } 4425 4426 #ifdef CONFIG_EXT_GROUP_SCHED 4427 static void scx_cgroup_exit(void) 4428 { 4429 struct cgroup_subsys_state *css; 4430 4431 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4432 4433 scx_cgroup_enabled = false; 4434 4435 /* 4436 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4437 * cgroups and exit all the inited ones, all online cgroups are exited. 4438 */ 4439 rcu_read_lock(); 4440 css_for_each_descendant_post(css, &root_task_group.css) { 4441 struct task_group *tg = css_tg(css); 4442 4443 if (!(tg->scx_flags & SCX_TG_INITED)) 4444 continue; 4445 tg->scx_flags &= ~SCX_TG_INITED; 4446 4447 if (!scx_ops.cgroup_exit) 4448 continue; 4449 4450 if (WARN_ON_ONCE(!css_tryget(css))) 4451 continue; 4452 rcu_read_unlock(); 4453 4454 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4455 4456 rcu_read_lock(); 4457 css_put(css); 4458 } 4459 rcu_read_unlock(); 4460 } 4461 4462 static int scx_cgroup_init(void) 4463 { 4464 struct cgroup_subsys_state *css; 4465 int ret; 4466 4467 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4468 4469 cgroup_warned_missing_weight = false; 4470 cgroup_warned_missing_idle = false; 4471 4472 /* 4473 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk 4474 * cgroups and init, all online cgroups are initialized. 4475 */ 4476 rcu_read_lock(); 4477 css_for_each_descendant_pre(css, &root_task_group.css) { 4478 struct task_group *tg = css_tg(css); 4479 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4480 4481 scx_cgroup_warn_missing_weight(tg); 4482 scx_cgroup_warn_missing_idle(tg); 4483 4484 if ((tg->scx_flags & 4485 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4486 continue; 4487 4488 if (!scx_ops.cgroup_init) { 4489 tg->scx_flags |= SCX_TG_INITED; 4490 continue; 4491 } 4492 4493 if (WARN_ON_ONCE(!css_tryget(css))) 4494 continue; 4495 rcu_read_unlock(); 4496 4497 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4498 css->cgroup, &args); 4499 if (ret) { 4500 css_put(css); 4501 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4502 return ret; 4503 } 4504 tg->scx_flags |= SCX_TG_INITED; 4505 4506 rcu_read_lock(); 4507 css_put(css); 4508 } 4509 rcu_read_unlock(); 4510 4511 WARN_ON_ONCE(scx_cgroup_enabled); 4512 scx_cgroup_enabled = true; 4513 4514 return 0; 4515 } 4516 4517 #else 4518 static void scx_cgroup_exit(void) {} 4519 static int scx_cgroup_init(void) { return 0; } 4520 #endif 4521 4522 4523 /******************************************************************************** 4524 * Sysfs interface and ops enable/disable. 4525 */ 4526 4527 #define SCX_ATTR(_name) \ 4528 static struct kobj_attribute scx_attr_##_name = { \ 4529 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4530 .show = scx_attr_##_name##_show, \ 4531 } 4532 4533 static ssize_t scx_attr_state_show(struct kobject *kobj, 4534 struct kobj_attribute *ka, char *buf) 4535 { 4536 return sysfs_emit(buf, "%s\n", 4537 scx_ops_enable_state_str[scx_ops_enable_state()]); 4538 } 4539 SCX_ATTR(state); 4540 4541 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4542 struct kobj_attribute *ka, char *buf) 4543 { 4544 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4545 } 4546 SCX_ATTR(switch_all); 4547 4548 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4549 struct kobj_attribute *ka, char *buf) 4550 { 4551 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4552 } 4553 SCX_ATTR(nr_rejected); 4554 4555 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4556 struct kobj_attribute *ka, char *buf) 4557 { 4558 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4559 } 4560 SCX_ATTR(hotplug_seq); 4561 4562 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4563 struct kobj_attribute *ka, char *buf) 4564 { 4565 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4566 } 4567 SCX_ATTR(enable_seq); 4568 4569 static struct attribute *scx_global_attrs[] = { 4570 &scx_attr_state.attr, 4571 &scx_attr_switch_all.attr, 4572 &scx_attr_nr_rejected.attr, 4573 &scx_attr_hotplug_seq.attr, 4574 &scx_attr_enable_seq.attr, 4575 NULL, 4576 }; 4577 4578 static const struct attribute_group scx_global_attr_group = { 4579 .attrs = scx_global_attrs, 4580 }; 4581 4582 static void scx_kobj_release(struct kobject *kobj) 4583 { 4584 kfree(kobj); 4585 } 4586 4587 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4588 struct kobj_attribute *ka, char *buf) 4589 { 4590 return sysfs_emit(buf, "%s\n", scx_ops.name); 4591 } 4592 SCX_ATTR(ops); 4593 4594 static struct attribute *scx_sched_attrs[] = { 4595 &scx_attr_ops.attr, 4596 NULL, 4597 }; 4598 ATTRIBUTE_GROUPS(scx_sched); 4599 4600 static const struct kobj_type scx_ktype = { 4601 .release = scx_kobj_release, 4602 .sysfs_ops = &kobj_sysfs_ops, 4603 .default_groups = scx_sched_groups, 4604 }; 4605 4606 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4607 { 4608 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4609 } 4610 4611 static const struct kset_uevent_ops scx_uevent_ops = { 4612 .uevent = scx_uevent, 4613 }; 4614 4615 /* 4616 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4617 * sched_class. dl/rt are already handled. 4618 */ 4619 bool task_should_scx(struct task_struct *p) 4620 { 4621 if (!scx_enabled() || 4622 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4623 return false; 4624 if (READ_ONCE(scx_switching_all)) 4625 return true; 4626 return p->policy == SCHED_EXT; 4627 } 4628 4629 /** 4630 * scx_softlockup - sched_ext softlockup handler 4631 * 4632 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4633 * live-lock the system by making many CPUs target the same DSQ to the point 4634 * where soft-lockup detection triggers. This function is called from 4635 * soft-lockup watchdog when the triggering point is close and tries to unjam 4636 * the system by enabling the breather and aborting the BPF scheduler. 4637 */ 4638 void scx_softlockup(u32 dur_s) 4639 { 4640 switch (scx_ops_enable_state()) { 4641 case SCX_OPS_ENABLING: 4642 case SCX_OPS_ENABLED: 4643 break; 4644 default: 4645 return; 4646 } 4647 4648 /* allow only one instance, cleared at the end of scx_ops_bypass() */ 4649 if (test_and_set_bit(0, &scx_in_softlockup)) 4650 return; 4651 4652 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4653 smp_processor_id(), dur_s, scx_ops.name); 4654 4655 /* 4656 * Some CPUs may be trapped in the dispatch paths. Enable breather 4657 * immediately; otherwise, we might even be able to get to 4658 * scx_ops_bypass(). 4659 */ 4660 atomic_inc(&scx_ops_breather_depth); 4661 4662 scx_ops_error("soft lockup - CPU#%d stuck for %us", 4663 smp_processor_id(), dur_s); 4664 } 4665 4666 static void scx_clear_softlockup(void) 4667 { 4668 if (test_and_clear_bit(0, &scx_in_softlockup)) 4669 atomic_dec(&scx_ops_breather_depth); 4670 } 4671 4672 /** 4673 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4674 * 4675 * Bypassing guarantees that all runnable tasks make forward progress without 4676 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4677 * be held by tasks that the BPF scheduler is forgetting to run, which 4678 * unfortunately also excludes toggling the static branches. 4679 * 4680 * Let's work around by overriding a couple ops and modifying behaviors based on 4681 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4682 * to force global FIFO scheduling. 4683 * 4684 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4685 * 4686 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4687 * %SCX_OPS_ENQ_LAST is also ignored. 4688 * 4689 * - ops.dispatch() is ignored. 4690 * 4691 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4692 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4693 * the tail of the queue with core_sched_at touched. 4694 * 4695 * - pick_next_task() suppresses zero slice warning. 4696 * 4697 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4698 * operations. 4699 * 4700 * - scx_prio_less() reverts to the default core_sched_at order. 4701 */ 4702 static void scx_ops_bypass(bool bypass) 4703 { 4704 static DEFINE_RAW_SPINLOCK(bypass_lock); 4705 int cpu; 4706 unsigned long flags; 4707 4708 raw_spin_lock_irqsave(&bypass_lock, flags); 4709 if (bypass) { 4710 scx_ops_bypass_depth++; 4711 WARN_ON_ONCE(scx_ops_bypass_depth <= 0); 4712 if (scx_ops_bypass_depth != 1) 4713 goto unlock; 4714 } else { 4715 scx_ops_bypass_depth--; 4716 WARN_ON_ONCE(scx_ops_bypass_depth < 0); 4717 if (scx_ops_bypass_depth != 0) 4718 goto unlock; 4719 } 4720 4721 atomic_inc(&scx_ops_breather_depth); 4722 4723 /* 4724 * No task property is changing. We just need to make sure all currently 4725 * queued tasks are re-queued according to the new scx_rq_bypassing() 4726 * state. As an optimization, walk each rq's runnable_list instead of 4727 * the scx_tasks list. 4728 * 4729 * This function can't trust the scheduler and thus can't use 4730 * cpus_read_lock(). Walk all possible CPUs instead of online. 4731 */ 4732 for_each_possible_cpu(cpu) { 4733 struct rq *rq = cpu_rq(cpu); 4734 struct rq_flags rf; 4735 struct task_struct *p, *n; 4736 4737 rq_lock(rq, &rf); 4738 4739 if (bypass) { 4740 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4741 rq->scx.flags |= SCX_RQ_BYPASSING; 4742 } else { 4743 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4744 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4745 } 4746 4747 /* 4748 * We need to guarantee that no tasks are on the BPF scheduler 4749 * while bypassing. Either we see enabled or the enable path 4750 * sees scx_rq_bypassing() before moving tasks to SCX. 4751 */ 4752 if (!scx_enabled()) { 4753 rq_unlock_irqrestore(rq, &rf); 4754 continue; 4755 } 4756 4757 /* 4758 * The use of list_for_each_entry_safe_reverse() is required 4759 * because each task is going to be removed from and added back 4760 * to the runnable_list during iteration. Because they're added 4761 * to the tail of the list, safe reverse iteration can still 4762 * visit all nodes. 4763 */ 4764 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4765 scx.runnable_node) { 4766 struct sched_enq_and_set_ctx ctx; 4767 4768 /* cycling deq/enq is enough, see the function comment */ 4769 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4770 sched_enq_and_set_task(&ctx); 4771 } 4772 4773 rq_unlock(rq, &rf); 4774 4775 /* resched to restore ticks and idle state */ 4776 resched_cpu(cpu); 4777 } 4778 4779 atomic_dec(&scx_ops_breather_depth); 4780 unlock: 4781 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4782 scx_clear_softlockup(); 4783 } 4784 4785 static void free_exit_info(struct scx_exit_info *ei) 4786 { 4787 kfree(ei->dump); 4788 kfree(ei->msg); 4789 kfree(ei->bt); 4790 kfree(ei); 4791 } 4792 4793 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4794 { 4795 struct scx_exit_info *ei; 4796 4797 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4798 if (!ei) 4799 return NULL; 4800 4801 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4802 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4803 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4804 4805 if (!ei->bt || !ei->msg || !ei->dump) { 4806 free_exit_info(ei); 4807 return NULL; 4808 } 4809 4810 return ei; 4811 } 4812 4813 static const char *scx_exit_reason(enum scx_exit_kind kind) 4814 { 4815 switch (kind) { 4816 case SCX_EXIT_UNREG: 4817 return "unregistered from user space"; 4818 case SCX_EXIT_UNREG_BPF: 4819 return "unregistered from BPF"; 4820 case SCX_EXIT_UNREG_KERN: 4821 return "unregistered from the main kernel"; 4822 case SCX_EXIT_SYSRQ: 4823 return "disabled by sysrq-S"; 4824 case SCX_EXIT_ERROR: 4825 return "runtime error"; 4826 case SCX_EXIT_ERROR_BPF: 4827 return "scx_bpf_error"; 4828 case SCX_EXIT_ERROR_STALL: 4829 return "runnable task stall"; 4830 default: 4831 return "<UNKNOWN>"; 4832 } 4833 } 4834 4835 static void scx_ops_disable_workfn(struct kthread_work *work) 4836 { 4837 struct scx_exit_info *ei = scx_exit_info; 4838 struct scx_task_iter sti; 4839 struct task_struct *p; 4840 struct rhashtable_iter rht_iter; 4841 struct scx_dispatch_q *dsq; 4842 int i, kind; 4843 4844 kind = atomic_read(&scx_exit_kind); 4845 while (true) { 4846 /* 4847 * NONE indicates that a new scx_ops has been registered since 4848 * disable was scheduled - don't kill the new ops. DONE 4849 * indicates that the ops has already been disabled. 4850 */ 4851 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4852 return; 4853 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4854 break; 4855 } 4856 ei->kind = kind; 4857 ei->reason = scx_exit_reason(ei->kind); 4858 4859 /* guarantee forward progress by bypassing scx_ops */ 4860 scx_ops_bypass(true); 4861 4862 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4863 case SCX_OPS_DISABLING: 4864 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4865 break; 4866 case SCX_OPS_DISABLED: 4867 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4868 scx_exit_info->msg); 4869 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4870 SCX_OPS_DISABLING); 4871 goto done; 4872 default: 4873 break; 4874 } 4875 4876 /* 4877 * Here, every runnable task is guaranteed to make forward progress and 4878 * we can safely use blocking synchronization constructs. Actually 4879 * disable ops. 4880 */ 4881 mutex_lock(&scx_ops_enable_mutex); 4882 4883 static_branch_disable(&__scx_switched_all); 4884 WRITE_ONCE(scx_switching_all, false); 4885 4886 /* 4887 * Shut down cgroup support before tasks so that the cgroup attach path 4888 * doesn't race against scx_ops_exit_task(). 4889 */ 4890 scx_cgroup_lock(); 4891 scx_cgroup_exit(); 4892 scx_cgroup_unlock(); 4893 4894 /* 4895 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4896 * must be switched out and exited synchronously. 4897 */ 4898 percpu_down_write(&scx_fork_rwsem); 4899 4900 scx_ops_init_task_enabled = false; 4901 4902 scx_task_iter_start(&sti); 4903 while ((p = scx_task_iter_next_locked(&sti))) { 4904 const struct sched_class *old_class = p->sched_class; 4905 struct sched_enq_and_set_ctx ctx; 4906 4907 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4908 4909 __setscheduler_prio(p, p->prio); 4910 check_class_changing(task_rq(p), p, old_class); 4911 4912 sched_enq_and_set_task(&ctx); 4913 4914 check_class_changed(task_rq(p), p, old_class, p->prio); 4915 scx_ops_exit_task(p); 4916 } 4917 scx_task_iter_stop(&sti); 4918 percpu_up_write(&scx_fork_rwsem); 4919 4920 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4921 static_branch_disable(&__scx_ops_enabled); 4922 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 4923 static_branch_disable(&scx_has_op[i]); 4924 static_branch_disable(&scx_ops_enq_last); 4925 static_branch_disable(&scx_ops_enq_exiting); 4926 static_branch_disable(&scx_ops_cpu_preempt); 4927 static_branch_disable(&scx_builtin_idle_enabled); 4928 synchronize_rcu(); 4929 4930 if (ei->kind >= SCX_EXIT_ERROR) { 4931 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4932 scx_ops.name, ei->reason); 4933 4934 if (ei->msg[0] != '\0') 4935 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 4936 #ifdef CONFIG_STACKTRACE 4937 stack_trace_print(ei->bt, ei->bt_len, 2); 4938 #endif 4939 } else { 4940 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4941 scx_ops.name, ei->reason); 4942 } 4943 4944 if (scx_ops.exit) 4945 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 4946 4947 cancel_delayed_work_sync(&scx_watchdog_work); 4948 4949 /* 4950 * Delete the kobject from the hierarchy eagerly in addition to just 4951 * dropping a reference. Otherwise, if the object is deleted 4952 * asynchronously, sysfs could observe an object of the same name still 4953 * in the hierarchy when another scheduler is loaded. 4954 */ 4955 kobject_del(scx_root_kobj); 4956 kobject_put(scx_root_kobj); 4957 scx_root_kobj = NULL; 4958 4959 memset(&scx_ops, 0, sizeof(scx_ops)); 4960 4961 rhashtable_walk_enter(&dsq_hash, &rht_iter); 4962 do { 4963 rhashtable_walk_start(&rht_iter); 4964 4965 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 4966 destroy_dsq(dsq->id); 4967 4968 rhashtable_walk_stop(&rht_iter); 4969 } while (dsq == ERR_PTR(-EAGAIN)); 4970 rhashtable_walk_exit(&rht_iter); 4971 4972 free_percpu(scx_dsp_ctx); 4973 scx_dsp_ctx = NULL; 4974 scx_dsp_max_batch = 0; 4975 4976 free_exit_info(scx_exit_info); 4977 scx_exit_info = NULL; 4978 4979 mutex_unlock(&scx_ops_enable_mutex); 4980 4981 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4982 SCX_OPS_DISABLING); 4983 done: 4984 scx_ops_bypass(false); 4985 } 4986 4987 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 4988 4989 static void schedule_scx_ops_disable_work(void) 4990 { 4991 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 4992 4993 /* 4994 * We may be called spuriously before the first bpf_sched_ext_reg(). If 4995 * scx_ops_helper isn't set up yet, there's nothing to do. 4996 */ 4997 if (helper) 4998 kthread_queue_work(helper, &scx_ops_disable_work); 4999 } 5000 5001 static void scx_ops_disable(enum scx_exit_kind kind) 5002 { 5003 int none = SCX_EXIT_NONE; 5004 5005 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 5006 kind = SCX_EXIT_ERROR; 5007 5008 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 5009 5010 schedule_scx_ops_disable_work(); 5011 } 5012 5013 static void dump_newline(struct seq_buf *s) 5014 { 5015 trace_sched_ext_dump(""); 5016 5017 /* @s may be zero sized and seq_buf triggers WARN if so */ 5018 if (s->size) 5019 seq_buf_putc(s, '\n'); 5020 } 5021 5022 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 5023 { 5024 va_list args; 5025 5026 #ifdef CONFIG_TRACEPOINTS 5027 if (trace_sched_ext_dump_enabled()) { 5028 /* protected by scx_dump_state()::dump_lock */ 5029 static char line_buf[SCX_EXIT_MSG_LEN]; 5030 5031 va_start(args, fmt); 5032 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 5033 va_end(args); 5034 5035 trace_sched_ext_dump(line_buf); 5036 } 5037 #endif 5038 /* @s may be zero sized and seq_buf triggers WARN if so */ 5039 if (s->size) { 5040 va_start(args, fmt); 5041 seq_buf_vprintf(s, fmt, args); 5042 va_end(args); 5043 5044 seq_buf_putc(s, '\n'); 5045 } 5046 } 5047 5048 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 5049 const unsigned long *bt, unsigned int len) 5050 { 5051 unsigned int i; 5052 5053 for (i = 0; i < len; i++) 5054 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 5055 } 5056 5057 static void ops_dump_init(struct seq_buf *s, const char *prefix) 5058 { 5059 struct scx_dump_data *dd = &scx_dump_data; 5060 5061 lockdep_assert_irqs_disabled(); 5062 5063 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 5064 dd->first = true; 5065 dd->cursor = 0; 5066 dd->s = s; 5067 dd->prefix = prefix; 5068 } 5069 5070 static void ops_dump_flush(void) 5071 { 5072 struct scx_dump_data *dd = &scx_dump_data; 5073 char *line = dd->buf.line; 5074 5075 if (!dd->cursor) 5076 return; 5077 5078 /* 5079 * There's something to flush and this is the first line. Insert a blank 5080 * line to distinguish ops dump. 5081 */ 5082 if (dd->first) { 5083 dump_newline(dd->s); 5084 dd->first = false; 5085 } 5086 5087 /* 5088 * There may be multiple lines in $line. Scan and emit each line 5089 * separately. 5090 */ 5091 while (true) { 5092 char *end = line; 5093 char c; 5094 5095 while (*end != '\n' && *end != '\0') 5096 end++; 5097 5098 /* 5099 * If $line overflowed, it may not have newline at the end. 5100 * Always emit with a newline. 5101 */ 5102 c = *end; 5103 *end = '\0'; 5104 dump_line(dd->s, "%s%s", dd->prefix, line); 5105 if (c == '\0') 5106 break; 5107 5108 /* move to the next line */ 5109 end++; 5110 if (*end == '\0') 5111 break; 5112 line = end; 5113 } 5114 5115 dd->cursor = 0; 5116 } 5117 5118 static void ops_dump_exit(void) 5119 { 5120 ops_dump_flush(); 5121 scx_dump_data.cpu = -1; 5122 } 5123 5124 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 5125 struct task_struct *p, char marker) 5126 { 5127 static unsigned long bt[SCX_EXIT_BT_LEN]; 5128 char dsq_id_buf[19] = "(n/a)"; 5129 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 5130 unsigned int bt_len = 0; 5131 5132 if (p->scx.dsq) 5133 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 5134 (unsigned long long)p->scx.dsq->id); 5135 5136 dump_newline(s); 5137 dump_line(s, " %c%c %s[%d] %+ldms", 5138 marker, task_state_to_char(p), p->comm, p->pid, 5139 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 5140 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 5141 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 5142 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 5143 ops_state >> SCX_OPSS_QSEQ_SHIFT); 5144 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", 5145 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 5146 p->scx.dsq_vtime); 5147 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 5148 5149 if (SCX_HAS_OP(dump_task)) { 5150 ops_dump_init(s, " "); 5151 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 5152 ops_dump_exit(); 5153 } 5154 5155 #ifdef CONFIG_STACKTRACE 5156 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 5157 #endif 5158 if (bt_len) { 5159 dump_newline(s); 5160 dump_stack_trace(s, " ", bt, bt_len); 5161 } 5162 } 5163 5164 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5165 { 5166 static DEFINE_SPINLOCK(dump_lock); 5167 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5168 struct scx_dump_ctx dctx = { 5169 .kind = ei->kind, 5170 .exit_code = ei->exit_code, 5171 .reason = ei->reason, 5172 .at_ns = ktime_get_ns(), 5173 .at_jiffies = jiffies, 5174 }; 5175 struct seq_buf s; 5176 unsigned long flags; 5177 char *buf; 5178 int cpu; 5179 5180 spin_lock_irqsave(&dump_lock, flags); 5181 5182 seq_buf_init(&s, ei->dump, dump_len); 5183 5184 if (ei->kind == SCX_EXIT_NONE) { 5185 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5186 } else { 5187 dump_line(&s, "%s[%d] triggered exit kind %d:", 5188 current->comm, current->pid, ei->kind); 5189 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5190 dump_newline(&s); 5191 dump_line(&s, "Backtrace:"); 5192 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5193 } 5194 5195 if (SCX_HAS_OP(dump)) { 5196 ops_dump_init(&s, ""); 5197 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 5198 ops_dump_exit(); 5199 } 5200 5201 dump_newline(&s); 5202 dump_line(&s, "CPU states"); 5203 dump_line(&s, "----------"); 5204 5205 for_each_possible_cpu(cpu) { 5206 struct rq *rq = cpu_rq(cpu); 5207 struct rq_flags rf; 5208 struct task_struct *p; 5209 struct seq_buf ns; 5210 size_t avail, used; 5211 bool idle; 5212 5213 rq_lock(rq, &rf); 5214 5215 idle = list_empty(&rq->scx.runnable_list) && 5216 rq->curr->sched_class == &idle_sched_class; 5217 5218 if (idle && !SCX_HAS_OP(dump_cpu)) 5219 goto next; 5220 5221 /* 5222 * We don't yet know whether ops.dump_cpu() will produce output 5223 * and we may want to skip the default CPU dump if it doesn't. 5224 * Use a nested seq_buf to generate the standard dump so that we 5225 * can decide whether to commit later. 5226 */ 5227 avail = seq_buf_get_buf(&s, &buf); 5228 seq_buf_init(&ns, buf, avail); 5229 5230 dump_newline(&ns); 5231 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5232 cpu, rq->scx.nr_running, rq->scx.flags, 5233 rq->scx.cpu_released, rq->scx.ops_qseq, 5234 rq->scx.pnt_seq); 5235 dump_line(&ns, " curr=%s[%d] class=%ps", 5236 rq->curr->comm, rq->curr->pid, 5237 rq->curr->sched_class); 5238 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5239 dump_line(&ns, " cpus_to_kick : %*pb", 5240 cpumask_pr_args(rq->scx.cpus_to_kick)); 5241 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5242 dump_line(&ns, " idle_to_kick : %*pb", 5243 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5244 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5245 dump_line(&ns, " cpus_to_preempt: %*pb", 5246 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5247 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5248 dump_line(&ns, " cpus_to_wait : %*pb", 5249 cpumask_pr_args(rq->scx.cpus_to_wait)); 5250 5251 used = seq_buf_used(&ns); 5252 if (SCX_HAS_OP(dump_cpu)) { 5253 ops_dump_init(&ns, " "); 5254 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 5255 ops_dump_exit(); 5256 } 5257 5258 /* 5259 * If idle && nothing generated by ops.dump_cpu(), there's 5260 * nothing interesting. Skip. 5261 */ 5262 if (idle && used == seq_buf_used(&ns)) 5263 goto next; 5264 5265 /* 5266 * $s may already have overflowed when $ns was created. If so, 5267 * calling commit on it will trigger BUG. 5268 */ 5269 if (avail) { 5270 seq_buf_commit(&s, seq_buf_used(&ns)); 5271 if (seq_buf_has_overflowed(&ns)) 5272 seq_buf_set_overflow(&s); 5273 } 5274 5275 if (rq->curr->sched_class == &ext_sched_class) 5276 scx_dump_task(&s, &dctx, rq->curr, '*'); 5277 5278 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5279 scx_dump_task(&s, &dctx, p, ' '); 5280 next: 5281 rq_unlock(rq, &rf); 5282 } 5283 5284 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5285 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5286 trunc_marker, sizeof(trunc_marker)); 5287 5288 spin_unlock_irqrestore(&dump_lock, flags); 5289 } 5290 5291 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 5292 { 5293 struct scx_exit_info *ei = scx_exit_info; 5294 5295 if (ei->kind >= SCX_EXIT_ERROR) 5296 scx_dump_state(ei, scx_ops.exit_dump_len); 5297 5298 schedule_scx_ops_disable_work(); 5299 } 5300 5301 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 5302 5303 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 5304 s64 exit_code, 5305 const char *fmt, ...) 5306 { 5307 struct scx_exit_info *ei = scx_exit_info; 5308 int none = SCX_EXIT_NONE; 5309 va_list args; 5310 5311 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 5312 return; 5313 5314 ei->exit_code = exit_code; 5315 #ifdef CONFIG_STACKTRACE 5316 if (kind >= SCX_EXIT_ERROR) 5317 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5318 #endif 5319 va_start(args, fmt); 5320 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5321 va_end(args); 5322 5323 /* 5324 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5325 * in scx_ops_disable_workfn(). 5326 */ 5327 ei->kind = kind; 5328 ei->reason = scx_exit_reason(ei->kind); 5329 5330 irq_work_queue(&scx_ops_error_irq_work); 5331 } 5332 5333 static struct kthread_worker *scx_create_rt_helper(const char *name) 5334 { 5335 struct kthread_worker *helper; 5336 5337 helper = kthread_create_worker(0, name); 5338 if (helper) 5339 sched_set_fifo(helper->task); 5340 return helper; 5341 } 5342 5343 static void check_hotplug_seq(const struct sched_ext_ops *ops) 5344 { 5345 unsigned long long global_hotplug_seq; 5346 5347 /* 5348 * If a hotplug event has occurred between when a scheduler was 5349 * initialized, and when we were able to attach, exit and notify user 5350 * space about it. 5351 */ 5352 if (ops->hotplug_seq) { 5353 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5354 if (ops->hotplug_seq != global_hotplug_seq) { 5355 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5356 "expected hotplug seq %llu did not match actual %llu", 5357 ops->hotplug_seq, global_hotplug_seq); 5358 } 5359 } 5360 } 5361 5362 static int validate_ops(const struct sched_ext_ops *ops) 5363 { 5364 /* 5365 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5366 * ops.enqueue() callback isn't implemented. 5367 */ 5368 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5369 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5370 return -EINVAL; 5371 } 5372 5373 return 0; 5374 } 5375 5376 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5377 { 5378 struct scx_task_iter sti; 5379 struct task_struct *p; 5380 unsigned long timeout; 5381 int i, cpu, node, ret; 5382 5383 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5384 cpu_possible_mask)) { 5385 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5386 return -EINVAL; 5387 } 5388 5389 mutex_lock(&scx_ops_enable_mutex); 5390 5391 if (!scx_ops_helper) { 5392 WRITE_ONCE(scx_ops_helper, 5393 scx_create_rt_helper("sched_ext_ops_helper")); 5394 if (!scx_ops_helper) { 5395 ret = -ENOMEM; 5396 goto err_unlock; 5397 } 5398 } 5399 5400 if (!global_dsqs) { 5401 struct scx_dispatch_q **dsqs; 5402 5403 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 5404 if (!dsqs) { 5405 ret = -ENOMEM; 5406 goto err_unlock; 5407 } 5408 5409 for_each_node_state(node, N_POSSIBLE) { 5410 struct scx_dispatch_q *dsq; 5411 5412 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5413 if (!dsq) { 5414 for_each_node_state(node, N_POSSIBLE) 5415 kfree(dsqs[node]); 5416 kfree(dsqs); 5417 ret = -ENOMEM; 5418 goto err_unlock; 5419 } 5420 5421 init_dsq(dsq, SCX_DSQ_GLOBAL); 5422 dsqs[node] = dsq; 5423 } 5424 5425 global_dsqs = dsqs; 5426 } 5427 5428 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5429 ret = -EBUSY; 5430 goto err_unlock; 5431 } 5432 5433 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5434 if (!scx_root_kobj) { 5435 ret = -ENOMEM; 5436 goto err_unlock; 5437 } 5438 5439 scx_root_kobj->kset = scx_kset; 5440 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5441 if (ret < 0) 5442 goto err; 5443 5444 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5445 if (!scx_exit_info) { 5446 ret = -ENOMEM; 5447 goto err_del; 5448 } 5449 5450 /* 5451 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5452 * disable path. Failure triggers full disabling from here on. 5453 */ 5454 scx_ops = *ops; 5455 5456 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5457 SCX_OPS_DISABLED); 5458 5459 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5460 scx_warned_zero_slice = false; 5461 5462 atomic_long_set(&scx_nr_rejected, 0); 5463 5464 for_each_possible_cpu(cpu) 5465 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5466 5467 /* 5468 * Keep CPUs stable during enable so that the BPF scheduler can track 5469 * online CPUs by watching ->on/offline_cpu() after ->init(). 5470 */ 5471 cpus_read_lock(); 5472 5473 if (scx_ops.init) { 5474 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5475 if (ret) { 5476 ret = ops_sanitize_err("init", ret); 5477 cpus_read_unlock(); 5478 scx_ops_error("ops.init() failed (%d)", ret); 5479 goto err_disable; 5480 } 5481 } 5482 5483 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5484 if (((void (**)(void))ops)[i]) 5485 static_branch_enable_cpuslocked(&scx_has_op[i]); 5486 5487 check_hotplug_seq(ops); 5488 #ifdef CONFIG_SMP 5489 update_selcpu_topology(); 5490 #endif 5491 cpus_read_unlock(); 5492 5493 ret = validate_ops(ops); 5494 if (ret) 5495 goto err_disable; 5496 5497 WARN_ON_ONCE(scx_dsp_ctx); 5498 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5499 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5500 scx_dsp_max_batch), 5501 __alignof__(struct scx_dsp_ctx)); 5502 if (!scx_dsp_ctx) { 5503 ret = -ENOMEM; 5504 goto err_disable; 5505 } 5506 5507 if (ops->timeout_ms) 5508 timeout = msecs_to_jiffies(ops->timeout_ms); 5509 else 5510 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5511 5512 WRITE_ONCE(scx_watchdog_timeout, timeout); 5513 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5514 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5515 scx_watchdog_timeout / 2); 5516 5517 /* 5518 * Once __scx_ops_enabled is set, %current can be switched to SCX 5519 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5520 * userspace scheduling) may not function correctly before all tasks are 5521 * switched. Init in bypass mode to guarantee forward progress. 5522 */ 5523 scx_ops_bypass(true); 5524 5525 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5526 if (((void (**)(void))ops)[i]) 5527 static_branch_enable(&scx_has_op[i]); 5528 5529 if (ops->flags & SCX_OPS_ENQ_LAST) 5530 static_branch_enable(&scx_ops_enq_last); 5531 5532 if (ops->flags & SCX_OPS_ENQ_EXITING) 5533 static_branch_enable(&scx_ops_enq_exiting); 5534 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5535 static_branch_enable(&scx_ops_cpu_preempt); 5536 5537 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5538 reset_idle_masks(); 5539 static_branch_enable(&scx_builtin_idle_enabled); 5540 } else { 5541 static_branch_disable(&scx_builtin_idle_enabled); 5542 } 5543 5544 /* 5545 * Lock out forks, cgroup on/offlining and moves before opening the 5546 * floodgate so that they don't wander into the operations prematurely. 5547 */ 5548 percpu_down_write(&scx_fork_rwsem); 5549 5550 WARN_ON_ONCE(scx_ops_init_task_enabled); 5551 scx_ops_init_task_enabled = true; 5552 5553 /* 5554 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5555 * preventing new tasks from being added. No need to exclude tasks 5556 * leaving as sched_ext_free() can handle both prepped and enabled 5557 * tasks. Prep all tasks first and then enable them with preemption 5558 * disabled. 5559 * 5560 * All cgroups should be initialized before scx_ops_init_task() so that 5561 * the BPF scheduler can reliably track each task's cgroup membership 5562 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5563 * migrations while tasks are being initialized so that 5564 * scx_cgroup_can_attach() never sees uninitialized tasks. 5565 */ 5566 scx_cgroup_lock(); 5567 ret = scx_cgroup_init(); 5568 if (ret) 5569 goto err_disable_unlock_all; 5570 5571 scx_task_iter_start(&sti); 5572 while ((p = scx_task_iter_next_locked(&sti))) { 5573 /* 5574 * @p may already be dead, have lost all its usages counts and 5575 * be waiting for RCU grace period before being freed. @p can't 5576 * be initialized for SCX in such cases and should be ignored. 5577 */ 5578 if (!tryget_task_struct(p)) 5579 continue; 5580 5581 scx_task_iter_unlock(&sti); 5582 5583 ret = scx_ops_init_task(p, task_group(p), false); 5584 if (ret) { 5585 put_task_struct(p); 5586 scx_task_iter_relock(&sti); 5587 scx_task_iter_stop(&sti); 5588 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5589 ret, p->comm, p->pid); 5590 goto err_disable_unlock_all; 5591 } 5592 5593 scx_set_task_state(p, SCX_TASK_READY); 5594 5595 put_task_struct(p); 5596 scx_task_iter_relock(&sti); 5597 } 5598 scx_task_iter_stop(&sti); 5599 scx_cgroup_unlock(); 5600 percpu_up_write(&scx_fork_rwsem); 5601 5602 /* 5603 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5604 * all eligible tasks. 5605 */ 5606 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5607 static_branch_enable(&__scx_ops_enabled); 5608 5609 /* 5610 * We're fully committed and can't fail. The task READY -> ENABLED 5611 * transitions here are synchronized against sched_ext_free() through 5612 * scx_tasks_lock. 5613 */ 5614 percpu_down_write(&scx_fork_rwsem); 5615 scx_task_iter_start(&sti); 5616 while ((p = scx_task_iter_next_locked(&sti))) { 5617 const struct sched_class *old_class = p->sched_class; 5618 struct sched_enq_and_set_ctx ctx; 5619 5620 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5621 5622 p->scx.slice = SCX_SLICE_DFL; 5623 __setscheduler_prio(p, p->prio); 5624 check_class_changing(task_rq(p), p, old_class); 5625 5626 sched_enq_and_set_task(&ctx); 5627 5628 check_class_changed(task_rq(p), p, old_class, p->prio); 5629 } 5630 scx_task_iter_stop(&sti); 5631 percpu_up_write(&scx_fork_rwsem); 5632 5633 scx_ops_bypass(false); 5634 5635 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5636 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5637 goto err_disable; 5638 } 5639 5640 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5641 static_branch_enable(&__scx_switched_all); 5642 5643 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5644 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5645 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5646 mutex_unlock(&scx_ops_enable_mutex); 5647 5648 atomic_long_inc(&scx_enable_seq); 5649 5650 return 0; 5651 5652 err_del: 5653 kobject_del(scx_root_kobj); 5654 err: 5655 kobject_put(scx_root_kobj); 5656 scx_root_kobj = NULL; 5657 if (scx_exit_info) { 5658 free_exit_info(scx_exit_info); 5659 scx_exit_info = NULL; 5660 } 5661 err_unlock: 5662 mutex_unlock(&scx_ops_enable_mutex); 5663 return ret; 5664 5665 err_disable_unlock_all: 5666 scx_cgroup_unlock(); 5667 percpu_up_write(&scx_fork_rwsem); 5668 scx_ops_bypass(false); 5669 err_disable: 5670 mutex_unlock(&scx_ops_enable_mutex); 5671 /* 5672 * Returning an error code here would not pass all the error information 5673 * to userspace. Record errno using scx_ops_error() for cases 5674 * scx_ops_error() wasn't already invoked and exit indicating success so 5675 * that the error is notified through ops.exit() with all the details. 5676 * 5677 * Flush scx_ops_disable_work to ensure that error is reported before 5678 * init completion. 5679 */ 5680 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5681 kthread_flush_work(&scx_ops_disable_work); 5682 return 0; 5683 } 5684 5685 5686 /******************************************************************************** 5687 * bpf_struct_ops plumbing. 5688 */ 5689 #include <linux/bpf_verifier.h> 5690 #include <linux/bpf.h> 5691 #include <linux/btf.h> 5692 5693 static const struct btf_type *task_struct_type; 5694 5695 static bool bpf_scx_is_valid_access(int off, int size, 5696 enum bpf_access_type type, 5697 const struct bpf_prog *prog, 5698 struct bpf_insn_access_aux *info) 5699 { 5700 if (type != BPF_READ) 5701 return false; 5702 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5703 return false; 5704 if (off % size != 0) 5705 return false; 5706 5707 return btf_ctx_access(off, size, type, prog, info); 5708 } 5709 5710 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5711 const struct bpf_reg_state *reg, int off, 5712 int size) 5713 { 5714 const struct btf_type *t; 5715 5716 t = btf_type_by_id(reg->btf, reg->btf_id); 5717 if (t == task_struct_type) { 5718 if (off >= offsetof(struct task_struct, scx.slice) && 5719 off + size <= offsetofend(struct task_struct, scx.slice)) 5720 return SCALAR_VALUE; 5721 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5722 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5723 return SCALAR_VALUE; 5724 if (off >= offsetof(struct task_struct, scx.disallow) && 5725 off + size <= offsetofend(struct task_struct, scx.disallow)) 5726 return SCALAR_VALUE; 5727 } 5728 5729 return -EACCES; 5730 } 5731 5732 static const struct bpf_func_proto * 5733 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5734 { 5735 switch (func_id) { 5736 case BPF_FUNC_task_storage_get: 5737 return &bpf_task_storage_get_proto; 5738 case BPF_FUNC_task_storage_delete: 5739 return &bpf_task_storage_delete_proto; 5740 default: 5741 return bpf_base_func_proto(func_id, prog); 5742 } 5743 } 5744 5745 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5746 .get_func_proto = bpf_scx_get_func_proto, 5747 .is_valid_access = bpf_scx_is_valid_access, 5748 .btf_struct_access = bpf_scx_btf_struct_access, 5749 }; 5750 5751 static int bpf_scx_init_member(const struct btf_type *t, 5752 const struct btf_member *member, 5753 void *kdata, const void *udata) 5754 { 5755 const struct sched_ext_ops *uops = udata; 5756 struct sched_ext_ops *ops = kdata; 5757 u32 moff = __btf_member_bit_offset(t, member) / 8; 5758 int ret; 5759 5760 switch (moff) { 5761 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5762 if (*(u32 *)(udata + moff) > INT_MAX) 5763 return -E2BIG; 5764 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5765 return 1; 5766 case offsetof(struct sched_ext_ops, flags): 5767 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5768 return -EINVAL; 5769 ops->flags = *(u64 *)(udata + moff); 5770 return 1; 5771 case offsetof(struct sched_ext_ops, name): 5772 ret = bpf_obj_name_cpy(ops->name, uops->name, 5773 sizeof(ops->name)); 5774 if (ret < 0) 5775 return ret; 5776 if (ret == 0) 5777 return -EINVAL; 5778 return 1; 5779 case offsetof(struct sched_ext_ops, timeout_ms): 5780 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5781 SCX_WATCHDOG_MAX_TIMEOUT) 5782 return -E2BIG; 5783 ops->timeout_ms = *(u32 *)(udata + moff); 5784 return 1; 5785 case offsetof(struct sched_ext_ops, exit_dump_len): 5786 ops->exit_dump_len = 5787 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5788 return 1; 5789 case offsetof(struct sched_ext_ops, hotplug_seq): 5790 ops->hotplug_seq = *(u64 *)(udata + moff); 5791 return 1; 5792 } 5793 5794 return 0; 5795 } 5796 5797 static int bpf_scx_check_member(const struct btf_type *t, 5798 const struct btf_member *member, 5799 const struct bpf_prog *prog) 5800 { 5801 u32 moff = __btf_member_bit_offset(t, member) / 8; 5802 5803 switch (moff) { 5804 case offsetof(struct sched_ext_ops, init_task): 5805 #ifdef CONFIG_EXT_GROUP_SCHED 5806 case offsetof(struct sched_ext_ops, cgroup_init): 5807 case offsetof(struct sched_ext_ops, cgroup_exit): 5808 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5809 #endif 5810 case offsetof(struct sched_ext_ops, cpu_online): 5811 case offsetof(struct sched_ext_ops, cpu_offline): 5812 case offsetof(struct sched_ext_ops, init): 5813 case offsetof(struct sched_ext_ops, exit): 5814 break; 5815 default: 5816 if (prog->sleepable) 5817 return -EINVAL; 5818 } 5819 5820 return 0; 5821 } 5822 5823 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5824 { 5825 return scx_ops_enable(kdata, link); 5826 } 5827 5828 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5829 { 5830 scx_ops_disable(SCX_EXIT_UNREG); 5831 kthread_flush_work(&scx_ops_disable_work); 5832 } 5833 5834 static int bpf_scx_init(struct btf *btf) 5835 { 5836 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5837 5838 return 0; 5839 } 5840 5841 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5842 { 5843 /* 5844 * sched_ext does not support updating the actively-loaded BPF 5845 * scheduler, as registering a BPF scheduler can always fail if the 5846 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5847 * etc. Similarly, we can always race with unregistration happening 5848 * elsewhere, such as with sysrq. 5849 */ 5850 return -EOPNOTSUPP; 5851 } 5852 5853 static int bpf_scx_validate(void *kdata) 5854 { 5855 return 0; 5856 } 5857 5858 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5859 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5860 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5861 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5862 static void sched_ext_ops__tick(struct task_struct *p) {} 5863 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5864 static void sched_ext_ops__running(struct task_struct *p) {} 5865 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5866 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5867 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5868 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5869 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5870 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5871 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5872 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5873 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5874 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5875 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5876 static void sched_ext_ops__enable(struct task_struct *p) {} 5877 static void sched_ext_ops__disable(struct task_struct *p) {} 5878 #ifdef CONFIG_EXT_GROUP_SCHED 5879 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5880 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5881 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5882 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5883 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5884 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5885 #endif 5886 static void sched_ext_ops__cpu_online(s32 cpu) {} 5887 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5888 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5889 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5890 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5891 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5892 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5893 5894 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5895 .select_cpu = sched_ext_ops__select_cpu, 5896 .enqueue = sched_ext_ops__enqueue, 5897 .dequeue = sched_ext_ops__dequeue, 5898 .dispatch = sched_ext_ops__dispatch, 5899 .tick = sched_ext_ops__tick, 5900 .runnable = sched_ext_ops__runnable, 5901 .running = sched_ext_ops__running, 5902 .stopping = sched_ext_ops__stopping, 5903 .quiescent = sched_ext_ops__quiescent, 5904 .yield = sched_ext_ops__yield, 5905 .core_sched_before = sched_ext_ops__core_sched_before, 5906 .set_weight = sched_ext_ops__set_weight, 5907 .set_cpumask = sched_ext_ops__set_cpumask, 5908 .update_idle = sched_ext_ops__update_idle, 5909 .cpu_acquire = sched_ext_ops__cpu_acquire, 5910 .cpu_release = sched_ext_ops__cpu_release, 5911 .init_task = sched_ext_ops__init_task, 5912 .exit_task = sched_ext_ops__exit_task, 5913 .enable = sched_ext_ops__enable, 5914 .disable = sched_ext_ops__disable, 5915 #ifdef CONFIG_EXT_GROUP_SCHED 5916 .cgroup_init = sched_ext_ops__cgroup_init, 5917 .cgroup_exit = sched_ext_ops__cgroup_exit, 5918 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5919 .cgroup_move = sched_ext_ops__cgroup_move, 5920 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5921 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5922 #endif 5923 .cpu_online = sched_ext_ops__cpu_online, 5924 .cpu_offline = sched_ext_ops__cpu_offline, 5925 .init = sched_ext_ops__init, 5926 .exit = sched_ext_ops__exit, 5927 .dump = sched_ext_ops__dump, 5928 .dump_cpu = sched_ext_ops__dump_cpu, 5929 .dump_task = sched_ext_ops__dump_task, 5930 }; 5931 5932 static struct bpf_struct_ops bpf_sched_ext_ops = { 5933 .verifier_ops = &bpf_scx_verifier_ops, 5934 .reg = bpf_scx_reg, 5935 .unreg = bpf_scx_unreg, 5936 .check_member = bpf_scx_check_member, 5937 .init_member = bpf_scx_init_member, 5938 .init = bpf_scx_init, 5939 .update = bpf_scx_update, 5940 .validate = bpf_scx_validate, 5941 .name = "sched_ext_ops", 5942 .owner = THIS_MODULE, 5943 .cfi_stubs = &__bpf_ops_sched_ext_ops 5944 }; 5945 5946 5947 /******************************************************************************** 5948 * System integration and init. 5949 */ 5950 5951 static void sysrq_handle_sched_ext_reset(u8 key) 5952 { 5953 if (scx_ops_helper) 5954 scx_ops_disable(SCX_EXIT_SYSRQ); 5955 else 5956 pr_info("sched_ext: BPF scheduler not yet used\n"); 5957 } 5958 5959 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5960 .handler = sysrq_handle_sched_ext_reset, 5961 .help_msg = "reset-sched-ext(S)", 5962 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5963 .enable_mask = SYSRQ_ENABLE_RTNICE, 5964 }; 5965 5966 static void sysrq_handle_sched_ext_dump(u8 key) 5967 { 5968 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5969 5970 if (scx_enabled()) 5971 scx_dump_state(&ei, 0); 5972 } 5973 5974 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5975 .handler = sysrq_handle_sched_ext_dump, 5976 .help_msg = "dump-sched-ext(D)", 5977 .action_msg = "Trigger sched_ext debug dump", 5978 .enable_mask = SYSRQ_ENABLE_RTNICE, 5979 }; 5980 5981 static bool can_skip_idle_kick(struct rq *rq) 5982 { 5983 lockdep_assert_rq_held(rq); 5984 5985 /* 5986 * We can skip idle kicking if @rq is going to go through at least one 5987 * full SCX scheduling cycle before going idle. Just checking whether 5988 * curr is not idle is insufficient because we could be racing 5989 * balance_one() trying to pull the next task from a remote rq, which 5990 * may fail, and @rq may become idle afterwards. 5991 * 5992 * The race window is small and we don't and can't guarantee that @rq is 5993 * only kicked while idle anyway. Skip only when sure. 5994 */ 5995 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5996 } 5997 5998 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5999 { 6000 struct rq *rq = cpu_rq(cpu); 6001 struct scx_rq *this_scx = &this_rq->scx; 6002 bool should_wait = false; 6003 unsigned long flags; 6004 6005 raw_spin_rq_lock_irqsave(rq, flags); 6006 6007 /* 6008 * During CPU hotplug, a CPU may depend on kicking itself to make 6009 * forward progress. Allow kicking self regardless of online state. 6010 */ 6011 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 6012 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 6013 if (rq->curr->sched_class == &ext_sched_class) 6014 rq->curr->scx.slice = 0; 6015 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6016 } 6017 6018 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 6019 pseqs[cpu] = rq->scx.pnt_seq; 6020 should_wait = true; 6021 } 6022 6023 resched_curr(rq); 6024 } else { 6025 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6026 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6027 } 6028 6029 raw_spin_rq_unlock_irqrestore(rq, flags); 6030 6031 return should_wait; 6032 } 6033 6034 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 6035 { 6036 struct rq *rq = cpu_rq(cpu); 6037 unsigned long flags; 6038 6039 raw_spin_rq_lock_irqsave(rq, flags); 6040 6041 if (!can_skip_idle_kick(rq) && 6042 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 6043 resched_curr(rq); 6044 6045 raw_spin_rq_unlock_irqrestore(rq, flags); 6046 } 6047 6048 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 6049 { 6050 struct rq *this_rq = this_rq(); 6051 struct scx_rq *this_scx = &this_rq->scx; 6052 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 6053 bool should_wait = false; 6054 s32 cpu; 6055 6056 for_each_cpu(cpu, this_scx->cpus_to_kick) { 6057 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 6058 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 6059 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6060 } 6061 6062 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 6063 kick_one_cpu_if_idle(cpu, this_rq); 6064 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6065 } 6066 6067 if (!should_wait) 6068 return; 6069 6070 for_each_cpu(cpu, this_scx->cpus_to_wait) { 6071 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 6072 6073 if (cpu != cpu_of(this_rq)) { 6074 /* 6075 * Pairs with smp_store_release() issued by this CPU in 6076 * scx_next_task_picked() on the resched path. 6077 * 6078 * We busy-wait here to guarantee that no other task can 6079 * be scheduled on our core before the target CPU has 6080 * entered the resched path. 6081 */ 6082 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 6083 cpu_relax(); 6084 } 6085 6086 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6087 } 6088 } 6089 6090 /** 6091 * print_scx_info - print out sched_ext scheduler state 6092 * @log_lvl: the log level to use when printing 6093 * @p: target task 6094 * 6095 * If a sched_ext scheduler is enabled, print the name and state of the 6096 * scheduler. If @p is on sched_ext, print further information about the task. 6097 * 6098 * This function can be safely called on any task as long as the task_struct 6099 * itself is accessible. While safe, this function isn't synchronized and may 6100 * print out mixups or garbages of limited length. 6101 */ 6102 void print_scx_info(const char *log_lvl, struct task_struct *p) 6103 { 6104 enum scx_ops_enable_state state = scx_ops_enable_state(); 6105 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 6106 char runnable_at_buf[22] = "?"; 6107 struct sched_class *class; 6108 unsigned long runnable_at; 6109 6110 if (state == SCX_OPS_DISABLED) 6111 return; 6112 6113 /* 6114 * Carefully check if the task was running on sched_ext, and then 6115 * carefully copy the time it's been runnable, and its state. 6116 */ 6117 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 6118 class != &ext_sched_class) { 6119 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 6120 scx_ops_enable_state_str[state], all); 6121 return; 6122 } 6123 6124 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 6125 sizeof(runnable_at))) 6126 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6127 jiffies_delta_msecs(runnable_at, jiffies)); 6128 6129 /* print everything onto one line to conserve console space */ 6130 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6131 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 6132 runnable_at_buf); 6133 } 6134 6135 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6136 { 6137 /* 6138 * SCX schedulers often have userspace components which are sometimes 6139 * involved in critial scheduling paths. PM operations involve freezing 6140 * userspace which can lead to scheduling misbehaviors including stalls. 6141 * Let's bypass while PM operations are in progress. 6142 */ 6143 switch (event) { 6144 case PM_HIBERNATION_PREPARE: 6145 case PM_SUSPEND_PREPARE: 6146 case PM_RESTORE_PREPARE: 6147 scx_ops_bypass(true); 6148 break; 6149 case PM_POST_HIBERNATION: 6150 case PM_POST_SUSPEND: 6151 case PM_POST_RESTORE: 6152 scx_ops_bypass(false); 6153 break; 6154 } 6155 6156 return NOTIFY_OK; 6157 } 6158 6159 static struct notifier_block scx_pm_notifier = { 6160 .notifier_call = scx_pm_handler, 6161 }; 6162 6163 void __init init_sched_ext_class(void) 6164 { 6165 s32 cpu, v; 6166 6167 /* 6168 * The following is to prevent the compiler from optimizing out the enum 6169 * definitions so that BPF scheduler implementations can use them 6170 * through the generated vmlinux.h. 6171 */ 6172 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6173 SCX_TG_ONLINE); 6174 6175 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 6176 #ifdef CONFIG_SMP 6177 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 6178 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 6179 #endif 6180 scx_kick_cpus_pnt_seqs = 6181 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6182 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6183 BUG_ON(!scx_kick_cpus_pnt_seqs); 6184 6185 for_each_possible_cpu(cpu) { 6186 struct rq *rq = cpu_rq(cpu); 6187 6188 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6189 INIT_LIST_HEAD(&rq->scx.runnable_list); 6190 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6191 6192 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 6193 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 6194 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 6195 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 6196 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6197 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6198 6199 if (cpu_online(cpu)) 6200 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6201 } 6202 6203 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6204 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6205 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6206 } 6207 6208 6209 /******************************************************************************** 6210 * Helpers that can be called from the BPF scheduler. 6211 */ 6212 #include <linux/btf_ids.h> 6213 6214 __bpf_kfunc_start_defs(); 6215 6216 /** 6217 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 6218 * @p: task_struct to select a CPU for 6219 * @prev_cpu: CPU @p was on previously 6220 * @wake_flags: %SCX_WAKE_* flags 6221 * @is_idle: out parameter indicating whether the returned CPU is idle 6222 * 6223 * Can only be called from ops.select_cpu() if the built-in CPU selection is 6224 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 6225 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 6226 * 6227 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 6228 * currently idle and thus a good candidate for direct dispatching. 6229 */ 6230 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 6231 u64 wake_flags, bool *is_idle) 6232 { 6233 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 6234 scx_ops_error("built-in idle tracking is disabled"); 6235 goto prev_cpu; 6236 } 6237 6238 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) 6239 goto prev_cpu; 6240 6241 #ifdef CONFIG_SMP 6242 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 6243 #endif 6244 6245 prev_cpu: 6246 *is_idle = false; 6247 return prev_cpu; 6248 } 6249 6250 __bpf_kfunc_end_defs(); 6251 6252 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 6253 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 6254 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 6255 6256 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 6257 .owner = THIS_MODULE, 6258 .set = &scx_kfunc_ids_select_cpu, 6259 }; 6260 6261 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6262 { 6263 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6264 return false; 6265 6266 lockdep_assert_irqs_disabled(); 6267 6268 if (unlikely(!p)) { 6269 scx_ops_error("called with NULL task"); 6270 return false; 6271 } 6272 6273 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6274 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 6275 return false; 6276 } 6277 6278 return true; 6279 } 6280 6281 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6282 u64 enq_flags) 6283 { 6284 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6285 struct task_struct *ddsp_task; 6286 6287 ddsp_task = __this_cpu_read(direct_dispatch_task); 6288 if (ddsp_task) { 6289 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6290 return; 6291 } 6292 6293 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6294 scx_ops_error("dispatch buffer overflow"); 6295 return; 6296 } 6297 6298 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6299 .task = p, 6300 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6301 .dsq_id = dsq_id, 6302 .enq_flags = enq_flags, 6303 }; 6304 } 6305 6306 __bpf_kfunc_start_defs(); 6307 6308 /** 6309 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6310 * @p: task_struct to insert 6311 * @dsq_id: DSQ to insert into 6312 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6313 * @enq_flags: SCX_ENQ_* 6314 * 6315 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6316 * call this function spuriously. Can be called from ops.enqueue(), 6317 * ops.select_cpu(), and ops.dispatch(). 6318 * 6319 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6320 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 6321 * used to target the local DSQ of a CPU other than the enqueueing one. Use 6322 * ops.select_cpu() to be on the target CPU in the first place. 6323 * 6324 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6325 * will be directly inserted into the corresponding dispatch queue after 6326 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6327 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6328 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6329 * task is inserted. 6330 * 6331 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6332 * and this function can be called upto ops.dispatch_max_batch times to insert 6333 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6334 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6335 * 6336 * This function doesn't have any locking restrictions and may be called under 6337 * BPF locks (in the future when BPF introduces more flexible locking). 6338 * 6339 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6340 * exhaustion. If zero, the current residual slice is maintained. If 6341 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6342 * scx_bpf_kick_cpu() to trigger scheduling. 6343 */ 6344 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6345 u64 enq_flags) 6346 { 6347 if (!scx_dsq_insert_preamble(p, enq_flags)) 6348 return; 6349 6350 if (slice) 6351 p->scx.slice = slice; 6352 else 6353 p->scx.slice = p->scx.slice ?: 1; 6354 6355 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6356 } 6357 6358 /* for backward compatibility, will be removed in v6.15 */ 6359 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6360 u64 enq_flags) 6361 { 6362 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6363 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6364 } 6365 6366 /** 6367 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6368 * @p: task_struct to insert 6369 * @dsq_id: DSQ to insert into 6370 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6371 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6372 * @enq_flags: SCX_ENQ_* 6373 * 6374 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6375 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6376 * are identical to scx_bpf_dsq_insert(). 6377 * 6378 * @vtime ordering is according to time_before64() which considers wrapping. A 6379 * numerically larger vtime may indicate an earlier position in the ordering and 6380 * vice-versa. 6381 * 6382 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6383 * function must not be called on a DSQ which already has one or more FIFO tasks 6384 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6385 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6386 */ 6387 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6388 u64 slice, u64 vtime, u64 enq_flags) 6389 { 6390 if (!scx_dsq_insert_preamble(p, enq_flags)) 6391 return; 6392 6393 if (slice) 6394 p->scx.slice = slice; 6395 else 6396 p->scx.slice = p->scx.slice ?: 1; 6397 6398 p->scx.dsq_vtime = vtime; 6399 6400 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6401 } 6402 6403 /* for backward compatibility, will be removed in v6.15 */ 6404 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6405 u64 slice, u64 vtime, u64 enq_flags) 6406 { 6407 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6408 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6409 } 6410 6411 __bpf_kfunc_end_defs(); 6412 6413 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6414 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6415 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6416 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6417 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6418 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6419 6420 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6421 .owner = THIS_MODULE, 6422 .set = &scx_kfunc_ids_enqueue_dispatch, 6423 }; 6424 6425 static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit, 6426 struct task_struct *p, u64 dsq_id, 6427 u64 enq_flags) 6428 { 6429 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6430 struct rq *this_rq, *src_rq, *locked_rq; 6431 bool dispatched = false; 6432 bool in_balance; 6433 unsigned long flags; 6434 6435 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6436 return false; 6437 6438 /* 6439 * Can be called from either ops.dispatch() locking this_rq() or any 6440 * context where no rq lock is held. If latter, lock @p's task_rq which 6441 * we'll likely need anyway. 6442 */ 6443 src_rq = task_rq(p); 6444 6445 local_irq_save(flags); 6446 this_rq = this_rq(); 6447 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6448 6449 if (in_balance) { 6450 if (this_rq != src_rq) { 6451 raw_spin_rq_unlock(this_rq); 6452 raw_spin_rq_lock(src_rq); 6453 } 6454 } else { 6455 raw_spin_rq_lock(src_rq); 6456 } 6457 6458 /* 6459 * If the BPF scheduler keeps calling this function repeatedly, it can 6460 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6461 * breather if necessary. 6462 */ 6463 scx_ops_breather(src_rq); 6464 6465 locked_rq = src_rq; 6466 raw_spin_lock(&src_dsq->lock); 6467 6468 /* 6469 * Did someone else get to it? @p could have already left $src_dsq, got 6470 * re-enqueud, or be in the process of being consumed by someone else. 6471 */ 6472 if (unlikely(p->scx.dsq != src_dsq || 6473 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6474 p->scx.holding_cpu >= 0) || 6475 WARN_ON_ONCE(src_rq != task_rq(p))) { 6476 raw_spin_unlock(&src_dsq->lock); 6477 goto out; 6478 } 6479 6480 /* @p is still on $src_dsq and stable, determine the destination */ 6481 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6482 6483 /* 6484 * Apply vtime and slice updates before moving so that the new time is 6485 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6486 * this is safe as we're locking it. 6487 */ 6488 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6489 p->scx.dsq_vtime = kit->vtime; 6490 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6491 p->scx.slice = kit->slice; 6492 6493 /* execute move */ 6494 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq); 6495 dispatched = true; 6496 out: 6497 if (in_balance) { 6498 if (this_rq != locked_rq) { 6499 raw_spin_rq_unlock(locked_rq); 6500 raw_spin_rq_lock(this_rq); 6501 } 6502 } else { 6503 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6504 } 6505 6506 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6507 __SCX_DSQ_ITER_HAS_VTIME); 6508 return dispatched; 6509 } 6510 6511 __bpf_kfunc_start_defs(); 6512 6513 /** 6514 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6515 * 6516 * Can only be called from ops.dispatch(). 6517 */ 6518 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6519 { 6520 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6521 return 0; 6522 6523 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6524 } 6525 6526 /** 6527 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6528 * 6529 * Cancel the latest dispatch. Can be called multiple times to cancel further 6530 * dispatches. Can only be called from ops.dispatch(). 6531 */ 6532 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6533 { 6534 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6535 6536 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6537 return; 6538 6539 if (dspc->cursor > 0) 6540 dspc->cursor--; 6541 else 6542 scx_ops_error("dispatch buffer underflow"); 6543 } 6544 6545 /** 6546 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6547 * @dsq_id: DSQ to move task from 6548 * 6549 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6550 * local DSQ for execution. Can only be called from ops.dispatch(). 6551 * 6552 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6553 * before trying to move from the specified DSQ. It may also grab rq locks and 6554 * thus can't be called under any BPF locks. 6555 * 6556 * Returns %true if a task has been moved, %false if there isn't any task to 6557 * move. 6558 */ 6559 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6560 { 6561 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6562 struct scx_dispatch_q *dsq; 6563 6564 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6565 return false; 6566 6567 flush_dispatch_buf(dspc->rq); 6568 6569 dsq = find_user_dsq(dsq_id); 6570 if (unlikely(!dsq)) { 6571 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6572 return false; 6573 } 6574 6575 if (consume_dispatch_q(dspc->rq, dsq)) { 6576 /* 6577 * A successfully consumed task can be dequeued before it starts 6578 * running while the CPU is trying to migrate other dispatched 6579 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6580 * local DSQ. 6581 */ 6582 dspc->nr_tasks++; 6583 return true; 6584 } else { 6585 return false; 6586 } 6587 } 6588 6589 /* for backward compatibility, will be removed in v6.15 */ 6590 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6591 { 6592 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6593 return scx_bpf_dsq_move_to_local(dsq_id); 6594 } 6595 6596 /** 6597 * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ 6598 * @it__iter: DSQ iterator in progress 6599 * @slice: duration the dispatched task can run for in nsecs 6600 * 6601 * Override the slice of the next task that will be dispatched from @it__iter 6602 * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called, 6603 * the previous slice duration is kept. 6604 */ 6605 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6606 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6607 { 6608 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6609 6610 kit->slice = slice; 6611 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6612 } 6613 6614 /** 6615 * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ 6616 * @it__iter: DSQ iterator in progress 6617 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6618 * 6619 * Override the vtime of the next task that will be dispatched from @it__iter 6620 * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the 6621 * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to 6622 * dispatch the next task, the override is ignored and cleared. 6623 */ 6624 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6625 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6626 { 6627 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6628 6629 kit->vtime = vtime; 6630 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6631 } 6632 6633 /** 6634 * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ 6635 * @it__iter: DSQ iterator in progress 6636 * @p: task to transfer 6637 * @dsq_id: DSQ to move @p to 6638 * @enq_flags: SCX_ENQ_* 6639 * 6640 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6641 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6642 * be the destination. 6643 * 6644 * For the transfer to be successful, @p must still be on the DSQ and have been 6645 * queued before the DSQ iteration started. This function doesn't care whether 6646 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6647 * been queued before the iteration started. 6648 * 6649 * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to 6650 * update. 6651 * 6652 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6653 * lock (e.g. BPF timers or SYSCALL programs). 6654 * 6655 * Returns %true if @p has been consumed, %false if @p had already been consumed 6656 * or dequeued. 6657 */ 6658 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6659 struct task_struct *p, u64 dsq_id, 6660 u64 enq_flags) 6661 { 6662 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6663 p, dsq_id, enq_flags); 6664 } 6665 6666 /** 6667 * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ 6668 * @it__iter: DSQ iterator in progress 6669 * @p: task to transfer 6670 * @dsq_id: DSQ to move @p to 6671 * @enq_flags: SCX_ENQ_* 6672 * 6673 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6674 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6675 * user DSQ as only user DSQs support priority queue. 6676 * 6677 * @p's slice and vtime are kept by default. Use 6678 * scx_bpf_dispatch_from_dsq_set_slice() and 6679 * scx_bpf_dispatch_from_dsq_set_vtime() to update. 6680 * 6681 * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See 6682 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6683 */ 6684 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6685 struct task_struct *p, u64 dsq_id, 6686 u64 enq_flags) 6687 { 6688 return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, 6689 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6690 } 6691 6692 __bpf_kfunc_end_defs(); 6693 6694 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6695 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6696 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6697 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6698 BTF_ID_FLAGS(func, scx_bpf_consume) 6699 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6700 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6701 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6702 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6703 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6704 6705 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6706 .owner = THIS_MODULE, 6707 .set = &scx_kfunc_ids_dispatch, 6708 }; 6709 6710 __bpf_kfunc_start_defs(); 6711 6712 /** 6713 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6714 * 6715 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6716 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6717 * processed tasks. Can only be called from ops.cpu_release(). 6718 */ 6719 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6720 { 6721 LIST_HEAD(tasks); 6722 u32 nr_enqueued = 0; 6723 struct rq *rq; 6724 struct task_struct *p, *n; 6725 6726 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6727 return 0; 6728 6729 rq = cpu_rq(smp_processor_id()); 6730 lockdep_assert_rq_held(rq); 6731 6732 /* 6733 * The BPF scheduler may choose to dispatch tasks back to 6734 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6735 * first to avoid processing the same tasks repeatedly. 6736 */ 6737 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6738 scx.dsq_list.node) { 6739 /* 6740 * If @p is being migrated, @p's current CPU may not agree with 6741 * its allowed CPUs and the migration_cpu_stop is about to 6742 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6743 * 6744 * While racing sched property changes may also dequeue and 6745 * re-enqueue a migrating task while its current CPU and allowed 6746 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6747 * the current local DSQ for running tasks and thus are not 6748 * visible to the BPF scheduler. 6749 */ 6750 if (p->migration_pending) 6751 continue; 6752 6753 dispatch_dequeue(rq, p); 6754 list_add_tail(&p->scx.dsq_list.node, &tasks); 6755 } 6756 6757 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6758 list_del_init(&p->scx.dsq_list.node); 6759 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6760 nr_enqueued++; 6761 } 6762 6763 return nr_enqueued; 6764 } 6765 6766 __bpf_kfunc_end_defs(); 6767 6768 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6769 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6770 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6771 6772 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6773 .owner = THIS_MODULE, 6774 .set = &scx_kfunc_ids_cpu_release, 6775 }; 6776 6777 __bpf_kfunc_start_defs(); 6778 6779 /** 6780 * scx_bpf_create_dsq - Create a custom DSQ 6781 * @dsq_id: DSQ to create 6782 * @node: NUMA node to allocate from 6783 * 6784 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6785 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6786 */ 6787 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6788 { 6789 if (unlikely(node >= (int)nr_node_ids || 6790 (node < 0 && node != NUMA_NO_NODE))) 6791 return -EINVAL; 6792 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6793 } 6794 6795 __bpf_kfunc_end_defs(); 6796 6797 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6798 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6799 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6800 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6801 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6802 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6803 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6804 6805 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6806 .owner = THIS_MODULE, 6807 .set = &scx_kfunc_ids_unlocked, 6808 }; 6809 6810 __bpf_kfunc_start_defs(); 6811 6812 /** 6813 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6814 * @cpu: cpu to kick 6815 * @flags: %SCX_KICK_* flags 6816 * 6817 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6818 * trigger rescheduling on a busy CPU. This can be called from any online 6819 * scx_ops operation and the actual kicking is performed asynchronously through 6820 * an irq work. 6821 */ 6822 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6823 { 6824 struct rq *this_rq; 6825 unsigned long irq_flags; 6826 6827 if (!ops_cpu_valid(cpu, NULL)) 6828 return; 6829 6830 local_irq_save(irq_flags); 6831 6832 this_rq = this_rq(); 6833 6834 /* 6835 * While bypassing for PM ops, IRQ handling may not be online which can 6836 * lead to irq_work_queue() malfunction such as infinite busy wait for 6837 * IRQ status update. Suppress kicking. 6838 */ 6839 if (scx_rq_bypassing(this_rq)) 6840 goto out; 6841 6842 /* 6843 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6844 * rq locks. We can probably be smarter and avoid bouncing if called 6845 * from ops which don't hold a rq lock. 6846 */ 6847 if (flags & SCX_KICK_IDLE) { 6848 struct rq *target_rq = cpu_rq(cpu); 6849 6850 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6851 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6852 6853 if (raw_spin_rq_trylock(target_rq)) { 6854 if (can_skip_idle_kick(target_rq)) { 6855 raw_spin_rq_unlock(target_rq); 6856 goto out; 6857 } 6858 raw_spin_rq_unlock(target_rq); 6859 } 6860 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6861 } else { 6862 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6863 6864 if (flags & SCX_KICK_PREEMPT) 6865 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6866 if (flags & SCX_KICK_WAIT) 6867 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6868 } 6869 6870 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6871 out: 6872 local_irq_restore(irq_flags); 6873 } 6874 6875 /** 6876 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6877 * @dsq_id: id of the DSQ 6878 * 6879 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6880 * -%ENOENT is returned. 6881 */ 6882 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6883 { 6884 struct scx_dispatch_q *dsq; 6885 s32 ret; 6886 6887 preempt_disable(); 6888 6889 if (dsq_id == SCX_DSQ_LOCAL) { 6890 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6891 goto out; 6892 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6893 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6894 6895 if (ops_cpu_valid(cpu, NULL)) { 6896 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6897 goto out; 6898 } 6899 } else { 6900 dsq = find_user_dsq(dsq_id); 6901 if (dsq) { 6902 ret = READ_ONCE(dsq->nr); 6903 goto out; 6904 } 6905 } 6906 ret = -ENOENT; 6907 out: 6908 preempt_enable(); 6909 return ret; 6910 } 6911 6912 /** 6913 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6914 * @dsq_id: DSQ to destroy 6915 * 6916 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6917 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6918 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6919 * which doesn't exist. Can be called from any online scx_ops operations. 6920 */ 6921 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6922 { 6923 destroy_dsq(dsq_id); 6924 } 6925 6926 /** 6927 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6928 * @it: iterator to initialize 6929 * @dsq_id: DSQ to iterate 6930 * @flags: %SCX_DSQ_ITER_* 6931 * 6932 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6933 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6934 * tasks which are already queued when this function is invoked. 6935 */ 6936 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6937 u64 flags) 6938 { 6939 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6940 6941 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6942 sizeof(struct bpf_iter_scx_dsq)); 6943 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6944 __alignof__(struct bpf_iter_scx_dsq)); 6945 6946 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6947 return -EINVAL; 6948 6949 kit->dsq = find_user_dsq(dsq_id); 6950 if (!kit->dsq) 6951 return -ENOENT; 6952 6953 INIT_LIST_HEAD(&kit->cursor.node); 6954 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags; 6955 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6956 6957 return 0; 6958 } 6959 6960 /** 6961 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6962 * @it: iterator to progress 6963 * 6964 * Return the next task. See bpf_iter_scx_dsq_new(). 6965 */ 6966 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6967 { 6968 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6969 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6970 struct task_struct *p; 6971 unsigned long flags; 6972 6973 if (!kit->dsq) 6974 return NULL; 6975 6976 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6977 6978 if (list_empty(&kit->cursor.node)) 6979 p = NULL; 6980 else 6981 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6982 6983 /* 6984 * Only tasks which were queued before the iteration started are 6985 * visible. This bounds BPF iterations and guarantees that vtime never 6986 * jumps in the other direction while iterating. 6987 */ 6988 do { 6989 p = nldsq_next_task(kit->dsq, p, rev); 6990 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6991 6992 if (p) { 6993 if (rev) 6994 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6995 else 6996 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6997 } else { 6998 list_del_init(&kit->cursor.node); 6999 } 7000 7001 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7002 7003 return p; 7004 } 7005 7006 /** 7007 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 7008 * @it: iterator to destroy 7009 * 7010 * Undo scx_iter_scx_dsq_new(). 7011 */ 7012 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 7013 { 7014 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7015 7016 if (!kit->dsq) 7017 return; 7018 7019 if (!list_empty(&kit->cursor.node)) { 7020 unsigned long flags; 7021 7022 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7023 list_del_init(&kit->cursor.node); 7024 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7025 } 7026 kit->dsq = NULL; 7027 } 7028 7029 __bpf_kfunc_end_defs(); 7030 7031 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 7032 char *fmt, unsigned long long *data, u32 data__sz) 7033 { 7034 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 7035 s32 ret; 7036 7037 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 7038 (data__sz && !data)) { 7039 scx_ops_error("invalid data=%p and data__sz=%u", 7040 (void *)data, data__sz); 7041 return -EINVAL; 7042 } 7043 7044 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 7045 if (ret < 0) { 7046 scx_ops_error("failed to read data fields (%d)", ret); 7047 return ret; 7048 } 7049 7050 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 7051 &bprintf_data); 7052 if (ret < 0) { 7053 scx_ops_error("format preparation failed (%d)", ret); 7054 return ret; 7055 } 7056 7057 ret = bstr_printf(line_buf, line_size, fmt, 7058 bprintf_data.bin_args); 7059 bpf_bprintf_cleanup(&bprintf_data); 7060 if (ret < 0) { 7061 scx_ops_error("(\"%s\", %p, %u) failed to format", 7062 fmt, data, data__sz); 7063 return ret; 7064 } 7065 7066 return ret; 7067 } 7068 7069 static s32 bstr_format(struct scx_bstr_buf *buf, 7070 char *fmt, unsigned long long *data, u32 data__sz) 7071 { 7072 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 7073 fmt, data, data__sz); 7074 } 7075 7076 __bpf_kfunc_start_defs(); 7077 7078 /** 7079 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 7080 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 7081 * @fmt: error message format string 7082 * @data: format string parameters packaged using ___bpf_fill() macro 7083 * @data__sz: @data len, must end in '__sz' for the verifier 7084 * 7085 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 7086 * disabling. 7087 */ 7088 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 7089 unsigned long long *data, u32 data__sz) 7090 { 7091 unsigned long flags; 7092 7093 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7094 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7095 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 7096 scx_exit_bstr_buf.line); 7097 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7098 } 7099 7100 /** 7101 * scx_bpf_error_bstr - Indicate fatal error 7102 * @fmt: error message format string 7103 * @data: format string parameters packaged using ___bpf_fill() macro 7104 * @data__sz: @data len, must end in '__sz' for the verifier 7105 * 7106 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 7107 * disabling. 7108 */ 7109 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 7110 u32 data__sz) 7111 { 7112 unsigned long flags; 7113 7114 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7115 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7116 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 7117 scx_exit_bstr_buf.line); 7118 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7119 } 7120 7121 /** 7122 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 7123 * @fmt: format string 7124 * @data: format string parameters packaged using ___bpf_fill() macro 7125 * @data__sz: @data len, must end in '__sz' for the verifier 7126 * 7127 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 7128 * dump_task() to generate extra debug dump specific to the BPF scheduler. 7129 * 7130 * The extra dump may be multiple lines. A single line may be split over 7131 * multiple calls. The last line is automatically terminated. 7132 */ 7133 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 7134 u32 data__sz) 7135 { 7136 struct scx_dump_data *dd = &scx_dump_data; 7137 struct scx_bstr_buf *buf = &dd->buf; 7138 s32 ret; 7139 7140 if (raw_smp_processor_id() != dd->cpu) { 7141 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7142 return; 7143 } 7144 7145 /* append the formatted string to the line buf */ 7146 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7147 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7148 if (ret < 0) { 7149 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7150 dd->prefix, fmt, data, data__sz, ret); 7151 return; 7152 } 7153 7154 dd->cursor += ret; 7155 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7156 7157 if (!dd->cursor) 7158 return; 7159 7160 /* 7161 * If the line buf overflowed or ends in a newline, flush it into the 7162 * dump. This is to allow the caller to generate a single line over 7163 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7164 * the line buf, the only case which can lead to an unexpected 7165 * truncation is when the caller keeps generating newlines in the middle 7166 * instead of the end consecutively. Don't do that. 7167 */ 7168 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7169 ops_dump_flush(); 7170 } 7171 7172 /** 7173 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7174 * @cpu: CPU of interest 7175 * 7176 * Return the maximum relative capacity of @cpu in relation to the most 7177 * performant CPU in the system. The return value is in the range [1, 7178 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7179 */ 7180 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7181 { 7182 if (ops_cpu_valid(cpu, NULL)) 7183 return arch_scale_cpu_capacity(cpu); 7184 else 7185 return SCX_CPUPERF_ONE; 7186 } 7187 7188 /** 7189 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7190 * @cpu: CPU of interest 7191 * 7192 * Return the current relative performance of @cpu in relation to its maximum. 7193 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7194 * 7195 * The current performance level of a CPU in relation to the maximum performance 7196 * available in the system can be calculated as follows: 7197 * 7198 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7199 * 7200 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7201 */ 7202 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7203 { 7204 if (ops_cpu_valid(cpu, NULL)) 7205 return arch_scale_freq_capacity(cpu); 7206 else 7207 return SCX_CPUPERF_ONE; 7208 } 7209 7210 /** 7211 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7212 * @cpu: CPU of interest 7213 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7214 * @flags: %SCX_CPUPERF_* flags 7215 * 7216 * Set the target performance level of @cpu to @perf. @perf is in linear 7217 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7218 * schedutil cpufreq governor chooses the target frequency. 7219 * 7220 * The actual performance level chosen, CPU grouping, and the overhead and 7221 * latency of the operations are dependent on the hardware and cpufreq driver in 7222 * use. Consult hardware and cpufreq documentation for more information. The 7223 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7224 */ 7225 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7226 { 7227 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7228 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7229 return; 7230 } 7231 7232 if (ops_cpu_valid(cpu, NULL)) { 7233 struct rq *rq = cpu_rq(cpu); 7234 7235 rq->scx.cpuperf_target = perf; 7236 7237 rcu_read_lock_sched_notrace(); 7238 cpufreq_update_util(cpu_rq(cpu), 0); 7239 rcu_read_unlock_sched_notrace(); 7240 } 7241 } 7242 7243 /** 7244 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7245 * 7246 * All valid CPU IDs in the system are smaller than the returned value. 7247 */ 7248 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7249 { 7250 return nr_cpu_ids; 7251 } 7252 7253 /** 7254 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7255 */ 7256 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7257 { 7258 return cpu_possible_mask; 7259 } 7260 7261 /** 7262 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7263 */ 7264 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7265 { 7266 return cpu_online_mask; 7267 } 7268 7269 /** 7270 * scx_bpf_put_cpumask - Release a possible/online cpumask 7271 * @cpumask: cpumask to release 7272 */ 7273 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7274 { 7275 /* 7276 * Empty function body because we aren't actually acquiring or releasing 7277 * a reference to a global cpumask, which is read-only in the caller and 7278 * is never released. The acquire / release semantics here are just used 7279 * to make the cpumask is a trusted pointer in the caller. 7280 */ 7281 } 7282 7283 /** 7284 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 7285 * per-CPU cpumask. 7286 * 7287 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7288 */ 7289 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 7290 { 7291 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7292 scx_ops_error("built-in idle tracking is disabled"); 7293 return cpu_none_mask; 7294 } 7295 7296 #ifdef CONFIG_SMP 7297 return idle_masks.cpu; 7298 #else 7299 return cpu_none_mask; 7300 #endif 7301 } 7302 7303 /** 7304 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 7305 * per-physical-core cpumask. Can be used to determine if an entire physical 7306 * core is free. 7307 * 7308 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7309 */ 7310 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 7311 { 7312 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7313 scx_ops_error("built-in idle tracking is disabled"); 7314 return cpu_none_mask; 7315 } 7316 7317 #ifdef CONFIG_SMP 7318 if (sched_smt_active()) 7319 return idle_masks.smt; 7320 else 7321 return idle_masks.cpu; 7322 #else 7323 return cpu_none_mask; 7324 #endif 7325 } 7326 7327 /** 7328 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 7329 * either the percpu, or SMT idle-tracking cpumask. 7330 */ 7331 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 7332 { 7333 /* 7334 * Empty function body because we aren't actually acquiring or releasing 7335 * a reference to a global idle cpumask, which is read-only in the 7336 * caller and is never released. The acquire / release semantics here 7337 * are just used to make the cpumask a trusted pointer in the caller. 7338 */ 7339 } 7340 7341 /** 7342 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 7343 * @cpu: cpu to test and clear idle for 7344 * 7345 * Returns %true if @cpu was idle and its idle state was successfully cleared. 7346 * %false otherwise. 7347 * 7348 * Unavailable if ops.update_idle() is implemented and 7349 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7350 */ 7351 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 7352 { 7353 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7354 scx_ops_error("built-in idle tracking is disabled"); 7355 return false; 7356 } 7357 7358 if (ops_cpu_valid(cpu, NULL)) 7359 return test_and_clear_cpu_idle(cpu); 7360 else 7361 return false; 7362 } 7363 7364 /** 7365 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 7366 * @cpus_allowed: Allowed cpumask 7367 * @flags: %SCX_PICK_IDLE_CPU_* flags 7368 * 7369 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 7370 * number on success. -%EBUSY if no matching cpu was found. 7371 * 7372 * Idle CPU tracking may race against CPU scheduling state transitions. For 7373 * example, this function may return -%EBUSY as CPUs are transitioning into the 7374 * idle state. If the caller then assumes that there will be dispatch events on 7375 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 7376 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7377 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7378 * event in the near future. 7379 * 7380 * Unavailable if ops.update_idle() is implemented and 7381 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7382 */ 7383 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7384 u64 flags) 7385 { 7386 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 7387 scx_ops_error("built-in idle tracking is disabled"); 7388 return -EBUSY; 7389 } 7390 7391 return scx_pick_idle_cpu(cpus_allowed, flags); 7392 } 7393 7394 /** 7395 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7396 * @cpus_allowed: Allowed cpumask 7397 * @flags: %SCX_PICK_IDLE_CPU_* flags 7398 * 7399 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7400 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7401 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7402 * empty. 7403 * 7404 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7405 * set, this function can't tell which CPUs are idle and will always pick any 7406 * CPU. 7407 */ 7408 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7409 u64 flags) 7410 { 7411 s32 cpu; 7412 7413 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7414 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7415 if (cpu >= 0) 7416 return cpu; 7417 } 7418 7419 cpu = cpumask_any_distribute(cpus_allowed); 7420 if (cpu < nr_cpu_ids) 7421 return cpu; 7422 else 7423 return -EBUSY; 7424 } 7425 7426 /** 7427 * scx_bpf_task_running - Is task currently running? 7428 * @p: task of interest 7429 */ 7430 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7431 { 7432 return task_rq(p)->curr == p; 7433 } 7434 7435 /** 7436 * scx_bpf_task_cpu - CPU a task is currently associated with 7437 * @p: task of interest 7438 */ 7439 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7440 { 7441 return task_cpu(p); 7442 } 7443 7444 /** 7445 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7446 * @cpu: CPU of the rq 7447 */ 7448 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7449 { 7450 if (!ops_cpu_valid(cpu, NULL)) 7451 return NULL; 7452 7453 return cpu_rq(cpu); 7454 } 7455 7456 /** 7457 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7458 * @p: task of interest 7459 * 7460 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7461 * from the scheduler's POV. SCX operations should use this function to 7462 * determine @p's current cgroup as, unlike following @p->cgroups, 7463 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7464 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7465 * operations. The restriction guarantees that @p's rq is locked by the caller. 7466 */ 7467 #ifdef CONFIG_CGROUP_SCHED 7468 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7469 { 7470 struct task_group *tg = p->sched_task_group; 7471 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7472 7473 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7474 goto out; 7475 7476 cgrp = tg_cgrp(tg); 7477 7478 out: 7479 cgroup_get(cgrp); 7480 return cgrp; 7481 } 7482 #endif 7483 7484 __bpf_kfunc_end_defs(); 7485 7486 BTF_KFUNCS_START(scx_kfunc_ids_any) 7487 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7488 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7489 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7490 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7491 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7492 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7493 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7494 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7495 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7496 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7497 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7498 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7499 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7500 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7501 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7502 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7503 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7504 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7505 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7506 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7507 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7508 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7509 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7510 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7511 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7512 #ifdef CONFIG_CGROUP_SCHED 7513 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7514 #endif 7515 BTF_KFUNCS_END(scx_kfunc_ids_any) 7516 7517 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7518 .owner = THIS_MODULE, 7519 .set = &scx_kfunc_ids_any, 7520 }; 7521 7522 static int __init scx_init(void) 7523 { 7524 int ret; 7525 7526 /* 7527 * kfunc registration can't be done from init_sched_ext_class() as 7528 * register_btf_kfunc_id_set() needs most of the system to be up. 7529 * 7530 * Some kfuncs are context-sensitive and can only be called from 7531 * specific SCX ops. They are grouped into BTF sets accordingly. 7532 * Unfortunately, BPF currently doesn't have a way of enforcing such 7533 * restrictions. Eventually, the verifier should be able to enforce 7534 * them. For now, register them the same and make each kfunc explicitly 7535 * check using scx_kf_allowed(). 7536 */ 7537 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7538 &scx_kfunc_set_select_cpu)) || 7539 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7540 &scx_kfunc_set_enqueue_dispatch)) || 7541 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7542 &scx_kfunc_set_dispatch)) || 7543 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7544 &scx_kfunc_set_cpu_release)) || 7545 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7546 &scx_kfunc_set_unlocked)) || 7547 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7548 &scx_kfunc_set_unlocked)) || 7549 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7550 &scx_kfunc_set_any)) || 7551 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7552 &scx_kfunc_set_any)) || 7553 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7554 &scx_kfunc_set_any))) { 7555 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7556 return ret; 7557 } 7558 7559 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7560 if (ret) { 7561 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7562 return ret; 7563 } 7564 7565 ret = register_pm_notifier(&scx_pm_notifier); 7566 if (ret) { 7567 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7568 return ret; 7569 } 7570 7571 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7572 if (!scx_kset) { 7573 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7574 return -ENOMEM; 7575 } 7576 7577 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7578 if (ret < 0) { 7579 pr_err("sched_ext: Failed to add global attributes\n"); 7580 return ret; 7581 } 7582 7583 return 0; 7584 } 7585 __initcall(scx_init); 7586