xref: /linux/kernel/sched/ext.c (revision 2e1ce39fde7caacc98bc0472d15e8c641dfb31bf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4  *
5  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8  */
9 #define SCX_OP_IDX(op)		(offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10 
11 enum scx_consts {
12 	SCX_DSP_DFL_MAX_BATCH		= 32,
13 	SCX_DSP_MAX_LOOPS		= 32,
14 	SCX_WATCHDOG_MAX_TIMEOUT	= 30 * HZ,
15 
16 	SCX_EXIT_BT_LEN			= 64,
17 	SCX_EXIT_MSG_LEN		= 1024,
18 	SCX_EXIT_DUMP_DFL_LEN		= 32768,
19 
20 	SCX_CPUPERF_ONE			= SCHED_CAPACITY_SCALE,
21 
22 	/*
23 	 * Iterating all tasks may take a while. Periodically drop
24 	 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 	 */
26 	SCX_OPS_TASK_ITER_BATCH		= 32,
27 };
28 
29 enum scx_exit_kind {
30 	SCX_EXIT_NONE,
31 	SCX_EXIT_DONE,
32 
33 	SCX_EXIT_UNREG = 64,	/* user-space initiated unregistration */
34 	SCX_EXIT_UNREG_BPF,	/* BPF-initiated unregistration */
35 	SCX_EXIT_UNREG_KERN,	/* kernel-initiated unregistration */
36 	SCX_EXIT_SYSRQ,		/* requested by 'S' sysrq */
37 
38 	SCX_EXIT_ERROR = 1024,	/* runtime error, error msg contains details */
39 	SCX_EXIT_ERROR_BPF,	/* ERROR but triggered through scx_bpf_error() */
40 	SCX_EXIT_ERROR_STALL,	/* watchdog detected stalled runnable tasks */
41 };
42 
43 /*
44  * An exit code can be specified when exiting with scx_bpf_exit() or
45  * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46  * respectively. The codes are 64bit of the format:
47  *
48  *   Bits: [63  ..  48 47   ..  32 31 .. 0]
49  *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
50  *
51  *   SYS ACT: System-defined exit actions
52  *   SYS RSN: System-defined exit reasons
53  *   USR    : User-defined exit codes and reasons
54  *
55  * Using the above, users may communicate intention and context by ORing system
56  * actions and/or system reasons with a user-defined exit code.
57  */
58 enum scx_exit_code {
59 	/* Reasons */
60 	SCX_ECODE_RSN_HOTPLUG	= 1LLU << 32,
61 
62 	/* Actions */
63 	SCX_ECODE_ACT_RESTART	= 1LLU << 48,
64 };
65 
66 /*
67  * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68  * being disabled.
69  */
70 struct scx_exit_info {
71 	/* %SCX_EXIT_* - broad category of the exit reason */
72 	enum scx_exit_kind	kind;
73 
74 	/* exit code if gracefully exiting */
75 	s64			exit_code;
76 
77 	/* textual representation of the above */
78 	const char		*reason;
79 
80 	/* backtrace if exiting due to an error */
81 	unsigned long		*bt;
82 	u32			bt_len;
83 
84 	/* informational message */
85 	char			*msg;
86 
87 	/* debug dump */
88 	char			*dump;
89 };
90 
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 	/*
94 	 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 	 */
96 	SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97 
98 	/*
99 	 * By default, if there are no other task to run on the CPU, ext core
100 	 * keeps running the current task even after its slice expires. If this
101 	 * flag is specified, such tasks are passed to ops.enqueue() with
102 	 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 	 */
104 	SCX_OPS_ENQ_LAST	= 1LLU << 1,
105 
106 	/*
107 	 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 	 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 	 * scheduler depends on pid lookup for dispatching, the task will be
110 	 * lost leading to various issues including RCU grace period stalls.
111 	 *
112 	 * To mask this problem, by default, unhashed tasks are automatically
113 	 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 	 * depend on pid lookups and wants to handle these tasks directly, the
115 	 * following flag can be used.
116 	 */
117 	SCX_OPS_ENQ_EXITING	= 1LLU << 2,
118 
119 	/*
120 	 * If set, only tasks with policy set to SCHED_EXT are attached to
121 	 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 	 */
123 	SCX_OPS_SWITCH_PARTIAL	= 1LLU << 3,
124 
125 	/*
126 	 * CPU cgroup support flags
127 	 */
128 	SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16,	/* cpu.weight */
129 
130 	SCX_OPS_ALL_FLAGS	= SCX_OPS_KEEP_BUILTIN_IDLE |
131 				  SCX_OPS_ENQ_LAST |
132 				  SCX_OPS_ENQ_EXITING |
133 				  SCX_OPS_SWITCH_PARTIAL |
134 				  SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136 
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 	/*
140 	 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 	 * to the scheduler transition path.
142 	 */
143 	bool			fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 	/* the cgroup the task is joining */
146 	struct cgroup		*cgroup;
147 #endif
148 };
149 
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 	/* Whether the task exited before running on sched_ext. */
153 	bool cancelled;
154 };
155 
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 	/* the weight of the cgroup [1..10000] */
159 	u32			weight;
160 };
161 
162 enum scx_cpu_preempt_reason {
163 	/* next task is being scheduled by &sched_class_rt */
164 	SCX_CPU_PREEMPT_RT,
165 	/* next task is being scheduled by &sched_class_dl */
166 	SCX_CPU_PREEMPT_DL,
167 	/* next task is being scheduled by &sched_class_stop */
168 	SCX_CPU_PREEMPT_STOP,
169 	/* unknown reason for SCX being preempted */
170 	SCX_CPU_PREEMPT_UNKNOWN,
171 };
172 
173 /*
174  * Argument container for ops->cpu_acquire(). Currently empty, but may be
175  * expanded in the future.
176  */
177 struct scx_cpu_acquire_args {};
178 
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 	/* the reason the CPU was preempted */
182 	enum scx_cpu_preempt_reason reason;
183 
184 	/* the task that's going to be scheduled on the CPU */
185 	struct task_struct	*task;
186 };
187 
188 /*
189  * Informational context provided to dump operations.
190  */
191 struct scx_dump_ctx {
192 	enum scx_exit_kind	kind;
193 	s64			exit_code;
194 	const char		*reason;
195 	u64			at_ns;
196 	u64			at_jiffies;
197 };
198 
199 /**
200  * struct sched_ext_ops - Operation table for BPF scheduler implementation
201  *
202  * A BPF scheduler can implement an arbitrary scheduling policy by
203  * implementing and loading operations in this table. Note that a userland
204  * scheduling policy can also be implemented using the BPF scheduler
205  * as a shim layer.
206  */
207 struct sched_ext_ops {
208 	/**
209 	 * select_cpu - Pick the target CPU for a task which is being woken up
210 	 * @p: task being woken up
211 	 * @prev_cpu: the cpu @p was on before sleeping
212 	 * @wake_flags: SCX_WAKE_*
213 	 *
214 	 * Decision made here isn't final. @p may be moved to any CPU while it
215 	 * is getting dispatched for execution later. However, as @p is not on
216 	 * the rq at this point, getting the eventual execution CPU right here
217 	 * saves a small bit of overhead down the line.
218 	 *
219 	 * If an idle CPU is returned, the CPU is kicked and will try to
220 	 * dispatch. While an explicit custom mechanism can be added,
221 	 * select_cpu() serves as the default way to wake up idle CPUs.
222 	 *
223 	 * @p may be inserted into a DSQ directly by calling
224 	 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
225 	 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
226 	 * of the CPU returned by this operation.
227 	 *
228 	 * Note that select_cpu() is never called for tasks that can only run
229 	 * on a single CPU or tasks with migration disabled, as they don't have
230 	 * the option to select a different CPU. See select_task_rq() for
231 	 * details.
232 	 */
233 	s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
234 
235 	/**
236 	 * enqueue - Enqueue a task on the BPF scheduler
237 	 * @p: task being enqueued
238 	 * @enq_flags: %SCX_ENQ_*
239 	 *
240 	 * @p is ready to run. Insert directly into a DSQ by calling
241 	 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
242 	 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
243 	 * the task will stall.
244 	 *
245 	 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
246 	 * skipped.
247 	 */
248 	void (*enqueue)(struct task_struct *p, u64 enq_flags);
249 
250 	/**
251 	 * dequeue - Remove a task from the BPF scheduler
252 	 * @p: task being dequeued
253 	 * @deq_flags: %SCX_DEQ_*
254 	 *
255 	 * Remove @p from the BPF scheduler. This is usually called to isolate
256 	 * the task while updating its scheduling properties (e.g. priority).
257 	 *
258 	 * The ext core keeps track of whether the BPF side owns a given task or
259 	 * not and can gracefully ignore spurious dispatches from BPF side,
260 	 * which makes it safe to not implement this method. However, depending
261 	 * on the scheduling logic, this can lead to confusing behaviors - e.g.
262 	 * scheduling position not being updated across a priority change.
263 	 */
264 	void (*dequeue)(struct task_struct *p, u64 deq_flags);
265 
266 	/**
267 	 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs
268 	 * @cpu: CPU to dispatch tasks for
269 	 * @prev: previous task being switched out
270 	 *
271 	 * Called when a CPU's local dsq is empty. The operation should dispatch
272 	 * one or more tasks from the BPF scheduler into the DSQs using
273 	 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
274 	 * using scx_bpf_dsq_move_to_local().
275 	 *
276 	 * The maximum number of times scx_bpf_dsq_insert() can be called
277 	 * without an intervening scx_bpf_dsq_move_to_local() is specified by
278 	 * ops.dispatch_max_batch. See the comments on top of the two functions
279 	 * for more details.
280 	 *
281 	 * When not %NULL, @prev is an SCX task with its slice depleted. If
282 	 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
283 	 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
284 	 * ops.dispatch() returns. To keep executing @prev, return without
285 	 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
286 	 */
287 	void (*dispatch)(s32 cpu, struct task_struct *prev);
288 
289 	/**
290 	 * tick - Periodic tick
291 	 * @p: task running currently
292 	 *
293 	 * This operation is called every 1/HZ seconds on CPUs which are
294 	 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
295 	 * immediate dispatch cycle on the CPU.
296 	 */
297 	void (*tick)(struct task_struct *p);
298 
299 	/**
300 	 * runnable - A task is becoming runnable on its associated CPU
301 	 * @p: task becoming runnable
302 	 * @enq_flags: %SCX_ENQ_*
303 	 *
304 	 * This and the following three functions can be used to track a task's
305 	 * execution state transitions. A task becomes ->runnable() on a CPU,
306 	 * and then goes through one or more ->running() and ->stopping() pairs
307 	 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
308 	 * done running on the CPU.
309 	 *
310 	 * @p is becoming runnable on the CPU because it's
311 	 *
312 	 * - waking up (%SCX_ENQ_WAKEUP)
313 	 * - being moved from another CPU
314 	 * - being restored after temporarily taken off the queue for an
315 	 *   attribute change.
316 	 *
317 	 * This and ->enqueue() are related but not coupled. This operation
318 	 * notifies @p's state transition and may not be followed by ->enqueue()
319 	 * e.g. when @p is being dispatched to a remote CPU, or when @p is
320 	 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
321 	 * task may be ->enqueue()'d without being preceded by this operation
322 	 * e.g. after exhausting its slice.
323 	 */
324 	void (*runnable)(struct task_struct *p, u64 enq_flags);
325 
326 	/**
327 	 * running - A task is starting to run on its associated CPU
328 	 * @p: task starting to run
329 	 *
330 	 * See ->runnable() for explanation on the task state notifiers.
331 	 */
332 	void (*running)(struct task_struct *p);
333 
334 	/**
335 	 * stopping - A task is stopping execution
336 	 * @p: task stopping to run
337 	 * @runnable: is task @p still runnable?
338 	 *
339 	 * See ->runnable() for explanation on the task state notifiers. If
340 	 * !@runnable, ->quiescent() will be invoked after this operation
341 	 * returns.
342 	 */
343 	void (*stopping)(struct task_struct *p, bool runnable);
344 
345 	/**
346 	 * quiescent - A task is becoming not runnable on its associated CPU
347 	 * @p: task becoming not runnable
348 	 * @deq_flags: %SCX_DEQ_*
349 	 *
350 	 * See ->runnable() for explanation on the task state notifiers.
351 	 *
352 	 * @p is becoming quiescent on the CPU because it's
353 	 *
354 	 * - sleeping (%SCX_DEQ_SLEEP)
355 	 * - being moved to another CPU
356 	 * - being temporarily taken off the queue for an attribute change
357 	 *   (%SCX_DEQ_SAVE)
358 	 *
359 	 * This and ->dequeue() are related but not coupled. This operation
360 	 * notifies @p's state transition and may not be preceded by ->dequeue()
361 	 * e.g. when @p is being dispatched to a remote CPU.
362 	 */
363 	void (*quiescent)(struct task_struct *p, u64 deq_flags);
364 
365 	/**
366 	 * yield - Yield CPU
367 	 * @from: yielding task
368 	 * @to: optional yield target task
369 	 *
370 	 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
371 	 * The BPF scheduler should ensure that other available tasks are
372 	 * dispatched before the yielding task. Return value is ignored in this
373 	 * case.
374 	 *
375 	 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
376 	 * scheduler can implement the request, return %true; otherwise, %false.
377 	 */
378 	bool (*yield)(struct task_struct *from, struct task_struct *to);
379 
380 	/**
381 	 * core_sched_before - Task ordering for core-sched
382 	 * @a: task A
383 	 * @b: task B
384 	 *
385 	 * Used by core-sched to determine the ordering between two tasks. See
386 	 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
387 	 * core-sched.
388 	 *
389 	 * Both @a and @b are runnable and may or may not currently be queued on
390 	 * the BPF scheduler. Should return %true if @a should run before @b.
391 	 * %false if there's no required ordering or @b should run before @a.
392 	 *
393 	 * If not specified, the default is ordering them according to when they
394 	 * became runnable.
395 	 */
396 	bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
397 
398 	/**
399 	 * set_weight - Set task weight
400 	 * @p: task to set weight for
401 	 * @weight: new weight [1..10000]
402 	 *
403 	 * Update @p's weight to @weight.
404 	 */
405 	void (*set_weight)(struct task_struct *p, u32 weight);
406 
407 	/**
408 	 * set_cpumask - Set CPU affinity
409 	 * @p: task to set CPU affinity for
410 	 * @cpumask: cpumask of cpus that @p can run on
411 	 *
412 	 * Update @p's CPU affinity to @cpumask.
413 	 */
414 	void (*set_cpumask)(struct task_struct *p,
415 			    const struct cpumask *cpumask);
416 
417 	/**
418 	 * update_idle - Update the idle state of a CPU
419 	 * @cpu: CPU to udpate the idle state for
420 	 * @idle: whether entering or exiting the idle state
421 	 *
422 	 * This operation is called when @rq's CPU goes or leaves the idle
423 	 * state. By default, implementing this operation disables the built-in
424 	 * idle CPU tracking and the following helpers become unavailable:
425 	 *
426 	 * - scx_bpf_select_cpu_dfl()
427 	 * - scx_bpf_test_and_clear_cpu_idle()
428 	 * - scx_bpf_pick_idle_cpu()
429 	 *
430 	 * The user also must implement ops.select_cpu() as the default
431 	 * implementation relies on scx_bpf_select_cpu_dfl().
432 	 *
433 	 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
434 	 * tracking.
435 	 */
436 	void (*update_idle)(s32 cpu, bool idle);
437 
438 	/**
439 	 * cpu_acquire - A CPU is becoming available to the BPF scheduler
440 	 * @cpu: The CPU being acquired by the BPF scheduler.
441 	 * @args: Acquire arguments, see the struct definition.
442 	 *
443 	 * A CPU that was previously released from the BPF scheduler is now once
444 	 * again under its control.
445 	 */
446 	void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
447 
448 	/**
449 	 * cpu_release - A CPU is taken away from the BPF scheduler
450 	 * @cpu: The CPU being released by the BPF scheduler.
451 	 * @args: Release arguments, see the struct definition.
452 	 *
453 	 * The specified CPU is no longer under the control of the BPF
454 	 * scheduler. This could be because it was preempted by a higher
455 	 * priority sched_class, though there may be other reasons as well. The
456 	 * caller should consult @args->reason to determine the cause.
457 	 */
458 	void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
459 
460 	/**
461 	 * init_task - Initialize a task to run in a BPF scheduler
462 	 * @p: task to initialize for BPF scheduling
463 	 * @args: init arguments, see the struct definition
464 	 *
465 	 * Either we're loading a BPF scheduler or a new task is being forked.
466 	 * Initialize @p for BPF scheduling. This operation may block and can
467 	 * be used for allocations, and is called exactly once for a task.
468 	 *
469 	 * Return 0 for success, -errno for failure. An error return while
470 	 * loading will abort loading of the BPF scheduler. During a fork, it
471 	 * will abort that specific fork.
472 	 */
473 	s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
474 
475 	/**
476 	 * exit_task - Exit a previously-running task from the system
477 	 * @p: task to exit
478 	 *
479 	 * @p is exiting or the BPF scheduler is being unloaded. Perform any
480 	 * necessary cleanup for @p.
481 	 */
482 	void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
483 
484 	/**
485 	 * enable - Enable BPF scheduling for a task
486 	 * @p: task to enable BPF scheduling for
487 	 *
488 	 * Enable @p for BPF scheduling. enable() is called on @p any time it
489 	 * enters SCX, and is always paired with a matching disable().
490 	 */
491 	void (*enable)(struct task_struct *p);
492 
493 	/**
494 	 * disable - Disable BPF scheduling for a task
495 	 * @p: task to disable BPF scheduling for
496 	 *
497 	 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
498 	 * Disable BPF scheduling for @p. A disable() call is always matched
499 	 * with a prior enable() call.
500 	 */
501 	void (*disable)(struct task_struct *p);
502 
503 	/**
504 	 * dump - Dump BPF scheduler state on error
505 	 * @ctx: debug dump context
506 	 *
507 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
508 	 */
509 	void (*dump)(struct scx_dump_ctx *ctx);
510 
511 	/**
512 	 * dump_cpu - Dump BPF scheduler state for a CPU on error
513 	 * @ctx: debug dump context
514 	 * @cpu: CPU to generate debug dump for
515 	 * @idle: @cpu is currently idle without any runnable tasks
516 	 *
517 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
518 	 * @cpu. If @idle is %true and this operation doesn't produce any
519 	 * output, @cpu is skipped for dump.
520 	 */
521 	void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
522 
523 	/**
524 	 * dump_task - Dump BPF scheduler state for a runnable task on error
525 	 * @ctx: debug dump context
526 	 * @p: runnable task to generate debug dump for
527 	 *
528 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
529 	 * @p.
530 	 */
531 	void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
532 
533 #ifdef CONFIG_EXT_GROUP_SCHED
534 	/**
535 	 * cgroup_init - Initialize a cgroup
536 	 * @cgrp: cgroup being initialized
537 	 * @args: init arguments, see the struct definition
538 	 *
539 	 * Either the BPF scheduler is being loaded or @cgrp created, initialize
540 	 * @cgrp for sched_ext. This operation may block.
541 	 *
542 	 * Return 0 for success, -errno for failure. An error return while
543 	 * loading will abort loading of the BPF scheduler. During cgroup
544 	 * creation, it will abort the specific cgroup creation.
545 	 */
546 	s32 (*cgroup_init)(struct cgroup *cgrp,
547 			   struct scx_cgroup_init_args *args);
548 
549 	/**
550 	 * cgroup_exit - Exit a cgroup
551 	 * @cgrp: cgroup being exited
552 	 *
553 	 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
554 	 * @cgrp for sched_ext. This operation my block.
555 	 */
556 	void (*cgroup_exit)(struct cgroup *cgrp);
557 
558 	/**
559 	 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
560 	 * @p: task being moved
561 	 * @from: cgroup @p is being moved from
562 	 * @to: cgroup @p is being moved to
563 	 *
564 	 * Prepare @p for move from cgroup @from to @to. This operation may
565 	 * block and can be used for allocations.
566 	 *
567 	 * Return 0 for success, -errno for failure. An error return aborts the
568 	 * migration.
569 	 */
570 	s32 (*cgroup_prep_move)(struct task_struct *p,
571 				struct cgroup *from, struct cgroup *to);
572 
573 	/**
574 	 * cgroup_move - Commit cgroup move
575 	 * @p: task being moved
576 	 * @from: cgroup @p is being moved from
577 	 * @to: cgroup @p is being moved to
578 	 *
579 	 * Commit the move. @p is dequeued during this operation.
580 	 */
581 	void (*cgroup_move)(struct task_struct *p,
582 			    struct cgroup *from, struct cgroup *to);
583 
584 	/**
585 	 * cgroup_cancel_move - Cancel cgroup move
586 	 * @p: task whose cgroup move is being canceled
587 	 * @from: cgroup @p was being moved from
588 	 * @to: cgroup @p was being moved to
589 	 *
590 	 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
591 	 * Undo the preparation.
592 	 */
593 	void (*cgroup_cancel_move)(struct task_struct *p,
594 				   struct cgroup *from, struct cgroup *to);
595 
596 	/**
597 	 * cgroup_set_weight - A cgroup's weight is being changed
598 	 * @cgrp: cgroup whose weight is being updated
599 	 * @weight: new weight [1..10000]
600 	 *
601 	 * Update @tg's weight to @weight.
602 	 */
603 	void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
604 #endif	/* CONFIG_EXT_GROUP_SCHED */
605 
606 	/*
607 	 * All online ops must come before ops.cpu_online().
608 	 */
609 
610 	/**
611 	 * cpu_online - A CPU became online
612 	 * @cpu: CPU which just came up
613 	 *
614 	 * @cpu just came online. @cpu will not call ops.enqueue() or
615 	 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
616 	 */
617 	void (*cpu_online)(s32 cpu);
618 
619 	/**
620 	 * cpu_offline - A CPU is going offline
621 	 * @cpu: CPU which is going offline
622 	 *
623 	 * @cpu is going offline. @cpu will not call ops.enqueue() or
624 	 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
625 	 */
626 	void (*cpu_offline)(s32 cpu);
627 
628 	/*
629 	 * All CPU hotplug ops must come before ops.init().
630 	 */
631 
632 	/**
633 	 * init - Initialize the BPF scheduler
634 	 */
635 	s32 (*init)(void);
636 
637 	/**
638 	 * exit - Clean up after the BPF scheduler
639 	 * @info: Exit info
640 	 *
641 	 * ops.exit() is also called on ops.init() failure, which is a bit
642 	 * unusual. This is to allow rich reporting through @info on how
643 	 * ops.init() failed.
644 	 */
645 	void (*exit)(struct scx_exit_info *info);
646 
647 	/**
648 	 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
649 	 */
650 	u32 dispatch_max_batch;
651 
652 	/**
653 	 * flags - %SCX_OPS_* flags
654 	 */
655 	u64 flags;
656 
657 	/**
658 	 * timeout_ms - The maximum amount of time, in milliseconds, that a
659 	 * runnable task should be able to wait before being scheduled. The
660 	 * maximum timeout may not exceed the default timeout of 30 seconds.
661 	 *
662 	 * Defaults to the maximum allowed timeout value of 30 seconds.
663 	 */
664 	u32 timeout_ms;
665 
666 	/**
667 	 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
668 	 * value of 32768 is used.
669 	 */
670 	u32 exit_dump_len;
671 
672 	/**
673 	 * hotplug_seq - A sequence number that may be set by the scheduler to
674 	 * detect when a hotplug event has occurred during the loading process.
675 	 * If 0, no detection occurs. Otherwise, the scheduler will fail to
676 	 * load if the sequence number does not match @scx_hotplug_seq on the
677 	 * enable path.
678 	 */
679 	u64 hotplug_seq;
680 
681 	/**
682 	 * name - BPF scheduler's name
683 	 *
684 	 * Must be a non-zero valid BPF object name including only isalnum(),
685 	 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
686 	 * BPF scheduler is enabled.
687 	 */
688 	char name[SCX_OPS_NAME_LEN];
689 };
690 
691 enum scx_opi {
692 	SCX_OPI_BEGIN			= 0,
693 	SCX_OPI_NORMAL_BEGIN		= 0,
694 	SCX_OPI_NORMAL_END		= SCX_OP_IDX(cpu_online),
695 	SCX_OPI_CPU_HOTPLUG_BEGIN	= SCX_OP_IDX(cpu_online),
696 	SCX_OPI_CPU_HOTPLUG_END		= SCX_OP_IDX(init),
697 	SCX_OPI_END			= SCX_OP_IDX(init),
698 };
699 
700 enum scx_wake_flags {
701 	/* expose select WF_* flags as enums */
702 	SCX_WAKE_FORK		= WF_FORK,
703 	SCX_WAKE_TTWU		= WF_TTWU,
704 	SCX_WAKE_SYNC		= WF_SYNC,
705 };
706 
707 enum scx_enq_flags {
708 	/* expose select ENQUEUE_* flags as enums */
709 	SCX_ENQ_WAKEUP		= ENQUEUE_WAKEUP,
710 	SCX_ENQ_HEAD		= ENQUEUE_HEAD,
711 	SCX_ENQ_CPU_SELECTED	= ENQUEUE_RQ_SELECTED,
712 
713 	/* high 32bits are SCX specific */
714 
715 	/*
716 	 * Set the following to trigger preemption when calling
717 	 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
718 	 * current task is cleared to zero and the CPU is kicked into the
719 	 * scheduling path. Implies %SCX_ENQ_HEAD.
720 	 */
721 	SCX_ENQ_PREEMPT		= 1LLU << 32,
722 
723 	/*
724 	 * The task being enqueued was previously enqueued on the current CPU's
725 	 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
726 	 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
727 	 * invoked in a ->cpu_release() callback, and the task is again
728 	 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
729 	 * task will not be scheduled on the CPU until at least the next invocation
730 	 * of the ->cpu_acquire() callback.
731 	 */
732 	SCX_ENQ_REENQ		= 1LLU << 40,
733 
734 	/*
735 	 * The task being enqueued is the only task available for the cpu. By
736 	 * default, ext core keeps executing such tasks but when
737 	 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
738 	 * %SCX_ENQ_LAST flag set.
739 	 *
740 	 * The BPF scheduler is responsible for triggering a follow-up
741 	 * scheduling event. Otherwise, Execution may stall.
742 	 */
743 	SCX_ENQ_LAST		= 1LLU << 41,
744 
745 	/* high 8 bits are internal */
746 	__SCX_ENQ_INTERNAL_MASK	= 0xffLLU << 56,
747 
748 	SCX_ENQ_CLEAR_OPSS	= 1LLU << 56,
749 	SCX_ENQ_DSQ_PRIQ	= 1LLU << 57,
750 };
751 
752 enum scx_deq_flags {
753 	/* expose select DEQUEUE_* flags as enums */
754 	SCX_DEQ_SLEEP		= DEQUEUE_SLEEP,
755 
756 	/* high 32bits are SCX specific */
757 
758 	/*
759 	 * The generic core-sched layer decided to execute the task even though
760 	 * it hasn't been dispatched yet. Dequeue from the BPF side.
761 	 */
762 	SCX_DEQ_CORE_SCHED_EXEC	= 1LLU << 32,
763 };
764 
765 enum scx_pick_idle_cpu_flags {
766 	SCX_PICK_IDLE_CORE	= 1LLU << 0,	/* pick a CPU whose SMT siblings are also idle */
767 };
768 
769 enum scx_kick_flags {
770 	/*
771 	 * Kick the target CPU if idle. Guarantees that the target CPU goes
772 	 * through at least one full scheduling cycle before going idle. If the
773 	 * target CPU can be determined to be currently not idle and going to go
774 	 * through a scheduling cycle before going idle, noop.
775 	 */
776 	SCX_KICK_IDLE		= 1LLU << 0,
777 
778 	/*
779 	 * Preempt the current task and execute the dispatch path. If the
780 	 * current task of the target CPU is an SCX task, its ->scx.slice is
781 	 * cleared to zero before the scheduling path is invoked so that the
782 	 * task expires and the dispatch path is invoked.
783 	 */
784 	SCX_KICK_PREEMPT	= 1LLU << 1,
785 
786 	/*
787 	 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
788 	 * return after the target CPU finishes picking the next task.
789 	 */
790 	SCX_KICK_WAIT		= 1LLU << 2,
791 };
792 
793 enum scx_tg_flags {
794 	SCX_TG_ONLINE		= 1U << 0,
795 	SCX_TG_INITED		= 1U << 1,
796 };
797 
798 enum scx_ops_enable_state {
799 	SCX_OPS_ENABLING,
800 	SCX_OPS_ENABLED,
801 	SCX_OPS_DISABLING,
802 	SCX_OPS_DISABLED,
803 };
804 
805 static const char *scx_ops_enable_state_str[] = {
806 	[SCX_OPS_ENABLING]	= "enabling",
807 	[SCX_OPS_ENABLED]	= "enabled",
808 	[SCX_OPS_DISABLING]	= "disabling",
809 	[SCX_OPS_DISABLED]	= "disabled",
810 };
811 
812 /*
813  * sched_ext_entity->ops_state
814  *
815  * Used to track the task ownership between the SCX core and the BPF scheduler.
816  * State transitions look as follows:
817  *
818  * NONE -> QUEUEING -> QUEUED -> DISPATCHING
819  *   ^              |                 |
820  *   |              v                 v
821  *   \-------------------------------/
822  *
823  * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
824  * sites for explanations on the conditions being waited upon and why they are
825  * safe. Transitions out of them into NONE or QUEUED must store_release and the
826  * waiters should load_acquire.
827  *
828  * Tracking scx_ops_state enables sched_ext core to reliably determine whether
829  * any given task can be dispatched by the BPF scheduler at all times and thus
830  * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
831  * to try to dispatch any task anytime regardless of its state as the SCX core
832  * can safely reject invalid dispatches.
833  */
834 enum scx_ops_state {
835 	SCX_OPSS_NONE,		/* owned by the SCX core */
836 	SCX_OPSS_QUEUEING,	/* in transit to the BPF scheduler */
837 	SCX_OPSS_QUEUED,	/* owned by the BPF scheduler */
838 	SCX_OPSS_DISPATCHING,	/* in transit back to the SCX core */
839 
840 	/*
841 	 * QSEQ brands each QUEUED instance so that, when dispatch races
842 	 * dequeue/requeue, the dispatcher can tell whether it still has a claim
843 	 * on the task being dispatched.
844 	 *
845 	 * As some 32bit archs can't do 64bit store_release/load_acquire,
846 	 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
847 	 * 32bit machines. The dispatch race window QSEQ protects is very narrow
848 	 * and runs with IRQ disabled. 30 bits should be sufficient.
849 	 */
850 	SCX_OPSS_QSEQ_SHIFT	= 2,
851 };
852 
853 /* Use macros to ensure that the type is unsigned long for the masks */
854 #define SCX_OPSS_STATE_MASK	((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
855 #define SCX_OPSS_QSEQ_MASK	(~SCX_OPSS_STATE_MASK)
856 
857 /*
858  * During exit, a task may schedule after losing its PIDs. When disabling the
859  * BPF scheduler, we need to be able to iterate tasks in every state to
860  * guarantee system safety. Maintain a dedicated task list which contains every
861  * task between its fork and eventual free.
862  */
863 static DEFINE_SPINLOCK(scx_tasks_lock);
864 static LIST_HEAD(scx_tasks);
865 
866 /* ops enable/disable */
867 static struct kthread_worker *scx_ops_helper;
868 static DEFINE_MUTEX(scx_ops_enable_mutex);
869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
871 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
872 static unsigned long scx_in_softlockup;
873 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0);
874 static int scx_ops_bypass_depth;
875 static bool scx_ops_init_task_enabled;
876 static bool scx_switching_all;
877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
878 
879 static struct sched_ext_ops scx_ops;
880 static bool scx_warned_zero_slice;
881 
882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
886 
887 #ifdef CONFIG_SMP
888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
890 #endif
891 
892 static struct static_key_false scx_has_op[SCX_OPI_END] =
893 	{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
894 
895 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
896 static struct scx_exit_info *scx_exit_info;
897 
898 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
899 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
900 
901 /*
902  * A monotically increasing sequence number that is incremented every time a
903  * scheduler is enabled. This can be used by to check if any custom sched_ext
904  * scheduler has ever been used in the system.
905  */
906 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
907 
908 /*
909  * The maximum amount of time in jiffies that a task may be runnable without
910  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
911  * scx_ops_error().
912  */
913 static unsigned long scx_watchdog_timeout;
914 
915 /*
916  * The last time the delayed work was run. This delayed work relies on
917  * ksoftirqd being able to run to service timer interrupts, so it's possible
918  * that this work itself could get wedged. To account for this, we check that
919  * it's not stalled in the timer tick, and trigger an error if it is.
920  */
921 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
922 
923 static struct delayed_work scx_watchdog_work;
924 
925 /* idle tracking */
926 #ifdef CONFIG_SMP
927 #ifdef CONFIG_CPUMASK_OFFSTACK
928 #define CL_ALIGNED_IF_ONSTACK
929 #else
930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
931 #endif
932 
933 static struct {
934 	cpumask_var_t cpu;
935 	cpumask_var_t smt;
936 } idle_masks CL_ALIGNED_IF_ONSTACK;
937 
938 #endif	/* CONFIG_SMP */
939 
940 /* for %SCX_KICK_WAIT */
941 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
942 
943 /*
944  * Direct dispatch marker.
945  *
946  * Non-NULL values are used for direct dispatch from enqueue path. A valid
947  * pointer points to the task currently being enqueued. An ERR_PTR value is used
948  * to indicate that direct dispatch has already happened.
949  */
950 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
951 
952 /*
953  * Dispatch queues.
954  *
955  * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
956  * to avoid live-locking in bypass mode where all tasks are dispatched to
957  * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
958  * sufficient, it can be further split.
959  */
960 static struct scx_dispatch_q **global_dsqs;
961 
962 static const struct rhashtable_params dsq_hash_params = {
963 	.key_len		= sizeof_field(struct scx_dispatch_q, id),
964 	.key_offset		= offsetof(struct scx_dispatch_q, id),
965 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
966 };
967 
968 static struct rhashtable dsq_hash;
969 static LLIST_HEAD(dsqs_to_free);
970 
971 /* dispatch buf */
972 struct scx_dsp_buf_ent {
973 	struct task_struct	*task;
974 	unsigned long		qseq;
975 	u64			dsq_id;
976 	u64			enq_flags;
977 };
978 
979 static u32 scx_dsp_max_batch;
980 
981 struct scx_dsp_ctx {
982 	struct rq		*rq;
983 	u32			cursor;
984 	u32			nr_tasks;
985 	struct scx_dsp_buf_ent	buf[];
986 };
987 
988 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
989 
990 /* string formatting from BPF */
991 struct scx_bstr_buf {
992 	u64			data[MAX_BPRINTF_VARARGS];
993 	char			line[SCX_EXIT_MSG_LEN];
994 };
995 
996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
997 static struct scx_bstr_buf scx_exit_bstr_buf;
998 
999 /* ops debug dump */
1000 struct scx_dump_data {
1001 	s32			cpu;
1002 	bool			first;
1003 	s32			cursor;
1004 	struct seq_buf		*s;
1005 	const char		*prefix;
1006 	struct scx_bstr_buf	buf;
1007 };
1008 
1009 static struct scx_dump_data scx_dump_data = {
1010 	.cpu			= -1,
1011 };
1012 
1013 /* /sys/kernel/sched_ext interface */
1014 static struct kset *scx_kset;
1015 static struct kobject *scx_root_kobj;
1016 
1017 #define CREATE_TRACE_POINTS
1018 #include <trace/events/sched_ext.h>
1019 
1020 static void process_ddsp_deferred_locals(struct rq *rq);
1021 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1023 					     s64 exit_code,
1024 					     const char *fmt, ...);
1025 
1026 #define scx_ops_error_kind(err, fmt, args...)					\
1027 	scx_ops_exit_kind((err), 0, fmt, ##args)
1028 
1029 #define scx_ops_exit(code, fmt, args...)					\
1030 	scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1031 
1032 #define scx_ops_error(fmt, args...)						\
1033 	scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1034 
1035 #define SCX_HAS_OP(op)	static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1036 
1037 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1038 {
1039 	if (time_after(at, now))
1040 		return jiffies_to_msecs(at - now);
1041 	else
1042 		return -(long)jiffies_to_msecs(now - at);
1043 }
1044 
1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
1046 static u32 higher_bits(u32 flags)
1047 {
1048 	return ~((1 << fls(flags)) - 1);
1049 }
1050 
1051 /* return the mask with only the highest bit set */
1052 static u32 highest_bit(u32 flags)
1053 {
1054 	int bit = fls(flags);
1055 	return ((u64)1 << bit) >> 1;
1056 }
1057 
1058 static bool u32_before(u32 a, u32 b)
1059 {
1060 	return (s32)(a - b) < 0;
1061 }
1062 
1063 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1064 {
1065 	return global_dsqs[cpu_to_node(task_cpu(p))];
1066 }
1067 
1068 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1069 {
1070 	return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1071 }
1072 
1073 /*
1074  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1075  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1076  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1077  * whether it's running from an allowed context.
1078  *
1079  * @mask is constant, always inline to cull the mask calculations.
1080  */
1081 static __always_inline void scx_kf_allow(u32 mask)
1082 {
1083 	/* nesting is allowed only in increasing scx_kf_mask order */
1084 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1085 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1086 		  current->scx.kf_mask, mask);
1087 	current->scx.kf_mask |= mask;
1088 	barrier();
1089 }
1090 
1091 static void scx_kf_disallow(u32 mask)
1092 {
1093 	barrier();
1094 	current->scx.kf_mask &= ~mask;
1095 }
1096 
1097 #define SCX_CALL_OP(mask, op, args...)						\
1098 do {										\
1099 	if (mask) {								\
1100 		scx_kf_allow(mask);						\
1101 		scx_ops.op(args);						\
1102 		scx_kf_disallow(mask);						\
1103 	} else {								\
1104 		scx_ops.op(args);						\
1105 	}									\
1106 } while (0)
1107 
1108 #define SCX_CALL_OP_RET(mask, op, args...)					\
1109 ({										\
1110 	__typeof__(scx_ops.op(args)) __ret;					\
1111 	if (mask) {								\
1112 		scx_kf_allow(mask);						\
1113 		__ret = scx_ops.op(args);					\
1114 		scx_kf_disallow(mask);						\
1115 	} else {								\
1116 		__ret = scx_ops.op(args);					\
1117 	}									\
1118 	__ret;									\
1119 })
1120 
1121 /*
1122  * Some kfuncs are allowed only on the tasks that are subjects of the
1123  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1124  * restrictions, the following SCX_CALL_OP_*() variants should be used when
1125  * invoking scx_ops operations that take task arguments. These can only be used
1126  * for non-nesting operations due to the way the tasks are tracked.
1127  *
1128  * kfuncs which can only operate on such tasks can in turn use
1129  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1130  * the specific task.
1131  */
1132 #define SCX_CALL_OP_TASK(mask, op, task, args...)				\
1133 do {										\
1134 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1135 	current->scx.kf_tasks[0] = task;					\
1136 	SCX_CALL_OP(mask, op, task, ##args);					\
1137 	current->scx.kf_tasks[0] = NULL;					\
1138 } while (0)
1139 
1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...)				\
1141 ({										\
1142 	__typeof__(scx_ops.op(task, ##args)) __ret;				\
1143 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1144 	current->scx.kf_tasks[0] = task;					\
1145 	__ret = SCX_CALL_OP_RET(mask, op, task, ##args);			\
1146 	current->scx.kf_tasks[0] = NULL;					\
1147 	__ret;									\
1148 })
1149 
1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)			\
1151 ({										\
1152 	__typeof__(scx_ops.op(task0, task1, ##args)) __ret;			\
1153 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1154 	current->scx.kf_tasks[0] = task0;					\
1155 	current->scx.kf_tasks[1] = task1;					\
1156 	__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);		\
1157 	current->scx.kf_tasks[0] = NULL;					\
1158 	current->scx.kf_tasks[1] = NULL;					\
1159 	__ret;									\
1160 })
1161 
1162 /* @mask is constant, always inline to cull unnecessary branches */
1163 static __always_inline bool scx_kf_allowed(u32 mask)
1164 {
1165 	if (unlikely(!(current->scx.kf_mask & mask))) {
1166 		scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1167 			      mask, current->scx.kf_mask);
1168 		return false;
1169 	}
1170 
1171 	/*
1172 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1173 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
1174 	 * inside ops.dispatch(). We don't need to check boundaries for any
1175 	 * blocking kfuncs as the verifier ensures they're only called from
1176 	 * sleepable progs.
1177 	 */
1178 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1179 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1180 		scx_ops_error("cpu_release kfunc called from a nested operation");
1181 		return false;
1182 	}
1183 
1184 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1185 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1186 		scx_ops_error("dispatch kfunc called from a nested operation");
1187 		return false;
1188 	}
1189 
1190 	return true;
1191 }
1192 
1193 /* see SCX_CALL_OP_TASK() */
1194 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1195 							struct task_struct *p)
1196 {
1197 	if (!scx_kf_allowed(mask))
1198 		return false;
1199 
1200 	if (unlikely((p != current->scx.kf_tasks[0] &&
1201 		      p != current->scx.kf_tasks[1]))) {
1202 		scx_ops_error("called on a task not being operated on");
1203 		return false;
1204 	}
1205 
1206 	return true;
1207 }
1208 
1209 static bool scx_kf_allowed_if_unlocked(void)
1210 {
1211 	return !current->scx.kf_mask;
1212 }
1213 
1214 /**
1215  * nldsq_next_task - Iterate to the next task in a non-local DSQ
1216  * @dsq: user dsq being interated
1217  * @cur: current position, %NULL to start iteration
1218  * @rev: walk backwards
1219  *
1220  * Returns %NULL when iteration is finished.
1221  */
1222 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1223 					   struct task_struct *cur, bool rev)
1224 {
1225 	struct list_head *list_node;
1226 	struct scx_dsq_list_node *dsq_lnode;
1227 
1228 	lockdep_assert_held(&dsq->lock);
1229 
1230 	if (cur)
1231 		list_node = &cur->scx.dsq_list.node;
1232 	else
1233 		list_node = &dsq->list;
1234 
1235 	/* find the next task, need to skip BPF iteration cursors */
1236 	do {
1237 		if (rev)
1238 			list_node = list_node->prev;
1239 		else
1240 			list_node = list_node->next;
1241 
1242 		if (list_node == &dsq->list)
1243 			return NULL;
1244 
1245 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1246 					 node);
1247 	} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1248 
1249 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1250 }
1251 
1252 #define nldsq_for_each_task(p, dsq)						\
1253 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
1254 	     (p) = nldsq_next_task((dsq), (p), false))
1255 
1256 
1257 /*
1258  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1259  * dispatch order. BPF-visible iterator is opaque and larger to allow future
1260  * changes without breaking backward compatibility. Can be used with
1261  * bpf_for_each(). See bpf_iter_scx_dsq_*().
1262  */
1263 enum scx_dsq_iter_flags {
1264 	/* iterate in the reverse dispatch order */
1265 	SCX_DSQ_ITER_REV		= 1U << 16,
1266 
1267 	__SCX_DSQ_ITER_HAS_SLICE	= 1U << 30,
1268 	__SCX_DSQ_ITER_HAS_VTIME	= 1U << 31,
1269 
1270 	__SCX_DSQ_ITER_USER_FLAGS	= SCX_DSQ_ITER_REV,
1271 	__SCX_DSQ_ITER_ALL_FLAGS	= __SCX_DSQ_ITER_USER_FLAGS |
1272 					  __SCX_DSQ_ITER_HAS_SLICE |
1273 					  __SCX_DSQ_ITER_HAS_VTIME,
1274 };
1275 
1276 struct bpf_iter_scx_dsq_kern {
1277 	struct scx_dsq_list_node	cursor;
1278 	struct scx_dispatch_q		*dsq;
1279 	u64				slice;
1280 	u64				vtime;
1281 } __attribute__((aligned(8)));
1282 
1283 struct bpf_iter_scx_dsq {
1284 	u64				__opaque[6];
1285 } __attribute__((aligned(8)));
1286 
1287 
1288 /*
1289  * SCX task iterator.
1290  */
1291 struct scx_task_iter {
1292 	struct sched_ext_entity		cursor;
1293 	struct task_struct		*locked;
1294 	struct rq			*rq;
1295 	struct rq_flags			rf;
1296 	u32				cnt;
1297 };
1298 
1299 /**
1300  * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1301  * @iter: iterator to init
1302  *
1303  * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1304  * must eventually be stopped with scx_task_iter_stop().
1305  *
1306  * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1307  * between this and the first next() call or between any two next() calls. If
1308  * the locks are released between two next() calls, the caller is responsible
1309  * for ensuring that the task being iterated remains accessible either through
1310  * RCU read lock or obtaining a reference count.
1311  *
1312  * All tasks which existed when the iteration started are guaranteed to be
1313  * visited as long as they still exist.
1314  */
1315 static void scx_task_iter_start(struct scx_task_iter *iter)
1316 {
1317 	BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1318 		     ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1319 
1320 	spin_lock_irq(&scx_tasks_lock);
1321 
1322 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1323 	list_add(&iter->cursor.tasks_node, &scx_tasks);
1324 	iter->locked = NULL;
1325 	iter->cnt = 0;
1326 }
1327 
1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1329 {
1330 	if (iter->locked) {
1331 		task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1332 		iter->locked = NULL;
1333 	}
1334 }
1335 
1336 /**
1337  * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1338  * @iter: iterator to unlock
1339  *
1340  * If @iter is in the middle of a locked iteration, it may be locking the rq of
1341  * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1342  * This function can be safely called anytime during an iteration.
1343  */
1344 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1345 {
1346 	__scx_task_iter_rq_unlock(iter);
1347 	spin_unlock_irq(&scx_tasks_lock);
1348 }
1349 
1350 /**
1351  * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1352  * @iter: iterator to re-lock
1353  *
1354  * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1355  * doesn't re-lock the rq lock. Must be called before other iterator operations.
1356  */
1357 static void scx_task_iter_relock(struct scx_task_iter *iter)
1358 {
1359 	spin_lock_irq(&scx_tasks_lock);
1360 }
1361 
1362 /**
1363  * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1364  * @iter: iterator to exit
1365  *
1366  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1367  * which is released on return. If the iterator holds a task's rq lock, that rq
1368  * lock is also released. See scx_task_iter_start() for details.
1369  */
1370 static void scx_task_iter_stop(struct scx_task_iter *iter)
1371 {
1372 	list_del_init(&iter->cursor.tasks_node);
1373 	scx_task_iter_unlock(iter);
1374 }
1375 
1376 /**
1377  * scx_task_iter_next - Next task
1378  * @iter: iterator to walk
1379  *
1380  * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1381  * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1382  * stalls by holding scx_tasks_lock for too long.
1383  */
1384 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1385 {
1386 	struct list_head *cursor = &iter->cursor.tasks_node;
1387 	struct sched_ext_entity *pos;
1388 
1389 	if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1390 		scx_task_iter_unlock(iter);
1391 		cond_resched();
1392 		scx_task_iter_relock(iter);
1393 	}
1394 
1395 	list_for_each_entry(pos, cursor, tasks_node) {
1396 		if (&pos->tasks_node == &scx_tasks)
1397 			return NULL;
1398 		if (!(pos->flags & SCX_TASK_CURSOR)) {
1399 			list_move(cursor, &pos->tasks_node);
1400 			return container_of(pos, struct task_struct, scx);
1401 		}
1402 	}
1403 
1404 	/* can't happen, should always terminate at scx_tasks above */
1405 	BUG();
1406 }
1407 
1408 /**
1409  * scx_task_iter_next_locked - Next non-idle task with its rq locked
1410  * @iter: iterator to walk
1411  * @include_dead: Whether we should include dead tasks in the iteration
1412  *
1413  * Visit the non-idle task with its rq lock held. Allows callers to specify
1414  * whether they would like to filter out dead tasks. See scx_task_iter_start()
1415  * for details.
1416  */
1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1418 {
1419 	struct task_struct *p;
1420 
1421 	__scx_task_iter_rq_unlock(iter);
1422 
1423 	while ((p = scx_task_iter_next(iter))) {
1424 		/*
1425 		 * scx_task_iter is used to prepare and move tasks into SCX
1426 		 * while loading the BPF scheduler and vice-versa while
1427 		 * unloading. The init_tasks ("swappers") should be excluded
1428 		 * from the iteration because:
1429 		 *
1430 		 * - It's unsafe to use __setschduler_prio() on an init_task to
1431 		 *   determine the sched_class to use as it won't preserve its
1432 		 *   idle_sched_class.
1433 		 *
1434 		 * - ops.init/exit_task() can easily be confused if called with
1435 		 *   init_tasks as they, e.g., share PID 0.
1436 		 *
1437 		 * As init_tasks are never scheduled through SCX, they can be
1438 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1439 		 * doesn't work here:
1440 		 *
1441 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1442 		 *   yet been onlined.
1443 		 *
1444 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1445 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
1446 		 *
1447 		 * Test for idle_sched_class as only init_tasks are on it.
1448 		 */
1449 		if (p->sched_class != &idle_sched_class)
1450 			break;
1451 	}
1452 	if (!p)
1453 		return NULL;
1454 
1455 	iter->rq = task_rq_lock(p, &iter->rf);
1456 	iter->locked = p;
1457 
1458 	return p;
1459 }
1460 
1461 static enum scx_ops_enable_state scx_ops_enable_state(void)
1462 {
1463 	return atomic_read(&scx_ops_enable_state_var);
1464 }
1465 
1466 static enum scx_ops_enable_state
1467 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1468 {
1469 	return atomic_xchg(&scx_ops_enable_state_var, to);
1470 }
1471 
1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1473 					enum scx_ops_enable_state from)
1474 {
1475 	int from_v = from;
1476 
1477 	return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1478 }
1479 
1480 static bool scx_rq_bypassing(struct rq *rq)
1481 {
1482 	return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1483 }
1484 
1485 /**
1486  * wait_ops_state - Busy-wait the specified ops state to end
1487  * @p: target task
1488  * @opss: state to wait the end of
1489  *
1490  * Busy-wait for @p to transition out of @opss. This can only be used when the
1491  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1492  * has load_acquire semantics to ensure that the caller can see the updates made
1493  * in the enqueueing and dispatching paths.
1494  */
1495 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1496 {
1497 	do {
1498 		cpu_relax();
1499 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1500 }
1501 
1502 /**
1503  * ops_cpu_valid - Verify a cpu number
1504  * @cpu: cpu number which came from a BPF ops
1505  * @where: extra information reported on error
1506  *
1507  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1508  * Verify that it is in range and one of the possible cpus. If invalid, trigger
1509  * an ops error.
1510  */
1511 static bool ops_cpu_valid(s32 cpu, const char *where)
1512 {
1513 	if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1514 		return true;
1515 	} else {
1516 		scx_ops_error("invalid CPU %d%s%s", cpu,
1517 			      where ? " " : "", where ?: "");
1518 		return false;
1519 	}
1520 }
1521 
1522 /**
1523  * ops_sanitize_err - Sanitize a -errno value
1524  * @ops_name: operation to blame on failure
1525  * @err: -errno value to sanitize
1526  *
1527  * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1528  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1529  * cause misbehaviors. For an example, a large negative return from
1530  * ops.init_task() triggers an oops when passed up the call chain because the
1531  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1532  * handled as a pointer.
1533  */
1534 static int ops_sanitize_err(const char *ops_name, s32 err)
1535 {
1536 	if (err < 0 && err >= -MAX_ERRNO)
1537 		return err;
1538 
1539 	scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1540 	return -EPROTO;
1541 }
1542 
1543 static void run_deferred(struct rq *rq)
1544 {
1545 	process_ddsp_deferred_locals(rq);
1546 }
1547 
1548 #ifdef CONFIG_SMP
1549 static void deferred_bal_cb_workfn(struct rq *rq)
1550 {
1551 	run_deferred(rq);
1552 }
1553 #endif
1554 
1555 static void deferred_irq_workfn(struct irq_work *irq_work)
1556 {
1557 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1558 
1559 	raw_spin_rq_lock(rq);
1560 	run_deferred(rq);
1561 	raw_spin_rq_unlock(rq);
1562 }
1563 
1564 /**
1565  * schedule_deferred - Schedule execution of deferred actions on an rq
1566  * @rq: target rq
1567  *
1568  * Schedule execution of deferred actions on @rq. Must be called with @rq
1569  * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1570  * can unlock @rq to e.g. migrate tasks to other rqs.
1571  */
1572 static void schedule_deferred(struct rq *rq)
1573 {
1574 	lockdep_assert_rq_held(rq);
1575 
1576 #ifdef CONFIG_SMP
1577 	/*
1578 	 * If in the middle of waking up a task, task_woken_scx() will be called
1579 	 * afterwards which will then run the deferred actions, no need to
1580 	 * schedule anything.
1581 	 */
1582 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1583 		return;
1584 
1585 	/*
1586 	 * If in balance, the balance callbacks will be called before rq lock is
1587 	 * released. Schedule one.
1588 	 */
1589 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1590 		queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1591 				       deferred_bal_cb_workfn);
1592 		return;
1593 	}
1594 #endif
1595 	/*
1596 	 * No scheduler hooks available. Queue an irq work. They are executed on
1597 	 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1598 	 * The above WAKEUP and BALANCE paths should cover most of the cases and
1599 	 * the time to IRQ re-enable shouldn't be long.
1600 	 */
1601 	irq_work_queue(&rq->scx.deferred_irq_work);
1602 }
1603 
1604 /**
1605  * touch_core_sched - Update timestamp used for core-sched task ordering
1606  * @rq: rq to read clock from, must be locked
1607  * @p: task to update the timestamp for
1608  *
1609  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1610  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1611  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1612  * exhaustion).
1613  */
1614 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1615 {
1616 	lockdep_assert_rq_held(rq);
1617 
1618 #ifdef CONFIG_SCHED_CORE
1619 	/*
1620 	 * It's okay to update the timestamp spuriously. Use
1621 	 * sched_core_disabled() which is cheaper than enabled().
1622 	 *
1623 	 * As this is used to determine ordering between tasks of sibling CPUs,
1624 	 * it may be better to use per-core dispatch sequence instead.
1625 	 */
1626 	if (!sched_core_disabled())
1627 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1628 #endif
1629 }
1630 
1631 /**
1632  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1633  * @rq: rq to read clock from, must be locked
1634  * @p: task being dispatched
1635  *
1636  * If the BPF scheduler implements custom core-sched ordering via
1637  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1638  * ordering within each local DSQ. This function is called from dispatch paths
1639  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1640  */
1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1642 {
1643 	lockdep_assert_rq_held(rq);
1644 
1645 #ifdef CONFIG_SCHED_CORE
1646 	if (SCX_HAS_OP(core_sched_before))
1647 		touch_core_sched(rq, p);
1648 #endif
1649 }
1650 
1651 static void update_curr_scx(struct rq *rq)
1652 {
1653 	struct task_struct *curr = rq->curr;
1654 	s64 delta_exec;
1655 
1656 	delta_exec = update_curr_common(rq);
1657 	if (unlikely(delta_exec <= 0))
1658 		return;
1659 
1660 	if (curr->scx.slice != SCX_SLICE_INF) {
1661 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1662 		if (!curr->scx.slice)
1663 			touch_core_sched(rq, curr);
1664 	}
1665 }
1666 
1667 static bool scx_dsq_priq_less(struct rb_node *node_a,
1668 			      const struct rb_node *node_b)
1669 {
1670 	const struct task_struct *a =
1671 		container_of(node_a, struct task_struct, scx.dsq_priq);
1672 	const struct task_struct *b =
1673 		container_of(node_b, struct task_struct, scx.dsq_priq);
1674 
1675 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1676 }
1677 
1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1679 {
1680 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1681 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
1682 }
1683 
1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1685 			     u64 enq_flags)
1686 {
1687 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
1688 
1689 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1690 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1691 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
1692 
1693 	if (!is_local) {
1694 		raw_spin_lock(&dsq->lock);
1695 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1696 			scx_ops_error("attempting to dispatch to a destroyed dsq");
1697 			/* fall back to the global dsq */
1698 			raw_spin_unlock(&dsq->lock);
1699 			dsq = find_global_dsq(p);
1700 			raw_spin_lock(&dsq->lock);
1701 		}
1702 	}
1703 
1704 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1705 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1706 		/*
1707 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1708 		 * their FIFO queues. To avoid confusion and accidentally
1709 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1710 		 * disallow any internal DSQ from doing vtime ordering of
1711 		 * tasks.
1712 		 */
1713 		scx_ops_error("cannot use vtime ordering for built-in DSQs");
1714 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1715 	}
1716 
1717 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1718 		struct rb_node *rbp;
1719 
1720 		/*
1721 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1722 		 * linked to both the rbtree and list on PRIQs, this can only be
1723 		 * tested easily when adding the first task.
1724 		 */
1725 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1726 			     nldsq_next_task(dsq, NULL, false)))
1727 			scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1728 				      dsq->id);
1729 
1730 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1731 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1732 
1733 		/*
1734 		 * Find the previous task and insert after it on the list so
1735 		 * that @dsq->list is vtime ordered.
1736 		 */
1737 		rbp = rb_prev(&p->scx.dsq_priq);
1738 		if (rbp) {
1739 			struct task_struct *prev =
1740 				container_of(rbp, struct task_struct,
1741 					     scx.dsq_priq);
1742 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1743 		} else {
1744 			list_add(&p->scx.dsq_list.node, &dsq->list);
1745 		}
1746 	} else {
1747 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1748 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1749 			scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1750 				      dsq->id);
1751 
1752 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1753 			list_add(&p->scx.dsq_list.node, &dsq->list);
1754 		else
1755 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1756 	}
1757 
1758 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
1759 	dsq->seq++;
1760 	p->scx.dsq_seq = dsq->seq;
1761 
1762 	dsq_mod_nr(dsq, 1);
1763 	p->scx.dsq = dsq;
1764 
1765 	/*
1766 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1767 	 * direct dispatch path, but we clear them here because the direct
1768 	 * dispatch verdict may be overridden on the enqueue path during e.g.
1769 	 * bypass.
1770 	 */
1771 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1772 	p->scx.ddsp_enq_flags = 0;
1773 
1774 	/*
1775 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1776 	 * match waiters' load_acquire.
1777 	 */
1778 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1779 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1780 
1781 	if (is_local) {
1782 		struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1783 		bool preempt = false;
1784 
1785 		if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1786 		    rq->curr->sched_class == &ext_sched_class) {
1787 			rq->curr->scx.slice = 0;
1788 			preempt = true;
1789 		}
1790 
1791 		if (preempt || sched_class_above(&ext_sched_class,
1792 						 rq->curr->sched_class))
1793 			resched_curr(rq);
1794 	} else {
1795 		raw_spin_unlock(&dsq->lock);
1796 	}
1797 }
1798 
1799 static void task_unlink_from_dsq(struct task_struct *p,
1800 				 struct scx_dispatch_q *dsq)
1801 {
1802 	WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1803 
1804 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1805 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
1806 		RB_CLEAR_NODE(&p->scx.dsq_priq);
1807 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1808 	}
1809 
1810 	list_del_init(&p->scx.dsq_list.node);
1811 	dsq_mod_nr(dsq, -1);
1812 }
1813 
1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1815 {
1816 	struct scx_dispatch_q *dsq = p->scx.dsq;
1817 	bool is_local = dsq == &rq->scx.local_dsq;
1818 
1819 	if (!dsq) {
1820 		/*
1821 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1822 		 * Unlinking is all that's needed to cancel.
1823 		 */
1824 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1825 			list_del_init(&p->scx.dsq_list.node);
1826 
1827 		/*
1828 		 * When dispatching directly from the BPF scheduler to a local
1829 		 * DSQ, the task isn't associated with any DSQ but
1830 		 * @p->scx.holding_cpu may be set under the protection of
1831 		 * %SCX_OPSS_DISPATCHING.
1832 		 */
1833 		if (p->scx.holding_cpu >= 0)
1834 			p->scx.holding_cpu = -1;
1835 
1836 		return;
1837 	}
1838 
1839 	if (!is_local)
1840 		raw_spin_lock(&dsq->lock);
1841 
1842 	/*
1843 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1844 	 * change underneath us.
1845 	*/
1846 	if (p->scx.holding_cpu < 0) {
1847 		/* @p must still be on @dsq, dequeue */
1848 		task_unlink_from_dsq(p, dsq);
1849 	} else {
1850 		/*
1851 		 * We're racing against dispatch_to_local_dsq() which already
1852 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1853 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1854 		 * the race.
1855 		 */
1856 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1857 		p->scx.holding_cpu = -1;
1858 	}
1859 	p->scx.dsq = NULL;
1860 
1861 	if (!is_local)
1862 		raw_spin_unlock(&dsq->lock);
1863 }
1864 
1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1866 						    struct task_struct *p)
1867 {
1868 	struct scx_dispatch_q *dsq;
1869 
1870 	if (dsq_id == SCX_DSQ_LOCAL)
1871 		return &rq->scx.local_dsq;
1872 
1873 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1874 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1875 
1876 		if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1877 			return find_global_dsq(p);
1878 
1879 		return &cpu_rq(cpu)->scx.local_dsq;
1880 	}
1881 
1882 	if (dsq_id == SCX_DSQ_GLOBAL)
1883 		dsq = find_global_dsq(p);
1884 	else
1885 		dsq = find_user_dsq(dsq_id);
1886 
1887 	if (unlikely(!dsq)) {
1888 		scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1889 			      dsq_id, p->comm, p->pid);
1890 		return find_global_dsq(p);
1891 	}
1892 
1893 	return dsq;
1894 }
1895 
1896 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1897 				 struct task_struct *p, u64 dsq_id,
1898 				 u64 enq_flags)
1899 {
1900 	/*
1901 	 * Mark that dispatch already happened from ops.select_cpu() or
1902 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1903 	 * which can never match a valid task pointer.
1904 	 */
1905 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1906 
1907 	/* @p must match the task on the enqueue path */
1908 	if (unlikely(p != ddsp_task)) {
1909 		if (IS_ERR(ddsp_task))
1910 			scx_ops_error("%s[%d] already direct-dispatched",
1911 				      p->comm, p->pid);
1912 		else
1913 			scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1914 				      ddsp_task->comm, ddsp_task->pid,
1915 				      p->comm, p->pid);
1916 		return;
1917 	}
1918 
1919 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1920 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1921 
1922 	p->scx.ddsp_dsq_id = dsq_id;
1923 	p->scx.ddsp_enq_flags = enq_flags;
1924 }
1925 
1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1927 {
1928 	struct rq *rq = task_rq(p);
1929 	struct scx_dispatch_q *dsq =
1930 		find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1931 
1932 	touch_core_sched_dispatch(rq, p);
1933 
1934 	p->scx.ddsp_enq_flags |= enq_flags;
1935 
1936 	/*
1937 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
1938 	 * double lock a remote rq and enqueue to its local DSQ. For
1939 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1940 	 * the enqueue so that it's executed when @rq can be unlocked.
1941 	 */
1942 	if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1943 		unsigned long opss;
1944 
1945 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1946 
1947 		switch (opss & SCX_OPSS_STATE_MASK) {
1948 		case SCX_OPSS_NONE:
1949 			break;
1950 		case SCX_OPSS_QUEUEING:
1951 			/*
1952 			 * As @p was never passed to the BPF side, _release is
1953 			 * not strictly necessary. Still do it for consistency.
1954 			 */
1955 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1956 			break;
1957 		default:
1958 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1959 				  p->comm, p->pid, opss);
1960 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1961 			break;
1962 		}
1963 
1964 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1965 		list_add_tail(&p->scx.dsq_list.node,
1966 			      &rq->scx.ddsp_deferred_locals);
1967 		schedule_deferred(rq);
1968 		return;
1969 	}
1970 
1971 	dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1972 }
1973 
1974 static bool scx_rq_online(struct rq *rq)
1975 {
1976 	/*
1977 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1978 	 * the online state as seen from the BPF scheduler. cpu_active() test
1979 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1980 	 * stay set until the current scheduling operation is complete even if
1981 	 * we aren't locking @rq.
1982 	 */
1983 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1984 }
1985 
1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1987 			    int sticky_cpu)
1988 {
1989 	struct task_struct **ddsp_taskp;
1990 	unsigned long qseq;
1991 
1992 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1993 
1994 	/* rq migration */
1995 	if (sticky_cpu == cpu_of(rq))
1996 		goto local_norefill;
1997 
1998 	/*
1999 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
2000 	 * is offline and are just running the hotplug path. Don't bother the
2001 	 * BPF scheduler.
2002 	 */
2003 	if (!scx_rq_online(rq))
2004 		goto local;
2005 
2006 	if (scx_rq_bypassing(rq))
2007 		goto global;
2008 
2009 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2010 		goto direct;
2011 
2012 	/* see %SCX_OPS_ENQ_EXITING */
2013 	if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2014 	    unlikely(p->flags & PF_EXITING))
2015 		goto local;
2016 
2017 	if (!SCX_HAS_OP(enqueue))
2018 		goto global;
2019 
2020 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2021 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2022 
2023 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2024 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2025 
2026 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2027 	WARN_ON_ONCE(*ddsp_taskp);
2028 	*ddsp_taskp = p;
2029 
2030 	SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2031 
2032 	*ddsp_taskp = NULL;
2033 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2034 		goto direct;
2035 
2036 	/*
2037 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2038 	 * dequeue may be waiting. The store_release matches their load_acquire.
2039 	 */
2040 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2041 	return;
2042 
2043 direct:
2044 	direct_dispatch(p, enq_flags);
2045 	return;
2046 
2047 local:
2048 	/*
2049 	 * For task-ordering, slice refill must be treated as implying the end
2050 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2051 	 * higher priority it becomes from scx_prio_less()'s POV.
2052 	 */
2053 	touch_core_sched(rq, p);
2054 	p->scx.slice = SCX_SLICE_DFL;
2055 local_norefill:
2056 	dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2057 	return;
2058 
2059 global:
2060 	touch_core_sched(rq, p);	/* see the comment in local: */
2061 	p->scx.slice = SCX_SLICE_DFL;
2062 	dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2063 }
2064 
2065 static bool task_runnable(const struct task_struct *p)
2066 {
2067 	return !list_empty(&p->scx.runnable_node);
2068 }
2069 
2070 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2071 {
2072 	lockdep_assert_rq_held(rq);
2073 
2074 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2075 		p->scx.runnable_at = jiffies;
2076 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2077 	}
2078 
2079 	/*
2080 	 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2081 	 * appened to the runnable_list.
2082 	 */
2083 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2084 }
2085 
2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2087 {
2088 	list_del_init(&p->scx.runnable_node);
2089 	if (reset_runnable_at)
2090 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2091 }
2092 
2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2094 {
2095 	int sticky_cpu = p->scx.sticky_cpu;
2096 
2097 	if (enq_flags & ENQUEUE_WAKEUP)
2098 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2099 
2100 	enq_flags |= rq->scx.extra_enq_flags;
2101 
2102 	if (sticky_cpu >= 0)
2103 		p->scx.sticky_cpu = -1;
2104 
2105 	/*
2106 	 * Restoring a running task will be immediately followed by
2107 	 * set_next_task_scx() which expects the task to not be on the BPF
2108 	 * scheduler as tasks can only start running through local DSQs. Force
2109 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2110 	 */
2111 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2112 		sticky_cpu = cpu_of(rq);
2113 
2114 	if (p->scx.flags & SCX_TASK_QUEUED) {
2115 		WARN_ON_ONCE(!task_runnable(p));
2116 		goto out;
2117 	}
2118 
2119 	set_task_runnable(rq, p);
2120 	p->scx.flags |= SCX_TASK_QUEUED;
2121 	rq->scx.nr_running++;
2122 	add_nr_running(rq, 1);
2123 
2124 	if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2125 		SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2126 
2127 	if (enq_flags & SCX_ENQ_WAKEUP)
2128 		touch_core_sched(rq, p);
2129 
2130 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2131 out:
2132 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2133 }
2134 
2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2136 {
2137 	unsigned long opss;
2138 
2139 	/* dequeue is always temporary, don't reset runnable_at */
2140 	clr_task_runnable(p, false);
2141 
2142 	/* acquire ensures that we see the preceding updates on QUEUED */
2143 	opss = atomic_long_read_acquire(&p->scx.ops_state);
2144 
2145 	switch (opss & SCX_OPSS_STATE_MASK) {
2146 	case SCX_OPSS_NONE:
2147 		break;
2148 	case SCX_OPSS_QUEUEING:
2149 		/*
2150 		 * QUEUEING is started and finished while holding @p's rq lock.
2151 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2152 		 */
2153 		BUG();
2154 	case SCX_OPSS_QUEUED:
2155 		if (SCX_HAS_OP(dequeue))
2156 			SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2157 
2158 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2159 					    SCX_OPSS_NONE))
2160 			break;
2161 		fallthrough;
2162 	case SCX_OPSS_DISPATCHING:
2163 		/*
2164 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
2165 		 * wait for the transfer to complete so that @p doesn't get
2166 		 * added to its DSQ after dequeueing is complete.
2167 		 *
2168 		 * As we're waiting on DISPATCHING with the rq locked, the
2169 		 * dispatching side shouldn't try to lock the rq while
2170 		 * DISPATCHING is set. See dispatch_to_local_dsq().
2171 		 *
2172 		 * DISPATCHING shouldn't have qseq set and control can reach
2173 		 * here with NONE @opss from the above QUEUED case block.
2174 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2175 		 */
2176 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
2177 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2178 		break;
2179 	}
2180 }
2181 
2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2183 {
2184 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2185 		WARN_ON_ONCE(task_runnable(p));
2186 		return true;
2187 	}
2188 
2189 	ops_dequeue(p, deq_flags);
2190 
2191 	/*
2192 	 * A currently running task which is going off @rq first gets dequeued
2193 	 * and then stops running. As we want running <-> stopping transitions
2194 	 * to be contained within runnable <-> quiescent transitions, trigger
2195 	 * ->stopping() early here instead of in put_prev_task_scx().
2196 	 *
2197 	 * @p may go through multiple stopping <-> running transitions between
2198 	 * here and put_prev_task_scx() if task attribute changes occur while
2199 	 * balance_scx() leaves @rq unlocked. However, they don't contain any
2200 	 * information meaningful to the BPF scheduler and can be suppressed by
2201 	 * skipping the callbacks if the task is !QUEUED.
2202 	 */
2203 	if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2204 		update_curr_scx(rq);
2205 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2206 	}
2207 
2208 	if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2209 		SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2210 
2211 	if (deq_flags & SCX_DEQ_SLEEP)
2212 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2213 	else
2214 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2215 
2216 	p->scx.flags &= ~SCX_TASK_QUEUED;
2217 	rq->scx.nr_running--;
2218 	sub_nr_running(rq, 1);
2219 
2220 	dispatch_dequeue(rq, p);
2221 	return true;
2222 }
2223 
2224 static void yield_task_scx(struct rq *rq)
2225 {
2226 	struct task_struct *p = rq->curr;
2227 
2228 	if (SCX_HAS_OP(yield))
2229 		SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2230 	else
2231 		p->scx.slice = 0;
2232 }
2233 
2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2235 {
2236 	struct task_struct *from = rq->curr;
2237 
2238 	if (SCX_HAS_OP(yield))
2239 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2240 	else
2241 		return false;
2242 }
2243 
2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2245 					 struct scx_dispatch_q *src_dsq,
2246 					 struct rq *dst_rq)
2247 {
2248 	struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2249 
2250 	/* @dsq is locked and @p is on @dst_rq */
2251 	lockdep_assert_held(&src_dsq->lock);
2252 	lockdep_assert_rq_held(dst_rq);
2253 
2254 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2255 
2256 	if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2257 		list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2258 	else
2259 		list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2260 
2261 	dsq_mod_nr(dst_dsq, 1);
2262 	p->scx.dsq = dst_dsq;
2263 }
2264 
2265 #ifdef CONFIG_SMP
2266 /**
2267  * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2268  * @p: task to move
2269  * @enq_flags: %SCX_ENQ_*
2270  * @src_rq: rq to move the task from, locked on entry, released on return
2271  * @dst_rq: rq to move the task into, locked on return
2272  *
2273  * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2274  */
2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2276 					  struct rq *src_rq, struct rq *dst_rq)
2277 {
2278 	lockdep_assert_rq_held(src_rq);
2279 
2280 	/* the following marks @p MIGRATING which excludes dequeue */
2281 	deactivate_task(src_rq, p, 0);
2282 	set_task_cpu(p, cpu_of(dst_rq));
2283 	p->scx.sticky_cpu = cpu_of(dst_rq);
2284 
2285 	raw_spin_rq_unlock(src_rq);
2286 	raw_spin_rq_lock(dst_rq);
2287 
2288 	/*
2289 	 * We want to pass scx-specific enq_flags but activate_task() will
2290 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
2291 	 * @rq->scx.extra_enq_flags instead.
2292 	 */
2293 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2294 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2295 	dst_rq->scx.extra_enq_flags = enq_flags;
2296 	activate_task(dst_rq, p, 0);
2297 	dst_rq->scx.extra_enq_flags = 0;
2298 }
2299 
2300 /*
2301  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2302  * differences:
2303  *
2304  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2305  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2306  *   this CPU?".
2307  *
2308  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2309  *   must be allowed to finish on the CPU that it's currently on regardless of
2310  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2311  *   BPF scheduler shouldn't attempt to migrate a task which has migration
2312  *   disabled.
2313  *
2314  * - The BPF scheduler is bypassed while the rq is offline and we can always say
2315  *   no to the BPF scheduler initiated migrations while offline.
2316  */
2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2318 				      bool trigger_error)
2319 {
2320 	int cpu = cpu_of(rq);
2321 
2322 	/*
2323 	 * We don't require the BPF scheduler to avoid dispatching to offline
2324 	 * CPUs mostly for convenience but also because CPUs can go offline
2325 	 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
2326 	 * picked CPU is outside the allowed mask.
2327 	 */
2328 	if (!task_allowed_on_cpu(p, cpu)) {
2329 		if (trigger_error)
2330 			scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2331 				      cpu_of(rq), p->comm, p->pid);
2332 		return false;
2333 	}
2334 
2335 	if (unlikely(is_migration_disabled(p)))
2336 		return false;
2337 
2338 	if (!scx_rq_online(rq))
2339 		return false;
2340 
2341 	return true;
2342 }
2343 
2344 /**
2345  * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2346  * @p: target task
2347  * @dsq: locked DSQ @p is currently on
2348  * @src_rq: rq @p is currently on, stable with @dsq locked
2349  *
2350  * Called with @dsq locked but no rq's locked. We want to move @p to a different
2351  * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2352  * required when transferring into a local DSQ. Even when transferring into a
2353  * non-local DSQ, it's better to use the same mechanism to protect against
2354  * dequeues and maintain the invariant that @p->scx.dsq can only change while
2355  * @src_rq is locked, which e.g. scx_dump_task() depends on.
2356  *
2357  * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2358  * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2359  * this may race with dequeue, which can't drop the rq lock or fail, do a little
2360  * dancing from our side.
2361  *
2362  * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2363  * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2364  * would be cleared to -1. While other cpus may have updated it to different
2365  * values afterwards, as this operation can't be preempted or recurse, the
2366  * holding_cpu can never become this CPU again before we're done. Thus, we can
2367  * tell whether we lost to dequeue by testing whether the holding_cpu still
2368  * points to this CPU. See dispatch_dequeue() for the counterpart.
2369  *
2370  * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2371  * still valid. %false if lost to dequeue.
2372  */
2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2374 				       struct scx_dispatch_q *dsq,
2375 				       struct rq *src_rq)
2376 {
2377 	s32 cpu = raw_smp_processor_id();
2378 
2379 	lockdep_assert_held(&dsq->lock);
2380 
2381 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2382 	task_unlink_from_dsq(p, dsq);
2383 	p->scx.holding_cpu = cpu;
2384 
2385 	raw_spin_unlock(&dsq->lock);
2386 	raw_spin_rq_lock(src_rq);
2387 
2388 	/* task_rq couldn't have changed if we're still the holding cpu */
2389 	return likely(p->scx.holding_cpu == cpu) &&
2390 		!WARN_ON_ONCE(src_rq != task_rq(p));
2391 }
2392 
2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2394 				struct scx_dispatch_q *dsq, struct rq *src_rq)
2395 {
2396 	raw_spin_rq_unlock(this_rq);
2397 
2398 	if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2399 		move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2400 		return true;
2401 	} else {
2402 		raw_spin_rq_unlock(src_rq);
2403 		raw_spin_rq_lock(this_rq);
2404 		return false;
2405 	}
2406 }
2407 #else	/* CONFIG_SMP */
2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2411 #endif	/* CONFIG_SMP */
2412 
2413 /**
2414  * move_task_between_dsqs() - Move a task from one DSQ to another
2415  * @p: target task
2416  * @enq_flags: %SCX_ENQ_*
2417  * @src_dsq: DSQ @p is currently on, must not be a local DSQ
2418  * @dst_dsq: DSQ @p is being moved to, can be any DSQ
2419  *
2420  * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
2421  * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
2422  * will change. As @p's task_rq is locked, this function doesn't need to use the
2423  * holding_cpu mechanism.
2424  *
2425  * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
2426  * return value, is locked.
2427  */
2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
2429 					 struct scx_dispatch_q *src_dsq,
2430 					 struct scx_dispatch_q *dst_dsq)
2431 {
2432 	struct rq *src_rq = task_rq(p), *dst_rq;
2433 
2434 	BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
2435 	lockdep_assert_held(&src_dsq->lock);
2436 	lockdep_assert_rq_held(src_rq);
2437 
2438 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
2439 		dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2440 		if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
2441 			dst_dsq = find_global_dsq(p);
2442 			dst_rq = src_rq;
2443 		}
2444 	} else {
2445 		/* no need to migrate if destination is a non-local DSQ */
2446 		dst_rq = src_rq;
2447 	}
2448 
2449 	/*
2450 	 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
2451 	 * CPU, @p will be migrated.
2452 	 */
2453 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
2454 		/* @p is going from a non-local DSQ to a local DSQ */
2455 		if (src_rq == dst_rq) {
2456 			task_unlink_from_dsq(p, src_dsq);
2457 			move_local_task_to_local_dsq(p, enq_flags,
2458 						     src_dsq, dst_rq);
2459 			raw_spin_unlock(&src_dsq->lock);
2460 		} else {
2461 			raw_spin_unlock(&src_dsq->lock);
2462 			move_remote_task_to_local_dsq(p, enq_flags,
2463 						      src_rq, dst_rq);
2464 		}
2465 	} else {
2466 		/*
2467 		 * @p is going from a non-local DSQ to a non-local DSQ. As
2468 		 * $src_dsq is already locked, do an abbreviated dequeue.
2469 		 */
2470 		task_unlink_from_dsq(p, src_dsq);
2471 		p->scx.dsq = NULL;
2472 		raw_spin_unlock(&src_dsq->lock);
2473 
2474 		dispatch_enqueue(dst_dsq, p, enq_flags);
2475 	}
2476 
2477 	return dst_rq;
2478 }
2479 
2480 /*
2481  * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
2482  * banging on the same DSQ on a large NUMA system to the point where switching
2483  * to the bypass mode can take a long time. Inject artifical delays while the
2484  * bypass mode is switching to guarantee timely completion.
2485  */
2486 static void scx_ops_breather(struct rq *rq)
2487 {
2488 	u64 until;
2489 
2490 	lockdep_assert_rq_held(rq);
2491 
2492 	if (likely(!atomic_read(&scx_ops_breather_depth)))
2493 		return;
2494 
2495 	raw_spin_rq_unlock(rq);
2496 
2497 	until = ktime_get_ns() + NSEC_PER_MSEC;
2498 
2499 	do {
2500 		int cnt = 1024;
2501 		while (atomic_read(&scx_ops_breather_depth) && --cnt)
2502 			cpu_relax();
2503 	} while (atomic_read(&scx_ops_breather_depth) &&
2504 		 time_before64(ktime_get_ns(), until));
2505 
2506 	raw_spin_rq_lock(rq);
2507 }
2508 
2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2510 {
2511 	struct task_struct *p;
2512 retry:
2513 	/*
2514 	 * This retry loop can repeatedly race against scx_ops_bypass()
2515 	 * dequeueing tasks from @dsq trying to put the system into the bypass
2516 	 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can
2517 	 * live-lock the machine into soft lockups. Give a breather.
2518 	 */
2519 	scx_ops_breather(rq);
2520 
2521 	/*
2522 	 * The caller can't expect to successfully consume a task if the task's
2523 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
2524 	 * @dsq->list without locking and skip if it seems empty.
2525 	 */
2526 	if (list_empty(&dsq->list))
2527 		return false;
2528 
2529 	raw_spin_lock(&dsq->lock);
2530 
2531 	nldsq_for_each_task(p, dsq) {
2532 		struct rq *task_rq = task_rq(p);
2533 
2534 		if (rq == task_rq) {
2535 			task_unlink_from_dsq(p, dsq);
2536 			move_local_task_to_local_dsq(p, 0, dsq, rq);
2537 			raw_spin_unlock(&dsq->lock);
2538 			return true;
2539 		}
2540 
2541 		if (task_can_run_on_remote_rq(p, rq, false)) {
2542 			if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2543 				return true;
2544 			goto retry;
2545 		}
2546 	}
2547 
2548 	raw_spin_unlock(&dsq->lock);
2549 	return false;
2550 }
2551 
2552 static bool consume_global_dsq(struct rq *rq)
2553 {
2554 	int node = cpu_to_node(cpu_of(rq));
2555 
2556 	return consume_dispatch_q(rq, global_dsqs[node]);
2557 }
2558 
2559 /**
2560  * dispatch_to_local_dsq - Dispatch a task to a local dsq
2561  * @rq: current rq which is locked
2562  * @dst_dsq: destination DSQ
2563  * @p: task to dispatch
2564  * @enq_flags: %SCX_ENQ_*
2565  *
2566  * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2567  * DSQ. This function performs all the synchronization dancing needed because
2568  * local DSQs are protected with rq locks.
2569  *
2570  * The caller must have exclusive ownership of @p (e.g. through
2571  * %SCX_OPSS_DISPATCHING).
2572  */
2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2574 				  struct task_struct *p, u64 enq_flags)
2575 {
2576 	struct rq *src_rq = task_rq(p);
2577 	struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2578 
2579 	/*
2580 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
2581 	 * be dequeued, its task_rq and cpus_allowed are stable too.
2582 	 *
2583 	 * If dispatching to @rq that @p is already on, no lock dancing needed.
2584 	 */
2585 	if (rq == src_rq && rq == dst_rq) {
2586 		dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2587 		return;
2588 	}
2589 
2590 #ifdef CONFIG_SMP
2591 	if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2592 		dispatch_enqueue(find_global_dsq(p), p,
2593 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
2594 		return;
2595 	}
2596 
2597 	/*
2598 	 * @p is on a possibly remote @src_rq which we need to lock to move the
2599 	 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2600 	 * on DISPATCHING, so we can't grab @src_rq lock while holding
2601 	 * DISPATCHING.
2602 	 *
2603 	 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2604 	 * we're moving from a DSQ and use the same mechanism - mark the task
2605 	 * under transfer with holding_cpu, release DISPATCHING and then follow
2606 	 * the same protocol. See unlink_dsq_and_lock_src_rq().
2607 	 */
2608 	p->scx.holding_cpu = raw_smp_processor_id();
2609 
2610 	/* store_release ensures that dequeue sees the above */
2611 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2612 
2613 	/* switch to @src_rq lock */
2614 	if (rq != src_rq) {
2615 		raw_spin_rq_unlock(rq);
2616 		raw_spin_rq_lock(src_rq);
2617 	}
2618 
2619 	/* task_rq couldn't have changed if we're still the holding cpu */
2620 	if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2621 	    !WARN_ON_ONCE(src_rq != task_rq(p))) {
2622 		/*
2623 		 * If @p is staying on the same rq, there's no need to go
2624 		 * through the full deactivate/activate cycle. Optimize by
2625 		 * abbreviating move_remote_task_to_local_dsq().
2626 		 */
2627 		if (src_rq == dst_rq) {
2628 			p->scx.holding_cpu = -1;
2629 			dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2630 		} else {
2631 			move_remote_task_to_local_dsq(p, enq_flags,
2632 						      src_rq, dst_rq);
2633 		}
2634 
2635 		/* if the destination CPU is idle, wake it up */
2636 		if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2637 			resched_curr(dst_rq);
2638 	}
2639 
2640 	/* switch back to @rq lock */
2641 	if (rq != dst_rq) {
2642 		raw_spin_rq_unlock(dst_rq);
2643 		raw_spin_rq_lock(rq);
2644 	}
2645 #else	/* CONFIG_SMP */
2646 	BUG();	/* control can not reach here on UP */
2647 #endif	/* CONFIG_SMP */
2648 }
2649 
2650 /**
2651  * finish_dispatch - Asynchronously finish dispatching a task
2652  * @rq: current rq which is locked
2653  * @p: task to finish dispatching
2654  * @qseq_at_dispatch: qseq when @p started getting dispatched
2655  * @dsq_id: destination DSQ ID
2656  * @enq_flags: %SCX_ENQ_*
2657  *
2658  * Dispatching to local DSQs may need to wait for queueing to complete or
2659  * require rq lock dancing. As we don't wanna do either while inside
2660  * ops.dispatch() to avoid locking order inversion, we split dispatching into
2661  * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2662  * task and its qseq. Once ops.dispatch() returns, this function is called to
2663  * finish up.
2664  *
2665  * There is no guarantee that @p is still valid for dispatching or even that it
2666  * was valid in the first place. Make sure that the task is still owned by the
2667  * BPF scheduler and claim the ownership before dispatching.
2668  */
2669 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2670 			    unsigned long qseq_at_dispatch,
2671 			    u64 dsq_id, u64 enq_flags)
2672 {
2673 	struct scx_dispatch_q *dsq;
2674 	unsigned long opss;
2675 
2676 	touch_core_sched_dispatch(rq, p);
2677 retry:
2678 	/*
2679 	 * No need for _acquire here. @p is accessed only after a successful
2680 	 * try_cmpxchg to DISPATCHING.
2681 	 */
2682 	opss = atomic_long_read(&p->scx.ops_state);
2683 
2684 	switch (opss & SCX_OPSS_STATE_MASK) {
2685 	case SCX_OPSS_DISPATCHING:
2686 	case SCX_OPSS_NONE:
2687 		/* someone else already got to it */
2688 		return;
2689 	case SCX_OPSS_QUEUED:
2690 		/*
2691 		 * If qseq doesn't match, @p has gone through at least one
2692 		 * dispatch/dequeue and re-enqueue cycle between
2693 		 * scx_bpf_dsq_insert() and here and we have no claim on it.
2694 		 */
2695 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2696 			return;
2697 
2698 		/*
2699 		 * While we know @p is accessible, we don't yet have a claim on
2700 		 * it - the BPF scheduler is allowed to dispatch tasks
2701 		 * spuriously and there can be a racing dequeue attempt. Let's
2702 		 * claim @p by atomically transitioning it from QUEUED to
2703 		 * DISPATCHING.
2704 		 */
2705 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2706 						   SCX_OPSS_DISPATCHING)))
2707 			break;
2708 		goto retry;
2709 	case SCX_OPSS_QUEUEING:
2710 		/*
2711 		 * do_enqueue_task() is in the process of transferring the task
2712 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
2713 		 * holding any kernel or BPF resource that the enqueue path may
2714 		 * depend upon, it's safe to wait.
2715 		 */
2716 		wait_ops_state(p, opss);
2717 		goto retry;
2718 	}
2719 
2720 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2721 
2722 	dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2723 
2724 	if (dsq->id == SCX_DSQ_LOCAL)
2725 		dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2726 	else
2727 		dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2728 }
2729 
2730 static void flush_dispatch_buf(struct rq *rq)
2731 {
2732 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2733 	u32 u;
2734 
2735 	for (u = 0; u < dspc->cursor; u++) {
2736 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2737 
2738 		finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2739 				ent->enq_flags);
2740 	}
2741 
2742 	dspc->nr_tasks += dspc->cursor;
2743 	dspc->cursor = 0;
2744 }
2745 
2746 static int balance_one(struct rq *rq, struct task_struct *prev)
2747 {
2748 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2749 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
2750 	int nr_loops = SCX_DSP_MAX_LOOPS;
2751 
2752 	lockdep_assert_rq_held(rq);
2753 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
2754 	rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
2755 
2756 	if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2757 	    unlikely(rq->scx.cpu_released)) {
2758 		/*
2759 		 * If the previous sched_class for the current CPU was not SCX,
2760 		 * notify the BPF scheduler that it again has control of the
2761 		 * core. This callback complements ->cpu_release(), which is
2762 		 * emitted in switch_class().
2763 		 */
2764 		if (SCX_HAS_OP(cpu_acquire))
2765 			SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
2766 		rq->scx.cpu_released = false;
2767 	}
2768 
2769 	if (prev_on_scx) {
2770 		update_curr_scx(rq);
2771 
2772 		/*
2773 		 * If @prev is runnable & has slice left, it has priority and
2774 		 * fetching more just increases latency for the fetched tasks.
2775 		 * Tell pick_task_scx() to keep running @prev. If the BPF
2776 		 * scheduler wants to handle this explicitly, it should
2777 		 * implement ->cpu_release().
2778 		 *
2779 		 * See scx_ops_disable_workfn() for the explanation on the
2780 		 * bypassing test.
2781 		 */
2782 		if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2783 		    prev->scx.slice && !scx_rq_bypassing(rq)) {
2784 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2785 			goto has_tasks;
2786 		}
2787 	}
2788 
2789 	/* if there already are tasks to run, nothing to do */
2790 	if (rq->scx.local_dsq.nr)
2791 		goto has_tasks;
2792 
2793 	if (consume_global_dsq(rq))
2794 		goto has_tasks;
2795 
2796 	if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2797 		goto no_tasks;
2798 
2799 	dspc->rq = rq;
2800 
2801 	/*
2802 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2803 	 * the local DSQ might still end up empty after a successful
2804 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2805 	 * produced some tasks, retry. The BPF scheduler may depend on this
2806 	 * looping behavior to simplify its implementation.
2807 	 */
2808 	do {
2809 		dspc->nr_tasks = 0;
2810 
2811 		SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2812 			    prev_on_scx ? prev : NULL);
2813 
2814 		flush_dispatch_buf(rq);
2815 
2816 		if (rq->scx.local_dsq.nr)
2817 			goto has_tasks;
2818 		if (consume_global_dsq(rq))
2819 			goto has_tasks;
2820 
2821 		/*
2822 		 * ops.dispatch() can trap us in this loop by repeatedly
2823 		 * dispatching ineligible tasks. Break out once in a while to
2824 		 * allow the watchdog to run. As IRQ can't be enabled in
2825 		 * balance(), we want to complete this scheduling cycle and then
2826 		 * start a new one. IOW, we want to call resched_curr() on the
2827 		 * next, most likely idle, task, not the current one. Use
2828 		 * scx_bpf_kick_cpu() for deferred kicking.
2829 		 */
2830 		if (unlikely(!--nr_loops)) {
2831 			scx_bpf_kick_cpu(cpu_of(rq), 0);
2832 			break;
2833 		}
2834 	} while (dspc->nr_tasks);
2835 
2836 no_tasks:
2837 	/*
2838 	 * Didn't find another task to run. Keep running @prev unless
2839 	 * %SCX_OPS_ENQ_LAST is in effect.
2840 	 */
2841 	if ((prev->scx.flags & SCX_TASK_QUEUED) &&
2842 	    (!static_branch_unlikely(&scx_ops_enq_last) ||
2843 	     scx_rq_bypassing(rq))) {
2844 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
2845 		goto has_tasks;
2846 	}
2847 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2848 	return false;
2849 
2850 has_tasks:
2851 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2852 	return true;
2853 }
2854 
2855 static int balance_scx(struct rq *rq, struct task_struct *prev,
2856 		       struct rq_flags *rf)
2857 {
2858 	int ret;
2859 
2860 	rq_unpin_lock(rq, rf);
2861 
2862 	ret = balance_one(rq, prev);
2863 
2864 #ifdef CONFIG_SCHED_SMT
2865 	/*
2866 	 * When core-sched is enabled, this ops.balance() call will be followed
2867 	 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2868 	 * siblings too.
2869 	 */
2870 	if (sched_core_enabled(rq)) {
2871 		const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2872 		int scpu;
2873 
2874 		for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2875 			struct rq *srq = cpu_rq(scpu);
2876 			struct task_struct *sprev = srq->curr;
2877 
2878 			WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2879 			update_rq_clock(srq);
2880 			balance_one(srq, sprev);
2881 		}
2882 	}
2883 #endif
2884 	rq_repin_lock(rq, rf);
2885 
2886 	return ret;
2887 }
2888 
2889 static void process_ddsp_deferred_locals(struct rq *rq)
2890 {
2891 	struct task_struct *p;
2892 
2893 	lockdep_assert_rq_held(rq);
2894 
2895 	/*
2896 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
2897 	 * tasks directly dispatched to the local DSQs of other CPUs. See
2898 	 * direct_dispatch(). Keep popping from the head instead of using
2899 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2900 	 * temporarily.
2901 	 */
2902 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2903 				struct task_struct, scx.dsq_list.node))) {
2904 		struct scx_dispatch_q *dsq;
2905 
2906 		list_del_init(&p->scx.dsq_list.node);
2907 
2908 		dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2909 		if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2910 			dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2911 	}
2912 }
2913 
2914 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2915 {
2916 	if (p->scx.flags & SCX_TASK_QUEUED) {
2917 		/*
2918 		 * Core-sched might decide to execute @p before it is
2919 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2920 		 */
2921 		ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2922 		dispatch_dequeue(rq, p);
2923 	}
2924 
2925 	p->se.exec_start = rq_clock_task(rq);
2926 
2927 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2928 	if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2929 		SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2930 
2931 	clr_task_runnable(p, true);
2932 
2933 	/*
2934 	 * @p is getting newly scheduled or got kicked after someone updated its
2935 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2936 	 */
2937 	if ((p->scx.slice == SCX_SLICE_INF) !=
2938 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2939 		if (p->scx.slice == SCX_SLICE_INF)
2940 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2941 		else
2942 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2943 
2944 		sched_update_tick_dependency(rq);
2945 
2946 		/*
2947 		 * For now, let's refresh the load_avgs just when transitioning
2948 		 * in and out of nohz. In the future, we might want to add a
2949 		 * mechanism which calls the following periodically on
2950 		 * tick-stopped CPUs.
2951 		 */
2952 		update_other_load_avgs(rq);
2953 	}
2954 }
2955 
2956 static enum scx_cpu_preempt_reason
2957 preempt_reason_from_class(const struct sched_class *class)
2958 {
2959 #ifdef CONFIG_SMP
2960 	if (class == &stop_sched_class)
2961 		return SCX_CPU_PREEMPT_STOP;
2962 #endif
2963 	if (class == &dl_sched_class)
2964 		return SCX_CPU_PREEMPT_DL;
2965 	if (class == &rt_sched_class)
2966 		return SCX_CPU_PREEMPT_RT;
2967 	return SCX_CPU_PREEMPT_UNKNOWN;
2968 }
2969 
2970 static void switch_class(struct rq *rq, struct task_struct *next)
2971 {
2972 	const struct sched_class *next_class = next->sched_class;
2973 
2974 #ifdef CONFIG_SMP
2975 	/*
2976 	 * Pairs with the smp_load_acquire() issued by a CPU in
2977 	 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2978 	 * resched.
2979 	 */
2980 	smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2981 #endif
2982 	if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2983 		return;
2984 
2985 	/*
2986 	 * The callback is conceptually meant to convey that the CPU is no
2987 	 * longer under the control of SCX. Therefore, don't invoke the callback
2988 	 * if the next class is below SCX (in which case the BPF scheduler has
2989 	 * actively decided not to schedule any tasks on the CPU).
2990 	 */
2991 	if (sched_class_above(&ext_sched_class, next_class))
2992 		return;
2993 
2994 	/*
2995 	 * At this point we know that SCX was preempted by a higher priority
2996 	 * sched_class, so invoke the ->cpu_release() callback if we have not
2997 	 * done so already. We only send the callback once between SCX being
2998 	 * preempted, and it regaining control of the CPU.
2999 	 *
3000 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
3001 	 *  next time that balance_scx() is invoked.
3002 	 */
3003 	if (!rq->scx.cpu_released) {
3004 		if (SCX_HAS_OP(cpu_release)) {
3005 			struct scx_cpu_release_args args = {
3006 				.reason = preempt_reason_from_class(next_class),
3007 				.task = next,
3008 			};
3009 
3010 			SCX_CALL_OP(SCX_KF_CPU_RELEASE,
3011 				    cpu_release, cpu_of(rq), &args);
3012 		}
3013 		rq->scx.cpu_released = true;
3014 	}
3015 }
3016 
3017 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
3018 			      struct task_struct *next)
3019 {
3020 	update_curr_scx(rq);
3021 
3022 	/* see dequeue_task_scx() on why we skip when !QUEUED */
3023 	if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
3024 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
3025 
3026 	if (p->scx.flags & SCX_TASK_QUEUED) {
3027 		set_task_runnable(rq, p);
3028 
3029 		/*
3030 		 * If @p has slice left and is being put, @p is getting
3031 		 * preempted by a higher priority scheduler class or core-sched
3032 		 * forcing a different task. Leave it at the head of the local
3033 		 * DSQ.
3034 		 */
3035 		if (p->scx.slice && !scx_rq_bypassing(rq)) {
3036 			dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
3037 			return;
3038 		}
3039 
3040 		/*
3041 		 * If @p is runnable but we're about to enter a lower
3042 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
3043 		 * ops.enqueue() that @p is the only one available for this cpu,
3044 		 * which should trigger an explicit follow-up scheduling event.
3045 		 */
3046 		if (sched_class_above(&ext_sched_class, next->sched_class)) {
3047 			WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
3048 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
3049 		} else {
3050 			do_enqueue_task(rq, p, 0, -1);
3051 		}
3052 	}
3053 
3054 	if (next && next->sched_class != &ext_sched_class)
3055 		switch_class(rq, next);
3056 }
3057 
3058 static struct task_struct *first_local_task(struct rq *rq)
3059 {
3060 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
3061 					struct task_struct, scx.dsq_list.node);
3062 }
3063 
3064 static struct task_struct *pick_task_scx(struct rq *rq)
3065 {
3066 	struct task_struct *prev = rq->curr;
3067 	struct task_struct *p;
3068 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
3069 	bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
3070 	bool kick_idle = false;
3071 
3072 	/*
3073 	 * WORKAROUND:
3074 	 *
3075 	 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
3076 	 * have gone through balance_scx(). Unfortunately, there currently is a
3077 	 * bug where fair could say yes on balance() but no on pick_task(),
3078 	 * which then ends up calling pick_task_scx() without preceding
3079 	 * balance_scx().
3080 	 *
3081 	 * Keep running @prev if possible and avoid stalling from entering idle
3082 	 * without balancing.
3083 	 *
3084 	 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
3085 	 * if pick_task_scx() is called without preceding balance_scx().
3086 	 */
3087 	if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
3088 		if (prev_on_scx) {
3089 			keep_prev = true;
3090 		} else {
3091 			keep_prev = false;
3092 			kick_idle = true;
3093 		}
3094 	} else if (unlikely(keep_prev && !prev_on_scx)) {
3095 		/* only allowed during transitions */
3096 		WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED);
3097 		keep_prev = false;
3098 	}
3099 
3100 	/*
3101 	 * If balance_scx() is telling us to keep running @prev, replenish slice
3102 	 * if necessary and keep running @prev. Otherwise, pop the first one
3103 	 * from the local DSQ.
3104 	 */
3105 	if (keep_prev) {
3106 		p = prev;
3107 		if (!p->scx.slice)
3108 			p->scx.slice = SCX_SLICE_DFL;
3109 	} else {
3110 		p = first_local_task(rq);
3111 		if (!p) {
3112 			if (kick_idle)
3113 				scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE);
3114 			return NULL;
3115 		}
3116 
3117 		if (unlikely(!p->scx.slice)) {
3118 			if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
3119 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
3120 						p->comm, p->pid, __func__);
3121 				scx_warned_zero_slice = true;
3122 			}
3123 			p->scx.slice = SCX_SLICE_DFL;
3124 		}
3125 	}
3126 
3127 	return p;
3128 }
3129 
3130 #ifdef CONFIG_SCHED_CORE
3131 /**
3132  * scx_prio_less - Task ordering for core-sched
3133  * @a: task A
3134  * @b: task B
3135  *
3136  * Core-sched is implemented as an additional scheduling layer on top of the
3137  * usual sched_class'es and needs to find out the expected task ordering. For
3138  * SCX, core-sched calls this function to interrogate the task ordering.
3139  *
3140  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3141  * to implement the default task ordering. The older the timestamp, the higher
3142  * prority the task - the global FIFO ordering matching the default scheduling
3143  * behavior.
3144  *
3145  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3146  * implement FIFO ordering within each local DSQ. See pick_task_scx().
3147  */
3148 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3149 		   bool in_fi)
3150 {
3151 	/*
3152 	 * The const qualifiers are dropped from task_struct pointers when
3153 	 * calling ops.core_sched_before(). Accesses are controlled by the
3154 	 * verifier.
3155 	 */
3156 	if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3157 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3158 					      (struct task_struct *)a,
3159 					      (struct task_struct *)b);
3160 	else
3161 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3162 }
3163 #endif	/* CONFIG_SCHED_CORE */
3164 
3165 #ifdef CONFIG_SMP
3166 
3167 static bool test_and_clear_cpu_idle(int cpu)
3168 {
3169 #ifdef CONFIG_SCHED_SMT
3170 	/*
3171 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3172 	 * cluster is not wholly idle either way. This also prevents
3173 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3174 	 */
3175 	if (sched_smt_active()) {
3176 		const struct cpumask *smt = cpu_smt_mask(cpu);
3177 
3178 		/*
3179 		 * If offline, @cpu is not its own sibling and
3180 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
3181 		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3182 		 * is eventually cleared.
3183 		 *
3184 		 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
3185 		 * reduce memory writes, which may help alleviate cache
3186 		 * coherence pressure.
3187 		 */
3188 		if (cpumask_intersects(smt, idle_masks.smt))
3189 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3190 		else if (cpumask_test_cpu(cpu, idle_masks.smt))
3191 			__cpumask_clear_cpu(cpu, idle_masks.smt);
3192 	}
3193 #endif
3194 	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3195 }
3196 
3197 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3198 {
3199 	int cpu;
3200 
3201 retry:
3202 	if (sched_smt_active()) {
3203 		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3204 		if (cpu < nr_cpu_ids)
3205 			goto found;
3206 
3207 		if (flags & SCX_PICK_IDLE_CORE)
3208 			return -EBUSY;
3209 	}
3210 
3211 	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3212 	if (cpu >= nr_cpu_ids)
3213 		return -EBUSY;
3214 
3215 found:
3216 	if (test_and_clear_cpu_idle(cpu))
3217 		return cpu;
3218 	else
3219 		goto retry;
3220 }
3221 
3222 /*
3223  * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
3224  * domain is not defined).
3225  */
3226 static unsigned int llc_weight(s32 cpu)
3227 {
3228 	struct sched_domain *sd;
3229 
3230 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
3231 	if (!sd)
3232 		return 0;
3233 
3234 	return sd->span_weight;
3235 }
3236 
3237 /*
3238  * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
3239  * domain is not defined).
3240  */
3241 static struct cpumask *llc_span(s32 cpu)
3242 {
3243 	struct sched_domain *sd;
3244 
3245 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
3246 	if (!sd)
3247 		return 0;
3248 
3249 	return sched_domain_span(sd);
3250 }
3251 
3252 /*
3253  * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
3254  * NUMA domain is not defined).
3255  */
3256 static unsigned int numa_weight(s32 cpu)
3257 {
3258 	struct sched_domain *sd;
3259 	struct sched_group *sg;
3260 
3261 	sd = rcu_dereference(per_cpu(sd_numa, cpu));
3262 	if (!sd)
3263 		return 0;
3264 	sg = sd->groups;
3265 	if (!sg)
3266 		return 0;
3267 
3268 	return sg->group_weight;
3269 }
3270 
3271 /*
3272  * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
3273  * domain is not defined).
3274  */
3275 static struct cpumask *numa_span(s32 cpu)
3276 {
3277 	struct sched_domain *sd;
3278 	struct sched_group *sg;
3279 
3280 	sd = rcu_dereference(per_cpu(sd_numa, cpu));
3281 	if (!sd)
3282 		return NULL;
3283 	sg = sd->groups;
3284 	if (!sg)
3285 		return NULL;
3286 
3287 	return sched_group_span(sg);
3288 }
3289 
3290 /*
3291  * Return true if the LLC domains do not perfectly overlap with the NUMA
3292  * domains, false otherwise.
3293  */
3294 static bool llc_numa_mismatch(void)
3295 {
3296 	int cpu;
3297 
3298 	/*
3299 	 * We need to scan all online CPUs to verify whether their scheduling
3300 	 * domains overlap.
3301 	 *
3302 	 * While it is rare to encounter architectures with asymmetric NUMA
3303 	 * topologies, CPU hotplugging or virtualized environments can result
3304 	 * in asymmetric configurations.
3305 	 *
3306 	 * For example:
3307 	 *
3308 	 *  NUMA 0:
3309 	 *    - LLC 0: cpu0..cpu7
3310 	 *    - LLC 1: cpu8..cpu15 [offline]
3311 	 *
3312 	 *  NUMA 1:
3313 	 *    - LLC 0: cpu16..cpu23
3314 	 *    - LLC 1: cpu24..cpu31
3315 	 *
3316 	 * In this case, if we only check the first online CPU (cpu0), we might
3317 	 * incorrectly assume that the LLC and NUMA domains are fully
3318 	 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
3319 	 * domains).
3320 	 */
3321 	for_each_online_cpu(cpu)
3322 		if (llc_weight(cpu) != numa_weight(cpu))
3323 			return true;
3324 
3325 	return false;
3326 }
3327 
3328 /*
3329  * Initialize topology-aware scheduling.
3330  *
3331  * Detect if the system has multiple LLC or multiple NUMA domains and enable
3332  * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
3333  * selection policy.
3334  *
3335  * Assumption: the kernel's internal topology representation assumes that each
3336  * CPU belongs to a single LLC domain, and that each LLC domain is entirely
3337  * contained within a single NUMA node.
3338  */
3339 static void update_selcpu_topology(void)
3340 {
3341 	bool enable_llc = false, enable_numa = false;
3342 	unsigned int nr_cpus;
3343 	s32 cpu = cpumask_first(cpu_online_mask);
3344 
3345 	/*
3346 	 * Enable LLC domain optimization only when there are multiple LLC
3347 	 * domains among the online CPUs. If all online CPUs are part of a
3348 	 * single LLC domain, the idle CPU selection logic can choose any
3349 	 * online CPU without bias.
3350 	 *
3351 	 * Note that it is sufficient to check the LLC domain of the first
3352 	 * online CPU to determine whether a single LLC domain includes all
3353 	 * CPUs.
3354 	 */
3355 	rcu_read_lock();
3356 	nr_cpus = llc_weight(cpu);
3357 	if (nr_cpus > 0) {
3358 		if (nr_cpus < num_online_cpus())
3359 			enable_llc = true;
3360 		pr_debug("sched_ext: LLC=%*pb weight=%u\n",
3361 			 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
3362 	}
3363 
3364 	/*
3365 	 * Enable NUMA optimization only when there are multiple NUMA domains
3366 	 * among the online CPUs and the NUMA domains don't perfectly overlaps
3367 	 * with the LLC domains.
3368 	 *
3369 	 * If all CPUs belong to the same NUMA node and the same LLC domain,
3370 	 * enabling both NUMA and LLC optimizations is unnecessary, as checking
3371 	 * for an idle CPU in the same domain twice is redundant.
3372 	 */
3373 	nr_cpus = numa_weight(cpu);
3374 	if (nr_cpus > 0) {
3375 		if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
3376 			enable_numa = true;
3377 		pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
3378 			 cpumask_pr_args(numa_span(cpu)), numa_weight(cpu));
3379 	}
3380 	rcu_read_unlock();
3381 
3382 	pr_debug("sched_ext: LLC idle selection %s\n",
3383 		 str_enabled_disabled(enable_llc));
3384 	pr_debug("sched_ext: NUMA idle selection %s\n",
3385 		 str_enabled_disabled(enable_numa));
3386 
3387 	if (enable_llc)
3388 		static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
3389 	else
3390 		static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
3391 	if (enable_numa)
3392 		static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
3393 	else
3394 		static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
3395 }
3396 
3397 /*
3398  * Built-in CPU idle selection policy:
3399  *
3400  * 1. Prioritize full-idle cores:
3401  *   - always prioritize CPUs from fully idle cores (both logical CPUs are
3402  *     idle) to avoid interference caused by SMT.
3403  *
3404  * 2. Reuse the same CPU:
3405  *   - prefer the last used CPU to take advantage of cached data (L1, L2) and
3406  *     branch prediction optimizations.
3407  *
3408  * 3. Pick a CPU within the same LLC (Last-Level Cache):
3409  *   - if the above conditions aren't met, pick a CPU that shares the same LLC
3410  *     to maintain cache locality.
3411  *
3412  * 4. Pick a CPU within the same NUMA node, if enabled:
3413  *   - choose a CPU from the same NUMA node to reduce memory access latency.
3414  *
3415  * 5. Pick any idle CPU usable by the task.
3416  *
3417  * Step 3 and 4 are performed only if the system has, respectively, multiple
3418  * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
3419  * scx_selcpu_topo_numa).
3420  *
3421  * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
3422  * we never call ops.select_cpu() for them, see select_task_rq().
3423  */
3424 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3425 			      u64 wake_flags, bool *found)
3426 {
3427 	const struct cpumask *llc_cpus = NULL;
3428 	const struct cpumask *numa_cpus = NULL;
3429 	s32 cpu;
3430 
3431 	*found = false;
3432 
3433 	/*
3434 	 * This is necessary to protect llc_cpus.
3435 	 */
3436 	rcu_read_lock();
3437 
3438 	/*
3439 	 * Determine the scheduling domain only if the task is allowed to run
3440 	 * on all CPUs.
3441 	 *
3442 	 * This is done primarily for efficiency, as it avoids the overhead of
3443 	 * updating a cpumask every time we need to select an idle CPU (which
3444 	 * can be costly in large SMP systems), but it also aligns logically:
3445 	 * if a task's scheduling domain is restricted by user-space (through
3446 	 * CPU affinity), the task will simply use the flat scheduling domain
3447 	 * defined by user-space.
3448 	 */
3449 	if (p->nr_cpus_allowed >= num_possible_cpus()) {
3450 		if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
3451 			numa_cpus = numa_span(prev_cpu);
3452 
3453 		if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc))
3454 			llc_cpus = llc_span(prev_cpu);
3455 	}
3456 
3457 	/*
3458 	 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
3459 	 */
3460 	if (wake_flags & SCX_WAKE_SYNC) {
3461 		cpu = smp_processor_id();
3462 
3463 		/*
3464 		 * If the waker's CPU is cache affine and prev_cpu is idle,
3465 		 * then avoid a migration.
3466 		 */
3467 		if (cpus_share_cache(cpu, prev_cpu) &&
3468 		    test_and_clear_cpu_idle(prev_cpu)) {
3469 			cpu = prev_cpu;
3470 			goto cpu_found;
3471 		}
3472 
3473 		/*
3474 		 * If the waker's local DSQ is empty, and the system is under
3475 		 * utilized, try to wake up @p to the local DSQ of the waker.
3476 		 *
3477 		 * Checking only for an empty local DSQ is insufficient as it
3478 		 * could give the wakee an unfair advantage when the system is
3479 		 * oversaturated.
3480 		 *
3481 		 * Checking only for the presence of idle CPUs is also
3482 		 * insufficient as the local DSQ of the waker could have tasks
3483 		 * piled up on it even if there is an idle core elsewhere on
3484 		 * the system.
3485 		 */
3486 		if (!cpumask_empty(idle_masks.cpu) &&
3487 		    !(current->flags & PF_EXITING) &&
3488 		    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3489 			if (cpumask_test_cpu(cpu, p->cpus_ptr))
3490 				goto cpu_found;
3491 		}
3492 	}
3493 
3494 	/*
3495 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3496 	 * partially idle @prev_cpu.
3497 	 */
3498 	if (sched_smt_active()) {
3499 		/*
3500 		 * Keep using @prev_cpu if it's part of a fully idle core.
3501 		 */
3502 		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3503 		    test_and_clear_cpu_idle(prev_cpu)) {
3504 			cpu = prev_cpu;
3505 			goto cpu_found;
3506 		}
3507 
3508 		/*
3509 		 * Search for any fully idle core in the same LLC domain.
3510 		 */
3511 		if (llc_cpus) {
3512 			cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE);
3513 			if (cpu >= 0)
3514 				goto cpu_found;
3515 		}
3516 
3517 		/*
3518 		 * Search for any fully idle core in the same NUMA node.
3519 		 */
3520 		if (numa_cpus) {
3521 			cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE);
3522 			if (cpu >= 0)
3523 				goto cpu_found;
3524 		}
3525 
3526 		/*
3527 		 * Search for any full idle core usable by the task.
3528 		 */
3529 		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3530 		if (cpu >= 0)
3531 			goto cpu_found;
3532 	}
3533 
3534 	/*
3535 	 * Use @prev_cpu if it's idle.
3536 	 */
3537 	if (test_and_clear_cpu_idle(prev_cpu)) {
3538 		cpu = prev_cpu;
3539 		goto cpu_found;
3540 	}
3541 
3542 	/*
3543 	 * Search for any idle CPU in the same LLC domain.
3544 	 */
3545 	if (llc_cpus) {
3546 		cpu = scx_pick_idle_cpu(llc_cpus, 0);
3547 		if (cpu >= 0)
3548 			goto cpu_found;
3549 	}
3550 
3551 	/*
3552 	 * Search for any idle CPU in the same NUMA node.
3553 	 */
3554 	if (numa_cpus) {
3555 		cpu = scx_pick_idle_cpu(numa_cpus, 0);
3556 		if (cpu >= 0)
3557 			goto cpu_found;
3558 	}
3559 
3560 	/*
3561 	 * Search for any idle CPU usable by the task.
3562 	 */
3563 	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3564 	if (cpu >= 0)
3565 		goto cpu_found;
3566 
3567 	rcu_read_unlock();
3568 	return prev_cpu;
3569 
3570 cpu_found:
3571 	rcu_read_unlock();
3572 
3573 	*found = true;
3574 	return cpu;
3575 }
3576 
3577 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3578 {
3579 	/*
3580 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3581 	 * can be a good migration opportunity with low cache and memory
3582 	 * footprint. Returning a CPU different than @prev_cpu triggers
3583 	 * immediate rq migration. However, for SCX, as the current rq
3584 	 * association doesn't dictate where the task is going to run, this
3585 	 * doesn't fit well. If necessary, we can later add a dedicated method
3586 	 * which can decide to preempt self to force it through the regular
3587 	 * scheduling path.
3588 	 */
3589 	if (unlikely(wake_flags & WF_EXEC))
3590 		return prev_cpu;
3591 
3592 	if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3593 		s32 cpu;
3594 		struct task_struct **ddsp_taskp;
3595 
3596 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3597 		WARN_ON_ONCE(*ddsp_taskp);
3598 		*ddsp_taskp = p;
3599 
3600 		cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3601 					   select_cpu, p, prev_cpu, wake_flags);
3602 		*ddsp_taskp = NULL;
3603 		if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3604 			return cpu;
3605 		else
3606 			return prev_cpu;
3607 	} else {
3608 		bool found;
3609 		s32 cpu;
3610 
3611 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3612 		if (found) {
3613 			p->scx.slice = SCX_SLICE_DFL;
3614 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3615 		}
3616 		return cpu;
3617 	}
3618 }
3619 
3620 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3621 {
3622 	run_deferred(rq);
3623 }
3624 
3625 static void set_cpus_allowed_scx(struct task_struct *p,
3626 				 struct affinity_context *ac)
3627 {
3628 	set_cpus_allowed_common(p, ac);
3629 
3630 	/*
3631 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3632 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3633 	 * scheduler the effective one.
3634 	 *
3635 	 * Fine-grained memory write control is enforced by BPF making the const
3636 	 * designation pointless. Cast it away when calling the operation.
3637 	 */
3638 	if (SCX_HAS_OP(set_cpumask))
3639 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3640 				 (struct cpumask *)p->cpus_ptr);
3641 }
3642 
3643 static void reset_idle_masks(void)
3644 {
3645 	/*
3646 	 * Consider all online cpus idle. Should converge to the actual state
3647 	 * quickly.
3648 	 */
3649 	cpumask_copy(idle_masks.cpu, cpu_online_mask);
3650 	cpumask_copy(idle_masks.smt, cpu_online_mask);
3651 }
3652 
3653 void __scx_update_idle(struct rq *rq, bool idle)
3654 {
3655 	int cpu = cpu_of(rq);
3656 
3657 	if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) {
3658 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3659 		if (!static_branch_unlikely(&scx_builtin_idle_enabled))
3660 			return;
3661 	}
3662 
3663 	assign_cpu(cpu, idle_masks.cpu, idle);
3664 
3665 #ifdef CONFIG_SCHED_SMT
3666 	if (sched_smt_active()) {
3667 		const struct cpumask *smt = cpu_smt_mask(cpu);
3668 
3669 		if (idle) {
3670 			/*
3671 			 * idle_masks.smt handling is racy but that's fine as
3672 			 * it's only for optimization and self-correcting.
3673 			 */
3674 			if (!cpumask_subset(smt, idle_masks.cpu))
3675 				return;
3676 			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3677 		} else {
3678 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3679 		}
3680 	}
3681 #endif
3682 }
3683 
3684 static void handle_hotplug(struct rq *rq, bool online)
3685 {
3686 	int cpu = cpu_of(rq);
3687 
3688 	atomic_long_inc(&scx_hotplug_seq);
3689 
3690 	if (scx_enabled())
3691 		update_selcpu_topology();
3692 
3693 	if (online && SCX_HAS_OP(cpu_online))
3694 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3695 	else if (!online && SCX_HAS_OP(cpu_offline))
3696 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3697 	else
3698 		scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3699 			     "cpu %d going %s, exiting scheduler", cpu,
3700 			     online ? "online" : "offline");
3701 }
3702 
3703 void scx_rq_activate(struct rq *rq)
3704 {
3705 	handle_hotplug(rq, true);
3706 }
3707 
3708 void scx_rq_deactivate(struct rq *rq)
3709 {
3710 	handle_hotplug(rq, false);
3711 }
3712 
3713 static void rq_online_scx(struct rq *rq)
3714 {
3715 	rq->scx.flags |= SCX_RQ_ONLINE;
3716 }
3717 
3718 static void rq_offline_scx(struct rq *rq)
3719 {
3720 	rq->scx.flags &= ~SCX_RQ_ONLINE;
3721 }
3722 
3723 #else	/* CONFIG_SMP */
3724 
3725 static bool test_and_clear_cpu_idle(int cpu) { return false; }
3726 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
3727 static void reset_idle_masks(void) {}
3728 
3729 #endif	/* CONFIG_SMP */
3730 
3731 static bool check_rq_for_timeouts(struct rq *rq)
3732 {
3733 	struct task_struct *p;
3734 	struct rq_flags rf;
3735 	bool timed_out = false;
3736 
3737 	rq_lock_irqsave(rq, &rf);
3738 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3739 		unsigned long last_runnable = p->scx.runnable_at;
3740 
3741 		if (unlikely(time_after(jiffies,
3742 					last_runnable + scx_watchdog_timeout))) {
3743 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3744 
3745 			scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3746 					   "%s[%d] failed to run for %u.%03us",
3747 					   p->comm, p->pid,
3748 					   dur_ms / 1000, dur_ms % 1000);
3749 			timed_out = true;
3750 			break;
3751 		}
3752 	}
3753 	rq_unlock_irqrestore(rq, &rf);
3754 
3755 	return timed_out;
3756 }
3757 
3758 static void scx_watchdog_workfn(struct work_struct *work)
3759 {
3760 	int cpu;
3761 
3762 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3763 
3764 	for_each_online_cpu(cpu) {
3765 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3766 			break;
3767 
3768 		cond_resched();
3769 	}
3770 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3771 			   scx_watchdog_timeout / 2);
3772 }
3773 
3774 void scx_tick(struct rq *rq)
3775 {
3776 	unsigned long last_check;
3777 
3778 	if (!scx_enabled())
3779 		return;
3780 
3781 	last_check = READ_ONCE(scx_watchdog_timestamp);
3782 	if (unlikely(time_after(jiffies,
3783 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
3784 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3785 
3786 		scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3787 				   "watchdog failed to check in for %u.%03us",
3788 				   dur_ms / 1000, dur_ms % 1000);
3789 	}
3790 
3791 	update_other_load_avgs(rq);
3792 }
3793 
3794 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3795 {
3796 	update_curr_scx(rq);
3797 
3798 	/*
3799 	 * While disabling, always resched and refresh core-sched timestamp as
3800 	 * we can't trust the slice management or ops.core_sched_before().
3801 	 */
3802 	if (scx_rq_bypassing(rq)) {
3803 		curr->scx.slice = 0;
3804 		touch_core_sched(rq, curr);
3805 	} else if (SCX_HAS_OP(tick)) {
3806 		SCX_CALL_OP(SCX_KF_REST, tick, curr);
3807 	}
3808 
3809 	if (!curr->scx.slice)
3810 		resched_curr(rq);
3811 }
3812 
3813 #ifdef CONFIG_EXT_GROUP_SCHED
3814 static struct cgroup *tg_cgrp(struct task_group *tg)
3815 {
3816 	/*
3817 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3818 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3819 	 * root cgroup.
3820 	 */
3821 	if (tg && tg->css.cgroup)
3822 		return tg->css.cgroup;
3823 	else
3824 		return &cgrp_dfl_root.cgrp;
3825 }
3826 
3827 #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
3828 
3829 #else	/* CONFIG_EXT_GROUP_SCHED */
3830 
3831 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3832 
3833 #endif	/* CONFIG_EXT_GROUP_SCHED */
3834 
3835 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3836 {
3837 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3838 }
3839 
3840 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3841 {
3842 	enum scx_task_state prev_state = scx_get_task_state(p);
3843 	bool warn = false;
3844 
3845 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3846 
3847 	switch (state) {
3848 	case SCX_TASK_NONE:
3849 		break;
3850 	case SCX_TASK_INIT:
3851 		warn = prev_state != SCX_TASK_NONE;
3852 		break;
3853 	case SCX_TASK_READY:
3854 		warn = prev_state == SCX_TASK_NONE;
3855 		break;
3856 	case SCX_TASK_ENABLED:
3857 		warn = prev_state != SCX_TASK_READY;
3858 		break;
3859 	default:
3860 		warn = true;
3861 		return;
3862 	}
3863 
3864 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3865 		  prev_state, state, p->comm, p->pid);
3866 
3867 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
3868 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3869 }
3870 
3871 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3872 {
3873 	int ret;
3874 
3875 	p->scx.disallow = false;
3876 
3877 	if (SCX_HAS_OP(init_task)) {
3878 		struct scx_init_task_args args = {
3879 			SCX_INIT_TASK_ARGS_CGROUP(tg)
3880 			.fork = fork,
3881 		};
3882 
3883 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3884 		if (unlikely(ret)) {
3885 			ret = ops_sanitize_err("init_task", ret);
3886 			return ret;
3887 		}
3888 	}
3889 
3890 	scx_set_task_state(p, SCX_TASK_INIT);
3891 
3892 	if (p->scx.disallow) {
3893 		if (!fork) {
3894 			struct rq *rq;
3895 			struct rq_flags rf;
3896 
3897 			rq = task_rq_lock(p, &rf);
3898 
3899 			/*
3900 			 * We're in the load path and @p->policy will be applied
3901 			 * right after. Reverting @p->policy here and rejecting
3902 			 * %SCHED_EXT transitions from scx_check_setscheduler()
3903 			 * guarantees that if ops.init_task() sets @p->disallow,
3904 			 * @p can never be in SCX.
3905 			 */
3906 			if (p->policy == SCHED_EXT) {
3907 				p->policy = SCHED_NORMAL;
3908 				atomic_long_inc(&scx_nr_rejected);
3909 			}
3910 
3911 			task_rq_unlock(rq, p, &rf);
3912 		} else if (p->policy == SCHED_EXT) {
3913 			scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3914 				      p->comm, p->pid);
3915 		}
3916 	}
3917 
3918 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3919 	return 0;
3920 }
3921 
3922 static void scx_ops_enable_task(struct task_struct *p)
3923 {
3924 	u32 weight;
3925 
3926 	lockdep_assert_rq_held(task_rq(p));
3927 
3928 	/*
3929 	 * Set the weight before calling ops.enable() so that the scheduler
3930 	 * doesn't see a stale value if they inspect the task struct.
3931 	 */
3932 	if (task_has_idle_policy(p))
3933 		weight = WEIGHT_IDLEPRIO;
3934 	else
3935 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3936 
3937 	p->scx.weight = sched_weight_to_cgroup(weight);
3938 
3939 	if (SCX_HAS_OP(enable))
3940 		SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3941 	scx_set_task_state(p, SCX_TASK_ENABLED);
3942 
3943 	if (SCX_HAS_OP(set_weight))
3944 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3945 }
3946 
3947 static void scx_ops_disable_task(struct task_struct *p)
3948 {
3949 	lockdep_assert_rq_held(task_rq(p));
3950 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3951 
3952 	if (SCX_HAS_OP(disable))
3953 		SCX_CALL_OP(SCX_KF_REST, disable, p);
3954 	scx_set_task_state(p, SCX_TASK_READY);
3955 }
3956 
3957 static void scx_ops_exit_task(struct task_struct *p)
3958 {
3959 	struct scx_exit_task_args args = {
3960 		.cancelled = false,
3961 	};
3962 
3963 	lockdep_assert_rq_held(task_rq(p));
3964 
3965 	switch (scx_get_task_state(p)) {
3966 	case SCX_TASK_NONE:
3967 		return;
3968 	case SCX_TASK_INIT:
3969 		args.cancelled = true;
3970 		break;
3971 	case SCX_TASK_READY:
3972 		break;
3973 	case SCX_TASK_ENABLED:
3974 		scx_ops_disable_task(p);
3975 		break;
3976 	default:
3977 		WARN_ON_ONCE(true);
3978 		return;
3979 	}
3980 
3981 	if (SCX_HAS_OP(exit_task))
3982 		SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3983 	scx_set_task_state(p, SCX_TASK_NONE);
3984 }
3985 
3986 void init_scx_entity(struct sched_ext_entity *scx)
3987 {
3988 	memset(scx, 0, sizeof(*scx));
3989 	INIT_LIST_HEAD(&scx->dsq_list.node);
3990 	RB_CLEAR_NODE(&scx->dsq_priq);
3991 	scx->sticky_cpu = -1;
3992 	scx->holding_cpu = -1;
3993 	INIT_LIST_HEAD(&scx->runnable_node);
3994 	scx->runnable_at = jiffies;
3995 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3996 	scx->slice = SCX_SLICE_DFL;
3997 }
3998 
3999 void scx_pre_fork(struct task_struct *p)
4000 {
4001 	/*
4002 	 * BPF scheduler enable/disable paths want to be able to iterate and
4003 	 * update all tasks which can become complex when racing forks. As
4004 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
4005 	 * exclude forks.
4006 	 */
4007 	percpu_down_read(&scx_fork_rwsem);
4008 }
4009 
4010 int scx_fork(struct task_struct *p)
4011 {
4012 	percpu_rwsem_assert_held(&scx_fork_rwsem);
4013 
4014 	if (scx_ops_init_task_enabled)
4015 		return scx_ops_init_task(p, task_group(p), true);
4016 	else
4017 		return 0;
4018 }
4019 
4020 void scx_post_fork(struct task_struct *p)
4021 {
4022 	if (scx_ops_init_task_enabled) {
4023 		scx_set_task_state(p, SCX_TASK_READY);
4024 
4025 		/*
4026 		 * Enable the task immediately if it's running on sched_ext.
4027 		 * Otherwise, it'll be enabled in switching_to_scx() if and
4028 		 * when it's ever configured to run with a SCHED_EXT policy.
4029 		 */
4030 		if (p->sched_class == &ext_sched_class) {
4031 			struct rq_flags rf;
4032 			struct rq *rq;
4033 
4034 			rq = task_rq_lock(p, &rf);
4035 			scx_ops_enable_task(p);
4036 			task_rq_unlock(rq, p, &rf);
4037 		}
4038 	}
4039 
4040 	spin_lock_irq(&scx_tasks_lock);
4041 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
4042 	spin_unlock_irq(&scx_tasks_lock);
4043 
4044 	percpu_up_read(&scx_fork_rwsem);
4045 }
4046 
4047 void scx_cancel_fork(struct task_struct *p)
4048 {
4049 	if (scx_enabled()) {
4050 		struct rq *rq;
4051 		struct rq_flags rf;
4052 
4053 		rq = task_rq_lock(p, &rf);
4054 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
4055 		scx_ops_exit_task(p);
4056 		task_rq_unlock(rq, p, &rf);
4057 	}
4058 
4059 	percpu_up_read(&scx_fork_rwsem);
4060 }
4061 
4062 void sched_ext_free(struct task_struct *p)
4063 {
4064 	unsigned long flags;
4065 
4066 	spin_lock_irqsave(&scx_tasks_lock, flags);
4067 	list_del_init(&p->scx.tasks_node);
4068 	spin_unlock_irqrestore(&scx_tasks_lock, flags);
4069 
4070 	/*
4071 	 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
4072 	 * ENABLED transitions can't race us. Disable ops for @p.
4073 	 */
4074 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
4075 		struct rq_flags rf;
4076 		struct rq *rq;
4077 
4078 		rq = task_rq_lock(p, &rf);
4079 		scx_ops_exit_task(p);
4080 		task_rq_unlock(rq, p, &rf);
4081 	}
4082 }
4083 
4084 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
4085 			      const struct load_weight *lw)
4086 {
4087 	lockdep_assert_rq_held(task_rq(p));
4088 
4089 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
4090 	if (SCX_HAS_OP(set_weight))
4091 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
4092 }
4093 
4094 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
4095 {
4096 }
4097 
4098 static void switching_to_scx(struct rq *rq, struct task_struct *p)
4099 {
4100 	scx_ops_enable_task(p);
4101 
4102 	/*
4103 	 * set_cpus_allowed_scx() is not called while @p is associated with a
4104 	 * different scheduler class. Keep the BPF scheduler up-to-date.
4105 	 */
4106 	if (SCX_HAS_OP(set_cpumask))
4107 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
4108 				 (struct cpumask *)p->cpus_ptr);
4109 }
4110 
4111 static void switched_from_scx(struct rq *rq, struct task_struct *p)
4112 {
4113 	scx_ops_disable_task(p);
4114 }
4115 
4116 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
4117 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
4118 
4119 int scx_check_setscheduler(struct task_struct *p, int policy)
4120 {
4121 	lockdep_assert_rq_held(task_rq(p));
4122 
4123 	/* if disallow, reject transitioning into SCX */
4124 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
4125 	    p->policy != policy && policy == SCHED_EXT)
4126 		return -EACCES;
4127 
4128 	return 0;
4129 }
4130 
4131 #ifdef CONFIG_NO_HZ_FULL
4132 bool scx_can_stop_tick(struct rq *rq)
4133 {
4134 	struct task_struct *p = rq->curr;
4135 
4136 	if (scx_rq_bypassing(rq))
4137 		return false;
4138 
4139 	if (p->sched_class != &ext_sched_class)
4140 		return true;
4141 
4142 	/*
4143 	 * @rq can dispatch from different DSQs, so we can't tell whether it
4144 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
4145 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
4146 	 */
4147 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
4148 }
4149 #endif
4150 
4151 #ifdef CONFIG_EXT_GROUP_SCHED
4152 
4153 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
4154 static bool scx_cgroup_enabled;
4155 static bool cgroup_warned_missing_weight;
4156 static bool cgroup_warned_missing_idle;
4157 
4158 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
4159 {
4160 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
4161 	    cgroup_warned_missing_weight)
4162 		return;
4163 
4164 	if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
4165 		return;
4166 
4167 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
4168 		scx_ops.name);
4169 	cgroup_warned_missing_weight = true;
4170 }
4171 
4172 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
4173 {
4174 	if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
4175 		return;
4176 
4177 	if (!tg->idle)
4178 		return;
4179 
4180 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
4181 		scx_ops.name);
4182 	cgroup_warned_missing_idle = true;
4183 }
4184 
4185 int scx_tg_online(struct task_group *tg)
4186 {
4187 	int ret = 0;
4188 
4189 	WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
4190 
4191 	percpu_down_read(&scx_cgroup_rwsem);
4192 
4193 	scx_cgroup_warn_missing_weight(tg);
4194 
4195 	if (scx_cgroup_enabled) {
4196 		if (SCX_HAS_OP(cgroup_init)) {
4197 			struct scx_cgroup_init_args args =
4198 				{ .weight = tg->scx_weight };
4199 
4200 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4201 					      tg->css.cgroup, &args);
4202 			if (ret)
4203 				ret = ops_sanitize_err("cgroup_init", ret);
4204 		}
4205 		if (ret == 0)
4206 			tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
4207 	} else {
4208 		tg->scx_flags |= SCX_TG_ONLINE;
4209 	}
4210 
4211 	percpu_up_read(&scx_cgroup_rwsem);
4212 	return ret;
4213 }
4214 
4215 void scx_tg_offline(struct task_group *tg)
4216 {
4217 	WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
4218 
4219 	percpu_down_read(&scx_cgroup_rwsem);
4220 
4221 	if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
4222 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
4223 	tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
4224 
4225 	percpu_up_read(&scx_cgroup_rwsem);
4226 }
4227 
4228 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
4229 {
4230 	struct cgroup_subsys_state *css;
4231 	struct task_struct *p;
4232 	int ret;
4233 
4234 	/* released in scx_finish/cancel_attach() */
4235 	percpu_down_read(&scx_cgroup_rwsem);
4236 
4237 	if (!scx_cgroup_enabled)
4238 		return 0;
4239 
4240 	cgroup_taskset_for_each(p, css, tset) {
4241 		struct cgroup *from = tg_cgrp(task_group(p));
4242 		struct cgroup *to = tg_cgrp(css_tg(css));
4243 
4244 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
4245 
4246 		/*
4247 		 * sched_move_task() omits identity migrations. Let's match the
4248 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
4249 		 * always match one-to-one.
4250 		 */
4251 		if (from == to)
4252 			continue;
4253 
4254 		if (SCX_HAS_OP(cgroup_prep_move)) {
4255 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
4256 					      p, from, css->cgroup);
4257 			if (ret)
4258 				goto err;
4259 		}
4260 
4261 		p->scx.cgrp_moving_from = from;
4262 	}
4263 
4264 	return 0;
4265 
4266 err:
4267 	cgroup_taskset_for_each(p, css, tset) {
4268 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4269 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4270 				    p->scx.cgrp_moving_from, css->cgroup);
4271 		p->scx.cgrp_moving_from = NULL;
4272 	}
4273 
4274 	percpu_up_read(&scx_cgroup_rwsem);
4275 	return ops_sanitize_err("cgroup_prep_move", ret);
4276 }
4277 
4278 void scx_move_task(struct task_struct *p)
4279 {
4280 	if (!scx_cgroup_enabled)
4281 		return;
4282 
4283 	/*
4284 	 * We're called from sched_move_task() which handles both cgroup and
4285 	 * autogroup moves. Ignore the latter.
4286 	 *
4287 	 * Also ignore exiting tasks, because in the exit path tasks transition
4288 	 * from the autogroup to the root group, so task_group_is_autogroup()
4289 	 * alone isn't able to catch exiting autogroup tasks. This is safe for
4290 	 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
4291 	 * tasks.
4292 	 */
4293 	if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
4294 		return;
4295 
4296 	/*
4297 	 * @p must have ops.cgroup_prep_move() called on it and thus
4298 	 * cgrp_moving_from set.
4299 	 */
4300 	if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
4301 		SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
4302 			p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
4303 	p->scx.cgrp_moving_from = NULL;
4304 }
4305 
4306 void scx_cgroup_finish_attach(void)
4307 {
4308 	percpu_up_read(&scx_cgroup_rwsem);
4309 }
4310 
4311 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
4312 {
4313 	struct cgroup_subsys_state *css;
4314 	struct task_struct *p;
4315 
4316 	if (!scx_cgroup_enabled)
4317 		goto out_unlock;
4318 
4319 	cgroup_taskset_for_each(p, css, tset) {
4320 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4321 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4322 				    p->scx.cgrp_moving_from, css->cgroup);
4323 		p->scx.cgrp_moving_from = NULL;
4324 	}
4325 out_unlock:
4326 	percpu_up_read(&scx_cgroup_rwsem);
4327 }
4328 
4329 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
4330 {
4331 	percpu_down_read(&scx_cgroup_rwsem);
4332 
4333 	if (scx_cgroup_enabled && tg->scx_weight != weight) {
4334 		if (SCX_HAS_OP(cgroup_set_weight))
4335 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
4336 				    tg_cgrp(tg), weight);
4337 		tg->scx_weight = weight;
4338 	}
4339 
4340 	percpu_up_read(&scx_cgroup_rwsem);
4341 }
4342 
4343 void scx_group_set_idle(struct task_group *tg, bool idle)
4344 {
4345 	percpu_down_read(&scx_cgroup_rwsem);
4346 	scx_cgroup_warn_missing_idle(tg);
4347 	percpu_up_read(&scx_cgroup_rwsem);
4348 }
4349 
4350 static void scx_cgroup_lock(void)
4351 {
4352 	percpu_down_write(&scx_cgroup_rwsem);
4353 }
4354 
4355 static void scx_cgroup_unlock(void)
4356 {
4357 	percpu_up_write(&scx_cgroup_rwsem);
4358 }
4359 
4360 #else	/* CONFIG_EXT_GROUP_SCHED */
4361 
4362 static inline void scx_cgroup_lock(void) {}
4363 static inline void scx_cgroup_unlock(void) {}
4364 
4365 #endif	/* CONFIG_EXT_GROUP_SCHED */
4366 
4367 /*
4368  * Omitted operations:
4369  *
4370  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
4371  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
4372  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
4373  *
4374  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
4375  *
4376  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
4377  *   their current sched_class. Call them directly from sched core instead.
4378  */
4379 DEFINE_SCHED_CLASS(ext) = {
4380 	.enqueue_task		= enqueue_task_scx,
4381 	.dequeue_task		= dequeue_task_scx,
4382 	.yield_task		= yield_task_scx,
4383 	.yield_to_task		= yield_to_task_scx,
4384 
4385 	.wakeup_preempt		= wakeup_preempt_scx,
4386 
4387 	.balance		= balance_scx,
4388 	.pick_task		= pick_task_scx,
4389 
4390 	.put_prev_task		= put_prev_task_scx,
4391 	.set_next_task		= set_next_task_scx,
4392 
4393 #ifdef CONFIG_SMP
4394 	.select_task_rq		= select_task_rq_scx,
4395 	.task_woken		= task_woken_scx,
4396 	.set_cpus_allowed	= set_cpus_allowed_scx,
4397 
4398 	.rq_online		= rq_online_scx,
4399 	.rq_offline		= rq_offline_scx,
4400 #endif
4401 
4402 	.task_tick		= task_tick_scx,
4403 
4404 	.switching_to		= switching_to_scx,
4405 	.switched_from		= switched_from_scx,
4406 	.switched_to		= switched_to_scx,
4407 	.reweight_task		= reweight_task_scx,
4408 	.prio_changed		= prio_changed_scx,
4409 
4410 	.update_curr		= update_curr_scx,
4411 
4412 #ifdef CONFIG_UCLAMP_TASK
4413 	.uclamp_enabled		= 1,
4414 #endif
4415 };
4416 
4417 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
4418 {
4419 	memset(dsq, 0, sizeof(*dsq));
4420 
4421 	raw_spin_lock_init(&dsq->lock);
4422 	INIT_LIST_HEAD(&dsq->list);
4423 	dsq->id = dsq_id;
4424 }
4425 
4426 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
4427 {
4428 	struct scx_dispatch_q *dsq;
4429 	int ret;
4430 
4431 	if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4432 		return ERR_PTR(-EINVAL);
4433 
4434 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4435 	if (!dsq)
4436 		return ERR_PTR(-ENOMEM);
4437 
4438 	init_dsq(dsq, dsq_id);
4439 
4440 	ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
4441 				     dsq_hash_params);
4442 	if (ret) {
4443 		kfree(dsq);
4444 		return ERR_PTR(ret);
4445 	}
4446 	return dsq;
4447 }
4448 
4449 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4450 {
4451 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4452 	struct scx_dispatch_q *dsq, *tmp_dsq;
4453 
4454 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4455 		kfree_rcu(dsq, rcu);
4456 }
4457 
4458 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4459 
4460 static void destroy_dsq(u64 dsq_id)
4461 {
4462 	struct scx_dispatch_q *dsq;
4463 	unsigned long flags;
4464 
4465 	rcu_read_lock();
4466 
4467 	dsq = find_user_dsq(dsq_id);
4468 	if (!dsq)
4469 		goto out_unlock_rcu;
4470 
4471 	raw_spin_lock_irqsave(&dsq->lock, flags);
4472 
4473 	if (dsq->nr) {
4474 		scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4475 			      dsq->id, dsq->nr);
4476 		goto out_unlock_dsq;
4477 	}
4478 
4479 	if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4480 		goto out_unlock_dsq;
4481 
4482 	/*
4483 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4484 	 * queueing more tasks. As this function can be called from anywhere,
4485 	 * freeing is bounced through an irq work to avoid nesting RCU
4486 	 * operations inside scheduler locks.
4487 	 */
4488 	dsq->id = SCX_DSQ_INVALID;
4489 	llist_add(&dsq->free_node, &dsqs_to_free);
4490 	irq_work_queue(&free_dsq_irq_work);
4491 
4492 out_unlock_dsq:
4493 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
4494 out_unlock_rcu:
4495 	rcu_read_unlock();
4496 }
4497 
4498 #ifdef CONFIG_EXT_GROUP_SCHED
4499 static void scx_cgroup_exit(void)
4500 {
4501 	struct cgroup_subsys_state *css;
4502 
4503 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4504 
4505 	scx_cgroup_enabled = false;
4506 
4507 	/*
4508 	 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4509 	 * cgroups and exit all the inited ones, all online cgroups are exited.
4510 	 */
4511 	rcu_read_lock();
4512 	css_for_each_descendant_post(css, &root_task_group.css) {
4513 		struct task_group *tg = css_tg(css);
4514 
4515 		if (!(tg->scx_flags & SCX_TG_INITED))
4516 			continue;
4517 		tg->scx_flags &= ~SCX_TG_INITED;
4518 
4519 		if (!scx_ops.cgroup_exit)
4520 			continue;
4521 
4522 		if (WARN_ON_ONCE(!css_tryget(css)))
4523 			continue;
4524 		rcu_read_unlock();
4525 
4526 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4527 
4528 		rcu_read_lock();
4529 		css_put(css);
4530 	}
4531 	rcu_read_unlock();
4532 }
4533 
4534 static int scx_cgroup_init(void)
4535 {
4536 	struct cgroup_subsys_state *css;
4537 	int ret;
4538 
4539 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4540 
4541 	cgroup_warned_missing_weight = false;
4542 	cgroup_warned_missing_idle = false;
4543 
4544 	/*
4545 	 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4546 	 * cgroups and init, all online cgroups are initialized.
4547 	 */
4548 	rcu_read_lock();
4549 	css_for_each_descendant_pre(css, &root_task_group.css) {
4550 		struct task_group *tg = css_tg(css);
4551 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4552 
4553 		scx_cgroup_warn_missing_weight(tg);
4554 		scx_cgroup_warn_missing_idle(tg);
4555 
4556 		if ((tg->scx_flags &
4557 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4558 			continue;
4559 
4560 		if (!scx_ops.cgroup_init) {
4561 			tg->scx_flags |= SCX_TG_INITED;
4562 			continue;
4563 		}
4564 
4565 		if (WARN_ON_ONCE(!css_tryget(css)))
4566 			continue;
4567 		rcu_read_unlock();
4568 
4569 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4570 				      css->cgroup, &args);
4571 		if (ret) {
4572 			css_put(css);
4573 			scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4574 			return ret;
4575 		}
4576 		tg->scx_flags |= SCX_TG_INITED;
4577 
4578 		rcu_read_lock();
4579 		css_put(css);
4580 	}
4581 	rcu_read_unlock();
4582 
4583 	WARN_ON_ONCE(scx_cgroup_enabled);
4584 	scx_cgroup_enabled = true;
4585 
4586 	return 0;
4587 }
4588 
4589 #else
4590 static void scx_cgroup_exit(void) {}
4591 static int scx_cgroup_init(void) { return 0; }
4592 #endif
4593 
4594 
4595 /********************************************************************************
4596  * Sysfs interface and ops enable/disable.
4597  */
4598 
4599 #define SCX_ATTR(_name)								\
4600 	static struct kobj_attribute scx_attr_##_name = {			\
4601 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
4602 		.show = scx_attr_##_name##_show,				\
4603 	}
4604 
4605 static ssize_t scx_attr_state_show(struct kobject *kobj,
4606 				   struct kobj_attribute *ka, char *buf)
4607 {
4608 	return sysfs_emit(buf, "%s\n",
4609 			  scx_ops_enable_state_str[scx_ops_enable_state()]);
4610 }
4611 SCX_ATTR(state);
4612 
4613 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4614 					struct kobj_attribute *ka, char *buf)
4615 {
4616 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4617 }
4618 SCX_ATTR(switch_all);
4619 
4620 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4621 					 struct kobj_attribute *ka, char *buf)
4622 {
4623 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4624 }
4625 SCX_ATTR(nr_rejected);
4626 
4627 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4628 					 struct kobj_attribute *ka, char *buf)
4629 {
4630 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4631 }
4632 SCX_ATTR(hotplug_seq);
4633 
4634 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4635 					struct kobj_attribute *ka, char *buf)
4636 {
4637 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4638 }
4639 SCX_ATTR(enable_seq);
4640 
4641 static struct attribute *scx_global_attrs[] = {
4642 	&scx_attr_state.attr,
4643 	&scx_attr_switch_all.attr,
4644 	&scx_attr_nr_rejected.attr,
4645 	&scx_attr_hotplug_seq.attr,
4646 	&scx_attr_enable_seq.attr,
4647 	NULL,
4648 };
4649 
4650 static const struct attribute_group scx_global_attr_group = {
4651 	.attrs = scx_global_attrs,
4652 };
4653 
4654 static void scx_kobj_release(struct kobject *kobj)
4655 {
4656 	kfree(kobj);
4657 }
4658 
4659 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4660 				 struct kobj_attribute *ka, char *buf)
4661 {
4662 	return sysfs_emit(buf, "%s\n", scx_ops.name);
4663 }
4664 SCX_ATTR(ops);
4665 
4666 static struct attribute *scx_sched_attrs[] = {
4667 	&scx_attr_ops.attr,
4668 	NULL,
4669 };
4670 ATTRIBUTE_GROUPS(scx_sched);
4671 
4672 static const struct kobj_type scx_ktype = {
4673 	.release = scx_kobj_release,
4674 	.sysfs_ops = &kobj_sysfs_ops,
4675 	.default_groups = scx_sched_groups,
4676 };
4677 
4678 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4679 {
4680 	return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4681 }
4682 
4683 static const struct kset_uevent_ops scx_uevent_ops = {
4684 	.uevent = scx_uevent,
4685 };
4686 
4687 /*
4688  * Used by sched_fork() and __setscheduler_prio() to pick the matching
4689  * sched_class. dl/rt are already handled.
4690  */
4691 bool task_should_scx(int policy)
4692 {
4693 	if (!scx_enabled() ||
4694 	    unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4695 		return false;
4696 	if (READ_ONCE(scx_switching_all))
4697 		return true;
4698 	return policy == SCHED_EXT;
4699 }
4700 
4701 /**
4702  * scx_softlockup - sched_ext softlockup handler
4703  *
4704  * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
4705  * live-lock the system by making many CPUs target the same DSQ to the point
4706  * where soft-lockup detection triggers. This function is called from
4707  * soft-lockup watchdog when the triggering point is close and tries to unjam
4708  * the system by enabling the breather and aborting the BPF scheduler.
4709  */
4710 void scx_softlockup(u32 dur_s)
4711 {
4712 	switch (scx_ops_enable_state()) {
4713 	case SCX_OPS_ENABLING:
4714 	case SCX_OPS_ENABLED:
4715 		break;
4716 	default:
4717 		return;
4718 	}
4719 
4720 	/* allow only one instance, cleared at the end of scx_ops_bypass() */
4721 	if (test_and_set_bit(0, &scx_in_softlockup))
4722 		return;
4723 
4724 	printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
4725 			smp_processor_id(), dur_s, scx_ops.name);
4726 
4727 	/*
4728 	 * Some CPUs may be trapped in the dispatch paths. Enable breather
4729 	 * immediately; otherwise, we might even be able to get to
4730 	 * scx_ops_bypass().
4731 	 */
4732 	atomic_inc(&scx_ops_breather_depth);
4733 
4734 	scx_ops_error("soft lockup - CPU#%d stuck for %us",
4735 		      smp_processor_id(), dur_s);
4736 }
4737 
4738 static void scx_clear_softlockup(void)
4739 {
4740 	if (test_and_clear_bit(0, &scx_in_softlockup))
4741 		atomic_dec(&scx_ops_breather_depth);
4742 }
4743 
4744 /**
4745  * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4746  *
4747  * Bypassing guarantees that all runnable tasks make forward progress without
4748  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4749  * be held by tasks that the BPF scheduler is forgetting to run, which
4750  * unfortunately also excludes toggling the static branches.
4751  *
4752  * Let's work around by overriding a couple ops and modifying behaviors based on
4753  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4754  * to force global FIFO scheduling.
4755  *
4756  * - ops.select_cpu() is ignored and the default select_cpu() is used.
4757  *
4758  * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4759  *   %SCX_OPS_ENQ_LAST is also ignored.
4760  *
4761  * - ops.dispatch() is ignored.
4762  *
4763  * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4764  *   can't be trusted. Whenever a tick triggers, the running task is rotated to
4765  *   the tail of the queue with core_sched_at touched.
4766  *
4767  * - pick_next_task() suppresses zero slice warning.
4768  *
4769  * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4770  *   operations.
4771  *
4772  * - scx_prio_less() reverts to the default core_sched_at order.
4773  */
4774 static void scx_ops_bypass(bool bypass)
4775 {
4776 	static DEFINE_RAW_SPINLOCK(bypass_lock);
4777 	int cpu;
4778 	unsigned long flags;
4779 
4780 	raw_spin_lock_irqsave(&bypass_lock, flags);
4781 	if (bypass) {
4782 		scx_ops_bypass_depth++;
4783 		WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4784 		if (scx_ops_bypass_depth != 1)
4785 			goto unlock;
4786 	} else {
4787 		scx_ops_bypass_depth--;
4788 		WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4789 		if (scx_ops_bypass_depth != 0)
4790 			goto unlock;
4791 	}
4792 
4793 	atomic_inc(&scx_ops_breather_depth);
4794 
4795 	/*
4796 	 * No task property is changing. We just need to make sure all currently
4797 	 * queued tasks are re-queued according to the new scx_rq_bypassing()
4798 	 * state. As an optimization, walk each rq's runnable_list instead of
4799 	 * the scx_tasks list.
4800 	 *
4801 	 * This function can't trust the scheduler and thus can't use
4802 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
4803 	 */
4804 	for_each_possible_cpu(cpu) {
4805 		struct rq *rq = cpu_rq(cpu);
4806 		struct rq_flags rf;
4807 		struct task_struct *p, *n;
4808 
4809 		rq_lock(rq, &rf);
4810 
4811 		if (bypass) {
4812 			WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4813 			rq->scx.flags |= SCX_RQ_BYPASSING;
4814 		} else {
4815 			WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4816 			rq->scx.flags &= ~SCX_RQ_BYPASSING;
4817 		}
4818 
4819 		/*
4820 		 * We need to guarantee that no tasks are on the BPF scheduler
4821 		 * while bypassing. Either we see enabled or the enable path
4822 		 * sees scx_rq_bypassing() before moving tasks to SCX.
4823 		 */
4824 		if (!scx_enabled()) {
4825 			rq_unlock_irqrestore(rq, &rf);
4826 			continue;
4827 		}
4828 
4829 		/*
4830 		 * The use of list_for_each_entry_safe_reverse() is required
4831 		 * because each task is going to be removed from and added back
4832 		 * to the runnable_list during iteration. Because they're added
4833 		 * to the tail of the list, safe reverse iteration can still
4834 		 * visit all nodes.
4835 		 */
4836 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4837 						 scx.runnable_node) {
4838 			struct sched_enq_and_set_ctx ctx;
4839 
4840 			/* cycling deq/enq is enough, see the function comment */
4841 			sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4842 			sched_enq_and_set_task(&ctx);
4843 		}
4844 
4845 		rq_unlock(rq, &rf);
4846 
4847 		/* resched to restore ticks and idle state */
4848 		resched_cpu(cpu);
4849 	}
4850 
4851 	atomic_dec(&scx_ops_breather_depth);
4852 unlock:
4853 	raw_spin_unlock_irqrestore(&bypass_lock, flags);
4854 	scx_clear_softlockup();
4855 }
4856 
4857 static void free_exit_info(struct scx_exit_info *ei)
4858 {
4859 	kfree(ei->dump);
4860 	kfree(ei->msg);
4861 	kfree(ei->bt);
4862 	kfree(ei);
4863 }
4864 
4865 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4866 {
4867 	struct scx_exit_info *ei;
4868 
4869 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4870 	if (!ei)
4871 		return NULL;
4872 
4873 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4874 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4875 	ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4876 
4877 	if (!ei->bt || !ei->msg || !ei->dump) {
4878 		free_exit_info(ei);
4879 		return NULL;
4880 	}
4881 
4882 	return ei;
4883 }
4884 
4885 static const char *scx_exit_reason(enum scx_exit_kind kind)
4886 {
4887 	switch (kind) {
4888 	case SCX_EXIT_UNREG:
4889 		return "unregistered from user space";
4890 	case SCX_EXIT_UNREG_BPF:
4891 		return "unregistered from BPF";
4892 	case SCX_EXIT_UNREG_KERN:
4893 		return "unregistered from the main kernel";
4894 	case SCX_EXIT_SYSRQ:
4895 		return "disabled by sysrq-S";
4896 	case SCX_EXIT_ERROR:
4897 		return "runtime error";
4898 	case SCX_EXIT_ERROR_BPF:
4899 		return "scx_bpf_error";
4900 	case SCX_EXIT_ERROR_STALL:
4901 		return "runnable task stall";
4902 	default:
4903 		return "<UNKNOWN>";
4904 	}
4905 }
4906 
4907 static void scx_ops_disable_workfn(struct kthread_work *work)
4908 {
4909 	struct scx_exit_info *ei = scx_exit_info;
4910 	struct scx_task_iter sti;
4911 	struct task_struct *p;
4912 	struct rhashtable_iter rht_iter;
4913 	struct scx_dispatch_q *dsq;
4914 	int i, kind, cpu;
4915 
4916 	kind = atomic_read(&scx_exit_kind);
4917 	while (true) {
4918 		/*
4919 		 * NONE indicates that a new scx_ops has been registered since
4920 		 * disable was scheduled - don't kill the new ops. DONE
4921 		 * indicates that the ops has already been disabled.
4922 		 */
4923 		if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4924 			return;
4925 		if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4926 			break;
4927 	}
4928 	ei->kind = kind;
4929 	ei->reason = scx_exit_reason(ei->kind);
4930 
4931 	/* guarantee forward progress by bypassing scx_ops */
4932 	scx_ops_bypass(true);
4933 
4934 	switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4935 	case SCX_OPS_DISABLING:
4936 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4937 		break;
4938 	case SCX_OPS_DISABLED:
4939 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
4940 			scx_exit_info->msg);
4941 		WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4942 			     SCX_OPS_DISABLING);
4943 		goto done;
4944 	default:
4945 		break;
4946 	}
4947 
4948 	/*
4949 	 * Here, every runnable task is guaranteed to make forward progress and
4950 	 * we can safely use blocking synchronization constructs. Actually
4951 	 * disable ops.
4952 	 */
4953 	mutex_lock(&scx_ops_enable_mutex);
4954 
4955 	static_branch_disable(&__scx_switched_all);
4956 	WRITE_ONCE(scx_switching_all, false);
4957 
4958 	/*
4959 	 * Shut down cgroup support before tasks so that the cgroup attach path
4960 	 * doesn't race against scx_ops_exit_task().
4961 	 */
4962 	scx_cgroup_lock();
4963 	scx_cgroup_exit();
4964 	scx_cgroup_unlock();
4965 
4966 	/*
4967 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4968 	 * must be switched out and exited synchronously.
4969 	 */
4970 	percpu_down_write(&scx_fork_rwsem);
4971 
4972 	scx_ops_init_task_enabled = false;
4973 
4974 	scx_task_iter_start(&sti);
4975 	while ((p = scx_task_iter_next_locked(&sti))) {
4976 		const struct sched_class *old_class = p->sched_class;
4977 		const struct sched_class *new_class =
4978 			__setscheduler_class(p->policy, p->prio);
4979 		struct sched_enq_and_set_ctx ctx;
4980 
4981 		if (old_class != new_class && p->se.sched_delayed)
4982 			dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4983 
4984 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4985 
4986 		p->sched_class = new_class;
4987 		check_class_changing(task_rq(p), p, old_class);
4988 
4989 		sched_enq_and_set_task(&ctx);
4990 
4991 		check_class_changed(task_rq(p), p, old_class, p->prio);
4992 		scx_ops_exit_task(p);
4993 	}
4994 	scx_task_iter_stop(&sti);
4995 	percpu_up_write(&scx_fork_rwsem);
4996 
4997 	/*
4998 	 * Invalidate all the rq clocks to prevent getting outdated
4999 	 * rq clocks from a previous scx scheduler.
5000 	 */
5001 	for_each_possible_cpu(cpu) {
5002 		struct rq *rq = cpu_rq(cpu);
5003 		scx_rq_clock_invalidate(rq);
5004 	}
5005 
5006 	/* no task is on scx, turn off all the switches and flush in-progress calls */
5007 	static_branch_disable(&__scx_ops_enabled);
5008 	for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
5009 		static_branch_disable(&scx_has_op[i]);
5010 	static_branch_disable(&scx_ops_enq_last);
5011 	static_branch_disable(&scx_ops_enq_exiting);
5012 	static_branch_disable(&scx_ops_cpu_preempt);
5013 	static_branch_disable(&scx_builtin_idle_enabled);
5014 	synchronize_rcu();
5015 
5016 	if (ei->kind >= SCX_EXIT_ERROR) {
5017 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
5018 		       scx_ops.name, ei->reason);
5019 
5020 		if (ei->msg[0] != '\0')
5021 			pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
5022 #ifdef CONFIG_STACKTRACE
5023 		stack_trace_print(ei->bt, ei->bt_len, 2);
5024 #endif
5025 	} else {
5026 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
5027 			scx_ops.name, ei->reason);
5028 	}
5029 
5030 	if (scx_ops.exit)
5031 		SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
5032 
5033 	cancel_delayed_work_sync(&scx_watchdog_work);
5034 
5035 	/*
5036 	 * Delete the kobject from the hierarchy eagerly in addition to just
5037 	 * dropping a reference. Otherwise, if the object is deleted
5038 	 * asynchronously, sysfs could observe an object of the same name still
5039 	 * in the hierarchy when another scheduler is loaded.
5040 	 */
5041 	kobject_del(scx_root_kobj);
5042 	kobject_put(scx_root_kobj);
5043 	scx_root_kobj = NULL;
5044 
5045 	memset(&scx_ops, 0, sizeof(scx_ops));
5046 
5047 	rhashtable_walk_enter(&dsq_hash, &rht_iter);
5048 	do {
5049 		rhashtable_walk_start(&rht_iter);
5050 
5051 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
5052 			destroy_dsq(dsq->id);
5053 
5054 		rhashtable_walk_stop(&rht_iter);
5055 	} while (dsq == ERR_PTR(-EAGAIN));
5056 	rhashtable_walk_exit(&rht_iter);
5057 
5058 	free_percpu(scx_dsp_ctx);
5059 	scx_dsp_ctx = NULL;
5060 	scx_dsp_max_batch = 0;
5061 
5062 	free_exit_info(scx_exit_info);
5063 	scx_exit_info = NULL;
5064 
5065 	mutex_unlock(&scx_ops_enable_mutex);
5066 
5067 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
5068 		     SCX_OPS_DISABLING);
5069 done:
5070 	scx_ops_bypass(false);
5071 }
5072 
5073 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
5074 
5075 static void schedule_scx_ops_disable_work(void)
5076 {
5077 	struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
5078 
5079 	/*
5080 	 * We may be called spuriously before the first bpf_sched_ext_reg(). If
5081 	 * scx_ops_helper isn't set up yet, there's nothing to do.
5082 	 */
5083 	if (helper)
5084 		kthread_queue_work(helper, &scx_ops_disable_work);
5085 }
5086 
5087 static void scx_ops_disable(enum scx_exit_kind kind)
5088 {
5089 	int none = SCX_EXIT_NONE;
5090 
5091 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
5092 		kind = SCX_EXIT_ERROR;
5093 
5094 	atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
5095 
5096 	schedule_scx_ops_disable_work();
5097 }
5098 
5099 static void dump_newline(struct seq_buf *s)
5100 {
5101 	trace_sched_ext_dump("");
5102 
5103 	/* @s may be zero sized and seq_buf triggers WARN if so */
5104 	if (s->size)
5105 		seq_buf_putc(s, '\n');
5106 }
5107 
5108 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
5109 {
5110 	va_list args;
5111 
5112 #ifdef CONFIG_TRACEPOINTS
5113 	if (trace_sched_ext_dump_enabled()) {
5114 		/* protected by scx_dump_state()::dump_lock */
5115 		static char line_buf[SCX_EXIT_MSG_LEN];
5116 
5117 		va_start(args, fmt);
5118 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
5119 		va_end(args);
5120 
5121 		trace_sched_ext_dump(line_buf);
5122 	}
5123 #endif
5124 	/* @s may be zero sized and seq_buf triggers WARN if so */
5125 	if (s->size) {
5126 		va_start(args, fmt);
5127 		seq_buf_vprintf(s, fmt, args);
5128 		va_end(args);
5129 
5130 		seq_buf_putc(s, '\n');
5131 	}
5132 }
5133 
5134 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
5135 			     const unsigned long *bt, unsigned int len)
5136 {
5137 	unsigned int i;
5138 
5139 	for (i = 0; i < len; i++)
5140 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
5141 }
5142 
5143 static void ops_dump_init(struct seq_buf *s, const char *prefix)
5144 {
5145 	struct scx_dump_data *dd = &scx_dump_data;
5146 
5147 	lockdep_assert_irqs_disabled();
5148 
5149 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
5150 	dd->first = true;
5151 	dd->cursor = 0;
5152 	dd->s = s;
5153 	dd->prefix = prefix;
5154 }
5155 
5156 static void ops_dump_flush(void)
5157 {
5158 	struct scx_dump_data *dd = &scx_dump_data;
5159 	char *line = dd->buf.line;
5160 
5161 	if (!dd->cursor)
5162 		return;
5163 
5164 	/*
5165 	 * There's something to flush and this is the first line. Insert a blank
5166 	 * line to distinguish ops dump.
5167 	 */
5168 	if (dd->first) {
5169 		dump_newline(dd->s);
5170 		dd->first = false;
5171 	}
5172 
5173 	/*
5174 	 * There may be multiple lines in $line. Scan and emit each line
5175 	 * separately.
5176 	 */
5177 	while (true) {
5178 		char *end = line;
5179 		char c;
5180 
5181 		while (*end != '\n' && *end != '\0')
5182 			end++;
5183 
5184 		/*
5185 		 * If $line overflowed, it may not have newline at the end.
5186 		 * Always emit with a newline.
5187 		 */
5188 		c = *end;
5189 		*end = '\0';
5190 		dump_line(dd->s, "%s%s", dd->prefix, line);
5191 		if (c == '\0')
5192 			break;
5193 
5194 		/* move to the next line */
5195 		end++;
5196 		if (*end == '\0')
5197 			break;
5198 		line = end;
5199 	}
5200 
5201 	dd->cursor = 0;
5202 }
5203 
5204 static void ops_dump_exit(void)
5205 {
5206 	ops_dump_flush();
5207 	scx_dump_data.cpu = -1;
5208 }
5209 
5210 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
5211 			  struct task_struct *p, char marker)
5212 {
5213 	static unsigned long bt[SCX_EXIT_BT_LEN];
5214 	char dsq_id_buf[19] = "(n/a)";
5215 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
5216 	unsigned int bt_len = 0;
5217 
5218 	if (p->scx.dsq)
5219 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
5220 			  (unsigned long long)p->scx.dsq->id);
5221 
5222 	dump_newline(s);
5223 	dump_line(s, " %c%c %s[%d] %+ldms",
5224 		  marker, task_state_to_char(p), p->comm, p->pid,
5225 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
5226 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
5227 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
5228 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
5229 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
5230 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu slice=%llu",
5231 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
5232 		  p->scx.dsq_vtime, p->scx.slice);
5233 	dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
5234 
5235 	if (SCX_HAS_OP(dump_task)) {
5236 		ops_dump_init(s, "    ");
5237 		SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
5238 		ops_dump_exit();
5239 	}
5240 
5241 #ifdef CONFIG_STACKTRACE
5242 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
5243 #endif
5244 	if (bt_len) {
5245 		dump_newline(s);
5246 		dump_stack_trace(s, "    ", bt, bt_len);
5247 	}
5248 }
5249 
5250 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
5251 {
5252 	static DEFINE_SPINLOCK(dump_lock);
5253 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
5254 	struct scx_dump_ctx dctx = {
5255 		.kind = ei->kind,
5256 		.exit_code = ei->exit_code,
5257 		.reason = ei->reason,
5258 		.at_ns = ktime_get_ns(),
5259 		.at_jiffies = jiffies,
5260 	};
5261 	struct seq_buf s;
5262 	unsigned long flags;
5263 	char *buf;
5264 	int cpu;
5265 
5266 	spin_lock_irqsave(&dump_lock, flags);
5267 
5268 	seq_buf_init(&s, ei->dump, dump_len);
5269 
5270 	if (ei->kind == SCX_EXIT_NONE) {
5271 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
5272 	} else {
5273 		dump_line(&s, "%s[%d] triggered exit kind %d:",
5274 			  current->comm, current->pid, ei->kind);
5275 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
5276 		dump_newline(&s);
5277 		dump_line(&s, "Backtrace:");
5278 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
5279 	}
5280 
5281 	if (SCX_HAS_OP(dump)) {
5282 		ops_dump_init(&s, "");
5283 		SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
5284 		ops_dump_exit();
5285 	}
5286 
5287 	dump_newline(&s);
5288 	dump_line(&s, "CPU states");
5289 	dump_line(&s, "----------");
5290 
5291 	for_each_possible_cpu(cpu) {
5292 		struct rq *rq = cpu_rq(cpu);
5293 		struct rq_flags rf;
5294 		struct task_struct *p;
5295 		struct seq_buf ns;
5296 		size_t avail, used;
5297 		bool idle;
5298 
5299 		rq_lock(rq, &rf);
5300 
5301 		idle = list_empty(&rq->scx.runnable_list) &&
5302 			rq->curr->sched_class == &idle_sched_class;
5303 
5304 		if (idle && !SCX_HAS_OP(dump_cpu))
5305 			goto next;
5306 
5307 		/*
5308 		 * We don't yet know whether ops.dump_cpu() will produce output
5309 		 * and we may want to skip the default CPU dump if it doesn't.
5310 		 * Use a nested seq_buf to generate the standard dump so that we
5311 		 * can decide whether to commit later.
5312 		 */
5313 		avail = seq_buf_get_buf(&s, &buf);
5314 		seq_buf_init(&ns, buf, avail);
5315 
5316 		dump_newline(&ns);
5317 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
5318 			  cpu, rq->scx.nr_running, rq->scx.flags,
5319 			  rq->scx.cpu_released, rq->scx.ops_qseq,
5320 			  rq->scx.pnt_seq);
5321 		dump_line(&ns, "          curr=%s[%d] class=%ps",
5322 			  rq->curr->comm, rq->curr->pid,
5323 			  rq->curr->sched_class);
5324 		if (!cpumask_empty(rq->scx.cpus_to_kick))
5325 			dump_line(&ns, "  cpus_to_kick   : %*pb",
5326 				  cpumask_pr_args(rq->scx.cpus_to_kick));
5327 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
5328 			dump_line(&ns, "  idle_to_kick   : %*pb",
5329 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
5330 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
5331 			dump_line(&ns, "  cpus_to_preempt: %*pb",
5332 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
5333 		if (!cpumask_empty(rq->scx.cpus_to_wait))
5334 			dump_line(&ns, "  cpus_to_wait   : %*pb",
5335 				  cpumask_pr_args(rq->scx.cpus_to_wait));
5336 
5337 		used = seq_buf_used(&ns);
5338 		if (SCX_HAS_OP(dump_cpu)) {
5339 			ops_dump_init(&ns, "  ");
5340 			SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
5341 			ops_dump_exit();
5342 		}
5343 
5344 		/*
5345 		 * If idle && nothing generated by ops.dump_cpu(), there's
5346 		 * nothing interesting. Skip.
5347 		 */
5348 		if (idle && used == seq_buf_used(&ns))
5349 			goto next;
5350 
5351 		/*
5352 		 * $s may already have overflowed when $ns was created. If so,
5353 		 * calling commit on it will trigger BUG.
5354 		 */
5355 		if (avail) {
5356 			seq_buf_commit(&s, seq_buf_used(&ns));
5357 			if (seq_buf_has_overflowed(&ns))
5358 				seq_buf_set_overflow(&s);
5359 		}
5360 
5361 		if (rq->curr->sched_class == &ext_sched_class)
5362 			scx_dump_task(&s, &dctx, rq->curr, '*');
5363 
5364 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
5365 			scx_dump_task(&s, &dctx, p, ' ');
5366 	next:
5367 		rq_unlock(rq, &rf);
5368 	}
5369 
5370 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
5371 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
5372 		       trunc_marker, sizeof(trunc_marker));
5373 
5374 	spin_unlock_irqrestore(&dump_lock, flags);
5375 }
5376 
5377 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
5378 {
5379 	struct scx_exit_info *ei = scx_exit_info;
5380 
5381 	if (ei->kind >= SCX_EXIT_ERROR)
5382 		scx_dump_state(ei, scx_ops.exit_dump_len);
5383 
5384 	schedule_scx_ops_disable_work();
5385 }
5386 
5387 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
5388 
5389 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
5390 					     s64 exit_code,
5391 					     const char *fmt, ...)
5392 {
5393 	struct scx_exit_info *ei = scx_exit_info;
5394 	int none = SCX_EXIT_NONE;
5395 	va_list args;
5396 
5397 	if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
5398 		return;
5399 
5400 	ei->exit_code = exit_code;
5401 #ifdef CONFIG_STACKTRACE
5402 	if (kind >= SCX_EXIT_ERROR)
5403 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
5404 #endif
5405 	va_start(args, fmt);
5406 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
5407 	va_end(args);
5408 
5409 	/*
5410 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
5411 	 * in scx_ops_disable_workfn().
5412 	 */
5413 	ei->kind = kind;
5414 	ei->reason = scx_exit_reason(ei->kind);
5415 
5416 	irq_work_queue(&scx_ops_error_irq_work);
5417 }
5418 
5419 static struct kthread_worker *scx_create_rt_helper(const char *name)
5420 {
5421 	struct kthread_worker *helper;
5422 
5423 	helper = kthread_create_worker(0, name);
5424 	if (helper)
5425 		sched_set_fifo(helper->task);
5426 	return helper;
5427 }
5428 
5429 static void check_hotplug_seq(const struct sched_ext_ops *ops)
5430 {
5431 	unsigned long long global_hotplug_seq;
5432 
5433 	/*
5434 	 * If a hotplug event has occurred between when a scheduler was
5435 	 * initialized, and when we were able to attach, exit and notify user
5436 	 * space about it.
5437 	 */
5438 	if (ops->hotplug_seq) {
5439 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
5440 		if (ops->hotplug_seq != global_hotplug_seq) {
5441 			scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
5442 				     "expected hotplug seq %llu did not match actual %llu",
5443 				     ops->hotplug_seq, global_hotplug_seq);
5444 		}
5445 	}
5446 }
5447 
5448 static int validate_ops(const struct sched_ext_ops *ops)
5449 {
5450 	/*
5451 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
5452 	 * ops.enqueue() callback isn't implemented.
5453 	 */
5454 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
5455 		scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
5456 		return -EINVAL;
5457 	}
5458 
5459 	return 0;
5460 }
5461 
5462 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
5463 {
5464 	struct scx_task_iter sti;
5465 	struct task_struct *p;
5466 	unsigned long timeout;
5467 	int i, cpu, node, ret;
5468 
5469 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
5470 			   cpu_possible_mask)) {
5471 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
5472 		return -EINVAL;
5473 	}
5474 
5475 	mutex_lock(&scx_ops_enable_mutex);
5476 
5477 	if (!scx_ops_helper) {
5478 		WRITE_ONCE(scx_ops_helper,
5479 			   scx_create_rt_helper("sched_ext_ops_helper"));
5480 		if (!scx_ops_helper) {
5481 			ret = -ENOMEM;
5482 			goto err_unlock;
5483 		}
5484 	}
5485 
5486 	if (!global_dsqs) {
5487 		struct scx_dispatch_q **dsqs;
5488 
5489 		dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
5490 		if (!dsqs) {
5491 			ret = -ENOMEM;
5492 			goto err_unlock;
5493 		}
5494 
5495 		for_each_node_state(node, N_POSSIBLE) {
5496 			struct scx_dispatch_q *dsq;
5497 
5498 			dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5499 			if (!dsq) {
5500 				for_each_node_state(node, N_POSSIBLE)
5501 					kfree(dsqs[node]);
5502 				kfree(dsqs);
5503 				ret = -ENOMEM;
5504 				goto err_unlock;
5505 			}
5506 
5507 			init_dsq(dsq, SCX_DSQ_GLOBAL);
5508 			dsqs[node] = dsq;
5509 		}
5510 
5511 		global_dsqs = dsqs;
5512 	}
5513 
5514 	if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5515 		ret = -EBUSY;
5516 		goto err_unlock;
5517 	}
5518 
5519 	scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5520 	if (!scx_root_kobj) {
5521 		ret = -ENOMEM;
5522 		goto err_unlock;
5523 	}
5524 
5525 	scx_root_kobj->kset = scx_kset;
5526 	ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5527 	if (ret < 0)
5528 		goto err;
5529 
5530 	scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5531 	if (!scx_exit_info) {
5532 		ret = -ENOMEM;
5533 		goto err_del;
5534 	}
5535 
5536 	/*
5537 	 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5538 	 * disable path. Failure triggers full disabling from here on.
5539 	 */
5540 	scx_ops = *ops;
5541 
5542 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5543 		     SCX_OPS_DISABLED);
5544 
5545 	atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5546 	scx_warned_zero_slice = false;
5547 
5548 	atomic_long_set(&scx_nr_rejected, 0);
5549 
5550 	for_each_possible_cpu(cpu)
5551 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5552 
5553 	/*
5554 	 * Keep CPUs stable during enable so that the BPF scheduler can track
5555 	 * online CPUs by watching ->on/offline_cpu() after ->init().
5556 	 */
5557 	cpus_read_lock();
5558 
5559 	if (scx_ops.init) {
5560 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5561 		if (ret) {
5562 			ret = ops_sanitize_err("init", ret);
5563 			cpus_read_unlock();
5564 			scx_ops_error("ops.init() failed (%d)", ret);
5565 			goto err_disable;
5566 		}
5567 	}
5568 
5569 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5570 		if (((void (**)(void))ops)[i])
5571 			static_branch_enable_cpuslocked(&scx_has_op[i]);
5572 
5573 	check_hotplug_seq(ops);
5574 #ifdef CONFIG_SMP
5575 	update_selcpu_topology();
5576 #endif
5577 	cpus_read_unlock();
5578 
5579 	ret = validate_ops(ops);
5580 	if (ret)
5581 		goto err_disable;
5582 
5583 	WARN_ON_ONCE(scx_dsp_ctx);
5584 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5585 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5586 						   scx_dsp_max_batch),
5587 				     __alignof__(struct scx_dsp_ctx));
5588 	if (!scx_dsp_ctx) {
5589 		ret = -ENOMEM;
5590 		goto err_disable;
5591 	}
5592 
5593 	if (ops->timeout_ms)
5594 		timeout = msecs_to_jiffies(ops->timeout_ms);
5595 	else
5596 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5597 
5598 	WRITE_ONCE(scx_watchdog_timeout, timeout);
5599 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5600 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5601 			   scx_watchdog_timeout / 2);
5602 
5603 	/*
5604 	 * Once __scx_ops_enabled is set, %current can be switched to SCX
5605 	 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5606 	 * userspace scheduling) may not function correctly before all tasks are
5607 	 * switched. Init in bypass mode to guarantee forward progress.
5608 	 */
5609 	scx_ops_bypass(true);
5610 
5611 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5612 		if (((void (**)(void))ops)[i])
5613 			static_branch_enable(&scx_has_op[i]);
5614 
5615 	if (ops->flags & SCX_OPS_ENQ_LAST)
5616 		static_branch_enable(&scx_ops_enq_last);
5617 
5618 	if (ops->flags & SCX_OPS_ENQ_EXITING)
5619 		static_branch_enable(&scx_ops_enq_exiting);
5620 	if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5621 		static_branch_enable(&scx_ops_cpu_preempt);
5622 
5623 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5624 		reset_idle_masks();
5625 		static_branch_enable(&scx_builtin_idle_enabled);
5626 	} else {
5627 		static_branch_disable(&scx_builtin_idle_enabled);
5628 	}
5629 
5630 	/*
5631 	 * Lock out forks, cgroup on/offlining and moves before opening the
5632 	 * floodgate so that they don't wander into the operations prematurely.
5633 	 */
5634 	percpu_down_write(&scx_fork_rwsem);
5635 
5636 	WARN_ON_ONCE(scx_ops_init_task_enabled);
5637 	scx_ops_init_task_enabled = true;
5638 
5639 	/*
5640 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5641 	 * preventing new tasks from being added. No need to exclude tasks
5642 	 * leaving as sched_ext_free() can handle both prepped and enabled
5643 	 * tasks. Prep all tasks first and then enable them with preemption
5644 	 * disabled.
5645 	 *
5646 	 * All cgroups should be initialized before scx_ops_init_task() so that
5647 	 * the BPF scheduler can reliably track each task's cgroup membership
5648 	 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5649 	 * migrations while tasks are being initialized so that
5650 	 * scx_cgroup_can_attach() never sees uninitialized tasks.
5651 	 */
5652 	scx_cgroup_lock();
5653 	ret = scx_cgroup_init();
5654 	if (ret)
5655 		goto err_disable_unlock_all;
5656 
5657 	scx_task_iter_start(&sti);
5658 	while ((p = scx_task_iter_next_locked(&sti))) {
5659 		/*
5660 		 * @p may already be dead, have lost all its usages counts and
5661 		 * be waiting for RCU grace period before being freed. @p can't
5662 		 * be initialized for SCX in such cases and should be ignored.
5663 		 */
5664 		if (!tryget_task_struct(p))
5665 			continue;
5666 
5667 		scx_task_iter_unlock(&sti);
5668 
5669 		ret = scx_ops_init_task(p, task_group(p), false);
5670 		if (ret) {
5671 			put_task_struct(p);
5672 			scx_task_iter_relock(&sti);
5673 			scx_task_iter_stop(&sti);
5674 			scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5675 				      ret, p->comm, p->pid);
5676 			goto err_disable_unlock_all;
5677 		}
5678 
5679 		scx_set_task_state(p, SCX_TASK_READY);
5680 
5681 		put_task_struct(p);
5682 		scx_task_iter_relock(&sti);
5683 	}
5684 	scx_task_iter_stop(&sti);
5685 	scx_cgroup_unlock();
5686 	percpu_up_write(&scx_fork_rwsem);
5687 
5688 	/*
5689 	 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5690 	 * all eligible tasks.
5691 	 */
5692 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5693 	static_branch_enable(&__scx_ops_enabled);
5694 
5695 	/*
5696 	 * We're fully committed and can't fail. The task READY -> ENABLED
5697 	 * transitions here are synchronized against sched_ext_free() through
5698 	 * scx_tasks_lock.
5699 	 */
5700 	percpu_down_write(&scx_fork_rwsem);
5701 	scx_task_iter_start(&sti);
5702 	while ((p = scx_task_iter_next_locked(&sti))) {
5703 		const struct sched_class *old_class = p->sched_class;
5704 		const struct sched_class *new_class =
5705 			__setscheduler_class(p->policy, p->prio);
5706 		struct sched_enq_and_set_ctx ctx;
5707 
5708 		if (old_class != new_class && p->se.sched_delayed)
5709 			dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5710 
5711 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5712 
5713 		p->scx.slice = SCX_SLICE_DFL;
5714 		p->sched_class = new_class;
5715 		check_class_changing(task_rq(p), p, old_class);
5716 
5717 		sched_enq_and_set_task(&ctx);
5718 
5719 		check_class_changed(task_rq(p), p, old_class, p->prio);
5720 	}
5721 	scx_task_iter_stop(&sti);
5722 	percpu_up_write(&scx_fork_rwsem);
5723 
5724 	scx_ops_bypass(false);
5725 
5726 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5727 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5728 		goto err_disable;
5729 	}
5730 
5731 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5732 		static_branch_enable(&__scx_switched_all);
5733 
5734 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5735 		scx_ops.name, scx_switched_all() ? "" : " (partial)");
5736 	kobject_uevent(scx_root_kobj, KOBJ_ADD);
5737 	mutex_unlock(&scx_ops_enable_mutex);
5738 
5739 	atomic_long_inc(&scx_enable_seq);
5740 
5741 	return 0;
5742 
5743 err_del:
5744 	kobject_del(scx_root_kobj);
5745 err:
5746 	kobject_put(scx_root_kobj);
5747 	scx_root_kobj = NULL;
5748 	if (scx_exit_info) {
5749 		free_exit_info(scx_exit_info);
5750 		scx_exit_info = NULL;
5751 	}
5752 err_unlock:
5753 	mutex_unlock(&scx_ops_enable_mutex);
5754 	return ret;
5755 
5756 err_disable_unlock_all:
5757 	scx_cgroup_unlock();
5758 	percpu_up_write(&scx_fork_rwsem);
5759 	scx_ops_bypass(false);
5760 err_disable:
5761 	mutex_unlock(&scx_ops_enable_mutex);
5762 	/*
5763 	 * Returning an error code here would not pass all the error information
5764 	 * to userspace. Record errno using scx_ops_error() for cases
5765 	 * scx_ops_error() wasn't already invoked and exit indicating success so
5766 	 * that the error is notified through ops.exit() with all the details.
5767 	 *
5768 	 * Flush scx_ops_disable_work to ensure that error is reported before
5769 	 * init completion.
5770 	 */
5771 	scx_ops_error("scx_ops_enable() failed (%d)", ret);
5772 	kthread_flush_work(&scx_ops_disable_work);
5773 	return 0;
5774 }
5775 
5776 
5777 /********************************************************************************
5778  * bpf_struct_ops plumbing.
5779  */
5780 #include <linux/bpf_verifier.h>
5781 #include <linux/bpf.h>
5782 #include <linux/btf.h>
5783 
5784 static const struct btf_type *task_struct_type;
5785 
5786 static bool bpf_scx_is_valid_access(int off, int size,
5787 				    enum bpf_access_type type,
5788 				    const struct bpf_prog *prog,
5789 				    struct bpf_insn_access_aux *info)
5790 {
5791 	if (type != BPF_READ)
5792 		return false;
5793 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5794 		return false;
5795 	if (off % size != 0)
5796 		return false;
5797 
5798 	return btf_ctx_access(off, size, type, prog, info);
5799 }
5800 
5801 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5802 				     const struct bpf_reg_state *reg, int off,
5803 				     int size)
5804 {
5805 	const struct btf_type *t;
5806 
5807 	t = btf_type_by_id(reg->btf, reg->btf_id);
5808 	if (t == task_struct_type) {
5809 		if (off >= offsetof(struct task_struct, scx.slice) &&
5810 		    off + size <= offsetofend(struct task_struct, scx.slice))
5811 			return SCALAR_VALUE;
5812 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5813 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5814 			return SCALAR_VALUE;
5815 		if (off >= offsetof(struct task_struct, scx.disallow) &&
5816 		    off + size <= offsetofend(struct task_struct, scx.disallow))
5817 			return SCALAR_VALUE;
5818 	}
5819 
5820 	return -EACCES;
5821 }
5822 
5823 static const struct bpf_func_proto *
5824 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5825 {
5826 	switch (func_id) {
5827 	case BPF_FUNC_task_storage_get:
5828 		return &bpf_task_storage_get_proto;
5829 	case BPF_FUNC_task_storage_delete:
5830 		return &bpf_task_storage_delete_proto;
5831 	default:
5832 		return bpf_base_func_proto(func_id, prog);
5833 	}
5834 }
5835 
5836 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5837 	.get_func_proto = bpf_scx_get_func_proto,
5838 	.is_valid_access = bpf_scx_is_valid_access,
5839 	.btf_struct_access = bpf_scx_btf_struct_access,
5840 };
5841 
5842 static int bpf_scx_init_member(const struct btf_type *t,
5843 			       const struct btf_member *member,
5844 			       void *kdata, const void *udata)
5845 {
5846 	const struct sched_ext_ops *uops = udata;
5847 	struct sched_ext_ops *ops = kdata;
5848 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5849 	int ret;
5850 
5851 	switch (moff) {
5852 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
5853 		if (*(u32 *)(udata + moff) > INT_MAX)
5854 			return -E2BIG;
5855 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
5856 		return 1;
5857 	case offsetof(struct sched_ext_ops, flags):
5858 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5859 			return -EINVAL;
5860 		ops->flags = *(u64 *)(udata + moff);
5861 		return 1;
5862 	case offsetof(struct sched_ext_ops, name):
5863 		ret = bpf_obj_name_cpy(ops->name, uops->name,
5864 				       sizeof(ops->name));
5865 		if (ret < 0)
5866 			return ret;
5867 		if (ret == 0)
5868 			return -EINVAL;
5869 		return 1;
5870 	case offsetof(struct sched_ext_ops, timeout_ms):
5871 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5872 		    SCX_WATCHDOG_MAX_TIMEOUT)
5873 			return -E2BIG;
5874 		ops->timeout_ms = *(u32 *)(udata + moff);
5875 		return 1;
5876 	case offsetof(struct sched_ext_ops, exit_dump_len):
5877 		ops->exit_dump_len =
5878 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5879 		return 1;
5880 	case offsetof(struct sched_ext_ops, hotplug_seq):
5881 		ops->hotplug_seq = *(u64 *)(udata + moff);
5882 		return 1;
5883 	}
5884 
5885 	return 0;
5886 }
5887 
5888 static int bpf_scx_check_member(const struct btf_type *t,
5889 				const struct btf_member *member,
5890 				const struct bpf_prog *prog)
5891 {
5892 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5893 
5894 	switch (moff) {
5895 	case offsetof(struct sched_ext_ops, init_task):
5896 #ifdef CONFIG_EXT_GROUP_SCHED
5897 	case offsetof(struct sched_ext_ops, cgroup_init):
5898 	case offsetof(struct sched_ext_ops, cgroup_exit):
5899 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
5900 #endif
5901 	case offsetof(struct sched_ext_ops, cpu_online):
5902 	case offsetof(struct sched_ext_ops, cpu_offline):
5903 	case offsetof(struct sched_ext_ops, init):
5904 	case offsetof(struct sched_ext_ops, exit):
5905 		break;
5906 	default:
5907 		if (prog->sleepable)
5908 			return -EINVAL;
5909 	}
5910 
5911 	return 0;
5912 }
5913 
5914 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5915 {
5916 	return scx_ops_enable(kdata, link);
5917 }
5918 
5919 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5920 {
5921 	scx_ops_disable(SCX_EXIT_UNREG);
5922 	kthread_flush_work(&scx_ops_disable_work);
5923 }
5924 
5925 static int bpf_scx_init(struct btf *btf)
5926 {
5927 	task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5928 
5929 	return 0;
5930 }
5931 
5932 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5933 {
5934 	/*
5935 	 * sched_ext does not support updating the actively-loaded BPF
5936 	 * scheduler, as registering a BPF scheduler can always fail if the
5937 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5938 	 * etc. Similarly, we can always race with unregistration happening
5939 	 * elsewhere, such as with sysrq.
5940 	 */
5941 	return -EOPNOTSUPP;
5942 }
5943 
5944 static int bpf_scx_validate(void *kdata)
5945 {
5946 	return 0;
5947 }
5948 
5949 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
5950 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
5951 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
5952 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
5953 static void sched_ext_ops__tick(struct task_struct *p) {}
5954 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
5955 static void sched_ext_ops__running(struct task_struct *p) {}
5956 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
5957 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
5958 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
5959 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
5960 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
5961 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
5962 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
5963 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
5964 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
5965 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
5966 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
5967 static void sched_ext_ops__enable(struct task_struct *p) {}
5968 static void sched_ext_ops__disable(struct task_struct *p) {}
5969 #ifdef CONFIG_EXT_GROUP_SCHED
5970 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
5971 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
5972 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
5973 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5974 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5975 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
5976 #endif
5977 static void sched_ext_ops__cpu_online(s32 cpu) {}
5978 static void sched_ext_ops__cpu_offline(s32 cpu) {}
5979 static s32 sched_ext_ops__init(void) { return -EINVAL; }
5980 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
5981 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
5982 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
5983 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5984 
5985 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5986 	.select_cpu		= sched_ext_ops__select_cpu,
5987 	.enqueue		= sched_ext_ops__enqueue,
5988 	.dequeue		= sched_ext_ops__dequeue,
5989 	.dispatch		= sched_ext_ops__dispatch,
5990 	.tick			= sched_ext_ops__tick,
5991 	.runnable		= sched_ext_ops__runnable,
5992 	.running		= sched_ext_ops__running,
5993 	.stopping		= sched_ext_ops__stopping,
5994 	.quiescent		= sched_ext_ops__quiescent,
5995 	.yield			= sched_ext_ops__yield,
5996 	.core_sched_before	= sched_ext_ops__core_sched_before,
5997 	.set_weight		= sched_ext_ops__set_weight,
5998 	.set_cpumask		= sched_ext_ops__set_cpumask,
5999 	.update_idle		= sched_ext_ops__update_idle,
6000 	.cpu_acquire		= sched_ext_ops__cpu_acquire,
6001 	.cpu_release		= sched_ext_ops__cpu_release,
6002 	.init_task		= sched_ext_ops__init_task,
6003 	.exit_task		= sched_ext_ops__exit_task,
6004 	.enable			= sched_ext_ops__enable,
6005 	.disable		= sched_ext_ops__disable,
6006 #ifdef CONFIG_EXT_GROUP_SCHED
6007 	.cgroup_init		= sched_ext_ops__cgroup_init,
6008 	.cgroup_exit		= sched_ext_ops__cgroup_exit,
6009 	.cgroup_prep_move	= sched_ext_ops__cgroup_prep_move,
6010 	.cgroup_move		= sched_ext_ops__cgroup_move,
6011 	.cgroup_cancel_move	= sched_ext_ops__cgroup_cancel_move,
6012 	.cgroup_set_weight	= sched_ext_ops__cgroup_set_weight,
6013 #endif
6014 	.cpu_online		= sched_ext_ops__cpu_online,
6015 	.cpu_offline		= sched_ext_ops__cpu_offline,
6016 	.init			= sched_ext_ops__init,
6017 	.exit			= sched_ext_ops__exit,
6018 	.dump			= sched_ext_ops__dump,
6019 	.dump_cpu		= sched_ext_ops__dump_cpu,
6020 	.dump_task		= sched_ext_ops__dump_task,
6021 };
6022 
6023 static struct bpf_struct_ops bpf_sched_ext_ops = {
6024 	.verifier_ops = &bpf_scx_verifier_ops,
6025 	.reg = bpf_scx_reg,
6026 	.unreg = bpf_scx_unreg,
6027 	.check_member = bpf_scx_check_member,
6028 	.init_member = bpf_scx_init_member,
6029 	.init = bpf_scx_init,
6030 	.update = bpf_scx_update,
6031 	.validate = bpf_scx_validate,
6032 	.name = "sched_ext_ops",
6033 	.owner = THIS_MODULE,
6034 	.cfi_stubs = &__bpf_ops_sched_ext_ops
6035 };
6036 
6037 
6038 /********************************************************************************
6039  * System integration and init.
6040  */
6041 
6042 static void sysrq_handle_sched_ext_reset(u8 key)
6043 {
6044 	if (scx_ops_helper)
6045 		scx_ops_disable(SCX_EXIT_SYSRQ);
6046 	else
6047 		pr_info("sched_ext: BPF scheduler not yet used\n");
6048 }
6049 
6050 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
6051 	.handler	= sysrq_handle_sched_ext_reset,
6052 	.help_msg	= "reset-sched-ext(S)",
6053 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
6054 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
6055 };
6056 
6057 static void sysrq_handle_sched_ext_dump(u8 key)
6058 {
6059 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
6060 
6061 	if (scx_enabled())
6062 		scx_dump_state(&ei, 0);
6063 }
6064 
6065 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
6066 	.handler	= sysrq_handle_sched_ext_dump,
6067 	.help_msg	= "dump-sched-ext(D)",
6068 	.action_msg	= "Trigger sched_ext debug dump",
6069 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
6070 };
6071 
6072 static bool can_skip_idle_kick(struct rq *rq)
6073 {
6074 	lockdep_assert_rq_held(rq);
6075 
6076 	/*
6077 	 * We can skip idle kicking if @rq is going to go through at least one
6078 	 * full SCX scheduling cycle before going idle. Just checking whether
6079 	 * curr is not idle is insufficient because we could be racing
6080 	 * balance_one() trying to pull the next task from a remote rq, which
6081 	 * may fail, and @rq may become idle afterwards.
6082 	 *
6083 	 * The race window is small and we don't and can't guarantee that @rq is
6084 	 * only kicked while idle anyway. Skip only when sure.
6085 	 */
6086 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
6087 }
6088 
6089 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
6090 {
6091 	struct rq *rq = cpu_rq(cpu);
6092 	struct scx_rq *this_scx = &this_rq->scx;
6093 	bool should_wait = false;
6094 	unsigned long flags;
6095 
6096 	raw_spin_rq_lock_irqsave(rq, flags);
6097 
6098 	/*
6099 	 * During CPU hotplug, a CPU may depend on kicking itself to make
6100 	 * forward progress. Allow kicking self regardless of online state.
6101 	 */
6102 	if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
6103 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
6104 			if (rq->curr->sched_class == &ext_sched_class)
6105 				rq->curr->scx.slice = 0;
6106 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6107 		}
6108 
6109 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
6110 			pseqs[cpu] = rq->scx.pnt_seq;
6111 			should_wait = true;
6112 		}
6113 
6114 		resched_curr(rq);
6115 	} else {
6116 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6117 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6118 	}
6119 
6120 	raw_spin_rq_unlock_irqrestore(rq, flags);
6121 
6122 	return should_wait;
6123 }
6124 
6125 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
6126 {
6127 	struct rq *rq = cpu_rq(cpu);
6128 	unsigned long flags;
6129 
6130 	raw_spin_rq_lock_irqsave(rq, flags);
6131 
6132 	if (!can_skip_idle_kick(rq) &&
6133 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
6134 		resched_curr(rq);
6135 
6136 	raw_spin_rq_unlock_irqrestore(rq, flags);
6137 }
6138 
6139 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
6140 {
6141 	struct rq *this_rq = this_rq();
6142 	struct scx_rq *this_scx = &this_rq->scx;
6143 	unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
6144 	bool should_wait = false;
6145 	s32 cpu;
6146 
6147 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
6148 		should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
6149 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
6150 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6151 	}
6152 
6153 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
6154 		kick_one_cpu_if_idle(cpu, this_rq);
6155 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6156 	}
6157 
6158 	if (!should_wait)
6159 		return;
6160 
6161 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
6162 		unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
6163 
6164 		if (cpu != cpu_of(this_rq)) {
6165 			/*
6166 			 * Pairs with smp_store_release() issued by this CPU in
6167 			 * switch_class() on the resched path.
6168 			 *
6169 			 * We busy-wait here to guarantee that no other task can
6170 			 * be scheduled on our core before the target CPU has
6171 			 * entered the resched path.
6172 			 */
6173 			while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
6174 				cpu_relax();
6175 		}
6176 
6177 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6178 	}
6179 }
6180 
6181 /**
6182  * print_scx_info - print out sched_ext scheduler state
6183  * @log_lvl: the log level to use when printing
6184  * @p: target task
6185  *
6186  * If a sched_ext scheduler is enabled, print the name and state of the
6187  * scheduler. If @p is on sched_ext, print further information about the task.
6188  *
6189  * This function can be safely called on any task as long as the task_struct
6190  * itself is accessible. While safe, this function isn't synchronized and may
6191  * print out mixups or garbages of limited length.
6192  */
6193 void print_scx_info(const char *log_lvl, struct task_struct *p)
6194 {
6195 	enum scx_ops_enable_state state = scx_ops_enable_state();
6196 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
6197 	char runnable_at_buf[22] = "?";
6198 	struct sched_class *class;
6199 	unsigned long runnable_at;
6200 
6201 	if (state == SCX_OPS_DISABLED)
6202 		return;
6203 
6204 	/*
6205 	 * Carefully check if the task was running on sched_ext, and then
6206 	 * carefully copy the time it's been runnable, and its state.
6207 	 */
6208 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
6209 	    class != &ext_sched_class) {
6210 		printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
6211 		       scx_ops_enable_state_str[state], all);
6212 		return;
6213 	}
6214 
6215 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
6216 				      sizeof(runnable_at)))
6217 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
6218 			  jiffies_delta_msecs(runnable_at, jiffies));
6219 
6220 	/* print everything onto one line to conserve console space */
6221 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
6222 	       log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
6223 	       runnable_at_buf);
6224 }
6225 
6226 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
6227 {
6228 	/*
6229 	 * SCX schedulers often have userspace components which are sometimes
6230 	 * involved in critial scheduling paths. PM operations involve freezing
6231 	 * userspace which can lead to scheduling misbehaviors including stalls.
6232 	 * Let's bypass while PM operations are in progress.
6233 	 */
6234 	switch (event) {
6235 	case PM_HIBERNATION_PREPARE:
6236 	case PM_SUSPEND_PREPARE:
6237 	case PM_RESTORE_PREPARE:
6238 		scx_ops_bypass(true);
6239 		break;
6240 	case PM_POST_HIBERNATION:
6241 	case PM_POST_SUSPEND:
6242 	case PM_POST_RESTORE:
6243 		scx_ops_bypass(false);
6244 		break;
6245 	}
6246 
6247 	return NOTIFY_OK;
6248 }
6249 
6250 static struct notifier_block scx_pm_notifier = {
6251 	.notifier_call = scx_pm_handler,
6252 };
6253 
6254 void __init init_sched_ext_class(void)
6255 {
6256 	s32 cpu, v;
6257 
6258 	/*
6259 	 * The following is to prevent the compiler from optimizing out the enum
6260 	 * definitions so that BPF scheduler implementations can use them
6261 	 * through the generated vmlinux.h.
6262 	 */
6263 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
6264 		   SCX_TG_ONLINE);
6265 
6266 	BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
6267 #ifdef CONFIG_SMP
6268 	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
6269 	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
6270 #endif
6271 	scx_kick_cpus_pnt_seqs =
6272 		__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
6273 			       __alignof__(scx_kick_cpus_pnt_seqs[0]));
6274 	BUG_ON(!scx_kick_cpus_pnt_seqs);
6275 
6276 	for_each_possible_cpu(cpu) {
6277 		struct rq *rq = cpu_rq(cpu);
6278 
6279 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
6280 		INIT_LIST_HEAD(&rq->scx.runnable_list);
6281 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
6282 
6283 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
6284 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
6285 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
6286 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
6287 		init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
6288 		init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
6289 
6290 		if (cpu_online(cpu))
6291 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
6292 	}
6293 
6294 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
6295 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
6296 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
6297 }
6298 
6299 
6300 /********************************************************************************
6301  * Helpers that can be called from the BPF scheduler.
6302  */
6303 #include <linux/btf_ids.h>
6304 
6305 __bpf_kfunc_start_defs();
6306 
6307 static bool check_builtin_idle_enabled(void)
6308 {
6309 	if (static_branch_likely(&scx_builtin_idle_enabled))
6310 		return true;
6311 
6312 	scx_ops_error("built-in idle tracking is disabled");
6313 	return false;
6314 }
6315 
6316 /**
6317  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
6318  * @p: task_struct to select a CPU for
6319  * @prev_cpu: CPU @p was on previously
6320  * @wake_flags: %SCX_WAKE_* flags
6321  * @is_idle: out parameter indicating whether the returned CPU is idle
6322  *
6323  * Can only be called from ops.select_cpu() if the built-in CPU selection is
6324  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
6325  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
6326  *
6327  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
6328  * currently idle and thus a good candidate for direct dispatching.
6329  */
6330 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
6331 				       u64 wake_flags, bool *is_idle)
6332 {
6333 	if (!check_builtin_idle_enabled())
6334 		goto prev_cpu;
6335 
6336 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
6337 		goto prev_cpu;
6338 
6339 #ifdef CONFIG_SMP
6340 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
6341 #endif
6342 
6343 prev_cpu:
6344 	*is_idle = false;
6345 	return prev_cpu;
6346 }
6347 
6348 __bpf_kfunc_end_defs();
6349 
6350 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
6351 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
6352 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
6353 
6354 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
6355 	.owner			= THIS_MODULE,
6356 	.set			= &scx_kfunc_ids_select_cpu,
6357 };
6358 
6359 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags)
6360 {
6361 	if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
6362 		return false;
6363 
6364 	lockdep_assert_irqs_disabled();
6365 
6366 	if (unlikely(!p)) {
6367 		scx_ops_error("called with NULL task");
6368 		return false;
6369 	}
6370 
6371 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
6372 		scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
6373 		return false;
6374 	}
6375 
6376 	return true;
6377 }
6378 
6379 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id,
6380 				  u64 enq_flags)
6381 {
6382 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6383 	struct task_struct *ddsp_task;
6384 
6385 	ddsp_task = __this_cpu_read(direct_dispatch_task);
6386 	if (ddsp_task) {
6387 		mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
6388 		return;
6389 	}
6390 
6391 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
6392 		scx_ops_error("dispatch buffer overflow");
6393 		return;
6394 	}
6395 
6396 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
6397 		.task = p,
6398 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
6399 		.dsq_id = dsq_id,
6400 		.enq_flags = enq_flags,
6401 	};
6402 }
6403 
6404 __bpf_kfunc_start_defs();
6405 
6406 /**
6407  * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
6408  * @p: task_struct to insert
6409  * @dsq_id: DSQ to insert into
6410  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6411  * @enq_flags: SCX_ENQ_*
6412  *
6413  * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
6414  * call this function spuriously. Can be called from ops.enqueue(),
6415  * ops.select_cpu(), and ops.dispatch().
6416  *
6417  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
6418  * and @p must match the task being enqueued.
6419  *
6420  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
6421  * will be directly inserted into the corresponding dispatch queue after
6422  * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
6423  * inserted into the local DSQ of the CPU returned by ops.select_cpu().
6424  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
6425  * task is inserted.
6426  *
6427  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
6428  * and this function can be called upto ops.dispatch_max_batch times to insert
6429  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6430  * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6431  *
6432  * This function doesn't have any locking restrictions and may be called under
6433  * BPF locks (in the future when BPF introduces more flexible locking).
6434  *
6435  * @p is allowed to run for @slice. The scheduling path is triggered on slice
6436  * exhaustion. If zero, the current residual slice is maintained. If
6437  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6438  * scx_bpf_kick_cpu() to trigger scheduling.
6439  */
6440 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
6441 				    u64 enq_flags)
6442 {
6443 	if (!scx_dsq_insert_preamble(p, enq_flags))
6444 		return;
6445 
6446 	if (slice)
6447 		p->scx.slice = slice;
6448 	else
6449 		p->scx.slice = p->scx.slice ?: 1;
6450 
6451 	scx_dsq_insert_commit(p, dsq_id, enq_flags);
6452 }
6453 
6454 /* for backward compatibility, will be removed in v6.15 */
6455 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6456 				  u64 enq_flags)
6457 {
6458 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()");
6459 	scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags);
6460 }
6461 
6462 /**
6463  * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
6464  * @p: task_struct to insert
6465  * @dsq_id: DSQ to insert into
6466  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6467  * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6468  * @enq_flags: SCX_ENQ_*
6469  *
6470  * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
6471  * Tasks queued into the priority queue are ordered by @vtime. All other aspects
6472  * are identical to scx_bpf_dsq_insert().
6473  *
6474  * @vtime ordering is according to time_before64() which considers wrapping. A
6475  * numerically larger vtime may indicate an earlier position in the ordering and
6476  * vice-versa.
6477  *
6478  * A DSQ can only be used as a FIFO or priority queue at any given time and this
6479  * function must not be called on a DSQ which already has one or more FIFO tasks
6480  * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
6481  * SCX_DSQ_GLOBAL) cannot be used as priority queues.
6482  */
6483 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
6484 					  u64 slice, u64 vtime, u64 enq_flags)
6485 {
6486 	if (!scx_dsq_insert_preamble(p, enq_flags))
6487 		return;
6488 
6489 	if (slice)
6490 		p->scx.slice = slice;
6491 	else
6492 		p->scx.slice = p->scx.slice ?: 1;
6493 
6494 	p->scx.dsq_vtime = vtime;
6495 
6496 	scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6497 }
6498 
6499 /* for backward compatibility, will be removed in v6.15 */
6500 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6501 					u64 slice, u64 vtime, u64 enq_flags)
6502 {
6503 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()");
6504 	scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags);
6505 }
6506 
6507 __bpf_kfunc_end_defs();
6508 
6509 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6510 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
6511 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
6512 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6513 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6514 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6515 
6516 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6517 	.owner			= THIS_MODULE,
6518 	.set			= &scx_kfunc_ids_enqueue_dispatch,
6519 };
6520 
6521 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
6522 			 struct task_struct *p, u64 dsq_id, u64 enq_flags)
6523 {
6524 	struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6525 	struct rq *this_rq, *src_rq, *locked_rq;
6526 	bool dispatched = false;
6527 	bool in_balance;
6528 	unsigned long flags;
6529 
6530 	if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6531 		return false;
6532 
6533 	/*
6534 	 * Can be called from either ops.dispatch() locking this_rq() or any
6535 	 * context where no rq lock is held. If latter, lock @p's task_rq which
6536 	 * we'll likely need anyway.
6537 	 */
6538 	src_rq = task_rq(p);
6539 
6540 	local_irq_save(flags);
6541 	this_rq = this_rq();
6542 	in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6543 
6544 	if (in_balance) {
6545 		if (this_rq != src_rq) {
6546 			raw_spin_rq_unlock(this_rq);
6547 			raw_spin_rq_lock(src_rq);
6548 		}
6549 	} else {
6550 		raw_spin_rq_lock(src_rq);
6551 	}
6552 
6553 	/*
6554 	 * If the BPF scheduler keeps calling this function repeatedly, it can
6555 	 * cause similar live-lock conditions as consume_dispatch_q(). Insert a
6556 	 * breather if necessary.
6557 	 */
6558 	scx_ops_breather(src_rq);
6559 
6560 	locked_rq = src_rq;
6561 	raw_spin_lock(&src_dsq->lock);
6562 
6563 	/*
6564 	 * Did someone else get to it? @p could have already left $src_dsq, got
6565 	 * re-enqueud, or be in the process of being consumed by someone else.
6566 	 */
6567 	if (unlikely(p->scx.dsq != src_dsq ||
6568 		     u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6569 		     p->scx.holding_cpu >= 0) ||
6570 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
6571 		raw_spin_unlock(&src_dsq->lock);
6572 		goto out;
6573 	}
6574 
6575 	/* @p is still on $src_dsq and stable, determine the destination */
6576 	dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6577 
6578 	/*
6579 	 * Apply vtime and slice updates before moving so that the new time is
6580 	 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
6581 	 * this is safe as we're locking it.
6582 	 */
6583 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6584 		p->scx.dsq_vtime = kit->vtime;
6585 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6586 		p->scx.slice = kit->slice;
6587 
6588 	/* execute move */
6589 	locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
6590 	dispatched = true;
6591 out:
6592 	if (in_balance) {
6593 		if (this_rq != locked_rq) {
6594 			raw_spin_rq_unlock(locked_rq);
6595 			raw_spin_rq_lock(this_rq);
6596 		}
6597 	} else {
6598 		raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6599 	}
6600 
6601 	kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6602 			       __SCX_DSQ_ITER_HAS_VTIME);
6603 	return dispatched;
6604 }
6605 
6606 __bpf_kfunc_start_defs();
6607 
6608 /**
6609  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6610  *
6611  * Can only be called from ops.dispatch().
6612  */
6613 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6614 {
6615 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6616 		return 0;
6617 
6618 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6619 }
6620 
6621 /**
6622  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6623  *
6624  * Cancel the latest dispatch. Can be called multiple times to cancel further
6625  * dispatches. Can only be called from ops.dispatch().
6626  */
6627 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6628 {
6629 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6630 
6631 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6632 		return;
6633 
6634 	if (dspc->cursor > 0)
6635 		dspc->cursor--;
6636 	else
6637 		scx_ops_error("dispatch buffer underflow");
6638 }
6639 
6640 /**
6641  * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6642  * @dsq_id: DSQ to move task from
6643  *
6644  * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6645  * local DSQ for execution. Can only be called from ops.dispatch().
6646  *
6647  * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6648  * before trying to move from the specified DSQ. It may also grab rq locks and
6649  * thus can't be called under any BPF locks.
6650  *
6651  * Returns %true if a task has been moved, %false if there isn't any task to
6652  * move.
6653  */
6654 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6655 {
6656 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6657 	struct scx_dispatch_q *dsq;
6658 
6659 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6660 		return false;
6661 
6662 	flush_dispatch_buf(dspc->rq);
6663 
6664 	dsq = find_user_dsq(dsq_id);
6665 	if (unlikely(!dsq)) {
6666 		scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6667 		return false;
6668 	}
6669 
6670 	if (consume_dispatch_q(dspc->rq, dsq)) {
6671 		/*
6672 		 * A successfully consumed task can be dequeued before it starts
6673 		 * running while the CPU is trying to migrate other dispatched
6674 		 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6675 		 * local DSQ.
6676 		 */
6677 		dspc->nr_tasks++;
6678 		return true;
6679 	} else {
6680 		return false;
6681 	}
6682 }
6683 
6684 /* for backward compatibility, will be removed in v6.15 */
6685 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6686 {
6687 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()");
6688 	return scx_bpf_dsq_move_to_local(dsq_id);
6689 }
6690 
6691 /**
6692  * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6693  * @it__iter: DSQ iterator in progress
6694  * @slice: duration the moved task can run for in nsecs
6695  *
6696  * Override the slice of the next task that will be moved from @it__iter using
6697  * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6698  * slice duration is kept.
6699  */
6700 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
6701 					    u64 slice)
6702 {
6703 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6704 
6705 	kit->slice = slice;
6706 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6707 }
6708 
6709 /* for backward compatibility, will be removed in v6.15 */
6710 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6711 			struct bpf_iter_scx_dsq *it__iter, u64 slice)
6712 {
6713 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()");
6714 	scx_bpf_dsq_move_set_slice(it__iter, slice);
6715 }
6716 
6717 /**
6718  * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6719  * @it__iter: DSQ iterator in progress
6720  * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6721  *
6722  * Override the vtime of the next task that will be moved from @it__iter using
6723  * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6724  * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6725  * override is ignored and cleared.
6726  */
6727 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
6728 					    u64 vtime)
6729 {
6730 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6731 
6732 	kit->vtime = vtime;
6733 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6734 }
6735 
6736 /* for backward compatibility, will be removed in v6.15 */
6737 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6738 			struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6739 {
6740 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()");
6741 	scx_bpf_dsq_move_set_vtime(it__iter, vtime);
6742 }
6743 
6744 /**
6745  * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6746  * @it__iter: DSQ iterator in progress
6747  * @p: task to transfer
6748  * @dsq_id: DSQ to move @p to
6749  * @enq_flags: SCX_ENQ_*
6750  *
6751  * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6752  * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6753  * be the destination.
6754  *
6755  * For the transfer to be successful, @p must still be on the DSQ and have been
6756  * queued before the DSQ iteration started. This function doesn't care whether
6757  * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6758  * been queued before the iteration started.
6759  *
6760  * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6761  *
6762  * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6763  * lock (e.g. BPF timers or SYSCALL programs).
6764  *
6765  * Returns %true if @p has been consumed, %false if @p had already been consumed
6766  * or dequeued.
6767  */
6768 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
6769 				  struct task_struct *p, u64 dsq_id,
6770 				  u64 enq_flags)
6771 {
6772 	return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6773 			    p, dsq_id, enq_flags);
6774 }
6775 
6776 /* for backward compatibility, will be removed in v6.15 */
6777 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6778 					   struct task_struct *p, u64 dsq_id,
6779 					   u64 enq_flags)
6780 {
6781 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()");
6782 	return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags);
6783 }
6784 
6785 /**
6786  * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6787  * @it__iter: DSQ iterator in progress
6788  * @p: task to transfer
6789  * @dsq_id: DSQ to move @p to
6790  * @enq_flags: SCX_ENQ_*
6791  *
6792  * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6793  * priority queue of the DSQ specified by @dsq_id. The destination must be a
6794  * user DSQ as only user DSQs support priority queue.
6795  *
6796  * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6797  * and scx_bpf_dsq_move_set_vtime() to update.
6798  *
6799  * All other aspects are identical to scx_bpf_dsq_move(). See
6800  * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6801  */
6802 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
6803 					struct task_struct *p, u64 dsq_id,
6804 					u64 enq_flags)
6805 {
6806 	return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6807 			    p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6808 }
6809 
6810 /* for backward compatibility, will be removed in v6.15 */
6811 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6812 						 struct task_struct *p, u64 dsq_id,
6813 						 u64 enq_flags)
6814 {
6815 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()");
6816 	return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags);
6817 }
6818 
6819 __bpf_kfunc_end_defs();
6820 
6821 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6822 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6823 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6824 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6825 BTF_ID_FLAGS(func, scx_bpf_consume)
6826 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
6827 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
6828 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6829 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6830 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6831 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6832 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6833 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6834 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6835 
6836 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6837 	.owner			= THIS_MODULE,
6838 	.set			= &scx_kfunc_ids_dispatch,
6839 };
6840 
6841 __bpf_kfunc_start_defs();
6842 
6843 /**
6844  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6845  *
6846  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6847  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6848  * processed tasks. Can only be called from ops.cpu_release().
6849  */
6850 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6851 {
6852 	LIST_HEAD(tasks);
6853 	u32 nr_enqueued = 0;
6854 	struct rq *rq;
6855 	struct task_struct *p, *n;
6856 
6857 	if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6858 		return 0;
6859 
6860 	rq = cpu_rq(smp_processor_id());
6861 	lockdep_assert_rq_held(rq);
6862 
6863 	/*
6864 	 * The BPF scheduler may choose to dispatch tasks back to
6865 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6866 	 * first to avoid processing the same tasks repeatedly.
6867 	 */
6868 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6869 				 scx.dsq_list.node) {
6870 		/*
6871 		 * If @p is being migrated, @p's current CPU may not agree with
6872 		 * its allowed CPUs and the migration_cpu_stop is about to
6873 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6874 		 *
6875 		 * While racing sched property changes may also dequeue and
6876 		 * re-enqueue a migrating task while its current CPU and allowed
6877 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6878 		 * the current local DSQ for running tasks and thus are not
6879 		 * visible to the BPF scheduler.
6880 		 */
6881 		if (p->migration_pending)
6882 			continue;
6883 
6884 		dispatch_dequeue(rq, p);
6885 		list_add_tail(&p->scx.dsq_list.node, &tasks);
6886 	}
6887 
6888 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6889 		list_del_init(&p->scx.dsq_list.node);
6890 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6891 		nr_enqueued++;
6892 	}
6893 
6894 	return nr_enqueued;
6895 }
6896 
6897 __bpf_kfunc_end_defs();
6898 
6899 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6900 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6901 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6902 
6903 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6904 	.owner			= THIS_MODULE,
6905 	.set			= &scx_kfunc_ids_cpu_release,
6906 };
6907 
6908 __bpf_kfunc_start_defs();
6909 
6910 /**
6911  * scx_bpf_create_dsq - Create a custom DSQ
6912  * @dsq_id: DSQ to create
6913  * @node: NUMA node to allocate from
6914  *
6915  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6916  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6917  */
6918 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6919 {
6920 	if (unlikely(node >= (int)nr_node_ids ||
6921 		     (node < 0 && node != NUMA_NO_NODE)))
6922 		return -EINVAL;
6923 	return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6924 }
6925 
6926 __bpf_kfunc_end_defs();
6927 
6928 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6929 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6930 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
6931 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
6932 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6933 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6934 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6935 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6936 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6937 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6938 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6939 
6940 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6941 	.owner			= THIS_MODULE,
6942 	.set			= &scx_kfunc_ids_unlocked,
6943 };
6944 
6945 __bpf_kfunc_start_defs();
6946 
6947 /**
6948  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6949  * @cpu: cpu to kick
6950  * @flags: %SCX_KICK_* flags
6951  *
6952  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6953  * trigger rescheduling on a busy CPU. This can be called from any online
6954  * scx_ops operation and the actual kicking is performed asynchronously through
6955  * an irq work.
6956  */
6957 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6958 {
6959 	struct rq *this_rq;
6960 	unsigned long irq_flags;
6961 
6962 	if (!ops_cpu_valid(cpu, NULL))
6963 		return;
6964 
6965 	local_irq_save(irq_flags);
6966 
6967 	this_rq = this_rq();
6968 
6969 	/*
6970 	 * While bypassing for PM ops, IRQ handling may not be online which can
6971 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
6972 	 * IRQ status update. Suppress kicking.
6973 	 */
6974 	if (scx_rq_bypassing(this_rq))
6975 		goto out;
6976 
6977 	/*
6978 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6979 	 * rq locks. We can probably be smarter and avoid bouncing if called
6980 	 * from ops which don't hold a rq lock.
6981 	 */
6982 	if (flags & SCX_KICK_IDLE) {
6983 		struct rq *target_rq = cpu_rq(cpu);
6984 
6985 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6986 			scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6987 
6988 		if (raw_spin_rq_trylock(target_rq)) {
6989 			if (can_skip_idle_kick(target_rq)) {
6990 				raw_spin_rq_unlock(target_rq);
6991 				goto out;
6992 			}
6993 			raw_spin_rq_unlock(target_rq);
6994 		}
6995 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6996 	} else {
6997 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6998 
6999 		if (flags & SCX_KICK_PREEMPT)
7000 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
7001 		if (flags & SCX_KICK_WAIT)
7002 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
7003 	}
7004 
7005 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
7006 out:
7007 	local_irq_restore(irq_flags);
7008 }
7009 
7010 /**
7011  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
7012  * @dsq_id: id of the DSQ
7013  *
7014  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
7015  * -%ENOENT is returned.
7016  */
7017 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
7018 {
7019 	struct scx_dispatch_q *dsq;
7020 	s32 ret;
7021 
7022 	preempt_disable();
7023 
7024 	if (dsq_id == SCX_DSQ_LOCAL) {
7025 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
7026 		goto out;
7027 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
7028 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
7029 
7030 		if (ops_cpu_valid(cpu, NULL)) {
7031 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
7032 			goto out;
7033 		}
7034 	} else {
7035 		dsq = find_user_dsq(dsq_id);
7036 		if (dsq) {
7037 			ret = READ_ONCE(dsq->nr);
7038 			goto out;
7039 		}
7040 	}
7041 	ret = -ENOENT;
7042 out:
7043 	preempt_enable();
7044 	return ret;
7045 }
7046 
7047 /**
7048  * scx_bpf_destroy_dsq - Destroy a custom DSQ
7049  * @dsq_id: DSQ to destroy
7050  *
7051  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
7052  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
7053  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
7054  * which doesn't exist. Can be called from any online scx_ops operations.
7055  */
7056 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
7057 {
7058 	destroy_dsq(dsq_id);
7059 }
7060 
7061 /**
7062  * bpf_iter_scx_dsq_new - Create a DSQ iterator
7063  * @it: iterator to initialize
7064  * @dsq_id: DSQ to iterate
7065  * @flags: %SCX_DSQ_ITER_*
7066  *
7067  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
7068  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
7069  * tasks which are already queued when this function is invoked.
7070  */
7071 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
7072 				     u64 flags)
7073 {
7074 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7075 
7076 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
7077 		     sizeof(struct bpf_iter_scx_dsq));
7078 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
7079 		     __alignof__(struct bpf_iter_scx_dsq));
7080 
7081 	if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
7082 		return -EINVAL;
7083 
7084 	kit->dsq = find_user_dsq(dsq_id);
7085 	if (!kit->dsq)
7086 		return -ENOENT;
7087 
7088 	INIT_LIST_HEAD(&kit->cursor.node);
7089 	kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags;
7090 	kit->cursor.priv = READ_ONCE(kit->dsq->seq);
7091 
7092 	return 0;
7093 }
7094 
7095 /**
7096  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
7097  * @it: iterator to progress
7098  *
7099  * Return the next task. See bpf_iter_scx_dsq_new().
7100  */
7101 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
7102 {
7103 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7104 	bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
7105 	struct task_struct *p;
7106 	unsigned long flags;
7107 
7108 	if (!kit->dsq)
7109 		return NULL;
7110 
7111 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7112 
7113 	if (list_empty(&kit->cursor.node))
7114 		p = NULL;
7115 	else
7116 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
7117 
7118 	/*
7119 	 * Only tasks which were queued before the iteration started are
7120 	 * visible. This bounds BPF iterations and guarantees that vtime never
7121 	 * jumps in the other direction while iterating.
7122 	 */
7123 	do {
7124 		p = nldsq_next_task(kit->dsq, p, rev);
7125 	} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
7126 
7127 	if (p) {
7128 		if (rev)
7129 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
7130 		else
7131 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
7132 	} else {
7133 		list_del_init(&kit->cursor.node);
7134 	}
7135 
7136 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7137 
7138 	return p;
7139 }
7140 
7141 /**
7142  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
7143  * @it: iterator to destroy
7144  *
7145  * Undo scx_iter_scx_dsq_new().
7146  */
7147 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
7148 {
7149 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7150 
7151 	if (!kit->dsq)
7152 		return;
7153 
7154 	if (!list_empty(&kit->cursor.node)) {
7155 		unsigned long flags;
7156 
7157 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7158 		list_del_init(&kit->cursor.node);
7159 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7160 	}
7161 	kit->dsq = NULL;
7162 }
7163 
7164 __bpf_kfunc_end_defs();
7165 
7166 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
7167 			 char *fmt, unsigned long long *data, u32 data__sz)
7168 {
7169 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
7170 	s32 ret;
7171 
7172 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
7173 	    (data__sz && !data)) {
7174 		scx_ops_error("invalid data=%p and data__sz=%u",
7175 			      (void *)data, data__sz);
7176 		return -EINVAL;
7177 	}
7178 
7179 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
7180 	if (ret < 0) {
7181 		scx_ops_error("failed to read data fields (%d)", ret);
7182 		return ret;
7183 	}
7184 
7185 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
7186 				  &bprintf_data);
7187 	if (ret < 0) {
7188 		scx_ops_error("format preparation failed (%d)", ret);
7189 		return ret;
7190 	}
7191 
7192 	ret = bstr_printf(line_buf, line_size, fmt,
7193 			  bprintf_data.bin_args);
7194 	bpf_bprintf_cleanup(&bprintf_data);
7195 	if (ret < 0) {
7196 		scx_ops_error("(\"%s\", %p, %u) failed to format",
7197 			      fmt, data, data__sz);
7198 		return ret;
7199 	}
7200 
7201 	return ret;
7202 }
7203 
7204 static s32 bstr_format(struct scx_bstr_buf *buf,
7205 		       char *fmt, unsigned long long *data, u32 data__sz)
7206 {
7207 	return __bstr_format(buf->data, buf->line, sizeof(buf->line),
7208 			     fmt, data, data__sz);
7209 }
7210 
7211 __bpf_kfunc_start_defs();
7212 
7213 /**
7214  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
7215  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
7216  * @fmt: error message format string
7217  * @data: format string parameters packaged using ___bpf_fill() macro
7218  * @data__sz: @data len, must end in '__sz' for the verifier
7219  *
7220  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
7221  * disabling.
7222  */
7223 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
7224 				   unsigned long long *data, u32 data__sz)
7225 {
7226 	unsigned long flags;
7227 
7228 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7229 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7230 		scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
7231 				  scx_exit_bstr_buf.line);
7232 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7233 }
7234 
7235 /**
7236  * scx_bpf_error_bstr - Indicate fatal error
7237  * @fmt: error message format string
7238  * @data: format string parameters packaged using ___bpf_fill() macro
7239  * @data__sz: @data len, must end in '__sz' for the verifier
7240  *
7241  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
7242  * disabling.
7243  */
7244 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
7245 				    u32 data__sz)
7246 {
7247 	unsigned long flags;
7248 
7249 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7250 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7251 		scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
7252 				  scx_exit_bstr_buf.line);
7253 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7254 }
7255 
7256 /**
7257  * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
7258  * @fmt: format string
7259  * @data: format string parameters packaged using ___bpf_fill() macro
7260  * @data__sz: @data len, must end in '__sz' for the verifier
7261  *
7262  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
7263  * dump_task() to generate extra debug dump specific to the BPF scheduler.
7264  *
7265  * The extra dump may be multiple lines. A single line may be split over
7266  * multiple calls. The last line is automatically terminated.
7267  */
7268 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
7269 				   u32 data__sz)
7270 {
7271 	struct scx_dump_data *dd = &scx_dump_data;
7272 	struct scx_bstr_buf *buf = &dd->buf;
7273 	s32 ret;
7274 
7275 	if (raw_smp_processor_id() != dd->cpu) {
7276 		scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
7277 		return;
7278 	}
7279 
7280 	/* append the formatted string to the line buf */
7281 	ret = __bstr_format(buf->data, buf->line + dd->cursor,
7282 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
7283 	if (ret < 0) {
7284 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
7285 			  dd->prefix, fmt, data, data__sz, ret);
7286 		return;
7287 	}
7288 
7289 	dd->cursor += ret;
7290 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
7291 
7292 	if (!dd->cursor)
7293 		return;
7294 
7295 	/*
7296 	 * If the line buf overflowed or ends in a newline, flush it into the
7297 	 * dump. This is to allow the caller to generate a single line over
7298 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
7299 	 * the line buf, the only case which can lead to an unexpected
7300 	 * truncation is when the caller keeps generating newlines in the middle
7301 	 * instead of the end consecutively. Don't do that.
7302 	 */
7303 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
7304 		ops_dump_flush();
7305 }
7306 
7307 /**
7308  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
7309  * @cpu: CPU of interest
7310  *
7311  * Return the maximum relative capacity of @cpu in relation to the most
7312  * performant CPU in the system. The return value is in the range [1,
7313  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
7314  */
7315 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
7316 {
7317 	if (ops_cpu_valid(cpu, NULL))
7318 		return arch_scale_cpu_capacity(cpu);
7319 	else
7320 		return SCX_CPUPERF_ONE;
7321 }
7322 
7323 /**
7324  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
7325  * @cpu: CPU of interest
7326  *
7327  * Return the current relative performance of @cpu in relation to its maximum.
7328  * The return value is in the range [1, %SCX_CPUPERF_ONE].
7329  *
7330  * The current performance level of a CPU in relation to the maximum performance
7331  * available in the system can be calculated as follows:
7332  *
7333  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
7334  *
7335  * The result is in the range [1, %SCX_CPUPERF_ONE].
7336  */
7337 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
7338 {
7339 	if (ops_cpu_valid(cpu, NULL))
7340 		return arch_scale_freq_capacity(cpu);
7341 	else
7342 		return SCX_CPUPERF_ONE;
7343 }
7344 
7345 /**
7346  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
7347  * @cpu: CPU of interest
7348  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
7349  * @flags: %SCX_CPUPERF_* flags
7350  *
7351  * Set the target performance level of @cpu to @perf. @perf is in linear
7352  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
7353  * schedutil cpufreq governor chooses the target frequency.
7354  *
7355  * The actual performance level chosen, CPU grouping, and the overhead and
7356  * latency of the operations are dependent on the hardware and cpufreq driver in
7357  * use. Consult hardware and cpufreq documentation for more information. The
7358  * current performance level can be monitored using scx_bpf_cpuperf_cur().
7359  */
7360 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
7361 {
7362 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
7363 		scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
7364 		return;
7365 	}
7366 
7367 	if (ops_cpu_valid(cpu, NULL)) {
7368 		struct rq *rq = cpu_rq(cpu);
7369 
7370 		rq->scx.cpuperf_target = perf;
7371 
7372 		rcu_read_lock_sched_notrace();
7373 		cpufreq_update_util(cpu_rq(cpu), 0);
7374 		rcu_read_unlock_sched_notrace();
7375 	}
7376 }
7377 
7378 /**
7379  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
7380  *
7381  * All valid CPU IDs in the system are smaller than the returned value.
7382  */
7383 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
7384 {
7385 	return nr_cpu_ids;
7386 }
7387 
7388 /**
7389  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
7390  */
7391 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
7392 {
7393 	return cpu_possible_mask;
7394 }
7395 
7396 /**
7397  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
7398  */
7399 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
7400 {
7401 	return cpu_online_mask;
7402 }
7403 
7404 /**
7405  * scx_bpf_put_cpumask - Release a possible/online cpumask
7406  * @cpumask: cpumask to release
7407  */
7408 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
7409 {
7410 	/*
7411 	 * Empty function body because we aren't actually acquiring or releasing
7412 	 * a reference to a global cpumask, which is read-only in the caller and
7413 	 * is never released. The acquire / release semantics here are just used
7414 	 * to make the cpumask is a trusted pointer in the caller.
7415 	 */
7416 }
7417 
7418 /**
7419  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
7420  * per-CPU cpumask.
7421  *
7422  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7423  */
7424 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
7425 {
7426 	if (!check_builtin_idle_enabled())
7427 		return cpu_none_mask;
7428 
7429 #ifdef CONFIG_SMP
7430 	return idle_masks.cpu;
7431 #else
7432 	return cpu_none_mask;
7433 #endif
7434 }
7435 
7436 /**
7437  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
7438  * per-physical-core cpumask. Can be used to determine if an entire physical
7439  * core is free.
7440  *
7441  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7442  */
7443 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
7444 {
7445 	if (!check_builtin_idle_enabled())
7446 		return cpu_none_mask;
7447 
7448 #ifdef CONFIG_SMP
7449 	if (sched_smt_active())
7450 		return idle_masks.smt;
7451 	else
7452 		return idle_masks.cpu;
7453 #else
7454 	return cpu_none_mask;
7455 #endif
7456 }
7457 
7458 /**
7459  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
7460  * either the percpu, or SMT idle-tracking cpumask.
7461  */
7462 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
7463 {
7464 	/*
7465 	 * Empty function body because we aren't actually acquiring or releasing
7466 	 * a reference to a global idle cpumask, which is read-only in the
7467 	 * caller and is never released. The acquire / release semantics here
7468 	 * are just used to make the cpumask a trusted pointer in the caller.
7469 	 */
7470 }
7471 
7472 /**
7473  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7474  * @cpu: cpu to test and clear idle for
7475  *
7476  * Returns %true if @cpu was idle and its idle state was successfully cleared.
7477  * %false otherwise.
7478  *
7479  * Unavailable if ops.update_idle() is implemented and
7480  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7481  */
7482 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7483 {
7484 	if (!check_builtin_idle_enabled())
7485 		return false;
7486 
7487 	if (ops_cpu_valid(cpu, NULL))
7488 		return test_and_clear_cpu_idle(cpu);
7489 	else
7490 		return false;
7491 }
7492 
7493 /**
7494  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7495  * @cpus_allowed: Allowed cpumask
7496  * @flags: %SCX_PICK_IDLE_CPU_* flags
7497  *
7498  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7499  * number on success. -%EBUSY if no matching cpu was found.
7500  *
7501  * Idle CPU tracking may race against CPU scheduling state transitions. For
7502  * example, this function may return -%EBUSY as CPUs are transitioning into the
7503  * idle state. If the caller then assumes that there will be dispatch events on
7504  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7505  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7506  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7507  * event in the near future.
7508  *
7509  * Unavailable if ops.update_idle() is implemented and
7510  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7511  */
7512 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7513 				      u64 flags)
7514 {
7515 	if (!check_builtin_idle_enabled())
7516 		return -EBUSY;
7517 
7518 	return scx_pick_idle_cpu(cpus_allowed, flags);
7519 }
7520 
7521 /**
7522  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7523  * @cpus_allowed: Allowed cpumask
7524  * @flags: %SCX_PICK_IDLE_CPU_* flags
7525  *
7526  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7527  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7528  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7529  * empty.
7530  *
7531  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7532  * set, this function can't tell which CPUs are idle and will always pick any
7533  * CPU.
7534  */
7535 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7536 				     u64 flags)
7537 {
7538 	s32 cpu;
7539 
7540 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
7541 		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7542 		if (cpu >= 0)
7543 			return cpu;
7544 	}
7545 
7546 	cpu = cpumask_any_distribute(cpus_allowed);
7547 	if (cpu < nr_cpu_ids)
7548 		return cpu;
7549 	else
7550 		return -EBUSY;
7551 }
7552 
7553 /**
7554  * scx_bpf_task_running - Is task currently running?
7555  * @p: task of interest
7556  */
7557 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7558 {
7559 	return task_rq(p)->curr == p;
7560 }
7561 
7562 /**
7563  * scx_bpf_task_cpu - CPU a task is currently associated with
7564  * @p: task of interest
7565  */
7566 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7567 {
7568 	return task_cpu(p);
7569 }
7570 
7571 /**
7572  * scx_bpf_cpu_rq - Fetch the rq of a CPU
7573  * @cpu: CPU of the rq
7574  */
7575 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7576 {
7577 	if (!ops_cpu_valid(cpu, NULL))
7578 		return NULL;
7579 
7580 	return cpu_rq(cpu);
7581 }
7582 
7583 /**
7584  * scx_bpf_task_cgroup - Return the sched cgroup of a task
7585  * @p: task of interest
7586  *
7587  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7588  * from the scheduler's POV. SCX operations should use this function to
7589  * determine @p's current cgroup as, unlike following @p->cgroups,
7590  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7591  * rq-locked operations. Can be called on the parameter tasks of rq-locked
7592  * operations. The restriction guarantees that @p's rq is locked by the caller.
7593  */
7594 #ifdef CONFIG_CGROUP_SCHED
7595 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7596 {
7597 	struct task_group *tg = p->sched_task_group;
7598 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7599 
7600 	if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7601 		goto out;
7602 
7603 	cgrp = tg_cgrp(tg);
7604 
7605 out:
7606 	cgroup_get(cgrp);
7607 	return cgrp;
7608 }
7609 #endif
7610 
7611 /**
7612  * scx_bpf_now - Returns a high-performance monotonically non-decreasing
7613  * clock for the current CPU. The clock returned is in nanoseconds.
7614  *
7615  * It provides the following properties:
7616  *
7617  * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
7618  *  to account for execution time and track tasks' runtime properties.
7619  *  Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
7620  *  eventually reads a hardware timestamp counter -- is neither performant nor
7621  *  scalable. scx_bpf_now() aims to provide a high-performance clock by
7622  *  using the rq clock in the scheduler core whenever possible.
7623  *
7624  * 2) High enough resolution for the BPF scheduler use cases: In most BPF
7625  *  scheduler use cases, the required clock resolution is lower than the most
7626  *  accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
7627  *  uses the rq clock in the scheduler core whenever it is valid. It considers
7628  *  that the rq clock is valid from the time the rq clock is updated
7629  *  (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
7630  *
7631  * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
7632  *  guarantees the clock never goes backward when comparing them in the same
7633  *  CPU. On the other hand, when comparing clocks in different CPUs, there
7634  *  is no such guarantee -- the clock can go backward. It provides a
7635  *  monotonically *non-decreasing* clock so that it would provide the same
7636  *  clock values in two different scx_bpf_now() calls in the same CPU
7637  *  during the same period of when the rq clock is valid.
7638  */
7639 __bpf_kfunc u64 scx_bpf_now(void)
7640 {
7641 	struct rq *rq;
7642 	u64 clock;
7643 
7644 	preempt_disable();
7645 
7646 	rq = this_rq();
7647 	if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
7648 		/*
7649 		 * If the rq clock is valid, use the cached rq clock.
7650 		 *
7651 		 * Note that scx_bpf_now() is re-entrant between a process
7652 		 * context and an interrupt context (e.g., timer interrupt).
7653 		 * However, we don't need to consider the race between them
7654 		 * because such race is not observable from a caller.
7655 		 */
7656 		clock = READ_ONCE(rq->scx.clock);
7657 	} else {
7658 		/*
7659 		 * Otherwise, return a fresh rq clock.
7660 		 *
7661 		 * The rq clock is updated outside of the rq lock.
7662 		 * In this case, keep the updated rq clock invalid so the next
7663 		 * kfunc call outside the rq lock gets a fresh rq clock.
7664 		 */
7665 		clock = sched_clock_cpu(cpu_of(rq));
7666 	}
7667 
7668 	preempt_enable();
7669 
7670 	return clock;
7671 }
7672 
7673 __bpf_kfunc_end_defs();
7674 
7675 BTF_KFUNCS_START(scx_kfunc_ids_any)
7676 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7677 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7678 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7679 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7680 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7681 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7682 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7683 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7684 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7685 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7686 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7687 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7688 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7689 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7690 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7691 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7692 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7693 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7694 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7695 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7696 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7697 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7698 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7699 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7700 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7701 #ifdef CONFIG_CGROUP_SCHED
7702 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7703 #endif
7704 BTF_ID_FLAGS(func, scx_bpf_now)
7705 BTF_KFUNCS_END(scx_kfunc_ids_any)
7706 
7707 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7708 	.owner			= THIS_MODULE,
7709 	.set			= &scx_kfunc_ids_any,
7710 };
7711 
7712 static int __init scx_init(void)
7713 {
7714 	int ret;
7715 
7716 	/*
7717 	 * kfunc registration can't be done from init_sched_ext_class() as
7718 	 * register_btf_kfunc_id_set() needs most of the system to be up.
7719 	 *
7720 	 * Some kfuncs are context-sensitive and can only be called from
7721 	 * specific SCX ops. They are grouped into BTF sets accordingly.
7722 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
7723 	 * restrictions. Eventually, the verifier should be able to enforce
7724 	 * them. For now, register them the same and make each kfunc explicitly
7725 	 * check using scx_kf_allowed().
7726 	 */
7727 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7728 					     &scx_kfunc_set_select_cpu)) ||
7729 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7730 					     &scx_kfunc_set_enqueue_dispatch)) ||
7731 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7732 					     &scx_kfunc_set_dispatch)) ||
7733 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7734 					     &scx_kfunc_set_cpu_release)) ||
7735 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7736 					     &scx_kfunc_set_unlocked)) ||
7737 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7738 					     &scx_kfunc_set_unlocked)) ||
7739 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7740 					     &scx_kfunc_set_any)) ||
7741 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7742 					     &scx_kfunc_set_any)) ||
7743 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7744 					     &scx_kfunc_set_any))) {
7745 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7746 		return ret;
7747 	}
7748 
7749 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7750 	if (ret) {
7751 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7752 		return ret;
7753 	}
7754 
7755 	ret = register_pm_notifier(&scx_pm_notifier);
7756 	if (ret) {
7757 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7758 		return ret;
7759 	}
7760 
7761 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7762 	if (!scx_kset) {
7763 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7764 		return -ENOMEM;
7765 	}
7766 
7767 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7768 	if (ret < 0) {
7769 		pr_err("sched_ext: Failed to add global attributes\n");
7770 		return ret;
7771 	}
7772 
7773 	return 0;
7774 }
7775 __initcall(scx_init);
7776