1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_DSP_DFL_MAX_BATCH = 32, 13 SCX_DSP_MAX_LOOPS = 32, 14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 15 16 SCX_EXIT_BT_LEN = 64, 17 SCX_EXIT_MSG_LEN = 1024, 18 SCX_EXIT_DUMP_DFL_LEN = 32768, 19 20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 21 22 /* 23 * Iterating all tasks may take a while. Periodically drop 24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 25 */ 26 SCX_OPS_TASK_ITER_BATCH = 32, 27 }; 28 29 enum scx_exit_kind { 30 SCX_EXIT_NONE, 31 SCX_EXIT_DONE, 32 33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 37 38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 41 }; 42 43 /* 44 * An exit code can be specified when exiting with scx_bpf_exit() or 45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 46 * respectively. The codes are 64bit of the format: 47 * 48 * Bits: [63 .. 48 47 .. 32 31 .. 0] 49 * [ SYS ACT ] [ SYS RSN ] [ USR ] 50 * 51 * SYS ACT: System-defined exit actions 52 * SYS RSN: System-defined exit reasons 53 * USR : User-defined exit codes and reasons 54 * 55 * Using the above, users may communicate intention and context by ORing system 56 * actions and/or system reasons with a user-defined exit code. 57 */ 58 enum scx_exit_code { 59 /* Reasons */ 60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 61 62 /* Actions */ 63 SCX_ECODE_ACT_RESTART = 1LLU << 48, 64 }; 65 66 /* 67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 68 * being disabled. 69 */ 70 struct scx_exit_info { 71 /* %SCX_EXIT_* - broad category of the exit reason */ 72 enum scx_exit_kind kind; 73 74 /* exit code if gracefully exiting */ 75 s64 exit_code; 76 77 /* textual representation of the above */ 78 const char *reason; 79 80 /* backtrace if exiting due to an error */ 81 unsigned long *bt; 82 u32 bt_len; 83 84 /* informational message */ 85 char *msg; 86 87 /* debug dump */ 88 char *dump; 89 }; 90 91 /* sched_ext_ops.flags */ 92 enum scx_ops_flags { 93 /* 94 * Keep built-in idle tracking even if ops.update_idle() is implemented. 95 */ 96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 97 98 /* 99 * By default, if there are no other task to run on the CPU, ext core 100 * keeps running the current task even after its slice expires. If this 101 * flag is specified, such tasks are passed to ops.enqueue() with 102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 103 */ 104 SCX_OPS_ENQ_LAST = 1LLU << 1, 105 106 /* 107 * An exiting task may schedule after PF_EXITING is set. In such cases, 108 * bpf_task_from_pid() may not be able to find the task and if the BPF 109 * scheduler depends on pid lookup for dispatching, the task will be 110 * lost leading to various issues including RCU grace period stalls. 111 * 112 * To mask this problem, by default, unhashed tasks are automatically 113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 114 * depend on pid lookups and wants to handle these tasks directly, the 115 * following flag can be used. 116 */ 117 SCX_OPS_ENQ_EXITING = 1LLU << 2, 118 119 /* 120 * If set, only tasks with policy set to SCHED_EXT are attached to 121 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 122 */ 123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 124 125 /* 126 * A migration disabled task can only execute on its current CPU. By 127 * default, such tasks are automatically put on the CPU's local DSQ with 128 * the default slice on enqueue. If this ops flag is set, they also go 129 * through ops.enqueue(). 130 * 131 * A migration disabled task never invokes ops.select_cpu() as it can 132 * only select the current CPU. Also, p->cpus_ptr will only contain its 133 * current CPU while p->nr_cpus_allowed keeps tracking p->user_cpus_ptr 134 * and thus may disagree with cpumask_weight(p->cpus_ptr). 135 */ 136 SCX_OPS_ENQ_MIGRATION_DISABLED = 1LLU << 4, 137 138 /* 139 * CPU cgroup support flags 140 */ 141 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 142 143 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 144 SCX_OPS_ENQ_LAST | 145 SCX_OPS_ENQ_EXITING | 146 SCX_OPS_ENQ_MIGRATION_DISABLED | 147 SCX_OPS_SWITCH_PARTIAL | 148 SCX_OPS_HAS_CGROUP_WEIGHT, 149 }; 150 151 /* argument container for ops.init_task() */ 152 struct scx_init_task_args { 153 /* 154 * Set if ops.init_task() is being invoked on the fork path, as opposed 155 * to the scheduler transition path. 156 */ 157 bool fork; 158 #ifdef CONFIG_EXT_GROUP_SCHED 159 /* the cgroup the task is joining */ 160 struct cgroup *cgroup; 161 #endif 162 }; 163 164 /* argument container for ops.exit_task() */ 165 struct scx_exit_task_args { 166 /* Whether the task exited before running on sched_ext. */ 167 bool cancelled; 168 }; 169 170 /* argument container for ops->cgroup_init() */ 171 struct scx_cgroup_init_args { 172 /* the weight of the cgroup [1..10000] */ 173 u32 weight; 174 }; 175 176 enum scx_cpu_preempt_reason { 177 /* next task is being scheduled by &sched_class_rt */ 178 SCX_CPU_PREEMPT_RT, 179 /* next task is being scheduled by &sched_class_dl */ 180 SCX_CPU_PREEMPT_DL, 181 /* next task is being scheduled by &sched_class_stop */ 182 SCX_CPU_PREEMPT_STOP, 183 /* unknown reason for SCX being preempted */ 184 SCX_CPU_PREEMPT_UNKNOWN, 185 }; 186 187 /* 188 * Argument container for ops->cpu_acquire(). Currently empty, but may be 189 * expanded in the future. 190 */ 191 struct scx_cpu_acquire_args {}; 192 193 /* argument container for ops->cpu_release() */ 194 struct scx_cpu_release_args { 195 /* the reason the CPU was preempted */ 196 enum scx_cpu_preempt_reason reason; 197 198 /* the task that's going to be scheduled on the CPU */ 199 struct task_struct *task; 200 }; 201 202 /* 203 * Informational context provided to dump operations. 204 */ 205 struct scx_dump_ctx { 206 enum scx_exit_kind kind; 207 s64 exit_code; 208 const char *reason; 209 u64 at_ns; 210 u64 at_jiffies; 211 }; 212 213 /** 214 * struct sched_ext_ops - Operation table for BPF scheduler implementation 215 * 216 * A BPF scheduler can implement an arbitrary scheduling policy by 217 * implementing and loading operations in this table. Note that a userland 218 * scheduling policy can also be implemented using the BPF scheduler 219 * as a shim layer. 220 */ 221 struct sched_ext_ops { 222 /** 223 * @select_cpu: Pick the target CPU for a task which is being woken up 224 * @p: task being woken up 225 * @prev_cpu: the cpu @p was on before sleeping 226 * @wake_flags: SCX_WAKE_* 227 * 228 * Decision made here isn't final. @p may be moved to any CPU while it 229 * is getting dispatched for execution later. However, as @p is not on 230 * the rq at this point, getting the eventual execution CPU right here 231 * saves a small bit of overhead down the line. 232 * 233 * If an idle CPU is returned, the CPU is kicked and will try to 234 * dispatch. While an explicit custom mechanism can be added, 235 * select_cpu() serves as the default way to wake up idle CPUs. 236 * 237 * @p may be inserted into a DSQ directly by calling 238 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 239 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 240 * of the CPU returned by this operation. 241 * 242 * Note that select_cpu() is never called for tasks that can only run 243 * on a single CPU or tasks with migration disabled, as they don't have 244 * the option to select a different CPU. See select_task_rq() for 245 * details. 246 */ 247 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 248 249 /** 250 * @enqueue: Enqueue a task on the BPF scheduler 251 * @p: task being enqueued 252 * @enq_flags: %SCX_ENQ_* 253 * 254 * @p is ready to run. Insert directly into a DSQ by calling 255 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 256 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 257 * the task will stall. 258 * 259 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 260 * skipped. 261 */ 262 void (*enqueue)(struct task_struct *p, u64 enq_flags); 263 264 /** 265 * @dequeue: Remove a task from the BPF scheduler 266 * @p: task being dequeued 267 * @deq_flags: %SCX_DEQ_* 268 * 269 * Remove @p from the BPF scheduler. This is usually called to isolate 270 * the task while updating its scheduling properties (e.g. priority). 271 * 272 * The ext core keeps track of whether the BPF side owns a given task or 273 * not and can gracefully ignore spurious dispatches from BPF side, 274 * which makes it safe to not implement this method. However, depending 275 * on the scheduling logic, this can lead to confusing behaviors - e.g. 276 * scheduling position not being updated across a priority change. 277 */ 278 void (*dequeue)(struct task_struct *p, u64 deq_flags); 279 280 /** 281 * @dispatch: Dispatch tasks from the BPF scheduler and/or user DSQs 282 * @cpu: CPU to dispatch tasks for 283 * @prev: previous task being switched out 284 * 285 * Called when a CPU's local dsq is empty. The operation should dispatch 286 * one or more tasks from the BPF scheduler into the DSQs using 287 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 288 * using scx_bpf_dsq_move_to_local(). 289 * 290 * The maximum number of times scx_bpf_dsq_insert() can be called 291 * without an intervening scx_bpf_dsq_move_to_local() is specified by 292 * ops.dispatch_max_batch. See the comments on top of the two functions 293 * for more details. 294 * 295 * When not %NULL, @prev is an SCX task with its slice depleted. If 296 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 297 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 298 * ops.dispatch() returns. To keep executing @prev, return without 299 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 300 */ 301 void (*dispatch)(s32 cpu, struct task_struct *prev); 302 303 /** 304 * @tick: Periodic tick 305 * @p: task running currently 306 * 307 * This operation is called every 1/HZ seconds on CPUs which are 308 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 309 * immediate dispatch cycle on the CPU. 310 */ 311 void (*tick)(struct task_struct *p); 312 313 /** 314 * @runnable: A task is becoming runnable on its associated CPU 315 * @p: task becoming runnable 316 * @enq_flags: %SCX_ENQ_* 317 * 318 * This and the following three functions can be used to track a task's 319 * execution state transitions. A task becomes ->runnable() on a CPU, 320 * and then goes through one or more ->running() and ->stopping() pairs 321 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 322 * done running on the CPU. 323 * 324 * @p is becoming runnable on the CPU because it's 325 * 326 * - waking up (%SCX_ENQ_WAKEUP) 327 * - being moved from another CPU 328 * - being restored after temporarily taken off the queue for an 329 * attribute change. 330 * 331 * This and ->enqueue() are related but not coupled. This operation 332 * notifies @p's state transition and may not be followed by ->enqueue() 333 * e.g. when @p is being dispatched to a remote CPU, or when @p is 334 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 335 * task may be ->enqueue()'d without being preceded by this operation 336 * e.g. after exhausting its slice. 337 */ 338 void (*runnable)(struct task_struct *p, u64 enq_flags); 339 340 /** 341 * @running: A task is starting to run on its associated CPU 342 * @p: task starting to run 343 * 344 * See ->runnable() for explanation on the task state notifiers. 345 */ 346 void (*running)(struct task_struct *p); 347 348 /** 349 * @stopping: A task is stopping execution 350 * @p: task stopping to run 351 * @runnable: is task @p still runnable? 352 * 353 * See ->runnable() for explanation on the task state notifiers. If 354 * !@runnable, ->quiescent() will be invoked after this operation 355 * returns. 356 */ 357 void (*stopping)(struct task_struct *p, bool runnable); 358 359 /** 360 * @quiescent: A task is becoming not runnable on its associated CPU 361 * @p: task becoming not runnable 362 * @deq_flags: %SCX_DEQ_* 363 * 364 * See ->runnable() for explanation on the task state notifiers. 365 * 366 * @p is becoming quiescent on the CPU because it's 367 * 368 * - sleeping (%SCX_DEQ_SLEEP) 369 * - being moved to another CPU 370 * - being temporarily taken off the queue for an attribute change 371 * (%SCX_DEQ_SAVE) 372 * 373 * This and ->dequeue() are related but not coupled. This operation 374 * notifies @p's state transition and may not be preceded by ->dequeue() 375 * e.g. when @p is being dispatched to a remote CPU. 376 */ 377 void (*quiescent)(struct task_struct *p, u64 deq_flags); 378 379 /** 380 * @yield: Yield CPU 381 * @from: yielding task 382 * @to: optional yield target task 383 * 384 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 385 * The BPF scheduler should ensure that other available tasks are 386 * dispatched before the yielding task. Return value is ignored in this 387 * case. 388 * 389 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 390 * scheduler can implement the request, return %true; otherwise, %false. 391 */ 392 bool (*yield)(struct task_struct *from, struct task_struct *to); 393 394 /** 395 * @core_sched_before: Task ordering for core-sched 396 * @a: task A 397 * @b: task B 398 * 399 * Used by core-sched to determine the ordering between two tasks. See 400 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 401 * core-sched. 402 * 403 * Both @a and @b are runnable and may or may not currently be queued on 404 * the BPF scheduler. Should return %true if @a should run before @b. 405 * %false if there's no required ordering or @b should run before @a. 406 * 407 * If not specified, the default is ordering them according to when they 408 * became runnable. 409 */ 410 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 411 412 /** 413 * @set_weight: Set task weight 414 * @p: task to set weight for 415 * @weight: new weight [1..10000] 416 * 417 * Update @p's weight to @weight. 418 */ 419 void (*set_weight)(struct task_struct *p, u32 weight); 420 421 /** 422 * @set_cpumask: Set CPU affinity 423 * @p: task to set CPU affinity for 424 * @cpumask: cpumask of cpus that @p can run on 425 * 426 * Update @p's CPU affinity to @cpumask. 427 */ 428 void (*set_cpumask)(struct task_struct *p, 429 const struct cpumask *cpumask); 430 431 /** 432 * @update_idle: Update the idle state of a CPU 433 * @cpu: CPU to update the idle state for 434 * @idle: whether entering or exiting the idle state 435 * 436 * This operation is called when @rq's CPU goes or leaves the idle 437 * state. By default, implementing this operation disables the built-in 438 * idle CPU tracking and the following helpers become unavailable: 439 * 440 * - scx_bpf_select_cpu_dfl() 441 * - scx_bpf_test_and_clear_cpu_idle() 442 * - scx_bpf_pick_idle_cpu() 443 * 444 * The user also must implement ops.select_cpu() as the default 445 * implementation relies on scx_bpf_select_cpu_dfl(). 446 * 447 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 448 * tracking. 449 */ 450 void (*update_idle)(s32 cpu, bool idle); 451 452 /** 453 * @cpu_acquire: A CPU is becoming available to the BPF scheduler 454 * @cpu: The CPU being acquired by the BPF scheduler. 455 * @args: Acquire arguments, see the struct definition. 456 * 457 * A CPU that was previously released from the BPF scheduler is now once 458 * again under its control. 459 */ 460 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 461 462 /** 463 * @cpu_release: A CPU is taken away from the BPF scheduler 464 * @cpu: The CPU being released by the BPF scheduler. 465 * @args: Release arguments, see the struct definition. 466 * 467 * The specified CPU is no longer under the control of the BPF 468 * scheduler. This could be because it was preempted by a higher 469 * priority sched_class, though there may be other reasons as well. The 470 * caller should consult @args->reason to determine the cause. 471 */ 472 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 473 474 /** 475 * @init_task: Initialize a task to run in a BPF scheduler 476 * @p: task to initialize for BPF scheduling 477 * @args: init arguments, see the struct definition 478 * 479 * Either we're loading a BPF scheduler or a new task is being forked. 480 * Initialize @p for BPF scheduling. This operation may block and can 481 * be used for allocations, and is called exactly once for a task. 482 * 483 * Return 0 for success, -errno for failure. An error return while 484 * loading will abort loading of the BPF scheduler. During a fork, it 485 * will abort that specific fork. 486 */ 487 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 488 489 /** 490 * @exit_task: Exit a previously-running task from the system 491 * @p: task to exit 492 * @args: exit arguments, see the struct definition 493 * 494 * @p is exiting or the BPF scheduler is being unloaded. Perform any 495 * necessary cleanup for @p. 496 */ 497 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 498 499 /** 500 * @enable: Enable BPF scheduling for a task 501 * @p: task to enable BPF scheduling for 502 * 503 * Enable @p for BPF scheduling. enable() is called on @p any time it 504 * enters SCX, and is always paired with a matching disable(). 505 */ 506 void (*enable)(struct task_struct *p); 507 508 /** 509 * @disable: Disable BPF scheduling for a task 510 * @p: task to disable BPF scheduling for 511 * 512 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 513 * Disable BPF scheduling for @p. A disable() call is always matched 514 * with a prior enable() call. 515 */ 516 void (*disable)(struct task_struct *p); 517 518 /** 519 * @dump: Dump BPF scheduler state on error 520 * @ctx: debug dump context 521 * 522 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 523 */ 524 void (*dump)(struct scx_dump_ctx *ctx); 525 526 /** 527 * @dump_cpu: Dump BPF scheduler state for a CPU on error 528 * @ctx: debug dump context 529 * @cpu: CPU to generate debug dump for 530 * @idle: @cpu is currently idle without any runnable tasks 531 * 532 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 533 * @cpu. If @idle is %true and this operation doesn't produce any 534 * output, @cpu is skipped for dump. 535 */ 536 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 537 538 /** 539 * @dump_task: Dump BPF scheduler state for a runnable task on error 540 * @ctx: debug dump context 541 * @p: runnable task to generate debug dump for 542 * 543 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 544 * @p. 545 */ 546 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 547 548 #ifdef CONFIG_EXT_GROUP_SCHED 549 /** 550 * @cgroup_init: Initialize a cgroup 551 * @cgrp: cgroup being initialized 552 * @args: init arguments, see the struct definition 553 * 554 * Either the BPF scheduler is being loaded or @cgrp created, initialize 555 * @cgrp for sched_ext. This operation may block. 556 * 557 * Return 0 for success, -errno for failure. An error return while 558 * loading will abort loading of the BPF scheduler. During cgroup 559 * creation, it will abort the specific cgroup creation. 560 */ 561 s32 (*cgroup_init)(struct cgroup *cgrp, 562 struct scx_cgroup_init_args *args); 563 564 /** 565 * @cgroup_exit: Exit a cgroup 566 * @cgrp: cgroup being exited 567 * 568 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 569 * @cgrp for sched_ext. This operation my block. 570 */ 571 void (*cgroup_exit)(struct cgroup *cgrp); 572 573 /** 574 * @cgroup_prep_move: Prepare a task to be moved to a different cgroup 575 * @p: task being moved 576 * @from: cgroup @p is being moved from 577 * @to: cgroup @p is being moved to 578 * 579 * Prepare @p for move from cgroup @from to @to. This operation may 580 * block and can be used for allocations. 581 * 582 * Return 0 for success, -errno for failure. An error return aborts the 583 * migration. 584 */ 585 s32 (*cgroup_prep_move)(struct task_struct *p, 586 struct cgroup *from, struct cgroup *to); 587 588 /** 589 * @cgroup_move: Commit cgroup move 590 * @p: task being moved 591 * @from: cgroup @p is being moved from 592 * @to: cgroup @p is being moved to 593 * 594 * Commit the move. @p is dequeued during this operation. 595 */ 596 void (*cgroup_move)(struct task_struct *p, 597 struct cgroup *from, struct cgroup *to); 598 599 /** 600 * @cgroup_cancel_move: Cancel cgroup move 601 * @p: task whose cgroup move is being canceled 602 * @from: cgroup @p was being moved from 603 * @to: cgroup @p was being moved to 604 * 605 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 606 * Undo the preparation. 607 */ 608 void (*cgroup_cancel_move)(struct task_struct *p, 609 struct cgroup *from, struct cgroup *to); 610 611 /** 612 * @cgroup_set_weight: A cgroup's weight is being changed 613 * @cgrp: cgroup whose weight is being updated 614 * @weight: new weight [1..10000] 615 * 616 * Update @tg's weight to @weight. 617 */ 618 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 619 #endif /* CONFIG_EXT_GROUP_SCHED */ 620 621 /* 622 * All online ops must come before ops.cpu_online(). 623 */ 624 625 /** 626 * @cpu_online: A CPU became online 627 * @cpu: CPU which just came up 628 * 629 * @cpu just came online. @cpu will not call ops.enqueue() or 630 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 631 */ 632 void (*cpu_online)(s32 cpu); 633 634 /** 635 * @cpu_offline: A CPU is going offline 636 * @cpu: CPU which is going offline 637 * 638 * @cpu is going offline. @cpu will not call ops.enqueue() or 639 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 640 */ 641 void (*cpu_offline)(s32 cpu); 642 643 /* 644 * All CPU hotplug ops must come before ops.init(). 645 */ 646 647 /** 648 * @init: Initialize the BPF scheduler 649 */ 650 s32 (*init)(void); 651 652 /** 653 * @exit: Clean up after the BPF scheduler 654 * @info: Exit info 655 * 656 * ops.exit() is also called on ops.init() failure, which is a bit 657 * unusual. This is to allow rich reporting through @info on how 658 * ops.init() failed. 659 */ 660 void (*exit)(struct scx_exit_info *info); 661 662 /** 663 * @dispatch_max_batch: Max nr of tasks that dispatch() can dispatch 664 */ 665 u32 dispatch_max_batch; 666 667 /** 668 * @flags: %SCX_OPS_* flags 669 */ 670 u64 flags; 671 672 /** 673 * @timeout_ms: The maximum amount of time, in milliseconds, that a 674 * runnable task should be able to wait before being scheduled. The 675 * maximum timeout may not exceed the default timeout of 30 seconds. 676 * 677 * Defaults to the maximum allowed timeout value of 30 seconds. 678 */ 679 u32 timeout_ms; 680 681 /** 682 * @exit_dump_len: scx_exit_info.dump buffer length. If 0, the default 683 * value of 32768 is used. 684 */ 685 u32 exit_dump_len; 686 687 /** 688 * @hotplug_seq: A sequence number that may be set by the scheduler to 689 * detect when a hotplug event has occurred during the loading process. 690 * If 0, no detection occurs. Otherwise, the scheduler will fail to 691 * load if the sequence number does not match @scx_hotplug_seq on the 692 * enable path. 693 */ 694 u64 hotplug_seq; 695 696 /** 697 * @name: BPF scheduler's name 698 * 699 * Must be a non-zero valid BPF object name including only isalnum(), 700 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 701 * BPF scheduler is enabled. 702 */ 703 char name[SCX_OPS_NAME_LEN]; 704 }; 705 706 enum scx_opi { 707 SCX_OPI_BEGIN = 0, 708 SCX_OPI_NORMAL_BEGIN = 0, 709 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 710 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 711 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 712 SCX_OPI_END = SCX_OP_IDX(init), 713 }; 714 715 enum scx_wake_flags { 716 /* expose select WF_* flags as enums */ 717 SCX_WAKE_FORK = WF_FORK, 718 SCX_WAKE_TTWU = WF_TTWU, 719 SCX_WAKE_SYNC = WF_SYNC, 720 }; 721 722 enum scx_enq_flags { 723 /* expose select ENQUEUE_* flags as enums */ 724 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 725 SCX_ENQ_HEAD = ENQUEUE_HEAD, 726 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 727 728 /* high 32bits are SCX specific */ 729 730 /* 731 * Set the following to trigger preemption when calling 732 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 733 * current task is cleared to zero and the CPU is kicked into the 734 * scheduling path. Implies %SCX_ENQ_HEAD. 735 */ 736 SCX_ENQ_PREEMPT = 1LLU << 32, 737 738 /* 739 * The task being enqueued was previously enqueued on the current CPU's 740 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 741 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 742 * invoked in a ->cpu_release() callback, and the task is again 743 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 744 * task will not be scheduled on the CPU until at least the next invocation 745 * of the ->cpu_acquire() callback. 746 */ 747 SCX_ENQ_REENQ = 1LLU << 40, 748 749 /* 750 * The task being enqueued is the only task available for the cpu. By 751 * default, ext core keeps executing such tasks but when 752 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 753 * %SCX_ENQ_LAST flag set. 754 * 755 * The BPF scheduler is responsible for triggering a follow-up 756 * scheduling event. Otherwise, Execution may stall. 757 */ 758 SCX_ENQ_LAST = 1LLU << 41, 759 760 /* high 8 bits are internal */ 761 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 762 763 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 764 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 765 }; 766 767 enum scx_deq_flags { 768 /* expose select DEQUEUE_* flags as enums */ 769 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 770 771 /* high 32bits are SCX specific */ 772 773 /* 774 * The generic core-sched layer decided to execute the task even though 775 * it hasn't been dispatched yet. Dequeue from the BPF side. 776 */ 777 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 778 }; 779 780 enum scx_pick_idle_cpu_flags { 781 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 782 }; 783 784 enum scx_kick_flags { 785 /* 786 * Kick the target CPU if idle. Guarantees that the target CPU goes 787 * through at least one full scheduling cycle before going idle. If the 788 * target CPU can be determined to be currently not idle and going to go 789 * through a scheduling cycle before going idle, noop. 790 */ 791 SCX_KICK_IDLE = 1LLU << 0, 792 793 /* 794 * Preempt the current task and execute the dispatch path. If the 795 * current task of the target CPU is an SCX task, its ->scx.slice is 796 * cleared to zero before the scheduling path is invoked so that the 797 * task expires and the dispatch path is invoked. 798 */ 799 SCX_KICK_PREEMPT = 1LLU << 1, 800 801 /* 802 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 803 * return after the target CPU finishes picking the next task. 804 */ 805 SCX_KICK_WAIT = 1LLU << 2, 806 }; 807 808 enum scx_tg_flags { 809 SCX_TG_ONLINE = 1U << 0, 810 SCX_TG_INITED = 1U << 1, 811 }; 812 813 enum scx_ops_enable_state { 814 SCX_OPS_ENABLING, 815 SCX_OPS_ENABLED, 816 SCX_OPS_DISABLING, 817 SCX_OPS_DISABLED, 818 }; 819 820 static const char *scx_ops_enable_state_str[] = { 821 [SCX_OPS_ENABLING] = "enabling", 822 [SCX_OPS_ENABLED] = "enabled", 823 [SCX_OPS_DISABLING] = "disabling", 824 [SCX_OPS_DISABLED] = "disabled", 825 }; 826 827 /* 828 * sched_ext_entity->ops_state 829 * 830 * Used to track the task ownership between the SCX core and the BPF scheduler. 831 * State transitions look as follows: 832 * 833 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 834 * ^ | | 835 * | v v 836 * \-------------------------------/ 837 * 838 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 839 * sites for explanations on the conditions being waited upon and why they are 840 * safe. Transitions out of them into NONE or QUEUED must store_release and the 841 * waiters should load_acquire. 842 * 843 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 844 * any given task can be dispatched by the BPF scheduler at all times and thus 845 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 846 * to try to dispatch any task anytime regardless of its state as the SCX core 847 * can safely reject invalid dispatches. 848 */ 849 enum scx_ops_state { 850 SCX_OPSS_NONE, /* owned by the SCX core */ 851 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 852 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 853 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 854 855 /* 856 * QSEQ brands each QUEUED instance so that, when dispatch races 857 * dequeue/requeue, the dispatcher can tell whether it still has a claim 858 * on the task being dispatched. 859 * 860 * As some 32bit archs can't do 64bit store_release/load_acquire, 861 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 862 * 32bit machines. The dispatch race window QSEQ protects is very narrow 863 * and runs with IRQ disabled. 30 bits should be sufficient. 864 */ 865 SCX_OPSS_QSEQ_SHIFT = 2, 866 }; 867 868 /* Use macros to ensure that the type is unsigned long for the masks */ 869 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 870 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 871 872 /* 873 * During exit, a task may schedule after losing its PIDs. When disabling the 874 * BPF scheduler, we need to be able to iterate tasks in every state to 875 * guarantee system safety. Maintain a dedicated task list which contains every 876 * task between its fork and eventual free. 877 */ 878 static DEFINE_SPINLOCK(scx_tasks_lock); 879 static LIST_HEAD(scx_tasks); 880 881 /* ops enable/disable */ 882 static struct kthread_worker *scx_ops_helper; 883 static DEFINE_MUTEX(scx_ops_enable_mutex); 884 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 885 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 886 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 887 static unsigned long scx_in_softlockup; 888 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0); 889 static int scx_ops_bypass_depth; 890 static bool scx_ops_init_task_enabled; 891 static bool scx_switching_all; 892 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 893 894 static struct sched_ext_ops scx_ops; 895 static bool scx_warned_zero_slice; 896 897 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 898 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 899 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_migration_disabled); 900 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 901 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 902 903 #ifdef CONFIG_SMP 904 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); 905 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); 906 #endif 907 908 static struct static_key_false scx_has_op[SCX_OPI_END] = 909 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 910 911 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 912 static struct scx_exit_info *scx_exit_info; 913 914 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 915 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 916 917 /* 918 * A monotically increasing sequence number that is incremented every time a 919 * scheduler is enabled. This can be used by to check if any custom sched_ext 920 * scheduler has ever been used in the system. 921 */ 922 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 923 924 /* 925 * The maximum amount of time in jiffies that a task may be runnable without 926 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 927 * scx_ops_error(). 928 */ 929 static unsigned long scx_watchdog_timeout; 930 931 /* 932 * The last time the delayed work was run. This delayed work relies on 933 * ksoftirqd being able to run to service timer interrupts, so it's possible 934 * that this work itself could get wedged. To account for this, we check that 935 * it's not stalled in the timer tick, and trigger an error if it is. 936 */ 937 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 938 939 static struct delayed_work scx_watchdog_work; 940 941 /* idle tracking */ 942 #ifdef CONFIG_SMP 943 #ifdef CONFIG_CPUMASK_OFFSTACK 944 #define CL_ALIGNED_IF_ONSTACK 945 #else 946 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 947 #endif 948 949 static struct { 950 cpumask_var_t cpu; 951 cpumask_var_t smt; 952 } idle_masks CL_ALIGNED_IF_ONSTACK; 953 954 #endif /* CONFIG_SMP */ 955 956 /* for %SCX_KICK_WAIT */ 957 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 958 959 /* 960 * Direct dispatch marker. 961 * 962 * Non-NULL values are used for direct dispatch from enqueue path. A valid 963 * pointer points to the task currently being enqueued. An ERR_PTR value is used 964 * to indicate that direct dispatch has already happened. 965 */ 966 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 967 968 /* 969 * Dispatch queues. 970 * 971 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 972 * to avoid live-locking in bypass mode where all tasks are dispatched to 973 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 974 * sufficient, it can be further split. 975 */ 976 static struct scx_dispatch_q **global_dsqs; 977 978 static const struct rhashtable_params dsq_hash_params = { 979 .key_len = sizeof_field(struct scx_dispatch_q, id), 980 .key_offset = offsetof(struct scx_dispatch_q, id), 981 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 982 }; 983 984 static struct rhashtable dsq_hash; 985 static LLIST_HEAD(dsqs_to_free); 986 987 /* dispatch buf */ 988 struct scx_dsp_buf_ent { 989 struct task_struct *task; 990 unsigned long qseq; 991 u64 dsq_id; 992 u64 enq_flags; 993 }; 994 995 static u32 scx_dsp_max_batch; 996 997 struct scx_dsp_ctx { 998 struct rq *rq; 999 u32 cursor; 1000 u32 nr_tasks; 1001 struct scx_dsp_buf_ent buf[]; 1002 }; 1003 1004 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 1005 1006 /* string formatting from BPF */ 1007 struct scx_bstr_buf { 1008 u64 data[MAX_BPRINTF_VARARGS]; 1009 char line[SCX_EXIT_MSG_LEN]; 1010 }; 1011 1012 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 1013 static struct scx_bstr_buf scx_exit_bstr_buf; 1014 1015 /* ops debug dump */ 1016 struct scx_dump_data { 1017 s32 cpu; 1018 bool first; 1019 s32 cursor; 1020 struct seq_buf *s; 1021 const char *prefix; 1022 struct scx_bstr_buf buf; 1023 }; 1024 1025 static struct scx_dump_data scx_dump_data = { 1026 .cpu = -1, 1027 }; 1028 1029 /* /sys/kernel/sched_ext interface */ 1030 static struct kset *scx_kset; 1031 static struct kobject *scx_root_kobj; 1032 1033 #define CREATE_TRACE_POINTS 1034 #include <trace/events/sched_ext.h> 1035 1036 static void process_ddsp_deferred_locals(struct rq *rq); 1037 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1038 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1039 s64 exit_code, 1040 const char *fmt, ...); 1041 1042 #define scx_ops_error_kind(err, fmt, args...) \ 1043 scx_ops_exit_kind((err), 0, fmt, ##args) 1044 1045 #define scx_ops_exit(code, fmt, args...) \ 1046 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1047 1048 #define scx_ops_error(fmt, args...) \ 1049 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1050 1051 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1052 1053 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1054 { 1055 if (time_after(at, now)) 1056 return jiffies_to_msecs(at - now); 1057 else 1058 return -(long)jiffies_to_msecs(now - at); 1059 } 1060 1061 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1062 static u32 higher_bits(u32 flags) 1063 { 1064 return ~((1 << fls(flags)) - 1); 1065 } 1066 1067 /* return the mask with only the highest bit set */ 1068 static u32 highest_bit(u32 flags) 1069 { 1070 int bit = fls(flags); 1071 return ((u64)1 << bit) >> 1; 1072 } 1073 1074 static bool u32_before(u32 a, u32 b) 1075 { 1076 return (s32)(a - b) < 0; 1077 } 1078 1079 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1080 { 1081 return global_dsqs[cpu_to_node(task_cpu(p))]; 1082 } 1083 1084 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1085 { 1086 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1087 } 1088 1089 /* 1090 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1091 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1092 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1093 * whether it's running from an allowed context. 1094 * 1095 * @mask is constant, always inline to cull the mask calculations. 1096 */ 1097 static __always_inline void scx_kf_allow(u32 mask) 1098 { 1099 /* nesting is allowed only in increasing scx_kf_mask order */ 1100 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1101 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1102 current->scx.kf_mask, mask); 1103 current->scx.kf_mask |= mask; 1104 barrier(); 1105 } 1106 1107 static void scx_kf_disallow(u32 mask) 1108 { 1109 barrier(); 1110 current->scx.kf_mask &= ~mask; 1111 } 1112 1113 #define SCX_CALL_OP(mask, op, args...) \ 1114 do { \ 1115 if (mask) { \ 1116 scx_kf_allow(mask); \ 1117 scx_ops.op(args); \ 1118 scx_kf_disallow(mask); \ 1119 } else { \ 1120 scx_ops.op(args); \ 1121 } \ 1122 } while (0) 1123 1124 #define SCX_CALL_OP_RET(mask, op, args...) \ 1125 ({ \ 1126 __typeof__(scx_ops.op(args)) __ret; \ 1127 if (mask) { \ 1128 scx_kf_allow(mask); \ 1129 __ret = scx_ops.op(args); \ 1130 scx_kf_disallow(mask); \ 1131 } else { \ 1132 __ret = scx_ops.op(args); \ 1133 } \ 1134 __ret; \ 1135 }) 1136 1137 /* 1138 * Some kfuncs are allowed only on the tasks that are subjects of the 1139 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1140 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1141 * invoking scx_ops operations that take task arguments. These can only be used 1142 * for non-nesting operations due to the way the tasks are tracked. 1143 * 1144 * kfuncs which can only operate on such tasks can in turn use 1145 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1146 * the specific task. 1147 */ 1148 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1149 do { \ 1150 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1151 current->scx.kf_tasks[0] = task; \ 1152 SCX_CALL_OP(mask, op, task, ##args); \ 1153 current->scx.kf_tasks[0] = NULL; \ 1154 } while (0) 1155 1156 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1157 ({ \ 1158 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1159 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1160 current->scx.kf_tasks[0] = task; \ 1161 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1162 current->scx.kf_tasks[0] = NULL; \ 1163 __ret; \ 1164 }) 1165 1166 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1167 ({ \ 1168 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1169 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1170 current->scx.kf_tasks[0] = task0; \ 1171 current->scx.kf_tasks[1] = task1; \ 1172 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1173 current->scx.kf_tasks[0] = NULL; \ 1174 current->scx.kf_tasks[1] = NULL; \ 1175 __ret; \ 1176 }) 1177 1178 /* @mask is constant, always inline to cull unnecessary branches */ 1179 static __always_inline bool scx_kf_allowed(u32 mask) 1180 { 1181 if (unlikely(!(current->scx.kf_mask & mask))) { 1182 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1183 mask, current->scx.kf_mask); 1184 return false; 1185 } 1186 1187 /* 1188 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1189 * DISPATCH must not be called if we're running DEQUEUE which is nested 1190 * inside ops.dispatch(). We don't need to check boundaries for any 1191 * blocking kfuncs as the verifier ensures they're only called from 1192 * sleepable progs. 1193 */ 1194 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1195 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1196 scx_ops_error("cpu_release kfunc called from a nested operation"); 1197 return false; 1198 } 1199 1200 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1201 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1202 scx_ops_error("dispatch kfunc called from a nested operation"); 1203 return false; 1204 } 1205 1206 return true; 1207 } 1208 1209 /* see SCX_CALL_OP_TASK() */ 1210 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1211 struct task_struct *p) 1212 { 1213 if (!scx_kf_allowed(mask)) 1214 return false; 1215 1216 if (unlikely((p != current->scx.kf_tasks[0] && 1217 p != current->scx.kf_tasks[1]))) { 1218 scx_ops_error("called on a task not being operated on"); 1219 return false; 1220 } 1221 1222 return true; 1223 } 1224 1225 static bool scx_kf_allowed_if_unlocked(void) 1226 { 1227 return !current->scx.kf_mask; 1228 } 1229 1230 /** 1231 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1232 * @dsq: user dsq being iterated 1233 * @cur: current position, %NULL to start iteration 1234 * @rev: walk backwards 1235 * 1236 * Returns %NULL when iteration is finished. 1237 */ 1238 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1239 struct task_struct *cur, bool rev) 1240 { 1241 struct list_head *list_node; 1242 struct scx_dsq_list_node *dsq_lnode; 1243 1244 lockdep_assert_held(&dsq->lock); 1245 1246 if (cur) 1247 list_node = &cur->scx.dsq_list.node; 1248 else 1249 list_node = &dsq->list; 1250 1251 /* find the next task, need to skip BPF iteration cursors */ 1252 do { 1253 if (rev) 1254 list_node = list_node->prev; 1255 else 1256 list_node = list_node->next; 1257 1258 if (list_node == &dsq->list) 1259 return NULL; 1260 1261 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1262 node); 1263 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1264 1265 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1266 } 1267 1268 #define nldsq_for_each_task(p, dsq) \ 1269 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1270 (p) = nldsq_next_task((dsq), (p), false)) 1271 1272 1273 /* 1274 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1275 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1276 * changes without breaking backward compatibility. Can be used with 1277 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1278 */ 1279 enum scx_dsq_iter_flags { 1280 /* iterate in the reverse dispatch order */ 1281 SCX_DSQ_ITER_REV = 1U << 16, 1282 1283 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1284 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1285 1286 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1287 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1288 __SCX_DSQ_ITER_HAS_SLICE | 1289 __SCX_DSQ_ITER_HAS_VTIME, 1290 }; 1291 1292 struct bpf_iter_scx_dsq_kern { 1293 struct scx_dsq_list_node cursor; 1294 struct scx_dispatch_q *dsq; 1295 u64 slice; 1296 u64 vtime; 1297 } __attribute__((aligned(8))); 1298 1299 struct bpf_iter_scx_dsq { 1300 u64 __opaque[6]; 1301 } __attribute__((aligned(8))); 1302 1303 1304 /* 1305 * SCX task iterator. 1306 */ 1307 struct scx_task_iter { 1308 struct sched_ext_entity cursor; 1309 struct task_struct *locked; 1310 struct rq *rq; 1311 struct rq_flags rf; 1312 u32 cnt; 1313 }; 1314 1315 /** 1316 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1317 * @iter: iterator to init 1318 * 1319 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1320 * must eventually be stopped with scx_task_iter_stop(). 1321 * 1322 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1323 * between this and the first next() call or between any two next() calls. If 1324 * the locks are released between two next() calls, the caller is responsible 1325 * for ensuring that the task being iterated remains accessible either through 1326 * RCU read lock or obtaining a reference count. 1327 * 1328 * All tasks which existed when the iteration started are guaranteed to be 1329 * visited as long as they still exist. 1330 */ 1331 static void scx_task_iter_start(struct scx_task_iter *iter) 1332 { 1333 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1334 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1335 1336 spin_lock_irq(&scx_tasks_lock); 1337 1338 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1339 list_add(&iter->cursor.tasks_node, &scx_tasks); 1340 iter->locked = NULL; 1341 iter->cnt = 0; 1342 } 1343 1344 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1345 { 1346 if (iter->locked) { 1347 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1348 iter->locked = NULL; 1349 } 1350 } 1351 1352 /** 1353 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1354 * @iter: iterator to unlock 1355 * 1356 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1357 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1358 * This function can be safely called anytime during an iteration. 1359 */ 1360 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1361 { 1362 __scx_task_iter_rq_unlock(iter); 1363 spin_unlock_irq(&scx_tasks_lock); 1364 } 1365 1366 /** 1367 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1368 * @iter: iterator to re-lock 1369 * 1370 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1371 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1372 */ 1373 static void scx_task_iter_relock(struct scx_task_iter *iter) 1374 { 1375 spin_lock_irq(&scx_tasks_lock); 1376 } 1377 1378 /** 1379 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1380 * @iter: iterator to exit 1381 * 1382 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1383 * which is released on return. If the iterator holds a task's rq lock, that rq 1384 * lock is also released. See scx_task_iter_start() for details. 1385 */ 1386 static void scx_task_iter_stop(struct scx_task_iter *iter) 1387 { 1388 list_del_init(&iter->cursor.tasks_node); 1389 scx_task_iter_unlock(iter); 1390 } 1391 1392 /** 1393 * scx_task_iter_next - Next task 1394 * @iter: iterator to walk 1395 * 1396 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1397 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing 1398 * stalls by holding scx_tasks_lock for too long. 1399 */ 1400 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1401 { 1402 struct list_head *cursor = &iter->cursor.tasks_node; 1403 struct sched_ext_entity *pos; 1404 1405 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) { 1406 scx_task_iter_unlock(iter); 1407 cond_resched(); 1408 scx_task_iter_relock(iter); 1409 } 1410 1411 list_for_each_entry(pos, cursor, tasks_node) { 1412 if (&pos->tasks_node == &scx_tasks) 1413 return NULL; 1414 if (!(pos->flags & SCX_TASK_CURSOR)) { 1415 list_move(cursor, &pos->tasks_node); 1416 return container_of(pos, struct task_struct, scx); 1417 } 1418 } 1419 1420 /* can't happen, should always terminate at scx_tasks above */ 1421 BUG(); 1422 } 1423 1424 /** 1425 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1426 * @iter: iterator to walk 1427 * 1428 * Visit the non-idle task with its rq lock held. Allows callers to specify 1429 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1430 * for details. 1431 */ 1432 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1433 { 1434 struct task_struct *p; 1435 1436 __scx_task_iter_rq_unlock(iter); 1437 1438 while ((p = scx_task_iter_next(iter))) { 1439 /* 1440 * scx_task_iter is used to prepare and move tasks into SCX 1441 * while loading the BPF scheduler and vice-versa while 1442 * unloading. The init_tasks ("swappers") should be excluded 1443 * from the iteration because: 1444 * 1445 * - It's unsafe to use __setschduler_prio() on an init_task to 1446 * determine the sched_class to use as it won't preserve its 1447 * idle_sched_class. 1448 * 1449 * - ops.init/exit_task() can easily be confused if called with 1450 * init_tasks as they, e.g., share PID 0. 1451 * 1452 * As init_tasks are never scheduled through SCX, they can be 1453 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1454 * doesn't work here: 1455 * 1456 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1457 * yet been onlined. 1458 * 1459 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1460 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1461 * 1462 * Test for idle_sched_class as only init_tasks are on it. 1463 */ 1464 if (p->sched_class != &idle_sched_class) 1465 break; 1466 } 1467 if (!p) 1468 return NULL; 1469 1470 iter->rq = task_rq_lock(p, &iter->rf); 1471 iter->locked = p; 1472 1473 return p; 1474 } 1475 1476 static enum scx_ops_enable_state scx_ops_enable_state(void) 1477 { 1478 return atomic_read(&scx_ops_enable_state_var); 1479 } 1480 1481 static enum scx_ops_enable_state 1482 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1483 { 1484 return atomic_xchg(&scx_ops_enable_state_var, to); 1485 } 1486 1487 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1488 enum scx_ops_enable_state from) 1489 { 1490 int from_v = from; 1491 1492 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1493 } 1494 1495 static bool scx_rq_bypassing(struct rq *rq) 1496 { 1497 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1498 } 1499 1500 /** 1501 * wait_ops_state - Busy-wait the specified ops state to end 1502 * @p: target task 1503 * @opss: state to wait the end of 1504 * 1505 * Busy-wait for @p to transition out of @opss. This can only be used when the 1506 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1507 * has load_acquire semantics to ensure that the caller can see the updates made 1508 * in the enqueueing and dispatching paths. 1509 */ 1510 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1511 { 1512 do { 1513 cpu_relax(); 1514 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1515 } 1516 1517 /** 1518 * ops_cpu_valid - Verify a cpu number 1519 * @cpu: cpu number which came from a BPF ops 1520 * @where: extra information reported on error 1521 * 1522 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1523 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1524 * an ops error. 1525 */ 1526 static bool ops_cpu_valid(s32 cpu, const char *where) 1527 { 1528 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1529 return true; 1530 } else { 1531 scx_ops_error("invalid CPU %d%s%s", cpu, 1532 where ? " " : "", where ?: ""); 1533 return false; 1534 } 1535 } 1536 1537 /** 1538 * ops_sanitize_err - Sanitize a -errno value 1539 * @ops_name: operation to blame on failure 1540 * @err: -errno value to sanitize 1541 * 1542 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1543 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1544 * cause misbehaviors. For an example, a large negative return from 1545 * ops.init_task() triggers an oops when passed up the call chain because the 1546 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1547 * handled as a pointer. 1548 */ 1549 static int ops_sanitize_err(const char *ops_name, s32 err) 1550 { 1551 if (err < 0 && err >= -MAX_ERRNO) 1552 return err; 1553 1554 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1555 return -EPROTO; 1556 } 1557 1558 static void run_deferred(struct rq *rq) 1559 { 1560 process_ddsp_deferred_locals(rq); 1561 } 1562 1563 #ifdef CONFIG_SMP 1564 static void deferred_bal_cb_workfn(struct rq *rq) 1565 { 1566 run_deferred(rq); 1567 } 1568 #endif 1569 1570 static void deferred_irq_workfn(struct irq_work *irq_work) 1571 { 1572 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1573 1574 raw_spin_rq_lock(rq); 1575 run_deferred(rq); 1576 raw_spin_rq_unlock(rq); 1577 } 1578 1579 /** 1580 * schedule_deferred - Schedule execution of deferred actions on an rq 1581 * @rq: target rq 1582 * 1583 * Schedule execution of deferred actions on @rq. Must be called with @rq 1584 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1585 * can unlock @rq to e.g. migrate tasks to other rqs. 1586 */ 1587 static void schedule_deferred(struct rq *rq) 1588 { 1589 lockdep_assert_rq_held(rq); 1590 1591 #ifdef CONFIG_SMP 1592 /* 1593 * If in the middle of waking up a task, task_woken_scx() will be called 1594 * afterwards which will then run the deferred actions, no need to 1595 * schedule anything. 1596 */ 1597 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1598 return; 1599 1600 /* 1601 * If in balance, the balance callbacks will be called before rq lock is 1602 * released. Schedule one. 1603 */ 1604 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1605 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1606 deferred_bal_cb_workfn); 1607 return; 1608 } 1609 #endif 1610 /* 1611 * No scheduler hooks available. Queue an irq work. They are executed on 1612 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1613 * The above WAKEUP and BALANCE paths should cover most of the cases and 1614 * the time to IRQ re-enable shouldn't be long. 1615 */ 1616 irq_work_queue(&rq->scx.deferred_irq_work); 1617 } 1618 1619 /** 1620 * touch_core_sched - Update timestamp used for core-sched task ordering 1621 * @rq: rq to read clock from, must be locked 1622 * @p: task to update the timestamp for 1623 * 1624 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1625 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1626 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1627 * exhaustion). 1628 */ 1629 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1630 { 1631 lockdep_assert_rq_held(rq); 1632 1633 #ifdef CONFIG_SCHED_CORE 1634 /* 1635 * It's okay to update the timestamp spuriously. Use 1636 * sched_core_disabled() which is cheaper than enabled(). 1637 * 1638 * As this is used to determine ordering between tasks of sibling CPUs, 1639 * it may be better to use per-core dispatch sequence instead. 1640 */ 1641 if (!sched_core_disabled()) 1642 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1643 #endif 1644 } 1645 1646 /** 1647 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1648 * @rq: rq to read clock from, must be locked 1649 * @p: task being dispatched 1650 * 1651 * If the BPF scheduler implements custom core-sched ordering via 1652 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1653 * ordering within each local DSQ. This function is called from dispatch paths 1654 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1655 */ 1656 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1657 { 1658 lockdep_assert_rq_held(rq); 1659 1660 #ifdef CONFIG_SCHED_CORE 1661 if (SCX_HAS_OP(core_sched_before)) 1662 touch_core_sched(rq, p); 1663 #endif 1664 } 1665 1666 static void update_curr_scx(struct rq *rq) 1667 { 1668 struct task_struct *curr = rq->curr; 1669 s64 delta_exec; 1670 1671 delta_exec = update_curr_common(rq); 1672 if (unlikely(delta_exec <= 0)) 1673 return; 1674 1675 if (curr->scx.slice != SCX_SLICE_INF) { 1676 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1677 if (!curr->scx.slice) 1678 touch_core_sched(rq, curr); 1679 } 1680 } 1681 1682 static bool scx_dsq_priq_less(struct rb_node *node_a, 1683 const struct rb_node *node_b) 1684 { 1685 const struct task_struct *a = 1686 container_of(node_a, struct task_struct, scx.dsq_priq); 1687 const struct task_struct *b = 1688 container_of(node_b, struct task_struct, scx.dsq_priq); 1689 1690 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1691 } 1692 1693 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1694 { 1695 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1696 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1697 } 1698 1699 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1700 u64 enq_flags) 1701 { 1702 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1703 1704 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1705 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1706 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1707 1708 if (!is_local) { 1709 raw_spin_lock(&dsq->lock); 1710 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1711 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1712 /* fall back to the global dsq */ 1713 raw_spin_unlock(&dsq->lock); 1714 dsq = find_global_dsq(p); 1715 raw_spin_lock(&dsq->lock); 1716 } 1717 } 1718 1719 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1720 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1721 /* 1722 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1723 * their FIFO queues. To avoid confusion and accidentally 1724 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1725 * disallow any internal DSQ from doing vtime ordering of 1726 * tasks. 1727 */ 1728 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1729 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1730 } 1731 1732 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1733 struct rb_node *rbp; 1734 1735 /* 1736 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1737 * linked to both the rbtree and list on PRIQs, this can only be 1738 * tested easily when adding the first task. 1739 */ 1740 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1741 nldsq_next_task(dsq, NULL, false))) 1742 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1743 dsq->id); 1744 1745 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1746 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1747 1748 /* 1749 * Find the previous task and insert after it on the list so 1750 * that @dsq->list is vtime ordered. 1751 */ 1752 rbp = rb_prev(&p->scx.dsq_priq); 1753 if (rbp) { 1754 struct task_struct *prev = 1755 container_of(rbp, struct task_struct, 1756 scx.dsq_priq); 1757 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1758 } else { 1759 list_add(&p->scx.dsq_list.node, &dsq->list); 1760 } 1761 } else { 1762 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1763 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1764 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1765 dsq->id); 1766 1767 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1768 list_add(&p->scx.dsq_list.node, &dsq->list); 1769 else 1770 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1771 } 1772 1773 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1774 dsq->seq++; 1775 p->scx.dsq_seq = dsq->seq; 1776 1777 dsq_mod_nr(dsq, 1); 1778 p->scx.dsq = dsq; 1779 1780 /* 1781 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1782 * direct dispatch path, but we clear them here because the direct 1783 * dispatch verdict may be overridden on the enqueue path during e.g. 1784 * bypass. 1785 */ 1786 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1787 p->scx.ddsp_enq_flags = 0; 1788 1789 /* 1790 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1791 * match waiters' load_acquire. 1792 */ 1793 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1794 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1795 1796 if (is_local) { 1797 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1798 bool preempt = false; 1799 1800 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1801 rq->curr->sched_class == &ext_sched_class) { 1802 rq->curr->scx.slice = 0; 1803 preempt = true; 1804 } 1805 1806 if (preempt || sched_class_above(&ext_sched_class, 1807 rq->curr->sched_class)) 1808 resched_curr(rq); 1809 } else { 1810 raw_spin_unlock(&dsq->lock); 1811 } 1812 } 1813 1814 static void task_unlink_from_dsq(struct task_struct *p, 1815 struct scx_dispatch_q *dsq) 1816 { 1817 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1818 1819 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1820 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1821 RB_CLEAR_NODE(&p->scx.dsq_priq); 1822 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1823 } 1824 1825 list_del_init(&p->scx.dsq_list.node); 1826 dsq_mod_nr(dsq, -1); 1827 } 1828 1829 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1830 { 1831 struct scx_dispatch_q *dsq = p->scx.dsq; 1832 bool is_local = dsq == &rq->scx.local_dsq; 1833 1834 if (!dsq) { 1835 /* 1836 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1837 * Unlinking is all that's needed to cancel. 1838 */ 1839 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1840 list_del_init(&p->scx.dsq_list.node); 1841 1842 /* 1843 * When dispatching directly from the BPF scheduler to a local 1844 * DSQ, the task isn't associated with any DSQ but 1845 * @p->scx.holding_cpu may be set under the protection of 1846 * %SCX_OPSS_DISPATCHING. 1847 */ 1848 if (p->scx.holding_cpu >= 0) 1849 p->scx.holding_cpu = -1; 1850 1851 return; 1852 } 1853 1854 if (!is_local) 1855 raw_spin_lock(&dsq->lock); 1856 1857 /* 1858 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1859 * change underneath us. 1860 */ 1861 if (p->scx.holding_cpu < 0) { 1862 /* @p must still be on @dsq, dequeue */ 1863 task_unlink_from_dsq(p, dsq); 1864 } else { 1865 /* 1866 * We're racing against dispatch_to_local_dsq() which already 1867 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1868 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1869 * the race. 1870 */ 1871 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1872 p->scx.holding_cpu = -1; 1873 } 1874 p->scx.dsq = NULL; 1875 1876 if (!is_local) 1877 raw_spin_unlock(&dsq->lock); 1878 } 1879 1880 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1881 struct task_struct *p) 1882 { 1883 struct scx_dispatch_q *dsq; 1884 1885 if (dsq_id == SCX_DSQ_LOCAL) 1886 return &rq->scx.local_dsq; 1887 1888 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1889 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1890 1891 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1892 return find_global_dsq(p); 1893 1894 return &cpu_rq(cpu)->scx.local_dsq; 1895 } 1896 1897 if (dsq_id == SCX_DSQ_GLOBAL) 1898 dsq = find_global_dsq(p); 1899 else 1900 dsq = find_user_dsq(dsq_id); 1901 1902 if (unlikely(!dsq)) { 1903 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1904 dsq_id, p->comm, p->pid); 1905 return find_global_dsq(p); 1906 } 1907 1908 return dsq; 1909 } 1910 1911 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1912 struct task_struct *p, u64 dsq_id, 1913 u64 enq_flags) 1914 { 1915 /* 1916 * Mark that dispatch already happened from ops.select_cpu() or 1917 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1918 * which can never match a valid task pointer. 1919 */ 1920 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1921 1922 /* @p must match the task on the enqueue path */ 1923 if (unlikely(p != ddsp_task)) { 1924 if (IS_ERR(ddsp_task)) 1925 scx_ops_error("%s[%d] already direct-dispatched", 1926 p->comm, p->pid); 1927 else 1928 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1929 ddsp_task->comm, ddsp_task->pid, 1930 p->comm, p->pid); 1931 return; 1932 } 1933 1934 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1935 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1936 1937 p->scx.ddsp_dsq_id = dsq_id; 1938 p->scx.ddsp_enq_flags = enq_flags; 1939 } 1940 1941 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1942 { 1943 struct rq *rq = task_rq(p); 1944 struct scx_dispatch_q *dsq = 1945 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1946 1947 touch_core_sched_dispatch(rq, p); 1948 1949 p->scx.ddsp_enq_flags |= enq_flags; 1950 1951 /* 1952 * We are in the enqueue path with @rq locked and pinned, and thus can't 1953 * double lock a remote rq and enqueue to its local DSQ. For 1954 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1955 * the enqueue so that it's executed when @rq can be unlocked. 1956 */ 1957 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1958 unsigned long opss; 1959 1960 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1961 1962 switch (opss & SCX_OPSS_STATE_MASK) { 1963 case SCX_OPSS_NONE: 1964 break; 1965 case SCX_OPSS_QUEUEING: 1966 /* 1967 * As @p was never passed to the BPF side, _release is 1968 * not strictly necessary. Still do it for consistency. 1969 */ 1970 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1971 break; 1972 default: 1973 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1974 p->comm, p->pid, opss); 1975 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1976 break; 1977 } 1978 1979 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1980 list_add_tail(&p->scx.dsq_list.node, 1981 &rq->scx.ddsp_deferred_locals); 1982 schedule_deferred(rq); 1983 return; 1984 } 1985 1986 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1987 } 1988 1989 static bool scx_rq_online(struct rq *rq) 1990 { 1991 /* 1992 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1993 * the online state as seen from the BPF scheduler. cpu_active() test 1994 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1995 * stay set until the current scheduling operation is complete even if 1996 * we aren't locking @rq. 1997 */ 1998 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1999 } 2000 2001 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 2002 int sticky_cpu) 2003 { 2004 struct task_struct **ddsp_taskp; 2005 unsigned long qseq; 2006 2007 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 2008 2009 /* rq migration */ 2010 if (sticky_cpu == cpu_of(rq)) 2011 goto local_norefill; 2012 2013 /* 2014 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2015 * is offline and are just running the hotplug path. Don't bother the 2016 * BPF scheduler. 2017 */ 2018 if (!scx_rq_online(rq)) 2019 goto local; 2020 2021 if (scx_rq_bypassing(rq)) 2022 goto global; 2023 2024 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2025 goto direct; 2026 2027 /* see %SCX_OPS_ENQ_EXITING */ 2028 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 2029 unlikely(p->flags & PF_EXITING)) 2030 goto local; 2031 2032 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 2033 if (!static_branch_unlikely(&scx_ops_enq_migration_disabled) && 2034 is_migration_disabled(p)) 2035 goto local; 2036 2037 if (!SCX_HAS_OP(enqueue)) 2038 goto global; 2039 2040 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2041 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2042 2043 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2044 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2045 2046 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2047 WARN_ON_ONCE(*ddsp_taskp); 2048 *ddsp_taskp = p; 2049 2050 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 2051 2052 *ddsp_taskp = NULL; 2053 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2054 goto direct; 2055 2056 /* 2057 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2058 * dequeue may be waiting. The store_release matches their load_acquire. 2059 */ 2060 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2061 return; 2062 2063 direct: 2064 direct_dispatch(p, enq_flags); 2065 return; 2066 2067 local: 2068 /* 2069 * For task-ordering, slice refill must be treated as implying the end 2070 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2071 * higher priority it becomes from scx_prio_less()'s POV. 2072 */ 2073 touch_core_sched(rq, p); 2074 p->scx.slice = SCX_SLICE_DFL; 2075 local_norefill: 2076 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2077 return; 2078 2079 global: 2080 touch_core_sched(rq, p); /* see the comment in local: */ 2081 p->scx.slice = SCX_SLICE_DFL; 2082 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2083 } 2084 2085 static bool task_runnable(const struct task_struct *p) 2086 { 2087 return !list_empty(&p->scx.runnable_node); 2088 } 2089 2090 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2091 { 2092 lockdep_assert_rq_held(rq); 2093 2094 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2095 p->scx.runnable_at = jiffies; 2096 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2097 } 2098 2099 /* 2100 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2101 * appended to the runnable_list. 2102 */ 2103 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2104 } 2105 2106 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2107 { 2108 list_del_init(&p->scx.runnable_node); 2109 if (reset_runnable_at) 2110 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2111 } 2112 2113 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2114 { 2115 int sticky_cpu = p->scx.sticky_cpu; 2116 2117 if (enq_flags & ENQUEUE_WAKEUP) 2118 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2119 2120 enq_flags |= rq->scx.extra_enq_flags; 2121 2122 if (sticky_cpu >= 0) 2123 p->scx.sticky_cpu = -1; 2124 2125 /* 2126 * Restoring a running task will be immediately followed by 2127 * set_next_task_scx() which expects the task to not be on the BPF 2128 * scheduler as tasks can only start running through local DSQs. Force 2129 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2130 */ 2131 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2132 sticky_cpu = cpu_of(rq); 2133 2134 if (p->scx.flags & SCX_TASK_QUEUED) { 2135 WARN_ON_ONCE(!task_runnable(p)); 2136 goto out; 2137 } 2138 2139 set_task_runnable(rq, p); 2140 p->scx.flags |= SCX_TASK_QUEUED; 2141 rq->scx.nr_running++; 2142 add_nr_running(rq, 1); 2143 2144 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2145 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2146 2147 if (enq_flags & SCX_ENQ_WAKEUP) 2148 touch_core_sched(rq, p); 2149 2150 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2151 out: 2152 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2153 } 2154 2155 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2156 { 2157 unsigned long opss; 2158 2159 /* dequeue is always temporary, don't reset runnable_at */ 2160 clr_task_runnable(p, false); 2161 2162 /* acquire ensures that we see the preceding updates on QUEUED */ 2163 opss = atomic_long_read_acquire(&p->scx.ops_state); 2164 2165 switch (opss & SCX_OPSS_STATE_MASK) { 2166 case SCX_OPSS_NONE: 2167 break; 2168 case SCX_OPSS_QUEUEING: 2169 /* 2170 * QUEUEING is started and finished while holding @p's rq lock. 2171 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2172 */ 2173 BUG(); 2174 case SCX_OPSS_QUEUED: 2175 if (SCX_HAS_OP(dequeue)) 2176 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2177 2178 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2179 SCX_OPSS_NONE)) 2180 break; 2181 fallthrough; 2182 case SCX_OPSS_DISPATCHING: 2183 /* 2184 * If @p is being dispatched from the BPF scheduler to a DSQ, 2185 * wait for the transfer to complete so that @p doesn't get 2186 * added to its DSQ after dequeueing is complete. 2187 * 2188 * As we're waiting on DISPATCHING with the rq locked, the 2189 * dispatching side shouldn't try to lock the rq while 2190 * DISPATCHING is set. See dispatch_to_local_dsq(). 2191 * 2192 * DISPATCHING shouldn't have qseq set and control can reach 2193 * here with NONE @opss from the above QUEUED case block. 2194 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2195 */ 2196 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2197 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2198 break; 2199 } 2200 } 2201 2202 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2203 { 2204 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2205 WARN_ON_ONCE(task_runnable(p)); 2206 return true; 2207 } 2208 2209 ops_dequeue(p, deq_flags); 2210 2211 /* 2212 * A currently running task which is going off @rq first gets dequeued 2213 * and then stops running. As we want running <-> stopping transitions 2214 * to be contained within runnable <-> quiescent transitions, trigger 2215 * ->stopping() early here instead of in put_prev_task_scx(). 2216 * 2217 * @p may go through multiple stopping <-> running transitions between 2218 * here and put_prev_task_scx() if task attribute changes occur while 2219 * balance_scx() leaves @rq unlocked. However, they don't contain any 2220 * information meaningful to the BPF scheduler and can be suppressed by 2221 * skipping the callbacks if the task is !QUEUED. 2222 */ 2223 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2224 update_curr_scx(rq); 2225 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2226 } 2227 2228 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2229 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2230 2231 if (deq_flags & SCX_DEQ_SLEEP) 2232 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2233 else 2234 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2235 2236 p->scx.flags &= ~SCX_TASK_QUEUED; 2237 rq->scx.nr_running--; 2238 sub_nr_running(rq, 1); 2239 2240 dispatch_dequeue(rq, p); 2241 return true; 2242 } 2243 2244 static void yield_task_scx(struct rq *rq) 2245 { 2246 struct task_struct *p = rq->curr; 2247 2248 if (SCX_HAS_OP(yield)) 2249 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2250 else 2251 p->scx.slice = 0; 2252 } 2253 2254 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2255 { 2256 struct task_struct *from = rq->curr; 2257 2258 if (SCX_HAS_OP(yield)) 2259 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2260 else 2261 return false; 2262 } 2263 2264 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2265 struct scx_dispatch_q *src_dsq, 2266 struct rq *dst_rq) 2267 { 2268 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2269 2270 /* @dsq is locked and @p is on @dst_rq */ 2271 lockdep_assert_held(&src_dsq->lock); 2272 lockdep_assert_rq_held(dst_rq); 2273 2274 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2275 2276 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2277 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2278 else 2279 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2280 2281 dsq_mod_nr(dst_dsq, 1); 2282 p->scx.dsq = dst_dsq; 2283 } 2284 2285 #ifdef CONFIG_SMP 2286 /** 2287 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2288 * @p: task to move 2289 * @enq_flags: %SCX_ENQ_* 2290 * @src_rq: rq to move the task from, locked on entry, released on return 2291 * @dst_rq: rq to move the task into, locked on return 2292 * 2293 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2294 */ 2295 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2296 struct rq *src_rq, struct rq *dst_rq) 2297 { 2298 lockdep_assert_rq_held(src_rq); 2299 2300 /* the following marks @p MIGRATING which excludes dequeue */ 2301 deactivate_task(src_rq, p, 0); 2302 set_task_cpu(p, cpu_of(dst_rq)); 2303 p->scx.sticky_cpu = cpu_of(dst_rq); 2304 2305 raw_spin_rq_unlock(src_rq); 2306 raw_spin_rq_lock(dst_rq); 2307 2308 /* 2309 * We want to pass scx-specific enq_flags but activate_task() will 2310 * truncate the upper 32 bit. As we own @rq, we can pass them through 2311 * @rq->scx.extra_enq_flags instead. 2312 */ 2313 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2314 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2315 dst_rq->scx.extra_enq_flags = enq_flags; 2316 activate_task(dst_rq, p, 0); 2317 dst_rq->scx.extra_enq_flags = 0; 2318 } 2319 2320 /* 2321 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2322 * differences: 2323 * 2324 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2325 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2326 * this CPU?". 2327 * 2328 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2329 * must be allowed to finish on the CPU that it's currently on regardless of 2330 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2331 * BPF scheduler shouldn't attempt to migrate a task which has migration 2332 * disabled. 2333 * 2334 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2335 * no to the BPF scheduler initiated migrations while offline. 2336 * 2337 * The caller must ensure that @p and @rq are on different CPUs. 2338 */ 2339 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2340 bool trigger_error) 2341 { 2342 int cpu = cpu_of(rq); 2343 2344 SCHED_WARN_ON(task_cpu(p) == cpu); 2345 2346 /* 2347 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 2348 * the pinned CPU in migrate_disable_switch() while @p is being switched 2349 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 2350 * updated and thus another CPU may see @p on a DSQ inbetween leading to 2351 * @p passing the below task_allowed_on_cpu() check while migration is 2352 * disabled. 2353 * 2354 * Test the migration disabled state first as the race window is narrow 2355 * and the BPF scheduler failing to check migration disabled state can 2356 * easily be masked if task_allowed_on_cpu() is done first. 2357 */ 2358 if (unlikely(is_migration_disabled(p))) { 2359 if (trigger_error) 2360 scx_ops_error("SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 2361 p->comm, p->pid, task_cpu(p), cpu); 2362 return false; 2363 } 2364 2365 /* 2366 * We don't require the BPF scheduler to avoid dispatching to offline 2367 * CPUs mostly for convenience but also because CPUs can go offline 2368 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2369 * picked CPU is outside the allowed mask. 2370 */ 2371 if (!task_allowed_on_cpu(p, cpu)) { 2372 if (trigger_error) 2373 scx_ops_error("SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 2374 cpu, p->comm, p->pid); 2375 return false; 2376 } 2377 2378 if (!scx_rq_online(rq)) 2379 return false; 2380 2381 return true; 2382 } 2383 2384 /** 2385 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2386 * @p: target task 2387 * @dsq: locked DSQ @p is currently on 2388 * @src_rq: rq @p is currently on, stable with @dsq locked 2389 * 2390 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2391 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2392 * required when transferring into a local DSQ. Even when transferring into a 2393 * non-local DSQ, it's better to use the same mechanism to protect against 2394 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2395 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2396 * 2397 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2398 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2399 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2400 * dancing from our side. 2401 * 2402 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2403 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2404 * would be cleared to -1. While other cpus may have updated it to different 2405 * values afterwards, as this operation can't be preempted or recurse, the 2406 * holding_cpu can never become this CPU again before we're done. Thus, we can 2407 * tell whether we lost to dequeue by testing whether the holding_cpu still 2408 * points to this CPU. See dispatch_dequeue() for the counterpart. 2409 * 2410 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2411 * still valid. %false if lost to dequeue. 2412 */ 2413 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2414 struct scx_dispatch_q *dsq, 2415 struct rq *src_rq) 2416 { 2417 s32 cpu = raw_smp_processor_id(); 2418 2419 lockdep_assert_held(&dsq->lock); 2420 2421 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2422 task_unlink_from_dsq(p, dsq); 2423 p->scx.holding_cpu = cpu; 2424 2425 raw_spin_unlock(&dsq->lock); 2426 raw_spin_rq_lock(src_rq); 2427 2428 /* task_rq couldn't have changed if we're still the holding cpu */ 2429 return likely(p->scx.holding_cpu == cpu) && 2430 !WARN_ON_ONCE(src_rq != task_rq(p)); 2431 } 2432 2433 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2434 struct scx_dispatch_q *dsq, struct rq *src_rq) 2435 { 2436 raw_spin_rq_unlock(this_rq); 2437 2438 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2439 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2440 return true; 2441 } else { 2442 raw_spin_rq_unlock(src_rq); 2443 raw_spin_rq_lock(this_rq); 2444 return false; 2445 } 2446 } 2447 #else /* CONFIG_SMP */ 2448 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2449 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2450 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2451 #endif /* CONFIG_SMP */ 2452 2453 /** 2454 * move_task_between_dsqs() - Move a task from one DSQ to another 2455 * @p: target task 2456 * @enq_flags: %SCX_ENQ_* 2457 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2458 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2459 * 2460 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2461 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2462 * will change. As @p's task_rq is locked, this function doesn't need to use the 2463 * holding_cpu mechanism. 2464 * 2465 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2466 * return value, is locked. 2467 */ 2468 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags, 2469 struct scx_dispatch_q *src_dsq, 2470 struct scx_dispatch_q *dst_dsq) 2471 { 2472 struct rq *src_rq = task_rq(p), *dst_rq; 2473 2474 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2475 lockdep_assert_held(&src_dsq->lock); 2476 lockdep_assert_rq_held(src_rq); 2477 2478 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2479 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2480 if (src_rq != dst_rq && 2481 unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2482 dst_dsq = find_global_dsq(p); 2483 dst_rq = src_rq; 2484 } 2485 } else { 2486 /* no need to migrate if destination is a non-local DSQ */ 2487 dst_rq = src_rq; 2488 } 2489 2490 /* 2491 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2492 * CPU, @p will be migrated. 2493 */ 2494 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2495 /* @p is going from a non-local DSQ to a local DSQ */ 2496 if (src_rq == dst_rq) { 2497 task_unlink_from_dsq(p, src_dsq); 2498 move_local_task_to_local_dsq(p, enq_flags, 2499 src_dsq, dst_rq); 2500 raw_spin_unlock(&src_dsq->lock); 2501 } else { 2502 raw_spin_unlock(&src_dsq->lock); 2503 move_remote_task_to_local_dsq(p, enq_flags, 2504 src_rq, dst_rq); 2505 } 2506 } else { 2507 /* 2508 * @p is going from a non-local DSQ to a non-local DSQ. As 2509 * $src_dsq is already locked, do an abbreviated dequeue. 2510 */ 2511 task_unlink_from_dsq(p, src_dsq); 2512 p->scx.dsq = NULL; 2513 raw_spin_unlock(&src_dsq->lock); 2514 2515 dispatch_enqueue(dst_dsq, p, enq_flags); 2516 } 2517 2518 return dst_rq; 2519 } 2520 2521 /* 2522 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2523 * banging on the same DSQ on a large NUMA system to the point where switching 2524 * to the bypass mode can take a long time. Inject artificial delays while the 2525 * bypass mode is switching to guarantee timely completion. 2526 */ 2527 static void scx_ops_breather(struct rq *rq) 2528 { 2529 u64 until; 2530 2531 lockdep_assert_rq_held(rq); 2532 2533 if (likely(!atomic_read(&scx_ops_breather_depth))) 2534 return; 2535 2536 raw_spin_rq_unlock(rq); 2537 2538 until = ktime_get_ns() + NSEC_PER_MSEC; 2539 2540 do { 2541 int cnt = 1024; 2542 while (atomic_read(&scx_ops_breather_depth) && --cnt) 2543 cpu_relax(); 2544 } while (atomic_read(&scx_ops_breather_depth) && 2545 time_before64(ktime_get_ns(), until)); 2546 2547 raw_spin_rq_lock(rq); 2548 } 2549 2550 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2551 { 2552 struct task_struct *p; 2553 retry: 2554 /* 2555 * This retry loop can repeatedly race against scx_ops_bypass() 2556 * dequeueing tasks from @dsq trying to put the system into the bypass 2557 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can 2558 * live-lock the machine into soft lockups. Give a breather. 2559 */ 2560 scx_ops_breather(rq); 2561 2562 /* 2563 * The caller can't expect to successfully consume a task if the task's 2564 * addition to @dsq isn't guaranteed to be visible somehow. Test 2565 * @dsq->list without locking and skip if it seems empty. 2566 */ 2567 if (list_empty(&dsq->list)) 2568 return false; 2569 2570 raw_spin_lock(&dsq->lock); 2571 2572 nldsq_for_each_task(p, dsq) { 2573 struct rq *task_rq = task_rq(p); 2574 2575 if (rq == task_rq) { 2576 task_unlink_from_dsq(p, dsq); 2577 move_local_task_to_local_dsq(p, 0, dsq, rq); 2578 raw_spin_unlock(&dsq->lock); 2579 return true; 2580 } 2581 2582 if (task_can_run_on_remote_rq(p, rq, false)) { 2583 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2584 return true; 2585 goto retry; 2586 } 2587 } 2588 2589 raw_spin_unlock(&dsq->lock); 2590 return false; 2591 } 2592 2593 static bool consume_global_dsq(struct rq *rq) 2594 { 2595 int node = cpu_to_node(cpu_of(rq)); 2596 2597 return consume_dispatch_q(rq, global_dsqs[node]); 2598 } 2599 2600 /** 2601 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2602 * @rq: current rq which is locked 2603 * @dst_dsq: destination DSQ 2604 * @p: task to dispatch 2605 * @enq_flags: %SCX_ENQ_* 2606 * 2607 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2608 * DSQ. This function performs all the synchronization dancing needed because 2609 * local DSQs are protected with rq locks. 2610 * 2611 * The caller must have exclusive ownership of @p (e.g. through 2612 * %SCX_OPSS_DISPATCHING). 2613 */ 2614 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2615 struct task_struct *p, u64 enq_flags) 2616 { 2617 struct rq *src_rq = task_rq(p); 2618 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2619 #ifdef CONFIG_SMP 2620 struct rq *locked_rq = rq; 2621 #endif 2622 2623 /* 2624 * We're synchronized against dequeue through DISPATCHING. As @p can't 2625 * be dequeued, its task_rq and cpus_allowed are stable too. 2626 * 2627 * If dispatching to @rq that @p is already on, no lock dancing needed. 2628 */ 2629 if (rq == src_rq && rq == dst_rq) { 2630 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2631 return; 2632 } 2633 2634 #ifdef CONFIG_SMP 2635 if (src_rq != dst_rq && 2636 unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2637 dispatch_enqueue(find_global_dsq(p), p, 2638 enq_flags | SCX_ENQ_CLEAR_OPSS); 2639 return; 2640 } 2641 2642 /* 2643 * @p is on a possibly remote @src_rq which we need to lock to move the 2644 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2645 * on DISPATCHING, so we can't grab @src_rq lock while holding 2646 * DISPATCHING. 2647 * 2648 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2649 * we're moving from a DSQ and use the same mechanism - mark the task 2650 * under transfer with holding_cpu, release DISPATCHING and then follow 2651 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2652 */ 2653 p->scx.holding_cpu = raw_smp_processor_id(); 2654 2655 /* store_release ensures that dequeue sees the above */ 2656 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2657 2658 /* switch to @src_rq lock */ 2659 if (locked_rq != src_rq) { 2660 raw_spin_rq_unlock(locked_rq); 2661 locked_rq = src_rq; 2662 raw_spin_rq_lock(src_rq); 2663 } 2664 2665 /* task_rq couldn't have changed if we're still the holding cpu */ 2666 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2667 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2668 /* 2669 * If @p is staying on the same rq, there's no need to go 2670 * through the full deactivate/activate cycle. Optimize by 2671 * abbreviating move_remote_task_to_local_dsq(). 2672 */ 2673 if (src_rq == dst_rq) { 2674 p->scx.holding_cpu = -1; 2675 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2676 } else { 2677 move_remote_task_to_local_dsq(p, enq_flags, 2678 src_rq, dst_rq); 2679 /* task has been moved to dst_rq, which is now locked */ 2680 locked_rq = dst_rq; 2681 } 2682 2683 /* if the destination CPU is idle, wake it up */ 2684 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2685 resched_curr(dst_rq); 2686 } 2687 2688 /* switch back to @rq lock */ 2689 if (locked_rq != rq) { 2690 raw_spin_rq_unlock(locked_rq); 2691 raw_spin_rq_lock(rq); 2692 } 2693 #else /* CONFIG_SMP */ 2694 BUG(); /* control can not reach here on UP */ 2695 #endif /* CONFIG_SMP */ 2696 } 2697 2698 /** 2699 * finish_dispatch - Asynchronously finish dispatching a task 2700 * @rq: current rq which is locked 2701 * @p: task to finish dispatching 2702 * @qseq_at_dispatch: qseq when @p started getting dispatched 2703 * @dsq_id: destination DSQ ID 2704 * @enq_flags: %SCX_ENQ_* 2705 * 2706 * Dispatching to local DSQs may need to wait for queueing to complete or 2707 * require rq lock dancing. As we don't wanna do either while inside 2708 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2709 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2710 * task and its qseq. Once ops.dispatch() returns, this function is called to 2711 * finish up. 2712 * 2713 * There is no guarantee that @p is still valid for dispatching or even that it 2714 * was valid in the first place. Make sure that the task is still owned by the 2715 * BPF scheduler and claim the ownership before dispatching. 2716 */ 2717 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2718 unsigned long qseq_at_dispatch, 2719 u64 dsq_id, u64 enq_flags) 2720 { 2721 struct scx_dispatch_q *dsq; 2722 unsigned long opss; 2723 2724 touch_core_sched_dispatch(rq, p); 2725 retry: 2726 /* 2727 * No need for _acquire here. @p is accessed only after a successful 2728 * try_cmpxchg to DISPATCHING. 2729 */ 2730 opss = atomic_long_read(&p->scx.ops_state); 2731 2732 switch (opss & SCX_OPSS_STATE_MASK) { 2733 case SCX_OPSS_DISPATCHING: 2734 case SCX_OPSS_NONE: 2735 /* someone else already got to it */ 2736 return; 2737 case SCX_OPSS_QUEUED: 2738 /* 2739 * If qseq doesn't match, @p has gone through at least one 2740 * dispatch/dequeue and re-enqueue cycle between 2741 * scx_bpf_dsq_insert() and here and we have no claim on it. 2742 */ 2743 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2744 return; 2745 2746 /* 2747 * While we know @p is accessible, we don't yet have a claim on 2748 * it - the BPF scheduler is allowed to dispatch tasks 2749 * spuriously and there can be a racing dequeue attempt. Let's 2750 * claim @p by atomically transitioning it from QUEUED to 2751 * DISPATCHING. 2752 */ 2753 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2754 SCX_OPSS_DISPATCHING))) 2755 break; 2756 goto retry; 2757 case SCX_OPSS_QUEUEING: 2758 /* 2759 * do_enqueue_task() is in the process of transferring the task 2760 * to the BPF scheduler while holding @p's rq lock. As we aren't 2761 * holding any kernel or BPF resource that the enqueue path may 2762 * depend upon, it's safe to wait. 2763 */ 2764 wait_ops_state(p, opss); 2765 goto retry; 2766 } 2767 2768 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2769 2770 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2771 2772 if (dsq->id == SCX_DSQ_LOCAL) 2773 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2774 else 2775 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2776 } 2777 2778 static void flush_dispatch_buf(struct rq *rq) 2779 { 2780 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2781 u32 u; 2782 2783 for (u = 0; u < dspc->cursor; u++) { 2784 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2785 2786 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2787 ent->enq_flags); 2788 } 2789 2790 dspc->nr_tasks += dspc->cursor; 2791 dspc->cursor = 0; 2792 } 2793 2794 static int balance_one(struct rq *rq, struct task_struct *prev) 2795 { 2796 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2797 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2798 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2799 int nr_loops = SCX_DSP_MAX_LOOPS; 2800 2801 lockdep_assert_rq_held(rq); 2802 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2803 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2804 2805 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2806 unlikely(rq->scx.cpu_released)) { 2807 /* 2808 * If the previous sched_class for the current CPU was not SCX, 2809 * notify the BPF scheduler that it again has control of the 2810 * core. This callback complements ->cpu_release(), which is 2811 * emitted in switch_class(). 2812 */ 2813 if (SCX_HAS_OP(cpu_acquire)) 2814 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL); 2815 rq->scx.cpu_released = false; 2816 } 2817 2818 if (prev_on_scx) { 2819 update_curr_scx(rq); 2820 2821 /* 2822 * If @prev is runnable & has slice left, it has priority and 2823 * fetching more just increases latency for the fetched tasks. 2824 * Tell pick_task_scx() to keep running @prev. If the BPF 2825 * scheduler wants to handle this explicitly, it should 2826 * implement ->cpu_release(). 2827 * 2828 * See scx_ops_disable_workfn() for the explanation on the 2829 * bypassing test. 2830 */ 2831 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2832 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2833 goto has_tasks; 2834 } 2835 } 2836 2837 /* if there already are tasks to run, nothing to do */ 2838 if (rq->scx.local_dsq.nr) 2839 goto has_tasks; 2840 2841 if (consume_global_dsq(rq)) 2842 goto has_tasks; 2843 2844 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2845 goto no_tasks; 2846 2847 dspc->rq = rq; 2848 2849 /* 2850 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2851 * the local DSQ might still end up empty after a successful 2852 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2853 * produced some tasks, retry. The BPF scheduler may depend on this 2854 * looping behavior to simplify its implementation. 2855 */ 2856 do { 2857 dspc->nr_tasks = 0; 2858 2859 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2860 prev_on_scx ? prev : NULL); 2861 2862 flush_dispatch_buf(rq); 2863 2864 if (prev_on_rq && prev->scx.slice) { 2865 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2866 goto has_tasks; 2867 } 2868 if (rq->scx.local_dsq.nr) 2869 goto has_tasks; 2870 if (consume_global_dsq(rq)) 2871 goto has_tasks; 2872 2873 /* 2874 * ops.dispatch() can trap us in this loop by repeatedly 2875 * dispatching ineligible tasks. Break out once in a while to 2876 * allow the watchdog to run. As IRQ can't be enabled in 2877 * balance(), we want to complete this scheduling cycle and then 2878 * start a new one. IOW, we want to call resched_curr() on the 2879 * next, most likely idle, task, not the current one. Use 2880 * scx_bpf_kick_cpu() for deferred kicking. 2881 */ 2882 if (unlikely(!--nr_loops)) { 2883 scx_bpf_kick_cpu(cpu_of(rq), 0); 2884 break; 2885 } 2886 } while (dspc->nr_tasks); 2887 2888 no_tasks: 2889 /* 2890 * Didn't find another task to run. Keep running @prev unless 2891 * %SCX_OPS_ENQ_LAST is in effect. 2892 */ 2893 if (prev_on_rq && (!static_branch_unlikely(&scx_ops_enq_last) || 2894 scx_rq_bypassing(rq))) { 2895 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2896 goto has_tasks; 2897 } 2898 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2899 return false; 2900 2901 has_tasks: 2902 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2903 return true; 2904 } 2905 2906 static int balance_scx(struct rq *rq, struct task_struct *prev, 2907 struct rq_flags *rf) 2908 { 2909 int ret; 2910 2911 rq_unpin_lock(rq, rf); 2912 2913 ret = balance_one(rq, prev); 2914 2915 #ifdef CONFIG_SCHED_SMT 2916 /* 2917 * When core-sched is enabled, this ops.balance() call will be followed 2918 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2919 * siblings too. 2920 */ 2921 if (sched_core_enabled(rq)) { 2922 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2923 int scpu; 2924 2925 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2926 struct rq *srq = cpu_rq(scpu); 2927 struct task_struct *sprev = srq->curr; 2928 2929 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2930 update_rq_clock(srq); 2931 balance_one(srq, sprev); 2932 } 2933 } 2934 #endif 2935 rq_repin_lock(rq, rf); 2936 2937 return ret; 2938 } 2939 2940 static void process_ddsp_deferred_locals(struct rq *rq) 2941 { 2942 struct task_struct *p; 2943 2944 lockdep_assert_rq_held(rq); 2945 2946 /* 2947 * Now that @rq can be unlocked, execute the deferred enqueueing of 2948 * tasks directly dispatched to the local DSQs of other CPUs. See 2949 * direct_dispatch(). Keep popping from the head instead of using 2950 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2951 * temporarily. 2952 */ 2953 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2954 struct task_struct, scx.dsq_list.node))) { 2955 struct scx_dispatch_q *dsq; 2956 2957 list_del_init(&p->scx.dsq_list.node); 2958 2959 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2960 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2961 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2962 } 2963 } 2964 2965 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2966 { 2967 if (p->scx.flags & SCX_TASK_QUEUED) { 2968 /* 2969 * Core-sched might decide to execute @p before it is 2970 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2971 */ 2972 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2973 dispatch_dequeue(rq, p); 2974 } 2975 2976 p->se.exec_start = rq_clock_task(rq); 2977 2978 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2979 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2980 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2981 2982 clr_task_runnable(p, true); 2983 2984 /* 2985 * @p is getting newly scheduled or got kicked after someone updated its 2986 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2987 */ 2988 if ((p->scx.slice == SCX_SLICE_INF) != 2989 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2990 if (p->scx.slice == SCX_SLICE_INF) 2991 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2992 else 2993 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2994 2995 sched_update_tick_dependency(rq); 2996 2997 /* 2998 * For now, let's refresh the load_avgs just when transitioning 2999 * in and out of nohz. In the future, we might want to add a 3000 * mechanism which calls the following periodically on 3001 * tick-stopped CPUs. 3002 */ 3003 update_other_load_avgs(rq); 3004 } 3005 } 3006 3007 static enum scx_cpu_preempt_reason 3008 preempt_reason_from_class(const struct sched_class *class) 3009 { 3010 #ifdef CONFIG_SMP 3011 if (class == &stop_sched_class) 3012 return SCX_CPU_PREEMPT_STOP; 3013 #endif 3014 if (class == &dl_sched_class) 3015 return SCX_CPU_PREEMPT_DL; 3016 if (class == &rt_sched_class) 3017 return SCX_CPU_PREEMPT_RT; 3018 return SCX_CPU_PREEMPT_UNKNOWN; 3019 } 3020 3021 static void switch_class(struct rq *rq, struct task_struct *next) 3022 { 3023 const struct sched_class *next_class = next->sched_class; 3024 3025 #ifdef CONFIG_SMP 3026 /* 3027 * Pairs with the smp_load_acquire() issued by a CPU in 3028 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 3029 * resched. 3030 */ 3031 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 3032 #endif 3033 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 3034 return; 3035 3036 /* 3037 * The callback is conceptually meant to convey that the CPU is no 3038 * longer under the control of SCX. Therefore, don't invoke the callback 3039 * if the next class is below SCX (in which case the BPF scheduler has 3040 * actively decided not to schedule any tasks on the CPU). 3041 */ 3042 if (sched_class_above(&ext_sched_class, next_class)) 3043 return; 3044 3045 /* 3046 * At this point we know that SCX was preempted by a higher priority 3047 * sched_class, so invoke the ->cpu_release() callback if we have not 3048 * done so already. We only send the callback once between SCX being 3049 * preempted, and it regaining control of the CPU. 3050 * 3051 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3052 * next time that balance_scx() is invoked. 3053 */ 3054 if (!rq->scx.cpu_released) { 3055 if (SCX_HAS_OP(cpu_release)) { 3056 struct scx_cpu_release_args args = { 3057 .reason = preempt_reason_from_class(next_class), 3058 .task = next, 3059 }; 3060 3061 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 3062 cpu_release, cpu_of(rq), &args); 3063 } 3064 rq->scx.cpu_released = true; 3065 } 3066 } 3067 3068 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3069 struct task_struct *next) 3070 { 3071 update_curr_scx(rq); 3072 3073 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3074 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3075 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 3076 3077 if (p->scx.flags & SCX_TASK_QUEUED) { 3078 set_task_runnable(rq, p); 3079 3080 /* 3081 * If @p has slice left and is being put, @p is getting 3082 * preempted by a higher priority scheduler class or core-sched 3083 * forcing a different task. Leave it at the head of the local 3084 * DSQ. 3085 */ 3086 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3087 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 3088 goto switch_class; 3089 } 3090 3091 /* 3092 * If @p is runnable but we're about to enter a lower 3093 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3094 * ops.enqueue() that @p is the only one available for this cpu, 3095 * which should trigger an explicit follow-up scheduling event. 3096 */ 3097 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3098 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 3099 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3100 } else { 3101 do_enqueue_task(rq, p, 0, -1); 3102 } 3103 } 3104 3105 switch_class: 3106 if (next && next->sched_class != &ext_sched_class) 3107 switch_class(rq, next); 3108 } 3109 3110 static struct task_struct *first_local_task(struct rq *rq) 3111 { 3112 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3113 struct task_struct, scx.dsq_list.node); 3114 } 3115 3116 static struct task_struct *pick_task_scx(struct rq *rq) 3117 { 3118 struct task_struct *prev = rq->curr; 3119 struct task_struct *p; 3120 bool prev_on_scx = prev->sched_class == &ext_sched_class; 3121 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 3122 bool kick_idle = false; 3123 3124 /* 3125 * WORKAROUND: 3126 * 3127 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3128 * have gone through balance_scx(). Unfortunately, there currently is a 3129 * bug where fair could say yes on balance() but no on pick_task(), 3130 * which then ends up calling pick_task_scx() without preceding 3131 * balance_scx(). 3132 * 3133 * Keep running @prev if possible and avoid stalling from entering idle 3134 * without balancing. 3135 * 3136 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 3137 * if pick_task_scx() is called without preceding balance_scx(). 3138 */ 3139 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 3140 if (prev_on_scx) { 3141 keep_prev = true; 3142 } else { 3143 keep_prev = false; 3144 kick_idle = true; 3145 } 3146 } else if (unlikely(keep_prev && !prev_on_scx)) { 3147 /* only allowed during transitions */ 3148 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED); 3149 keep_prev = false; 3150 } 3151 3152 /* 3153 * If balance_scx() is telling us to keep running @prev, replenish slice 3154 * if necessary and keep running @prev. Otherwise, pop the first one 3155 * from the local DSQ. 3156 */ 3157 if (keep_prev) { 3158 p = prev; 3159 if (!p->scx.slice) 3160 p->scx.slice = SCX_SLICE_DFL; 3161 } else { 3162 p = first_local_task(rq); 3163 if (!p) { 3164 if (kick_idle) 3165 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 3166 return NULL; 3167 } 3168 3169 if (unlikely(!p->scx.slice)) { 3170 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 3171 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3172 p->comm, p->pid, __func__); 3173 scx_warned_zero_slice = true; 3174 } 3175 p->scx.slice = SCX_SLICE_DFL; 3176 } 3177 } 3178 3179 return p; 3180 } 3181 3182 #ifdef CONFIG_SCHED_CORE 3183 /** 3184 * scx_prio_less - Task ordering for core-sched 3185 * @a: task A 3186 * @b: task B 3187 * @in_fi: in forced idle state 3188 * 3189 * Core-sched is implemented as an additional scheduling layer on top of the 3190 * usual sched_class'es and needs to find out the expected task ordering. For 3191 * SCX, core-sched calls this function to interrogate the task ordering. 3192 * 3193 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3194 * to implement the default task ordering. The older the timestamp, the higher 3195 * priority the task - the global FIFO ordering matching the default scheduling 3196 * behavior. 3197 * 3198 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3199 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3200 */ 3201 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3202 bool in_fi) 3203 { 3204 /* 3205 * The const qualifiers are dropped from task_struct pointers when 3206 * calling ops.core_sched_before(). Accesses are controlled by the 3207 * verifier. 3208 */ 3209 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 3210 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3211 (struct task_struct *)a, 3212 (struct task_struct *)b); 3213 else 3214 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3215 } 3216 #endif /* CONFIG_SCHED_CORE */ 3217 3218 #ifdef CONFIG_SMP 3219 3220 static bool test_and_clear_cpu_idle(int cpu) 3221 { 3222 #ifdef CONFIG_SCHED_SMT 3223 /* 3224 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3225 * cluster is not wholly idle either way. This also prevents 3226 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3227 */ 3228 if (sched_smt_active()) { 3229 const struct cpumask *smt = cpu_smt_mask(cpu); 3230 3231 /* 3232 * If offline, @cpu is not its own sibling and 3233 * scx_pick_idle_cpu() can get caught in an infinite loop as 3234 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3235 * is eventually cleared. 3236 * 3237 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to 3238 * reduce memory writes, which may help alleviate cache 3239 * coherence pressure. 3240 */ 3241 if (cpumask_intersects(smt, idle_masks.smt)) 3242 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3243 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3244 __cpumask_clear_cpu(cpu, idle_masks.smt); 3245 } 3246 #endif 3247 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3248 } 3249 3250 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3251 { 3252 int cpu; 3253 3254 retry: 3255 if (sched_smt_active()) { 3256 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3257 if (cpu < nr_cpu_ids) 3258 goto found; 3259 3260 if (flags & SCX_PICK_IDLE_CORE) 3261 return -EBUSY; 3262 } 3263 3264 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3265 if (cpu >= nr_cpu_ids) 3266 return -EBUSY; 3267 3268 found: 3269 if (test_and_clear_cpu_idle(cpu)) 3270 return cpu; 3271 else 3272 goto retry; 3273 } 3274 3275 /* 3276 * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC 3277 * domain is not defined). 3278 */ 3279 static unsigned int llc_weight(s32 cpu) 3280 { 3281 struct sched_domain *sd; 3282 3283 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3284 if (!sd) 3285 return 0; 3286 3287 return sd->span_weight; 3288 } 3289 3290 /* 3291 * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC 3292 * domain is not defined). 3293 */ 3294 static struct cpumask *llc_span(s32 cpu) 3295 { 3296 struct sched_domain *sd; 3297 3298 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3299 if (!sd) 3300 return 0; 3301 3302 return sched_domain_span(sd); 3303 } 3304 3305 /* 3306 * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the 3307 * NUMA domain is not defined). 3308 */ 3309 static unsigned int numa_weight(s32 cpu) 3310 { 3311 struct sched_domain *sd; 3312 struct sched_group *sg; 3313 3314 sd = rcu_dereference(per_cpu(sd_numa, cpu)); 3315 if (!sd) 3316 return 0; 3317 sg = sd->groups; 3318 if (!sg) 3319 return 0; 3320 3321 return sg->group_weight; 3322 } 3323 3324 /* 3325 * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA 3326 * domain is not defined). 3327 */ 3328 static struct cpumask *numa_span(s32 cpu) 3329 { 3330 struct sched_domain *sd; 3331 struct sched_group *sg; 3332 3333 sd = rcu_dereference(per_cpu(sd_numa, cpu)); 3334 if (!sd) 3335 return NULL; 3336 sg = sd->groups; 3337 if (!sg) 3338 return NULL; 3339 3340 return sched_group_span(sg); 3341 } 3342 3343 /* 3344 * Return true if the LLC domains do not perfectly overlap with the NUMA 3345 * domains, false otherwise. 3346 */ 3347 static bool llc_numa_mismatch(void) 3348 { 3349 int cpu; 3350 3351 /* 3352 * We need to scan all online CPUs to verify whether their scheduling 3353 * domains overlap. 3354 * 3355 * While it is rare to encounter architectures with asymmetric NUMA 3356 * topologies, CPU hotplugging or virtualized environments can result 3357 * in asymmetric configurations. 3358 * 3359 * For example: 3360 * 3361 * NUMA 0: 3362 * - LLC 0: cpu0..cpu7 3363 * - LLC 1: cpu8..cpu15 [offline] 3364 * 3365 * NUMA 1: 3366 * - LLC 0: cpu16..cpu23 3367 * - LLC 1: cpu24..cpu31 3368 * 3369 * In this case, if we only check the first online CPU (cpu0), we might 3370 * incorrectly assume that the LLC and NUMA domains are fully 3371 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC 3372 * domains). 3373 */ 3374 for_each_online_cpu(cpu) 3375 if (llc_weight(cpu) != numa_weight(cpu)) 3376 return true; 3377 3378 return false; 3379 } 3380 3381 /* 3382 * Initialize topology-aware scheduling. 3383 * 3384 * Detect if the system has multiple LLC or multiple NUMA domains and enable 3385 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle 3386 * selection policy. 3387 * 3388 * Assumption: the kernel's internal topology representation assumes that each 3389 * CPU belongs to a single LLC domain, and that each LLC domain is entirely 3390 * contained within a single NUMA node. 3391 */ 3392 static void update_selcpu_topology(void) 3393 { 3394 bool enable_llc = false, enable_numa = false; 3395 unsigned int nr_cpus; 3396 s32 cpu = cpumask_first(cpu_online_mask); 3397 3398 /* 3399 * Enable LLC domain optimization only when there are multiple LLC 3400 * domains among the online CPUs. If all online CPUs are part of a 3401 * single LLC domain, the idle CPU selection logic can choose any 3402 * online CPU without bias. 3403 * 3404 * Note that it is sufficient to check the LLC domain of the first 3405 * online CPU to determine whether a single LLC domain includes all 3406 * CPUs. 3407 */ 3408 rcu_read_lock(); 3409 nr_cpus = llc_weight(cpu); 3410 if (nr_cpus > 0) { 3411 if (nr_cpus < num_online_cpus()) 3412 enable_llc = true; 3413 pr_debug("sched_ext: LLC=%*pb weight=%u\n", 3414 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu)); 3415 } 3416 3417 /* 3418 * Enable NUMA optimization only when there are multiple NUMA domains 3419 * among the online CPUs and the NUMA domains don't perfectly overlaps 3420 * with the LLC domains. 3421 * 3422 * If all CPUs belong to the same NUMA node and the same LLC domain, 3423 * enabling both NUMA and LLC optimizations is unnecessary, as checking 3424 * for an idle CPU in the same domain twice is redundant. 3425 */ 3426 nr_cpus = numa_weight(cpu); 3427 if (nr_cpus > 0) { 3428 if (nr_cpus < num_online_cpus() && llc_numa_mismatch()) 3429 enable_numa = true; 3430 pr_debug("sched_ext: NUMA=%*pb weight=%u\n", 3431 cpumask_pr_args(numa_span(cpu)), numa_weight(cpu)); 3432 } 3433 rcu_read_unlock(); 3434 3435 pr_debug("sched_ext: LLC idle selection %s\n", 3436 str_enabled_disabled(enable_llc)); 3437 pr_debug("sched_ext: NUMA idle selection %s\n", 3438 str_enabled_disabled(enable_numa)); 3439 3440 if (enable_llc) 3441 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc); 3442 else 3443 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc); 3444 if (enable_numa) 3445 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa); 3446 else 3447 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa); 3448 } 3449 3450 /* 3451 * Built-in CPU idle selection policy: 3452 * 3453 * 1. Prioritize full-idle cores: 3454 * - always prioritize CPUs from fully idle cores (both logical CPUs are 3455 * idle) to avoid interference caused by SMT. 3456 * 3457 * 2. Reuse the same CPU: 3458 * - prefer the last used CPU to take advantage of cached data (L1, L2) and 3459 * branch prediction optimizations. 3460 * 3461 * 3. Pick a CPU within the same LLC (Last-Level Cache): 3462 * - if the above conditions aren't met, pick a CPU that shares the same LLC 3463 * to maintain cache locality. 3464 * 3465 * 4. Pick a CPU within the same NUMA node, if enabled: 3466 * - choose a CPU from the same NUMA node to reduce memory access latency. 3467 * 3468 * 5. Pick any idle CPU usable by the task. 3469 * 3470 * Step 3 and 4 are performed only if the system has, respectively, multiple 3471 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and 3472 * scx_selcpu_topo_numa). 3473 * 3474 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because 3475 * we never call ops.select_cpu() for them, see select_task_rq(). 3476 */ 3477 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3478 u64 wake_flags, bool *found) 3479 { 3480 const struct cpumask *llc_cpus = NULL; 3481 const struct cpumask *numa_cpus = NULL; 3482 s32 cpu; 3483 3484 *found = false; 3485 3486 /* 3487 * This is necessary to protect llc_cpus. 3488 */ 3489 rcu_read_lock(); 3490 3491 /* 3492 * Determine the scheduling domain only if the task is allowed to run 3493 * on all CPUs. 3494 * 3495 * This is done primarily for efficiency, as it avoids the overhead of 3496 * updating a cpumask every time we need to select an idle CPU (which 3497 * can be costly in large SMP systems), but it also aligns logically: 3498 * if a task's scheduling domain is restricted by user-space (through 3499 * CPU affinity), the task will simply use the flat scheduling domain 3500 * defined by user-space. 3501 */ 3502 if (p->nr_cpus_allowed >= num_possible_cpus()) { 3503 if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) 3504 numa_cpus = numa_span(prev_cpu); 3505 3506 if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) 3507 llc_cpus = llc_span(prev_cpu); 3508 } 3509 3510 /* 3511 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU. 3512 */ 3513 if (wake_flags & SCX_WAKE_SYNC) { 3514 cpu = smp_processor_id(); 3515 3516 /* 3517 * If the waker's CPU is cache affine and prev_cpu is idle, 3518 * then avoid a migration. 3519 */ 3520 if (cpus_share_cache(cpu, prev_cpu) && 3521 test_and_clear_cpu_idle(prev_cpu)) { 3522 cpu = prev_cpu; 3523 goto cpu_found; 3524 } 3525 3526 /* 3527 * If the waker's local DSQ is empty, and the system is under 3528 * utilized, try to wake up @p to the local DSQ of the waker. 3529 * 3530 * Checking only for an empty local DSQ is insufficient as it 3531 * could give the wakee an unfair advantage when the system is 3532 * oversaturated. 3533 * 3534 * Checking only for the presence of idle CPUs is also 3535 * insufficient as the local DSQ of the waker could have tasks 3536 * piled up on it even if there is an idle core elsewhere on 3537 * the system. 3538 */ 3539 if (!cpumask_empty(idle_masks.cpu) && 3540 !(current->flags & PF_EXITING) && 3541 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3542 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3543 goto cpu_found; 3544 } 3545 } 3546 3547 /* 3548 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3549 * partially idle @prev_cpu. 3550 */ 3551 if (sched_smt_active()) { 3552 /* 3553 * Keep using @prev_cpu if it's part of a fully idle core. 3554 */ 3555 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3556 test_and_clear_cpu_idle(prev_cpu)) { 3557 cpu = prev_cpu; 3558 goto cpu_found; 3559 } 3560 3561 /* 3562 * Search for any fully idle core in the same LLC domain. 3563 */ 3564 if (llc_cpus) { 3565 cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE); 3566 if (cpu >= 0) 3567 goto cpu_found; 3568 } 3569 3570 /* 3571 * Search for any fully idle core in the same NUMA node. 3572 */ 3573 if (numa_cpus) { 3574 cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE); 3575 if (cpu >= 0) 3576 goto cpu_found; 3577 } 3578 3579 /* 3580 * Search for any full idle core usable by the task. 3581 */ 3582 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3583 if (cpu >= 0) 3584 goto cpu_found; 3585 } 3586 3587 /* 3588 * Use @prev_cpu if it's idle. 3589 */ 3590 if (test_and_clear_cpu_idle(prev_cpu)) { 3591 cpu = prev_cpu; 3592 goto cpu_found; 3593 } 3594 3595 /* 3596 * Search for any idle CPU in the same LLC domain. 3597 */ 3598 if (llc_cpus) { 3599 cpu = scx_pick_idle_cpu(llc_cpus, 0); 3600 if (cpu >= 0) 3601 goto cpu_found; 3602 } 3603 3604 /* 3605 * Search for any idle CPU in the same NUMA node. 3606 */ 3607 if (numa_cpus) { 3608 cpu = scx_pick_idle_cpu(numa_cpus, 0); 3609 if (cpu >= 0) 3610 goto cpu_found; 3611 } 3612 3613 /* 3614 * Search for any idle CPU usable by the task. 3615 */ 3616 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3617 if (cpu >= 0) 3618 goto cpu_found; 3619 3620 rcu_read_unlock(); 3621 return prev_cpu; 3622 3623 cpu_found: 3624 rcu_read_unlock(); 3625 3626 *found = true; 3627 return cpu; 3628 } 3629 3630 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3631 { 3632 /* 3633 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3634 * can be a good migration opportunity with low cache and memory 3635 * footprint. Returning a CPU different than @prev_cpu triggers 3636 * immediate rq migration. However, for SCX, as the current rq 3637 * association doesn't dictate where the task is going to run, this 3638 * doesn't fit well. If necessary, we can later add a dedicated method 3639 * which can decide to preempt self to force it through the regular 3640 * scheduling path. 3641 */ 3642 if (unlikely(wake_flags & WF_EXEC)) 3643 return prev_cpu; 3644 3645 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) { 3646 s32 cpu; 3647 struct task_struct **ddsp_taskp; 3648 3649 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3650 WARN_ON_ONCE(*ddsp_taskp); 3651 *ddsp_taskp = p; 3652 3653 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3654 select_cpu, p, prev_cpu, wake_flags); 3655 *ddsp_taskp = NULL; 3656 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3657 return cpu; 3658 else 3659 return prev_cpu; 3660 } else { 3661 bool found; 3662 s32 cpu; 3663 3664 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3665 if (found) { 3666 p->scx.slice = SCX_SLICE_DFL; 3667 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3668 } 3669 return cpu; 3670 } 3671 } 3672 3673 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3674 { 3675 run_deferred(rq); 3676 } 3677 3678 static void set_cpus_allowed_scx(struct task_struct *p, 3679 struct affinity_context *ac) 3680 { 3681 set_cpus_allowed_common(p, ac); 3682 3683 /* 3684 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3685 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3686 * scheduler the effective one. 3687 * 3688 * Fine-grained memory write control is enforced by BPF making the const 3689 * designation pointless. Cast it away when calling the operation. 3690 */ 3691 if (SCX_HAS_OP(set_cpumask)) 3692 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3693 (struct cpumask *)p->cpus_ptr); 3694 } 3695 3696 static void reset_idle_masks(void) 3697 { 3698 /* 3699 * Consider all online cpus idle. Should converge to the actual state 3700 * quickly. 3701 */ 3702 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3703 cpumask_copy(idle_masks.smt, cpu_online_mask); 3704 } 3705 3706 static void update_builtin_idle(int cpu, bool idle) 3707 { 3708 assign_cpu(cpu, idle_masks.cpu, idle); 3709 3710 #ifdef CONFIG_SCHED_SMT 3711 if (sched_smt_active()) { 3712 const struct cpumask *smt = cpu_smt_mask(cpu); 3713 3714 if (idle) { 3715 /* 3716 * idle_masks.smt handling is racy but that's fine as 3717 * it's only for optimization and self-correcting. 3718 */ 3719 if (!cpumask_subset(smt, idle_masks.cpu)) 3720 return; 3721 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3722 } else { 3723 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3724 } 3725 } 3726 #endif 3727 } 3728 3729 /* 3730 * Update the idle state of a CPU to @idle. 3731 * 3732 * If @do_notify is true, ops.update_idle() is invoked to notify the scx 3733 * scheduler of an actual idle state transition (idle to busy or vice 3734 * versa). If @do_notify is false, only the idle state in the idle masks is 3735 * refreshed without invoking ops.update_idle(). 3736 * 3737 * This distinction is necessary, because an idle CPU can be "reserved" and 3738 * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as 3739 * busy even if no tasks are dispatched. In this case, the CPU may return 3740 * to idle without a true state transition. Refreshing the idle masks 3741 * without invoking ops.update_idle() ensures accurate idle state tracking 3742 * while avoiding unnecessary updates and maintaining balanced state 3743 * transitions. 3744 */ 3745 void __scx_update_idle(struct rq *rq, bool idle, bool do_notify) 3746 { 3747 int cpu = cpu_of(rq); 3748 3749 lockdep_assert_rq_held(rq); 3750 3751 /* 3752 * Trigger ops.update_idle() only when transitioning from a task to 3753 * the idle thread and vice versa. 3754 * 3755 * Idle transitions are indicated by do_notify being set to true, 3756 * managed by put_prev_task_idle()/set_next_task_idle(). 3757 */ 3758 if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq)) 3759 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3760 3761 /* 3762 * Update the idle masks: 3763 * - for real idle transitions (do_notify == true) 3764 * - for idle-to-idle transitions (indicated by the previous task 3765 * being the idle thread, managed by pick_task_idle()) 3766 * 3767 * Skip updating idle masks if the previous task is not the idle 3768 * thread, since set_next_task_idle() has already handled it when 3769 * transitioning from a task to the idle thread (calling this 3770 * function with do_notify == true). 3771 * 3772 * In this way we can avoid updating the idle masks twice, 3773 * unnecessarily. 3774 */ 3775 if (static_branch_likely(&scx_builtin_idle_enabled)) 3776 if (do_notify || is_idle_task(rq->curr)) 3777 update_builtin_idle(cpu, idle); 3778 } 3779 3780 static void handle_hotplug(struct rq *rq, bool online) 3781 { 3782 int cpu = cpu_of(rq); 3783 3784 atomic_long_inc(&scx_hotplug_seq); 3785 3786 if (scx_enabled()) 3787 update_selcpu_topology(); 3788 3789 if (online && SCX_HAS_OP(cpu_online)) 3790 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3791 else if (!online && SCX_HAS_OP(cpu_offline)) 3792 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3793 else 3794 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3795 "cpu %d going %s, exiting scheduler", cpu, 3796 online ? "online" : "offline"); 3797 } 3798 3799 void scx_rq_activate(struct rq *rq) 3800 { 3801 handle_hotplug(rq, true); 3802 } 3803 3804 void scx_rq_deactivate(struct rq *rq) 3805 { 3806 handle_hotplug(rq, false); 3807 } 3808 3809 static void rq_online_scx(struct rq *rq) 3810 { 3811 rq->scx.flags |= SCX_RQ_ONLINE; 3812 } 3813 3814 static void rq_offline_scx(struct rq *rq) 3815 { 3816 rq->scx.flags &= ~SCX_RQ_ONLINE; 3817 } 3818 3819 #else /* CONFIG_SMP */ 3820 3821 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3822 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3823 static void reset_idle_masks(void) {} 3824 3825 #endif /* CONFIG_SMP */ 3826 3827 static bool check_rq_for_timeouts(struct rq *rq) 3828 { 3829 struct task_struct *p; 3830 struct rq_flags rf; 3831 bool timed_out = false; 3832 3833 rq_lock_irqsave(rq, &rf); 3834 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3835 unsigned long last_runnable = p->scx.runnable_at; 3836 3837 if (unlikely(time_after(jiffies, 3838 last_runnable + scx_watchdog_timeout))) { 3839 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3840 3841 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3842 "%s[%d] failed to run for %u.%03us", 3843 p->comm, p->pid, 3844 dur_ms / 1000, dur_ms % 1000); 3845 timed_out = true; 3846 break; 3847 } 3848 } 3849 rq_unlock_irqrestore(rq, &rf); 3850 3851 return timed_out; 3852 } 3853 3854 static void scx_watchdog_workfn(struct work_struct *work) 3855 { 3856 int cpu; 3857 3858 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3859 3860 for_each_online_cpu(cpu) { 3861 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3862 break; 3863 3864 cond_resched(); 3865 } 3866 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3867 scx_watchdog_timeout / 2); 3868 } 3869 3870 void scx_tick(struct rq *rq) 3871 { 3872 unsigned long last_check; 3873 3874 if (!scx_enabled()) 3875 return; 3876 3877 last_check = READ_ONCE(scx_watchdog_timestamp); 3878 if (unlikely(time_after(jiffies, 3879 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3880 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3881 3882 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3883 "watchdog failed to check in for %u.%03us", 3884 dur_ms / 1000, dur_ms % 1000); 3885 } 3886 3887 update_other_load_avgs(rq); 3888 } 3889 3890 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3891 { 3892 update_curr_scx(rq); 3893 3894 /* 3895 * While disabling, always resched and refresh core-sched timestamp as 3896 * we can't trust the slice management or ops.core_sched_before(). 3897 */ 3898 if (scx_rq_bypassing(rq)) { 3899 curr->scx.slice = 0; 3900 touch_core_sched(rq, curr); 3901 } else if (SCX_HAS_OP(tick)) { 3902 SCX_CALL_OP_TASK(SCX_KF_REST, tick, curr); 3903 } 3904 3905 if (!curr->scx.slice) 3906 resched_curr(rq); 3907 } 3908 3909 #ifdef CONFIG_EXT_GROUP_SCHED 3910 static struct cgroup *tg_cgrp(struct task_group *tg) 3911 { 3912 /* 3913 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3914 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3915 * root cgroup. 3916 */ 3917 if (tg && tg->css.cgroup) 3918 return tg->css.cgroup; 3919 else 3920 return &cgrp_dfl_root.cgrp; 3921 } 3922 3923 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3924 3925 #else /* CONFIG_EXT_GROUP_SCHED */ 3926 3927 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3928 3929 #endif /* CONFIG_EXT_GROUP_SCHED */ 3930 3931 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3932 { 3933 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3934 } 3935 3936 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3937 { 3938 enum scx_task_state prev_state = scx_get_task_state(p); 3939 bool warn = false; 3940 3941 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3942 3943 switch (state) { 3944 case SCX_TASK_NONE: 3945 break; 3946 case SCX_TASK_INIT: 3947 warn = prev_state != SCX_TASK_NONE; 3948 break; 3949 case SCX_TASK_READY: 3950 warn = prev_state == SCX_TASK_NONE; 3951 break; 3952 case SCX_TASK_ENABLED: 3953 warn = prev_state != SCX_TASK_READY; 3954 break; 3955 default: 3956 warn = true; 3957 return; 3958 } 3959 3960 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3961 prev_state, state, p->comm, p->pid); 3962 3963 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3964 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3965 } 3966 3967 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3968 { 3969 int ret; 3970 3971 p->scx.disallow = false; 3972 3973 if (SCX_HAS_OP(init_task)) { 3974 struct scx_init_task_args args = { 3975 SCX_INIT_TASK_ARGS_CGROUP(tg) 3976 .fork = fork, 3977 }; 3978 3979 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3980 if (unlikely(ret)) { 3981 ret = ops_sanitize_err("init_task", ret); 3982 return ret; 3983 } 3984 } 3985 3986 scx_set_task_state(p, SCX_TASK_INIT); 3987 3988 if (p->scx.disallow) { 3989 if (!fork) { 3990 struct rq *rq; 3991 struct rq_flags rf; 3992 3993 rq = task_rq_lock(p, &rf); 3994 3995 /* 3996 * We're in the load path and @p->policy will be applied 3997 * right after. Reverting @p->policy here and rejecting 3998 * %SCHED_EXT transitions from scx_check_setscheduler() 3999 * guarantees that if ops.init_task() sets @p->disallow, 4000 * @p can never be in SCX. 4001 */ 4002 if (p->policy == SCHED_EXT) { 4003 p->policy = SCHED_NORMAL; 4004 atomic_long_inc(&scx_nr_rejected); 4005 } 4006 4007 task_rq_unlock(rq, p, &rf); 4008 } else if (p->policy == SCHED_EXT) { 4009 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 4010 p->comm, p->pid); 4011 } 4012 } 4013 4014 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 4015 return 0; 4016 } 4017 4018 static void scx_ops_enable_task(struct task_struct *p) 4019 { 4020 u32 weight; 4021 4022 lockdep_assert_rq_held(task_rq(p)); 4023 4024 /* 4025 * Set the weight before calling ops.enable() so that the scheduler 4026 * doesn't see a stale value if they inspect the task struct. 4027 */ 4028 if (task_has_idle_policy(p)) 4029 weight = WEIGHT_IDLEPRIO; 4030 else 4031 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 4032 4033 p->scx.weight = sched_weight_to_cgroup(weight); 4034 4035 if (SCX_HAS_OP(enable)) 4036 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 4037 scx_set_task_state(p, SCX_TASK_ENABLED); 4038 4039 if (SCX_HAS_OP(set_weight)) 4040 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 4041 } 4042 4043 static void scx_ops_disable_task(struct task_struct *p) 4044 { 4045 lockdep_assert_rq_held(task_rq(p)); 4046 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 4047 4048 if (SCX_HAS_OP(disable)) 4049 SCX_CALL_OP_TASK(SCX_KF_REST, disable, p); 4050 scx_set_task_state(p, SCX_TASK_READY); 4051 } 4052 4053 static void scx_ops_exit_task(struct task_struct *p) 4054 { 4055 struct scx_exit_task_args args = { 4056 .cancelled = false, 4057 }; 4058 4059 lockdep_assert_rq_held(task_rq(p)); 4060 4061 switch (scx_get_task_state(p)) { 4062 case SCX_TASK_NONE: 4063 return; 4064 case SCX_TASK_INIT: 4065 args.cancelled = true; 4066 break; 4067 case SCX_TASK_READY: 4068 break; 4069 case SCX_TASK_ENABLED: 4070 scx_ops_disable_task(p); 4071 break; 4072 default: 4073 WARN_ON_ONCE(true); 4074 return; 4075 } 4076 4077 if (SCX_HAS_OP(exit_task)) 4078 SCX_CALL_OP_TASK(SCX_KF_REST, exit_task, p, &args); 4079 scx_set_task_state(p, SCX_TASK_NONE); 4080 } 4081 4082 void init_scx_entity(struct sched_ext_entity *scx) 4083 { 4084 memset(scx, 0, sizeof(*scx)); 4085 INIT_LIST_HEAD(&scx->dsq_list.node); 4086 RB_CLEAR_NODE(&scx->dsq_priq); 4087 scx->sticky_cpu = -1; 4088 scx->holding_cpu = -1; 4089 INIT_LIST_HEAD(&scx->runnable_node); 4090 scx->runnable_at = jiffies; 4091 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 4092 scx->slice = SCX_SLICE_DFL; 4093 } 4094 4095 void scx_pre_fork(struct task_struct *p) 4096 { 4097 /* 4098 * BPF scheduler enable/disable paths want to be able to iterate and 4099 * update all tasks which can become complex when racing forks. As 4100 * enable/disable are very cold paths, let's use a percpu_rwsem to 4101 * exclude forks. 4102 */ 4103 percpu_down_read(&scx_fork_rwsem); 4104 } 4105 4106 int scx_fork(struct task_struct *p) 4107 { 4108 percpu_rwsem_assert_held(&scx_fork_rwsem); 4109 4110 if (scx_ops_init_task_enabled) 4111 return scx_ops_init_task(p, task_group(p), true); 4112 else 4113 return 0; 4114 } 4115 4116 void scx_post_fork(struct task_struct *p) 4117 { 4118 if (scx_ops_init_task_enabled) { 4119 scx_set_task_state(p, SCX_TASK_READY); 4120 4121 /* 4122 * Enable the task immediately if it's running on sched_ext. 4123 * Otherwise, it'll be enabled in switching_to_scx() if and 4124 * when it's ever configured to run with a SCHED_EXT policy. 4125 */ 4126 if (p->sched_class == &ext_sched_class) { 4127 struct rq_flags rf; 4128 struct rq *rq; 4129 4130 rq = task_rq_lock(p, &rf); 4131 scx_ops_enable_task(p); 4132 task_rq_unlock(rq, p, &rf); 4133 } 4134 } 4135 4136 spin_lock_irq(&scx_tasks_lock); 4137 list_add_tail(&p->scx.tasks_node, &scx_tasks); 4138 spin_unlock_irq(&scx_tasks_lock); 4139 4140 percpu_up_read(&scx_fork_rwsem); 4141 } 4142 4143 void scx_cancel_fork(struct task_struct *p) 4144 { 4145 if (scx_enabled()) { 4146 struct rq *rq; 4147 struct rq_flags rf; 4148 4149 rq = task_rq_lock(p, &rf); 4150 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 4151 scx_ops_exit_task(p); 4152 task_rq_unlock(rq, p, &rf); 4153 } 4154 4155 percpu_up_read(&scx_fork_rwsem); 4156 } 4157 4158 void sched_ext_free(struct task_struct *p) 4159 { 4160 unsigned long flags; 4161 4162 spin_lock_irqsave(&scx_tasks_lock, flags); 4163 list_del_init(&p->scx.tasks_node); 4164 spin_unlock_irqrestore(&scx_tasks_lock, flags); 4165 4166 /* 4167 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 4168 * ENABLED transitions can't race us. Disable ops for @p. 4169 */ 4170 if (scx_get_task_state(p) != SCX_TASK_NONE) { 4171 struct rq_flags rf; 4172 struct rq *rq; 4173 4174 rq = task_rq_lock(p, &rf); 4175 scx_ops_exit_task(p); 4176 task_rq_unlock(rq, p, &rf); 4177 } 4178 } 4179 4180 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 4181 const struct load_weight *lw) 4182 { 4183 lockdep_assert_rq_held(task_rq(p)); 4184 4185 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 4186 if (SCX_HAS_OP(set_weight)) 4187 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 4188 } 4189 4190 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 4191 { 4192 } 4193 4194 static void switching_to_scx(struct rq *rq, struct task_struct *p) 4195 { 4196 scx_ops_enable_task(p); 4197 4198 /* 4199 * set_cpus_allowed_scx() is not called while @p is associated with a 4200 * different scheduler class. Keep the BPF scheduler up-to-date. 4201 */ 4202 if (SCX_HAS_OP(set_cpumask)) 4203 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 4204 (struct cpumask *)p->cpus_ptr); 4205 } 4206 4207 static void switched_from_scx(struct rq *rq, struct task_struct *p) 4208 { 4209 scx_ops_disable_task(p); 4210 } 4211 4212 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 4213 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 4214 4215 int scx_check_setscheduler(struct task_struct *p, int policy) 4216 { 4217 lockdep_assert_rq_held(task_rq(p)); 4218 4219 /* if disallow, reject transitioning into SCX */ 4220 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 4221 p->policy != policy && policy == SCHED_EXT) 4222 return -EACCES; 4223 4224 return 0; 4225 } 4226 4227 #ifdef CONFIG_NO_HZ_FULL 4228 bool scx_can_stop_tick(struct rq *rq) 4229 { 4230 struct task_struct *p = rq->curr; 4231 4232 if (scx_rq_bypassing(rq)) 4233 return false; 4234 4235 if (p->sched_class != &ext_sched_class) 4236 return true; 4237 4238 /* 4239 * @rq can dispatch from different DSQs, so we can't tell whether it 4240 * needs the tick or not by looking at nr_running. Allow stopping ticks 4241 * iff the BPF scheduler indicated so. See set_next_task_scx(). 4242 */ 4243 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 4244 } 4245 #endif 4246 4247 #ifdef CONFIG_EXT_GROUP_SCHED 4248 4249 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 4250 static bool scx_cgroup_enabled; 4251 static bool cgroup_warned_missing_weight; 4252 static bool cgroup_warned_missing_idle; 4253 4254 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 4255 { 4256 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 4257 cgroup_warned_missing_weight) 4258 return; 4259 4260 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 4261 return; 4262 4263 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 4264 scx_ops.name); 4265 cgroup_warned_missing_weight = true; 4266 } 4267 4268 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 4269 { 4270 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 4271 return; 4272 4273 if (!tg->idle) 4274 return; 4275 4276 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 4277 scx_ops.name); 4278 cgroup_warned_missing_idle = true; 4279 } 4280 4281 int scx_tg_online(struct task_group *tg) 4282 { 4283 int ret = 0; 4284 4285 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 4286 4287 percpu_down_read(&scx_cgroup_rwsem); 4288 4289 scx_cgroup_warn_missing_weight(tg); 4290 4291 if (scx_cgroup_enabled) { 4292 if (SCX_HAS_OP(cgroup_init)) { 4293 struct scx_cgroup_init_args args = 4294 { .weight = tg->scx_weight }; 4295 4296 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4297 tg->css.cgroup, &args); 4298 if (ret) 4299 ret = ops_sanitize_err("cgroup_init", ret); 4300 } 4301 if (ret == 0) 4302 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 4303 } else { 4304 tg->scx_flags |= SCX_TG_ONLINE; 4305 } 4306 4307 percpu_up_read(&scx_cgroup_rwsem); 4308 return ret; 4309 } 4310 4311 void scx_tg_offline(struct task_group *tg) 4312 { 4313 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 4314 4315 percpu_down_read(&scx_cgroup_rwsem); 4316 4317 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 4318 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 4319 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 4320 4321 percpu_up_read(&scx_cgroup_rwsem); 4322 } 4323 4324 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 4325 { 4326 struct cgroup_subsys_state *css; 4327 struct task_struct *p; 4328 int ret; 4329 4330 /* released in scx_finish/cancel_attach() */ 4331 percpu_down_read(&scx_cgroup_rwsem); 4332 4333 if (!scx_cgroup_enabled) 4334 return 0; 4335 4336 cgroup_taskset_for_each(p, css, tset) { 4337 struct cgroup *from = tg_cgrp(task_group(p)); 4338 struct cgroup *to = tg_cgrp(css_tg(css)); 4339 4340 WARN_ON_ONCE(p->scx.cgrp_moving_from); 4341 4342 /* 4343 * sched_move_task() omits identity migrations. Let's match the 4344 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 4345 * always match one-to-one. 4346 */ 4347 if (from == to) 4348 continue; 4349 4350 if (SCX_HAS_OP(cgroup_prep_move)) { 4351 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 4352 p, from, css->cgroup); 4353 if (ret) 4354 goto err; 4355 } 4356 4357 p->scx.cgrp_moving_from = from; 4358 } 4359 4360 return 0; 4361 4362 err: 4363 cgroup_taskset_for_each(p, css, tset) { 4364 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4365 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4366 p->scx.cgrp_moving_from, css->cgroup); 4367 p->scx.cgrp_moving_from = NULL; 4368 } 4369 4370 percpu_up_read(&scx_cgroup_rwsem); 4371 return ops_sanitize_err("cgroup_prep_move", ret); 4372 } 4373 4374 void scx_cgroup_move_task(struct task_struct *p) 4375 { 4376 if (!scx_cgroup_enabled) 4377 return; 4378 4379 /* 4380 * @p must have ops.cgroup_prep_move() called on it and thus 4381 * cgrp_moving_from set. 4382 */ 4383 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4384 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 4385 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 4386 p->scx.cgrp_moving_from = NULL; 4387 } 4388 4389 void scx_cgroup_finish_attach(void) 4390 { 4391 percpu_up_read(&scx_cgroup_rwsem); 4392 } 4393 4394 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4395 { 4396 struct cgroup_subsys_state *css; 4397 struct task_struct *p; 4398 4399 if (!scx_cgroup_enabled) 4400 goto out_unlock; 4401 4402 cgroup_taskset_for_each(p, css, tset) { 4403 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4404 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4405 p->scx.cgrp_moving_from, css->cgroup); 4406 p->scx.cgrp_moving_from = NULL; 4407 } 4408 out_unlock: 4409 percpu_up_read(&scx_cgroup_rwsem); 4410 } 4411 4412 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4413 { 4414 percpu_down_read(&scx_cgroup_rwsem); 4415 4416 if (scx_cgroup_enabled && tg->scx_weight != weight) { 4417 if (SCX_HAS_OP(cgroup_set_weight)) 4418 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 4419 tg_cgrp(tg), weight); 4420 tg->scx_weight = weight; 4421 } 4422 4423 percpu_up_read(&scx_cgroup_rwsem); 4424 } 4425 4426 void scx_group_set_idle(struct task_group *tg, bool idle) 4427 { 4428 percpu_down_read(&scx_cgroup_rwsem); 4429 scx_cgroup_warn_missing_idle(tg); 4430 percpu_up_read(&scx_cgroup_rwsem); 4431 } 4432 4433 static void scx_cgroup_lock(void) 4434 { 4435 percpu_down_write(&scx_cgroup_rwsem); 4436 } 4437 4438 static void scx_cgroup_unlock(void) 4439 { 4440 percpu_up_write(&scx_cgroup_rwsem); 4441 } 4442 4443 #else /* CONFIG_EXT_GROUP_SCHED */ 4444 4445 static inline void scx_cgroup_lock(void) {} 4446 static inline void scx_cgroup_unlock(void) {} 4447 4448 #endif /* CONFIG_EXT_GROUP_SCHED */ 4449 4450 /* 4451 * Omitted operations: 4452 * 4453 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4454 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4455 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4456 * 4457 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4458 * 4459 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4460 * their current sched_class. Call them directly from sched core instead. 4461 */ 4462 DEFINE_SCHED_CLASS(ext) = { 4463 .enqueue_task = enqueue_task_scx, 4464 .dequeue_task = dequeue_task_scx, 4465 .yield_task = yield_task_scx, 4466 .yield_to_task = yield_to_task_scx, 4467 4468 .wakeup_preempt = wakeup_preempt_scx, 4469 4470 .balance = balance_scx, 4471 .pick_task = pick_task_scx, 4472 4473 .put_prev_task = put_prev_task_scx, 4474 .set_next_task = set_next_task_scx, 4475 4476 #ifdef CONFIG_SMP 4477 .select_task_rq = select_task_rq_scx, 4478 .task_woken = task_woken_scx, 4479 .set_cpus_allowed = set_cpus_allowed_scx, 4480 4481 .rq_online = rq_online_scx, 4482 .rq_offline = rq_offline_scx, 4483 #endif 4484 4485 .task_tick = task_tick_scx, 4486 4487 .switching_to = switching_to_scx, 4488 .switched_from = switched_from_scx, 4489 .switched_to = switched_to_scx, 4490 .reweight_task = reweight_task_scx, 4491 .prio_changed = prio_changed_scx, 4492 4493 .update_curr = update_curr_scx, 4494 4495 #ifdef CONFIG_UCLAMP_TASK 4496 .uclamp_enabled = 1, 4497 #endif 4498 }; 4499 4500 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4501 { 4502 memset(dsq, 0, sizeof(*dsq)); 4503 4504 raw_spin_lock_init(&dsq->lock); 4505 INIT_LIST_HEAD(&dsq->list); 4506 dsq->id = dsq_id; 4507 } 4508 4509 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 4510 { 4511 struct scx_dispatch_q *dsq; 4512 int ret; 4513 4514 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 4515 return ERR_PTR(-EINVAL); 4516 4517 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4518 if (!dsq) 4519 return ERR_PTR(-ENOMEM); 4520 4521 init_dsq(dsq, dsq_id); 4522 4523 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 4524 dsq_hash_params); 4525 if (ret) { 4526 kfree(dsq); 4527 return ERR_PTR(ret); 4528 } 4529 return dsq; 4530 } 4531 4532 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4533 { 4534 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4535 struct scx_dispatch_q *dsq, *tmp_dsq; 4536 4537 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4538 kfree_rcu(dsq, rcu); 4539 } 4540 4541 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4542 4543 static void destroy_dsq(u64 dsq_id) 4544 { 4545 struct scx_dispatch_q *dsq; 4546 unsigned long flags; 4547 4548 rcu_read_lock(); 4549 4550 dsq = find_user_dsq(dsq_id); 4551 if (!dsq) 4552 goto out_unlock_rcu; 4553 4554 raw_spin_lock_irqsave(&dsq->lock, flags); 4555 4556 if (dsq->nr) { 4557 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4558 dsq->id, dsq->nr); 4559 goto out_unlock_dsq; 4560 } 4561 4562 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4563 goto out_unlock_dsq; 4564 4565 /* 4566 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4567 * queueing more tasks. As this function can be called from anywhere, 4568 * freeing is bounced through an irq work to avoid nesting RCU 4569 * operations inside scheduler locks. 4570 */ 4571 dsq->id = SCX_DSQ_INVALID; 4572 llist_add(&dsq->free_node, &dsqs_to_free); 4573 irq_work_queue(&free_dsq_irq_work); 4574 4575 out_unlock_dsq: 4576 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4577 out_unlock_rcu: 4578 rcu_read_unlock(); 4579 } 4580 4581 #ifdef CONFIG_EXT_GROUP_SCHED 4582 static void scx_cgroup_exit(void) 4583 { 4584 struct cgroup_subsys_state *css; 4585 4586 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4587 4588 scx_cgroup_enabled = false; 4589 4590 /* 4591 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4592 * cgroups and exit all the inited ones, all online cgroups are exited. 4593 */ 4594 rcu_read_lock(); 4595 css_for_each_descendant_post(css, &root_task_group.css) { 4596 struct task_group *tg = css_tg(css); 4597 4598 if (!(tg->scx_flags & SCX_TG_INITED)) 4599 continue; 4600 tg->scx_flags &= ~SCX_TG_INITED; 4601 4602 if (!scx_ops.cgroup_exit) 4603 continue; 4604 4605 if (WARN_ON_ONCE(!css_tryget(css))) 4606 continue; 4607 rcu_read_unlock(); 4608 4609 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4610 4611 rcu_read_lock(); 4612 css_put(css); 4613 } 4614 rcu_read_unlock(); 4615 } 4616 4617 static int scx_cgroup_init(void) 4618 { 4619 struct cgroup_subsys_state *css; 4620 int ret; 4621 4622 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4623 4624 cgroup_warned_missing_weight = false; 4625 cgroup_warned_missing_idle = false; 4626 4627 /* 4628 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4629 * cgroups and init, all online cgroups are initialized. 4630 */ 4631 rcu_read_lock(); 4632 css_for_each_descendant_pre(css, &root_task_group.css) { 4633 struct task_group *tg = css_tg(css); 4634 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4635 4636 scx_cgroup_warn_missing_weight(tg); 4637 scx_cgroup_warn_missing_idle(tg); 4638 4639 if ((tg->scx_flags & 4640 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4641 continue; 4642 4643 if (!scx_ops.cgroup_init) { 4644 tg->scx_flags |= SCX_TG_INITED; 4645 continue; 4646 } 4647 4648 if (WARN_ON_ONCE(!css_tryget(css))) 4649 continue; 4650 rcu_read_unlock(); 4651 4652 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4653 css->cgroup, &args); 4654 if (ret) { 4655 css_put(css); 4656 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4657 return ret; 4658 } 4659 tg->scx_flags |= SCX_TG_INITED; 4660 4661 rcu_read_lock(); 4662 css_put(css); 4663 } 4664 rcu_read_unlock(); 4665 4666 WARN_ON_ONCE(scx_cgroup_enabled); 4667 scx_cgroup_enabled = true; 4668 4669 return 0; 4670 } 4671 4672 #else 4673 static void scx_cgroup_exit(void) {} 4674 static int scx_cgroup_init(void) { return 0; } 4675 #endif 4676 4677 4678 /******************************************************************************** 4679 * Sysfs interface and ops enable/disable. 4680 */ 4681 4682 #define SCX_ATTR(_name) \ 4683 static struct kobj_attribute scx_attr_##_name = { \ 4684 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4685 .show = scx_attr_##_name##_show, \ 4686 } 4687 4688 static ssize_t scx_attr_state_show(struct kobject *kobj, 4689 struct kobj_attribute *ka, char *buf) 4690 { 4691 return sysfs_emit(buf, "%s\n", 4692 scx_ops_enable_state_str[scx_ops_enable_state()]); 4693 } 4694 SCX_ATTR(state); 4695 4696 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4697 struct kobj_attribute *ka, char *buf) 4698 { 4699 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4700 } 4701 SCX_ATTR(switch_all); 4702 4703 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4704 struct kobj_attribute *ka, char *buf) 4705 { 4706 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4707 } 4708 SCX_ATTR(nr_rejected); 4709 4710 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4711 struct kobj_attribute *ka, char *buf) 4712 { 4713 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4714 } 4715 SCX_ATTR(hotplug_seq); 4716 4717 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4718 struct kobj_attribute *ka, char *buf) 4719 { 4720 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4721 } 4722 SCX_ATTR(enable_seq); 4723 4724 static struct attribute *scx_global_attrs[] = { 4725 &scx_attr_state.attr, 4726 &scx_attr_switch_all.attr, 4727 &scx_attr_nr_rejected.attr, 4728 &scx_attr_hotplug_seq.attr, 4729 &scx_attr_enable_seq.attr, 4730 NULL, 4731 }; 4732 4733 static const struct attribute_group scx_global_attr_group = { 4734 .attrs = scx_global_attrs, 4735 }; 4736 4737 static void scx_kobj_release(struct kobject *kobj) 4738 { 4739 kfree(kobj); 4740 } 4741 4742 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4743 struct kobj_attribute *ka, char *buf) 4744 { 4745 return sysfs_emit(buf, "%s\n", scx_ops.name); 4746 } 4747 SCX_ATTR(ops); 4748 4749 static struct attribute *scx_sched_attrs[] = { 4750 &scx_attr_ops.attr, 4751 NULL, 4752 }; 4753 ATTRIBUTE_GROUPS(scx_sched); 4754 4755 static const struct kobj_type scx_ktype = { 4756 .release = scx_kobj_release, 4757 .sysfs_ops = &kobj_sysfs_ops, 4758 .default_groups = scx_sched_groups, 4759 }; 4760 4761 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4762 { 4763 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4764 } 4765 4766 static const struct kset_uevent_ops scx_uevent_ops = { 4767 .uevent = scx_uevent, 4768 }; 4769 4770 /* 4771 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4772 * sched_class. dl/rt are already handled. 4773 */ 4774 bool task_should_scx(int policy) 4775 { 4776 if (!scx_enabled() || 4777 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4778 return false; 4779 if (READ_ONCE(scx_switching_all)) 4780 return true; 4781 return policy == SCHED_EXT; 4782 } 4783 4784 /** 4785 * scx_softlockup - sched_ext softlockup handler 4786 * @dur_s: number of seconds of CPU stuck due to soft lockup 4787 * 4788 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4789 * live-lock the system by making many CPUs target the same DSQ to the point 4790 * where soft-lockup detection triggers. This function is called from 4791 * soft-lockup watchdog when the triggering point is close and tries to unjam 4792 * the system by enabling the breather and aborting the BPF scheduler. 4793 */ 4794 void scx_softlockup(u32 dur_s) 4795 { 4796 switch (scx_ops_enable_state()) { 4797 case SCX_OPS_ENABLING: 4798 case SCX_OPS_ENABLED: 4799 break; 4800 default: 4801 return; 4802 } 4803 4804 /* allow only one instance, cleared at the end of scx_ops_bypass() */ 4805 if (test_and_set_bit(0, &scx_in_softlockup)) 4806 return; 4807 4808 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4809 smp_processor_id(), dur_s, scx_ops.name); 4810 4811 /* 4812 * Some CPUs may be trapped in the dispatch paths. Enable breather 4813 * immediately; otherwise, we might even be able to get to 4814 * scx_ops_bypass(). 4815 */ 4816 atomic_inc(&scx_ops_breather_depth); 4817 4818 scx_ops_error("soft lockup - CPU#%d stuck for %us", 4819 smp_processor_id(), dur_s); 4820 } 4821 4822 static void scx_clear_softlockup(void) 4823 { 4824 if (test_and_clear_bit(0, &scx_in_softlockup)) 4825 atomic_dec(&scx_ops_breather_depth); 4826 } 4827 4828 /** 4829 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4830 * @bypass: true for bypass, false for unbypass 4831 * 4832 * Bypassing guarantees that all runnable tasks make forward progress without 4833 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4834 * be held by tasks that the BPF scheduler is forgetting to run, which 4835 * unfortunately also excludes toggling the static branches. 4836 * 4837 * Let's work around by overriding a couple ops and modifying behaviors based on 4838 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4839 * to force global FIFO scheduling. 4840 * 4841 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4842 * 4843 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4844 * %SCX_OPS_ENQ_LAST is also ignored. 4845 * 4846 * - ops.dispatch() is ignored. 4847 * 4848 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4849 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4850 * the tail of the queue with core_sched_at touched. 4851 * 4852 * - pick_next_task() suppresses zero slice warning. 4853 * 4854 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4855 * operations. 4856 * 4857 * - scx_prio_less() reverts to the default core_sched_at order. 4858 */ 4859 static void scx_ops_bypass(bool bypass) 4860 { 4861 static DEFINE_RAW_SPINLOCK(bypass_lock); 4862 int cpu; 4863 unsigned long flags; 4864 4865 raw_spin_lock_irqsave(&bypass_lock, flags); 4866 if (bypass) { 4867 scx_ops_bypass_depth++; 4868 WARN_ON_ONCE(scx_ops_bypass_depth <= 0); 4869 if (scx_ops_bypass_depth != 1) 4870 goto unlock; 4871 } else { 4872 scx_ops_bypass_depth--; 4873 WARN_ON_ONCE(scx_ops_bypass_depth < 0); 4874 if (scx_ops_bypass_depth != 0) 4875 goto unlock; 4876 } 4877 4878 atomic_inc(&scx_ops_breather_depth); 4879 4880 /* 4881 * No task property is changing. We just need to make sure all currently 4882 * queued tasks are re-queued according to the new scx_rq_bypassing() 4883 * state. As an optimization, walk each rq's runnable_list instead of 4884 * the scx_tasks list. 4885 * 4886 * This function can't trust the scheduler and thus can't use 4887 * cpus_read_lock(). Walk all possible CPUs instead of online. 4888 */ 4889 for_each_possible_cpu(cpu) { 4890 struct rq *rq = cpu_rq(cpu); 4891 struct task_struct *p, *n; 4892 4893 raw_spin_rq_lock(rq); 4894 4895 if (bypass) { 4896 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4897 rq->scx.flags |= SCX_RQ_BYPASSING; 4898 } else { 4899 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4900 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4901 } 4902 4903 /* 4904 * We need to guarantee that no tasks are on the BPF scheduler 4905 * while bypassing. Either we see enabled or the enable path 4906 * sees scx_rq_bypassing() before moving tasks to SCX. 4907 */ 4908 if (!scx_enabled()) { 4909 raw_spin_rq_unlock(rq); 4910 continue; 4911 } 4912 4913 /* 4914 * The use of list_for_each_entry_safe_reverse() is required 4915 * because each task is going to be removed from and added back 4916 * to the runnable_list during iteration. Because they're added 4917 * to the tail of the list, safe reverse iteration can still 4918 * visit all nodes. 4919 */ 4920 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4921 scx.runnable_node) { 4922 struct sched_enq_and_set_ctx ctx; 4923 4924 /* cycling deq/enq is enough, see the function comment */ 4925 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4926 sched_enq_and_set_task(&ctx); 4927 } 4928 4929 /* resched to restore ticks and idle state */ 4930 if (cpu_online(cpu) || cpu == smp_processor_id()) 4931 resched_curr(rq); 4932 4933 raw_spin_rq_unlock(rq); 4934 } 4935 4936 atomic_dec(&scx_ops_breather_depth); 4937 unlock: 4938 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4939 scx_clear_softlockup(); 4940 } 4941 4942 static void free_exit_info(struct scx_exit_info *ei) 4943 { 4944 kfree(ei->dump); 4945 kfree(ei->msg); 4946 kfree(ei->bt); 4947 kfree(ei); 4948 } 4949 4950 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4951 { 4952 struct scx_exit_info *ei; 4953 4954 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4955 if (!ei) 4956 return NULL; 4957 4958 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4959 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4960 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4961 4962 if (!ei->bt || !ei->msg || !ei->dump) { 4963 free_exit_info(ei); 4964 return NULL; 4965 } 4966 4967 return ei; 4968 } 4969 4970 static const char *scx_exit_reason(enum scx_exit_kind kind) 4971 { 4972 switch (kind) { 4973 case SCX_EXIT_UNREG: 4974 return "unregistered from user space"; 4975 case SCX_EXIT_UNREG_BPF: 4976 return "unregistered from BPF"; 4977 case SCX_EXIT_UNREG_KERN: 4978 return "unregistered from the main kernel"; 4979 case SCX_EXIT_SYSRQ: 4980 return "disabled by sysrq-S"; 4981 case SCX_EXIT_ERROR: 4982 return "runtime error"; 4983 case SCX_EXIT_ERROR_BPF: 4984 return "scx_bpf_error"; 4985 case SCX_EXIT_ERROR_STALL: 4986 return "runnable task stall"; 4987 default: 4988 return "<UNKNOWN>"; 4989 } 4990 } 4991 4992 static void scx_ops_disable_workfn(struct kthread_work *work) 4993 { 4994 struct scx_exit_info *ei = scx_exit_info; 4995 struct scx_task_iter sti; 4996 struct task_struct *p; 4997 struct rhashtable_iter rht_iter; 4998 struct scx_dispatch_q *dsq; 4999 int i, kind, cpu; 5000 5001 kind = atomic_read(&scx_exit_kind); 5002 while (true) { 5003 /* 5004 * NONE indicates that a new scx_ops has been registered since 5005 * disable was scheduled - don't kill the new ops. DONE 5006 * indicates that the ops has already been disabled. 5007 */ 5008 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 5009 return; 5010 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 5011 break; 5012 } 5013 ei->kind = kind; 5014 ei->reason = scx_exit_reason(ei->kind); 5015 5016 /* guarantee forward progress by bypassing scx_ops */ 5017 scx_ops_bypass(true); 5018 5019 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 5020 case SCX_OPS_DISABLING: 5021 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 5022 break; 5023 case SCX_OPS_DISABLED: 5024 pr_warn("sched_ext: ops error detected without ops (%s)\n", 5025 scx_exit_info->msg); 5026 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 5027 SCX_OPS_DISABLING); 5028 goto done; 5029 default: 5030 break; 5031 } 5032 5033 /* 5034 * Here, every runnable task is guaranteed to make forward progress and 5035 * we can safely use blocking synchronization constructs. Actually 5036 * disable ops. 5037 */ 5038 mutex_lock(&scx_ops_enable_mutex); 5039 5040 static_branch_disable(&__scx_switched_all); 5041 WRITE_ONCE(scx_switching_all, false); 5042 5043 /* 5044 * Shut down cgroup support before tasks so that the cgroup attach path 5045 * doesn't race against scx_ops_exit_task(). 5046 */ 5047 scx_cgroup_lock(); 5048 scx_cgroup_exit(); 5049 scx_cgroup_unlock(); 5050 5051 /* 5052 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 5053 * must be switched out and exited synchronously. 5054 */ 5055 percpu_down_write(&scx_fork_rwsem); 5056 5057 scx_ops_init_task_enabled = false; 5058 5059 scx_task_iter_start(&sti); 5060 while ((p = scx_task_iter_next_locked(&sti))) { 5061 const struct sched_class *old_class = p->sched_class; 5062 const struct sched_class *new_class = 5063 __setscheduler_class(p->policy, p->prio); 5064 struct sched_enq_and_set_ctx ctx; 5065 5066 if (old_class != new_class && p->se.sched_delayed) 5067 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5068 5069 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5070 5071 p->sched_class = new_class; 5072 check_class_changing(task_rq(p), p, old_class); 5073 5074 sched_enq_and_set_task(&ctx); 5075 5076 check_class_changed(task_rq(p), p, old_class, p->prio); 5077 scx_ops_exit_task(p); 5078 } 5079 scx_task_iter_stop(&sti); 5080 percpu_up_write(&scx_fork_rwsem); 5081 5082 /* 5083 * Invalidate all the rq clocks to prevent getting outdated 5084 * rq clocks from a previous scx scheduler. 5085 */ 5086 for_each_possible_cpu(cpu) { 5087 struct rq *rq = cpu_rq(cpu); 5088 scx_rq_clock_invalidate(rq); 5089 } 5090 5091 /* no task is on scx, turn off all the switches and flush in-progress calls */ 5092 static_branch_disable(&__scx_ops_enabled); 5093 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 5094 static_branch_disable(&scx_has_op[i]); 5095 static_branch_disable(&scx_ops_enq_last); 5096 static_branch_disable(&scx_ops_enq_exiting); 5097 static_branch_disable(&scx_ops_enq_migration_disabled); 5098 static_branch_disable(&scx_ops_cpu_preempt); 5099 static_branch_disable(&scx_builtin_idle_enabled); 5100 synchronize_rcu(); 5101 5102 if (ei->kind >= SCX_EXIT_ERROR) { 5103 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5104 scx_ops.name, ei->reason); 5105 5106 if (ei->msg[0] != '\0') 5107 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 5108 #ifdef CONFIG_STACKTRACE 5109 stack_trace_print(ei->bt, ei->bt_len, 2); 5110 #endif 5111 } else { 5112 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5113 scx_ops.name, ei->reason); 5114 } 5115 5116 if (scx_ops.exit) 5117 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 5118 5119 cancel_delayed_work_sync(&scx_watchdog_work); 5120 5121 /* 5122 * Delete the kobject from the hierarchy eagerly in addition to just 5123 * dropping a reference. Otherwise, if the object is deleted 5124 * asynchronously, sysfs could observe an object of the same name still 5125 * in the hierarchy when another scheduler is loaded. 5126 */ 5127 kobject_del(scx_root_kobj); 5128 kobject_put(scx_root_kobj); 5129 scx_root_kobj = NULL; 5130 5131 memset(&scx_ops, 0, sizeof(scx_ops)); 5132 5133 rhashtable_walk_enter(&dsq_hash, &rht_iter); 5134 do { 5135 rhashtable_walk_start(&rht_iter); 5136 5137 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 5138 destroy_dsq(dsq->id); 5139 5140 rhashtable_walk_stop(&rht_iter); 5141 } while (dsq == ERR_PTR(-EAGAIN)); 5142 rhashtable_walk_exit(&rht_iter); 5143 5144 free_percpu(scx_dsp_ctx); 5145 scx_dsp_ctx = NULL; 5146 scx_dsp_max_batch = 0; 5147 5148 free_exit_info(scx_exit_info); 5149 scx_exit_info = NULL; 5150 5151 mutex_unlock(&scx_ops_enable_mutex); 5152 5153 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 5154 SCX_OPS_DISABLING); 5155 done: 5156 scx_ops_bypass(false); 5157 } 5158 5159 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 5160 5161 static void schedule_scx_ops_disable_work(void) 5162 { 5163 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 5164 5165 /* 5166 * We may be called spuriously before the first bpf_sched_ext_reg(). If 5167 * scx_ops_helper isn't set up yet, there's nothing to do. 5168 */ 5169 if (helper) 5170 kthread_queue_work(helper, &scx_ops_disable_work); 5171 } 5172 5173 static void scx_ops_disable(enum scx_exit_kind kind) 5174 { 5175 int none = SCX_EXIT_NONE; 5176 5177 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 5178 kind = SCX_EXIT_ERROR; 5179 5180 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 5181 5182 schedule_scx_ops_disable_work(); 5183 } 5184 5185 static void dump_newline(struct seq_buf *s) 5186 { 5187 trace_sched_ext_dump(""); 5188 5189 /* @s may be zero sized and seq_buf triggers WARN if so */ 5190 if (s->size) 5191 seq_buf_putc(s, '\n'); 5192 } 5193 5194 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 5195 { 5196 va_list args; 5197 5198 #ifdef CONFIG_TRACEPOINTS 5199 if (trace_sched_ext_dump_enabled()) { 5200 /* protected by scx_dump_state()::dump_lock */ 5201 static char line_buf[SCX_EXIT_MSG_LEN]; 5202 5203 va_start(args, fmt); 5204 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 5205 va_end(args); 5206 5207 trace_sched_ext_dump(line_buf); 5208 } 5209 #endif 5210 /* @s may be zero sized and seq_buf triggers WARN if so */ 5211 if (s->size) { 5212 va_start(args, fmt); 5213 seq_buf_vprintf(s, fmt, args); 5214 va_end(args); 5215 5216 seq_buf_putc(s, '\n'); 5217 } 5218 } 5219 5220 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 5221 const unsigned long *bt, unsigned int len) 5222 { 5223 unsigned int i; 5224 5225 for (i = 0; i < len; i++) 5226 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 5227 } 5228 5229 static void ops_dump_init(struct seq_buf *s, const char *prefix) 5230 { 5231 struct scx_dump_data *dd = &scx_dump_data; 5232 5233 lockdep_assert_irqs_disabled(); 5234 5235 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 5236 dd->first = true; 5237 dd->cursor = 0; 5238 dd->s = s; 5239 dd->prefix = prefix; 5240 } 5241 5242 static void ops_dump_flush(void) 5243 { 5244 struct scx_dump_data *dd = &scx_dump_data; 5245 char *line = dd->buf.line; 5246 5247 if (!dd->cursor) 5248 return; 5249 5250 /* 5251 * There's something to flush and this is the first line. Insert a blank 5252 * line to distinguish ops dump. 5253 */ 5254 if (dd->first) { 5255 dump_newline(dd->s); 5256 dd->first = false; 5257 } 5258 5259 /* 5260 * There may be multiple lines in $line. Scan and emit each line 5261 * separately. 5262 */ 5263 while (true) { 5264 char *end = line; 5265 char c; 5266 5267 while (*end != '\n' && *end != '\0') 5268 end++; 5269 5270 /* 5271 * If $line overflowed, it may not have newline at the end. 5272 * Always emit with a newline. 5273 */ 5274 c = *end; 5275 *end = '\0'; 5276 dump_line(dd->s, "%s%s", dd->prefix, line); 5277 if (c == '\0') 5278 break; 5279 5280 /* move to the next line */ 5281 end++; 5282 if (*end == '\0') 5283 break; 5284 line = end; 5285 } 5286 5287 dd->cursor = 0; 5288 } 5289 5290 static void ops_dump_exit(void) 5291 { 5292 ops_dump_flush(); 5293 scx_dump_data.cpu = -1; 5294 } 5295 5296 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 5297 struct task_struct *p, char marker) 5298 { 5299 static unsigned long bt[SCX_EXIT_BT_LEN]; 5300 char dsq_id_buf[19] = "(n/a)"; 5301 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 5302 unsigned int bt_len = 0; 5303 5304 if (p->scx.dsq) 5305 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 5306 (unsigned long long)p->scx.dsq->id); 5307 5308 dump_newline(s); 5309 dump_line(s, " %c%c %s[%d] %+ldms", 5310 marker, task_state_to_char(p), p->comm, p->pid, 5311 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 5312 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 5313 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 5314 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 5315 ops_state >> SCX_OPSS_QSEQ_SHIFT); 5316 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 5317 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 5318 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 5319 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 5320 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 5321 5322 if (SCX_HAS_OP(dump_task)) { 5323 ops_dump_init(s, " "); 5324 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 5325 ops_dump_exit(); 5326 } 5327 5328 #ifdef CONFIG_STACKTRACE 5329 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 5330 #endif 5331 if (bt_len) { 5332 dump_newline(s); 5333 dump_stack_trace(s, " ", bt, bt_len); 5334 } 5335 } 5336 5337 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5338 { 5339 static DEFINE_SPINLOCK(dump_lock); 5340 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5341 struct scx_dump_ctx dctx = { 5342 .kind = ei->kind, 5343 .exit_code = ei->exit_code, 5344 .reason = ei->reason, 5345 .at_ns = ktime_get_ns(), 5346 .at_jiffies = jiffies, 5347 }; 5348 struct seq_buf s; 5349 unsigned long flags; 5350 char *buf; 5351 int cpu; 5352 5353 spin_lock_irqsave(&dump_lock, flags); 5354 5355 seq_buf_init(&s, ei->dump, dump_len); 5356 5357 if (ei->kind == SCX_EXIT_NONE) { 5358 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5359 } else { 5360 dump_line(&s, "%s[%d] triggered exit kind %d:", 5361 current->comm, current->pid, ei->kind); 5362 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5363 dump_newline(&s); 5364 dump_line(&s, "Backtrace:"); 5365 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5366 } 5367 5368 if (SCX_HAS_OP(dump)) { 5369 ops_dump_init(&s, ""); 5370 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 5371 ops_dump_exit(); 5372 } 5373 5374 dump_newline(&s); 5375 dump_line(&s, "CPU states"); 5376 dump_line(&s, "----------"); 5377 5378 for_each_possible_cpu(cpu) { 5379 struct rq *rq = cpu_rq(cpu); 5380 struct rq_flags rf; 5381 struct task_struct *p; 5382 struct seq_buf ns; 5383 size_t avail, used; 5384 bool idle; 5385 5386 rq_lock(rq, &rf); 5387 5388 idle = list_empty(&rq->scx.runnable_list) && 5389 rq->curr->sched_class == &idle_sched_class; 5390 5391 if (idle && !SCX_HAS_OP(dump_cpu)) 5392 goto next; 5393 5394 /* 5395 * We don't yet know whether ops.dump_cpu() will produce output 5396 * and we may want to skip the default CPU dump if it doesn't. 5397 * Use a nested seq_buf to generate the standard dump so that we 5398 * can decide whether to commit later. 5399 */ 5400 avail = seq_buf_get_buf(&s, &buf); 5401 seq_buf_init(&ns, buf, avail); 5402 5403 dump_newline(&ns); 5404 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5405 cpu, rq->scx.nr_running, rq->scx.flags, 5406 rq->scx.cpu_released, rq->scx.ops_qseq, 5407 rq->scx.pnt_seq); 5408 dump_line(&ns, " curr=%s[%d] class=%ps", 5409 rq->curr->comm, rq->curr->pid, 5410 rq->curr->sched_class); 5411 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5412 dump_line(&ns, " cpus_to_kick : %*pb", 5413 cpumask_pr_args(rq->scx.cpus_to_kick)); 5414 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5415 dump_line(&ns, " idle_to_kick : %*pb", 5416 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5417 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5418 dump_line(&ns, " cpus_to_preempt: %*pb", 5419 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5420 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5421 dump_line(&ns, " cpus_to_wait : %*pb", 5422 cpumask_pr_args(rq->scx.cpus_to_wait)); 5423 5424 used = seq_buf_used(&ns); 5425 if (SCX_HAS_OP(dump_cpu)) { 5426 ops_dump_init(&ns, " "); 5427 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 5428 ops_dump_exit(); 5429 } 5430 5431 /* 5432 * If idle && nothing generated by ops.dump_cpu(), there's 5433 * nothing interesting. Skip. 5434 */ 5435 if (idle && used == seq_buf_used(&ns)) 5436 goto next; 5437 5438 /* 5439 * $s may already have overflowed when $ns was created. If so, 5440 * calling commit on it will trigger BUG. 5441 */ 5442 if (avail) { 5443 seq_buf_commit(&s, seq_buf_used(&ns)); 5444 if (seq_buf_has_overflowed(&ns)) 5445 seq_buf_set_overflow(&s); 5446 } 5447 5448 if (rq->curr->sched_class == &ext_sched_class) 5449 scx_dump_task(&s, &dctx, rq->curr, '*'); 5450 5451 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5452 scx_dump_task(&s, &dctx, p, ' '); 5453 next: 5454 rq_unlock(rq, &rf); 5455 } 5456 5457 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5458 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5459 trunc_marker, sizeof(trunc_marker)); 5460 5461 spin_unlock_irqrestore(&dump_lock, flags); 5462 } 5463 5464 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 5465 { 5466 struct scx_exit_info *ei = scx_exit_info; 5467 5468 if (ei->kind >= SCX_EXIT_ERROR) 5469 scx_dump_state(ei, scx_ops.exit_dump_len); 5470 5471 schedule_scx_ops_disable_work(); 5472 } 5473 5474 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 5475 5476 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 5477 s64 exit_code, 5478 const char *fmt, ...) 5479 { 5480 struct scx_exit_info *ei = scx_exit_info; 5481 int none = SCX_EXIT_NONE; 5482 va_list args; 5483 5484 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 5485 return; 5486 5487 ei->exit_code = exit_code; 5488 #ifdef CONFIG_STACKTRACE 5489 if (kind >= SCX_EXIT_ERROR) 5490 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5491 #endif 5492 va_start(args, fmt); 5493 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5494 va_end(args); 5495 5496 /* 5497 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5498 * in scx_ops_disable_workfn(). 5499 */ 5500 ei->kind = kind; 5501 ei->reason = scx_exit_reason(ei->kind); 5502 5503 irq_work_queue(&scx_ops_error_irq_work); 5504 } 5505 5506 static struct kthread_worker *scx_create_rt_helper(const char *name) 5507 { 5508 struct kthread_worker *helper; 5509 5510 helper = kthread_run_worker(0, name); 5511 if (helper) 5512 sched_set_fifo(helper->task); 5513 return helper; 5514 } 5515 5516 static void check_hotplug_seq(const struct sched_ext_ops *ops) 5517 { 5518 unsigned long long global_hotplug_seq; 5519 5520 /* 5521 * If a hotplug event has occurred between when a scheduler was 5522 * initialized, and when we were able to attach, exit and notify user 5523 * space about it. 5524 */ 5525 if (ops->hotplug_seq) { 5526 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5527 if (ops->hotplug_seq != global_hotplug_seq) { 5528 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5529 "expected hotplug seq %llu did not match actual %llu", 5530 ops->hotplug_seq, global_hotplug_seq); 5531 } 5532 } 5533 } 5534 5535 static int validate_ops(const struct sched_ext_ops *ops) 5536 { 5537 /* 5538 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5539 * ops.enqueue() callback isn't implemented. 5540 */ 5541 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5542 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5543 return -EINVAL; 5544 } 5545 5546 return 0; 5547 } 5548 5549 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5550 { 5551 struct scx_task_iter sti; 5552 struct task_struct *p; 5553 unsigned long timeout; 5554 int i, cpu, node, ret; 5555 5556 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5557 cpu_possible_mask)) { 5558 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5559 return -EINVAL; 5560 } 5561 5562 mutex_lock(&scx_ops_enable_mutex); 5563 5564 if (!scx_ops_helper) { 5565 WRITE_ONCE(scx_ops_helper, 5566 scx_create_rt_helper("sched_ext_ops_helper")); 5567 if (!scx_ops_helper) { 5568 ret = -ENOMEM; 5569 goto err_unlock; 5570 } 5571 } 5572 5573 if (!global_dsqs) { 5574 struct scx_dispatch_q **dsqs; 5575 5576 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 5577 if (!dsqs) { 5578 ret = -ENOMEM; 5579 goto err_unlock; 5580 } 5581 5582 for_each_node_state(node, N_POSSIBLE) { 5583 struct scx_dispatch_q *dsq; 5584 5585 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5586 if (!dsq) { 5587 for_each_node_state(node, N_POSSIBLE) 5588 kfree(dsqs[node]); 5589 kfree(dsqs); 5590 ret = -ENOMEM; 5591 goto err_unlock; 5592 } 5593 5594 init_dsq(dsq, SCX_DSQ_GLOBAL); 5595 dsqs[node] = dsq; 5596 } 5597 5598 global_dsqs = dsqs; 5599 } 5600 5601 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5602 ret = -EBUSY; 5603 goto err_unlock; 5604 } 5605 5606 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5607 if (!scx_root_kobj) { 5608 ret = -ENOMEM; 5609 goto err_unlock; 5610 } 5611 5612 scx_root_kobj->kset = scx_kset; 5613 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5614 if (ret < 0) 5615 goto err; 5616 5617 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5618 if (!scx_exit_info) { 5619 ret = -ENOMEM; 5620 goto err_del; 5621 } 5622 5623 /* 5624 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5625 * disable path. Failure triggers full disabling from here on. 5626 */ 5627 scx_ops = *ops; 5628 5629 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5630 SCX_OPS_DISABLED); 5631 5632 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5633 scx_warned_zero_slice = false; 5634 5635 atomic_long_set(&scx_nr_rejected, 0); 5636 5637 for_each_possible_cpu(cpu) 5638 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5639 5640 /* 5641 * Keep CPUs stable during enable so that the BPF scheduler can track 5642 * online CPUs by watching ->on/offline_cpu() after ->init(). 5643 */ 5644 cpus_read_lock(); 5645 5646 if (scx_ops.init) { 5647 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5648 if (ret) { 5649 ret = ops_sanitize_err("init", ret); 5650 cpus_read_unlock(); 5651 scx_ops_error("ops.init() failed (%d)", ret); 5652 goto err_disable; 5653 } 5654 } 5655 5656 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5657 if (((void (**)(void))ops)[i]) 5658 static_branch_enable_cpuslocked(&scx_has_op[i]); 5659 5660 check_hotplug_seq(ops); 5661 #ifdef CONFIG_SMP 5662 update_selcpu_topology(); 5663 #endif 5664 cpus_read_unlock(); 5665 5666 ret = validate_ops(ops); 5667 if (ret) 5668 goto err_disable; 5669 5670 WARN_ON_ONCE(scx_dsp_ctx); 5671 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5672 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5673 scx_dsp_max_batch), 5674 __alignof__(struct scx_dsp_ctx)); 5675 if (!scx_dsp_ctx) { 5676 ret = -ENOMEM; 5677 goto err_disable; 5678 } 5679 5680 if (ops->timeout_ms) 5681 timeout = msecs_to_jiffies(ops->timeout_ms); 5682 else 5683 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5684 5685 WRITE_ONCE(scx_watchdog_timeout, timeout); 5686 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5687 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5688 scx_watchdog_timeout / 2); 5689 5690 /* 5691 * Once __scx_ops_enabled is set, %current can be switched to SCX 5692 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5693 * userspace scheduling) may not function correctly before all tasks are 5694 * switched. Init in bypass mode to guarantee forward progress. 5695 */ 5696 scx_ops_bypass(true); 5697 5698 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5699 if (((void (**)(void))ops)[i]) 5700 static_branch_enable(&scx_has_op[i]); 5701 5702 if (ops->flags & SCX_OPS_ENQ_LAST) 5703 static_branch_enable(&scx_ops_enq_last); 5704 5705 if (ops->flags & SCX_OPS_ENQ_EXITING) 5706 static_branch_enable(&scx_ops_enq_exiting); 5707 if (ops->flags & SCX_OPS_ENQ_MIGRATION_DISABLED) 5708 static_branch_enable(&scx_ops_enq_migration_disabled); 5709 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5710 static_branch_enable(&scx_ops_cpu_preempt); 5711 5712 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5713 reset_idle_masks(); 5714 static_branch_enable(&scx_builtin_idle_enabled); 5715 } else { 5716 static_branch_disable(&scx_builtin_idle_enabled); 5717 } 5718 5719 /* 5720 * Lock out forks, cgroup on/offlining and moves before opening the 5721 * floodgate so that they don't wander into the operations prematurely. 5722 */ 5723 percpu_down_write(&scx_fork_rwsem); 5724 5725 WARN_ON_ONCE(scx_ops_init_task_enabled); 5726 scx_ops_init_task_enabled = true; 5727 5728 /* 5729 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5730 * preventing new tasks from being added. No need to exclude tasks 5731 * leaving as sched_ext_free() can handle both prepped and enabled 5732 * tasks. Prep all tasks first and then enable them with preemption 5733 * disabled. 5734 * 5735 * All cgroups should be initialized before scx_ops_init_task() so that 5736 * the BPF scheduler can reliably track each task's cgroup membership 5737 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5738 * migrations while tasks are being initialized so that 5739 * scx_cgroup_can_attach() never sees uninitialized tasks. 5740 */ 5741 scx_cgroup_lock(); 5742 ret = scx_cgroup_init(); 5743 if (ret) 5744 goto err_disable_unlock_all; 5745 5746 scx_task_iter_start(&sti); 5747 while ((p = scx_task_iter_next_locked(&sti))) { 5748 /* 5749 * @p may already be dead, have lost all its usages counts and 5750 * be waiting for RCU grace period before being freed. @p can't 5751 * be initialized for SCX in such cases and should be ignored. 5752 */ 5753 if (!tryget_task_struct(p)) 5754 continue; 5755 5756 scx_task_iter_unlock(&sti); 5757 5758 ret = scx_ops_init_task(p, task_group(p), false); 5759 if (ret) { 5760 put_task_struct(p); 5761 scx_task_iter_relock(&sti); 5762 scx_task_iter_stop(&sti); 5763 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5764 ret, p->comm, p->pid); 5765 goto err_disable_unlock_all; 5766 } 5767 5768 scx_set_task_state(p, SCX_TASK_READY); 5769 5770 put_task_struct(p); 5771 scx_task_iter_relock(&sti); 5772 } 5773 scx_task_iter_stop(&sti); 5774 scx_cgroup_unlock(); 5775 percpu_up_write(&scx_fork_rwsem); 5776 5777 /* 5778 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5779 * all eligible tasks. 5780 */ 5781 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5782 static_branch_enable(&__scx_ops_enabled); 5783 5784 /* 5785 * We're fully committed and can't fail. The task READY -> ENABLED 5786 * transitions here are synchronized against sched_ext_free() through 5787 * scx_tasks_lock. 5788 */ 5789 percpu_down_write(&scx_fork_rwsem); 5790 scx_task_iter_start(&sti); 5791 while ((p = scx_task_iter_next_locked(&sti))) { 5792 const struct sched_class *old_class = p->sched_class; 5793 const struct sched_class *new_class = 5794 __setscheduler_class(p->policy, p->prio); 5795 struct sched_enq_and_set_ctx ctx; 5796 5797 if (old_class != new_class && p->se.sched_delayed) 5798 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5799 5800 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5801 5802 p->scx.slice = SCX_SLICE_DFL; 5803 p->sched_class = new_class; 5804 check_class_changing(task_rq(p), p, old_class); 5805 5806 sched_enq_and_set_task(&ctx); 5807 5808 check_class_changed(task_rq(p), p, old_class, p->prio); 5809 } 5810 scx_task_iter_stop(&sti); 5811 percpu_up_write(&scx_fork_rwsem); 5812 5813 scx_ops_bypass(false); 5814 5815 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5816 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5817 goto err_disable; 5818 } 5819 5820 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5821 static_branch_enable(&__scx_switched_all); 5822 5823 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5824 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5825 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5826 mutex_unlock(&scx_ops_enable_mutex); 5827 5828 atomic_long_inc(&scx_enable_seq); 5829 5830 return 0; 5831 5832 err_del: 5833 kobject_del(scx_root_kobj); 5834 err: 5835 kobject_put(scx_root_kobj); 5836 scx_root_kobj = NULL; 5837 if (scx_exit_info) { 5838 free_exit_info(scx_exit_info); 5839 scx_exit_info = NULL; 5840 } 5841 err_unlock: 5842 mutex_unlock(&scx_ops_enable_mutex); 5843 return ret; 5844 5845 err_disable_unlock_all: 5846 scx_cgroup_unlock(); 5847 percpu_up_write(&scx_fork_rwsem); 5848 scx_ops_bypass(false); 5849 err_disable: 5850 mutex_unlock(&scx_ops_enable_mutex); 5851 /* 5852 * Returning an error code here would not pass all the error information 5853 * to userspace. Record errno using scx_ops_error() for cases 5854 * scx_ops_error() wasn't already invoked and exit indicating success so 5855 * that the error is notified through ops.exit() with all the details. 5856 * 5857 * Flush scx_ops_disable_work to ensure that error is reported before 5858 * init completion. 5859 */ 5860 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5861 kthread_flush_work(&scx_ops_disable_work); 5862 return 0; 5863 } 5864 5865 5866 /******************************************************************************** 5867 * bpf_struct_ops plumbing. 5868 */ 5869 #include <linux/bpf_verifier.h> 5870 #include <linux/bpf.h> 5871 #include <linux/btf.h> 5872 5873 static const struct btf_type *task_struct_type; 5874 5875 static bool bpf_scx_is_valid_access(int off, int size, 5876 enum bpf_access_type type, 5877 const struct bpf_prog *prog, 5878 struct bpf_insn_access_aux *info) 5879 { 5880 if (type != BPF_READ) 5881 return false; 5882 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5883 return false; 5884 if (off % size != 0) 5885 return false; 5886 5887 return btf_ctx_access(off, size, type, prog, info); 5888 } 5889 5890 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5891 const struct bpf_reg_state *reg, int off, 5892 int size) 5893 { 5894 const struct btf_type *t; 5895 5896 t = btf_type_by_id(reg->btf, reg->btf_id); 5897 if (t == task_struct_type) { 5898 if (off >= offsetof(struct task_struct, scx.slice) && 5899 off + size <= offsetofend(struct task_struct, scx.slice)) 5900 return SCALAR_VALUE; 5901 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5902 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5903 return SCALAR_VALUE; 5904 if (off >= offsetof(struct task_struct, scx.disallow) && 5905 off + size <= offsetofend(struct task_struct, scx.disallow)) 5906 return SCALAR_VALUE; 5907 } 5908 5909 return -EACCES; 5910 } 5911 5912 static const struct bpf_func_proto * 5913 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5914 { 5915 switch (func_id) { 5916 case BPF_FUNC_task_storage_get: 5917 return &bpf_task_storage_get_proto; 5918 case BPF_FUNC_task_storage_delete: 5919 return &bpf_task_storage_delete_proto; 5920 default: 5921 return bpf_base_func_proto(func_id, prog); 5922 } 5923 } 5924 5925 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5926 .get_func_proto = bpf_scx_get_func_proto, 5927 .is_valid_access = bpf_scx_is_valid_access, 5928 .btf_struct_access = bpf_scx_btf_struct_access, 5929 }; 5930 5931 static int bpf_scx_init_member(const struct btf_type *t, 5932 const struct btf_member *member, 5933 void *kdata, const void *udata) 5934 { 5935 const struct sched_ext_ops *uops = udata; 5936 struct sched_ext_ops *ops = kdata; 5937 u32 moff = __btf_member_bit_offset(t, member) / 8; 5938 int ret; 5939 5940 switch (moff) { 5941 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5942 if (*(u32 *)(udata + moff) > INT_MAX) 5943 return -E2BIG; 5944 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5945 return 1; 5946 case offsetof(struct sched_ext_ops, flags): 5947 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5948 return -EINVAL; 5949 ops->flags = *(u64 *)(udata + moff); 5950 return 1; 5951 case offsetof(struct sched_ext_ops, name): 5952 ret = bpf_obj_name_cpy(ops->name, uops->name, 5953 sizeof(ops->name)); 5954 if (ret < 0) 5955 return ret; 5956 if (ret == 0) 5957 return -EINVAL; 5958 return 1; 5959 case offsetof(struct sched_ext_ops, timeout_ms): 5960 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5961 SCX_WATCHDOG_MAX_TIMEOUT) 5962 return -E2BIG; 5963 ops->timeout_ms = *(u32 *)(udata + moff); 5964 return 1; 5965 case offsetof(struct sched_ext_ops, exit_dump_len): 5966 ops->exit_dump_len = 5967 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5968 return 1; 5969 case offsetof(struct sched_ext_ops, hotplug_seq): 5970 ops->hotplug_seq = *(u64 *)(udata + moff); 5971 return 1; 5972 } 5973 5974 return 0; 5975 } 5976 5977 static int bpf_scx_check_member(const struct btf_type *t, 5978 const struct btf_member *member, 5979 const struct bpf_prog *prog) 5980 { 5981 u32 moff = __btf_member_bit_offset(t, member) / 8; 5982 5983 switch (moff) { 5984 case offsetof(struct sched_ext_ops, init_task): 5985 #ifdef CONFIG_EXT_GROUP_SCHED 5986 case offsetof(struct sched_ext_ops, cgroup_init): 5987 case offsetof(struct sched_ext_ops, cgroup_exit): 5988 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5989 #endif 5990 case offsetof(struct sched_ext_ops, cpu_online): 5991 case offsetof(struct sched_ext_ops, cpu_offline): 5992 case offsetof(struct sched_ext_ops, init): 5993 case offsetof(struct sched_ext_ops, exit): 5994 break; 5995 default: 5996 if (prog->sleepable) 5997 return -EINVAL; 5998 } 5999 6000 return 0; 6001 } 6002 6003 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 6004 { 6005 return scx_ops_enable(kdata, link); 6006 } 6007 6008 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 6009 { 6010 scx_ops_disable(SCX_EXIT_UNREG); 6011 kthread_flush_work(&scx_ops_disable_work); 6012 } 6013 6014 static int bpf_scx_init(struct btf *btf) 6015 { 6016 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 6017 6018 return 0; 6019 } 6020 6021 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 6022 { 6023 /* 6024 * sched_ext does not support updating the actively-loaded BPF 6025 * scheduler, as registering a BPF scheduler can always fail if the 6026 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 6027 * etc. Similarly, we can always race with unregistration happening 6028 * elsewhere, such as with sysrq. 6029 */ 6030 return -EOPNOTSUPP; 6031 } 6032 6033 static int bpf_scx_validate(void *kdata) 6034 { 6035 return 0; 6036 } 6037 6038 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 6039 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 6040 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 6041 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 6042 static void sched_ext_ops__tick(struct task_struct *p) {} 6043 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 6044 static void sched_ext_ops__running(struct task_struct *p) {} 6045 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 6046 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 6047 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 6048 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 6049 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 6050 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 6051 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 6052 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 6053 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 6054 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 6055 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 6056 static void sched_ext_ops__enable(struct task_struct *p) {} 6057 static void sched_ext_ops__disable(struct task_struct *p) {} 6058 #ifdef CONFIG_EXT_GROUP_SCHED 6059 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 6060 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 6061 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 6062 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 6063 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 6064 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 6065 #endif 6066 static void sched_ext_ops__cpu_online(s32 cpu) {} 6067 static void sched_ext_ops__cpu_offline(s32 cpu) {} 6068 static s32 sched_ext_ops__init(void) { return -EINVAL; } 6069 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 6070 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 6071 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 6072 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 6073 6074 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 6075 .select_cpu = sched_ext_ops__select_cpu, 6076 .enqueue = sched_ext_ops__enqueue, 6077 .dequeue = sched_ext_ops__dequeue, 6078 .dispatch = sched_ext_ops__dispatch, 6079 .tick = sched_ext_ops__tick, 6080 .runnable = sched_ext_ops__runnable, 6081 .running = sched_ext_ops__running, 6082 .stopping = sched_ext_ops__stopping, 6083 .quiescent = sched_ext_ops__quiescent, 6084 .yield = sched_ext_ops__yield, 6085 .core_sched_before = sched_ext_ops__core_sched_before, 6086 .set_weight = sched_ext_ops__set_weight, 6087 .set_cpumask = sched_ext_ops__set_cpumask, 6088 .update_idle = sched_ext_ops__update_idle, 6089 .cpu_acquire = sched_ext_ops__cpu_acquire, 6090 .cpu_release = sched_ext_ops__cpu_release, 6091 .init_task = sched_ext_ops__init_task, 6092 .exit_task = sched_ext_ops__exit_task, 6093 .enable = sched_ext_ops__enable, 6094 .disable = sched_ext_ops__disable, 6095 #ifdef CONFIG_EXT_GROUP_SCHED 6096 .cgroup_init = sched_ext_ops__cgroup_init, 6097 .cgroup_exit = sched_ext_ops__cgroup_exit, 6098 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 6099 .cgroup_move = sched_ext_ops__cgroup_move, 6100 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 6101 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 6102 #endif 6103 .cpu_online = sched_ext_ops__cpu_online, 6104 .cpu_offline = sched_ext_ops__cpu_offline, 6105 .init = sched_ext_ops__init, 6106 .exit = sched_ext_ops__exit, 6107 .dump = sched_ext_ops__dump, 6108 .dump_cpu = sched_ext_ops__dump_cpu, 6109 .dump_task = sched_ext_ops__dump_task, 6110 }; 6111 6112 static struct bpf_struct_ops bpf_sched_ext_ops = { 6113 .verifier_ops = &bpf_scx_verifier_ops, 6114 .reg = bpf_scx_reg, 6115 .unreg = bpf_scx_unreg, 6116 .check_member = bpf_scx_check_member, 6117 .init_member = bpf_scx_init_member, 6118 .init = bpf_scx_init, 6119 .update = bpf_scx_update, 6120 .validate = bpf_scx_validate, 6121 .name = "sched_ext_ops", 6122 .owner = THIS_MODULE, 6123 .cfi_stubs = &__bpf_ops_sched_ext_ops 6124 }; 6125 6126 6127 /******************************************************************************** 6128 * System integration and init. 6129 */ 6130 6131 static void sysrq_handle_sched_ext_reset(u8 key) 6132 { 6133 if (scx_ops_helper) 6134 scx_ops_disable(SCX_EXIT_SYSRQ); 6135 else 6136 pr_info("sched_ext: BPF scheduler not yet used\n"); 6137 } 6138 6139 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 6140 .handler = sysrq_handle_sched_ext_reset, 6141 .help_msg = "reset-sched-ext(S)", 6142 .action_msg = "Disable sched_ext and revert all tasks to CFS", 6143 .enable_mask = SYSRQ_ENABLE_RTNICE, 6144 }; 6145 6146 static void sysrq_handle_sched_ext_dump(u8 key) 6147 { 6148 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 6149 6150 if (scx_enabled()) 6151 scx_dump_state(&ei, 0); 6152 } 6153 6154 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 6155 .handler = sysrq_handle_sched_ext_dump, 6156 .help_msg = "dump-sched-ext(D)", 6157 .action_msg = "Trigger sched_ext debug dump", 6158 .enable_mask = SYSRQ_ENABLE_RTNICE, 6159 }; 6160 6161 static bool can_skip_idle_kick(struct rq *rq) 6162 { 6163 lockdep_assert_rq_held(rq); 6164 6165 /* 6166 * We can skip idle kicking if @rq is going to go through at least one 6167 * full SCX scheduling cycle before going idle. Just checking whether 6168 * curr is not idle is insufficient because we could be racing 6169 * balance_one() trying to pull the next task from a remote rq, which 6170 * may fail, and @rq may become idle afterwards. 6171 * 6172 * The race window is small and we don't and can't guarantee that @rq is 6173 * only kicked while idle anyway. Skip only when sure. 6174 */ 6175 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 6176 } 6177 6178 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 6179 { 6180 struct rq *rq = cpu_rq(cpu); 6181 struct scx_rq *this_scx = &this_rq->scx; 6182 bool should_wait = false; 6183 unsigned long flags; 6184 6185 raw_spin_rq_lock_irqsave(rq, flags); 6186 6187 /* 6188 * During CPU hotplug, a CPU may depend on kicking itself to make 6189 * forward progress. Allow kicking self regardless of online state. 6190 */ 6191 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 6192 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 6193 if (rq->curr->sched_class == &ext_sched_class) 6194 rq->curr->scx.slice = 0; 6195 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6196 } 6197 6198 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 6199 pseqs[cpu] = rq->scx.pnt_seq; 6200 should_wait = true; 6201 } 6202 6203 resched_curr(rq); 6204 } else { 6205 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6206 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6207 } 6208 6209 raw_spin_rq_unlock_irqrestore(rq, flags); 6210 6211 return should_wait; 6212 } 6213 6214 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 6215 { 6216 struct rq *rq = cpu_rq(cpu); 6217 unsigned long flags; 6218 6219 raw_spin_rq_lock_irqsave(rq, flags); 6220 6221 if (!can_skip_idle_kick(rq) && 6222 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 6223 resched_curr(rq); 6224 6225 raw_spin_rq_unlock_irqrestore(rq, flags); 6226 } 6227 6228 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 6229 { 6230 struct rq *this_rq = this_rq(); 6231 struct scx_rq *this_scx = &this_rq->scx; 6232 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 6233 bool should_wait = false; 6234 s32 cpu; 6235 6236 for_each_cpu(cpu, this_scx->cpus_to_kick) { 6237 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 6238 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 6239 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6240 } 6241 6242 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 6243 kick_one_cpu_if_idle(cpu, this_rq); 6244 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6245 } 6246 6247 if (!should_wait) 6248 return; 6249 6250 for_each_cpu(cpu, this_scx->cpus_to_wait) { 6251 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 6252 6253 if (cpu != cpu_of(this_rq)) { 6254 /* 6255 * Pairs with smp_store_release() issued by this CPU in 6256 * switch_class() on the resched path. 6257 * 6258 * We busy-wait here to guarantee that no other task can 6259 * be scheduled on our core before the target CPU has 6260 * entered the resched path. 6261 */ 6262 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 6263 cpu_relax(); 6264 } 6265 6266 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6267 } 6268 } 6269 6270 /** 6271 * print_scx_info - print out sched_ext scheduler state 6272 * @log_lvl: the log level to use when printing 6273 * @p: target task 6274 * 6275 * If a sched_ext scheduler is enabled, print the name and state of the 6276 * scheduler. If @p is on sched_ext, print further information about the task. 6277 * 6278 * This function can be safely called on any task as long as the task_struct 6279 * itself is accessible. While safe, this function isn't synchronized and may 6280 * print out mixups or garbages of limited length. 6281 */ 6282 void print_scx_info(const char *log_lvl, struct task_struct *p) 6283 { 6284 enum scx_ops_enable_state state = scx_ops_enable_state(); 6285 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 6286 char runnable_at_buf[22] = "?"; 6287 struct sched_class *class; 6288 unsigned long runnable_at; 6289 6290 if (state == SCX_OPS_DISABLED) 6291 return; 6292 6293 /* 6294 * Carefully check if the task was running on sched_ext, and then 6295 * carefully copy the time it's been runnable, and its state. 6296 */ 6297 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 6298 class != &ext_sched_class) { 6299 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 6300 scx_ops_enable_state_str[state], all); 6301 return; 6302 } 6303 6304 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 6305 sizeof(runnable_at))) 6306 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6307 jiffies_delta_msecs(runnable_at, jiffies)); 6308 6309 /* print everything onto one line to conserve console space */ 6310 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6311 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 6312 runnable_at_buf); 6313 } 6314 6315 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6316 { 6317 /* 6318 * SCX schedulers often have userspace components which are sometimes 6319 * involved in critial scheduling paths. PM operations involve freezing 6320 * userspace which can lead to scheduling misbehaviors including stalls. 6321 * Let's bypass while PM operations are in progress. 6322 */ 6323 switch (event) { 6324 case PM_HIBERNATION_PREPARE: 6325 case PM_SUSPEND_PREPARE: 6326 case PM_RESTORE_PREPARE: 6327 scx_ops_bypass(true); 6328 break; 6329 case PM_POST_HIBERNATION: 6330 case PM_POST_SUSPEND: 6331 case PM_POST_RESTORE: 6332 scx_ops_bypass(false); 6333 break; 6334 } 6335 6336 return NOTIFY_OK; 6337 } 6338 6339 static struct notifier_block scx_pm_notifier = { 6340 .notifier_call = scx_pm_handler, 6341 }; 6342 6343 void __init init_sched_ext_class(void) 6344 { 6345 s32 cpu, v; 6346 6347 /* 6348 * The following is to prevent the compiler from optimizing out the enum 6349 * definitions so that BPF scheduler implementations can use them 6350 * through the generated vmlinux.h. 6351 */ 6352 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6353 SCX_TG_ONLINE); 6354 6355 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 6356 #ifdef CONFIG_SMP 6357 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 6358 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 6359 #endif 6360 scx_kick_cpus_pnt_seqs = 6361 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6362 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6363 BUG_ON(!scx_kick_cpus_pnt_seqs); 6364 6365 for_each_possible_cpu(cpu) { 6366 struct rq *rq = cpu_rq(cpu); 6367 6368 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6369 INIT_LIST_HEAD(&rq->scx.runnable_list); 6370 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6371 6372 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 6373 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 6374 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 6375 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 6376 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6377 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6378 6379 if (cpu_online(cpu)) 6380 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6381 } 6382 6383 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6384 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6385 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6386 } 6387 6388 6389 /******************************************************************************** 6390 * Helpers that can be called from the BPF scheduler. 6391 */ 6392 #include <linux/btf_ids.h> 6393 6394 __bpf_kfunc_start_defs(); 6395 6396 static bool check_builtin_idle_enabled(void) 6397 { 6398 if (static_branch_likely(&scx_builtin_idle_enabled)) 6399 return true; 6400 6401 scx_ops_error("built-in idle tracking is disabled"); 6402 return false; 6403 } 6404 6405 /** 6406 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 6407 * @p: task_struct to select a CPU for 6408 * @prev_cpu: CPU @p was on previously 6409 * @wake_flags: %SCX_WAKE_* flags 6410 * @is_idle: out parameter indicating whether the returned CPU is idle 6411 * 6412 * Can only be called from ops.select_cpu() if the built-in CPU selection is 6413 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 6414 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 6415 * 6416 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 6417 * currently idle and thus a good candidate for direct dispatching. 6418 */ 6419 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 6420 u64 wake_flags, bool *is_idle) 6421 { 6422 if (!check_builtin_idle_enabled()) 6423 goto prev_cpu; 6424 6425 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) 6426 goto prev_cpu; 6427 6428 #ifdef CONFIG_SMP 6429 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 6430 #endif 6431 6432 prev_cpu: 6433 *is_idle = false; 6434 return prev_cpu; 6435 } 6436 6437 __bpf_kfunc_end_defs(); 6438 6439 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 6440 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 6441 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 6442 6443 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 6444 .owner = THIS_MODULE, 6445 .set = &scx_kfunc_ids_select_cpu, 6446 }; 6447 6448 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6449 { 6450 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6451 return false; 6452 6453 lockdep_assert_irqs_disabled(); 6454 6455 if (unlikely(!p)) { 6456 scx_ops_error("called with NULL task"); 6457 return false; 6458 } 6459 6460 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6461 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 6462 return false; 6463 } 6464 6465 return true; 6466 } 6467 6468 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6469 u64 enq_flags) 6470 { 6471 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6472 struct task_struct *ddsp_task; 6473 6474 ddsp_task = __this_cpu_read(direct_dispatch_task); 6475 if (ddsp_task) { 6476 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6477 return; 6478 } 6479 6480 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6481 scx_ops_error("dispatch buffer overflow"); 6482 return; 6483 } 6484 6485 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6486 .task = p, 6487 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6488 .dsq_id = dsq_id, 6489 .enq_flags = enq_flags, 6490 }; 6491 } 6492 6493 __bpf_kfunc_start_defs(); 6494 6495 /** 6496 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6497 * @p: task_struct to insert 6498 * @dsq_id: DSQ to insert into 6499 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6500 * @enq_flags: SCX_ENQ_* 6501 * 6502 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6503 * call this function spuriously. Can be called from ops.enqueue(), 6504 * ops.select_cpu(), and ops.dispatch(). 6505 * 6506 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6507 * and @p must match the task being enqueued. 6508 * 6509 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6510 * will be directly inserted into the corresponding dispatch queue after 6511 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6512 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6513 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6514 * task is inserted. 6515 * 6516 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6517 * and this function can be called upto ops.dispatch_max_batch times to insert 6518 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6519 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6520 * 6521 * This function doesn't have any locking restrictions and may be called under 6522 * BPF locks (in the future when BPF introduces more flexible locking). 6523 * 6524 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6525 * exhaustion. If zero, the current residual slice is maintained. If 6526 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6527 * scx_bpf_kick_cpu() to trigger scheduling. 6528 */ 6529 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6530 u64 enq_flags) 6531 { 6532 if (!scx_dsq_insert_preamble(p, enq_flags)) 6533 return; 6534 6535 if (slice) 6536 p->scx.slice = slice; 6537 else 6538 p->scx.slice = p->scx.slice ?: 1; 6539 6540 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6541 } 6542 6543 /* for backward compatibility, will be removed in v6.15 */ 6544 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6545 u64 enq_flags) 6546 { 6547 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6548 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6549 } 6550 6551 /** 6552 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6553 * @p: task_struct to insert 6554 * @dsq_id: DSQ to insert into 6555 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6556 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6557 * @enq_flags: SCX_ENQ_* 6558 * 6559 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6560 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6561 * are identical to scx_bpf_dsq_insert(). 6562 * 6563 * @vtime ordering is according to time_before64() which considers wrapping. A 6564 * numerically larger vtime may indicate an earlier position in the ordering and 6565 * vice-versa. 6566 * 6567 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6568 * function must not be called on a DSQ which already has one or more FIFO tasks 6569 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6570 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6571 */ 6572 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6573 u64 slice, u64 vtime, u64 enq_flags) 6574 { 6575 if (!scx_dsq_insert_preamble(p, enq_flags)) 6576 return; 6577 6578 if (slice) 6579 p->scx.slice = slice; 6580 else 6581 p->scx.slice = p->scx.slice ?: 1; 6582 6583 p->scx.dsq_vtime = vtime; 6584 6585 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6586 } 6587 6588 /* for backward compatibility, will be removed in v6.15 */ 6589 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6590 u64 slice, u64 vtime, u64 enq_flags) 6591 { 6592 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6593 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6594 } 6595 6596 __bpf_kfunc_end_defs(); 6597 6598 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6599 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6600 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6601 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6602 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6603 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6604 6605 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6606 .owner = THIS_MODULE, 6607 .set = &scx_kfunc_ids_enqueue_dispatch, 6608 }; 6609 6610 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 6611 struct task_struct *p, u64 dsq_id, u64 enq_flags) 6612 { 6613 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6614 struct rq *this_rq, *src_rq, *locked_rq; 6615 bool dispatched = false; 6616 bool in_balance; 6617 unsigned long flags; 6618 6619 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6620 return false; 6621 6622 /* 6623 * Can be called from either ops.dispatch() locking this_rq() or any 6624 * context where no rq lock is held. If latter, lock @p's task_rq which 6625 * we'll likely need anyway. 6626 */ 6627 src_rq = task_rq(p); 6628 6629 local_irq_save(flags); 6630 this_rq = this_rq(); 6631 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6632 6633 if (in_balance) { 6634 if (this_rq != src_rq) { 6635 raw_spin_rq_unlock(this_rq); 6636 raw_spin_rq_lock(src_rq); 6637 } 6638 } else { 6639 raw_spin_rq_lock(src_rq); 6640 } 6641 6642 /* 6643 * If the BPF scheduler keeps calling this function repeatedly, it can 6644 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6645 * breather if necessary. 6646 */ 6647 scx_ops_breather(src_rq); 6648 6649 locked_rq = src_rq; 6650 raw_spin_lock(&src_dsq->lock); 6651 6652 /* 6653 * Did someone else get to it? @p could have already left $src_dsq, got 6654 * re-enqueud, or be in the process of being consumed by someone else. 6655 */ 6656 if (unlikely(p->scx.dsq != src_dsq || 6657 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6658 p->scx.holding_cpu >= 0) || 6659 WARN_ON_ONCE(src_rq != task_rq(p))) { 6660 raw_spin_unlock(&src_dsq->lock); 6661 goto out; 6662 } 6663 6664 /* @p is still on $src_dsq and stable, determine the destination */ 6665 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6666 6667 /* 6668 * Apply vtime and slice updates before moving so that the new time is 6669 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6670 * this is safe as we're locking it. 6671 */ 6672 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6673 p->scx.dsq_vtime = kit->vtime; 6674 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6675 p->scx.slice = kit->slice; 6676 6677 /* execute move */ 6678 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq); 6679 dispatched = true; 6680 out: 6681 if (in_balance) { 6682 if (this_rq != locked_rq) { 6683 raw_spin_rq_unlock(locked_rq); 6684 raw_spin_rq_lock(this_rq); 6685 } 6686 } else { 6687 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6688 } 6689 6690 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6691 __SCX_DSQ_ITER_HAS_VTIME); 6692 return dispatched; 6693 } 6694 6695 __bpf_kfunc_start_defs(); 6696 6697 /** 6698 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6699 * 6700 * Can only be called from ops.dispatch(). 6701 */ 6702 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6703 { 6704 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6705 return 0; 6706 6707 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6708 } 6709 6710 /** 6711 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6712 * 6713 * Cancel the latest dispatch. Can be called multiple times to cancel further 6714 * dispatches. Can only be called from ops.dispatch(). 6715 */ 6716 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6717 { 6718 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6719 6720 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6721 return; 6722 6723 if (dspc->cursor > 0) 6724 dspc->cursor--; 6725 else 6726 scx_ops_error("dispatch buffer underflow"); 6727 } 6728 6729 /** 6730 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6731 * @dsq_id: DSQ to move task from 6732 * 6733 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6734 * local DSQ for execution. Can only be called from ops.dispatch(). 6735 * 6736 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6737 * before trying to move from the specified DSQ. It may also grab rq locks and 6738 * thus can't be called under any BPF locks. 6739 * 6740 * Returns %true if a task has been moved, %false if there isn't any task to 6741 * move. 6742 */ 6743 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6744 { 6745 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6746 struct scx_dispatch_q *dsq; 6747 6748 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6749 return false; 6750 6751 flush_dispatch_buf(dspc->rq); 6752 6753 dsq = find_user_dsq(dsq_id); 6754 if (unlikely(!dsq)) { 6755 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6756 return false; 6757 } 6758 6759 if (consume_dispatch_q(dspc->rq, dsq)) { 6760 /* 6761 * A successfully consumed task can be dequeued before it starts 6762 * running while the CPU is trying to migrate other dispatched 6763 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6764 * local DSQ. 6765 */ 6766 dspc->nr_tasks++; 6767 return true; 6768 } else { 6769 return false; 6770 } 6771 } 6772 6773 /* for backward compatibility, will be removed in v6.15 */ 6774 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6775 { 6776 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6777 return scx_bpf_dsq_move_to_local(dsq_id); 6778 } 6779 6780 /** 6781 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6782 * @it__iter: DSQ iterator in progress 6783 * @slice: duration the moved task can run for in nsecs 6784 * 6785 * Override the slice of the next task that will be moved from @it__iter using 6786 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6787 * slice duration is kept. 6788 */ 6789 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6790 u64 slice) 6791 { 6792 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6793 6794 kit->slice = slice; 6795 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6796 } 6797 6798 /* for backward compatibility, will be removed in v6.15 */ 6799 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6800 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6801 { 6802 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()"); 6803 scx_bpf_dsq_move_set_slice(it__iter, slice); 6804 } 6805 6806 /** 6807 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6808 * @it__iter: DSQ iterator in progress 6809 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6810 * 6811 * Override the vtime of the next task that will be moved from @it__iter using 6812 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6813 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6814 * override is ignored and cleared. 6815 */ 6816 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6817 u64 vtime) 6818 { 6819 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6820 6821 kit->vtime = vtime; 6822 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6823 } 6824 6825 /* for backward compatibility, will be removed in v6.15 */ 6826 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6827 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6828 { 6829 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()"); 6830 scx_bpf_dsq_move_set_vtime(it__iter, vtime); 6831 } 6832 6833 /** 6834 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6835 * @it__iter: DSQ iterator in progress 6836 * @p: task to transfer 6837 * @dsq_id: DSQ to move @p to 6838 * @enq_flags: SCX_ENQ_* 6839 * 6840 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6841 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6842 * be the destination. 6843 * 6844 * For the transfer to be successful, @p must still be on the DSQ and have been 6845 * queued before the DSQ iteration started. This function doesn't care whether 6846 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6847 * been queued before the iteration started. 6848 * 6849 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6850 * 6851 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6852 * lock (e.g. BPF timers or SYSCALL programs). 6853 * 6854 * Returns %true if @p has been consumed, %false if @p had already been consumed 6855 * or dequeued. 6856 */ 6857 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6858 struct task_struct *p, u64 dsq_id, 6859 u64 enq_flags) 6860 { 6861 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6862 p, dsq_id, enq_flags); 6863 } 6864 6865 /* for backward compatibility, will be removed in v6.15 */ 6866 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6867 struct task_struct *p, u64 dsq_id, 6868 u64 enq_flags) 6869 { 6870 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()"); 6871 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags); 6872 } 6873 6874 /** 6875 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6876 * @it__iter: DSQ iterator in progress 6877 * @p: task to transfer 6878 * @dsq_id: DSQ to move @p to 6879 * @enq_flags: SCX_ENQ_* 6880 * 6881 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6882 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6883 * user DSQ as only user DSQs support priority queue. 6884 * 6885 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6886 * and scx_bpf_dsq_move_set_vtime() to update. 6887 * 6888 * All other aspects are identical to scx_bpf_dsq_move(). See 6889 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6890 */ 6891 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6892 struct task_struct *p, u64 dsq_id, 6893 u64 enq_flags) 6894 { 6895 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6896 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6897 } 6898 6899 /* for backward compatibility, will be removed in v6.15 */ 6900 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6901 struct task_struct *p, u64 dsq_id, 6902 u64 enq_flags) 6903 { 6904 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()"); 6905 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags); 6906 } 6907 6908 __bpf_kfunc_end_defs(); 6909 6910 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6911 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6912 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6913 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6914 BTF_ID_FLAGS(func, scx_bpf_consume) 6915 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6916 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6917 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6918 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6919 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6920 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6921 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6922 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6923 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6924 6925 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6926 .owner = THIS_MODULE, 6927 .set = &scx_kfunc_ids_dispatch, 6928 }; 6929 6930 __bpf_kfunc_start_defs(); 6931 6932 /** 6933 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6934 * 6935 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6936 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6937 * processed tasks. Can only be called from ops.cpu_release(). 6938 */ 6939 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6940 { 6941 LIST_HEAD(tasks); 6942 u32 nr_enqueued = 0; 6943 struct rq *rq; 6944 struct task_struct *p, *n; 6945 6946 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6947 return 0; 6948 6949 rq = cpu_rq(smp_processor_id()); 6950 lockdep_assert_rq_held(rq); 6951 6952 /* 6953 * The BPF scheduler may choose to dispatch tasks back to 6954 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6955 * first to avoid processing the same tasks repeatedly. 6956 */ 6957 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6958 scx.dsq_list.node) { 6959 /* 6960 * If @p is being migrated, @p's current CPU may not agree with 6961 * its allowed CPUs and the migration_cpu_stop is about to 6962 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6963 * 6964 * While racing sched property changes may also dequeue and 6965 * re-enqueue a migrating task while its current CPU and allowed 6966 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6967 * the current local DSQ for running tasks and thus are not 6968 * visible to the BPF scheduler. 6969 */ 6970 if (p->migration_pending) 6971 continue; 6972 6973 dispatch_dequeue(rq, p); 6974 list_add_tail(&p->scx.dsq_list.node, &tasks); 6975 } 6976 6977 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6978 list_del_init(&p->scx.dsq_list.node); 6979 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6980 nr_enqueued++; 6981 } 6982 6983 return nr_enqueued; 6984 } 6985 6986 __bpf_kfunc_end_defs(); 6987 6988 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6989 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6990 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6991 6992 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6993 .owner = THIS_MODULE, 6994 .set = &scx_kfunc_ids_cpu_release, 6995 }; 6996 6997 __bpf_kfunc_start_defs(); 6998 6999 /** 7000 * scx_bpf_create_dsq - Create a custom DSQ 7001 * @dsq_id: DSQ to create 7002 * @node: NUMA node to allocate from 7003 * 7004 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 7005 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 7006 */ 7007 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 7008 { 7009 if (unlikely(node >= (int)nr_node_ids || 7010 (node < 0 && node != NUMA_NO_NODE))) 7011 return -EINVAL; 7012 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 7013 } 7014 7015 __bpf_kfunc_end_defs(); 7016 7017 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 7018 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 7019 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 7020 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 7021 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 7022 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 7023 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 7024 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 7025 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 7026 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 7027 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 7028 7029 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 7030 .owner = THIS_MODULE, 7031 .set = &scx_kfunc_ids_unlocked, 7032 }; 7033 7034 __bpf_kfunc_start_defs(); 7035 7036 /** 7037 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 7038 * @cpu: cpu to kick 7039 * @flags: %SCX_KICK_* flags 7040 * 7041 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 7042 * trigger rescheduling on a busy CPU. This can be called from any online 7043 * scx_ops operation and the actual kicking is performed asynchronously through 7044 * an irq work. 7045 */ 7046 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 7047 { 7048 struct rq *this_rq; 7049 unsigned long irq_flags; 7050 7051 if (!ops_cpu_valid(cpu, NULL)) 7052 return; 7053 7054 local_irq_save(irq_flags); 7055 7056 this_rq = this_rq(); 7057 7058 /* 7059 * While bypassing for PM ops, IRQ handling may not be online which can 7060 * lead to irq_work_queue() malfunction such as infinite busy wait for 7061 * IRQ status update. Suppress kicking. 7062 */ 7063 if (scx_rq_bypassing(this_rq)) 7064 goto out; 7065 7066 /* 7067 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 7068 * rq locks. We can probably be smarter and avoid bouncing if called 7069 * from ops which don't hold a rq lock. 7070 */ 7071 if (flags & SCX_KICK_IDLE) { 7072 struct rq *target_rq = cpu_rq(cpu); 7073 7074 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 7075 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 7076 7077 if (raw_spin_rq_trylock(target_rq)) { 7078 if (can_skip_idle_kick(target_rq)) { 7079 raw_spin_rq_unlock(target_rq); 7080 goto out; 7081 } 7082 raw_spin_rq_unlock(target_rq); 7083 } 7084 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 7085 } else { 7086 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 7087 7088 if (flags & SCX_KICK_PREEMPT) 7089 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 7090 if (flags & SCX_KICK_WAIT) 7091 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 7092 } 7093 7094 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 7095 out: 7096 local_irq_restore(irq_flags); 7097 } 7098 7099 /** 7100 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 7101 * @dsq_id: id of the DSQ 7102 * 7103 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 7104 * -%ENOENT is returned. 7105 */ 7106 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 7107 { 7108 struct scx_dispatch_q *dsq; 7109 s32 ret; 7110 7111 preempt_disable(); 7112 7113 if (dsq_id == SCX_DSQ_LOCAL) { 7114 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 7115 goto out; 7116 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 7117 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 7118 7119 if (ops_cpu_valid(cpu, NULL)) { 7120 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 7121 goto out; 7122 } 7123 } else { 7124 dsq = find_user_dsq(dsq_id); 7125 if (dsq) { 7126 ret = READ_ONCE(dsq->nr); 7127 goto out; 7128 } 7129 } 7130 ret = -ENOENT; 7131 out: 7132 preempt_enable(); 7133 return ret; 7134 } 7135 7136 /** 7137 * scx_bpf_destroy_dsq - Destroy a custom DSQ 7138 * @dsq_id: DSQ to destroy 7139 * 7140 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 7141 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 7142 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 7143 * which doesn't exist. Can be called from any online scx_ops operations. 7144 */ 7145 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 7146 { 7147 destroy_dsq(dsq_id); 7148 } 7149 7150 /** 7151 * bpf_iter_scx_dsq_new - Create a DSQ iterator 7152 * @it: iterator to initialize 7153 * @dsq_id: DSQ to iterate 7154 * @flags: %SCX_DSQ_ITER_* 7155 * 7156 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 7157 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 7158 * tasks which are already queued when this function is invoked. 7159 */ 7160 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 7161 u64 flags) 7162 { 7163 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7164 7165 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 7166 sizeof(struct bpf_iter_scx_dsq)); 7167 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 7168 __alignof__(struct bpf_iter_scx_dsq)); 7169 7170 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 7171 return -EINVAL; 7172 7173 kit->dsq = find_user_dsq(dsq_id); 7174 if (!kit->dsq) 7175 return -ENOENT; 7176 7177 INIT_LIST_HEAD(&kit->cursor.node); 7178 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 7179 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 7180 7181 return 0; 7182 } 7183 7184 /** 7185 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 7186 * @it: iterator to progress 7187 * 7188 * Return the next task. See bpf_iter_scx_dsq_new(). 7189 */ 7190 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 7191 { 7192 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7193 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 7194 struct task_struct *p; 7195 unsigned long flags; 7196 7197 if (!kit->dsq) 7198 return NULL; 7199 7200 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7201 7202 if (list_empty(&kit->cursor.node)) 7203 p = NULL; 7204 else 7205 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 7206 7207 /* 7208 * Only tasks which were queued before the iteration started are 7209 * visible. This bounds BPF iterations and guarantees that vtime never 7210 * jumps in the other direction while iterating. 7211 */ 7212 do { 7213 p = nldsq_next_task(kit->dsq, p, rev); 7214 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 7215 7216 if (p) { 7217 if (rev) 7218 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 7219 else 7220 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 7221 } else { 7222 list_del_init(&kit->cursor.node); 7223 } 7224 7225 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7226 7227 return p; 7228 } 7229 7230 /** 7231 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 7232 * @it: iterator to destroy 7233 * 7234 * Undo scx_iter_scx_dsq_new(). 7235 */ 7236 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 7237 { 7238 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7239 7240 if (!kit->dsq) 7241 return; 7242 7243 if (!list_empty(&kit->cursor.node)) { 7244 unsigned long flags; 7245 7246 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7247 list_del_init(&kit->cursor.node); 7248 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7249 } 7250 kit->dsq = NULL; 7251 } 7252 7253 __bpf_kfunc_end_defs(); 7254 7255 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 7256 char *fmt, unsigned long long *data, u32 data__sz) 7257 { 7258 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 7259 s32 ret; 7260 7261 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 7262 (data__sz && !data)) { 7263 scx_ops_error("invalid data=%p and data__sz=%u", 7264 (void *)data, data__sz); 7265 return -EINVAL; 7266 } 7267 7268 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 7269 if (ret < 0) { 7270 scx_ops_error("failed to read data fields (%d)", ret); 7271 return ret; 7272 } 7273 7274 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 7275 &bprintf_data); 7276 if (ret < 0) { 7277 scx_ops_error("format preparation failed (%d)", ret); 7278 return ret; 7279 } 7280 7281 ret = bstr_printf(line_buf, line_size, fmt, 7282 bprintf_data.bin_args); 7283 bpf_bprintf_cleanup(&bprintf_data); 7284 if (ret < 0) { 7285 scx_ops_error("(\"%s\", %p, %u) failed to format", 7286 fmt, data, data__sz); 7287 return ret; 7288 } 7289 7290 return ret; 7291 } 7292 7293 static s32 bstr_format(struct scx_bstr_buf *buf, 7294 char *fmt, unsigned long long *data, u32 data__sz) 7295 { 7296 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 7297 fmt, data, data__sz); 7298 } 7299 7300 __bpf_kfunc_start_defs(); 7301 7302 /** 7303 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 7304 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 7305 * @fmt: error message format string 7306 * @data: format string parameters packaged using ___bpf_fill() macro 7307 * @data__sz: @data len, must end in '__sz' for the verifier 7308 * 7309 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 7310 * disabling. 7311 */ 7312 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 7313 unsigned long long *data, u32 data__sz) 7314 { 7315 unsigned long flags; 7316 7317 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7318 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7319 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 7320 scx_exit_bstr_buf.line); 7321 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7322 } 7323 7324 /** 7325 * scx_bpf_error_bstr - Indicate fatal error 7326 * @fmt: error message format string 7327 * @data: format string parameters packaged using ___bpf_fill() macro 7328 * @data__sz: @data len, must end in '__sz' for the verifier 7329 * 7330 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 7331 * disabling. 7332 */ 7333 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 7334 u32 data__sz) 7335 { 7336 unsigned long flags; 7337 7338 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7339 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7340 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 7341 scx_exit_bstr_buf.line); 7342 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7343 } 7344 7345 /** 7346 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 7347 * @fmt: format string 7348 * @data: format string parameters packaged using ___bpf_fill() macro 7349 * @data__sz: @data len, must end in '__sz' for the verifier 7350 * 7351 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 7352 * dump_task() to generate extra debug dump specific to the BPF scheduler. 7353 * 7354 * The extra dump may be multiple lines. A single line may be split over 7355 * multiple calls. The last line is automatically terminated. 7356 */ 7357 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 7358 u32 data__sz) 7359 { 7360 struct scx_dump_data *dd = &scx_dump_data; 7361 struct scx_bstr_buf *buf = &dd->buf; 7362 s32 ret; 7363 7364 if (raw_smp_processor_id() != dd->cpu) { 7365 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7366 return; 7367 } 7368 7369 /* append the formatted string to the line buf */ 7370 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7371 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7372 if (ret < 0) { 7373 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7374 dd->prefix, fmt, data, data__sz, ret); 7375 return; 7376 } 7377 7378 dd->cursor += ret; 7379 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7380 7381 if (!dd->cursor) 7382 return; 7383 7384 /* 7385 * If the line buf overflowed or ends in a newline, flush it into the 7386 * dump. This is to allow the caller to generate a single line over 7387 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7388 * the line buf, the only case which can lead to an unexpected 7389 * truncation is when the caller keeps generating newlines in the middle 7390 * instead of the end consecutively. Don't do that. 7391 */ 7392 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7393 ops_dump_flush(); 7394 } 7395 7396 /** 7397 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7398 * @cpu: CPU of interest 7399 * 7400 * Return the maximum relative capacity of @cpu in relation to the most 7401 * performant CPU in the system. The return value is in the range [1, 7402 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7403 */ 7404 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7405 { 7406 if (ops_cpu_valid(cpu, NULL)) 7407 return arch_scale_cpu_capacity(cpu); 7408 else 7409 return SCX_CPUPERF_ONE; 7410 } 7411 7412 /** 7413 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7414 * @cpu: CPU of interest 7415 * 7416 * Return the current relative performance of @cpu in relation to its maximum. 7417 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7418 * 7419 * The current performance level of a CPU in relation to the maximum performance 7420 * available in the system can be calculated as follows: 7421 * 7422 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7423 * 7424 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7425 */ 7426 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7427 { 7428 if (ops_cpu_valid(cpu, NULL)) 7429 return arch_scale_freq_capacity(cpu); 7430 else 7431 return SCX_CPUPERF_ONE; 7432 } 7433 7434 /** 7435 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7436 * @cpu: CPU of interest 7437 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7438 * 7439 * Set the target performance level of @cpu to @perf. @perf is in linear 7440 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7441 * schedutil cpufreq governor chooses the target frequency. 7442 * 7443 * The actual performance level chosen, CPU grouping, and the overhead and 7444 * latency of the operations are dependent on the hardware and cpufreq driver in 7445 * use. Consult hardware and cpufreq documentation for more information. The 7446 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7447 */ 7448 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7449 { 7450 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7451 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7452 return; 7453 } 7454 7455 if (ops_cpu_valid(cpu, NULL)) { 7456 struct rq *rq = cpu_rq(cpu); 7457 7458 rq->scx.cpuperf_target = perf; 7459 7460 rcu_read_lock_sched_notrace(); 7461 cpufreq_update_util(cpu_rq(cpu), 0); 7462 rcu_read_unlock_sched_notrace(); 7463 } 7464 } 7465 7466 /** 7467 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7468 * 7469 * All valid CPU IDs in the system are smaller than the returned value. 7470 */ 7471 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7472 { 7473 return nr_cpu_ids; 7474 } 7475 7476 /** 7477 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7478 */ 7479 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7480 { 7481 return cpu_possible_mask; 7482 } 7483 7484 /** 7485 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7486 */ 7487 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7488 { 7489 return cpu_online_mask; 7490 } 7491 7492 /** 7493 * scx_bpf_put_cpumask - Release a possible/online cpumask 7494 * @cpumask: cpumask to release 7495 */ 7496 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7497 { 7498 /* 7499 * Empty function body because we aren't actually acquiring or releasing 7500 * a reference to a global cpumask, which is read-only in the caller and 7501 * is never released. The acquire / release semantics here are just used 7502 * to make the cpumask is a trusted pointer in the caller. 7503 */ 7504 } 7505 7506 /** 7507 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 7508 * per-CPU cpumask. 7509 * 7510 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7511 */ 7512 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 7513 { 7514 if (!check_builtin_idle_enabled()) 7515 return cpu_none_mask; 7516 7517 #ifdef CONFIG_SMP 7518 return idle_masks.cpu; 7519 #else 7520 return cpu_none_mask; 7521 #endif 7522 } 7523 7524 /** 7525 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 7526 * per-physical-core cpumask. Can be used to determine if an entire physical 7527 * core is free. 7528 * 7529 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7530 */ 7531 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 7532 { 7533 if (!check_builtin_idle_enabled()) 7534 return cpu_none_mask; 7535 7536 #ifdef CONFIG_SMP 7537 if (sched_smt_active()) 7538 return idle_masks.smt; 7539 else 7540 return idle_masks.cpu; 7541 #else 7542 return cpu_none_mask; 7543 #endif 7544 } 7545 7546 /** 7547 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 7548 * either the percpu, or SMT idle-tracking cpumask. 7549 * @idle_mask: &cpumask to use 7550 */ 7551 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 7552 { 7553 /* 7554 * Empty function body because we aren't actually acquiring or releasing 7555 * a reference to a global idle cpumask, which is read-only in the 7556 * caller and is never released. The acquire / release semantics here 7557 * are just used to make the cpumask a trusted pointer in the caller. 7558 */ 7559 } 7560 7561 /** 7562 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 7563 * @cpu: cpu to test and clear idle for 7564 * 7565 * Returns %true if @cpu was idle and its idle state was successfully cleared. 7566 * %false otherwise. 7567 * 7568 * Unavailable if ops.update_idle() is implemented and 7569 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7570 */ 7571 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 7572 { 7573 if (!check_builtin_idle_enabled()) 7574 return false; 7575 7576 if (ops_cpu_valid(cpu, NULL)) 7577 return test_and_clear_cpu_idle(cpu); 7578 else 7579 return false; 7580 } 7581 7582 /** 7583 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 7584 * @cpus_allowed: Allowed cpumask 7585 * @flags: %SCX_PICK_IDLE_CPU_* flags 7586 * 7587 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 7588 * number on success. -%EBUSY if no matching cpu was found. 7589 * 7590 * Idle CPU tracking may race against CPU scheduling state transitions. For 7591 * example, this function may return -%EBUSY as CPUs are transitioning into the 7592 * idle state. If the caller then assumes that there will be dispatch events on 7593 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 7594 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7595 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7596 * event in the near future. 7597 * 7598 * Unavailable if ops.update_idle() is implemented and 7599 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7600 */ 7601 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7602 u64 flags) 7603 { 7604 if (!check_builtin_idle_enabled()) 7605 return -EBUSY; 7606 7607 return scx_pick_idle_cpu(cpus_allowed, flags); 7608 } 7609 7610 /** 7611 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7612 * @cpus_allowed: Allowed cpumask 7613 * @flags: %SCX_PICK_IDLE_CPU_* flags 7614 * 7615 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7616 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7617 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7618 * empty. 7619 * 7620 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7621 * set, this function can't tell which CPUs are idle and will always pick any 7622 * CPU. 7623 */ 7624 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7625 u64 flags) 7626 { 7627 s32 cpu; 7628 7629 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7630 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7631 if (cpu >= 0) 7632 return cpu; 7633 } 7634 7635 cpu = cpumask_any_distribute(cpus_allowed); 7636 if (cpu < nr_cpu_ids) 7637 return cpu; 7638 else 7639 return -EBUSY; 7640 } 7641 7642 /** 7643 * scx_bpf_task_running - Is task currently running? 7644 * @p: task of interest 7645 */ 7646 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7647 { 7648 return task_rq(p)->curr == p; 7649 } 7650 7651 /** 7652 * scx_bpf_task_cpu - CPU a task is currently associated with 7653 * @p: task of interest 7654 */ 7655 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7656 { 7657 return task_cpu(p); 7658 } 7659 7660 /** 7661 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7662 * @cpu: CPU of the rq 7663 */ 7664 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7665 { 7666 if (!ops_cpu_valid(cpu, NULL)) 7667 return NULL; 7668 7669 return cpu_rq(cpu); 7670 } 7671 7672 /** 7673 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7674 * @p: task of interest 7675 * 7676 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7677 * from the scheduler's POV. SCX operations should use this function to 7678 * determine @p's current cgroup as, unlike following @p->cgroups, 7679 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7680 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7681 * operations. The restriction guarantees that @p's rq is locked by the caller. 7682 */ 7683 #ifdef CONFIG_CGROUP_SCHED 7684 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7685 { 7686 struct task_group *tg = p->sched_task_group; 7687 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7688 7689 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7690 goto out; 7691 7692 cgrp = tg_cgrp(tg); 7693 7694 out: 7695 cgroup_get(cgrp); 7696 return cgrp; 7697 } 7698 #endif 7699 7700 /** 7701 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7702 * clock for the current CPU. The clock returned is in nanoseconds. 7703 * 7704 * It provides the following properties: 7705 * 7706 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7707 * to account for execution time and track tasks' runtime properties. 7708 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7709 * eventually reads a hardware timestamp counter -- is neither performant nor 7710 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7711 * using the rq clock in the scheduler core whenever possible. 7712 * 7713 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7714 * scheduler use cases, the required clock resolution is lower than the most 7715 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7716 * uses the rq clock in the scheduler core whenever it is valid. It considers 7717 * that the rq clock is valid from the time the rq clock is updated 7718 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7719 * 7720 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7721 * guarantees the clock never goes backward when comparing them in the same 7722 * CPU. On the other hand, when comparing clocks in different CPUs, there 7723 * is no such guarantee -- the clock can go backward. It provides a 7724 * monotonically *non-decreasing* clock so that it would provide the same 7725 * clock values in two different scx_bpf_now() calls in the same CPU 7726 * during the same period of when the rq clock is valid. 7727 */ 7728 __bpf_kfunc u64 scx_bpf_now(void) 7729 { 7730 struct rq *rq; 7731 u64 clock; 7732 7733 preempt_disable(); 7734 7735 rq = this_rq(); 7736 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7737 /* 7738 * If the rq clock is valid, use the cached rq clock. 7739 * 7740 * Note that scx_bpf_now() is re-entrant between a process 7741 * context and an interrupt context (e.g., timer interrupt). 7742 * However, we don't need to consider the race between them 7743 * because such race is not observable from a caller. 7744 */ 7745 clock = READ_ONCE(rq->scx.clock); 7746 } else { 7747 /* 7748 * Otherwise, return a fresh rq clock. 7749 * 7750 * The rq clock is updated outside of the rq lock. 7751 * In this case, keep the updated rq clock invalid so the next 7752 * kfunc call outside the rq lock gets a fresh rq clock. 7753 */ 7754 clock = sched_clock_cpu(cpu_of(rq)); 7755 } 7756 7757 preempt_enable(); 7758 7759 return clock; 7760 } 7761 7762 __bpf_kfunc_end_defs(); 7763 7764 BTF_KFUNCS_START(scx_kfunc_ids_any) 7765 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7766 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7767 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7768 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7769 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7770 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7771 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7772 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7773 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7774 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7775 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7776 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7777 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7778 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7779 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7780 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7781 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7782 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7783 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7784 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7785 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7786 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7787 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7788 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7789 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7790 #ifdef CONFIG_CGROUP_SCHED 7791 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7792 #endif 7793 BTF_ID_FLAGS(func, scx_bpf_now) 7794 BTF_KFUNCS_END(scx_kfunc_ids_any) 7795 7796 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7797 .owner = THIS_MODULE, 7798 .set = &scx_kfunc_ids_any, 7799 }; 7800 7801 static int __init scx_init(void) 7802 { 7803 int ret; 7804 7805 /* 7806 * kfunc registration can't be done from init_sched_ext_class() as 7807 * register_btf_kfunc_id_set() needs most of the system to be up. 7808 * 7809 * Some kfuncs are context-sensitive and can only be called from 7810 * specific SCX ops. They are grouped into BTF sets accordingly. 7811 * Unfortunately, BPF currently doesn't have a way of enforcing such 7812 * restrictions. Eventually, the verifier should be able to enforce 7813 * them. For now, register them the same and make each kfunc explicitly 7814 * check using scx_kf_allowed(). 7815 */ 7816 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7817 &scx_kfunc_set_select_cpu)) || 7818 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7819 &scx_kfunc_set_enqueue_dispatch)) || 7820 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7821 &scx_kfunc_set_dispatch)) || 7822 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7823 &scx_kfunc_set_cpu_release)) || 7824 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7825 &scx_kfunc_set_unlocked)) || 7826 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7827 &scx_kfunc_set_unlocked)) || 7828 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7829 &scx_kfunc_set_any)) || 7830 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7831 &scx_kfunc_set_any)) || 7832 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7833 &scx_kfunc_set_any))) { 7834 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7835 return ret; 7836 } 7837 7838 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7839 if (ret) { 7840 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7841 return ret; 7842 } 7843 7844 ret = register_pm_notifier(&scx_pm_notifier); 7845 if (ret) { 7846 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7847 return ret; 7848 } 7849 7850 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7851 if (!scx_kset) { 7852 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7853 return -ENOMEM; 7854 } 7855 7856 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7857 if (ret < 0) { 7858 pr_err("sched_ext: Failed to add global attributes\n"); 7859 return ret; 7860 } 7861 7862 return 0; 7863 } 7864 __initcall(scx_init); 7865