1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_DSP_DFL_MAX_BATCH = 32, 13 SCX_DSP_MAX_LOOPS = 32, 14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 15 16 SCX_EXIT_BT_LEN = 64, 17 SCX_EXIT_MSG_LEN = 1024, 18 SCX_EXIT_DUMP_DFL_LEN = 32768, 19 20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 21 22 /* 23 * Iterating all tasks may take a while. Periodically drop 24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 25 */ 26 SCX_OPS_TASK_ITER_BATCH = 32, 27 }; 28 29 enum scx_exit_kind { 30 SCX_EXIT_NONE, 31 SCX_EXIT_DONE, 32 33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 37 38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 41 }; 42 43 /* 44 * An exit code can be specified when exiting with scx_bpf_exit() or 45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 46 * respectively. The codes are 64bit of the format: 47 * 48 * Bits: [63 .. 48 47 .. 32 31 .. 0] 49 * [ SYS ACT ] [ SYS RSN ] [ USR ] 50 * 51 * SYS ACT: System-defined exit actions 52 * SYS RSN: System-defined exit reasons 53 * USR : User-defined exit codes and reasons 54 * 55 * Using the above, users may communicate intention and context by ORing system 56 * actions and/or system reasons with a user-defined exit code. 57 */ 58 enum scx_exit_code { 59 /* Reasons */ 60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 61 62 /* Actions */ 63 SCX_ECODE_ACT_RESTART = 1LLU << 48, 64 }; 65 66 /* 67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 68 * being disabled. 69 */ 70 struct scx_exit_info { 71 /* %SCX_EXIT_* - broad category of the exit reason */ 72 enum scx_exit_kind kind; 73 74 /* exit code if gracefully exiting */ 75 s64 exit_code; 76 77 /* textual representation of the above */ 78 const char *reason; 79 80 /* backtrace if exiting due to an error */ 81 unsigned long *bt; 82 u32 bt_len; 83 84 /* informational message */ 85 char *msg; 86 87 /* debug dump */ 88 char *dump; 89 }; 90 91 /* sched_ext_ops.flags */ 92 enum scx_ops_flags { 93 /* 94 * Keep built-in idle tracking even if ops.update_idle() is implemented. 95 */ 96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 97 98 /* 99 * By default, if there are no other task to run on the CPU, ext core 100 * keeps running the current task even after its slice expires. If this 101 * flag is specified, such tasks are passed to ops.enqueue() with 102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 103 */ 104 SCX_OPS_ENQ_LAST = 1LLU << 1, 105 106 /* 107 * An exiting task may schedule after PF_EXITING is set. In such cases, 108 * bpf_task_from_pid() may not be able to find the task and if the BPF 109 * scheduler depends on pid lookup for dispatching, the task will be 110 * lost leading to various issues including RCU grace period stalls. 111 * 112 * To mask this problem, by default, unhashed tasks are automatically 113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 114 * depend on pid lookups and wants to handle these tasks directly, the 115 * following flag can be used. 116 */ 117 SCX_OPS_ENQ_EXITING = 1LLU << 2, 118 119 /* 120 * If set, only tasks with policy set to SCHED_EXT are attached to 121 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 122 */ 123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 124 125 /* 126 * CPU cgroup support flags 127 */ 128 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 129 130 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 131 SCX_OPS_ENQ_LAST | 132 SCX_OPS_ENQ_EXITING | 133 SCX_OPS_SWITCH_PARTIAL | 134 SCX_OPS_HAS_CGROUP_WEIGHT, 135 }; 136 137 /* argument container for ops.init_task() */ 138 struct scx_init_task_args { 139 /* 140 * Set if ops.init_task() is being invoked on the fork path, as opposed 141 * to the scheduler transition path. 142 */ 143 bool fork; 144 #ifdef CONFIG_EXT_GROUP_SCHED 145 /* the cgroup the task is joining */ 146 struct cgroup *cgroup; 147 #endif 148 }; 149 150 /* argument container for ops.exit_task() */ 151 struct scx_exit_task_args { 152 /* Whether the task exited before running on sched_ext. */ 153 bool cancelled; 154 }; 155 156 /* argument container for ops->cgroup_init() */ 157 struct scx_cgroup_init_args { 158 /* the weight of the cgroup [1..10000] */ 159 u32 weight; 160 }; 161 162 enum scx_cpu_preempt_reason { 163 /* next task is being scheduled by &sched_class_rt */ 164 SCX_CPU_PREEMPT_RT, 165 /* next task is being scheduled by &sched_class_dl */ 166 SCX_CPU_PREEMPT_DL, 167 /* next task is being scheduled by &sched_class_stop */ 168 SCX_CPU_PREEMPT_STOP, 169 /* unknown reason for SCX being preempted */ 170 SCX_CPU_PREEMPT_UNKNOWN, 171 }; 172 173 /* 174 * Argument container for ops->cpu_acquire(). Currently empty, but may be 175 * expanded in the future. 176 */ 177 struct scx_cpu_acquire_args {}; 178 179 /* argument container for ops->cpu_release() */ 180 struct scx_cpu_release_args { 181 /* the reason the CPU was preempted */ 182 enum scx_cpu_preempt_reason reason; 183 184 /* the task that's going to be scheduled on the CPU */ 185 struct task_struct *task; 186 }; 187 188 /* 189 * Informational context provided to dump operations. 190 */ 191 struct scx_dump_ctx { 192 enum scx_exit_kind kind; 193 s64 exit_code; 194 const char *reason; 195 u64 at_ns; 196 u64 at_jiffies; 197 }; 198 199 /** 200 * struct sched_ext_ops - Operation table for BPF scheduler implementation 201 * 202 * A BPF scheduler can implement an arbitrary scheduling policy by 203 * implementing and loading operations in this table. Note that a userland 204 * scheduling policy can also be implemented using the BPF scheduler 205 * as a shim layer. 206 */ 207 struct sched_ext_ops { 208 /** 209 * select_cpu - Pick the target CPU for a task which is being woken up 210 * @p: task being woken up 211 * @prev_cpu: the cpu @p was on before sleeping 212 * @wake_flags: SCX_WAKE_* 213 * 214 * Decision made here isn't final. @p may be moved to any CPU while it 215 * is getting dispatched for execution later. However, as @p is not on 216 * the rq at this point, getting the eventual execution CPU right here 217 * saves a small bit of overhead down the line. 218 * 219 * If an idle CPU is returned, the CPU is kicked and will try to 220 * dispatch. While an explicit custom mechanism can be added, 221 * select_cpu() serves as the default way to wake up idle CPUs. 222 * 223 * @p may be inserted into a DSQ directly by calling 224 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 225 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 226 * of the CPU returned by this operation. 227 * 228 * Note that select_cpu() is never called for tasks that can only run 229 * on a single CPU or tasks with migration disabled, as they don't have 230 * the option to select a different CPU. See select_task_rq() for 231 * details. 232 */ 233 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 234 235 /** 236 * enqueue - Enqueue a task on the BPF scheduler 237 * @p: task being enqueued 238 * @enq_flags: %SCX_ENQ_* 239 * 240 * @p is ready to run. Insert directly into a DSQ by calling 241 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 242 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 243 * the task will stall. 244 * 245 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 246 * skipped. 247 */ 248 void (*enqueue)(struct task_struct *p, u64 enq_flags); 249 250 /** 251 * dequeue - Remove a task from the BPF scheduler 252 * @p: task being dequeued 253 * @deq_flags: %SCX_DEQ_* 254 * 255 * Remove @p from the BPF scheduler. This is usually called to isolate 256 * the task while updating its scheduling properties (e.g. priority). 257 * 258 * The ext core keeps track of whether the BPF side owns a given task or 259 * not and can gracefully ignore spurious dispatches from BPF side, 260 * which makes it safe to not implement this method. However, depending 261 * on the scheduling logic, this can lead to confusing behaviors - e.g. 262 * scheduling position not being updated across a priority change. 263 */ 264 void (*dequeue)(struct task_struct *p, u64 deq_flags); 265 266 /** 267 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs 268 * @cpu: CPU to dispatch tasks for 269 * @prev: previous task being switched out 270 * 271 * Called when a CPU's local dsq is empty. The operation should dispatch 272 * one or more tasks from the BPF scheduler into the DSQs using 273 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 274 * using scx_bpf_dsq_move_to_local(). 275 * 276 * The maximum number of times scx_bpf_dsq_insert() can be called 277 * without an intervening scx_bpf_dsq_move_to_local() is specified by 278 * ops.dispatch_max_batch. See the comments on top of the two functions 279 * for more details. 280 * 281 * When not %NULL, @prev is an SCX task with its slice depleted. If 282 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 283 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 284 * ops.dispatch() returns. To keep executing @prev, return without 285 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 286 */ 287 void (*dispatch)(s32 cpu, struct task_struct *prev); 288 289 /** 290 * tick - Periodic tick 291 * @p: task running currently 292 * 293 * This operation is called every 1/HZ seconds on CPUs which are 294 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 295 * immediate dispatch cycle on the CPU. 296 */ 297 void (*tick)(struct task_struct *p); 298 299 /** 300 * runnable - A task is becoming runnable on its associated CPU 301 * @p: task becoming runnable 302 * @enq_flags: %SCX_ENQ_* 303 * 304 * This and the following three functions can be used to track a task's 305 * execution state transitions. A task becomes ->runnable() on a CPU, 306 * and then goes through one or more ->running() and ->stopping() pairs 307 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 308 * done running on the CPU. 309 * 310 * @p is becoming runnable on the CPU because it's 311 * 312 * - waking up (%SCX_ENQ_WAKEUP) 313 * - being moved from another CPU 314 * - being restored after temporarily taken off the queue for an 315 * attribute change. 316 * 317 * This and ->enqueue() are related but not coupled. This operation 318 * notifies @p's state transition and may not be followed by ->enqueue() 319 * e.g. when @p is being dispatched to a remote CPU, or when @p is 320 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 321 * task may be ->enqueue()'d without being preceded by this operation 322 * e.g. after exhausting its slice. 323 */ 324 void (*runnable)(struct task_struct *p, u64 enq_flags); 325 326 /** 327 * running - A task is starting to run on its associated CPU 328 * @p: task starting to run 329 * 330 * See ->runnable() for explanation on the task state notifiers. 331 */ 332 void (*running)(struct task_struct *p); 333 334 /** 335 * stopping - A task is stopping execution 336 * @p: task stopping to run 337 * @runnable: is task @p still runnable? 338 * 339 * See ->runnable() for explanation on the task state notifiers. If 340 * !@runnable, ->quiescent() will be invoked after this operation 341 * returns. 342 */ 343 void (*stopping)(struct task_struct *p, bool runnable); 344 345 /** 346 * quiescent - A task is becoming not runnable on its associated CPU 347 * @p: task becoming not runnable 348 * @deq_flags: %SCX_DEQ_* 349 * 350 * See ->runnable() for explanation on the task state notifiers. 351 * 352 * @p is becoming quiescent on the CPU because it's 353 * 354 * - sleeping (%SCX_DEQ_SLEEP) 355 * - being moved to another CPU 356 * - being temporarily taken off the queue for an attribute change 357 * (%SCX_DEQ_SAVE) 358 * 359 * This and ->dequeue() are related but not coupled. This operation 360 * notifies @p's state transition and may not be preceded by ->dequeue() 361 * e.g. when @p is being dispatched to a remote CPU. 362 */ 363 void (*quiescent)(struct task_struct *p, u64 deq_flags); 364 365 /** 366 * yield - Yield CPU 367 * @from: yielding task 368 * @to: optional yield target task 369 * 370 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 371 * The BPF scheduler should ensure that other available tasks are 372 * dispatched before the yielding task. Return value is ignored in this 373 * case. 374 * 375 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 376 * scheduler can implement the request, return %true; otherwise, %false. 377 */ 378 bool (*yield)(struct task_struct *from, struct task_struct *to); 379 380 /** 381 * core_sched_before - Task ordering for core-sched 382 * @a: task A 383 * @b: task B 384 * 385 * Used by core-sched to determine the ordering between two tasks. See 386 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 387 * core-sched. 388 * 389 * Both @a and @b are runnable and may or may not currently be queued on 390 * the BPF scheduler. Should return %true if @a should run before @b. 391 * %false if there's no required ordering or @b should run before @a. 392 * 393 * If not specified, the default is ordering them according to when they 394 * became runnable. 395 */ 396 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 397 398 /** 399 * set_weight - Set task weight 400 * @p: task to set weight for 401 * @weight: new weight [1..10000] 402 * 403 * Update @p's weight to @weight. 404 */ 405 void (*set_weight)(struct task_struct *p, u32 weight); 406 407 /** 408 * set_cpumask - Set CPU affinity 409 * @p: task to set CPU affinity for 410 * @cpumask: cpumask of cpus that @p can run on 411 * 412 * Update @p's CPU affinity to @cpumask. 413 */ 414 void (*set_cpumask)(struct task_struct *p, 415 const struct cpumask *cpumask); 416 417 /** 418 * update_idle - Update the idle state of a CPU 419 * @cpu: CPU to udpate the idle state for 420 * @idle: whether entering or exiting the idle state 421 * 422 * This operation is called when @rq's CPU goes or leaves the idle 423 * state. By default, implementing this operation disables the built-in 424 * idle CPU tracking and the following helpers become unavailable: 425 * 426 * - scx_bpf_select_cpu_dfl() 427 * - scx_bpf_test_and_clear_cpu_idle() 428 * - scx_bpf_pick_idle_cpu() 429 * 430 * The user also must implement ops.select_cpu() as the default 431 * implementation relies on scx_bpf_select_cpu_dfl(). 432 * 433 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 434 * tracking. 435 */ 436 void (*update_idle)(s32 cpu, bool idle); 437 438 /** 439 * cpu_acquire - A CPU is becoming available to the BPF scheduler 440 * @cpu: The CPU being acquired by the BPF scheduler. 441 * @args: Acquire arguments, see the struct definition. 442 * 443 * A CPU that was previously released from the BPF scheduler is now once 444 * again under its control. 445 */ 446 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 447 448 /** 449 * cpu_release - A CPU is taken away from the BPF scheduler 450 * @cpu: The CPU being released by the BPF scheduler. 451 * @args: Release arguments, see the struct definition. 452 * 453 * The specified CPU is no longer under the control of the BPF 454 * scheduler. This could be because it was preempted by a higher 455 * priority sched_class, though there may be other reasons as well. The 456 * caller should consult @args->reason to determine the cause. 457 */ 458 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 459 460 /** 461 * init_task - Initialize a task to run in a BPF scheduler 462 * @p: task to initialize for BPF scheduling 463 * @args: init arguments, see the struct definition 464 * 465 * Either we're loading a BPF scheduler or a new task is being forked. 466 * Initialize @p for BPF scheduling. This operation may block and can 467 * be used for allocations, and is called exactly once for a task. 468 * 469 * Return 0 for success, -errno for failure. An error return while 470 * loading will abort loading of the BPF scheduler. During a fork, it 471 * will abort that specific fork. 472 */ 473 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 474 475 /** 476 * exit_task - Exit a previously-running task from the system 477 * @p: task to exit 478 * 479 * @p is exiting or the BPF scheduler is being unloaded. Perform any 480 * necessary cleanup for @p. 481 */ 482 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 483 484 /** 485 * enable - Enable BPF scheduling for a task 486 * @p: task to enable BPF scheduling for 487 * 488 * Enable @p for BPF scheduling. enable() is called on @p any time it 489 * enters SCX, and is always paired with a matching disable(). 490 */ 491 void (*enable)(struct task_struct *p); 492 493 /** 494 * disable - Disable BPF scheduling for a task 495 * @p: task to disable BPF scheduling for 496 * 497 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 498 * Disable BPF scheduling for @p. A disable() call is always matched 499 * with a prior enable() call. 500 */ 501 void (*disable)(struct task_struct *p); 502 503 /** 504 * dump - Dump BPF scheduler state on error 505 * @ctx: debug dump context 506 * 507 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 508 */ 509 void (*dump)(struct scx_dump_ctx *ctx); 510 511 /** 512 * dump_cpu - Dump BPF scheduler state for a CPU on error 513 * @ctx: debug dump context 514 * @cpu: CPU to generate debug dump for 515 * @idle: @cpu is currently idle without any runnable tasks 516 * 517 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 518 * @cpu. If @idle is %true and this operation doesn't produce any 519 * output, @cpu is skipped for dump. 520 */ 521 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 522 523 /** 524 * dump_task - Dump BPF scheduler state for a runnable task on error 525 * @ctx: debug dump context 526 * @p: runnable task to generate debug dump for 527 * 528 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 529 * @p. 530 */ 531 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 532 533 #ifdef CONFIG_EXT_GROUP_SCHED 534 /** 535 * cgroup_init - Initialize a cgroup 536 * @cgrp: cgroup being initialized 537 * @args: init arguments, see the struct definition 538 * 539 * Either the BPF scheduler is being loaded or @cgrp created, initialize 540 * @cgrp for sched_ext. This operation may block. 541 * 542 * Return 0 for success, -errno for failure. An error return while 543 * loading will abort loading of the BPF scheduler. During cgroup 544 * creation, it will abort the specific cgroup creation. 545 */ 546 s32 (*cgroup_init)(struct cgroup *cgrp, 547 struct scx_cgroup_init_args *args); 548 549 /** 550 * cgroup_exit - Exit a cgroup 551 * @cgrp: cgroup being exited 552 * 553 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 554 * @cgrp for sched_ext. This operation my block. 555 */ 556 void (*cgroup_exit)(struct cgroup *cgrp); 557 558 /** 559 * cgroup_prep_move - Prepare a task to be moved to a different cgroup 560 * @p: task being moved 561 * @from: cgroup @p is being moved from 562 * @to: cgroup @p is being moved to 563 * 564 * Prepare @p for move from cgroup @from to @to. This operation may 565 * block and can be used for allocations. 566 * 567 * Return 0 for success, -errno for failure. An error return aborts the 568 * migration. 569 */ 570 s32 (*cgroup_prep_move)(struct task_struct *p, 571 struct cgroup *from, struct cgroup *to); 572 573 /** 574 * cgroup_move - Commit cgroup move 575 * @p: task being moved 576 * @from: cgroup @p is being moved from 577 * @to: cgroup @p is being moved to 578 * 579 * Commit the move. @p is dequeued during this operation. 580 */ 581 void (*cgroup_move)(struct task_struct *p, 582 struct cgroup *from, struct cgroup *to); 583 584 /** 585 * cgroup_cancel_move - Cancel cgroup move 586 * @p: task whose cgroup move is being canceled 587 * @from: cgroup @p was being moved from 588 * @to: cgroup @p was being moved to 589 * 590 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 591 * Undo the preparation. 592 */ 593 void (*cgroup_cancel_move)(struct task_struct *p, 594 struct cgroup *from, struct cgroup *to); 595 596 /** 597 * cgroup_set_weight - A cgroup's weight is being changed 598 * @cgrp: cgroup whose weight is being updated 599 * @weight: new weight [1..10000] 600 * 601 * Update @tg's weight to @weight. 602 */ 603 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 604 #endif /* CONFIG_EXT_GROUP_SCHED */ 605 606 /* 607 * All online ops must come before ops.cpu_online(). 608 */ 609 610 /** 611 * cpu_online - A CPU became online 612 * @cpu: CPU which just came up 613 * 614 * @cpu just came online. @cpu will not call ops.enqueue() or 615 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 616 */ 617 void (*cpu_online)(s32 cpu); 618 619 /** 620 * cpu_offline - A CPU is going offline 621 * @cpu: CPU which is going offline 622 * 623 * @cpu is going offline. @cpu will not call ops.enqueue() or 624 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 625 */ 626 void (*cpu_offline)(s32 cpu); 627 628 /* 629 * All CPU hotplug ops must come before ops.init(). 630 */ 631 632 /** 633 * init - Initialize the BPF scheduler 634 */ 635 s32 (*init)(void); 636 637 /** 638 * exit - Clean up after the BPF scheduler 639 * @info: Exit info 640 * 641 * ops.exit() is also called on ops.init() failure, which is a bit 642 * unusual. This is to allow rich reporting through @info on how 643 * ops.init() failed. 644 */ 645 void (*exit)(struct scx_exit_info *info); 646 647 /** 648 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 649 */ 650 u32 dispatch_max_batch; 651 652 /** 653 * flags - %SCX_OPS_* flags 654 */ 655 u64 flags; 656 657 /** 658 * timeout_ms - The maximum amount of time, in milliseconds, that a 659 * runnable task should be able to wait before being scheduled. The 660 * maximum timeout may not exceed the default timeout of 30 seconds. 661 * 662 * Defaults to the maximum allowed timeout value of 30 seconds. 663 */ 664 u32 timeout_ms; 665 666 /** 667 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 668 * value of 32768 is used. 669 */ 670 u32 exit_dump_len; 671 672 /** 673 * hotplug_seq - A sequence number that may be set by the scheduler to 674 * detect when a hotplug event has occurred during the loading process. 675 * If 0, no detection occurs. Otherwise, the scheduler will fail to 676 * load if the sequence number does not match @scx_hotplug_seq on the 677 * enable path. 678 */ 679 u64 hotplug_seq; 680 681 /** 682 * name - BPF scheduler's name 683 * 684 * Must be a non-zero valid BPF object name including only isalnum(), 685 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 686 * BPF scheduler is enabled. 687 */ 688 char name[SCX_OPS_NAME_LEN]; 689 }; 690 691 enum scx_opi { 692 SCX_OPI_BEGIN = 0, 693 SCX_OPI_NORMAL_BEGIN = 0, 694 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 695 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 696 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 697 SCX_OPI_END = SCX_OP_IDX(init), 698 }; 699 700 enum scx_wake_flags { 701 /* expose select WF_* flags as enums */ 702 SCX_WAKE_FORK = WF_FORK, 703 SCX_WAKE_TTWU = WF_TTWU, 704 SCX_WAKE_SYNC = WF_SYNC, 705 }; 706 707 enum scx_enq_flags { 708 /* expose select ENQUEUE_* flags as enums */ 709 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 710 SCX_ENQ_HEAD = ENQUEUE_HEAD, 711 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 712 713 /* high 32bits are SCX specific */ 714 715 /* 716 * Set the following to trigger preemption when calling 717 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 718 * current task is cleared to zero and the CPU is kicked into the 719 * scheduling path. Implies %SCX_ENQ_HEAD. 720 */ 721 SCX_ENQ_PREEMPT = 1LLU << 32, 722 723 /* 724 * The task being enqueued was previously enqueued on the current CPU's 725 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 726 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 727 * invoked in a ->cpu_release() callback, and the task is again 728 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 729 * task will not be scheduled on the CPU until at least the next invocation 730 * of the ->cpu_acquire() callback. 731 */ 732 SCX_ENQ_REENQ = 1LLU << 40, 733 734 /* 735 * The task being enqueued is the only task available for the cpu. By 736 * default, ext core keeps executing such tasks but when 737 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 738 * %SCX_ENQ_LAST flag set. 739 * 740 * The BPF scheduler is responsible for triggering a follow-up 741 * scheduling event. Otherwise, Execution may stall. 742 */ 743 SCX_ENQ_LAST = 1LLU << 41, 744 745 /* high 8 bits are internal */ 746 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 747 748 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 749 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 750 }; 751 752 enum scx_deq_flags { 753 /* expose select DEQUEUE_* flags as enums */ 754 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 755 756 /* high 32bits are SCX specific */ 757 758 /* 759 * The generic core-sched layer decided to execute the task even though 760 * it hasn't been dispatched yet. Dequeue from the BPF side. 761 */ 762 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 763 }; 764 765 enum scx_pick_idle_cpu_flags { 766 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 767 }; 768 769 enum scx_kick_flags { 770 /* 771 * Kick the target CPU if idle. Guarantees that the target CPU goes 772 * through at least one full scheduling cycle before going idle. If the 773 * target CPU can be determined to be currently not idle and going to go 774 * through a scheduling cycle before going idle, noop. 775 */ 776 SCX_KICK_IDLE = 1LLU << 0, 777 778 /* 779 * Preempt the current task and execute the dispatch path. If the 780 * current task of the target CPU is an SCX task, its ->scx.slice is 781 * cleared to zero before the scheduling path is invoked so that the 782 * task expires and the dispatch path is invoked. 783 */ 784 SCX_KICK_PREEMPT = 1LLU << 1, 785 786 /* 787 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 788 * return after the target CPU finishes picking the next task. 789 */ 790 SCX_KICK_WAIT = 1LLU << 2, 791 }; 792 793 enum scx_tg_flags { 794 SCX_TG_ONLINE = 1U << 0, 795 SCX_TG_INITED = 1U << 1, 796 }; 797 798 enum scx_ops_enable_state { 799 SCX_OPS_ENABLING, 800 SCX_OPS_ENABLED, 801 SCX_OPS_DISABLING, 802 SCX_OPS_DISABLED, 803 }; 804 805 static const char *scx_ops_enable_state_str[] = { 806 [SCX_OPS_ENABLING] = "enabling", 807 [SCX_OPS_ENABLED] = "enabled", 808 [SCX_OPS_DISABLING] = "disabling", 809 [SCX_OPS_DISABLED] = "disabled", 810 }; 811 812 /* 813 * sched_ext_entity->ops_state 814 * 815 * Used to track the task ownership between the SCX core and the BPF scheduler. 816 * State transitions look as follows: 817 * 818 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 819 * ^ | | 820 * | v v 821 * \-------------------------------/ 822 * 823 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 824 * sites for explanations on the conditions being waited upon and why they are 825 * safe. Transitions out of them into NONE or QUEUED must store_release and the 826 * waiters should load_acquire. 827 * 828 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 829 * any given task can be dispatched by the BPF scheduler at all times and thus 830 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 831 * to try to dispatch any task anytime regardless of its state as the SCX core 832 * can safely reject invalid dispatches. 833 */ 834 enum scx_ops_state { 835 SCX_OPSS_NONE, /* owned by the SCX core */ 836 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 837 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 838 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 839 840 /* 841 * QSEQ brands each QUEUED instance so that, when dispatch races 842 * dequeue/requeue, the dispatcher can tell whether it still has a claim 843 * on the task being dispatched. 844 * 845 * As some 32bit archs can't do 64bit store_release/load_acquire, 846 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 847 * 32bit machines. The dispatch race window QSEQ protects is very narrow 848 * and runs with IRQ disabled. 30 bits should be sufficient. 849 */ 850 SCX_OPSS_QSEQ_SHIFT = 2, 851 }; 852 853 /* Use macros to ensure that the type is unsigned long for the masks */ 854 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 855 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 856 857 /* 858 * During exit, a task may schedule after losing its PIDs. When disabling the 859 * BPF scheduler, we need to be able to iterate tasks in every state to 860 * guarantee system safety. Maintain a dedicated task list which contains every 861 * task between its fork and eventual free. 862 */ 863 static DEFINE_SPINLOCK(scx_tasks_lock); 864 static LIST_HEAD(scx_tasks); 865 866 /* ops enable/disable */ 867 static struct kthread_worker *scx_ops_helper; 868 static DEFINE_MUTEX(scx_ops_enable_mutex); 869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 871 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 872 static unsigned long scx_in_softlockup; 873 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0); 874 static int scx_ops_bypass_depth; 875 static bool scx_ops_init_task_enabled; 876 static bool scx_switching_all; 877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 878 879 static struct sched_ext_ops scx_ops; 880 static bool scx_warned_zero_slice; 881 882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 886 887 #ifdef CONFIG_SMP 888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); 889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); 890 #endif 891 892 static struct static_key_false scx_has_op[SCX_OPI_END] = 893 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 894 895 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 896 static struct scx_exit_info *scx_exit_info; 897 898 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 899 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 900 901 /* 902 * A monotically increasing sequence number that is incremented every time a 903 * scheduler is enabled. This can be used by to check if any custom sched_ext 904 * scheduler has ever been used in the system. 905 */ 906 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 907 908 /* 909 * The maximum amount of time in jiffies that a task may be runnable without 910 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 911 * scx_ops_error(). 912 */ 913 static unsigned long scx_watchdog_timeout; 914 915 /* 916 * The last time the delayed work was run. This delayed work relies on 917 * ksoftirqd being able to run to service timer interrupts, so it's possible 918 * that this work itself could get wedged. To account for this, we check that 919 * it's not stalled in the timer tick, and trigger an error if it is. 920 */ 921 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 922 923 static struct delayed_work scx_watchdog_work; 924 925 /* idle tracking */ 926 #ifdef CONFIG_SMP 927 #ifdef CONFIG_CPUMASK_OFFSTACK 928 #define CL_ALIGNED_IF_ONSTACK 929 #else 930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 931 #endif 932 933 static struct { 934 cpumask_var_t cpu; 935 cpumask_var_t smt; 936 } idle_masks CL_ALIGNED_IF_ONSTACK; 937 938 #endif /* CONFIG_SMP */ 939 940 /* for %SCX_KICK_WAIT */ 941 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 942 943 /* 944 * Direct dispatch marker. 945 * 946 * Non-NULL values are used for direct dispatch from enqueue path. A valid 947 * pointer points to the task currently being enqueued. An ERR_PTR value is used 948 * to indicate that direct dispatch has already happened. 949 */ 950 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 951 952 /* 953 * Dispatch queues. 954 * 955 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 956 * to avoid live-locking in bypass mode where all tasks are dispatched to 957 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 958 * sufficient, it can be further split. 959 */ 960 static struct scx_dispatch_q **global_dsqs; 961 962 static const struct rhashtable_params dsq_hash_params = { 963 .key_len = sizeof_field(struct scx_dispatch_q, id), 964 .key_offset = offsetof(struct scx_dispatch_q, id), 965 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 966 }; 967 968 static struct rhashtable dsq_hash; 969 static LLIST_HEAD(dsqs_to_free); 970 971 /* dispatch buf */ 972 struct scx_dsp_buf_ent { 973 struct task_struct *task; 974 unsigned long qseq; 975 u64 dsq_id; 976 u64 enq_flags; 977 }; 978 979 static u32 scx_dsp_max_batch; 980 981 struct scx_dsp_ctx { 982 struct rq *rq; 983 u32 cursor; 984 u32 nr_tasks; 985 struct scx_dsp_buf_ent buf[]; 986 }; 987 988 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 989 990 /* string formatting from BPF */ 991 struct scx_bstr_buf { 992 u64 data[MAX_BPRINTF_VARARGS]; 993 char line[SCX_EXIT_MSG_LEN]; 994 }; 995 996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 997 static struct scx_bstr_buf scx_exit_bstr_buf; 998 999 /* ops debug dump */ 1000 struct scx_dump_data { 1001 s32 cpu; 1002 bool first; 1003 s32 cursor; 1004 struct seq_buf *s; 1005 const char *prefix; 1006 struct scx_bstr_buf buf; 1007 }; 1008 1009 static struct scx_dump_data scx_dump_data = { 1010 .cpu = -1, 1011 }; 1012 1013 /* /sys/kernel/sched_ext interface */ 1014 static struct kset *scx_kset; 1015 static struct kobject *scx_root_kobj; 1016 1017 #define CREATE_TRACE_POINTS 1018 #include <trace/events/sched_ext.h> 1019 1020 static void process_ddsp_deferred_locals(struct rq *rq); 1021 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1023 s64 exit_code, 1024 const char *fmt, ...); 1025 1026 #define scx_ops_error_kind(err, fmt, args...) \ 1027 scx_ops_exit_kind((err), 0, fmt, ##args) 1028 1029 #define scx_ops_exit(code, fmt, args...) \ 1030 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1031 1032 #define scx_ops_error(fmt, args...) \ 1033 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1034 1035 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1036 1037 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1038 { 1039 if (time_after(at, now)) 1040 return jiffies_to_msecs(at - now); 1041 else 1042 return -(long)jiffies_to_msecs(now - at); 1043 } 1044 1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1046 static u32 higher_bits(u32 flags) 1047 { 1048 return ~((1 << fls(flags)) - 1); 1049 } 1050 1051 /* return the mask with only the highest bit set */ 1052 static u32 highest_bit(u32 flags) 1053 { 1054 int bit = fls(flags); 1055 return ((u64)1 << bit) >> 1; 1056 } 1057 1058 static bool u32_before(u32 a, u32 b) 1059 { 1060 return (s32)(a - b) < 0; 1061 } 1062 1063 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1064 { 1065 return global_dsqs[cpu_to_node(task_cpu(p))]; 1066 } 1067 1068 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1069 { 1070 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1071 } 1072 1073 /* 1074 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1075 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1076 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1077 * whether it's running from an allowed context. 1078 * 1079 * @mask is constant, always inline to cull the mask calculations. 1080 */ 1081 static __always_inline void scx_kf_allow(u32 mask) 1082 { 1083 /* nesting is allowed only in increasing scx_kf_mask order */ 1084 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1085 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1086 current->scx.kf_mask, mask); 1087 current->scx.kf_mask |= mask; 1088 barrier(); 1089 } 1090 1091 static void scx_kf_disallow(u32 mask) 1092 { 1093 barrier(); 1094 current->scx.kf_mask &= ~mask; 1095 } 1096 1097 #define SCX_CALL_OP(mask, op, args...) \ 1098 do { \ 1099 if (mask) { \ 1100 scx_kf_allow(mask); \ 1101 scx_ops.op(args); \ 1102 scx_kf_disallow(mask); \ 1103 } else { \ 1104 scx_ops.op(args); \ 1105 } \ 1106 } while (0) 1107 1108 #define SCX_CALL_OP_RET(mask, op, args...) \ 1109 ({ \ 1110 __typeof__(scx_ops.op(args)) __ret; \ 1111 if (mask) { \ 1112 scx_kf_allow(mask); \ 1113 __ret = scx_ops.op(args); \ 1114 scx_kf_disallow(mask); \ 1115 } else { \ 1116 __ret = scx_ops.op(args); \ 1117 } \ 1118 __ret; \ 1119 }) 1120 1121 /* 1122 * Some kfuncs are allowed only on the tasks that are subjects of the 1123 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1124 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1125 * invoking scx_ops operations that take task arguments. These can only be used 1126 * for non-nesting operations due to the way the tasks are tracked. 1127 * 1128 * kfuncs which can only operate on such tasks can in turn use 1129 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1130 * the specific task. 1131 */ 1132 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1133 do { \ 1134 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1135 current->scx.kf_tasks[0] = task; \ 1136 SCX_CALL_OP(mask, op, task, ##args); \ 1137 current->scx.kf_tasks[0] = NULL; \ 1138 } while (0) 1139 1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1141 ({ \ 1142 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1143 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1144 current->scx.kf_tasks[0] = task; \ 1145 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1146 current->scx.kf_tasks[0] = NULL; \ 1147 __ret; \ 1148 }) 1149 1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1151 ({ \ 1152 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1153 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1154 current->scx.kf_tasks[0] = task0; \ 1155 current->scx.kf_tasks[1] = task1; \ 1156 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1157 current->scx.kf_tasks[0] = NULL; \ 1158 current->scx.kf_tasks[1] = NULL; \ 1159 __ret; \ 1160 }) 1161 1162 /* @mask is constant, always inline to cull unnecessary branches */ 1163 static __always_inline bool scx_kf_allowed(u32 mask) 1164 { 1165 if (unlikely(!(current->scx.kf_mask & mask))) { 1166 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1167 mask, current->scx.kf_mask); 1168 return false; 1169 } 1170 1171 /* 1172 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1173 * DISPATCH must not be called if we're running DEQUEUE which is nested 1174 * inside ops.dispatch(). We don't need to check boundaries for any 1175 * blocking kfuncs as the verifier ensures they're only called from 1176 * sleepable progs. 1177 */ 1178 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1179 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1180 scx_ops_error("cpu_release kfunc called from a nested operation"); 1181 return false; 1182 } 1183 1184 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1185 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1186 scx_ops_error("dispatch kfunc called from a nested operation"); 1187 return false; 1188 } 1189 1190 return true; 1191 } 1192 1193 /* see SCX_CALL_OP_TASK() */ 1194 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1195 struct task_struct *p) 1196 { 1197 if (!scx_kf_allowed(mask)) 1198 return false; 1199 1200 if (unlikely((p != current->scx.kf_tasks[0] && 1201 p != current->scx.kf_tasks[1]))) { 1202 scx_ops_error("called on a task not being operated on"); 1203 return false; 1204 } 1205 1206 return true; 1207 } 1208 1209 static bool scx_kf_allowed_if_unlocked(void) 1210 { 1211 return !current->scx.kf_mask; 1212 } 1213 1214 /** 1215 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1216 * @dsq: user dsq being interated 1217 * @cur: current position, %NULL to start iteration 1218 * @rev: walk backwards 1219 * 1220 * Returns %NULL when iteration is finished. 1221 */ 1222 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1223 struct task_struct *cur, bool rev) 1224 { 1225 struct list_head *list_node; 1226 struct scx_dsq_list_node *dsq_lnode; 1227 1228 lockdep_assert_held(&dsq->lock); 1229 1230 if (cur) 1231 list_node = &cur->scx.dsq_list.node; 1232 else 1233 list_node = &dsq->list; 1234 1235 /* find the next task, need to skip BPF iteration cursors */ 1236 do { 1237 if (rev) 1238 list_node = list_node->prev; 1239 else 1240 list_node = list_node->next; 1241 1242 if (list_node == &dsq->list) 1243 return NULL; 1244 1245 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1246 node); 1247 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1248 1249 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1250 } 1251 1252 #define nldsq_for_each_task(p, dsq) \ 1253 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1254 (p) = nldsq_next_task((dsq), (p), false)) 1255 1256 1257 /* 1258 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1259 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1260 * changes without breaking backward compatibility. Can be used with 1261 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1262 */ 1263 enum scx_dsq_iter_flags { 1264 /* iterate in the reverse dispatch order */ 1265 SCX_DSQ_ITER_REV = 1U << 16, 1266 1267 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1268 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1269 1270 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1271 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1272 __SCX_DSQ_ITER_HAS_SLICE | 1273 __SCX_DSQ_ITER_HAS_VTIME, 1274 }; 1275 1276 struct bpf_iter_scx_dsq_kern { 1277 struct scx_dsq_list_node cursor; 1278 struct scx_dispatch_q *dsq; 1279 u64 slice; 1280 u64 vtime; 1281 } __attribute__((aligned(8))); 1282 1283 struct bpf_iter_scx_dsq { 1284 u64 __opaque[6]; 1285 } __attribute__((aligned(8))); 1286 1287 1288 /* 1289 * SCX task iterator. 1290 */ 1291 struct scx_task_iter { 1292 struct sched_ext_entity cursor; 1293 struct task_struct *locked; 1294 struct rq *rq; 1295 struct rq_flags rf; 1296 u32 cnt; 1297 }; 1298 1299 /** 1300 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1301 * @iter: iterator to init 1302 * 1303 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1304 * must eventually be stopped with scx_task_iter_stop(). 1305 * 1306 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1307 * between this and the first next() call or between any two next() calls. If 1308 * the locks are released between two next() calls, the caller is responsible 1309 * for ensuring that the task being iterated remains accessible either through 1310 * RCU read lock or obtaining a reference count. 1311 * 1312 * All tasks which existed when the iteration started are guaranteed to be 1313 * visited as long as they still exist. 1314 */ 1315 static void scx_task_iter_start(struct scx_task_iter *iter) 1316 { 1317 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1318 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1319 1320 spin_lock_irq(&scx_tasks_lock); 1321 1322 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1323 list_add(&iter->cursor.tasks_node, &scx_tasks); 1324 iter->locked = NULL; 1325 iter->cnt = 0; 1326 } 1327 1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1329 { 1330 if (iter->locked) { 1331 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1332 iter->locked = NULL; 1333 } 1334 } 1335 1336 /** 1337 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1338 * @iter: iterator to unlock 1339 * 1340 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1341 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1342 * This function can be safely called anytime during an iteration. 1343 */ 1344 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1345 { 1346 __scx_task_iter_rq_unlock(iter); 1347 spin_unlock_irq(&scx_tasks_lock); 1348 } 1349 1350 /** 1351 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1352 * @iter: iterator to re-lock 1353 * 1354 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1355 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1356 */ 1357 static void scx_task_iter_relock(struct scx_task_iter *iter) 1358 { 1359 spin_lock_irq(&scx_tasks_lock); 1360 } 1361 1362 /** 1363 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1364 * @iter: iterator to exit 1365 * 1366 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1367 * which is released on return. If the iterator holds a task's rq lock, that rq 1368 * lock is also released. See scx_task_iter_start() for details. 1369 */ 1370 static void scx_task_iter_stop(struct scx_task_iter *iter) 1371 { 1372 list_del_init(&iter->cursor.tasks_node); 1373 scx_task_iter_unlock(iter); 1374 } 1375 1376 /** 1377 * scx_task_iter_next - Next task 1378 * @iter: iterator to walk 1379 * 1380 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1381 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing 1382 * stalls by holding scx_tasks_lock for too long. 1383 */ 1384 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1385 { 1386 struct list_head *cursor = &iter->cursor.tasks_node; 1387 struct sched_ext_entity *pos; 1388 1389 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) { 1390 scx_task_iter_unlock(iter); 1391 cond_resched(); 1392 scx_task_iter_relock(iter); 1393 } 1394 1395 list_for_each_entry(pos, cursor, tasks_node) { 1396 if (&pos->tasks_node == &scx_tasks) 1397 return NULL; 1398 if (!(pos->flags & SCX_TASK_CURSOR)) { 1399 list_move(cursor, &pos->tasks_node); 1400 return container_of(pos, struct task_struct, scx); 1401 } 1402 } 1403 1404 /* can't happen, should always terminate at scx_tasks above */ 1405 BUG(); 1406 } 1407 1408 /** 1409 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1410 * @iter: iterator to walk 1411 * @include_dead: Whether we should include dead tasks in the iteration 1412 * 1413 * Visit the non-idle task with its rq lock held. Allows callers to specify 1414 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1415 * for details. 1416 */ 1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1418 { 1419 struct task_struct *p; 1420 1421 __scx_task_iter_rq_unlock(iter); 1422 1423 while ((p = scx_task_iter_next(iter))) { 1424 /* 1425 * scx_task_iter is used to prepare and move tasks into SCX 1426 * while loading the BPF scheduler and vice-versa while 1427 * unloading. The init_tasks ("swappers") should be excluded 1428 * from the iteration because: 1429 * 1430 * - It's unsafe to use __setschduler_prio() on an init_task to 1431 * determine the sched_class to use as it won't preserve its 1432 * idle_sched_class. 1433 * 1434 * - ops.init/exit_task() can easily be confused if called with 1435 * init_tasks as they, e.g., share PID 0. 1436 * 1437 * As init_tasks are never scheduled through SCX, they can be 1438 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1439 * doesn't work here: 1440 * 1441 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1442 * yet been onlined. 1443 * 1444 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1445 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1446 * 1447 * Test for idle_sched_class as only init_tasks are on it. 1448 */ 1449 if (p->sched_class != &idle_sched_class) 1450 break; 1451 } 1452 if (!p) 1453 return NULL; 1454 1455 iter->rq = task_rq_lock(p, &iter->rf); 1456 iter->locked = p; 1457 1458 return p; 1459 } 1460 1461 static enum scx_ops_enable_state scx_ops_enable_state(void) 1462 { 1463 return atomic_read(&scx_ops_enable_state_var); 1464 } 1465 1466 static enum scx_ops_enable_state 1467 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1468 { 1469 return atomic_xchg(&scx_ops_enable_state_var, to); 1470 } 1471 1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1473 enum scx_ops_enable_state from) 1474 { 1475 int from_v = from; 1476 1477 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1478 } 1479 1480 static bool scx_rq_bypassing(struct rq *rq) 1481 { 1482 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1483 } 1484 1485 /** 1486 * wait_ops_state - Busy-wait the specified ops state to end 1487 * @p: target task 1488 * @opss: state to wait the end of 1489 * 1490 * Busy-wait for @p to transition out of @opss. This can only be used when the 1491 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1492 * has load_acquire semantics to ensure that the caller can see the updates made 1493 * in the enqueueing and dispatching paths. 1494 */ 1495 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1496 { 1497 do { 1498 cpu_relax(); 1499 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1500 } 1501 1502 /** 1503 * ops_cpu_valid - Verify a cpu number 1504 * @cpu: cpu number which came from a BPF ops 1505 * @where: extra information reported on error 1506 * 1507 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1508 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1509 * an ops error. 1510 */ 1511 static bool ops_cpu_valid(s32 cpu, const char *where) 1512 { 1513 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1514 return true; 1515 } else { 1516 scx_ops_error("invalid CPU %d%s%s", cpu, 1517 where ? " " : "", where ?: ""); 1518 return false; 1519 } 1520 } 1521 1522 /** 1523 * ops_sanitize_err - Sanitize a -errno value 1524 * @ops_name: operation to blame on failure 1525 * @err: -errno value to sanitize 1526 * 1527 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1528 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1529 * cause misbehaviors. For an example, a large negative return from 1530 * ops.init_task() triggers an oops when passed up the call chain because the 1531 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1532 * handled as a pointer. 1533 */ 1534 static int ops_sanitize_err(const char *ops_name, s32 err) 1535 { 1536 if (err < 0 && err >= -MAX_ERRNO) 1537 return err; 1538 1539 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1540 return -EPROTO; 1541 } 1542 1543 static void run_deferred(struct rq *rq) 1544 { 1545 process_ddsp_deferred_locals(rq); 1546 } 1547 1548 #ifdef CONFIG_SMP 1549 static void deferred_bal_cb_workfn(struct rq *rq) 1550 { 1551 run_deferred(rq); 1552 } 1553 #endif 1554 1555 static void deferred_irq_workfn(struct irq_work *irq_work) 1556 { 1557 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1558 1559 raw_spin_rq_lock(rq); 1560 run_deferred(rq); 1561 raw_spin_rq_unlock(rq); 1562 } 1563 1564 /** 1565 * schedule_deferred - Schedule execution of deferred actions on an rq 1566 * @rq: target rq 1567 * 1568 * Schedule execution of deferred actions on @rq. Must be called with @rq 1569 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1570 * can unlock @rq to e.g. migrate tasks to other rqs. 1571 */ 1572 static void schedule_deferred(struct rq *rq) 1573 { 1574 lockdep_assert_rq_held(rq); 1575 1576 #ifdef CONFIG_SMP 1577 /* 1578 * If in the middle of waking up a task, task_woken_scx() will be called 1579 * afterwards which will then run the deferred actions, no need to 1580 * schedule anything. 1581 */ 1582 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1583 return; 1584 1585 /* 1586 * If in balance, the balance callbacks will be called before rq lock is 1587 * released. Schedule one. 1588 */ 1589 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1590 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1591 deferred_bal_cb_workfn); 1592 return; 1593 } 1594 #endif 1595 /* 1596 * No scheduler hooks available. Queue an irq work. They are executed on 1597 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1598 * The above WAKEUP and BALANCE paths should cover most of the cases and 1599 * the time to IRQ re-enable shouldn't be long. 1600 */ 1601 irq_work_queue(&rq->scx.deferred_irq_work); 1602 } 1603 1604 /** 1605 * touch_core_sched - Update timestamp used for core-sched task ordering 1606 * @rq: rq to read clock from, must be locked 1607 * @p: task to update the timestamp for 1608 * 1609 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1610 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1611 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1612 * exhaustion). 1613 */ 1614 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1615 { 1616 lockdep_assert_rq_held(rq); 1617 1618 #ifdef CONFIG_SCHED_CORE 1619 /* 1620 * It's okay to update the timestamp spuriously. Use 1621 * sched_core_disabled() which is cheaper than enabled(). 1622 * 1623 * As this is used to determine ordering between tasks of sibling CPUs, 1624 * it may be better to use per-core dispatch sequence instead. 1625 */ 1626 if (!sched_core_disabled()) 1627 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1628 #endif 1629 } 1630 1631 /** 1632 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1633 * @rq: rq to read clock from, must be locked 1634 * @p: task being dispatched 1635 * 1636 * If the BPF scheduler implements custom core-sched ordering via 1637 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1638 * ordering within each local DSQ. This function is called from dispatch paths 1639 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1640 */ 1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1642 { 1643 lockdep_assert_rq_held(rq); 1644 1645 #ifdef CONFIG_SCHED_CORE 1646 if (SCX_HAS_OP(core_sched_before)) 1647 touch_core_sched(rq, p); 1648 #endif 1649 } 1650 1651 static void update_curr_scx(struct rq *rq) 1652 { 1653 struct task_struct *curr = rq->curr; 1654 s64 delta_exec; 1655 1656 delta_exec = update_curr_common(rq); 1657 if (unlikely(delta_exec <= 0)) 1658 return; 1659 1660 if (curr->scx.slice != SCX_SLICE_INF) { 1661 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1662 if (!curr->scx.slice) 1663 touch_core_sched(rq, curr); 1664 } 1665 } 1666 1667 static bool scx_dsq_priq_less(struct rb_node *node_a, 1668 const struct rb_node *node_b) 1669 { 1670 const struct task_struct *a = 1671 container_of(node_a, struct task_struct, scx.dsq_priq); 1672 const struct task_struct *b = 1673 container_of(node_b, struct task_struct, scx.dsq_priq); 1674 1675 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1676 } 1677 1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1679 { 1680 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1681 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1682 } 1683 1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1685 u64 enq_flags) 1686 { 1687 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1688 1689 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1690 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1691 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1692 1693 if (!is_local) { 1694 raw_spin_lock(&dsq->lock); 1695 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1696 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1697 /* fall back to the global dsq */ 1698 raw_spin_unlock(&dsq->lock); 1699 dsq = find_global_dsq(p); 1700 raw_spin_lock(&dsq->lock); 1701 } 1702 } 1703 1704 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1705 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1706 /* 1707 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1708 * their FIFO queues. To avoid confusion and accidentally 1709 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1710 * disallow any internal DSQ from doing vtime ordering of 1711 * tasks. 1712 */ 1713 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1714 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1715 } 1716 1717 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1718 struct rb_node *rbp; 1719 1720 /* 1721 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1722 * linked to both the rbtree and list on PRIQs, this can only be 1723 * tested easily when adding the first task. 1724 */ 1725 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1726 nldsq_next_task(dsq, NULL, false))) 1727 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1728 dsq->id); 1729 1730 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1731 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1732 1733 /* 1734 * Find the previous task and insert after it on the list so 1735 * that @dsq->list is vtime ordered. 1736 */ 1737 rbp = rb_prev(&p->scx.dsq_priq); 1738 if (rbp) { 1739 struct task_struct *prev = 1740 container_of(rbp, struct task_struct, 1741 scx.dsq_priq); 1742 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1743 } else { 1744 list_add(&p->scx.dsq_list.node, &dsq->list); 1745 } 1746 } else { 1747 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1748 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1749 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1750 dsq->id); 1751 1752 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1753 list_add(&p->scx.dsq_list.node, &dsq->list); 1754 else 1755 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1756 } 1757 1758 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1759 dsq->seq++; 1760 p->scx.dsq_seq = dsq->seq; 1761 1762 dsq_mod_nr(dsq, 1); 1763 p->scx.dsq = dsq; 1764 1765 /* 1766 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1767 * direct dispatch path, but we clear them here because the direct 1768 * dispatch verdict may be overridden on the enqueue path during e.g. 1769 * bypass. 1770 */ 1771 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1772 p->scx.ddsp_enq_flags = 0; 1773 1774 /* 1775 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1776 * match waiters' load_acquire. 1777 */ 1778 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1779 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1780 1781 if (is_local) { 1782 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1783 bool preempt = false; 1784 1785 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1786 rq->curr->sched_class == &ext_sched_class) { 1787 rq->curr->scx.slice = 0; 1788 preempt = true; 1789 } 1790 1791 if (preempt || sched_class_above(&ext_sched_class, 1792 rq->curr->sched_class)) 1793 resched_curr(rq); 1794 } else { 1795 raw_spin_unlock(&dsq->lock); 1796 } 1797 } 1798 1799 static void task_unlink_from_dsq(struct task_struct *p, 1800 struct scx_dispatch_q *dsq) 1801 { 1802 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1803 1804 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1805 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1806 RB_CLEAR_NODE(&p->scx.dsq_priq); 1807 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1808 } 1809 1810 list_del_init(&p->scx.dsq_list.node); 1811 dsq_mod_nr(dsq, -1); 1812 } 1813 1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1815 { 1816 struct scx_dispatch_q *dsq = p->scx.dsq; 1817 bool is_local = dsq == &rq->scx.local_dsq; 1818 1819 if (!dsq) { 1820 /* 1821 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1822 * Unlinking is all that's needed to cancel. 1823 */ 1824 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1825 list_del_init(&p->scx.dsq_list.node); 1826 1827 /* 1828 * When dispatching directly from the BPF scheduler to a local 1829 * DSQ, the task isn't associated with any DSQ but 1830 * @p->scx.holding_cpu may be set under the protection of 1831 * %SCX_OPSS_DISPATCHING. 1832 */ 1833 if (p->scx.holding_cpu >= 0) 1834 p->scx.holding_cpu = -1; 1835 1836 return; 1837 } 1838 1839 if (!is_local) 1840 raw_spin_lock(&dsq->lock); 1841 1842 /* 1843 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1844 * change underneath us. 1845 */ 1846 if (p->scx.holding_cpu < 0) { 1847 /* @p must still be on @dsq, dequeue */ 1848 task_unlink_from_dsq(p, dsq); 1849 } else { 1850 /* 1851 * We're racing against dispatch_to_local_dsq() which already 1852 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1853 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1854 * the race. 1855 */ 1856 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1857 p->scx.holding_cpu = -1; 1858 } 1859 p->scx.dsq = NULL; 1860 1861 if (!is_local) 1862 raw_spin_unlock(&dsq->lock); 1863 } 1864 1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1866 struct task_struct *p) 1867 { 1868 struct scx_dispatch_q *dsq; 1869 1870 if (dsq_id == SCX_DSQ_LOCAL) 1871 return &rq->scx.local_dsq; 1872 1873 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1874 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1875 1876 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1877 return find_global_dsq(p); 1878 1879 return &cpu_rq(cpu)->scx.local_dsq; 1880 } 1881 1882 if (dsq_id == SCX_DSQ_GLOBAL) 1883 dsq = find_global_dsq(p); 1884 else 1885 dsq = find_user_dsq(dsq_id); 1886 1887 if (unlikely(!dsq)) { 1888 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1889 dsq_id, p->comm, p->pid); 1890 return find_global_dsq(p); 1891 } 1892 1893 return dsq; 1894 } 1895 1896 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1897 struct task_struct *p, u64 dsq_id, 1898 u64 enq_flags) 1899 { 1900 /* 1901 * Mark that dispatch already happened from ops.select_cpu() or 1902 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1903 * which can never match a valid task pointer. 1904 */ 1905 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1906 1907 /* @p must match the task on the enqueue path */ 1908 if (unlikely(p != ddsp_task)) { 1909 if (IS_ERR(ddsp_task)) 1910 scx_ops_error("%s[%d] already direct-dispatched", 1911 p->comm, p->pid); 1912 else 1913 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1914 ddsp_task->comm, ddsp_task->pid, 1915 p->comm, p->pid); 1916 return; 1917 } 1918 1919 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1920 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1921 1922 p->scx.ddsp_dsq_id = dsq_id; 1923 p->scx.ddsp_enq_flags = enq_flags; 1924 } 1925 1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1927 { 1928 struct rq *rq = task_rq(p); 1929 struct scx_dispatch_q *dsq = 1930 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1931 1932 touch_core_sched_dispatch(rq, p); 1933 1934 p->scx.ddsp_enq_flags |= enq_flags; 1935 1936 /* 1937 * We are in the enqueue path with @rq locked and pinned, and thus can't 1938 * double lock a remote rq and enqueue to its local DSQ. For 1939 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1940 * the enqueue so that it's executed when @rq can be unlocked. 1941 */ 1942 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1943 unsigned long opss; 1944 1945 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1946 1947 switch (opss & SCX_OPSS_STATE_MASK) { 1948 case SCX_OPSS_NONE: 1949 break; 1950 case SCX_OPSS_QUEUEING: 1951 /* 1952 * As @p was never passed to the BPF side, _release is 1953 * not strictly necessary. Still do it for consistency. 1954 */ 1955 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1956 break; 1957 default: 1958 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1959 p->comm, p->pid, opss); 1960 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1961 break; 1962 } 1963 1964 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1965 list_add_tail(&p->scx.dsq_list.node, 1966 &rq->scx.ddsp_deferred_locals); 1967 schedule_deferred(rq); 1968 return; 1969 } 1970 1971 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1972 } 1973 1974 static bool scx_rq_online(struct rq *rq) 1975 { 1976 /* 1977 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1978 * the online state as seen from the BPF scheduler. cpu_active() test 1979 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1980 * stay set until the current scheduling operation is complete even if 1981 * we aren't locking @rq. 1982 */ 1983 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1984 } 1985 1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1987 int sticky_cpu) 1988 { 1989 struct task_struct **ddsp_taskp; 1990 unsigned long qseq; 1991 1992 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1993 1994 /* rq migration */ 1995 if (sticky_cpu == cpu_of(rq)) 1996 goto local_norefill; 1997 1998 /* 1999 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2000 * is offline and are just running the hotplug path. Don't bother the 2001 * BPF scheduler. 2002 */ 2003 if (!scx_rq_online(rq)) 2004 goto local; 2005 2006 if (scx_rq_bypassing(rq)) 2007 goto global; 2008 2009 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2010 goto direct; 2011 2012 /* see %SCX_OPS_ENQ_EXITING */ 2013 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 2014 unlikely(p->flags & PF_EXITING)) 2015 goto local; 2016 2017 if (!SCX_HAS_OP(enqueue)) 2018 goto global; 2019 2020 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2021 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2022 2023 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2024 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2025 2026 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2027 WARN_ON_ONCE(*ddsp_taskp); 2028 *ddsp_taskp = p; 2029 2030 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 2031 2032 *ddsp_taskp = NULL; 2033 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2034 goto direct; 2035 2036 /* 2037 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2038 * dequeue may be waiting. The store_release matches their load_acquire. 2039 */ 2040 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2041 return; 2042 2043 direct: 2044 direct_dispatch(p, enq_flags); 2045 return; 2046 2047 local: 2048 /* 2049 * For task-ordering, slice refill must be treated as implying the end 2050 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2051 * higher priority it becomes from scx_prio_less()'s POV. 2052 */ 2053 touch_core_sched(rq, p); 2054 p->scx.slice = SCX_SLICE_DFL; 2055 local_norefill: 2056 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2057 return; 2058 2059 global: 2060 touch_core_sched(rq, p); /* see the comment in local: */ 2061 p->scx.slice = SCX_SLICE_DFL; 2062 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2063 } 2064 2065 static bool task_runnable(const struct task_struct *p) 2066 { 2067 return !list_empty(&p->scx.runnable_node); 2068 } 2069 2070 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2071 { 2072 lockdep_assert_rq_held(rq); 2073 2074 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2075 p->scx.runnable_at = jiffies; 2076 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2077 } 2078 2079 /* 2080 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2081 * appened to the runnable_list. 2082 */ 2083 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2084 } 2085 2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2087 { 2088 list_del_init(&p->scx.runnable_node); 2089 if (reset_runnable_at) 2090 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2091 } 2092 2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2094 { 2095 int sticky_cpu = p->scx.sticky_cpu; 2096 2097 if (enq_flags & ENQUEUE_WAKEUP) 2098 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2099 2100 enq_flags |= rq->scx.extra_enq_flags; 2101 2102 if (sticky_cpu >= 0) 2103 p->scx.sticky_cpu = -1; 2104 2105 /* 2106 * Restoring a running task will be immediately followed by 2107 * set_next_task_scx() which expects the task to not be on the BPF 2108 * scheduler as tasks can only start running through local DSQs. Force 2109 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2110 */ 2111 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2112 sticky_cpu = cpu_of(rq); 2113 2114 if (p->scx.flags & SCX_TASK_QUEUED) { 2115 WARN_ON_ONCE(!task_runnable(p)); 2116 goto out; 2117 } 2118 2119 set_task_runnable(rq, p); 2120 p->scx.flags |= SCX_TASK_QUEUED; 2121 rq->scx.nr_running++; 2122 add_nr_running(rq, 1); 2123 2124 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2125 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2126 2127 if (enq_flags & SCX_ENQ_WAKEUP) 2128 touch_core_sched(rq, p); 2129 2130 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2131 out: 2132 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2133 } 2134 2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2136 { 2137 unsigned long opss; 2138 2139 /* dequeue is always temporary, don't reset runnable_at */ 2140 clr_task_runnable(p, false); 2141 2142 /* acquire ensures that we see the preceding updates on QUEUED */ 2143 opss = atomic_long_read_acquire(&p->scx.ops_state); 2144 2145 switch (opss & SCX_OPSS_STATE_MASK) { 2146 case SCX_OPSS_NONE: 2147 break; 2148 case SCX_OPSS_QUEUEING: 2149 /* 2150 * QUEUEING is started and finished while holding @p's rq lock. 2151 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2152 */ 2153 BUG(); 2154 case SCX_OPSS_QUEUED: 2155 if (SCX_HAS_OP(dequeue)) 2156 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2157 2158 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2159 SCX_OPSS_NONE)) 2160 break; 2161 fallthrough; 2162 case SCX_OPSS_DISPATCHING: 2163 /* 2164 * If @p is being dispatched from the BPF scheduler to a DSQ, 2165 * wait for the transfer to complete so that @p doesn't get 2166 * added to its DSQ after dequeueing is complete. 2167 * 2168 * As we're waiting on DISPATCHING with the rq locked, the 2169 * dispatching side shouldn't try to lock the rq while 2170 * DISPATCHING is set. See dispatch_to_local_dsq(). 2171 * 2172 * DISPATCHING shouldn't have qseq set and control can reach 2173 * here with NONE @opss from the above QUEUED case block. 2174 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2175 */ 2176 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2177 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2178 break; 2179 } 2180 } 2181 2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2183 { 2184 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2185 WARN_ON_ONCE(task_runnable(p)); 2186 return true; 2187 } 2188 2189 ops_dequeue(p, deq_flags); 2190 2191 /* 2192 * A currently running task which is going off @rq first gets dequeued 2193 * and then stops running. As we want running <-> stopping transitions 2194 * to be contained within runnable <-> quiescent transitions, trigger 2195 * ->stopping() early here instead of in put_prev_task_scx(). 2196 * 2197 * @p may go through multiple stopping <-> running transitions between 2198 * here and put_prev_task_scx() if task attribute changes occur while 2199 * balance_scx() leaves @rq unlocked. However, they don't contain any 2200 * information meaningful to the BPF scheduler and can be suppressed by 2201 * skipping the callbacks if the task is !QUEUED. 2202 */ 2203 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2204 update_curr_scx(rq); 2205 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2206 } 2207 2208 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2209 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2210 2211 if (deq_flags & SCX_DEQ_SLEEP) 2212 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2213 else 2214 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2215 2216 p->scx.flags &= ~SCX_TASK_QUEUED; 2217 rq->scx.nr_running--; 2218 sub_nr_running(rq, 1); 2219 2220 dispatch_dequeue(rq, p); 2221 return true; 2222 } 2223 2224 static void yield_task_scx(struct rq *rq) 2225 { 2226 struct task_struct *p = rq->curr; 2227 2228 if (SCX_HAS_OP(yield)) 2229 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2230 else 2231 p->scx.slice = 0; 2232 } 2233 2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2235 { 2236 struct task_struct *from = rq->curr; 2237 2238 if (SCX_HAS_OP(yield)) 2239 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2240 else 2241 return false; 2242 } 2243 2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2245 struct scx_dispatch_q *src_dsq, 2246 struct rq *dst_rq) 2247 { 2248 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2249 2250 /* @dsq is locked and @p is on @dst_rq */ 2251 lockdep_assert_held(&src_dsq->lock); 2252 lockdep_assert_rq_held(dst_rq); 2253 2254 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2255 2256 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2257 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2258 else 2259 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2260 2261 dsq_mod_nr(dst_dsq, 1); 2262 p->scx.dsq = dst_dsq; 2263 } 2264 2265 #ifdef CONFIG_SMP 2266 /** 2267 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2268 * @p: task to move 2269 * @enq_flags: %SCX_ENQ_* 2270 * @src_rq: rq to move the task from, locked on entry, released on return 2271 * @dst_rq: rq to move the task into, locked on return 2272 * 2273 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2274 */ 2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2276 struct rq *src_rq, struct rq *dst_rq) 2277 { 2278 lockdep_assert_rq_held(src_rq); 2279 2280 /* the following marks @p MIGRATING which excludes dequeue */ 2281 deactivate_task(src_rq, p, 0); 2282 set_task_cpu(p, cpu_of(dst_rq)); 2283 p->scx.sticky_cpu = cpu_of(dst_rq); 2284 2285 raw_spin_rq_unlock(src_rq); 2286 raw_spin_rq_lock(dst_rq); 2287 2288 /* 2289 * We want to pass scx-specific enq_flags but activate_task() will 2290 * truncate the upper 32 bit. As we own @rq, we can pass them through 2291 * @rq->scx.extra_enq_flags instead. 2292 */ 2293 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2294 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2295 dst_rq->scx.extra_enq_flags = enq_flags; 2296 activate_task(dst_rq, p, 0); 2297 dst_rq->scx.extra_enq_flags = 0; 2298 } 2299 2300 /* 2301 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2302 * differences: 2303 * 2304 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2305 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2306 * this CPU?". 2307 * 2308 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2309 * must be allowed to finish on the CPU that it's currently on regardless of 2310 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2311 * BPF scheduler shouldn't attempt to migrate a task which has migration 2312 * disabled. 2313 * 2314 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2315 * no to the BPF scheduler initiated migrations while offline. 2316 */ 2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2318 bool trigger_error) 2319 { 2320 int cpu = cpu_of(rq); 2321 2322 /* 2323 * We don't require the BPF scheduler to avoid dispatching to offline 2324 * CPUs mostly for convenience but also because CPUs can go offline 2325 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2326 * picked CPU is outside the allowed mask. 2327 */ 2328 if (!task_allowed_on_cpu(p, cpu)) { 2329 if (trigger_error) 2330 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2331 cpu_of(rq), p->comm, p->pid); 2332 return false; 2333 } 2334 2335 if (unlikely(is_migration_disabled(p))) 2336 return false; 2337 2338 if (!scx_rq_online(rq)) 2339 return false; 2340 2341 return true; 2342 } 2343 2344 /** 2345 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2346 * @p: target task 2347 * @dsq: locked DSQ @p is currently on 2348 * @src_rq: rq @p is currently on, stable with @dsq locked 2349 * 2350 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2351 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2352 * required when transferring into a local DSQ. Even when transferring into a 2353 * non-local DSQ, it's better to use the same mechanism to protect against 2354 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2355 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2356 * 2357 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2358 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2359 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2360 * dancing from our side. 2361 * 2362 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2363 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2364 * would be cleared to -1. While other cpus may have updated it to different 2365 * values afterwards, as this operation can't be preempted or recurse, the 2366 * holding_cpu can never become this CPU again before we're done. Thus, we can 2367 * tell whether we lost to dequeue by testing whether the holding_cpu still 2368 * points to this CPU. See dispatch_dequeue() for the counterpart. 2369 * 2370 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2371 * still valid. %false if lost to dequeue. 2372 */ 2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2374 struct scx_dispatch_q *dsq, 2375 struct rq *src_rq) 2376 { 2377 s32 cpu = raw_smp_processor_id(); 2378 2379 lockdep_assert_held(&dsq->lock); 2380 2381 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2382 task_unlink_from_dsq(p, dsq); 2383 p->scx.holding_cpu = cpu; 2384 2385 raw_spin_unlock(&dsq->lock); 2386 raw_spin_rq_lock(src_rq); 2387 2388 /* task_rq couldn't have changed if we're still the holding cpu */ 2389 return likely(p->scx.holding_cpu == cpu) && 2390 !WARN_ON_ONCE(src_rq != task_rq(p)); 2391 } 2392 2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2394 struct scx_dispatch_q *dsq, struct rq *src_rq) 2395 { 2396 raw_spin_rq_unlock(this_rq); 2397 2398 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2399 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2400 return true; 2401 } else { 2402 raw_spin_rq_unlock(src_rq); 2403 raw_spin_rq_lock(this_rq); 2404 return false; 2405 } 2406 } 2407 #else /* CONFIG_SMP */ 2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2411 #endif /* CONFIG_SMP */ 2412 2413 /** 2414 * move_task_between_dsqs() - Move a task from one DSQ to another 2415 * @p: target task 2416 * @enq_flags: %SCX_ENQ_* 2417 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2418 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2419 * 2420 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2421 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2422 * will change. As @p's task_rq is locked, this function doesn't need to use the 2423 * holding_cpu mechanism. 2424 * 2425 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2426 * return value, is locked. 2427 */ 2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags, 2429 struct scx_dispatch_q *src_dsq, 2430 struct scx_dispatch_q *dst_dsq) 2431 { 2432 struct rq *src_rq = task_rq(p), *dst_rq; 2433 2434 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2435 lockdep_assert_held(&src_dsq->lock); 2436 lockdep_assert_rq_held(src_rq); 2437 2438 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2439 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2440 if (!task_can_run_on_remote_rq(p, dst_rq, true)) { 2441 dst_dsq = find_global_dsq(p); 2442 dst_rq = src_rq; 2443 } 2444 } else { 2445 /* no need to migrate if destination is a non-local DSQ */ 2446 dst_rq = src_rq; 2447 } 2448 2449 /* 2450 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2451 * CPU, @p will be migrated. 2452 */ 2453 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2454 /* @p is going from a non-local DSQ to a local DSQ */ 2455 if (src_rq == dst_rq) { 2456 task_unlink_from_dsq(p, src_dsq); 2457 move_local_task_to_local_dsq(p, enq_flags, 2458 src_dsq, dst_rq); 2459 raw_spin_unlock(&src_dsq->lock); 2460 } else { 2461 raw_spin_unlock(&src_dsq->lock); 2462 move_remote_task_to_local_dsq(p, enq_flags, 2463 src_rq, dst_rq); 2464 } 2465 } else { 2466 /* 2467 * @p is going from a non-local DSQ to a non-local DSQ. As 2468 * $src_dsq is already locked, do an abbreviated dequeue. 2469 */ 2470 task_unlink_from_dsq(p, src_dsq); 2471 p->scx.dsq = NULL; 2472 raw_spin_unlock(&src_dsq->lock); 2473 2474 dispatch_enqueue(dst_dsq, p, enq_flags); 2475 } 2476 2477 return dst_rq; 2478 } 2479 2480 /* 2481 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2482 * banging on the same DSQ on a large NUMA system to the point where switching 2483 * to the bypass mode can take a long time. Inject artifical delays while the 2484 * bypass mode is switching to guarantee timely completion. 2485 */ 2486 static void scx_ops_breather(struct rq *rq) 2487 { 2488 u64 until; 2489 2490 lockdep_assert_rq_held(rq); 2491 2492 if (likely(!atomic_read(&scx_ops_breather_depth))) 2493 return; 2494 2495 raw_spin_rq_unlock(rq); 2496 2497 until = ktime_get_ns() + NSEC_PER_MSEC; 2498 2499 do { 2500 int cnt = 1024; 2501 while (atomic_read(&scx_ops_breather_depth) && --cnt) 2502 cpu_relax(); 2503 } while (atomic_read(&scx_ops_breather_depth) && 2504 time_before64(ktime_get_ns(), until)); 2505 2506 raw_spin_rq_lock(rq); 2507 } 2508 2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2510 { 2511 struct task_struct *p; 2512 retry: 2513 /* 2514 * This retry loop can repeatedly race against scx_ops_bypass() 2515 * dequeueing tasks from @dsq trying to put the system into the bypass 2516 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can 2517 * live-lock the machine into soft lockups. Give a breather. 2518 */ 2519 scx_ops_breather(rq); 2520 2521 /* 2522 * The caller can't expect to successfully consume a task if the task's 2523 * addition to @dsq isn't guaranteed to be visible somehow. Test 2524 * @dsq->list without locking and skip if it seems empty. 2525 */ 2526 if (list_empty(&dsq->list)) 2527 return false; 2528 2529 raw_spin_lock(&dsq->lock); 2530 2531 nldsq_for_each_task(p, dsq) { 2532 struct rq *task_rq = task_rq(p); 2533 2534 if (rq == task_rq) { 2535 task_unlink_from_dsq(p, dsq); 2536 move_local_task_to_local_dsq(p, 0, dsq, rq); 2537 raw_spin_unlock(&dsq->lock); 2538 return true; 2539 } 2540 2541 if (task_can_run_on_remote_rq(p, rq, false)) { 2542 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2543 return true; 2544 goto retry; 2545 } 2546 } 2547 2548 raw_spin_unlock(&dsq->lock); 2549 return false; 2550 } 2551 2552 static bool consume_global_dsq(struct rq *rq) 2553 { 2554 int node = cpu_to_node(cpu_of(rq)); 2555 2556 return consume_dispatch_q(rq, global_dsqs[node]); 2557 } 2558 2559 /** 2560 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2561 * @rq: current rq which is locked 2562 * @dst_dsq: destination DSQ 2563 * @p: task to dispatch 2564 * @enq_flags: %SCX_ENQ_* 2565 * 2566 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2567 * DSQ. This function performs all the synchronization dancing needed because 2568 * local DSQs are protected with rq locks. 2569 * 2570 * The caller must have exclusive ownership of @p (e.g. through 2571 * %SCX_OPSS_DISPATCHING). 2572 */ 2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2574 struct task_struct *p, u64 enq_flags) 2575 { 2576 struct rq *src_rq = task_rq(p); 2577 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2578 2579 /* 2580 * We're synchronized against dequeue through DISPATCHING. As @p can't 2581 * be dequeued, its task_rq and cpus_allowed are stable too. 2582 * 2583 * If dispatching to @rq that @p is already on, no lock dancing needed. 2584 */ 2585 if (rq == src_rq && rq == dst_rq) { 2586 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2587 return; 2588 } 2589 2590 #ifdef CONFIG_SMP 2591 if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2592 dispatch_enqueue(find_global_dsq(p), p, 2593 enq_flags | SCX_ENQ_CLEAR_OPSS); 2594 return; 2595 } 2596 2597 /* 2598 * @p is on a possibly remote @src_rq which we need to lock to move the 2599 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2600 * on DISPATCHING, so we can't grab @src_rq lock while holding 2601 * DISPATCHING. 2602 * 2603 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2604 * we're moving from a DSQ and use the same mechanism - mark the task 2605 * under transfer with holding_cpu, release DISPATCHING and then follow 2606 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2607 */ 2608 p->scx.holding_cpu = raw_smp_processor_id(); 2609 2610 /* store_release ensures that dequeue sees the above */ 2611 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2612 2613 /* switch to @src_rq lock */ 2614 if (rq != src_rq) { 2615 raw_spin_rq_unlock(rq); 2616 raw_spin_rq_lock(src_rq); 2617 } 2618 2619 /* task_rq couldn't have changed if we're still the holding cpu */ 2620 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2621 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2622 /* 2623 * If @p is staying on the same rq, there's no need to go 2624 * through the full deactivate/activate cycle. Optimize by 2625 * abbreviating move_remote_task_to_local_dsq(). 2626 */ 2627 if (src_rq == dst_rq) { 2628 p->scx.holding_cpu = -1; 2629 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2630 } else { 2631 move_remote_task_to_local_dsq(p, enq_flags, 2632 src_rq, dst_rq); 2633 } 2634 2635 /* if the destination CPU is idle, wake it up */ 2636 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2637 resched_curr(dst_rq); 2638 } 2639 2640 /* switch back to @rq lock */ 2641 if (rq != dst_rq) { 2642 raw_spin_rq_unlock(dst_rq); 2643 raw_spin_rq_lock(rq); 2644 } 2645 #else /* CONFIG_SMP */ 2646 BUG(); /* control can not reach here on UP */ 2647 #endif /* CONFIG_SMP */ 2648 } 2649 2650 /** 2651 * finish_dispatch - Asynchronously finish dispatching a task 2652 * @rq: current rq which is locked 2653 * @p: task to finish dispatching 2654 * @qseq_at_dispatch: qseq when @p started getting dispatched 2655 * @dsq_id: destination DSQ ID 2656 * @enq_flags: %SCX_ENQ_* 2657 * 2658 * Dispatching to local DSQs may need to wait for queueing to complete or 2659 * require rq lock dancing. As we don't wanna do either while inside 2660 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2661 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2662 * task and its qseq. Once ops.dispatch() returns, this function is called to 2663 * finish up. 2664 * 2665 * There is no guarantee that @p is still valid for dispatching or even that it 2666 * was valid in the first place. Make sure that the task is still owned by the 2667 * BPF scheduler and claim the ownership before dispatching. 2668 */ 2669 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2670 unsigned long qseq_at_dispatch, 2671 u64 dsq_id, u64 enq_flags) 2672 { 2673 struct scx_dispatch_q *dsq; 2674 unsigned long opss; 2675 2676 touch_core_sched_dispatch(rq, p); 2677 retry: 2678 /* 2679 * No need for _acquire here. @p is accessed only after a successful 2680 * try_cmpxchg to DISPATCHING. 2681 */ 2682 opss = atomic_long_read(&p->scx.ops_state); 2683 2684 switch (opss & SCX_OPSS_STATE_MASK) { 2685 case SCX_OPSS_DISPATCHING: 2686 case SCX_OPSS_NONE: 2687 /* someone else already got to it */ 2688 return; 2689 case SCX_OPSS_QUEUED: 2690 /* 2691 * If qseq doesn't match, @p has gone through at least one 2692 * dispatch/dequeue and re-enqueue cycle between 2693 * scx_bpf_dsq_insert() and here and we have no claim on it. 2694 */ 2695 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2696 return; 2697 2698 /* 2699 * While we know @p is accessible, we don't yet have a claim on 2700 * it - the BPF scheduler is allowed to dispatch tasks 2701 * spuriously and there can be a racing dequeue attempt. Let's 2702 * claim @p by atomically transitioning it from QUEUED to 2703 * DISPATCHING. 2704 */ 2705 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2706 SCX_OPSS_DISPATCHING))) 2707 break; 2708 goto retry; 2709 case SCX_OPSS_QUEUEING: 2710 /* 2711 * do_enqueue_task() is in the process of transferring the task 2712 * to the BPF scheduler while holding @p's rq lock. As we aren't 2713 * holding any kernel or BPF resource that the enqueue path may 2714 * depend upon, it's safe to wait. 2715 */ 2716 wait_ops_state(p, opss); 2717 goto retry; 2718 } 2719 2720 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2721 2722 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2723 2724 if (dsq->id == SCX_DSQ_LOCAL) 2725 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2726 else 2727 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2728 } 2729 2730 static void flush_dispatch_buf(struct rq *rq) 2731 { 2732 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2733 u32 u; 2734 2735 for (u = 0; u < dspc->cursor; u++) { 2736 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2737 2738 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2739 ent->enq_flags); 2740 } 2741 2742 dspc->nr_tasks += dspc->cursor; 2743 dspc->cursor = 0; 2744 } 2745 2746 static int balance_one(struct rq *rq, struct task_struct *prev) 2747 { 2748 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2749 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2750 int nr_loops = SCX_DSP_MAX_LOOPS; 2751 2752 lockdep_assert_rq_held(rq); 2753 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2754 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2755 2756 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2757 unlikely(rq->scx.cpu_released)) { 2758 /* 2759 * If the previous sched_class for the current CPU was not SCX, 2760 * notify the BPF scheduler that it again has control of the 2761 * core. This callback complements ->cpu_release(), which is 2762 * emitted in switch_class(). 2763 */ 2764 if (SCX_HAS_OP(cpu_acquire)) 2765 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL); 2766 rq->scx.cpu_released = false; 2767 } 2768 2769 if (prev_on_scx) { 2770 update_curr_scx(rq); 2771 2772 /* 2773 * If @prev is runnable & has slice left, it has priority and 2774 * fetching more just increases latency for the fetched tasks. 2775 * Tell pick_task_scx() to keep running @prev. If the BPF 2776 * scheduler wants to handle this explicitly, it should 2777 * implement ->cpu_release(). 2778 * 2779 * See scx_ops_disable_workfn() for the explanation on the 2780 * bypassing test. 2781 */ 2782 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2783 prev->scx.slice && !scx_rq_bypassing(rq)) { 2784 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2785 goto has_tasks; 2786 } 2787 } 2788 2789 /* if there already are tasks to run, nothing to do */ 2790 if (rq->scx.local_dsq.nr) 2791 goto has_tasks; 2792 2793 if (consume_global_dsq(rq)) 2794 goto has_tasks; 2795 2796 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2797 goto no_tasks; 2798 2799 dspc->rq = rq; 2800 2801 /* 2802 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2803 * the local DSQ might still end up empty after a successful 2804 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2805 * produced some tasks, retry. The BPF scheduler may depend on this 2806 * looping behavior to simplify its implementation. 2807 */ 2808 do { 2809 dspc->nr_tasks = 0; 2810 2811 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2812 prev_on_scx ? prev : NULL); 2813 2814 flush_dispatch_buf(rq); 2815 2816 if (rq->scx.local_dsq.nr) 2817 goto has_tasks; 2818 if (consume_global_dsq(rq)) 2819 goto has_tasks; 2820 2821 /* 2822 * ops.dispatch() can trap us in this loop by repeatedly 2823 * dispatching ineligible tasks. Break out once in a while to 2824 * allow the watchdog to run. As IRQ can't be enabled in 2825 * balance(), we want to complete this scheduling cycle and then 2826 * start a new one. IOW, we want to call resched_curr() on the 2827 * next, most likely idle, task, not the current one. Use 2828 * scx_bpf_kick_cpu() for deferred kicking. 2829 */ 2830 if (unlikely(!--nr_loops)) { 2831 scx_bpf_kick_cpu(cpu_of(rq), 0); 2832 break; 2833 } 2834 } while (dspc->nr_tasks); 2835 2836 no_tasks: 2837 /* 2838 * Didn't find another task to run. Keep running @prev unless 2839 * %SCX_OPS_ENQ_LAST is in effect. 2840 */ 2841 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2842 (!static_branch_unlikely(&scx_ops_enq_last) || 2843 scx_rq_bypassing(rq))) { 2844 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2845 goto has_tasks; 2846 } 2847 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2848 return false; 2849 2850 has_tasks: 2851 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2852 return true; 2853 } 2854 2855 static int balance_scx(struct rq *rq, struct task_struct *prev, 2856 struct rq_flags *rf) 2857 { 2858 int ret; 2859 2860 rq_unpin_lock(rq, rf); 2861 2862 ret = balance_one(rq, prev); 2863 2864 #ifdef CONFIG_SCHED_SMT 2865 /* 2866 * When core-sched is enabled, this ops.balance() call will be followed 2867 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2868 * siblings too. 2869 */ 2870 if (sched_core_enabled(rq)) { 2871 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2872 int scpu; 2873 2874 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2875 struct rq *srq = cpu_rq(scpu); 2876 struct task_struct *sprev = srq->curr; 2877 2878 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2879 update_rq_clock(srq); 2880 balance_one(srq, sprev); 2881 } 2882 } 2883 #endif 2884 rq_repin_lock(rq, rf); 2885 2886 return ret; 2887 } 2888 2889 static void process_ddsp_deferred_locals(struct rq *rq) 2890 { 2891 struct task_struct *p; 2892 2893 lockdep_assert_rq_held(rq); 2894 2895 /* 2896 * Now that @rq can be unlocked, execute the deferred enqueueing of 2897 * tasks directly dispatched to the local DSQs of other CPUs. See 2898 * direct_dispatch(). Keep popping from the head instead of using 2899 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2900 * temporarily. 2901 */ 2902 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2903 struct task_struct, scx.dsq_list.node))) { 2904 struct scx_dispatch_q *dsq; 2905 2906 list_del_init(&p->scx.dsq_list.node); 2907 2908 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2909 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2910 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2911 } 2912 } 2913 2914 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2915 { 2916 if (p->scx.flags & SCX_TASK_QUEUED) { 2917 /* 2918 * Core-sched might decide to execute @p before it is 2919 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2920 */ 2921 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2922 dispatch_dequeue(rq, p); 2923 } 2924 2925 p->se.exec_start = rq_clock_task(rq); 2926 2927 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2928 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2929 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2930 2931 clr_task_runnable(p, true); 2932 2933 /* 2934 * @p is getting newly scheduled or got kicked after someone updated its 2935 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2936 */ 2937 if ((p->scx.slice == SCX_SLICE_INF) != 2938 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2939 if (p->scx.slice == SCX_SLICE_INF) 2940 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2941 else 2942 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2943 2944 sched_update_tick_dependency(rq); 2945 2946 /* 2947 * For now, let's refresh the load_avgs just when transitioning 2948 * in and out of nohz. In the future, we might want to add a 2949 * mechanism which calls the following periodically on 2950 * tick-stopped CPUs. 2951 */ 2952 update_other_load_avgs(rq); 2953 } 2954 } 2955 2956 static enum scx_cpu_preempt_reason 2957 preempt_reason_from_class(const struct sched_class *class) 2958 { 2959 #ifdef CONFIG_SMP 2960 if (class == &stop_sched_class) 2961 return SCX_CPU_PREEMPT_STOP; 2962 #endif 2963 if (class == &dl_sched_class) 2964 return SCX_CPU_PREEMPT_DL; 2965 if (class == &rt_sched_class) 2966 return SCX_CPU_PREEMPT_RT; 2967 return SCX_CPU_PREEMPT_UNKNOWN; 2968 } 2969 2970 static void switch_class(struct rq *rq, struct task_struct *next) 2971 { 2972 const struct sched_class *next_class = next->sched_class; 2973 2974 #ifdef CONFIG_SMP 2975 /* 2976 * Pairs with the smp_load_acquire() issued by a CPU in 2977 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2978 * resched. 2979 */ 2980 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2981 #endif 2982 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2983 return; 2984 2985 /* 2986 * The callback is conceptually meant to convey that the CPU is no 2987 * longer under the control of SCX. Therefore, don't invoke the callback 2988 * if the next class is below SCX (in which case the BPF scheduler has 2989 * actively decided not to schedule any tasks on the CPU). 2990 */ 2991 if (sched_class_above(&ext_sched_class, next_class)) 2992 return; 2993 2994 /* 2995 * At this point we know that SCX was preempted by a higher priority 2996 * sched_class, so invoke the ->cpu_release() callback if we have not 2997 * done so already. We only send the callback once between SCX being 2998 * preempted, and it regaining control of the CPU. 2999 * 3000 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3001 * next time that balance_scx() is invoked. 3002 */ 3003 if (!rq->scx.cpu_released) { 3004 if (SCX_HAS_OP(cpu_release)) { 3005 struct scx_cpu_release_args args = { 3006 .reason = preempt_reason_from_class(next_class), 3007 .task = next, 3008 }; 3009 3010 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 3011 cpu_release, cpu_of(rq), &args); 3012 } 3013 rq->scx.cpu_released = true; 3014 } 3015 } 3016 3017 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3018 struct task_struct *next) 3019 { 3020 update_curr_scx(rq); 3021 3022 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3023 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3024 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 3025 3026 if (p->scx.flags & SCX_TASK_QUEUED) { 3027 set_task_runnable(rq, p); 3028 3029 /* 3030 * If @p has slice left and is being put, @p is getting 3031 * preempted by a higher priority scheduler class or core-sched 3032 * forcing a different task. Leave it at the head of the local 3033 * DSQ. 3034 */ 3035 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3036 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 3037 return; 3038 } 3039 3040 /* 3041 * If @p is runnable but we're about to enter a lower 3042 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3043 * ops.enqueue() that @p is the only one available for this cpu, 3044 * which should trigger an explicit follow-up scheduling event. 3045 */ 3046 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3047 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 3048 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3049 } else { 3050 do_enqueue_task(rq, p, 0, -1); 3051 } 3052 } 3053 3054 if (next && next->sched_class != &ext_sched_class) 3055 switch_class(rq, next); 3056 } 3057 3058 static struct task_struct *first_local_task(struct rq *rq) 3059 { 3060 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3061 struct task_struct, scx.dsq_list.node); 3062 } 3063 3064 static struct task_struct *pick_task_scx(struct rq *rq) 3065 { 3066 struct task_struct *prev = rq->curr; 3067 struct task_struct *p; 3068 bool prev_on_scx = prev->sched_class == &ext_sched_class; 3069 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 3070 bool kick_idle = false; 3071 3072 /* 3073 * WORKAROUND: 3074 * 3075 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3076 * have gone through balance_scx(). Unfortunately, there currently is a 3077 * bug where fair could say yes on balance() but no on pick_task(), 3078 * which then ends up calling pick_task_scx() without preceding 3079 * balance_scx(). 3080 * 3081 * Keep running @prev if possible and avoid stalling from entering idle 3082 * without balancing. 3083 * 3084 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 3085 * if pick_task_scx() is called without preceding balance_scx(). 3086 */ 3087 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 3088 if (prev_on_scx) { 3089 keep_prev = true; 3090 } else { 3091 keep_prev = false; 3092 kick_idle = true; 3093 } 3094 } else if (unlikely(keep_prev && !prev_on_scx)) { 3095 /* only allowed during transitions */ 3096 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED); 3097 keep_prev = false; 3098 } 3099 3100 /* 3101 * If balance_scx() is telling us to keep running @prev, replenish slice 3102 * if necessary and keep running @prev. Otherwise, pop the first one 3103 * from the local DSQ. 3104 */ 3105 if (keep_prev) { 3106 p = prev; 3107 if (!p->scx.slice) 3108 p->scx.slice = SCX_SLICE_DFL; 3109 } else { 3110 p = first_local_task(rq); 3111 if (!p) { 3112 if (kick_idle) 3113 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 3114 return NULL; 3115 } 3116 3117 if (unlikely(!p->scx.slice)) { 3118 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 3119 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3120 p->comm, p->pid, __func__); 3121 scx_warned_zero_slice = true; 3122 } 3123 p->scx.slice = SCX_SLICE_DFL; 3124 } 3125 } 3126 3127 return p; 3128 } 3129 3130 #ifdef CONFIG_SCHED_CORE 3131 /** 3132 * scx_prio_less - Task ordering for core-sched 3133 * @a: task A 3134 * @b: task B 3135 * 3136 * Core-sched is implemented as an additional scheduling layer on top of the 3137 * usual sched_class'es and needs to find out the expected task ordering. For 3138 * SCX, core-sched calls this function to interrogate the task ordering. 3139 * 3140 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3141 * to implement the default task ordering. The older the timestamp, the higher 3142 * prority the task - the global FIFO ordering matching the default scheduling 3143 * behavior. 3144 * 3145 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3146 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3147 */ 3148 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3149 bool in_fi) 3150 { 3151 /* 3152 * The const qualifiers are dropped from task_struct pointers when 3153 * calling ops.core_sched_before(). Accesses are controlled by the 3154 * verifier. 3155 */ 3156 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 3157 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3158 (struct task_struct *)a, 3159 (struct task_struct *)b); 3160 else 3161 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3162 } 3163 #endif /* CONFIG_SCHED_CORE */ 3164 3165 #ifdef CONFIG_SMP 3166 3167 static bool test_and_clear_cpu_idle(int cpu) 3168 { 3169 #ifdef CONFIG_SCHED_SMT 3170 /* 3171 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3172 * cluster is not wholly idle either way. This also prevents 3173 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3174 */ 3175 if (sched_smt_active()) { 3176 const struct cpumask *smt = cpu_smt_mask(cpu); 3177 3178 /* 3179 * If offline, @cpu is not its own sibling and 3180 * scx_pick_idle_cpu() can get caught in an infinite loop as 3181 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3182 * is eventually cleared. 3183 * 3184 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to 3185 * reduce memory writes, which may help alleviate cache 3186 * coherence pressure. 3187 */ 3188 if (cpumask_intersects(smt, idle_masks.smt)) 3189 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3190 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3191 __cpumask_clear_cpu(cpu, idle_masks.smt); 3192 } 3193 #endif 3194 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3195 } 3196 3197 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3198 { 3199 int cpu; 3200 3201 retry: 3202 if (sched_smt_active()) { 3203 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3204 if (cpu < nr_cpu_ids) 3205 goto found; 3206 3207 if (flags & SCX_PICK_IDLE_CORE) 3208 return -EBUSY; 3209 } 3210 3211 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3212 if (cpu >= nr_cpu_ids) 3213 return -EBUSY; 3214 3215 found: 3216 if (test_and_clear_cpu_idle(cpu)) 3217 return cpu; 3218 else 3219 goto retry; 3220 } 3221 3222 /* 3223 * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC 3224 * domain is not defined). 3225 */ 3226 static unsigned int llc_weight(s32 cpu) 3227 { 3228 struct sched_domain *sd; 3229 3230 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3231 if (!sd) 3232 return 0; 3233 3234 return sd->span_weight; 3235 } 3236 3237 /* 3238 * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC 3239 * domain is not defined). 3240 */ 3241 static struct cpumask *llc_span(s32 cpu) 3242 { 3243 struct sched_domain *sd; 3244 3245 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3246 if (!sd) 3247 return 0; 3248 3249 return sched_domain_span(sd); 3250 } 3251 3252 /* 3253 * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the 3254 * NUMA domain is not defined). 3255 */ 3256 static unsigned int numa_weight(s32 cpu) 3257 { 3258 struct sched_domain *sd; 3259 struct sched_group *sg; 3260 3261 sd = rcu_dereference(per_cpu(sd_numa, cpu)); 3262 if (!sd) 3263 return 0; 3264 sg = sd->groups; 3265 if (!sg) 3266 return 0; 3267 3268 return sg->group_weight; 3269 } 3270 3271 /* 3272 * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA 3273 * domain is not defined). 3274 */ 3275 static struct cpumask *numa_span(s32 cpu) 3276 { 3277 struct sched_domain *sd; 3278 struct sched_group *sg; 3279 3280 sd = rcu_dereference(per_cpu(sd_numa, cpu)); 3281 if (!sd) 3282 return NULL; 3283 sg = sd->groups; 3284 if (!sg) 3285 return NULL; 3286 3287 return sched_group_span(sg); 3288 } 3289 3290 /* 3291 * Return true if the LLC domains do not perfectly overlap with the NUMA 3292 * domains, false otherwise. 3293 */ 3294 static bool llc_numa_mismatch(void) 3295 { 3296 int cpu; 3297 3298 /* 3299 * We need to scan all online CPUs to verify whether their scheduling 3300 * domains overlap. 3301 * 3302 * While it is rare to encounter architectures with asymmetric NUMA 3303 * topologies, CPU hotplugging or virtualized environments can result 3304 * in asymmetric configurations. 3305 * 3306 * For example: 3307 * 3308 * NUMA 0: 3309 * - LLC 0: cpu0..cpu7 3310 * - LLC 1: cpu8..cpu15 [offline] 3311 * 3312 * NUMA 1: 3313 * - LLC 0: cpu16..cpu23 3314 * - LLC 1: cpu24..cpu31 3315 * 3316 * In this case, if we only check the first online CPU (cpu0), we might 3317 * incorrectly assume that the LLC and NUMA domains are fully 3318 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC 3319 * domains). 3320 */ 3321 for_each_online_cpu(cpu) 3322 if (llc_weight(cpu) != numa_weight(cpu)) 3323 return true; 3324 3325 return false; 3326 } 3327 3328 /* 3329 * Initialize topology-aware scheduling. 3330 * 3331 * Detect if the system has multiple LLC or multiple NUMA domains and enable 3332 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle 3333 * selection policy. 3334 * 3335 * Assumption: the kernel's internal topology representation assumes that each 3336 * CPU belongs to a single LLC domain, and that each LLC domain is entirely 3337 * contained within a single NUMA node. 3338 */ 3339 static void update_selcpu_topology(void) 3340 { 3341 bool enable_llc = false, enable_numa = false; 3342 unsigned int nr_cpus; 3343 s32 cpu = cpumask_first(cpu_online_mask); 3344 3345 /* 3346 * Enable LLC domain optimization only when there are multiple LLC 3347 * domains among the online CPUs. If all online CPUs are part of a 3348 * single LLC domain, the idle CPU selection logic can choose any 3349 * online CPU without bias. 3350 * 3351 * Note that it is sufficient to check the LLC domain of the first 3352 * online CPU to determine whether a single LLC domain includes all 3353 * CPUs. 3354 */ 3355 rcu_read_lock(); 3356 nr_cpus = llc_weight(cpu); 3357 if (nr_cpus > 0) { 3358 if (nr_cpus < num_online_cpus()) 3359 enable_llc = true; 3360 pr_debug("sched_ext: LLC=%*pb weight=%u\n", 3361 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu)); 3362 } 3363 3364 /* 3365 * Enable NUMA optimization only when there are multiple NUMA domains 3366 * among the online CPUs and the NUMA domains don't perfectly overlaps 3367 * with the LLC domains. 3368 * 3369 * If all CPUs belong to the same NUMA node and the same LLC domain, 3370 * enabling both NUMA and LLC optimizations is unnecessary, as checking 3371 * for an idle CPU in the same domain twice is redundant. 3372 */ 3373 nr_cpus = numa_weight(cpu); 3374 if (nr_cpus > 0) { 3375 if (nr_cpus < num_online_cpus() && llc_numa_mismatch()) 3376 enable_numa = true; 3377 pr_debug("sched_ext: NUMA=%*pb weight=%u\n", 3378 cpumask_pr_args(numa_span(cpu)), numa_weight(cpu)); 3379 } 3380 rcu_read_unlock(); 3381 3382 pr_debug("sched_ext: LLC idle selection %s\n", 3383 str_enabled_disabled(enable_llc)); 3384 pr_debug("sched_ext: NUMA idle selection %s\n", 3385 str_enabled_disabled(enable_numa)); 3386 3387 if (enable_llc) 3388 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc); 3389 else 3390 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc); 3391 if (enable_numa) 3392 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa); 3393 else 3394 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa); 3395 } 3396 3397 /* 3398 * Built-in CPU idle selection policy: 3399 * 3400 * 1. Prioritize full-idle cores: 3401 * - always prioritize CPUs from fully idle cores (both logical CPUs are 3402 * idle) to avoid interference caused by SMT. 3403 * 3404 * 2. Reuse the same CPU: 3405 * - prefer the last used CPU to take advantage of cached data (L1, L2) and 3406 * branch prediction optimizations. 3407 * 3408 * 3. Pick a CPU within the same LLC (Last-Level Cache): 3409 * - if the above conditions aren't met, pick a CPU that shares the same LLC 3410 * to maintain cache locality. 3411 * 3412 * 4. Pick a CPU within the same NUMA node, if enabled: 3413 * - choose a CPU from the same NUMA node to reduce memory access latency. 3414 * 3415 * 5. Pick any idle CPU usable by the task. 3416 * 3417 * Step 3 and 4 are performed only if the system has, respectively, multiple 3418 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and 3419 * scx_selcpu_topo_numa). 3420 * 3421 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because 3422 * we never call ops.select_cpu() for them, see select_task_rq(). 3423 */ 3424 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3425 u64 wake_flags, bool *found) 3426 { 3427 const struct cpumask *llc_cpus = NULL; 3428 const struct cpumask *numa_cpus = NULL; 3429 s32 cpu; 3430 3431 *found = false; 3432 3433 /* 3434 * This is necessary to protect llc_cpus. 3435 */ 3436 rcu_read_lock(); 3437 3438 /* 3439 * Determine the scheduling domain only if the task is allowed to run 3440 * on all CPUs. 3441 * 3442 * This is done primarily for efficiency, as it avoids the overhead of 3443 * updating a cpumask every time we need to select an idle CPU (which 3444 * can be costly in large SMP systems), but it also aligns logically: 3445 * if a task's scheduling domain is restricted by user-space (through 3446 * CPU affinity), the task will simply use the flat scheduling domain 3447 * defined by user-space. 3448 */ 3449 if (p->nr_cpus_allowed >= num_possible_cpus()) { 3450 if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) 3451 numa_cpus = numa_span(prev_cpu); 3452 3453 if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) 3454 llc_cpus = llc_span(prev_cpu); 3455 } 3456 3457 /* 3458 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU. 3459 */ 3460 if (wake_flags & SCX_WAKE_SYNC) { 3461 cpu = smp_processor_id(); 3462 3463 /* 3464 * If the waker's CPU is cache affine and prev_cpu is idle, 3465 * then avoid a migration. 3466 */ 3467 if (cpus_share_cache(cpu, prev_cpu) && 3468 test_and_clear_cpu_idle(prev_cpu)) { 3469 cpu = prev_cpu; 3470 goto cpu_found; 3471 } 3472 3473 /* 3474 * If the waker's local DSQ is empty, and the system is under 3475 * utilized, try to wake up @p to the local DSQ of the waker. 3476 * 3477 * Checking only for an empty local DSQ is insufficient as it 3478 * could give the wakee an unfair advantage when the system is 3479 * oversaturated. 3480 * 3481 * Checking only for the presence of idle CPUs is also 3482 * insufficient as the local DSQ of the waker could have tasks 3483 * piled up on it even if there is an idle core elsewhere on 3484 * the system. 3485 */ 3486 if (!cpumask_empty(idle_masks.cpu) && 3487 !(current->flags & PF_EXITING) && 3488 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3489 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3490 goto cpu_found; 3491 } 3492 } 3493 3494 /* 3495 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3496 * partially idle @prev_cpu. 3497 */ 3498 if (sched_smt_active()) { 3499 /* 3500 * Keep using @prev_cpu if it's part of a fully idle core. 3501 */ 3502 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3503 test_and_clear_cpu_idle(prev_cpu)) { 3504 cpu = prev_cpu; 3505 goto cpu_found; 3506 } 3507 3508 /* 3509 * Search for any fully idle core in the same LLC domain. 3510 */ 3511 if (llc_cpus) { 3512 cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE); 3513 if (cpu >= 0) 3514 goto cpu_found; 3515 } 3516 3517 /* 3518 * Search for any fully idle core in the same NUMA node. 3519 */ 3520 if (numa_cpus) { 3521 cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE); 3522 if (cpu >= 0) 3523 goto cpu_found; 3524 } 3525 3526 /* 3527 * Search for any full idle core usable by the task. 3528 */ 3529 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3530 if (cpu >= 0) 3531 goto cpu_found; 3532 } 3533 3534 /* 3535 * Use @prev_cpu if it's idle. 3536 */ 3537 if (test_and_clear_cpu_idle(prev_cpu)) { 3538 cpu = prev_cpu; 3539 goto cpu_found; 3540 } 3541 3542 /* 3543 * Search for any idle CPU in the same LLC domain. 3544 */ 3545 if (llc_cpus) { 3546 cpu = scx_pick_idle_cpu(llc_cpus, 0); 3547 if (cpu >= 0) 3548 goto cpu_found; 3549 } 3550 3551 /* 3552 * Search for any idle CPU in the same NUMA node. 3553 */ 3554 if (numa_cpus) { 3555 cpu = scx_pick_idle_cpu(numa_cpus, 0); 3556 if (cpu >= 0) 3557 goto cpu_found; 3558 } 3559 3560 /* 3561 * Search for any idle CPU usable by the task. 3562 */ 3563 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3564 if (cpu >= 0) 3565 goto cpu_found; 3566 3567 rcu_read_unlock(); 3568 return prev_cpu; 3569 3570 cpu_found: 3571 rcu_read_unlock(); 3572 3573 *found = true; 3574 return cpu; 3575 } 3576 3577 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3578 { 3579 /* 3580 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3581 * can be a good migration opportunity with low cache and memory 3582 * footprint. Returning a CPU different than @prev_cpu triggers 3583 * immediate rq migration. However, for SCX, as the current rq 3584 * association doesn't dictate where the task is going to run, this 3585 * doesn't fit well. If necessary, we can later add a dedicated method 3586 * which can decide to preempt self to force it through the regular 3587 * scheduling path. 3588 */ 3589 if (unlikely(wake_flags & WF_EXEC)) 3590 return prev_cpu; 3591 3592 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) { 3593 s32 cpu; 3594 struct task_struct **ddsp_taskp; 3595 3596 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3597 WARN_ON_ONCE(*ddsp_taskp); 3598 *ddsp_taskp = p; 3599 3600 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3601 select_cpu, p, prev_cpu, wake_flags); 3602 *ddsp_taskp = NULL; 3603 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3604 return cpu; 3605 else 3606 return prev_cpu; 3607 } else { 3608 bool found; 3609 s32 cpu; 3610 3611 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3612 if (found) { 3613 p->scx.slice = SCX_SLICE_DFL; 3614 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3615 } 3616 return cpu; 3617 } 3618 } 3619 3620 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3621 { 3622 run_deferred(rq); 3623 } 3624 3625 static void set_cpus_allowed_scx(struct task_struct *p, 3626 struct affinity_context *ac) 3627 { 3628 set_cpus_allowed_common(p, ac); 3629 3630 /* 3631 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3632 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3633 * scheduler the effective one. 3634 * 3635 * Fine-grained memory write control is enforced by BPF making the const 3636 * designation pointless. Cast it away when calling the operation. 3637 */ 3638 if (SCX_HAS_OP(set_cpumask)) 3639 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3640 (struct cpumask *)p->cpus_ptr); 3641 } 3642 3643 static void reset_idle_masks(void) 3644 { 3645 /* 3646 * Consider all online cpus idle. Should converge to the actual state 3647 * quickly. 3648 */ 3649 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3650 cpumask_copy(idle_masks.smt, cpu_online_mask); 3651 } 3652 3653 void __scx_update_idle(struct rq *rq, bool idle) 3654 { 3655 int cpu = cpu_of(rq); 3656 3657 if (SCX_HAS_OP(update_idle) && !scx_rq_bypassing(rq)) { 3658 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3659 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 3660 return; 3661 } 3662 3663 assign_cpu(cpu, idle_masks.cpu, idle); 3664 3665 #ifdef CONFIG_SCHED_SMT 3666 if (sched_smt_active()) { 3667 const struct cpumask *smt = cpu_smt_mask(cpu); 3668 3669 if (idle) { 3670 /* 3671 * idle_masks.smt handling is racy but that's fine as 3672 * it's only for optimization and self-correcting. 3673 */ 3674 if (!cpumask_subset(smt, idle_masks.cpu)) 3675 return; 3676 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3677 } else { 3678 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3679 } 3680 } 3681 #endif 3682 } 3683 3684 static void handle_hotplug(struct rq *rq, bool online) 3685 { 3686 int cpu = cpu_of(rq); 3687 3688 atomic_long_inc(&scx_hotplug_seq); 3689 3690 if (scx_enabled()) 3691 update_selcpu_topology(); 3692 3693 if (online && SCX_HAS_OP(cpu_online)) 3694 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3695 else if (!online && SCX_HAS_OP(cpu_offline)) 3696 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3697 else 3698 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3699 "cpu %d going %s, exiting scheduler", cpu, 3700 online ? "online" : "offline"); 3701 } 3702 3703 void scx_rq_activate(struct rq *rq) 3704 { 3705 handle_hotplug(rq, true); 3706 } 3707 3708 void scx_rq_deactivate(struct rq *rq) 3709 { 3710 handle_hotplug(rq, false); 3711 } 3712 3713 static void rq_online_scx(struct rq *rq) 3714 { 3715 rq->scx.flags |= SCX_RQ_ONLINE; 3716 } 3717 3718 static void rq_offline_scx(struct rq *rq) 3719 { 3720 rq->scx.flags &= ~SCX_RQ_ONLINE; 3721 } 3722 3723 #else /* CONFIG_SMP */ 3724 3725 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3726 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3727 static void reset_idle_masks(void) {} 3728 3729 #endif /* CONFIG_SMP */ 3730 3731 static bool check_rq_for_timeouts(struct rq *rq) 3732 { 3733 struct task_struct *p; 3734 struct rq_flags rf; 3735 bool timed_out = false; 3736 3737 rq_lock_irqsave(rq, &rf); 3738 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3739 unsigned long last_runnable = p->scx.runnable_at; 3740 3741 if (unlikely(time_after(jiffies, 3742 last_runnable + scx_watchdog_timeout))) { 3743 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3744 3745 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3746 "%s[%d] failed to run for %u.%03us", 3747 p->comm, p->pid, 3748 dur_ms / 1000, dur_ms % 1000); 3749 timed_out = true; 3750 break; 3751 } 3752 } 3753 rq_unlock_irqrestore(rq, &rf); 3754 3755 return timed_out; 3756 } 3757 3758 static void scx_watchdog_workfn(struct work_struct *work) 3759 { 3760 int cpu; 3761 3762 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3763 3764 for_each_online_cpu(cpu) { 3765 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3766 break; 3767 3768 cond_resched(); 3769 } 3770 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3771 scx_watchdog_timeout / 2); 3772 } 3773 3774 void scx_tick(struct rq *rq) 3775 { 3776 unsigned long last_check; 3777 3778 if (!scx_enabled()) 3779 return; 3780 3781 last_check = READ_ONCE(scx_watchdog_timestamp); 3782 if (unlikely(time_after(jiffies, 3783 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3784 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3785 3786 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3787 "watchdog failed to check in for %u.%03us", 3788 dur_ms / 1000, dur_ms % 1000); 3789 } 3790 3791 update_other_load_avgs(rq); 3792 } 3793 3794 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3795 { 3796 update_curr_scx(rq); 3797 3798 /* 3799 * While disabling, always resched and refresh core-sched timestamp as 3800 * we can't trust the slice management or ops.core_sched_before(). 3801 */ 3802 if (scx_rq_bypassing(rq)) { 3803 curr->scx.slice = 0; 3804 touch_core_sched(rq, curr); 3805 } else if (SCX_HAS_OP(tick)) { 3806 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3807 } 3808 3809 if (!curr->scx.slice) 3810 resched_curr(rq); 3811 } 3812 3813 #ifdef CONFIG_EXT_GROUP_SCHED 3814 static struct cgroup *tg_cgrp(struct task_group *tg) 3815 { 3816 /* 3817 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3818 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3819 * root cgroup. 3820 */ 3821 if (tg && tg->css.cgroup) 3822 return tg->css.cgroup; 3823 else 3824 return &cgrp_dfl_root.cgrp; 3825 } 3826 3827 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3828 3829 #else /* CONFIG_EXT_GROUP_SCHED */ 3830 3831 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3832 3833 #endif /* CONFIG_EXT_GROUP_SCHED */ 3834 3835 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3836 { 3837 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3838 } 3839 3840 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3841 { 3842 enum scx_task_state prev_state = scx_get_task_state(p); 3843 bool warn = false; 3844 3845 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3846 3847 switch (state) { 3848 case SCX_TASK_NONE: 3849 break; 3850 case SCX_TASK_INIT: 3851 warn = prev_state != SCX_TASK_NONE; 3852 break; 3853 case SCX_TASK_READY: 3854 warn = prev_state == SCX_TASK_NONE; 3855 break; 3856 case SCX_TASK_ENABLED: 3857 warn = prev_state != SCX_TASK_READY; 3858 break; 3859 default: 3860 warn = true; 3861 return; 3862 } 3863 3864 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3865 prev_state, state, p->comm, p->pid); 3866 3867 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3868 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3869 } 3870 3871 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3872 { 3873 int ret; 3874 3875 p->scx.disallow = false; 3876 3877 if (SCX_HAS_OP(init_task)) { 3878 struct scx_init_task_args args = { 3879 SCX_INIT_TASK_ARGS_CGROUP(tg) 3880 .fork = fork, 3881 }; 3882 3883 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3884 if (unlikely(ret)) { 3885 ret = ops_sanitize_err("init_task", ret); 3886 return ret; 3887 } 3888 } 3889 3890 scx_set_task_state(p, SCX_TASK_INIT); 3891 3892 if (p->scx.disallow) { 3893 if (!fork) { 3894 struct rq *rq; 3895 struct rq_flags rf; 3896 3897 rq = task_rq_lock(p, &rf); 3898 3899 /* 3900 * We're in the load path and @p->policy will be applied 3901 * right after. Reverting @p->policy here and rejecting 3902 * %SCHED_EXT transitions from scx_check_setscheduler() 3903 * guarantees that if ops.init_task() sets @p->disallow, 3904 * @p can never be in SCX. 3905 */ 3906 if (p->policy == SCHED_EXT) { 3907 p->policy = SCHED_NORMAL; 3908 atomic_long_inc(&scx_nr_rejected); 3909 } 3910 3911 task_rq_unlock(rq, p, &rf); 3912 } else if (p->policy == SCHED_EXT) { 3913 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3914 p->comm, p->pid); 3915 } 3916 } 3917 3918 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3919 return 0; 3920 } 3921 3922 static void scx_ops_enable_task(struct task_struct *p) 3923 { 3924 u32 weight; 3925 3926 lockdep_assert_rq_held(task_rq(p)); 3927 3928 /* 3929 * Set the weight before calling ops.enable() so that the scheduler 3930 * doesn't see a stale value if they inspect the task struct. 3931 */ 3932 if (task_has_idle_policy(p)) 3933 weight = WEIGHT_IDLEPRIO; 3934 else 3935 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3936 3937 p->scx.weight = sched_weight_to_cgroup(weight); 3938 3939 if (SCX_HAS_OP(enable)) 3940 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3941 scx_set_task_state(p, SCX_TASK_ENABLED); 3942 3943 if (SCX_HAS_OP(set_weight)) 3944 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3945 } 3946 3947 static void scx_ops_disable_task(struct task_struct *p) 3948 { 3949 lockdep_assert_rq_held(task_rq(p)); 3950 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3951 3952 if (SCX_HAS_OP(disable)) 3953 SCX_CALL_OP(SCX_KF_REST, disable, p); 3954 scx_set_task_state(p, SCX_TASK_READY); 3955 } 3956 3957 static void scx_ops_exit_task(struct task_struct *p) 3958 { 3959 struct scx_exit_task_args args = { 3960 .cancelled = false, 3961 }; 3962 3963 lockdep_assert_rq_held(task_rq(p)); 3964 3965 switch (scx_get_task_state(p)) { 3966 case SCX_TASK_NONE: 3967 return; 3968 case SCX_TASK_INIT: 3969 args.cancelled = true; 3970 break; 3971 case SCX_TASK_READY: 3972 break; 3973 case SCX_TASK_ENABLED: 3974 scx_ops_disable_task(p); 3975 break; 3976 default: 3977 WARN_ON_ONCE(true); 3978 return; 3979 } 3980 3981 if (SCX_HAS_OP(exit_task)) 3982 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3983 scx_set_task_state(p, SCX_TASK_NONE); 3984 } 3985 3986 void init_scx_entity(struct sched_ext_entity *scx) 3987 { 3988 memset(scx, 0, sizeof(*scx)); 3989 INIT_LIST_HEAD(&scx->dsq_list.node); 3990 RB_CLEAR_NODE(&scx->dsq_priq); 3991 scx->sticky_cpu = -1; 3992 scx->holding_cpu = -1; 3993 INIT_LIST_HEAD(&scx->runnable_node); 3994 scx->runnable_at = jiffies; 3995 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3996 scx->slice = SCX_SLICE_DFL; 3997 } 3998 3999 void scx_pre_fork(struct task_struct *p) 4000 { 4001 /* 4002 * BPF scheduler enable/disable paths want to be able to iterate and 4003 * update all tasks which can become complex when racing forks. As 4004 * enable/disable are very cold paths, let's use a percpu_rwsem to 4005 * exclude forks. 4006 */ 4007 percpu_down_read(&scx_fork_rwsem); 4008 } 4009 4010 int scx_fork(struct task_struct *p) 4011 { 4012 percpu_rwsem_assert_held(&scx_fork_rwsem); 4013 4014 if (scx_ops_init_task_enabled) 4015 return scx_ops_init_task(p, task_group(p), true); 4016 else 4017 return 0; 4018 } 4019 4020 void scx_post_fork(struct task_struct *p) 4021 { 4022 if (scx_ops_init_task_enabled) { 4023 scx_set_task_state(p, SCX_TASK_READY); 4024 4025 /* 4026 * Enable the task immediately if it's running on sched_ext. 4027 * Otherwise, it'll be enabled in switching_to_scx() if and 4028 * when it's ever configured to run with a SCHED_EXT policy. 4029 */ 4030 if (p->sched_class == &ext_sched_class) { 4031 struct rq_flags rf; 4032 struct rq *rq; 4033 4034 rq = task_rq_lock(p, &rf); 4035 scx_ops_enable_task(p); 4036 task_rq_unlock(rq, p, &rf); 4037 } 4038 } 4039 4040 spin_lock_irq(&scx_tasks_lock); 4041 list_add_tail(&p->scx.tasks_node, &scx_tasks); 4042 spin_unlock_irq(&scx_tasks_lock); 4043 4044 percpu_up_read(&scx_fork_rwsem); 4045 } 4046 4047 void scx_cancel_fork(struct task_struct *p) 4048 { 4049 if (scx_enabled()) { 4050 struct rq *rq; 4051 struct rq_flags rf; 4052 4053 rq = task_rq_lock(p, &rf); 4054 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 4055 scx_ops_exit_task(p); 4056 task_rq_unlock(rq, p, &rf); 4057 } 4058 4059 percpu_up_read(&scx_fork_rwsem); 4060 } 4061 4062 void sched_ext_free(struct task_struct *p) 4063 { 4064 unsigned long flags; 4065 4066 spin_lock_irqsave(&scx_tasks_lock, flags); 4067 list_del_init(&p->scx.tasks_node); 4068 spin_unlock_irqrestore(&scx_tasks_lock, flags); 4069 4070 /* 4071 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 4072 * ENABLED transitions can't race us. Disable ops for @p. 4073 */ 4074 if (scx_get_task_state(p) != SCX_TASK_NONE) { 4075 struct rq_flags rf; 4076 struct rq *rq; 4077 4078 rq = task_rq_lock(p, &rf); 4079 scx_ops_exit_task(p); 4080 task_rq_unlock(rq, p, &rf); 4081 } 4082 } 4083 4084 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 4085 const struct load_weight *lw) 4086 { 4087 lockdep_assert_rq_held(task_rq(p)); 4088 4089 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 4090 if (SCX_HAS_OP(set_weight)) 4091 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 4092 } 4093 4094 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 4095 { 4096 } 4097 4098 static void switching_to_scx(struct rq *rq, struct task_struct *p) 4099 { 4100 scx_ops_enable_task(p); 4101 4102 /* 4103 * set_cpus_allowed_scx() is not called while @p is associated with a 4104 * different scheduler class. Keep the BPF scheduler up-to-date. 4105 */ 4106 if (SCX_HAS_OP(set_cpumask)) 4107 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 4108 (struct cpumask *)p->cpus_ptr); 4109 } 4110 4111 static void switched_from_scx(struct rq *rq, struct task_struct *p) 4112 { 4113 scx_ops_disable_task(p); 4114 } 4115 4116 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 4117 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 4118 4119 int scx_check_setscheduler(struct task_struct *p, int policy) 4120 { 4121 lockdep_assert_rq_held(task_rq(p)); 4122 4123 /* if disallow, reject transitioning into SCX */ 4124 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 4125 p->policy != policy && policy == SCHED_EXT) 4126 return -EACCES; 4127 4128 return 0; 4129 } 4130 4131 #ifdef CONFIG_NO_HZ_FULL 4132 bool scx_can_stop_tick(struct rq *rq) 4133 { 4134 struct task_struct *p = rq->curr; 4135 4136 if (scx_rq_bypassing(rq)) 4137 return false; 4138 4139 if (p->sched_class != &ext_sched_class) 4140 return true; 4141 4142 /* 4143 * @rq can dispatch from different DSQs, so we can't tell whether it 4144 * needs the tick or not by looking at nr_running. Allow stopping ticks 4145 * iff the BPF scheduler indicated so. See set_next_task_scx(). 4146 */ 4147 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 4148 } 4149 #endif 4150 4151 #ifdef CONFIG_EXT_GROUP_SCHED 4152 4153 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 4154 static bool scx_cgroup_enabled; 4155 static bool cgroup_warned_missing_weight; 4156 static bool cgroup_warned_missing_idle; 4157 4158 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 4159 { 4160 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 4161 cgroup_warned_missing_weight) 4162 return; 4163 4164 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 4165 return; 4166 4167 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 4168 scx_ops.name); 4169 cgroup_warned_missing_weight = true; 4170 } 4171 4172 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 4173 { 4174 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 4175 return; 4176 4177 if (!tg->idle) 4178 return; 4179 4180 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 4181 scx_ops.name); 4182 cgroup_warned_missing_idle = true; 4183 } 4184 4185 int scx_tg_online(struct task_group *tg) 4186 { 4187 int ret = 0; 4188 4189 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 4190 4191 percpu_down_read(&scx_cgroup_rwsem); 4192 4193 scx_cgroup_warn_missing_weight(tg); 4194 4195 if (scx_cgroup_enabled) { 4196 if (SCX_HAS_OP(cgroup_init)) { 4197 struct scx_cgroup_init_args args = 4198 { .weight = tg->scx_weight }; 4199 4200 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4201 tg->css.cgroup, &args); 4202 if (ret) 4203 ret = ops_sanitize_err("cgroup_init", ret); 4204 } 4205 if (ret == 0) 4206 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 4207 } else { 4208 tg->scx_flags |= SCX_TG_ONLINE; 4209 } 4210 4211 percpu_up_read(&scx_cgroup_rwsem); 4212 return ret; 4213 } 4214 4215 void scx_tg_offline(struct task_group *tg) 4216 { 4217 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 4218 4219 percpu_down_read(&scx_cgroup_rwsem); 4220 4221 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 4222 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 4223 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 4224 4225 percpu_up_read(&scx_cgroup_rwsem); 4226 } 4227 4228 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 4229 { 4230 struct cgroup_subsys_state *css; 4231 struct task_struct *p; 4232 int ret; 4233 4234 /* released in scx_finish/cancel_attach() */ 4235 percpu_down_read(&scx_cgroup_rwsem); 4236 4237 if (!scx_cgroup_enabled) 4238 return 0; 4239 4240 cgroup_taskset_for_each(p, css, tset) { 4241 struct cgroup *from = tg_cgrp(task_group(p)); 4242 struct cgroup *to = tg_cgrp(css_tg(css)); 4243 4244 WARN_ON_ONCE(p->scx.cgrp_moving_from); 4245 4246 /* 4247 * sched_move_task() omits identity migrations. Let's match the 4248 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 4249 * always match one-to-one. 4250 */ 4251 if (from == to) 4252 continue; 4253 4254 if (SCX_HAS_OP(cgroup_prep_move)) { 4255 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 4256 p, from, css->cgroup); 4257 if (ret) 4258 goto err; 4259 } 4260 4261 p->scx.cgrp_moving_from = from; 4262 } 4263 4264 return 0; 4265 4266 err: 4267 cgroup_taskset_for_each(p, css, tset) { 4268 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4269 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4270 p->scx.cgrp_moving_from, css->cgroup); 4271 p->scx.cgrp_moving_from = NULL; 4272 } 4273 4274 percpu_up_read(&scx_cgroup_rwsem); 4275 return ops_sanitize_err("cgroup_prep_move", ret); 4276 } 4277 4278 void scx_move_task(struct task_struct *p) 4279 { 4280 if (!scx_cgroup_enabled) 4281 return; 4282 4283 /* 4284 * We're called from sched_move_task() which handles both cgroup and 4285 * autogroup moves. Ignore the latter. 4286 * 4287 * Also ignore exiting tasks, because in the exit path tasks transition 4288 * from the autogroup to the root group, so task_group_is_autogroup() 4289 * alone isn't able to catch exiting autogroup tasks. This is safe for 4290 * cgroup_move(), because cgroup migrations never happen for PF_EXITING 4291 * tasks. 4292 */ 4293 if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) 4294 return; 4295 4296 /* 4297 * @p must have ops.cgroup_prep_move() called on it and thus 4298 * cgrp_moving_from set. 4299 */ 4300 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4301 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 4302 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 4303 p->scx.cgrp_moving_from = NULL; 4304 } 4305 4306 void scx_cgroup_finish_attach(void) 4307 { 4308 percpu_up_read(&scx_cgroup_rwsem); 4309 } 4310 4311 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4312 { 4313 struct cgroup_subsys_state *css; 4314 struct task_struct *p; 4315 4316 if (!scx_cgroup_enabled) 4317 goto out_unlock; 4318 4319 cgroup_taskset_for_each(p, css, tset) { 4320 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4321 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4322 p->scx.cgrp_moving_from, css->cgroup); 4323 p->scx.cgrp_moving_from = NULL; 4324 } 4325 out_unlock: 4326 percpu_up_read(&scx_cgroup_rwsem); 4327 } 4328 4329 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4330 { 4331 percpu_down_read(&scx_cgroup_rwsem); 4332 4333 if (scx_cgroup_enabled && tg->scx_weight != weight) { 4334 if (SCX_HAS_OP(cgroup_set_weight)) 4335 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 4336 tg_cgrp(tg), weight); 4337 tg->scx_weight = weight; 4338 } 4339 4340 percpu_up_read(&scx_cgroup_rwsem); 4341 } 4342 4343 void scx_group_set_idle(struct task_group *tg, bool idle) 4344 { 4345 percpu_down_read(&scx_cgroup_rwsem); 4346 scx_cgroup_warn_missing_idle(tg); 4347 percpu_up_read(&scx_cgroup_rwsem); 4348 } 4349 4350 static void scx_cgroup_lock(void) 4351 { 4352 percpu_down_write(&scx_cgroup_rwsem); 4353 } 4354 4355 static void scx_cgroup_unlock(void) 4356 { 4357 percpu_up_write(&scx_cgroup_rwsem); 4358 } 4359 4360 #else /* CONFIG_EXT_GROUP_SCHED */ 4361 4362 static inline void scx_cgroup_lock(void) {} 4363 static inline void scx_cgroup_unlock(void) {} 4364 4365 #endif /* CONFIG_EXT_GROUP_SCHED */ 4366 4367 /* 4368 * Omitted operations: 4369 * 4370 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4371 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4372 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4373 * 4374 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4375 * 4376 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4377 * their current sched_class. Call them directly from sched core instead. 4378 */ 4379 DEFINE_SCHED_CLASS(ext) = { 4380 .enqueue_task = enqueue_task_scx, 4381 .dequeue_task = dequeue_task_scx, 4382 .yield_task = yield_task_scx, 4383 .yield_to_task = yield_to_task_scx, 4384 4385 .wakeup_preempt = wakeup_preempt_scx, 4386 4387 .balance = balance_scx, 4388 .pick_task = pick_task_scx, 4389 4390 .put_prev_task = put_prev_task_scx, 4391 .set_next_task = set_next_task_scx, 4392 4393 #ifdef CONFIG_SMP 4394 .select_task_rq = select_task_rq_scx, 4395 .task_woken = task_woken_scx, 4396 .set_cpus_allowed = set_cpus_allowed_scx, 4397 4398 .rq_online = rq_online_scx, 4399 .rq_offline = rq_offline_scx, 4400 #endif 4401 4402 .task_tick = task_tick_scx, 4403 4404 .switching_to = switching_to_scx, 4405 .switched_from = switched_from_scx, 4406 .switched_to = switched_to_scx, 4407 .reweight_task = reweight_task_scx, 4408 .prio_changed = prio_changed_scx, 4409 4410 .update_curr = update_curr_scx, 4411 4412 #ifdef CONFIG_UCLAMP_TASK 4413 .uclamp_enabled = 1, 4414 #endif 4415 }; 4416 4417 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4418 { 4419 memset(dsq, 0, sizeof(*dsq)); 4420 4421 raw_spin_lock_init(&dsq->lock); 4422 INIT_LIST_HEAD(&dsq->list); 4423 dsq->id = dsq_id; 4424 } 4425 4426 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 4427 { 4428 struct scx_dispatch_q *dsq; 4429 int ret; 4430 4431 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 4432 return ERR_PTR(-EINVAL); 4433 4434 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4435 if (!dsq) 4436 return ERR_PTR(-ENOMEM); 4437 4438 init_dsq(dsq, dsq_id); 4439 4440 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 4441 dsq_hash_params); 4442 if (ret) { 4443 kfree(dsq); 4444 return ERR_PTR(ret); 4445 } 4446 return dsq; 4447 } 4448 4449 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4450 { 4451 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4452 struct scx_dispatch_q *dsq, *tmp_dsq; 4453 4454 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4455 kfree_rcu(dsq, rcu); 4456 } 4457 4458 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4459 4460 static void destroy_dsq(u64 dsq_id) 4461 { 4462 struct scx_dispatch_q *dsq; 4463 unsigned long flags; 4464 4465 rcu_read_lock(); 4466 4467 dsq = find_user_dsq(dsq_id); 4468 if (!dsq) 4469 goto out_unlock_rcu; 4470 4471 raw_spin_lock_irqsave(&dsq->lock, flags); 4472 4473 if (dsq->nr) { 4474 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4475 dsq->id, dsq->nr); 4476 goto out_unlock_dsq; 4477 } 4478 4479 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4480 goto out_unlock_dsq; 4481 4482 /* 4483 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4484 * queueing more tasks. As this function can be called from anywhere, 4485 * freeing is bounced through an irq work to avoid nesting RCU 4486 * operations inside scheduler locks. 4487 */ 4488 dsq->id = SCX_DSQ_INVALID; 4489 llist_add(&dsq->free_node, &dsqs_to_free); 4490 irq_work_queue(&free_dsq_irq_work); 4491 4492 out_unlock_dsq: 4493 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4494 out_unlock_rcu: 4495 rcu_read_unlock(); 4496 } 4497 4498 #ifdef CONFIG_EXT_GROUP_SCHED 4499 static void scx_cgroup_exit(void) 4500 { 4501 struct cgroup_subsys_state *css; 4502 4503 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4504 4505 scx_cgroup_enabled = false; 4506 4507 /* 4508 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4509 * cgroups and exit all the inited ones, all online cgroups are exited. 4510 */ 4511 rcu_read_lock(); 4512 css_for_each_descendant_post(css, &root_task_group.css) { 4513 struct task_group *tg = css_tg(css); 4514 4515 if (!(tg->scx_flags & SCX_TG_INITED)) 4516 continue; 4517 tg->scx_flags &= ~SCX_TG_INITED; 4518 4519 if (!scx_ops.cgroup_exit) 4520 continue; 4521 4522 if (WARN_ON_ONCE(!css_tryget(css))) 4523 continue; 4524 rcu_read_unlock(); 4525 4526 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4527 4528 rcu_read_lock(); 4529 css_put(css); 4530 } 4531 rcu_read_unlock(); 4532 } 4533 4534 static int scx_cgroup_init(void) 4535 { 4536 struct cgroup_subsys_state *css; 4537 int ret; 4538 4539 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4540 4541 cgroup_warned_missing_weight = false; 4542 cgroup_warned_missing_idle = false; 4543 4544 /* 4545 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk 4546 * cgroups and init, all online cgroups are initialized. 4547 */ 4548 rcu_read_lock(); 4549 css_for_each_descendant_pre(css, &root_task_group.css) { 4550 struct task_group *tg = css_tg(css); 4551 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4552 4553 scx_cgroup_warn_missing_weight(tg); 4554 scx_cgroup_warn_missing_idle(tg); 4555 4556 if ((tg->scx_flags & 4557 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4558 continue; 4559 4560 if (!scx_ops.cgroup_init) { 4561 tg->scx_flags |= SCX_TG_INITED; 4562 continue; 4563 } 4564 4565 if (WARN_ON_ONCE(!css_tryget(css))) 4566 continue; 4567 rcu_read_unlock(); 4568 4569 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4570 css->cgroup, &args); 4571 if (ret) { 4572 css_put(css); 4573 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4574 return ret; 4575 } 4576 tg->scx_flags |= SCX_TG_INITED; 4577 4578 rcu_read_lock(); 4579 css_put(css); 4580 } 4581 rcu_read_unlock(); 4582 4583 WARN_ON_ONCE(scx_cgroup_enabled); 4584 scx_cgroup_enabled = true; 4585 4586 return 0; 4587 } 4588 4589 #else 4590 static void scx_cgroup_exit(void) {} 4591 static int scx_cgroup_init(void) { return 0; } 4592 #endif 4593 4594 4595 /******************************************************************************** 4596 * Sysfs interface and ops enable/disable. 4597 */ 4598 4599 #define SCX_ATTR(_name) \ 4600 static struct kobj_attribute scx_attr_##_name = { \ 4601 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4602 .show = scx_attr_##_name##_show, \ 4603 } 4604 4605 static ssize_t scx_attr_state_show(struct kobject *kobj, 4606 struct kobj_attribute *ka, char *buf) 4607 { 4608 return sysfs_emit(buf, "%s\n", 4609 scx_ops_enable_state_str[scx_ops_enable_state()]); 4610 } 4611 SCX_ATTR(state); 4612 4613 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4614 struct kobj_attribute *ka, char *buf) 4615 { 4616 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4617 } 4618 SCX_ATTR(switch_all); 4619 4620 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4621 struct kobj_attribute *ka, char *buf) 4622 { 4623 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4624 } 4625 SCX_ATTR(nr_rejected); 4626 4627 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4628 struct kobj_attribute *ka, char *buf) 4629 { 4630 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4631 } 4632 SCX_ATTR(hotplug_seq); 4633 4634 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4635 struct kobj_attribute *ka, char *buf) 4636 { 4637 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4638 } 4639 SCX_ATTR(enable_seq); 4640 4641 static struct attribute *scx_global_attrs[] = { 4642 &scx_attr_state.attr, 4643 &scx_attr_switch_all.attr, 4644 &scx_attr_nr_rejected.attr, 4645 &scx_attr_hotplug_seq.attr, 4646 &scx_attr_enable_seq.attr, 4647 NULL, 4648 }; 4649 4650 static const struct attribute_group scx_global_attr_group = { 4651 .attrs = scx_global_attrs, 4652 }; 4653 4654 static void scx_kobj_release(struct kobject *kobj) 4655 { 4656 kfree(kobj); 4657 } 4658 4659 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4660 struct kobj_attribute *ka, char *buf) 4661 { 4662 return sysfs_emit(buf, "%s\n", scx_ops.name); 4663 } 4664 SCX_ATTR(ops); 4665 4666 static struct attribute *scx_sched_attrs[] = { 4667 &scx_attr_ops.attr, 4668 NULL, 4669 }; 4670 ATTRIBUTE_GROUPS(scx_sched); 4671 4672 static const struct kobj_type scx_ktype = { 4673 .release = scx_kobj_release, 4674 .sysfs_ops = &kobj_sysfs_ops, 4675 .default_groups = scx_sched_groups, 4676 }; 4677 4678 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4679 { 4680 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4681 } 4682 4683 static const struct kset_uevent_ops scx_uevent_ops = { 4684 .uevent = scx_uevent, 4685 }; 4686 4687 /* 4688 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4689 * sched_class. dl/rt are already handled. 4690 */ 4691 bool task_should_scx(int policy) 4692 { 4693 if (!scx_enabled() || 4694 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4695 return false; 4696 if (READ_ONCE(scx_switching_all)) 4697 return true; 4698 return policy == SCHED_EXT; 4699 } 4700 4701 /** 4702 * scx_softlockup - sched_ext softlockup handler 4703 * 4704 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4705 * live-lock the system by making many CPUs target the same DSQ to the point 4706 * where soft-lockup detection triggers. This function is called from 4707 * soft-lockup watchdog when the triggering point is close and tries to unjam 4708 * the system by enabling the breather and aborting the BPF scheduler. 4709 */ 4710 void scx_softlockup(u32 dur_s) 4711 { 4712 switch (scx_ops_enable_state()) { 4713 case SCX_OPS_ENABLING: 4714 case SCX_OPS_ENABLED: 4715 break; 4716 default: 4717 return; 4718 } 4719 4720 /* allow only one instance, cleared at the end of scx_ops_bypass() */ 4721 if (test_and_set_bit(0, &scx_in_softlockup)) 4722 return; 4723 4724 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4725 smp_processor_id(), dur_s, scx_ops.name); 4726 4727 /* 4728 * Some CPUs may be trapped in the dispatch paths. Enable breather 4729 * immediately; otherwise, we might even be able to get to 4730 * scx_ops_bypass(). 4731 */ 4732 atomic_inc(&scx_ops_breather_depth); 4733 4734 scx_ops_error("soft lockup - CPU#%d stuck for %us", 4735 smp_processor_id(), dur_s); 4736 } 4737 4738 static void scx_clear_softlockup(void) 4739 { 4740 if (test_and_clear_bit(0, &scx_in_softlockup)) 4741 atomic_dec(&scx_ops_breather_depth); 4742 } 4743 4744 /** 4745 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4746 * 4747 * Bypassing guarantees that all runnable tasks make forward progress without 4748 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4749 * be held by tasks that the BPF scheduler is forgetting to run, which 4750 * unfortunately also excludes toggling the static branches. 4751 * 4752 * Let's work around by overriding a couple ops and modifying behaviors based on 4753 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4754 * to force global FIFO scheduling. 4755 * 4756 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4757 * 4758 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4759 * %SCX_OPS_ENQ_LAST is also ignored. 4760 * 4761 * - ops.dispatch() is ignored. 4762 * 4763 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4764 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4765 * the tail of the queue with core_sched_at touched. 4766 * 4767 * - pick_next_task() suppresses zero slice warning. 4768 * 4769 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4770 * operations. 4771 * 4772 * - scx_prio_less() reverts to the default core_sched_at order. 4773 */ 4774 static void scx_ops_bypass(bool bypass) 4775 { 4776 static DEFINE_RAW_SPINLOCK(bypass_lock); 4777 int cpu; 4778 unsigned long flags; 4779 4780 raw_spin_lock_irqsave(&bypass_lock, flags); 4781 if (bypass) { 4782 scx_ops_bypass_depth++; 4783 WARN_ON_ONCE(scx_ops_bypass_depth <= 0); 4784 if (scx_ops_bypass_depth != 1) 4785 goto unlock; 4786 } else { 4787 scx_ops_bypass_depth--; 4788 WARN_ON_ONCE(scx_ops_bypass_depth < 0); 4789 if (scx_ops_bypass_depth != 0) 4790 goto unlock; 4791 } 4792 4793 atomic_inc(&scx_ops_breather_depth); 4794 4795 /* 4796 * No task property is changing. We just need to make sure all currently 4797 * queued tasks are re-queued according to the new scx_rq_bypassing() 4798 * state. As an optimization, walk each rq's runnable_list instead of 4799 * the scx_tasks list. 4800 * 4801 * This function can't trust the scheduler and thus can't use 4802 * cpus_read_lock(). Walk all possible CPUs instead of online. 4803 */ 4804 for_each_possible_cpu(cpu) { 4805 struct rq *rq = cpu_rq(cpu); 4806 struct rq_flags rf; 4807 struct task_struct *p, *n; 4808 4809 rq_lock(rq, &rf); 4810 4811 if (bypass) { 4812 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4813 rq->scx.flags |= SCX_RQ_BYPASSING; 4814 } else { 4815 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4816 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4817 } 4818 4819 /* 4820 * We need to guarantee that no tasks are on the BPF scheduler 4821 * while bypassing. Either we see enabled or the enable path 4822 * sees scx_rq_bypassing() before moving tasks to SCX. 4823 */ 4824 if (!scx_enabled()) { 4825 rq_unlock_irqrestore(rq, &rf); 4826 continue; 4827 } 4828 4829 /* 4830 * The use of list_for_each_entry_safe_reverse() is required 4831 * because each task is going to be removed from and added back 4832 * to the runnable_list during iteration. Because they're added 4833 * to the tail of the list, safe reverse iteration can still 4834 * visit all nodes. 4835 */ 4836 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4837 scx.runnable_node) { 4838 struct sched_enq_and_set_ctx ctx; 4839 4840 /* cycling deq/enq is enough, see the function comment */ 4841 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4842 sched_enq_and_set_task(&ctx); 4843 } 4844 4845 rq_unlock(rq, &rf); 4846 4847 /* resched to restore ticks and idle state */ 4848 resched_cpu(cpu); 4849 } 4850 4851 atomic_dec(&scx_ops_breather_depth); 4852 unlock: 4853 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4854 scx_clear_softlockup(); 4855 } 4856 4857 static void free_exit_info(struct scx_exit_info *ei) 4858 { 4859 kfree(ei->dump); 4860 kfree(ei->msg); 4861 kfree(ei->bt); 4862 kfree(ei); 4863 } 4864 4865 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4866 { 4867 struct scx_exit_info *ei; 4868 4869 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4870 if (!ei) 4871 return NULL; 4872 4873 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4874 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4875 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4876 4877 if (!ei->bt || !ei->msg || !ei->dump) { 4878 free_exit_info(ei); 4879 return NULL; 4880 } 4881 4882 return ei; 4883 } 4884 4885 static const char *scx_exit_reason(enum scx_exit_kind kind) 4886 { 4887 switch (kind) { 4888 case SCX_EXIT_UNREG: 4889 return "unregistered from user space"; 4890 case SCX_EXIT_UNREG_BPF: 4891 return "unregistered from BPF"; 4892 case SCX_EXIT_UNREG_KERN: 4893 return "unregistered from the main kernel"; 4894 case SCX_EXIT_SYSRQ: 4895 return "disabled by sysrq-S"; 4896 case SCX_EXIT_ERROR: 4897 return "runtime error"; 4898 case SCX_EXIT_ERROR_BPF: 4899 return "scx_bpf_error"; 4900 case SCX_EXIT_ERROR_STALL: 4901 return "runnable task stall"; 4902 default: 4903 return "<UNKNOWN>"; 4904 } 4905 } 4906 4907 static void scx_ops_disable_workfn(struct kthread_work *work) 4908 { 4909 struct scx_exit_info *ei = scx_exit_info; 4910 struct scx_task_iter sti; 4911 struct task_struct *p; 4912 struct rhashtable_iter rht_iter; 4913 struct scx_dispatch_q *dsq; 4914 int i, kind, cpu; 4915 4916 kind = atomic_read(&scx_exit_kind); 4917 while (true) { 4918 /* 4919 * NONE indicates that a new scx_ops has been registered since 4920 * disable was scheduled - don't kill the new ops. DONE 4921 * indicates that the ops has already been disabled. 4922 */ 4923 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4924 return; 4925 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4926 break; 4927 } 4928 ei->kind = kind; 4929 ei->reason = scx_exit_reason(ei->kind); 4930 4931 /* guarantee forward progress by bypassing scx_ops */ 4932 scx_ops_bypass(true); 4933 4934 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4935 case SCX_OPS_DISABLING: 4936 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4937 break; 4938 case SCX_OPS_DISABLED: 4939 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4940 scx_exit_info->msg); 4941 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4942 SCX_OPS_DISABLING); 4943 goto done; 4944 default: 4945 break; 4946 } 4947 4948 /* 4949 * Here, every runnable task is guaranteed to make forward progress and 4950 * we can safely use blocking synchronization constructs. Actually 4951 * disable ops. 4952 */ 4953 mutex_lock(&scx_ops_enable_mutex); 4954 4955 static_branch_disable(&__scx_switched_all); 4956 WRITE_ONCE(scx_switching_all, false); 4957 4958 /* 4959 * Shut down cgroup support before tasks so that the cgroup attach path 4960 * doesn't race against scx_ops_exit_task(). 4961 */ 4962 scx_cgroup_lock(); 4963 scx_cgroup_exit(); 4964 scx_cgroup_unlock(); 4965 4966 /* 4967 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4968 * must be switched out and exited synchronously. 4969 */ 4970 percpu_down_write(&scx_fork_rwsem); 4971 4972 scx_ops_init_task_enabled = false; 4973 4974 scx_task_iter_start(&sti); 4975 while ((p = scx_task_iter_next_locked(&sti))) { 4976 const struct sched_class *old_class = p->sched_class; 4977 const struct sched_class *new_class = 4978 __setscheduler_class(p->policy, p->prio); 4979 struct sched_enq_and_set_ctx ctx; 4980 4981 if (old_class != new_class && p->se.sched_delayed) 4982 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4983 4984 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4985 4986 p->sched_class = new_class; 4987 check_class_changing(task_rq(p), p, old_class); 4988 4989 sched_enq_and_set_task(&ctx); 4990 4991 check_class_changed(task_rq(p), p, old_class, p->prio); 4992 scx_ops_exit_task(p); 4993 } 4994 scx_task_iter_stop(&sti); 4995 percpu_up_write(&scx_fork_rwsem); 4996 4997 /* 4998 * Invalidate all the rq clocks to prevent getting outdated 4999 * rq clocks from a previous scx scheduler. 5000 */ 5001 for_each_possible_cpu(cpu) { 5002 struct rq *rq = cpu_rq(cpu); 5003 scx_rq_clock_invalidate(rq); 5004 } 5005 5006 /* no task is on scx, turn off all the switches and flush in-progress calls */ 5007 static_branch_disable(&__scx_ops_enabled); 5008 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 5009 static_branch_disable(&scx_has_op[i]); 5010 static_branch_disable(&scx_ops_enq_last); 5011 static_branch_disable(&scx_ops_enq_exiting); 5012 static_branch_disable(&scx_ops_cpu_preempt); 5013 static_branch_disable(&scx_builtin_idle_enabled); 5014 synchronize_rcu(); 5015 5016 if (ei->kind >= SCX_EXIT_ERROR) { 5017 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5018 scx_ops.name, ei->reason); 5019 5020 if (ei->msg[0] != '\0') 5021 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 5022 #ifdef CONFIG_STACKTRACE 5023 stack_trace_print(ei->bt, ei->bt_len, 2); 5024 #endif 5025 } else { 5026 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5027 scx_ops.name, ei->reason); 5028 } 5029 5030 if (scx_ops.exit) 5031 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 5032 5033 cancel_delayed_work_sync(&scx_watchdog_work); 5034 5035 /* 5036 * Delete the kobject from the hierarchy eagerly in addition to just 5037 * dropping a reference. Otherwise, if the object is deleted 5038 * asynchronously, sysfs could observe an object of the same name still 5039 * in the hierarchy when another scheduler is loaded. 5040 */ 5041 kobject_del(scx_root_kobj); 5042 kobject_put(scx_root_kobj); 5043 scx_root_kobj = NULL; 5044 5045 memset(&scx_ops, 0, sizeof(scx_ops)); 5046 5047 rhashtable_walk_enter(&dsq_hash, &rht_iter); 5048 do { 5049 rhashtable_walk_start(&rht_iter); 5050 5051 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 5052 destroy_dsq(dsq->id); 5053 5054 rhashtable_walk_stop(&rht_iter); 5055 } while (dsq == ERR_PTR(-EAGAIN)); 5056 rhashtable_walk_exit(&rht_iter); 5057 5058 free_percpu(scx_dsp_ctx); 5059 scx_dsp_ctx = NULL; 5060 scx_dsp_max_batch = 0; 5061 5062 free_exit_info(scx_exit_info); 5063 scx_exit_info = NULL; 5064 5065 mutex_unlock(&scx_ops_enable_mutex); 5066 5067 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 5068 SCX_OPS_DISABLING); 5069 done: 5070 scx_ops_bypass(false); 5071 } 5072 5073 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 5074 5075 static void schedule_scx_ops_disable_work(void) 5076 { 5077 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 5078 5079 /* 5080 * We may be called spuriously before the first bpf_sched_ext_reg(). If 5081 * scx_ops_helper isn't set up yet, there's nothing to do. 5082 */ 5083 if (helper) 5084 kthread_queue_work(helper, &scx_ops_disable_work); 5085 } 5086 5087 static void scx_ops_disable(enum scx_exit_kind kind) 5088 { 5089 int none = SCX_EXIT_NONE; 5090 5091 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 5092 kind = SCX_EXIT_ERROR; 5093 5094 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 5095 5096 schedule_scx_ops_disable_work(); 5097 } 5098 5099 static void dump_newline(struct seq_buf *s) 5100 { 5101 trace_sched_ext_dump(""); 5102 5103 /* @s may be zero sized and seq_buf triggers WARN if so */ 5104 if (s->size) 5105 seq_buf_putc(s, '\n'); 5106 } 5107 5108 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 5109 { 5110 va_list args; 5111 5112 #ifdef CONFIG_TRACEPOINTS 5113 if (trace_sched_ext_dump_enabled()) { 5114 /* protected by scx_dump_state()::dump_lock */ 5115 static char line_buf[SCX_EXIT_MSG_LEN]; 5116 5117 va_start(args, fmt); 5118 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 5119 va_end(args); 5120 5121 trace_sched_ext_dump(line_buf); 5122 } 5123 #endif 5124 /* @s may be zero sized and seq_buf triggers WARN if so */ 5125 if (s->size) { 5126 va_start(args, fmt); 5127 seq_buf_vprintf(s, fmt, args); 5128 va_end(args); 5129 5130 seq_buf_putc(s, '\n'); 5131 } 5132 } 5133 5134 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 5135 const unsigned long *bt, unsigned int len) 5136 { 5137 unsigned int i; 5138 5139 for (i = 0; i < len; i++) 5140 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 5141 } 5142 5143 static void ops_dump_init(struct seq_buf *s, const char *prefix) 5144 { 5145 struct scx_dump_data *dd = &scx_dump_data; 5146 5147 lockdep_assert_irqs_disabled(); 5148 5149 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 5150 dd->first = true; 5151 dd->cursor = 0; 5152 dd->s = s; 5153 dd->prefix = prefix; 5154 } 5155 5156 static void ops_dump_flush(void) 5157 { 5158 struct scx_dump_data *dd = &scx_dump_data; 5159 char *line = dd->buf.line; 5160 5161 if (!dd->cursor) 5162 return; 5163 5164 /* 5165 * There's something to flush and this is the first line. Insert a blank 5166 * line to distinguish ops dump. 5167 */ 5168 if (dd->first) { 5169 dump_newline(dd->s); 5170 dd->first = false; 5171 } 5172 5173 /* 5174 * There may be multiple lines in $line. Scan and emit each line 5175 * separately. 5176 */ 5177 while (true) { 5178 char *end = line; 5179 char c; 5180 5181 while (*end != '\n' && *end != '\0') 5182 end++; 5183 5184 /* 5185 * If $line overflowed, it may not have newline at the end. 5186 * Always emit with a newline. 5187 */ 5188 c = *end; 5189 *end = '\0'; 5190 dump_line(dd->s, "%s%s", dd->prefix, line); 5191 if (c == '\0') 5192 break; 5193 5194 /* move to the next line */ 5195 end++; 5196 if (*end == '\0') 5197 break; 5198 line = end; 5199 } 5200 5201 dd->cursor = 0; 5202 } 5203 5204 static void ops_dump_exit(void) 5205 { 5206 ops_dump_flush(); 5207 scx_dump_data.cpu = -1; 5208 } 5209 5210 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 5211 struct task_struct *p, char marker) 5212 { 5213 static unsigned long bt[SCX_EXIT_BT_LEN]; 5214 char dsq_id_buf[19] = "(n/a)"; 5215 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 5216 unsigned int bt_len = 0; 5217 5218 if (p->scx.dsq) 5219 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 5220 (unsigned long long)p->scx.dsq->id); 5221 5222 dump_newline(s); 5223 dump_line(s, " %c%c %s[%d] %+ldms", 5224 marker, task_state_to_char(p), p->comm, p->pid, 5225 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 5226 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 5227 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 5228 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 5229 ops_state >> SCX_OPSS_QSEQ_SHIFT); 5230 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu slice=%llu", 5231 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 5232 p->scx.dsq_vtime, p->scx.slice); 5233 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 5234 5235 if (SCX_HAS_OP(dump_task)) { 5236 ops_dump_init(s, " "); 5237 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 5238 ops_dump_exit(); 5239 } 5240 5241 #ifdef CONFIG_STACKTRACE 5242 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 5243 #endif 5244 if (bt_len) { 5245 dump_newline(s); 5246 dump_stack_trace(s, " ", bt, bt_len); 5247 } 5248 } 5249 5250 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5251 { 5252 static DEFINE_SPINLOCK(dump_lock); 5253 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5254 struct scx_dump_ctx dctx = { 5255 .kind = ei->kind, 5256 .exit_code = ei->exit_code, 5257 .reason = ei->reason, 5258 .at_ns = ktime_get_ns(), 5259 .at_jiffies = jiffies, 5260 }; 5261 struct seq_buf s; 5262 unsigned long flags; 5263 char *buf; 5264 int cpu; 5265 5266 spin_lock_irqsave(&dump_lock, flags); 5267 5268 seq_buf_init(&s, ei->dump, dump_len); 5269 5270 if (ei->kind == SCX_EXIT_NONE) { 5271 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5272 } else { 5273 dump_line(&s, "%s[%d] triggered exit kind %d:", 5274 current->comm, current->pid, ei->kind); 5275 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5276 dump_newline(&s); 5277 dump_line(&s, "Backtrace:"); 5278 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5279 } 5280 5281 if (SCX_HAS_OP(dump)) { 5282 ops_dump_init(&s, ""); 5283 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 5284 ops_dump_exit(); 5285 } 5286 5287 dump_newline(&s); 5288 dump_line(&s, "CPU states"); 5289 dump_line(&s, "----------"); 5290 5291 for_each_possible_cpu(cpu) { 5292 struct rq *rq = cpu_rq(cpu); 5293 struct rq_flags rf; 5294 struct task_struct *p; 5295 struct seq_buf ns; 5296 size_t avail, used; 5297 bool idle; 5298 5299 rq_lock(rq, &rf); 5300 5301 idle = list_empty(&rq->scx.runnable_list) && 5302 rq->curr->sched_class == &idle_sched_class; 5303 5304 if (idle && !SCX_HAS_OP(dump_cpu)) 5305 goto next; 5306 5307 /* 5308 * We don't yet know whether ops.dump_cpu() will produce output 5309 * and we may want to skip the default CPU dump if it doesn't. 5310 * Use a nested seq_buf to generate the standard dump so that we 5311 * can decide whether to commit later. 5312 */ 5313 avail = seq_buf_get_buf(&s, &buf); 5314 seq_buf_init(&ns, buf, avail); 5315 5316 dump_newline(&ns); 5317 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5318 cpu, rq->scx.nr_running, rq->scx.flags, 5319 rq->scx.cpu_released, rq->scx.ops_qseq, 5320 rq->scx.pnt_seq); 5321 dump_line(&ns, " curr=%s[%d] class=%ps", 5322 rq->curr->comm, rq->curr->pid, 5323 rq->curr->sched_class); 5324 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5325 dump_line(&ns, " cpus_to_kick : %*pb", 5326 cpumask_pr_args(rq->scx.cpus_to_kick)); 5327 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5328 dump_line(&ns, " idle_to_kick : %*pb", 5329 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5330 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5331 dump_line(&ns, " cpus_to_preempt: %*pb", 5332 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5333 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5334 dump_line(&ns, " cpus_to_wait : %*pb", 5335 cpumask_pr_args(rq->scx.cpus_to_wait)); 5336 5337 used = seq_buf_used(&ns); 5338 if (SCX_HAS_OP(dump_cpu)) { 5339 ops_dump_init(&ns, " "); 5340 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 5341 ops_dump_exit(); 5342 } 5343 5344 /* 5345 * If idle && nothing generated by ops.dump_cpu(), there's 5346 * nothing interesting. Skip. 5347 */ 5348 if (idle && used == seq_buf_used(&ns)) 5349 goto next; 5350 5351 /* 5352 * $s may already have overflowed when $ns was created. If so, 5353 * calling commit on it will trigger BUG. 5354 */ 5355 if (avail) { 5356 seq_buf_commit(&s, seq_buf_used(&ns)); 5357 if (seq_buf_has_overflowed(&ns)) 5358 seq_buf_set_overflow(&s); 5359 } 5360 5361 if (rq->curr->sched_class == &ext_sched_class) 5362 scx_dump_task(&s, &dctx, rq->curr, '*'); 5363 5364 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5365 scx_dump_task(&s, &dctx, p, ' '); 5366 next: 5367 rq_unlock(rq, &rf); 5368 } 5369 5370 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5371 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5372 trunc_marker, sizeof(trunc_marker)); 5373 5374 spin_unlock_irqrestore(&dump_lock, flags); 5375 } 5376 5377 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 5378 { 5379 struct scx_exit_info *ei = scx_exit_info; 5380 5381 if (ei->kind >= SCX_EXIT_ERROR) 5382 scx_dump_state(ei, scx_ops.exit_dump_len); 5383 5384 schedule_scx_ops_disable_work(); 5385 } 5386 5387 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 5388 5389 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 5390 s64 exit_code, 5391 const char *fmt, ...) 5392 { 5393 struct scx_exit_info *ei = scx_exit_info; 5394 int none = SCX_EXIT_NONE; 5395 va_list args; 5396 5397 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 5398 return; 5399 5400 ei->exit_code = exit_code; 5401 #ifdef CONFIG_STACKTRACE 5402 if (kind >= SCX_EXIT_ERROR) 5403 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5404 #endif 5405 va_start(args, fmt); 5406 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5407 va_end(args); 5408 5409 /* 5410 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5411 * in scx_ops_disable_workfn(). 5412 */ 5413 ei->kind = kind; 5414 ei->reason = scx_exit_reason(ei->kind); 5415 5416 irq_work_queue(&scx_ops_error_irq_work); 5417 } 5418 5419 static struct kthread_worker *scx_create_rt_helper(const char *name) 5420 { 5421 struct kthread_worker *helper; 5422 5423 helper = kthread_create_worker(0, name); 5424 if (helper) 5425 sched_set_fifo(helper->task); 5426 return helper; 5427 } 5428 5429 static void check_hotplug_seq(const struct sched_ext_ops *ops) 5430 { 5431 unsigned long long global_hotplug_seq; 5432 5433 /* 5434 * If a hotplug event has occurred between when a scheduler was 5435 * initialized, and when we were able to attach, exit and notify user 5436 * space about it. 5437 */ 5438 if (ops->hotplug_seq) { 5439 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5440 if (ops->hotplug_seq != global_hotplug_seq) { 5441 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5442 "expected hotplug seq %llu did not match actual %llu", 5443 ops->hotplug_seq, global_hotplug_seq); 5444 } 5445 } 5446 } 5447 5448 static int validate_ops(const struct sched_ext_ops *ops) 5449 { 5450 /* 5451 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5452 * ops.enqueue() callback isn't implemented. 5453 */ 5454 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5455 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5456 return -EINVAL; 5457 } 5458 5459 return 0; 5460 } 5461 5462 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5463 { 5464 struct scx_task_iter sti; 5465 struct task_struct *p; 5466 unsigned long timeout; 5467 int i, cpu, node, ret; 5468 5469 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5470 cpu_possible_mask)) { 5471 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5472 return -EINVAL; 5473 } 5474 5475 mutex_lock(&scx_ops_enable_mutex); 5476 5477 if (!scx_ops_helper) { 5478 WRITE_ONCE(scx_ops_helper, 5479 scx_create_rt_helper("sched_ext_ops_helper")); 5480 if (!scx_ops_helper) { 5481 ret = -ENOMEM; 5482 goto err_unlock; 5483 } 5484 } 5485 5486 if (!global_dsqs) { 5487 struct scx_dispatch_q **dsqs; 5488 5489 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 5490 if (!dsqs) { 5491 ret = -ENOMEM; 5492 goto err_unlock; 5493 } 5494 5495 for_each_node_state(node, N_POSSIBLE) { 5496 struct scx_dispatch_q *dsq; 5497 5498 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5499 if (!dsq) { 5500 for_each_node_state(node, N_POSSIBLE) 5501 kfree(dsqs[node]); 5502 kfree(dsqs); 5503 ret = -ENOMEM; 5504 goto err_unlock; 5505 } 5506 5507 init_dsq(dsq, SCX_DSQ_GLOBAL); 5508 dsqs[node] = dsq; 5509 } 5510 5511 global_dsqs = dsqs; 5512 } 5513 5514 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5515 ret = -EBUSY; 5516 goto err_unlock; 5517 } 5518 5519 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5520 if (!scx_root_kobj) { 5521 ret = -ENOMEM; 5522 goto err_unlock; 5523 } 5524 5525 scx_root_kobj->kset = scx_kset; 5526 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5527 if (ret < 0) 5528 goto err; 5529 5530 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5531 if (!scx_exit_info) { 5532 ret = -ENOMEM; 5533 goto err_del; 5534 } 5535 5536 /* 5537 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5538 * disable path. Failure triggers full disabling from here on. 5539 */ 5540 scx_ops = *ops; 5541 5542 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5543 SCX_OPS_DISABLED); 5544 5545 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5546 scx_warned_zero_slice = false; 5547 5548 atomic_long_set(&scx_nr_rejected, 0); 5549 5550 for_each_possible_cpu(cpu) 5551 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5552 5553 /* 5554 * Keep CPUs stable during enable so that the BPF scheduler can track 5555 * online CPUs by watching ->on/offline_cpu() after ->init(). 5556 */ 5557 cpus_read_lock(); 5558 5559 if (scx_ops.init) { 5560 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5561 if (ret) { 5562 ret = ops_sanitize_err("init", ret); 5563 cpus_read_unlock(); 5564 scx_ops_error("ops.init() failed (%d)", ret); 5565 goto err_disable; 5566 } 5567 } 5568 5569 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5570 if (((void (**)(void))ops)[i]) 5571 static_branch_enable_cpuslocked(&scx_has_op[i]); 5572 5573 check_hotplug_seq(ops); 5574 #ifdef CONFIG_SMP 5575 update_selcpu_topology(); 5576 #endif 5577 cpus_read_unlock(); 5578 5579 ret = validate_ops(ops); 5580 if (ret) 5581 goto err_disable; 5582 5583 WARN_ON_ONCE(scx_dsp_ctx); 5584 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5585 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5586 scx_dsp_max_batch), 5587 __alignof__(struct scx_dsp_ctx)); 5588 if (!scx_dsp_ctx) { 5589 ret = -ENOMEM; 5590 goto err_disable; 5591 } 5592 5593 if (ops->timeout_ms) 5594 timeout = msecs_to_jiffies(ops->timeout_ms); 5595 else 5596 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5597 5598 WRITE_ONCE(scx_watchdog_timeout, timeout); 5599 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5600 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5601 scx_watchdog_timeout / 2); 5602 5603 /* 5604 * Once __scx_ops_enabled is set, %current can be switched to SCX 5605 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5606 * userspace scheduling) may not function correctly before all tasks are 5607 * switched. Init in bypass mode to guarantee forward progress. 5608 */ 5609 scx_ops_bypass(true); 5610 5611 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5612 if (((void (**)(void))ops)[i]) 5613 static_branch_enable(&scx_has_op[i]); 5614 5615 if (ops->flags & SCX_OPS_ENQ_LAST) 5616 static_branch_enable(&scx_ops_enq_last); 5617 5618 if (ops->flags & SCX_OPS_ENQ_EXITING) 5619 static_branch_enable(&scx_ops_enq_exiting); 5620 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5621 static_branch_enable(&scx_ops_cpu_preempt); 5622 5623 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5624 reset_idle_masks(); 5625 static_branch_enable(&scx_builtin_idle_enabled); 5626 } else { 5627 static_branch_disable(&scx_builtin_idle_enabled); 5628 } 5629 5630 /* 5631 * Lock out forks, cgroup on/offlining and moves before opening the 5632 * floodgate so that they don't wander into the operations prematurely. 5633 */ 5634 percpu_down_write(&scx_fork_rwsem); 5635 5636 WARN_ON_ONCE(scx_ops_init_task_enabled); 5637 scx_ops_init_task_enabled = true; 5638 5639 /* 5640 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5641 * preventing new tasks from being added. No need to exclude tasks 5642 * leaving as sched_ext_free() can handle both prepped and enabled 5643 * tasks. Prep all tasks first and then enable them with preemption 5644 * disabled. 5645 * 5646 * All cgroups should be initialized before scx_ops_init_task() so that 5647 * the BPF scheduler can reliably track each task's cgroup membership 5648 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5649 * migrations while tasks are being initialized so that 5650 * scx_cgroup_can_attach() never sees uninitialized tasks. 5651 */ 5652 scx_cgroup_lock(); 5653 ret = scx_cgroup_init(); 5654 if (ret) 5655 goto err_disable_unlock_all; 5656 5657 scx_task_iter_start(&sti); 5658 while ((p = scx_task_iter_next_locked(&sti))) { 5659 /* 5660 * @p may already be dead, have lost all its usages counts and 5661 * be waiting for RCU grace period before being freed. @p can't 5662 * be initialized for SCX in such cases and should be ignored. 5663 */ 5664 if (!tryget_task_struct(p)) 5665 continue; 5666 5667 scx_task_iter_unlock(&sti); 5668 5669 ret = scx_ops_init_task(p, task_group(p), false); 5670 if (ret) { 5671 put_task_struct(p); 5672 scx_task_iter_relock(&sti); 5673 scx_task_iter_stop(&sti); 5674 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5675 ret, p->comm, p->pid); 5676 goto err_disable_unlock_all; 5677 } 5678 5679 scx_set_task_state(p, SCX_TASK_READY); 5680 5681 put_task_struct(p); 5682 scx_task_iter_relock(&sti); 5683 } 5684 scx_task_iter_stop(&sti); 5685 scx_cgroup_unlock(); 5686 percpu_up_write(&scx_fork_rwsem); 5687 5688 /* 5689 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5690 * all eligible tasks. 5691 */ 5692 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5693 static_branch_enable(&__scx_ops_enabled); 5694 5695 /* 5696 * We're fully committed and can't fail. The task READY -> ENABLED 5697 * transitions here are synchronized against sched_ext_free() through 5698 * scx_tasks_lock. 5699 */ 5700 percpu_down_write(&scx_fork_rwsem); 5701 scx_task_iter_start(&sti); 5702 while ((p = scx_task_iter_next_locked(&sti))) { 5703 const struct sched_class *old_class = p->sched_class; 5704 const struct sched_class *new_class = 5705 __setscheduler_class(p->policy, p->prio); 5706 struct sched_enq_and_set_ctx ctx; 5707 5708 if (old_class != new_class && p->se.sched_delayed) 5709 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5710 5711 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5712 5713 p->scx.slice = SCX_SLICE_DFL; 5714 p->sched_class = new_class; 5715 check_class_changing(task_rq(p), p, old_class); 5716 5717 sched_enq_and_set_task(&ctx); 5718 5719 check_class_changed(task_rq(p), p, old_class, p->prio); 5720 } 5721 scx_task_iter_stop(&sti); 5722 percpu_up_write(&scx_fork_rwsem); 5723 5724 scx_ops_bypass(false); 5725 5726 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5727 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5728 goto err_disable; 5729 } 5730 5731 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5732 static_branch_enable(&__scx_switched_all); 5733 5734 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5735 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5736 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5737 mutex_unlock(&scx_ops_enable_mutex); 5738 5739 atomic_long_inc(&scx_enable_seq); 5740 5741 return 0; 5742 5743 err_del: 5744 kobject_del(scx_root_kobj); 5745 err: 5746 kobject_put(scx_root_kobj); 5747 scx_root_kobj = NULL; 5748 if (scx_exit_info) { 5749 free_exit_info(scx_exit_info); 5750 scx_exit_info = NULL; 5751 } 5752 err_unlock: 5753 mutex_unlock(&scx_ops_enable_mutex); 5754 return ret; 5755 5756 err_disable_unlock_all: 5757 scx_cgroup_unlock(); 5758 percpu_up_write(&scx_fork_rwsem); 5759 scx_ops_bypass(false); 5760 err_disable: 5761 mutex_unlock(&scx_ops_enable_mutex); 5762 /* 5763 * Returning an error code here would not pass all the error information 5764 * to userspace. Record errno using scx_ops_error() for cases 5765 * scx_ops_error() wasn't already invoked and exit indicating success so 5766 * that the error is notified through ops.exit() with all the details. 5767 * 5768 * Flush scx_ops_disable_work to ensure that error is reported before 5769 * init completion. 5770 */ 5771 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5772 kthread_flush_work(&scx_ops_disable_work); 5773 return 0; 5774 } 5775 5776 5777 /******************************************************************************** 5778 * bpf_struct_ops plumbing. 5779 */ 5780 #include <linux/bpf_verifier.h> 5781 #include <linux/bpf.h> 5782 #include <linux/btf.h> 5783 5784 static const struct btf_type *task_struct_type; 5785 5786 static bool bpf_scx_is_valid_access(int off, int size, 5787 enum bpf_access_type type, 5788 const struct bpf_prog *prog, 5789 struct bpf_insn_access_aux *info) 5790 { 5791 if (type != BPF_READ) 5792 return false; 5793 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5794 return false; 5795 if (off % size != 0) 5796 return false; 5797 5798 return btf_ctx_access(off, size, type, prog, info); 5799 } 5800 5801 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5802 const struct bpf_reg_state *reg, int off, 5803 int size) 5804 { 5805 const struct btf_type *t; 5806 5807 t = btf_type_by_id(reg->btf, reg->btf_id); 5808 if (t == task_struct_type) { 5809 if (off >= offsetof(struct task_struct, scx.slice) && 5810 off + size <= offsetofend(struct task_struct, scx.slice)) 5811 return SCALAR_VALUE; 5812 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5813 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5814 return SCALAR_VALUE; 5815 if (off >= offsetof(struct task_struct, scx.disallow) && 5816 off + size <= offsetofend(struct task_struct, scx.disallow)) 5817 return SCALAR_VALUE; 5818 } 5819 5820 return -EACCES; 5821 } 5822 5823 static const struct bpf_func_proto * 5824 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5825 { 5826 switch (func_id) { 5827 case BPF_FUNC_task_storage_get: 5828 return &bpf_task_storage_get_proto; 5829 case BPF_FUNC_task_storage_delete: 5830 return &bpf_task_storage_delete_proto; 5831 default: 5832 return bpf_base_func_proto(func_id, prog); 5833 } 5834 } 5835 5836 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5837 .get_func_proto = bpf_scx_get_func_proto, 5838 .is_valid_access = bpf_scx_is_valid_access, 5839 .btf_struct_access = bpf_scx_btf_struct_access, 5840 }; 5841 5842 static int bpf_scx_init_member(const struct btf_type *t, 5843 const struct btf_member *member, 5844 void *kdata, const void *udata) 5845 { 5846 const struct sched_ext_ops *uops = udata; 5847 struct sched_ext_ops *ops = kdata; 5848 u32 moff = __btf_member_bit_offset(t, member) / 8; 5849 int ret; 5850 5851 switch (moff) { 5852 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5853 if (*(u32 *)(udata + moff) > INT_MAX) 5854 return -E2BIG; 5855 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5856 return 1; 5857 case offsetof(struct sched_ext_ops, flags): 5858 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5859 return -EINVAL; 5860 ops->flags = *(u64 *)(udata + moff); 5861 return 1; 5862 case offsetof(struct sched_ext_ops, name): 5863 ret = bpf_obj_name_cpy(ops->name, uops->name, 5864 sizeof(ops->name)); 5865 if (ret < 0) 5866 return ret; 5867 if (ret == 0) 5868 return -EINVAL; 5869 return 1; 5870 case offsetof(struct sched_ext_ops, timeout_ms): 5871 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5872 SCX_WATCHDOG_MAX_TIMEOUT) 5873 return -E2BIG; 5874 ops->timeout_ms = *(u32 *)(udata + moff); 5875 return 1; 5876 case offsetof(struct sched_ext_ops, exit_dump_len): 5877 ops->exit_dump_len = 5878 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5879 return 1; 5880 case offsetof(struct sched_ext_ops, hotplug_seq): 5881 ops->hotplug_seq = *(u64 *)(udata + moff); 5882 return 1; 5883 } 5884 5885 return 0; 5886 } 5887 5888 static int bpf_scx_check_member(const struct btf_type *t, 5889 const struct btf_member *member, 5890 const struct bpf_prog *prog) 5891 { 5892 u32 moff = __btf_member_bit_offset(t, member) / 8; 5893 5894 switch (moff) { 5895 case offsetof(struct sched_ext_ops, init_task): 5896 #ifdef CONFIG_EXT_GROUP_SCHED 5897 case offsetof(struct sched_ext_ops, cgroup_init): 5898 case offsetof(struct sched_ext_ops, cgroup_exit): 5899 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5900 #endif 5901 case offsetof(struct sched_ext_ops, cpu_online): 5902 case offsetof(struct sched_ext_ops, cpu_offline): 5903 case offsetof(struct sched_ext_ops, init): 5904 case offsetof(struct sched_ext_ops, exit): 5905 break; 5906 default: 5907 if (prog->sleepable) 5908 return -EINVAL; 5909 } 5910 5911 return 0; 5912 } 5913 5914 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5915 { 5916 return scx_ops_enable(kdata, link); 5917 } 5918 5919 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5920 { 5921 scx_ops_disable(SCX_EXIT_UNREG); 5922 kthread_flush_work(&scx_ops_disable_work); 5923 } 5924 5925 static int bpf_scx_init(struct btf *btf) 5926 { 5927 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5928 5929 return 0; 5930 } 5931 5932 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5933 { 5934 /* 5935 * sched_ext does not support updating the actively-loaded BPF 5936 * scheduler, as registering a BPF scheduler can always fail if the 5937 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5938 * etc. Similarly, we can always race with unregistration happening 5939 * elsewhere, such as with sysrq. 5940 */ 5941 return -EOPNOTSUPP; 5942 } 5943 5944 static int bpf_scx_validate(void *kdata) 5945 { 5946 return 0; 5947 } 5948 5949 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5950 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5951 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5952 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5953 static void sched_ext_ops__tick(struct task_struct *p) {} 5954 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5955 static void sched_ext_ops__running(struct task_struct *p) {} 5956 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5957 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5958 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5959 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5960 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5961 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5962 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5963 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5964 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5965 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5966 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5967 static void sched_ext_ops__enable(struct task_struct *p) {} 5968 static void sched_ext_ops__disable(struct task_struct *p) {} 5969 #ifdef CONFIG_EXT_GROUP_SCHED 5970 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5971 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5972 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5973 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5974 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5975 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5976 #endif 5977 static void sched_ext_ops__cpu_online(s32 cpu) {} 5978 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5979 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5980 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5981 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5982 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5983 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5984 5985 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5986 .select_cpu = sched_ext_ops__select_cpu, 5987 .enqueue = sched_ext_ops__enqueue, 5988 .dequeue = sched_ext_ops__dequeue, 5989 .dispatch = sched_ext_ops__dispatch, 5990 .tick = sched_ext_ops__tick, 5991 .runnable = sched_ext_ops__runnable, 5992 .running = sched_ext_ops__running, 5993 .stopping = sched_ext_ops__stopping, 5994 .quiescent = sched_ext_ops__quiescent, 5995 .yield = sched_ext_ops__yield, 5996 .core_sched_before = sched_ext_ops__core_sched_before, 5997 .set_weight = sched_ext_ops__set_weight, 5998 .set_cpumask = sched_ext_ops__set_cpumask, 5999 .update_idle = sched_ext_ops__update_idle, 6000 .cpu_acquire = sched_ext_ops__cpu_acquire, 6001 .cpu_release = sched_ext_ops__cpu_release, 6002 .init_task = sched_ext_ops__init_task, 6003 .exit_task = sched_ext_ops__exit_task, 6004 .enable = sched_ext_ops__enable, 6005 .disable = sched_ext_ops__disable, 6006 #ifdef CONFIG_EXT_GROUP_SCHED 6007 .cgroup_init = sched_ext_ops__cgroup_init, 6008 .cgroup_exit = sched_ext_ops__cgroup_exit, 6009 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 6010 .cgroup_move = sched_ext_ops__cgroup_move, 6011 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 6012 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 6013 #endif 6014 .cpu_online = sched_ext_ops__cpu_online, 6015 .cpu_offline = sched_ext_ops__cpu_offline, 6016 .init = sched_ext_ops__init, 6017 .exit = sched_ext_ops__exit, 6018 .dump = sched_ext_ops__dump, 6019 .dump_cpu = sched_ext_ops__dump_cpu, 6020 .dump_task = sched_ext_ops__dump_task, 6021 }; 6022 6023 static struct bpf_struct_ops bpf_sched_ext_ops = { 6024 .verifier_ops = &bpf_scx_verifier_ops, 6025 .reg = bpf_scx_reg, 6026 .unreg = bpf_scx_unreg, 6027 .check_member = bpf_scx_check_member, 6028 .init_member = bpf_scx_init_member, 6029 .init = bpf_scx_init, 6030 .update = bpf_scx_update, 6031 .validate = bpf_scx_validate, 6032 .name = "sched_ext_ops", 6033 .owner = THIS_MODULE, 6034 .cfi_stubs = &__bpf_ops_sched_ext_ops 6035 }; 6036 6037 6038 /******************************************************************************** 6039 * System integration and init. 6040 */ 6041 6042 static void sysrq_handle_sched_ext_reset(u8 key) 6043 { 6044 if (scx_ops_helper) 6045 scx_ops_disable(SCX_EXIT_SYSRQ); 6046 else 6047 pr_info("sched_ext: BPF scheduler not yet used\n"); 6048 } 6049 6050 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 6051 .handler = sysrq_handle_sched_ext_reset, 6052 .help_msg = "reset-sched-ext(S)", 6053 .action_msg = "Disable sched_ext and revert all tasks to CFS", 6054 .enable_mask = SYSRQ_ENABLE_RTNICE, 6055 }; 6056 6057 static void sysrq_handle_sched_ext_dump(u8 key) 6058 { 6059 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 6060 6061 if (scx_enabled()) 6062 scx_dump_state(&ei, 0); 6063 } 6064 6065 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 6066 .handler = sysrq_handle_sched_ext_dump, 6067 .help_msg = "dump-sched-ext(D)", 6068 .action_msg = "Trigger sched_ext debug dump", 6069 .enable_mask = SYSRQ_ENABLE_RTNICE, 6070 }; 6071 6072 static bool can_skip_idle_kick(struct rq *rq) 6073 { 6074 lockdep_assert_rq_held(rq); 6075 6076 /* 6077 * We can skip idle kicking if @rq is going to go through at least one 6078 * full SCX scheduling cycle before going idle. Just checking whether 6079 * curr is not idle is insufficient because we could be racing 6080 * balance_one() trying to pull the next task from a remote rq, which 6081 * may fail, and @rq may become idle afterwards. 6082 * 6083 * The race window is small and we don't and can't guarantee that @rq is 6084 * only kicked while idle anyway. Skip only when sure. 6085 */ 6086 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 6087 } 6088 6089 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 6090 { 6091 struct rq *rq = cpu_rq(cpu); 6092 struct scx_rq *this_scx = &this_rq->scx; 6093 bool should_wait = false; 6094 unsigned long flags; 6095 6096 raw_spin_rq_lock_irqsave(rq, flags); 6097 6098 /* 6099 * During CPU hotplug, a CPU may depend on kicking itself to make 6100 * forward progress. Allow kicking self regardless of online state. 6101 */ 6102 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 6103 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 6104 if (rq->curr->sched_class == &ext_sched_class) 6105 rq->curr->scx.slice = 0; 6106 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6107 } 6108 6109 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 6110 pseqs[cpu] = rq->scx.pnt_seq; 6111 should_wait = true; 6112 } 6113 6114 resched_curr(rq); 6115 } else { 6116 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6117 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6118 } 6119 6120 raw_spin_rq_unlock_irqrestore(rq, flags); 6121 6122 return should_wait; 6123 } 6124 6125 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 6126 { 6127 struct rq *rq = cpu_rq(cpu); 6128 unsigned long flags; 6129 6130 raw_spin_rq_lock_irqsave(rq, flags); 6131 6132 if (!can_skip_idle_kick(rq) && 6133 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 6134 resched_curr(rq); 6135 6136 raw_spin_rq_unlock_irqrestore(rq, flags); 6137 } 6138 6139 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 6140 { 6141 struct rq *this_rq = this_rq(); 6142 struct scx_rq *this_scx = &this_rq->scx; 6143 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 6144 bool should_wait = false; 6145 s32 cpu; 6146 6147 for_each_cpu(cpu, this_scx->cpus_to_kick) { 6148 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 6149 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 6150 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6151 } 6152 6153 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 6154 kick_one_cpu_if_idle(cpu, this_rq); 6155 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6156 } 6157 6158 if (!should_wait) 6159 return; 6160 6161 for_each_cpu(cpu, this_scx->cpus_to_wait) { 6162 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 6163 6164 if (cpu != cpu_of(this_rq)) { 6165 /* 6166 * Pairs with smp_store_release() issued by this CPU in 6167 * switch_class() on the resched path. 6168 * 6169 * We busy-wait here to guarantee that no other task can 6170 * be scheduled on our core before the target CPU has 6171 * entered the resched path. 6172 */ 6173 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 6174 cpu_relax(); 6175 } 6176 6177 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6178 } 6179 } 6180 6181 /** 6182 * print_scx_info - print out sched_ext scheduler state 6183 * @log_lvl: the log level to use when printing 6184 * @p: target task 6185 * 6186 * If a sched_ext scheduler is enabled, print the name and state of the 6187 * scheduler. If @p is on sched_ext, print further information about the task. 6188 * 6189 * This function can be safely called on any task as long as the task_struct 6190 * itself is accessible. While safe, this function isn't synchronized and may 6191 * print out mixups or garbages of limited length. 6192 */ 6193 void print_scx_info(const char *log_lvl, struct task_struct *p) 6194 { 6195 enum scx_ops_enable_state state = scx_ops_enable_state(); 6196 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 6197 char runnable_at_buf[22] = "?"; 6198 struct sched_class *class; 6199 unsigned long runnable_at; 6200 6201 if (state == SCX_OPS_DISABLED) 6202 return; 6203 6204 /* 6205 * Carefully check if the task was running on sched_ext, and then 6206 * carefully copy the time it's been runnable, and its state. 6207 */ 6208 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 6209 class != &ext_sched_class) { 6210 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 6211 scx_ops_enable_state_str[state], all); 6212 return; 6213 } 6214 6215 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 6216 sizeof(runnable_at))) 6217 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6218 jiffies_delta_msecs(runnable_at, jiffies)); 6219 6220 /* print everything onto one line to conserve console space */ 6221 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6222 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 6223 runnable_at_buf); 6224 } 6225 6226 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6227 { 6228 /* 6229 * SCX schedulers often have userspace components which are sometimes 6230 * involved in critial scheduling paths. PM operations involve freezing 6231 * userspace which can lead to scheduling misbehaviors including stalls. 6232 * Let's bypass while PM operations are in progress. 6233 */ 6234 switch (event) { 6235 case PM_HIBERNATION_PREPARE: 6236 case PM_SUSPEND_PREPARE: 6237 case PM_RESTORE_PREPARE: 6238 scx_ops_bypass(true); 6239 break; 6240 case PM_POST_HIBERNATION: 6241 case PM_POST_SUSPEND: 6242 case PM_POST_RESTORE: 6243 scx_ops_bypass(false); 6244 break; 6245 } 6246 6247 return NOTIFY_OK; 6248 } 6249 6250 static struct notifier_block scx_pm_notifier = { 6251 .notifier_call = scx_pm_handler, 6252 }; 6253 6254 void __init init_sched_ext_class(void) 6255 { 6256 s32 cpu, v; 6257 6258 /* 6259 * The following is to prevent the compiler from optimizing out the enum 6260 * definitions so that BPF scheduler implementations can use them 6261 * through the generated vmlinux.h. 6262 */ 6263 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6264 SCX_TG_ONLINE); 6265 6266 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 6267 #ifdef CONFIG_SMP 6268 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 6269 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 6270 #endif 6271 scx_kick_cpus_pnt_seqs = 6272 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6273 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6274 BUG_ON(!scx_kick_cpus_pnt_seqs); 6275 6276 for_each_possible_cpu(cpu) { 6277 struct rq *rq = cpu_rq(cpu); 6278 6279 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6280 INIT_LIST_HEAD(&rq->scx.runnable_list); 6281 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6282 6283 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 6284 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 6285 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 6286 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 6287 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6288 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6289 6290 if (cpu_online(cpu)) 6291 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6292 } 6293 6294 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6295 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6296 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6297 } 6298 6299 6300 /******************************************************************************** 6301 * Helpers that can be called from the BPF scheduler. 6302 */ 6303 #include <linux/btf_ids.h> 6304 6305 __bpf_kfunc_start_defs(); 6306 6307 static bool check_builtin_idle_enabled(void) 6308 { 6309 if (static_branch_likely(&scx_builtin_idle_enabled)) 6310 return true; 6311 6312 scx_ops_error("built-in idle tracking is disabled"); 6313 return false; 6314 } 6315 6316 /** 6317 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 6318 * @p: task_struct to select a CPU for 6319 * @prev_cpu: CPU @p was on previously 6320 * @wake_flags: %SCX_WAKE_* flags 6321 * @is_idle: out parameter indicating whether the returned CPU is idle 6322 * 6323 * Can only be called from ops.select_cpu() if the built-in CPU selection is 6324 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 6325 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 6326 * 6327 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 6328 * currently idle and thus a good candidate for direct dispatching. 6329 */ 6330 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 6331 u64 wake_flags, bool *is_idle) 6332 { 6333 if (!check_builtin_idle_enabled()) 6334 goto prev_cpu; 6335 6336 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) 6337 goto prev_cpu; 6338 6339 #ifdef CONFIG_SMP 6340 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 6341 #endif 6342 6343 prev_cpu: 6344 *is_idle = false; 6345 return prev_cpu; 6346 } 6347 6348 __bpf_kfunc_end_defs(); 6349 6350 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 6351 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 6352 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 6353 6354 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 6355 .owner = THIS_MODULE, 6356 .set = &scx_kfunc_ids_select_cpu, 6357 }; 6358 6359 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6360 { 6361 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6362 return false; 6363 6364 lockdep_assert_irqs_disabled(); 6365 6366 if (unlikely(!p)) { 6367 scx_ops_error("called with NULL task"); 6368 return false; 6369 } 6370 6371 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6372 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 6373 return false; 6374 } 6375 6376 return true; 6377 } 6378 6379 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6380 u64 enq_flags) 6381 { 6382 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6383 struct task_struct *ddsp_task; 6384 6385 ddsp_task = __this_cpu_read(direct_dispatch_task); 6386 if (ddsp_task) { 6387 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6388 return; 6389 } 6390 6391 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6392 scx_ops_error("dispatch buffer overflow"); 6393 return; 6394 } 6395 6396 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6397 .task = p, 6398 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6399 .dsq_id = dsq_id, 6400 .enq_flags = enq_flags, 6401 }; 6402 } 6403 6404 __bpf_kfunc_start_defs(); 6405 6406 /** 6407 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6408 * @p: task_struct to insert 6409 * @dsq_id: DSQ to insert into 6410 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6411 * @enq_flags: SCX_ENQ_* 6412 * 6413 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6414 * call this function spuriously. Can be called from ops.enqueue(), 6415 * ops.select_cpu(), and ops.dispatch(). 6416 * 6417 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6418 * and @p must match the task being enqueued. 6419 * 6420 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6421 * will be directly inserted into the corresponding dispatch queue after 6422 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6423 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6424 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6425 * task is inserted. 6426 * 6427 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6428 * and this function can be called upto ops.dispatch_max_batch times to insert 6429 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6430 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6431 * 6432 * This function doesn't have any locking restrictions and may be called under 6433 * BPF locks (in the future when BPF introduces more flexible locking). 6434 * 6435 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6436 * exhaustion. If zero, the current residual slice is maintained. If 6437 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6438 * scx_bpf_kick_cpu() to trigger scheduling. 6439 */ 6440 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6441 u64 enq_flags) 6442 { 6443 if (!scx_dsq_insert_preamble(p, enq_flags)) 6444 return; 6445 6446 if (slice) 6447 p->scx.slice = slice; 6448 else 6449 p->scx.slice = p->scx.slice ?: 1; 6450 6451 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6452 } 6453 6454 /* for backward compatibility, will be removed in v6.15 */ 6455 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6456 u64 enq_flags) 6457 { 6458 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6459 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6460 } 6461 6462 /** 6463 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6464 * @p: task_struct to insert 6465 * @dsq_id: DSQ to insert into 6466 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6467 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6468 * @enq_flags: SCX_ENQ_* 6469 * 6470 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6471 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6472 * are identical to scx_bpf_dsq_insert(). 6473 * 6474 * @vtime ordering is according to time_before64() which considers wrapping. A 6475 * numerically larger vtime may indicate an earlier position in the ordering and 6476 * vice-versa. 6477 * 6478 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6479 * function must not be called on a DSQ which already has one or more FIFO tasks 6480 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6481 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6482 */ 6483 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6484 u64 slice, u64 vtime, u64 enq_flags) 6485 { 6486 if (!scx_dsq_insert_preamble(p, enq_flags)) 6487 return; 6488 6489 if (slice) 6490 p->scx.slice = slice; 6491 else 6492 p->scx.slice = p->scx.slice ?: 1; 6493 6494 p->scx.dsq_vtime = vtime; 6495 6496 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6497 } 6498 6499 /* for backward compatibility, will be removed in v6.15 */ 6500 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6501 u64 slice, u64 vtime, u64 enq_flags) 6502 { 6503 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6504 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6505 } 6506 6507 __bpf_kfunc_end_defs(); 6508 6509 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6510 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6511 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6512 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6513 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6514 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6515 6516 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6517 .owner = THIS_MODULE, 6518 .set = &scx_kfunc_ids_enqueue_dispatch, 6519 }; 6520 6521 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 6522 struct task_struct *p, u64 dsq_id, u64 enq_flags) 6523 { 6524 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6525 struct rq *this_rq, *src_rq, *locked_rq; 6526 bool dispatched = false; 6527 bool in_balance; 6528 unsigned long flags; 6529 6530 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6531 return false; 6532 6533 /* 6534 * Can be called from either ops.dispatch() locking this_rq() or any 6535 * context where no rq lock is held. If latter, lock @p's task_rq which 6536 * we'll likely need anyway. 6537 */ 6538 src_rq = task_rq(p); 6539 6540 local_irq_save(flags); 6541 this_rq = this_rq(); 6542 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6543 6544 if (in_balance) { 6545 if (this_rq != src_rq) { 6546 raw_spin_rq_unlock(this_rq); 6547 raw_spin_rq_lock(src_rq); 6548 } 6549 } else { 6550 raw_spin_rq_lock(src_rq); 6551 } 6552 6553 /* 6554 * If the BPF scheduler keeps calling this function repeatedly, it can 6555 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6556 * breather if necessary. 6557 */ 6558 scx_ops_breather(src_rq); 6559 6560 locked_rq = src_rq; 6561 raw_spin_lock(&src_dsq->lock); 6562 6563 /* 6564 * Did someone else get to it? @p could have already left $src_dsq, got 6565 * re-enqueud, or be in the process of being consumed by someone else. 6566 */ 6567 if (unlikely(p->scx.dsq != src_dsq || 6568 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6569 p->scx.holding_cpu >= 0) || 6570 WARN_ON_ONCE(src_rq != task_rq(p))) { 6571 raw_spin_unlock(&src_dsq->lock); 6572 goto out; 6573 } 6574 6575 /* @p is still on $src_dsq and stable, determine the destination */ 6576 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6577 6578 /* 6579 * Apply vtime and slice updates before moving so that the new time is 6580 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6581 * this is safe as we're locking it. 6582 */ 6583 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6584 p->scx.dsq_vtime = kit->vtime; 6585 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6586 p->scx.slice = kit->slice; 6587 6588 /* execute move */ 6589 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq); 6590 dispatched = true; 6591 out: 6592 if (in_balance) { 6593 if (this_rq != locked_rq) { 6594 raw_spin_rq_unlock(locked_rq); 6595 raw_spin_rq_lock(this_rq); 6596 } 6597 } else { 6598 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6599 } 6600 6601 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6602 __SCX_DSQ_ITER_HAS_VTIME); 6603 return dispatched; 6604 } 6605 6606 __bpf_kfunc_start_defs(); 6607 6608 /** 6609 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6610 * 6611 * Can only be called from ops.dispatch(). 6612 */ 6613 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6614 { 6615 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6616 return 0; 6617 6618 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6619 } 6620 6621 /** 6622 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6623 * 6624 * Cancel the latest dispatch. Can be called multiple times to cancel further 6625 * dispatches. Can only be called from ops.dispatch(). 6626 */ 6627 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6628 { 6629 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6630 6631 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6632 return; 6633 6634 if (dspc->cursor > 0) 6635 dspc->cursor--; 6636 else 6637 scx_ops_error("dispatch buffer underflow"); 6638 } 6639 6640 /** 6641 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6642 * @dsq_id: DSQ to move task from 6643 * 6644 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6645 * local DSQ for execution. Can only be called from ops.dispatch(). 6646 * 6647 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6648 * before trying to move from the specified DSQ. It may also grab rq locks and 6649 * thus can't be called under any BPF locks. 6650 * 6651 * Returns %true if a task has been moved, %false if there isn't any task to 6652 * move. 6653 */ 6654 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6655 { 6656 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6657 struct scx_dispatch_q *dsq; 6658 6659 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6660 return false; 6661 6662 flush_dispatch_buf(dspc->rq); 6663 6664 dsq = find_user_dsq(dsq_id); 6665 if (unlikely(!dsq)) { 6666 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6667 return false; 6668 } 6669 6670 if (consume_dispatch_q(dspc->rq, dsq)) { 6671 /* 6672 * A successfully consumed task can be dequeued before it starts 6673 * running while the CPU is trying to migrate other dispatched 6674 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6675 * local DSQ. 6676 */ 6677 dspc->nr_tasks++; 6678 return true; 6679 } else { 6680 return false; 6681 } 6682 } 6683 6684 /* for backward compatibility, will be removed in v6.15 */ 6685 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6686 { 6687 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6688 return scx_bpf_dsq_move_to_local(dsq_id); 6689 } 6690 6691 /** 6692 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6693 * @it__iter: DSQ iterator in progress 6694 * @slice: duration the moved task can run for in nsecs 6695 * 6696 * Override the slice of the next task that will be moved from @it__iter using 6697 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6698 * slice duration is kept. 6699 */ 6700 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6701 u64 slice) 6702 { 6703 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6704 6705 kit->slice = slice; 6706 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6707 } 6708 6709 /* for backward compatibility, will be removed in v6.15 */ 6710 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6711 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6712 { 6713 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()"); 6714 scx_bpf_dsq_move_set_slice(it__iter, slice); 6715 } 6716 6717 /** 6718 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6719 * @it__iter: DSQ iterator in progress 6720 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6721 * 6722 * Override the vtime of the next task that will be moved from @it__iter using 6723 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6724 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6725 * override is ignored and cleared. 6726 */ 6727 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6728 u64 vtime) 6729 { 6730 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6731 6732 kit->vtime = vtime; 6733 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6734 } 6735 6736 /* for backward compatibility, will be removed in v6.15 */ 6737 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6738 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6739 { 6740 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()"); 6741 scx_bpf_dsq_move_set_vtime(it__iter, vtime); 6742 } 6743 6744 /** 6745 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6746 * @it__iter: DSQ iterator in progress 6747 * @p: task to transfer 6748 * @dsq_id: DSQ to move @p to 6749 * @enq_flags: SCX_ENQ_* 6750 * 6751 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6752 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6753 * be the destination. 6754 * 6755 * For the transfer to be successful, @p must still be on the DSQ and have been 6756 * queued before the DSQ iteration started. This function doesn't care whether 6757 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6758 * been queued before the iteration started. 6759 * 6760 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6761 * 6762 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6763 * lock (e.g. BPF timers or SYSCALL programs). 6764 * 6765 * Returns %true if @p has been consumed, %false if @p had already been consumed 6766 * or dequeued. 6767 */ 6768 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6769 struct task_struct *p, u64 dsq_id, 6770 u64 enq_flags) 6771 { 6772 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6773 p, dsq_id, enq_flags); 6774 } 6775 6776 /* for backward compatibility, will be removed in v6.15 */ 6777 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6778 struct task_struct *p, u64 dsq_id, 6779 u64 enq_flags) 6780 { 6781 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()"); 6782 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags); 6783 } 6784 6785 /** 6786 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6787 * @it__iter: DSQ iterator in progress 6788 * @p: task to transfer 6789 * @dsq_id: DSQ to move @p to 6790 * @enq_flags: SCX_ENQ_* 6791 * 6792 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6793 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6794 * user DSQ as only user DSQs support priority queue. 6795 * 6796 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6797 * and scx_bpf_dsq_move_set_vtime() to update. 6798 * 6799 * All other aspects are identical to scx_bpf_dsq_move(). See 6800 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6801 */ 6802 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6803 struct task_struct *p, u64 dsq_id, 6804 u64 enq_flags) 6805 { 6806 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6807 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6808 } 6809 6810 /* for backward compatibility, will be removed in v6.15 */ 6811 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6812 struct task_struct *p, u64 dsq_id, 6813 u64 enq_flags) 6814 { 6815 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()"); 6816 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags); 6817 } 6818 6819 __bpf_kfunc_end_defs(); 6820 6821 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6822 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6823 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6824 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6825 BTF_ID_FLAGS(func, scx_bpf_consume) 6826 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6827 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6828 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6829 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6830 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6831 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6832 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6833 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6834 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6835 6836 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6837 .owner = THIS_MODULE, 6838 .set = &scx_kfunc_ids_dispatch, 6839 }; 6840 6841 __bpf_kfunc_start_defs(); 6842 6843 /** 6844 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6845 * 6846 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6847 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6848 * processed tasks. Can only be called from ops.cpu_release(). 6849 */ 6850 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6851 { 6852 LIST_HEAD(tasks); 6853 u32 nr_enqueued = 0; 6854 struct rq *rq; 6855 struct task_struct *p, *n; 6856 6857 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6858 return 0; 6859 6860 rq = cpu_rq(smp_processor_id()); 6861 lockdep_assert_rq_held(rq); 6862 6863 /* 6864 * The BPF scheduler may choose to dispatch tasks back to 6865 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6866 * first to avoid processing the same tasks repeatedly. 6867 */ 6868 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6869 scx.dsq_list.node) { 6870 /* 6871 * If @p is being migrated, @p's current CPU may not agree with 6872 * its allowed CPUs and the migration_cpu_stop is about to 6873 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6874 * 6875 * While racing sched property changes may also dequeue and 6876 * re-enqueue a migrating task while its current CPU and allowed 6877 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6878 * the current local DSQ for running tasks and thus are not 6879 * visible to the BPF scheduler. 6880 */ 6881 if (p->migration_pending) 6882 continue; 6883 6884 dispatch_dequeue(rq, p); 6885 list_add_tail(&p->scx.dsq_list.node, &tasks); 6886 } 6887 6888 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6889 list_del_init(&p->scx.dsq_list.node); 6890 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6891 nr_enqueued++; 6892 } 6893 6894 return nr_enqueued; 6895 } 6896 6897 __bpf_kfunc_end_defs(); 6898 6899 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6900 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6901 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6902 6903 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6904 .owner = THIS_MODULE, 6905 .set = &scx_kfunc_ids_cpu_release, 6906 }; 6907 6908 __bpf_kfunc_start_defs(); 6909 6910 /** 6911 * scx_bpf_create_dsq - Create a custom DSQ 6912 * @dsq_id: DSQ to create 6913 * @node: NUMA node to allocate from 6914 * 6915 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6916 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6917 */ 6918 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6919 { 6920 if (unlikely(node >= (int)nr_node_ids || 6921 (node < 0 && node != NUMA_NO_NODE))) 6922 return -EINVAL; 6923 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6924 } 6925 6926 __bpf_kfunc_end_defs(); 6927 6928 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6929 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6930 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6931 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6932 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6933 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6934 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6935 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6936 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6937 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6938 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6939 6940 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6941 .owner = THIS_MODULE, 6942 .set = &scx_kfunc_ids_unlocked, 6943 }; 6944 6945 __bpf_kfunc_start_defs(); 6946 6947 /** 6948 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6949 * @cpu: cpu to kick 6950 * @flags: %SCX_KICK_* flags 6951 * 6952 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6953 * trigger rescheduling on a busy CPU. This can be called from any online 6954 * scx_ops operation and the actual kicking is performed asynchronously through 6955 * an irq work. 6956 */ 6957 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6958 { 6959 struct rq *this_rq; 6960 unsigned long irq_flags; 6961 6962 if (!ops_cpu_valid(cpu, NULL)) 6963 return; 6964 6965 local_irq_save(irq_flags); 6966 6967 this_rq = this_rq(); 6968 6969 /* 6970 * While bypassing for PM ops, IRQ handling may not be online which can 6971 * lead to irq_work_queue() malfunction such as infinite busy wait for 6972 * IRQ status update. Suppress kicking. 6973 */ 6974 if (scx_rq_bypassing(this_rq)) 6975 goto out; 6976 6977 /* 6978 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6979 * rq locks. We can probably be smarter and avoid bouncing if called 6980 * from ops which don't hold a rq lock. 6981 */ 6982 if (flags & SCX_KICK_IDLE) { 6983 struct rq *target_rq = cpu_rq(cpu); 6984 6985 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6986 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6987 6988 if (raw_spin_rq_trylock(target_rq)) { 6989 if (can_skip_idle_kick(target_rq)) { 6990 raw_spin_rq_unlock(target_rq); 6991 goto out; 6992 } 6993 raw_spin_rq_unlock(target_rq); 6994 } 6995 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6996 } else { 6997 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6998 6999 if (flags & SCX_KICK_PREEMPT) 7000 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 7001 if (flags & SCX_KICK_WAIT) 7002 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 7003 } 7004 7005 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 7006 out: 7007 local_irq_restore(irq_flags); 7008 } 7009 7010 /** 7011 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 7012 * @dsq_id: id of the DSQ 7013 * 7014 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 7015 * -%ENOENT is returned. 7016 */ 7017 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 7018 { 7019 struct scx_dispatch_q *dsq; 7020 s32 ret; 7021 7022 preempt_disable(); 7023 7024 if (dsq_id == SCX_DSQ_LOCAL) { 7025 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 7026 goto out; 7027 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 7028 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 7029 7030 if (ops_cpu_valid(cpu, NULL)) { 7031 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 7032 goto out; 7033 } 7034 } else { 7035 dsq = find_user_dsq(dsq_id); 7036 if (dsq) { 7037 ret = READ_ONCE(dsq->nr); 7038 goto out; 7039 } 7040 } 7041 ret = -ENOENT; 7042 out: 7043 preempt_enable(); 7044 return ret; 7045 } 7046 7047 /** 7048 * scx_bpf_destroy_dsq - Destroy a custom DSQ 7049 * @dsq_id: DSQ to destroy 7050 * 7051 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 7052 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 7053 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 7054 * which doesn't exist. Can be called from any online scx_ops operations. 7055 */ 7056 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 7057 { 7058 destroy_dsq(dsq_id); 7059 } 7060 7061 /** 7062 * bpf_iter_scx_dsq_new - Create a DSQ iterator 7063 * @it: iterator to initialize 7064 * @dsq_id: DSQ to iterate 7065 * @flags: %SCX_DSQ_ITER_* 7066 * 7067 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 7068 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 7069 * tasks which are already queued when this function is invoked. 7070 */ 7071 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 7072 u64 flags) 7073 { 7074 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7075 7076 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 7077 sizeof(struct bpf_iter_scx_dsq)); 7078 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 7079 __alignof__(struct bpf_iter_scx_dsq)); 7080 7081 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 7082 return -EINVAL; 7083 7084 kit->dsq = find_user_dsq(dsq_id); 7085 if (!kit->dsq) 7086 return -ENOENT; 7087 7088 INIT_LIST_HEAD(&kit->cursor.node); 7089 kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags; 7090 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 7091 7092 return 0; 7093 } 7094 7095 /** 7096 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 7097 * @it: iterator to progress 7098 * 7099 * Return the next task. See bpf_iter_scx_dsq_new(). 7100 */ 7101 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 7102 { 7103 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7104 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 7105 struct task_struct *p; 7106 unsigned long flags; 7107 7108 if (!kit->dsq) 7109 return NULL; 7110 7111 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7112 7113 if (list_empty(&kit->cursor.node)) 7114 p = NULL; 7115 else 7116 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 7117 7118 /* 7119 * Only tasks which were queued before the iteration started are 7120 * visible. This bounds BPF iterations and guarantees that vtime never 7121 * jumps in the other direction while iterating. 7122 */ 7123 do { 7124 p = nldsq_next_task(kit->dsq, p, rev); 7125 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 7126 7127 if (p) { 7128 if (rev) 7129 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 7130 else 7131 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 7132 } else { 7133 list_del_init(&kit->cursor.node); 7134 } 7135 7136 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7137 7138 return p; 7139 } 7140 7141 /** 7142 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 7143 * @it: iterator to destroy 7144 * 7145 * Undo scx_iter_scx_dsq_new(). 7146 */ 7147 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 7148 { 7149 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7150 7151 if (!kit->dsq) 7152 return; 7153 7154 if (!list_empty(&kit->cursor.node)) { 7155 unsigned long flags; 7156 7157 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7158 list_del_init(&kit->cursor.node); 7159 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7160 } 7161 kit->dsq = NULL; 7162 } 7163 7164 __bpf_kfunc_end_defs(); 7165 7166 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 7167 char *fmt, unsigned long long *data, u32 data__sz) 7168 { 7169 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 7170 s32 ret; 7171 7172 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 7173 (data__sz && !data)) { 7174 scx_ops_error("invalid data=%p and data__sz=%u", 7175 (void *)data, data__sz); 7176 return -EINVAL; 7177 } 7178 7179 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 7180 if (ret < 0) { 7181 scx_ops_error("failed to read data fields (%d)", ret); 7182 return ret; 7183 } 7184 7185 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 7186 &bprintf_data); 7187 if (ret < 0) { 7188 scx_ops_error("format preparation failed (%d)", ret); 7189 return ret; 7190 } 7191 7192 ret = bstr_printf(line_buf, line_size, fmt, 7193 bprintf_data.bin_args); 7194 bpf_bprintf_cleanup(&bprintf_data); 7195 if (ret < 0) { 7196 scx_ops_error("(\"%s\", %p, %u) failed to format", 7197 fmt, data, data__sz); 7198 return ret; 7199 } 7200 7201 return ret; 7202 } 7203 7204 static s32 bstr_format(struct scx_bstr_buf *buf, 7205 char *fmt, unsigned long long *data, u32 data__sz) 7206 { 7207 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 7208 fmt, data, data__sz); 7209 } 7210 7211 __bpf_kfunc_start_defs(); 7212 7213 /** 7214 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 7215 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 7216 * @fmt: error message format string 7217 * @data: format string parameters packaged using ___bpf_fill() macro 7218 * @data__sz: @data len, must end in '__sz' for the verifier 7219 * 7220 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 7221 * disabling. 7222 */ 7223 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 7224 unsigned long long *data, u32 data__sz) 7225 { 7226 unsigned long flags; 7227 7228 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7229 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7230 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 7231 scx_exit_bstr_buf.line); 7232 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7233 } 7234 7235 /** 7236 * scx_bpf_error_bstr - Indicate fatal error 7237 * @fmt: error message format string 7238 * @data: format string parameters packaged using ___bpf_fill() macro 7239 * @data__sz: @data len, must end in '__sz' for the verifier 7240 * 7241 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 7242 * disabling. 7243 */ 7244 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 7245 u32 data__sz) 7246 { 7247 unsigned long flags; 7248 7249 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7250 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7251 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 7252 scx_exit_bstr_buf.line); 7253 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7254 } 7255 7256 /** 7257 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 7258 * @fmt: format string 7259 * @data: format string parameters packaged using ___bpf_fill() macro 7260 * @data__sz: @data len, must end in '__sz' for the verifier 7261 * 7262 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 7263 * dump_task() to generate extra debug dump specific to the BPF scheduler. 7264 * 7265 * The extra dump may be multiple lines. A single line may be split over 7266 * multiple calls. The last line is automatically terminated. 7267 */ 7268 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 7269 u32 data__sz) 7270 { 7271 struct scx_dump_data *dd = &scx_dump_data; 7272 struct scx_bstr_buf *buf = &dd->buf; 7273 s32 ret; 7274 7275 if (raw_smp_processor_id() != dd->cpu) { 7276 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7277 return; 7278 } 7279 7280 /* append the formatted string to the line buf */ 7281 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7282 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7283 if (ret < 0) { 7284 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7285 dd->prefix, fmt, data, data__sz, ret); 7286 return; 7287 } 7288 7289 dd->cursor += ret; 7290 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7291 7292 if (!dd->cursor) 7293 return; 7294 7295 /* 7296 * If the line buf overflowed or ends in a newline, flush it into the 7297 * dump. This is to allow the caller to generate a single line over 7298 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7299 * the line buf, the only case which can lead to an unexpected 7300 * truncation is when the caller keeps generating newlines in the middle 7301 * instead of the end consecutively. Don't do that. 7302 */ 7303 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7304 ops_dump_flush(); 7305 } 7306 7307 /** 7308 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7309 * @cpu: CPU of interest 7310 * 7311 * Return the maximum relative capacity of @cpu in relation to the most 7312 * performant CPU in the system. The return value is in the range [1, 7313 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7314 */ 7315 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7316 { 7317 if (ops_cpu_valid(cpu, NULL)) 7318 return arch_scale_cpu_capacity(cpu); 7319 else 7320 return SCX_CPUPERF_ONE; 7321 } 7322 7323 /** 7324 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7325 * @cpu: CPU of interest 7326 * 7327 * Return the current relative performance of @cpu in relation to its maximum. 7328 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7329 * 7330 * The current performance level of a CPU in relation to the maximum performance 7331 * available in the system can be calculated as follows: 7332 * 7333 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7334 * 7335 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7336 */ 7337 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7338 { 7339 if (ops_cpu_valid(cpu, NULL)) 7340 return arch_scale_freq_capacity(cpu); 7341 else 7342 return SCX_CPUPERF_ONE; 7343 } 7344 7345 /** 7346 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7347 * @cpu: CPU of interest 7348 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7349 * @flags: %SCX_CPUPERF_* flags 7350 * 7351 * Set the target performance level of @cpu to @perf. @perf is in linear 7352 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7353 * schedutil cpufreq governor chooses the target frequency. 7354 * 7355 * The actual performance level chosen, CPU grouping, and the overhead and 7356 * latency of the operations are dependent on the hardware and cpufreq driver in 7357 * use. Consult hardware and cpufreq documentation for more information. The 7358 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7359 */ 7360 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7361 { 7362 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7363 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7364 return; 7365 } 7366 7367 if (ops_cpu_valid(cpu, NULL)) { 7368 struct rq *rq = cpu_rq(cpu); 7369 7370 rq->scx.cpuperf_target = perf; 7371 7372 rcu_read_lock_sched_notrace(); 7373 cpufreq_update_util(cpu_rq(cpu), 0); 7374 rcu_read_unlock_sched_notrace(); 7375 } 7376 } 7377 7378 /** 7379 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7380 * 7381 * All valid CPU IDs in the system are smaller than the returned value. 7382 */ 7383 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7384 { 7385 return nr_cpu_ids; 7386 } 7387 7388 /** 7389 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7390 */ 7391 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7392 { 7393 return cpu_possible_mask; 7394 } 7395 7396 /** 7397 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7398 */ 7399 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7400 { 7401 return cpu_online_mask; 7402 } 7403 7404 /** 7405 * scx_bpf_put_cpumask - Release a possible/online cpumask 7406 * @cpumask: cpumask to release 7407 */ 7408 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7409 { 7410 /* 7411 * Empty function body because we aren't actually acquiring or releasing 7412 * a reference to a global cpumask, which is read-only in the caller and 7413 * is never released. The acquire / release semantics here are just used 7414 * to make the cpumask is a trusted pointer in the caller. 7415 */ 7416 } 7417 7418 /** 7419 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 7420 * per-CPU cpumask. 7421 * 7422 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7423 */ 7424 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 7425 { 7426 if (!check_builtin_idle_enabled()) 7427 return cpu_none_mask; 7428 7429 #ifdef CONFIG_SMP 7430 return idle_masks.cpu; 7431 #else 7432 return cpu_none_mask; 7433 #endif 7434 } 7435 7436 /** 7437 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 7438 * per-physical-core cpumask. Can be used to determine if an entire physical 7439 * core is free. 7440 * 7441 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7442 */ 7443 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 7444 { 7445 if (!check_builtin_idle_enabled()) 7446 return cpu_none_mask; 7447 7448 #ifdef CONFIG_SMP 7449 if (sched_smt_active()) 7450 return idle_masks.smt; 7451 else 7452 return idle_masks.cpu; 7453 #else 7454 return cpu_none_mask; 7455 #endif 7456 } 7457 7458 /** 7459 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 7460 * either the percpu, or SMT idle-tracking cpumask. 7461 */ 7462 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 7463 { 7464 /* 7465 * Empty function body because we aren't actually acquiring or releasing 7466 * a reference to a global idle cpumask, which is read-only in the 7467 * caller and is never released. The acquire / release semantics here 7468 * are just used to make the cpumask a trusted pointer in the caller. 7469 */ 7470 } 7471 7472 /** 7473 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 7474 * @cpu: cpu to test and clear idle for 7475 * 7476 * Returns %true if @cpu was idle and its idle state was successfully cleared. 7477 * %false otherwise. 7478 * 7479 * Unavailable if ops.update_idle() is implemented and 7480 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7481 */ 7482 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 7483 { 7484 if (!check_builtin_idle_enabled()) 7485 return false; 7486 7487 if (ops_cpu_valid(cpu, NULL)) 7488 return test_and_clear_cpu_idle(cpu); 7489 else 7490 return false; 7491 } 7492 7493 /** 7494 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 7495 * @cpus_allowed: Allowed cpumask 7496 * @flags: %SCX_PICK_IDLE_CPU_* flags 7497 * 7498 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 7499 * number on success. -%EBUSY if no matching cpu was found. 7500 * 7501 * Idle CPU tracking may race against CPU scheduling state transitions. For 7502 * example, this function may return -%EBUSY as CPUs are transitioning into the 7503 * idle state. If the caller then assumes that there will be dispatch events on 7504 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 7505 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7506 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7507 * event in the near future. 7508 * 7509 * Unavailable if ops.update_idle() is implemented and 7510 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7511 */ 7512 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7513 u64 flags) 7514 { 7515 if (!check_builtin_idle_enabled()) 7516 return -EBUSY; 7517 7518 return scx_pick_idle_cpu(cpus_allowed, flags); 7519 } 7520 7521 /** 7522 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7523 * @cpus_allowed: Allowed cpumask 7524 * @flags: %SCX_PICK_IDLE_CPU_* flags 7525 * 7526 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7527 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7528 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7529 * empty. 7530 * 7531 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7532 * set, this function can't tell which CPUs are idle and will always pick any 7533 * CPU. 7534 */ 7535 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7536 u64 flags) 7537 { 7538 s32 cpu; 7539 7540 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7541 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7542 if (cpu >= 0) 7543 return cpu; 7544 } 7545 7546 cpu = cpumask_any_distribute(cpus_allowed); 7547 if (cpu < nr_cpu_ids) 7548 return cpu; 7549 else 7550 return -EBUSY; 7551 } 7552 7553 /** 7554 * scx_bpf_task_running - Is task currently running? 7555 * @p: task of interest 7556 */ 7557 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7558 { 7559 return task_rq(p)->curr == p; 7560 } 7561 7562 /** 7563 * scx_bpf_task_cpu - CPU a task is currently associated with 7564 * @p: task of interest 7565 */ 7566 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7567 { 7568 return task_cpu(p); 7569 } 7570 7571 /** 7572 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7573 * @cpu: CPU of the rq 7574 */ 7575 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7576 { 7577 if (!ops_cpu_valid(cpu, NULL)) 7578 return NULL; 7579 7580 return cpu_rq(cpu); 7581 } 7582 7583 /** 7584 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7585 * @p: task of interest 7586 * 7587 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7588 * from the scheduler's POV. SCX operations should use this function to 7589 * determine @p's current cgroup as, unlike following @p->cgroups, 7590 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7591 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7592 * operations. The restriction guarantees that @p's rq is locked by the caller. 7593 */ 7594 #ifdef CONFIG_CGROUP_SCHED 7595 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7596 { 7597 struct task_group *tg = p->sched_task_group; 7598 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7599 7600 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7601 goto out; 7602 7603 cgrp = tg_cgrp(tg); 7604 7605 out: 7606 cgroup_get(cgrp); 7607 return cgrp; 7608 } 7609 #endif 7610 7611 /** 7612 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7613 * clock for the current CPU. The clock returned is in nanoseconds. 7614 * 7615 * It provides the following properties: 7616 * 7617 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7618 * to account for execution time and track tasks' runtime properties. 7619 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7620 * eventually reads a hardware timestamp counter -- is neither performant nor 7621 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7622 * using the rq clock in the scheduler core whenever possible. 7623 * 7624 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7625 * scheduler use cases, the required clock resolution is lower than the most 7626 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7627 * uses the rq clock in the scheduler core whenever it is valid. It considers 7628 * that the rq clock is valid from the time the rq clock is updated 7629 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7630 * 7631 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7632 * guarantees the clock never goes backward when comparing them in the same 7633 * CPU. On the other hand, when comparing clocks in different CPUs, there 7634 * is no such guarantee -- the clock can go backward. It provides a 7635 * monotonically *non-decreasing* clock so that it would provide the same 7636 * clock values in two different scx_bpf_now() calls in the same CPU 7637 * during the same period of when the rq clock is valid. 7638 */ 7639 __bpf_kfunc u64 scx_bpf_now(void) 7640 { 7641 struct rq *rq; 7642 u64 clock; 7643 7644 preempt_disable(); 7645 7646 rq = this_rq(); 7647 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7648 /* 7649 * If the rq clock is valid, use the cached rq clock. 7650 * 7651 * Note that scx_bpf_now() is re-entrant between a process 7652 * context and an interrupt context (e.g., timer interrupt). 7653 * However, we don't need to consider the race between them 7654 * because such race is not observable from a caller. 7655 */ 7656 clock = READ_ONCE(rq->scx.clock); 7657 } else { 7658 /* 7659 * Otherwise, return a fresh rq clock. 7660 * 7661 * The rq clock is updated outside of the rq lock. 7662 * In this case, keep the updated rq clock invalid so the next 7663 * kfunc call outside the rq lock gets a fresh rq clock. 7664 */ 7665 clock = sched_clock_cpu(cpu_of(rq)); 7666 } 7667 7668 preempt_enable(); 7669 7670 return clock; 7671 } 7672 7673 __bpf_kfunc_end_defs(); 7674 7675 BTF_KFUNCS_START(scx_kfunc_ids_any) 7676 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7677 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7678 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7679 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7680 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7681 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7682 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7683 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7684 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7685 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7686 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7687 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7688 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7689 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7690 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7691 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7692 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7693 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7694 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7695 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7696 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7697 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7698 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7699 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7700 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7701 #ifdef CONFIG_CGROUP_SCHED 7702 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7703 #endif 7704 BTF_ID_FLAGS(func, scx_bpf_now) 7705 BTF_KFUNCS_END(scx_kfunc_ids_any) 7706 7707 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7708 .owner = THIS_MODULE, 7709 .set = &scx_kfunc_ids_any, 7710 }; 7711 7712 static int __init scx_init(void) 7713 { 7714 int ret; 7715 7716 /* 7717 * kfunc registration can't be done from init_sched_ext_class() as 7718 * register_btf_kfunc_id_set() needs most of the system to be up. 7719 * 7720 * Some kfuncs are context-sensitive and can only be called from 7721 * specific SCX ops. They are grouped into BTF sets accordingly. 7722 * Unfortunately, BPF currently doesn't have a way of enforcing such 7723 * restrictions. Eventually, the verifier should be able to enforce 7724 * them. For now, register them the same and make each kfunc explicitly 7725 * check using scx_kf_allowed(). 7726 */ 7727 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7728 &scx_kfunc_set_select_cpu)) || 7729 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7730 &scx_kfunc_set_enqueue_dispatch)) || 7731 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7732 &scx_kfunc_set_dispatch)) || 7733 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7734 &scx_kfunc_set_cpu_release)) || 7735 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7736 &scx_kfunc_set_unlocked)) || 7737 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7738 &scx_kfunc_set_unlocked)) || 7739 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7740 &scx_kfunc_set_any)) || 7741 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7742 &scx_kfunc_set_any)) || 7743 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7744 &scx_kfunc_set_any))) { 7745 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7746 return ret; 7747 } 7748 7749 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7750 if (ret) { 7751 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7752 return ret; 7753 } 7754 7755 ret = register_pm_notifier(&scx_pm_notifier); 7756 if (ret) { 7757 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7758 return ret; 7759 } 7760 7761 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7762 if (!scx_kset) { 7763 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7764 return -ENOMEM; 7765 } 7766 7767 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7768 if (ret < 0) { 7769 pr_err("sched_ext: Failed to add global attributes\n"); 7770 return ret; 7771 } 7772 7773 return 0; 7774 } 7775 __initcall(scx_init); 7776