1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static unsigned long scx_in_softlockup; 37 static atomic_t scx_breather_depth = ATOMIC_INIT(0); 38 static int scx_bypass_depth; 39 static bool scx_init_task_enabled; 40 static bool scx_switching_all; 41 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 42 43 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 44 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 45 46 /* 47 * A monotically increasing sequence number that is incremented every time a 48 * scheduler is enabled. This can be used by to check if any custom sched_ext 49 * scheduler has ever been used in the system. 50 */ 51 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 52 53 /* 54 * The maximum amount of time in jiffies that a task may be runnable without 55 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 56 * scx_error(). 57 */ 58 static unsigned long scx_watchdog_timeout; 59 60 /* 61 * The last time the delayed work was run. This delayed work relies on 62 * ksoftirqd being able to run to service timer interrupts, so it's possible 63 * that this work itself could get wedged. To account for this, we check that 64 * it's not stalled in the timer tick, and trigger an error if it is. 65 */ 66 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 67 68 static struct delayed_work scx_watchdog_work; 69 70 /* 71 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of pick_task sequence 72 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu 73 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated 74 * lazily when enabling and freed when disabling to avoid waste when sched_ext 75 * isn't active. 76 */ 77 struct scx_kick_pseqs { 78 struct rcu_head rcu; 79 unsigned long seqs[]; 80 }; 81 82 static DEFINE_PER_CPU(struct scx_kick_pseqs __rcu *, scx_kick_pseqs); 83 84 /* 85 * Direct dispatch marker. 86 * 87 * Non-NULL values are used for direct dispatch from enqueue path. A valid 88 * pointer points to the task currently being enqueued. An ERR_PTR value is used 89 * to indicate that direct dispatch has already happened. 90 */ 91 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 92 93 static const struct rhashtable_params dsq_hash_params = { 94 .key_len = sizeof_field(struct scx_dispatch_q, id), 95 .key_offset = offsetof(struct scx_dispatch_q, id), 96 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 97 }; 98 99 static LLIST_HEAD(dsqs_to_free); 100 101 /* dispatch buf */ 102 struct scx_dsp_buf_ent { 103 struct task_struct *task; 104 unsigned long qseq; 105 u64 dsq_id; 106 u64 enq_flags; 107 }; 108 109 static u32 scx_dsp_max_batch; 110 111 struct scx_dsp_ctx { 112 struct rq *rq; 113 u32 cursor; 114 u32 nr_tasks; 115 struct scx_dsp_buf_ent buf[]; 116 }; 117 118 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 119 120 /* string formatting from BPF */ 121 struct scx_bstr_buf { 122 u64 data[MAX_BPRINTF_VARARGS]; 123 char line[SCX_EXIT_MSG_LEN]; 124 }; 125 126 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 127 static struct scx_bstr_buf scx_exit_bstr_buf; 128 129 /* ops debug dump */ 130 struct scx_dump_data { 131 s32 cpu; 132 bool first; 133 s32 cursor; 134 struct seq_buf *s; 135 const char *prefix; 136 struct scx_bstr_buf buf; 137 }; 138 139 static struct scx_dump_data scx_dump_data = { 140 .cpu = -1, 141 }; 142 143 /* /sys/kernel/sched_ext interface */ 144 static struct kset *scx_kset; 145 146 #define CREATE_TRACE_POINTS 147 #include <trace/events/sched_ext.h> 148 149 static void process_ddsp_deferred_locals(struct rq *rq); 150 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags); 151 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 152 s64 exit_code, const char *fmt, va_list args); 153 154 static __printf(4, 5) void scx_exit(struct scx_sched *sch, 155 enum scx_exit_kind kind, s64 exit_code, 156 const char *fmt, ...) 157 { 158 va_list args; 159 160 va_start(args, fmt); 161 scx_vexit(sch, kind, exit_code, fmt, args); 162 va_end(args); 163 } 164 165 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 166 167 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 168 169 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 170 { 171 if (time_after(at, now)) 172 return jiffies_to_msecs(at - now); 173 else 174 return -(long)jiffies_to_msecs(now - at); 175 } 176 177 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 178 static u32 higher_bits(u32 flags) 179 { 180 return ~((1 << fls(flags)) - 1); 181 } 182 183 /* return the mask with only the highest bit set */ 184 static u32 highest_bit(u32 flags) 185 { 186 int bit = fls(flags); 187 return ((u64)1 << bit) >> 1; 188 } 189 190 static bool u32_before(u32 a, u32 b) 191 { 192 return (s32)(a - b) < 0; 193 } 194 195 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch, 196 struct task_struct *p) 197 { 198 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 199 } 200 201 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 202 { 203 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params); 204 } 205 206 /* 207 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 208 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 209 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 210 * whether it's running from an allowed context. 211 * 212 * @mask is constant, always inline to cull the mask calculations. 213 */ 214 static __always_inline void scx_kf_allow(u32 mask) 215 { 216 /* nesting is allowed only in increasing scx_kf_mask order */ 217 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 218 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 219 current->scx.kf_mask, mask); 220 current->scx.kf_mask |= mask; 221 barrier(); 222 } 223 224 static void scx_kf_disallow(u32 mask) 225 { 226 barrier(); 227 current->scx.kf_mask &= ~mask; 228 } 229 230 /* 231 * Track the rq currently locked. 232 * 233 * This allows kfuncs to safely operate on rq from any scx ops callback, 234 * knowing which rq is already locked. 235 */ 236 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 237 238 static inline void update_locked_rq(struct rq *rq) 239 { 240 /* 241 * Check whether @rq is actually locked. This can help expose bugs 242 * or incorrect assumptions about the context in which a kfunc or 243 * callback is executed. 244 */ 245 if (rq) 246 lockdep_assert_rq_held(rq); 247 __this_cpu_write(scx_locked_rq_state, rq); 248 } 249 250 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 251 do { \ 252 if (rq) \ 253 update_locked_rq(rq); \ 254 if (mask) { \ 255 scx_kf_allow(mask); \ 256 (sch)->ops.op(args); \ 257 scx_kf_disallow(mask); \ 258 } else { \ 259 (sch)->ops.op(args); \ 260 } \ 261 if (rq) \ 262 update_locked_rq(NULL); \ 263 } while (0) 264 265 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 266 ({ \ 267 __typeof__((sch)->ops.op(args)) __ret; \ 268 \ 269 if (rq) \ 270 update_locked_rq(rq); \ 271 if (mask) { \ 272 scx_kf_allow(mask); \ 273 __ret = (sch)->ops.op(args); \ 274 scx_kf_disallow(mask); \ 275 } else { \ 276 __ret = (sch)->ops.op(args); \ 277 } \ 278 if (rq) \ 279 update_locked_rq(NULL); \ 280 __ret; \ 281 }) 282 283 /* 284 * Some kfuncs are allowed only on the tasks that are subjects of the 285 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 286 * restrictions, the following SCX_CALL_OP_*() variants should be used when 287 * invoking scx_ops operations that take task arguments. These can only be used 288 * for non-nesting operations due to the way the tasks are tracked. 289 * 290 * kfuncs which can only operate on such tasks can in turn use 291 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 292 * the specific task. 293 */ 294 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 295 do { \ 296 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 297 current->scx.kf_tasks[0] = task; \ 298 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 299 current->scx.kf_tasks[0] = NULL; \ 300 } while (0) 301 302 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 303 ({ \ 304 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 305 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 306 current->scx.kf_tasks[0] = task; \ 307 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 308 current->scx.kf_tasks[0] = NULL; \ 309 __ret; \ 310 }) 311 312 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 313 ({ \ 314 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 315 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 316 current->scx.kf_tasks[0] = task0; \ 317 current->scx.kf_tasks[1] = task1; \ 318 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 319 current->scx.kf_tasks[0] = NULL; \ 320 current->scx.kf_tasks[1] = NULL; \ 321 __ret; \ 322 }) 323 324 /* @mask is constant, always inline to cull unnecessary branches */ 325 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask) 326 { 327 if (unlikely(!(current->scx.kf_mask & mask))) { 328 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x", 329 mask, current->scx.kf_mask); 330 return false; 331 } 332 333 /* 334 * Enforce nesting boundaries. e.g. A kfunc which can be called from 335 * DISPATCH must not be called if we're running DEQUEUE which is nested 336 * inside ops.dispatch(). We don't need to check boundaries for any 337 * blocking kfuncs as the verifier ensures they're only called from 338 * sleepable progs. 339 */ 340 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 341 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 342 scx_error(sch, "cpu_release kfunc called from a nested operation"); 343 return false; 344 } 345 346 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 347 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 348 scx_error(sch, "dispatch kfunc called from a nested operation"); 349 return false; 350 } 351 352 return true; 353 } 354 355 /* see SCX_CALL_OP_TASK() */ 356 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch, 357 u32 mask, 358 struct task_struct *p) 359 { 360 if (!scx_kf_allowed(sch, mask)) 361 return false; 362 363 if (unlikely((p != current->scx.kf_tasks[0] && 364 p != current->scx.kf_tasks[1]))) { 365 scx_error(sch, "called on a task not being operated on"); 366 return false; 367 } 368 369 return true; 370 } 371 372 /** 373 * nldsq_next_task - Iterate to the next task in a non-local DSQ 374 * @dsq: user dsq being iterated 375 * @cur: current position, %NULL to start iteration 376 * @rev: walk backwards 377 * 378 * Returns %NULL when iteration is finished. 379 */ 380 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 381 struct task_struct *cur, bool rev) 382 { 383 struct list_head *list_node; 384 struct scx_dsq_list_node *dsq_lnode; 385 386 lockdep_assert_held(&dsq->lock); 387 388 if (cur) 389 list_node = &cur->scx.dsq_list.node; 390 else 391 list_node = &dsq->list; 392 393 /* find the next task, need to skip BPF iteration cursors */ 394 do { 395 if (rev) 396 list_node = list_node->prev; 397 else 398 list_node = list_node->next; 399 400 if (list_node == &dsq->list) 401 return NULL; 402 403 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 404 node); 405 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 406 407 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 408 } 409 410 #define nldsq_for_each_task(p, dsq) \ 411 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 412 (p) = nldsq_next_task((dsq), (p), false)) 413 414 415 /* 416 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 417 * dispatch order. BPF-visible iterator is opaque and larger to allow future 418 * changes without breaking backward compatibility. Can be used with 419 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 420 */ 421 enum scx_dsq_iter_flags { 422 /* iterate in the reverse dispatch order */ 423 SCX_DSQ_ITER_REV = 1U << 16, 424 425 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 426 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 427 428 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 429 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 430 __SCX_DSQ_ITER_HAS_SLICE | 431 __SCX_DSQ_ITER_HAS_VTIME, 432 }; 433 434 struct bpf_iter_scx_dsq_kern { 435 struct scx_dsq_list_node cursor; 436 struct scx_dispatch_q *dsq; 437 u64 slice; 438 u64 vtime; 439 } __attribute__((aligned(8))); 440 441 struct bpf_iter_scx_dsq { 442 u64 __opaque[6]; 443 } __attribute__((aligned(8))); 444 445 446 /* 447 * SCX task iterator. 448 */ 449 struct scx_task_iter { 450 struct sched_ext_entity cursor; 451 struct task_struct *locked_task; 452 struct rq *rq; 453 struct rq_flags rf; 454 u32 cnt; 455 bool list_locked; 456 }; 457 458 /** 459 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 460 * @iter: iterator to init 461 * 462 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 463 * must eventually be stopped with scx_task_iter_stop(). 464 * 465 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 466 * between this and the first next() call or between any two next() calls. If 467 * the locks are released between two next() calls, the caller is responsible 468 * for ensuring that the task being iterated remains accessible either through 469 * RCU read lock or obtaining a reference count. 470 * 471 * All tasks which existed when the iteration started are guaranteed to be 472 * visited as long as they still exist. 473 */ 474 static void scx_task_iter_start(struct scx_task_iter *iter) 475 { 476 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 477 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 478 479 spin_lock_irq(&scx_tasks_lock); 480 481 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 482 list_add(&iter->cursor.tasks_node, &scx_tasks); 483 iter->locked_task = NULL; 484 iter->cnt = 0; 485 iter->list_locked = true; 486 } 487 488 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 489 { 490 if (iter->locked_task) { 491 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 492 iter->locked_task = NULL; 493 } 494 } 495 496 /** 497 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 498 * @iter: iterator to unlock 499 * 500 * If @iter is in the middle of a locked iteration, it may be locking the rq of 501 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 502 * This function can be safely called anytime during an iteration. The next 503 * iterator operation will automatically restore the necessary locking. 504 */ 505 static void scx_task_iter_unlock(struct scx_task_iter *iter) 506 { 507 __scx_task_iter_rq_unlock(iter); 508 if (iter->list_locked) { 509 iter->list_locked = false; 510 spin_unlock_irq(&scx_tasks_lock); 511 } 512 } 513 514 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 515 { 516 if (!iter->list_locked) { 517 spin_lock_irq(&scx_tasks_lock); 518 iter->list_locked = true; 519 } 520 } 521 522 /** 523 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 524 * @iter: iterator to exit 525 * 526 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 527 * which is released on return. If the iterator holds a task's rq lock, that rq 528 * lock is also released. See scx_task_iter_start() for details. 529 */ 530 static void scx_task_iter_stop(struct scx_task_iter *iter) 531 { 532 __scx_task_iter_maybe_relock(iter); 533 list_del_init(&iter->cursor.tasks_node); 534 scx_task_iter_unlock(iter); 535 } 536 537 /** 538 * scx_task_iter_next - Next task 539 * @iter: iterator to walk 540 * 541 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 542 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 543 * by holding scx_tasks_lock for too long. 544 */ 545 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 546 { 547 struct list_head *cursor = &iter->cursor.tasks_node; 548 struct sched_ext_entity *pos; 549 550 __scx_task_iter_maybe_relock(iter); 551 552 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 553 scx_task_iter_unlock(iter); 554 cond_resched(); 555 __scx_task_iter_maybe_relock(iter); 556 } 557 558 list_for_each_entry(pos, cursor, tasks_node) { 559 if (&pos->tasks_node == &scx_tasks) 560 return NULL; 561 if (!(pos->flags & SCX_TASK_CURSOR)) { 562 list_move(cursor, &pos->tasks_node); 563 return container_of(pos, struct task_struct, scx); 564 } 565 } 566 567 /* can't happen, should always terminate at scx_tasks above */ 568 BUG(); 569 } 570 571 /** 572 * scx_task_iter_next_locked - Next non-idle task with its rq locked 573 * @iter: iterator to walk 574 * 575 * Visit the non-idle task with its rq lock held. Allows callers to specify 576 * whether they would like to filter out dead tasks. See scx_task_iter_start() 577 * for details. 578 */ 579 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 580 { 581 struct task_struct *p; 582 583 __scx_task_iter_rq_unlock(iter); 584 585 while ((p = scx_task_iter_next(iter))) { 586 /* 587 * scx_task_iter is used to prepare and move tasks into SCX 588 * while loading the BPF scheduler and vice-versa while 589 * unloading. The init_tasks ("swappers") should be excluded 590 * from the iteration because: 591 * 592 * - It's unsafe to use __setschduler_prio() on an init_task to 593 * determine the sched_class to use as it won't preserve its 594 * idle_sched_class. 595 * 596 * - ops.init/exit_task() can easily be confused if called with 597 * init_tasks as they, e.g., share PID 0. 598 * 599 * As init_tasks are never scheduled through SCX, they can be 600 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 601 * doesn't work here: 602 * 603 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 604 * yet been onlined. 605 * 606 * - %PF_IDLE can be set on tasks that are not init_tasks. See 607 * play_idle_precise() used by CONFIG_IDLE_INJECT. 608 * 609 * Test for idle_sched_class as only init_tasks are on it. 610 */ 611 if (p->sched_class != &idle_sched_class) 612 break; 613 } 614 if (!p) 615 return NULL; 616 617 iter->rq = task_rq_lock(p, &iter->rf); 618 iter->locked_task = p; 619 620 return p; 621 } 622 623 /** 624 * scx_add_event - Increase an event counter for 'name' by 'cnt' 625 * @sch: scx_sched to account events for 626 * @name: an event name defined in struct scx_event_stats 627 * @cnt: the number of the event occurred 628 * 629 * This can be used when preemption is not disabled. 630 */ 631 #define scx_add_event(sch, name, cnt) do { \ 632 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 633 trace_sched_ext_event(#name, (cnt)); \ 634 } while(0) 635 636 /** 637 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 638 * @sch: scx_sched to account events for 639 * @name: an event name defined in struct scx_event_stats 640 * @cnt: the number of the event occurred 641 * 642 * This should be used only when preemption is disabled. 643 */ 644 #define __scx_add_event(sch, name, cnt) do { \ 645 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 646 trace_sched_ext_event(#name, cnt); \ 647 } while(0) 648 649 /** 650 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 651 * @dst_e: destination event stats 652 * @src_e: source event stats 653 * @kind: a kind of event to be aggregated 654 */ 655 #define scx_agg_event(dst_e, src_e, kind) do { \ 656 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 657 } while(0) 658 659 /** 660 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 661 * @s: output seq_buf 662 * @events: event stats 663 * @kind: a kind of event to dump 664 */ 665 #define scx_dump_event(s, events, kind) do { \ 666 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 667 } while (0) 668 669 670 static void scx_read_events(struct scx_sched *sch, 671 struct scx_event_stats *events); 672 673 static enum scx_enable_state scx_enable_state(void) 674 { 675 return atomic_read(&scx_enable_state_var); 676 } 677 678 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 679 { 680 return atomic_xchg(&scx_enable_state_var, to); 681 } 682 683 static bool scx_tryset_enable_state(enum scx_enable_state to, 684 enum scx_enable_state from) 685 { 686 int from_v = from; 687 688 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 689 } 690 691 /** 692 * wait_ops_state - Busy-wait the specified ops state to end 693 * @p: target task 694 * @opss: state to wait the end of 695 * 696 * Busy-wait for @p to transition out of @opss. This can only be used when the 697 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 698 * has load_acquire semantics to ensure that the caller can see the updates made 699 * in the enqueueing and dispatching paths. 700 */ 701 static void wait_ops_state(struct task_struct *p, unsigned long opss) 702 { 703 do { 704 cpu_relax(); 705 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 706 } 707 708 static inline bool __cpu_valid(s32 cpu) 709 { 710 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 711 } 712 713 /** 714 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 715 * @sch: scx_sched to abort on error 716 * @cpu: cpu number which came from a BPF ops 717 * @where: extra information reported on error 718 * 719 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 720 * Verify that it is in range and one of the possible cpus. If invalid, trigger 721 * an ops error. 722 */ 723 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 724 { 725 if (__cpu_valid(cpu)) { 726 return true; 727 } else { 728 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 729 return false; 730 } 731 } 732 733 /** 734 * ops_sanitize_err - Sanitize a -errno value 735 * @sch: scx_sched to error out on error 736 * @ops_name: operation to blame on failure 737 * @err: -errno value to sanitize 738 * 739 * Verify @err is a valid -errno. If not, trigger scx_error() and return 740 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 741 * cause misbehaviors. For an example, a large negative return from 742 * ops.init_task() triggers an oops when passed up the call chain because the 743 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 744 * handled as a pointer. 745 */ 746 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 747 { 748 if (err < 0 && err >= -MAX_ERRNO) 749 return err; 750 751 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 752 return -EPROTO; 753 } 754 755 static void run_deferred(struct rq *rq) 756 { 757 process_ddsp_deferred_locals(rq); 758 } 759 760 static void deferred_bal_cb_workfn(struct rq *rq) 761 { 762 run_deferred(rq); 763 } 764 765 static void deferred_irq_workfn(struct irq_work *irq_work) 766 { 767 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 768 769 raw_spin_rq_lock(rq); 770 run_deferred(rq); 771 raw_spin_rq_unlock(rq); 772 } 773 774 /** 775 * schedule_deferred - Schedule execution of deferred actions on an rq 776 * @rq: target rq 777 * 778 * Schedule execution of deferred actions on @rq. Must be called with @rq 779 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 780 * can unlock @rq to e.g. migrate tasks to other rqs. 781 */ 782 static void schedule_deferred(struct rq *rq) 783 { 784 lockdep_assert_rq_held(rq); 785 786 /* 787 * If in the middle of waking up a task, task_woken_scx() will be called 788 * afterwards which will then run the deferred actions, no need to 789 * schedule anything. 790 */ 791 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 792 return; 793 794 /* Don't do anything if there already is a deferred operation. */ 795 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING) 796 return; 797 798 /* 799 * If in balance, the balance callbacks will be called before rq lock is 800 * released. Schedule one. 801 * 802 * 803 * We can't directly insert the callback into the 804 * rq's list: The call can drop its lock and make the pending balance 805 * callback visible to unrelated code paths that call rq_pin_lock(). 806 * 807 * Just let balance_one() know that it must do it itself. 808 */ 809 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 810 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING; 811 return; 812 } 813 814 /* 815 * No scheduler hooks available. Queue an irq work. They are executed on 816 * IRQ re-enable which may take a bit longer than the scheduler hooks. 817 * The above WAKEUP and BALANCE paths should cover most of the cases and 818 * the time to IRQ re-enable shouldn't be long. 819 */ 820 irq_work_queue(&rq->scx.deferred_irq_work); 821 } 822 823 /** 824 * touch_core_sched - Update timestamp used for core-sched task ordering 825 * @rq: rq to read clock from, must be locked 826 * @p: task to update the timestamp for 827 * 828 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 829 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 830 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 831 * exhaustion). 832 */ 833 static void touch_core_sched(struct rq *rq, struct task_struct *p) 834 { 835 lockdep_assert_rq_held(rq); 836 837 #ifdef CONFIG_SCHED_CORE 838 /* 839 * It's okay to update the timestamp spuriously. Use 840 * sched_core_disabled() which is cheaper than enabled(). 841 * 842 * As this is used to determine ordering between tasks of sibling CPUs, 843 * it may be better to use per-core dispatch sequence instead. 844 */ 845 if (!sched_core_disabled()) 846 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 847 #endif 848 } 849 850 /** 851 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 852 * @rq: rq to read clock from, must be locked 853 * @p: task being dispatched 854 * 855 * If the BPF scheduler implements custom core-sched ordering via 856 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 857 * ordering within each local DSQ. This function is called from dispatch paths 858 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 859 */ 860 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 861 { 862 lockdep_assert_rq_held(rq); 863 864 #ifdef CONFIG_SCHED_CORE 865 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 866 touch_core_sched(rq, p); 867 #endif 868 } 869 870 static void update_curr_scx(struct rq *rq) 871 { 872 struct task_struct *curr = rq->curr; 873 s64 delta_exec; 874 875 delta_exec = update_curr_common(rq); 876 if (unlikely(delta_exec <= 0)) 877 return; 878 879 if (curr->scx.slice != SCX_SLICE_INF) { 880 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 881 if (!curr->scx.slice) 882 touch_core_sched(rq, curr); 883 } 884 } 885 886 static bool scx_dsq_priq_less(struct rb_node *node_a, 887 const struct rb_node *node_b) 888 { 889 const struct task_struct *a = 890 container_of(node_a, struct task_struct, scx.dsq_priq); 891 const struct task_struct *b = 892 container_of(node_b, struct task_struct, scx.dsq_priq); 893 894 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 895 } 896 897 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 898 { 899 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 900 WRITE_ONCE(dsq->nr, dsq->nr + delta); 901 } 902 903 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p) 904 { 905 p->scx.slice = SCX_SLICE_DFL; 906 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1); 907 } 908 909 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 910 struct task_struct *p, u64 enq_flags) 911 { 912 bool is_local = dsq->id == SCX_DSQ_LOCAL; 913 914 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 915 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 916 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 917 918 if (!is_local) { 919 raw_spin_lock(&dsq->lock); 920 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 921 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 922 /* fall back to the global dsq */ 923 raw_spin_unlock(&dsq->lock); 924 dsq = find_global_dsq(sch, p); 925 raw_spin_lock(&dsq->lock); 926 } 927 } 928 929 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 930 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 931 /* 932 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 933 * their FIFO queues. To avoid confusion and accidentally 934 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 935 * disallow any internal DSQ from doing vtime ordering of 936 * tasks. 937 */ 938 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 939 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 940 } 941 942 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 943 struct rb_node *rbp; 944 945 /* 946 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 947 * linked to both the rbtree and list on PRIQs, this can only be 948 * tested easily when adding the first task. 949 */ 950 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 951 nldsq_next_task(dsq, NULL, false))) 952 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 953 dsq->id); 954 955 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 956 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 957 958 /* 959 * Find the previous task and insert after it on the list so 960 * that @dsq->list is vtime ordered. 961 */ 962 rbp = rb_prev(&p->scx.dsq_priq); 963 if (rbp) { 964 struct task_struct *prev = 965 container_of(rbp, struct task_struct, 966 scx.dsq_priq); 967 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 968 /* first task unchanged - no update needed */ 969 } else { 970 list_add(&p->scx.dsq_list.node, &dsq->list); 971 /* not builtin and new task is at head - use fastpath */ 972 rcu_assign_pointer(dsq->first_task, p); 973 } 974 } else { 975 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 976 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 977 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 978 dsq->id); 979 980 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) { 981 list_add(&p->scx.dsq_list.node, &dsq->list); 982 /* new task inserted at head - use fastpath */ 983 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 984 rcu_assign_pointer(dsq->first_task, p); 985 } else { 986 bool was_empty; 987 988 was_empty = list_empty(&dsq->list); 989 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 990 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 991 rcu_assign_pointer(dsq->first_task, p); 992 } 993 } 994 995 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 996 dsq->seq++; 997 p->scx.dsq_seq = dsq->seq; 998 999 dsq_mod_nr(dsq, 1); 1000 p->scx.dsq = dsq; 1001 1002 /* 1003 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1004 * direct dispatch path, but we clear them here because the direct 1005 * dispatch verdict may be overridden on the enqueue path during e.g. 1006 * bypass. 1007 */ 1008 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1009 p->scx.ddsp_enq_flags = 0; 1010 1011 /* 1012 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1013 * match waiters' load_acquire. 1014 */ 1015 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1016 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1017 1018 if (is_local) { 1019 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1020 bool preempt = false; 1021 1022 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1023 rq->curr->sched_class == &ext_sched_class) { 1024 rq->curr->scx.slice = 0; 1025 preempt = true; 1026 } 1027 1028 if (preempt || sched_class_above(&ext_sched_class, 1029 rq->curr->sched_class)) 1030 resched_curr(rq); 1031 } else { 1032 raw_spin_unlock(&dsq->lock); 1033 } 1034 } 1035 1036 static void task_unlink_from_dsq(struct task_struct *p, 1037 struct scx_dispatch_q *dsq) 1038 { 1039 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1040 1041 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1042 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1043 RB_CLEAR_NODE(&p->scx.dsq_priq); 1044 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1045 } 1046 1047 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) { 1048 struct task_struct *first_task; 1049 1050 first_task = nldsq_next_task(dsq, NULL, false); 1051 rcu_assign_pointer(dsq->first_task, first_task); 1052 } 1053 1054 list_del_init(&p->scx.dsq_list.node); 1055 dsq_mod_nr(dsq, -1); 1056 } 1057 1058 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1059 { 1060 struct scx_dispatch_q *dsq = p->scx.dsq; 1061 bool is_local = dsq == &rq->scx.local_dsq; 1062 1063 if (!dsq) { 1064 /* 1065 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1066 * Unlinking is all that's needed to cancel. 1067 */ 1068 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1069 list_del_init(&p->scx.dsq_list.node); 1070 1071 /* 1072 * When dispatching directly from the BPF scheduler to a local 1073 * DSQ, the task isn't associated with any DSQ but 1074 * @p->scx.holding_cpu may be set under the protection of 1075 * %SCX_OPSS_DISPATCHING. 1076 */ 1077 if (p->scx.holding_cpu >= 0) 1078 p->scx.holding_cpu = -1; 1079 1080 return; 1081 } 1082 1083 if (!is_local) 1084 raw_spin_lock(&dsq->lock); 1085 1086 /* 1087 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1088 * change underneath us. 1089 */ 1090 if (p->scx.holding_cpu < 0) { 1091 /* @p must still be on @dsq, dequeue */ 1092 task_unlink_from_dsq(p, dsq); 1093 } else { 1094 /* 1095 * We're racing against dispatch_to_local_dsq() which already 1096 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1097 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1098 * the race. 1099 */ 1100 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1101 p->scx.holding_cpu = -1; 1102 } 1103 p->scx.dsq = NULL; 1104 1105 if (!is_local) 1106 raw_spin_unlock(&dsq->lock); 1107 } 1108 1109 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1110 struct rq *rq, u64 dsq_id, 1111 struct task_struct *p) 1112 { 1113 struct scx_dispatch_q *dsq; 1114 1115 if (dsq_id == SCX_DSQ_LOCAL) 1116 return &rq->scx.local_dsq; 1117 1118 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1119 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1120 1121 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1122 return find_global_dsq(sch, p); 1123 1124 return &cpu_rq(cpu)->scx.local_dsq; 1125 } 1126 1127 if (dsq_id == SCX_DSQ_GLOBAL) 1128 dsq = find_global_dsq(sch, p); 1129 else 1130 dsq = find_user_dsq(sch, dsq_id); 1131 1132 if (unlikely(!dsq)) { 1133 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1134 dsq_id, p->comm, p->pid); 1135 return find_global_dsq(sch, p); 1136 } 1137 1138 return dsq; 1139 } 1140 1141 static void mark_direct_dispatch(struct scx_sched *sch, 1142 struct task_struct *ddsp_task, 1143 struct task_struct *p, u64 dsq_id, 1144 u64 enq_flags) 1145 { 1146 /* 1147 * Mark that dispatch already happened from ops.select_cpu() or 1148 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1149 * which can never match a valid task pointer. 1150 */ 1151 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1152 1153 /* @p must match the task on the enqueue path */ 1154 if (unlikely(p != ddsp_task)) { 1155 if (IS_ERR(ddsp_task)) 1156 scx_error(sch, "%s[%d] already direct-dispatched", 1157 p->comm, p->pid); 1158 else 1159 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1160 ddsp_task->comm, ddsp_task->pid, 1161 p->comm, p->pid); 1162 return; 1163 } 1164 1165 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1166 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1167 1168 p->scx.ddsp_dsq_id = dsq_id; 1169 p->scx.ddsp_enq_flags = enq_flags; 1170 } 1171 1172 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1173 u64 enq_flags) 1174 { 1175 struct rq *rq = task_rq(p); 1176 struct scx_dispatch_q *dsq = 1177 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1178 1179 touch_core_sched_dispatch(rq, p); 1180 1181 p->scx.ddsp_enq_flags |= enq_flags; 1182 1183 /* 1184 * We are in the enqueue path with @rq locked and pinned, and thus can't 1185 * double lock a remote rq and enqueue to its local DSQ. For 1186 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1187 * the enqueue so that it's executed when @rq can be unlocked. 1188 */ 1189 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1190 unsigned long opss; 1191 1192 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1193 1194 switch (opss & SCX_OPSS_STATE_MASK) { 1195 case SCX_OPSS_NONE: 1196 break; 1197 case SCX_OPSS_QUEUEING: 1198 /* 1199 * As @p was never passed to the BPF side, _release is 1200 * not strictly necessary. Still do it for consistency. 1201 */ 1202 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1203 break; 1204 default: 1205 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1206 p->comm, p->pid, opss); 1207 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1208 break; 1209 } 1210 1211 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1212 list_add_tail(&p->scx.dsq_list.node, 1213 &rq->scx.ddsp_deferred_locals); 1214 schedule_deferred(rq); 1215 return; 1216 } 1217 1218 dispatch_enqueue(sch, dsq, p, 1219 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1220 } 1221 1222 static bool scx_rq_online(struct rq *rq) 1223 { 1224 /* 1225 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1226 * the online state as seen from the BPF scheduler. cpu_active() test 1227 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1228 * stay set until the current scheduling operation is complete even if 1229 * we aren't locking @rq. 1230 */ 1231 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1232 } 1233 1234 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1235 int sticky_cpu) 1236 { 1237 struct scx_sched *sch = scx_root; 1238 struct task_struct **ddsp_taskp; 1239 unsigned long qseq; 1240 1241 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1242 1243 /* rq migration */ 1244 if (sticky_cpu == cpu_of(rq)) 1245 goto local_norefill; 1246 1247 /* 1248 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1249 * is offline and are just running the hotplug path. Don't bother the 1250 * BPF scheduler. 1251 */ 1252 if (!scx_rq_online(rq)) 1253 goto local; 1254 1255 if (scx_rq_bypassing(rq)) { 1256 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1257 goto global; 1258 } 1259 1260 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1261 goto direct; 1262 1263 /* see %SCX_OPS_ENQ_EXITING */ 1264 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1265 unlikely(p->flags & PF_EXITING)) { 1266 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1267 goto local; 1268 } 1269 1270 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1271 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1272 is_migration_disabled(p)) { 1273 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1274 goto local; 1275 } 1276 1277 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1278 goto global; 1279 1280 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1281 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1282 1283 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1284 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1285 1286 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1287 WARN_ON_ONCE(*ddsp_taskp); 1288 *ddsp_taskp = p; 1289 1290 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1291 1292 *ddsp_taskp = NULL; 1293 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1294 goto direct; 1295 1296 /* 1297 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1298 * dequeue may be waiting. The store_release matches their load_acquire. 1299 */ 1300 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1301 return; 1302 1303 direct: 1304 direct_dispatch(sch, p, enq_flags); 1305 return; 1306 1307 local: 1308 /* 1309 * For task-ordering, slice refill must be treated as implying the end 1310 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1311 * higher priority it becomes from scx_prio_less()'s POV. 1312 */ 1313 touch_core_sched(rq, p); 1314 refill_task_slice_dfl(sch, p); 1315 local_norefill: 1316 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1317 return; 1318 1319 global: 1320 touch_core_sched(rq, p); /* see the comment in local: */ 1321 refill_task_slice_dfl(sch, p); 1322 dispatch_enqueue(sch, find_global_dsq(sch, p), p, enq_flags); 1323 } 1324 1325 static bool task_runnable(const struct task_struct *p) 1326 { 1327 return !list_empty(&p->scx.runnable_node); 1328 } 1329 1330 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1331 { 1332 lockdep_assert_rq_held(rq); 1333 1334 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1335 p->scx.runnable_at = jiffies; 1336 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1337 } 1338 1339 /* 1340 * list_add_tail() must be used. scx_bypass() depends on tasks being 1341 * appended to the runnable_list. 1342 */ 1343 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1344 } 1345 1346 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1347 { 1348 list_del_init(&p->scx.runnable_node); 1349 if (reset_runnable_at) 1350 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1351 } 1352 1353 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1354 { 1355 struct scx_sched *sch = scx_root; 1356 int sticky_cpu = p->scx.sticky_cpu; 1357 1358 if (enq_flags & ENQUEUE_WAKEUP) 1359 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1360 1361 enq_flags |= rq->scx.extra_enq_flags; 1362 1363 if (sticky_cpu >= 0) 1364 p->scx.sticky_cpu = -1; 1365 1366 /* 1367 * Restoring a running task will be immediately followed by 1368 * set_next_task_scx() which expects the task to not be on the BPF 1369 * scheduler as tasks can only start running through local DSQs. Force 1370 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1371 */ 1372 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1373 sticky_cpu = cpu_of(rq); 1374 1375 if (p->scx.flags & SCX_TASK_QUEUED) { 1376 WARN_ON_ONCE(!task_runnable(p)); 1377 goto out; 1378 } 1379 1380 set_task_runnable(rq, p); 1381 p->scx.flags |= SCX_TASK_QUEUED; 1382 rq->scx.nr_running++; 1383 add_nr_running(rq, 1); 1384 1385 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1386 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1387 1388 if (enq_flags & SCX_ENQ_WAKEUP) 1389 touch_core_sched(rq, p); 1390 1391 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1392 out: 1393 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1394 1395 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1396 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1397 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1398 } 1399 1400 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1401 { 1402 struct scx_sched *sch = scx_root; 1403 unsigned long opss; 1404 1405 /* dequeue is always temporary, don't reset runnable_at */ 1406 clr_task_runnable(p, false); 1407 1408 /* acquire ensures that we see the preceding updates on QUEUED */ 1409 opss = atomic_long_read_acquire(&p->scx.ops_state); 1410 1411 switch (opss & SCX_OPSS_STATE_MASK) { 1412 case SCX_OPSS_NONE: 1413 break; 1414 case SCX_OPSS_QUEUEING: 1415 /* 1416 * QUEUEING is started and finished while holding @p's rq lock. 1417 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1418 */ 1419 BUG(); 1420 case SCX_OPSS_QUEUED: 1421 if (SCX_HAS_OP(sch, dequeue)) 1422 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1423 p, deq_flags); 1424 1425 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1426 SCX_OPSS_NONE)) 1427 break; 1428 fallthrough; 1429 case SCX_OPSS_DISPATCHING: 1430 /* 1431 * If @p is being dispatched from the BPF scheduler to a DSQ, 1432 * wait for the transfer to complete so that @p doesn't get 1433 * added to its DSQ after dequeueing is complete. 1434 * 1435 * As we're waiting on DISPATCHING with the rq locked, the 1436 * dispatching side shouldn't try to lock the rq while 1437 * DISPATCHING is set. See dispatch_to_local_dsq(). 1438 * 1439 * DISPATCHING shouldn't have qseq set and control can reach 1440 * here with NONE @opss from the above QUEUED case block. 1441 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1442 */ 1443 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1444 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1445 break; 1446 } 1447 } 1448 1449 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1450 { 1451 struct scx_sched *sch = scx_root; 1452 1453 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1454 WARN_ON_ONCE(task_runnable(p)); 1455 return true; 1456 } 1457 1458 ops_dequeue(rq, p, deq_flags); 1459 1460 /* 1461 * A currently running task which is going off @rq first gets dequeued 1462 * and then stops running. As we want running <-> stopping transitions 1463 * to be contained within runnable <-> quiescent transitions, trigger 1464 * ->stopping() early here instead of in put_prev_task_scx(). 1465 * 1466 * @p may go through multiple stopping <-> running transitions between 1467 * here and put_prev_task_scx() if task attribute changes occur while 1468 * balance_scx() leaves @rq unlocked. However, they don't contain any 1469 * information meaningful to the BPF scheduler and can be suppressed by 1470 * skipping the callbacks if the task is !QUEUED. 1471 */ 1472 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1473 update_curr_scx(rq); 1474 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1475 } 1476 1477 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1478 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1479 1480 if (deq_flags & SCX_DEQ_SLEEP) 1481 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1482 else 1483 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1484 1485 p->scx.flags &= ~SCX_TASK_QUEUED; 1486 rq->scx.nr_running--; 1487 sub_nr_running(rq, 1); 1488 1489 dispatch_dequeue(rq, p); 1490 return true; 1491 } 1492 1493 static void yield_task_scx(struct rq *rq) 1494 { 1495 struct scx_sched *sch = scx_root; 1496 struct task_struct *p = rq->curr; 1497 1498 if (SCX_HAS_OP(sch, yield)) 1499 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1500 else 1501 p->scx.slice = 0; 1502 } 1503 1504 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1505 { 1506 struct scx_sched *sch = scx_root; 1507 struct task_struct *from = rq->curr; 1508 1509 if (SCX_HAS_OP(sch, yield)) 1510 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1511 from, to); 1512 else 1513 return false; 1514 } 1515 1516 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1517 struct scx_dispatch_q *src_dsq, 1518 struct rq *dst_rq) 1519 { 1520 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1521 1522 /* @dsq is locked and @p is on @dst_rq */ 1523 lockdep_assert_held(&src_dsq->lock); 1524 lockdep_assert_rq_held(dst_rq); 1525 1526 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1527 1528 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1529 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1530 else 1531 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1532 1533 dsq_mod_nr(dst_dsq, 1); 1534 p->scx.dsq = dst_dsq; 1535 } 1536 1537 /** 1538 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1539 * @p: task to move 1540 * @enq_flags: %SCX_ENQ_* 1541 * @src_rq: rq to move the task from, locked on entry, released on return 1542 * @dst_rq: rq to move the task into, locked on return 1543 * 1544 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1545 */ 1546 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1547 struct rq *src_rq, struct rq *dst_rq) 1548 { 1549 lockdep_assert_rq_held(src_rq); 1550 1551 /* the following marks @p MIGRATING which excludes dequeue */ 1552 deactivate_task(src_rq, p, 0); 1553 set_task_cpu(p, cpu_of(dst_rq)); 1554 p->scx.sticky_cpu = cpu_of(dst_rq); 1555 1556 raw_spin_rq_unlock(src_rq); 1557 raw_spin_rq_lock(dst_rq); 1558 1559 /* 1560 * We want to pass scx-specific enq_flags but activate_task() will 1561 * truncate the upper 32 bit. As we own @rq, we can pass them through 1562 * @rq->scx.extra_enq_flags instead. 1563 */ 1564 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1565 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1566 dst_rq->scx.extra_enq_flags = enq_flags; 1567 activate_task(dst_rq, p, 0); 1568 dst_rq->scx.extra_enq_flags = 0; 1569 } 1570 1571 /* 1572 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1573 * differences: 1574 * 1575 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1576 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1577 * this CPU?". 1578 * 1579 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1580 * must be allowed to finish on the CPU that it's currently on regardless of 1581 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1582 * BPF scheduler shouldn't attempt to migrate a task which has migration 1583 * disabled. 1584 * 1585 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1586 * no to the BPF scheduler initiated migrations while offline. 1587 * 1588 * The caller must ensure that @p and @rq are on different CPUs. 1589 */ 1590 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1591 struct task_struct *p, struct rq *rq, 1592 bool enforce) 1593 { 1594 int cpu = cpu_of(rq); 1595 1596 WARN_ON_ONCE(task_cpu(p) == cpu); 1597 1598 /* 1599 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1600 * the pinned CPU in migrate_disable_switch() while @p is being switched 1601 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1602 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1603 * @p passing the below task_allowed_on_cpu() check while migration is 1604 * disabled. 1605 * 1606 * Test the migration disabled state first as the race window is narrow 1607 * and the BPF scheduler failing to check migration disabled state can 1608 * easily be masked if task_allowed_on_cpu() is done first. 1609 */ 1610 if (unlikely(is_migration_disabled(p))) { 1611 if (enforce) 1612 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1613 p->comm, p->pid, task_cpu(p), cpu); 1614 return false; 1615 } 1616 1617 /* 1618 * We don't require the BPF scheduler to avoid dispatching to offline 1619 * CPUs mostly for convenience but also because CPUs can go offline 1620 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1621 * picked CPU is outside the allowed mask. 1622 */ 1623 if (!task_allowed_on_cpu(p, cpu)) { 1624 if (enforce) 1625 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1626 cpu, p->comm, p->pid); 1627 return false; 1628 } 1629 1630 if (!scx_rq_online(rq)) { 1631 if (enforce) 1632 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1633 return false; 1634 } 1635 1636 return true; 1637 } 1638 1639 /** 1640 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1641 * @p: target task 1642 * @dsq: locked DSQ @p is currently on 1643 * @src_rq: rq @p is currently on, stable with @dsq locked 1644 * 1645 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1646 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1647 * required when transferring into a local DSQ. Even when transferring into a 1648 * non-local DSQ, it's better to use the same mechanism to protect against 1649 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1650 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1651 * 1652 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1653 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1654 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1655 * dancing from our side. 1656 * 1657 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1658 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1659 * would be cleared to -1. While other cpus may have updated it to different 1660 * values afterwards, as this operation can't be preempted or recurse, the 1661 * holding_cpu can never become this CPU again before we're done. Thus, we can 1662 * tell whether we lost to dequeue by testing whether the holding_cpu still 1663 * points to this CPU. See dispatch_dequeue() for the counterpart. 1664 * 1665 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1666 * still valid. %false if lost to dequeue. 1667 */ 1668 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1669 struct scx_dispatch_q *dsq, 1670 struct rq *src_rq) 1671 { 1672 s32 cpu = raw_smp_processor_id(); 1673 1674 lockdep_assert_held(&dsq->lock); 1675 1676 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1677 task_unlink_from_dsq(p, dsq); 1678 p->scx.holding_cpu = cpu; 1679 1680 raw_spin_unlock(&dsq->lock); 1681 raw_spin_rq_lock(src_rq); 1682 1683 /* task_rq couldn't have changed if we're still the holding cpu */ 1684 return likely(p->scx.holding_cpu == cpu) && 1685 !WARN_ON_ONCE(src_rq != task_rq(p)); 1686 } 1687 1688 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1689 struct scx_dispatch_q *dsq, struct rq *src_rq) 1690 { 1691 raw_spin_rq_unlock(this_rq); 1692 1693 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1694 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1695 return true; 1696 } else { 1697 raw_spin_rq_unlock(src_rq); 1698 raw_spin_rq_lock(this_rq); 1699 return false; 1700 } 1701 } 1702 1703 /** 1704 * move_task_between_dsqs() - Move a task from one DSQ to another 1705 * @sch: scx_sched being operated on 1706 * @p: target task 1707 * @enq_flags: %SCX_ENQ_* 1708 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1709 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1710 * 1711 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1712 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1713 * will change. As @p's task_rq is locked, this function doesn't need to use the 1714 * holding_cpu mechanism. 1715 * 1716 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1717 * return value, is locked. 1718 */ 1719 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1720 struct task_struct *p, u64 enq_flags, 1721 struct scx_dispatch_q *src_dsq, 1722 struct scx_dispatch_q *dst_dsq) 1723 { 1724 struct rq *src_rq = task_rq(p), *dst_rq; 1725 1726 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1727 lockdep_assert_held(&src_dsq->lock); 1728 lockdep_assert_rq_held(src_rq); 1729 1730 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1731 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1732 if (src_rq != dst_rq && 1733 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1734 dst_dsq = find_global_dsq(sch, p); 1735 dst_rq = src_rq; 1736 } 1737 } else { 1738 /* no need to migrate if destination is a non-local DSQ */ 1739 dst_rq = src_rq; 1740 } 1741 1742 /* 1743 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1744 * CPU, @p will be migrated. 1745 */ 1746 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1747 /* @p is going from a non-local DSQ to a local DSQ */ 1748 if (src_rq == dst_rq) { 1749 task_unlink_from_dsq(p, src_dsq); 1750 move_local_task_to_local_dsq(p, enq_flags, 1751 src_dsq, dst_rq); 1752 raw_spin_unlock(&src_dsq->lock); 1753 } else { 1754 raw_spin_unlock(&src_dsq->lock); 1755 move_remote_task_to_local_dsq(p, enq_flags, 1756 src_rq, dst_rq); 1757 } 1758 } else { 1759 /* 1760 * @p is going from a non-local DSQ to a non-local DSQ. As 1761 * $src_dsq is already locked, do an abbreviated dequeue. 1762 */ 1763 task_unlink_from_dsq(p, src_dsq); 1764 p->scx.dsq = NULL; 1765 raw_spin_unlock(&src_dsq->lock); 1766 1767 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1768 } 1769 1770 return dst_rq; 1771 } 1772 1773 /* 1774 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 1775 * banging on the same DSQ on a large NUMA system to the point where switching 1776 * to the bypass mode can take a long time. Inject artificial delays while the 1777 * bypass mode is switching to guarantee timely completion. 1778 */ 1779 static void scx_breather(struct rq *rq) 1780 { 1781 u64 until; 1782 1783 lockdep_assert_rq_held(rq); 1784 1785 if (likely(!atomic_read(&scx_breather_depth))) 1786 return; 1787 1788 raw_spin_rq_unlock(rq); 1789 1790 until = ktime_get_ns() + NSEC_PER_MSEC; 1791 1792 do { 1793 int cnt = 1024; 1794 while (atomic_read(&scx_breather_depth) && --cnt) 1795 cpu_relax(); 1796 } while (atomic_read(&scx_breather_depth) && 1797 time_before64(ktime_get_ns(), until)); 1798 1799 raw_spin_rq_lock(rq); 1800 } 1801 1802 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1803 struct scx_dispatch_q *dsq) 1804 { 1805 struct task_struct *p; 1806 retry: 1807 /* 1808 * This retry loop can repeatedly race against scx_bypass() dequeueing 1809 * tasks from @dsq trying to put the system into the bypass mode. On 1810 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock 1811 * the machine into soft lockups. Give a breather. 1812 */ 1813 scx_breather(rq); 1814 1815 /* 1816 * The caller can't expect to successfully consume a task if the task's 1817 * addition to @dsq isn't guaranteed to be visible somehow. Test 1818 * @dsq->list without locking and skip if it seems empty. 1819 */ 1820 if (list_empty(&dsq->list)) 1821 return false; 1822 1823 raw_spin_lock(&dsq->lock); 1824 1825 nldsq_for_each_task(p, dsq) { 1826 struct rq *task_rq = task_rq(p); 1827 1828 if (rq == task_rq) { 1829 task_unlink_from_dsq(p, dsq); 1830 move_local_task_to_local_dsq(p, 0, dsq, rq); 1831 raw_spin_unlock(&dsq->lock); 1832 return true; 1833 } 1834 1835 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1836 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1837 return true; 1838 goto retry; 1839 } 1840 } 1841 1842 raw_spin_unlock(&dsq->lock); 1843 return false; 1844 } 1845 1846 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1847 { 1848 int node = cpu_to_node(cpu_of(rq)); 1849 1850 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1851 } 1852 1853 /** 1854 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1855 * @sch: scx_sched being operated on 1856 * @rq: current rq which is locked 1857 * @dst_dsq: destination DSQ 1858 * @p: task to dispatch 1859 * @enq_flags: %SCX_ENQ_* 1860 * 1861 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1862 * DSQ. This function performs all the synchronization dancing needed because 1863 * local DSQs are protected with rq locks. 1864 * 1865 * The caller must have exclusive ownership of @p (e.g. through 1866 * %SCX_OPSS_DISPATCHING). 1867 */ 1868 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1869 struct scx_dispatch_q *dst_dsq, 1870 struct task_struct *p, u64 enq_flags) 1871 { 1872 struct rq *src_rq = task_rq(p); 1873 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1874 struct rq *locked_rq = rq; 1875 1876 /* 1877 * We're synchronized against dequeue through DISPATCHING. As @p can't 1878 * be dequeued, its task_rq and cpus_allowed are stable too. 1879 * 1880 * If dispatching to @rq that @p is already on, no lock dancing needed. 1881 */ 1882 if (rq == src_rq && rq == dst_rq) { 1883 dispatch_enqueue(sch, dst_dsq, p, 1884 enq_flags | SCX_ENQ_CLEAR_OPSS); 1885 return; 1886 } 1887 1888 if (src_rq != dst_rq && 1889 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1890 dispatch_enqueue(sch, find_global_dsq(sch, p), p, 1891 enq_flags | SCX_ENQ_CLEAR_OPSS); 1892 return; 1893 } 1894 1895 /* 1896 * @p is on a possibly remote @src_rq which we need to lock to move the 1897 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1898 * on DISPATCHING, so we can't grab @src_rq lock while holding 1899 * DISPATCHING. 1900 * 1901 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1902 * we're moving from a DSQ and use the same mechanism - mark the task 1903 * under transfer with holding_cpu, release DISPATCHING and then follow 1904 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1905 */ 1906 p->scx.holding_cpu = raw_smp_processor_id(); 1907 1908 /* store_release ensures that dequeue sees the above */ 1909 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1910 1911 /* switch to @src_rq lock */ 1912 if (locked_rq != src_rq) { 1913 raw_spin_rq_unlock(locked_rq); 1914 locked_rq = src_rq; 1915 raw_spin_rq_lock(src_rq); 1916 } 1917 1918 /* task_rq couldn't have changed if we're still the holding cpu */ 1919 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 1920 !WARN_ON_ONCE(src_rq != task_rq(p))) { 1921 /* 1922 * If @p is staying on the same rq, there's no need to go 1923 * through the full deactivate/activate cycle. Optimize by 1924 * abbreviating move_remote_task_to_local_dsq(). 1925 */ 1926 if (src_rq == dst_rq) { 1927 p->scx.holding_cpu = -1; 1928 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 1929 enq_flags); 1930 } else { 1931 move_remote_task_to_local_dsq(p, enq_flags, 1932 src_rq, dst_rq); 1933 /* task has been moved to dst_rq, which is now locked */ 1934 locked_rq = dst_rq; 1935 } 1936 1937 /* if the destination CPU is idle, wake it up */ 1938 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 1939 resched_curr(dst_rq); 1940 } 1941 1942 /* switch back to @rq lock */ 1943 if (locked_rq != rq) { 1944 raw_spin_rq_unlock(locked_rq); 1945 raw_spin_rq_lock(rq); 1946 } 1947 } 1948 1949 /** 1950 * finish_dispatch - Asynchronously finish dispatching a task 1951 * @rq: current rq which is locked 1952 * @p: task to finish dispatching 1953 * @qseq_at_dispatch: qseq when @p started getting dispatched 1954 * @dsq_id: destination DSQ ID 1955 * @enq_flags: %SCX_ENQ_* 1956 * 1957 * Dispatching to local DSQs may need to wait for queueing to complete or 1958 * require rq lock dancing. As we don't wanna do either while inside 1959 * ops.dispatch() to avoid locking order inversion, we split dispatching into 1960 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 1961 * task and its qseq. Once ops.dispatch() returns, this function is called to 1962 * finish up. 1963 * 1964 * There is no guarantee that @p is still valid for dispatching or even that it 1965 * was valid in the first place. Make sure that the task is still owned by the 1966 * BPF scheduler and claim the ownership before dispatching. 1967 */ 1968 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 1969 struct task_struct *p, 1970 unsigned long qseq_at_dispatch, 1971 u64 dsq_id, u64 enq_flags) 1972 { 1973 struct scx_dispatch_q *dsq; 1974 unsigned long opss; 1975 1976 touch_core_sched_dispatch(rq, p); 1977 retry: 1978 /* 1979 * No need for _acquire here. @p is accessed only after a successful 1980 * try_cmpxchg to DISPATCHING. 1981 */ 1982 opss = atomic_long_read(&p->scx.ops_state); 1983 1984 switch (opss & SCX_OPSS_STATE_MASK) { 1985 case SCX_OPSS_DISPATCHING: 1986 case SCX_OPSS_NONE: 1987 /* someone else already got to it */ 1988 return; 1989 case SCX_OPSS_QUEUED: 1990 /* 1991 * If qseq doesn't match, @p has gone through at least one 1992 * dispatch/dequeue and re-enqueue cycle between 1993 * scx_bpf_dsq_insert() and here and we have no claim on it. 1994 */ 1995 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 1996 return; 1997 1998 /* 1999 * While we know @p is accessible, we don't yet have a claim on 2000 * it - the BPF scheduler is allowed to dispatch tasks 2001 * spuriously and there can be a racing dequeue attempt. Let's 2002 * claim @p by atomically transitioning it from QUEUED to 2003 * DISPATCHING. 2004 */ 2005 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2006 SCX_OPSS_DISPATCHING))) 2007 break; 2008 goto retry; 2009 case SCX_OPSS_QUEUEING: 2010 /* 2011 * do_enqueue_task() is in the process of transferring the task 2012 * to the BPF scheduler while holding @p's rq lock. As we aren't 2013 * holding any kernel or BPF resource that the enqueue path may 2014 * depend upon, it's safe to wait. 2015 */ 2016 wait_ops_state(p, opss); 2017 goto retry; 2018 } 2019 2020 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2021 2022 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 2023 2024 if (dsq->id == SCX_DSQ_LOCAL) 2025 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 2026 else 2027 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2028 } 2029 2030 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 2031 { 2032 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2033 u32 u; 2034 2035 for (u = 0; u < dspc->cursor; u++) { 2036 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2037 2038 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 2039 ent->enq_flags); 2040 } 2041 2042 dspc->nr_tasks += dspc->cursor; 2043 dspc->cursor = 0; 2044 } 2045 2046 static inline void maybe_queue_balance_callback(struct rq *rq) 2047 { 2048 lockdep_assert_rq_held(rq); 2049 2050 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING)) 2051 return; 2052 2053 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 2054 deferred_bal_cb_workfn); 2055 2056 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING; 2057 } 2058 2059 static int balance_one(struct rq *rq, struct task_struct *prev) 2060 { 2061 struct scx_sched *sch = scx_root; 2062 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2063 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2064 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2065 int nr_loops = SCX_DSP_MAX_LOOPS; 2066 2067 lockdep_assert_rq_held(rq); 2068 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2069 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2070 2071 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2072 unlikely(rq->scx.cpu_released)) { 2073 /* 2074 * If the previous sched_class for the current CPU was not SCX, 2075 * notify the BPF scheduler that it again has control of the 2076 * core. This callback complements ->cpu_release(), which is 2077 * emitted in switch_class(). 2078 */ 2079 if (SCX_HAS_OP(sch, cpu_acquire)) 2080 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2081 cpu_of(rq), NULL); 2082 rq->scx.cpu_released = false; 2083 } 2084 2085 if (prev_on_scx) { 2086 update_curr_scx(rq); 2087 2088 /* 2089 * If @prev is runnable & has slice left, it has priority and 2090 * fetching more just increases latency for the fetched tasks. 2091 * Tell pick_task_scx() to keep running @prev. If the BPF 2092 * scheduler wants to handle this explicitly, it should 2093 * implement ->cpu_release(). 2094 * 2095 * See scx_disable_workfn() for the explanation on the bypassing 2096 * test. 2097 */ 2098 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2099 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2100 goto has_tasks; 2101 } 2102 } 2103 2104 /* if there already are tasks to run, nothing to do */ 2105 if (rq->scx.local_dsq.nr) 2106 goto has_tasks; 2107 2108 if (consume_global_dsq(sch, rq)) 2109 goto has_tasks; 2110 2111 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || 2112 scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2113 goto no_tasks; 2114 2115 dspc->rq = rq; 2116 2117 /* 2118 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2119 * the local DSQ might still end up empty after a successful 2120 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2121 * produced some tasks, retry. The BPF scheduler may depend on this 2122 * looping behavior to simplify its implementation. 2123 */ 2124 do { 2125 dspc->nr_tasks = 0; 2126 2127 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2128 cpu_of(rq), prev_on_scx ? prev : NULL); 2129 2130 flush_dispatch_buf(sch, rq); 2131 2132 if (prev_on_rq && prev->scx.slice) { 2133 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2134 goto has_tasks; 2135 } 2136 if (rq->scx.local_dsq.nr) 2137 goto has_tasks; 2138 if (consume_global_dsq(sch, rq)) 2139 goto has_tasks; 2140 2141 /* 2142 * ops.dispatch() can trap us in this loop by repeatedly 2143 * dispatching ineligible tasks. Break out once in a while to 2144 * allow the watchdog to run. As IRQ can't be enabled in 2145 * balance(), we want to complete this scheduling cycle and then 2146 * start a new one. IOW, we want to call resched_curr() on the 2147 * next, most likely idle, task, not the current one. Use 2148 * scx_kick_cpu() for deferred kicking. 2149 */ 2150 if (unlikely(!--nr_loops)) { 2151 scx_kick_cpu(sch, cpu_of(rq), 0); 2152 break; 2153 } 2154 } while (dspc->nr_tasks); 2155 2156 no_tasks: 2157 /* 2158 * Didn't find another task to run. Keep running @prev unless 2159 * %SCX_OPS_ENQ_LAST is in effect. 2160 */ 2161 if (prev_on_rq && 2162 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2163 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2164 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2165 goto has_tasks; 2166 } 2167 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2168 return false; 2169 2170 has_tasks: 2171 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2172 return true; 2173 } 2174 2175 static void process_ddsp_deferred_locals(struct rq *rq) 2176 { 2177 struct task_struct *p; 2178 2179 lockdep_assert_rq_held(rq); 2180 2181 /* 2182 * Now that @rq can be unlocked, execute the deferred enqueueing of 2183 * tasks directly dispatched to the local DSQs of other CPUs. See 2184 * direct_dispatch(). Keep popping from the head instead of using 2185 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2186 * temporarily. 2187 */ 2188 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2189 struct task_struct, scx.dsq_list.node))) { 2190 struct scx_sched *sch = scx_root; 2191 struct scx_dispatch_q *dsq; 2192 2193 list_del_init(&p->scx.dsq_list.node); 2194 2195 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2196 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2197 dispatch_to_local_dsq(sch, rq, dsq, p, 2198 p->scx.ddsp_enq_flags); 2199 } 2200 } 2201 2202 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2203 { 2204 struct scx_sched *sch = scx_root; 2205 2206 if (p->scx.flags & SCX_TASK_QUEUED) { 2207 /* 2208 * Core-sched might decide to execute @p before it is 2209 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2210 */ 2211 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2212 dispatch_dequeue(rq, p); 2213 } 2214 2215 p->se.exec_start = rq_clock_task(rq); 2216 2217 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2218 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2219 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2220 2221 clr_task_runnable(p, true); 2222 2223 /* 2224 * @p is getting newly scheduled or got kicked after someone updated its 2225 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2226 */ 2227 if ((p->scx.slice == SCX_SLICE_INF) != 2228 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2229 if (p->scx.slice == SCX_SLICE_INF) 2230 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2231 else 2232 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2233 2234 sched_update_tick_dependency(rq); 2235 2236 /* 2237 * For now, let's refresh the load_avgs just when transitioning 2238 * in and out of nohz. In the future, we might want to add a 2239 * mechanism which calls the following periodically on 2240 * tick-stopped CPUs. 2241 */ 2242 update_other_load_avgs(rq); 2243 } 2244 } 2245 2246 static enum scx_cpu_preempt_reason 2247 preempt_reason_from_class(const struct sched_class *class) 2248 { 2249 if (class == &stop_sched_class) 2250 return SCX_CPU_PREEMPT_STOP; 2251 if (class == &dl_sched_class) 2252 return SCX_CPU_PREEMPT_DL; 2253 if (class == &rt_sched_class) 2254 return SCX_CPU_PREEMPT_RT; 2255 return SCX_CPU_PREEMPT_UNKNOWN; 2256 } 2257 2258 static void switch_class(struct rq *rq, struct task_struct *next) 2259 { 2260 struct scx_sched *sch = scx_root; 2261 const struct sched_class *next_class = next->sched_class; 2262 2263 /* 2264 * Pairs with the smp_load_acquire() issued by a CPU in 2265 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2266 * resched. 2267 */ 2268 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2269 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2270 return; 2271 2272 /* 2273 * The callback is conceptually meant to convey that the CPU is no 2274 * longer under the control of SCX. Therefore, don't invoke the callback 2275 * if the next class is below SCX (in which case the BPF scheduler has 2276 * actively decided not to schedule any tasks on the CPU). 2277 */ 2278 if (sched_class_above(&ext_sched_class, next_class)) 2279 return; 2280 2281 /* 2282 * At this point we know that SCX was preempted by a higher priority 2283 * sched_class, so invoke the ->cpu_release() callback if we have not 2284 * done so already. We only send the callback once between SCX being 2285 * preempted, and it regaining control of the CPU. 2286 * 2287 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2288 * next time that balance_scx() is invoked. 2289 */ 2290 if (!rq->scx.cpu_released) { 2291 if (SCX_HAS_OP(sch, cpu_release)) { 2292 struct scx_cpu_release_args args = { 2293 .reason = preempt_reason_from_class(next_class), 2294 .task = next, 2295 }; 2296 2297 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2298 cpu_of(rq), &args); 2299 } 2300 rq->scx.cpu_released = true; 2301 } 2302 } 2303 2304 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2305 struct task_struct *next) 2306 { 2307 struct scx_sched *sch = scx_root; 2308 update_curr_scx(rq); 2309 2310 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2311 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2312 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2313 2314 if (p->scx.flags & SCX_TASK_QUEUED) { 2315 set_task_runnable(rq, p); 2316 2317 /* 2318 * If @p has slice left and is being put, @p is getting 2319 * preempted by a higher priority scheduler class or core-sched 2320 * forcing a different task. Leave it at the head of the local 2321 * DSQ. 2322 */ 2323 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2324 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2325 SCX_ENQ_HEAD); 2326 goto switch_class; 2327 } 2328 2329 /* 2330 * If @p is runnable but we're about to enter a lower 2331 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2332 * ops.enqueue() that @p is the only one available for this cpu, 2333 * which should trigger an explicit follow-up scheduling event. 2334 */ 2335 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2336 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2337 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2338 } else { 2339 do_enqueue_task(rq, p, 0, -1); 2340 } 2341 } 2342 2343 switch_class: 2344 if (next && next->sched_class != &ext_sched_class) 2345 switch_class(rq, next); 2346 } 2347 2348 static struct task_struct *first_local_task(struct rq *rq) 2349 { 2350 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2351 struct task_struct, scx.dsq_list.node); 2352 } 2353 2354 static struct task_struct * 2355 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx) 2356 { 2357 struct task_struct *prev = rq->curr; 2358 bool keep_prev, kick_idle = false; 2359 struct task_struct *p; 2360 2361 rq_modified_clear(rq); 2362 2363 rq_unpin_lock(rq, rf); 2364 balance_one(rq, prev); 2365 rq_repin_lock(rq, rf); 2366 2367 maybe_queue_balance_callback(rq); 2368 2369 /* 2370 * If any higher-priority sched class enqueued a runnable task on 2371 * this rq during balance_one(), abort and return RETRY_TASK, so 2372 * that the scheduler loop can restart. 2373 * 2374 * If @force_scx is true, always try to pick a SCHED_EXT task, 2375 * regardless of any higher-priority sched classes activity. 2376 */ 2377 if (!force_scx && rq_modified_above(rq, &ext_sched_class)) 2378 return RETRY_TASK; 2379 2380 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2381 if (unlikely(keep_prev && 2382 prev->sched_class != &ext_sched_class)) { 2383 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2384 keep_prev = false; 2385 } 2386 2387 /* 2388 * If balance_scx() is telling us to keep running @prev, replenish slice 2389 * if necessary and keep running @prev. Otherwise, pop the first one 2390 * from the local DSQ. 2391 */ 2392 if (keep_prev) { 2393 p = prev; 2394 if (!p->scx.slice) 2395 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p); 2396 } else { 2397 p = first_local_task(rq); 2398 if (!p) { 2399 if (kick_idle) 2400 scx_kick_cpu(rcu_dereference_sched(scx_root), 2401 cpu_of(rq), SCX_KICK_IDLE); 2402 return NULL; 2403 } 2404 2405 if (unlikely(!p->scx.slice)) { 2406 struct scx_sched *sch = rcu_dereference_sched(scx_root); 2407 2408 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2409 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2410 p->comm, p->pid, __func__); 2411 sch->warned_zero_slice = true; 2412 } 2413 refill_task_slice_dfl(sch, p); 2414 } 2415 } 2416 2417 return p; 2418 } 2419 2420 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf) 2421 { 2422 return do_pick_task_scx(rq, rf, false); 2423 } 2424 2425 #ifdef CONFIG_SCHED_CORE 2426 /** 2427 * scx_prio_less - Task ordering for core-sched 2428 * @a: task A 2429 * @b: task B 2430 * @in_fi: in forced idle state 2431 * 2432 * Core-sched is implemented as an additional scheduling layer on top of the 2433 * usual sched_class'es and needs to find out the expected task ordering. For 2434 * SCX, core-sched calls this function to interrogate the task ordering. 2435 * 2436 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2437 * to implement the default task ordering. The older the timestamp, the higher 2438 * priority the task - the global FIFO ordering matching the default scheduling 2439 * behavior. 2440 * 2441 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2442 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2443 */ 2444 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2445 bool in_fi) 2446 { 2447 struct scx_sched *sch = scx_root; 2448 2449 /* 2450 * The const qualifiers are dropped from task_struct pointers when 2451 * calling ops.core_sched_before(). Accesses are controlled by the 2452 * verifier. 2453 */ 2454 if (SCX_HAS_OP(sch, core_sched_before) && 2455 !scx_rq_bypassing(task_rq(a))) 2456 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2457 NULL, 2458 (struct task_struct *)a, 2459 (struct task_struct *)b); 2460 else 2461 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2462 } 2463 #endif /* CONFIG_SCHED_CORE */ 2464 2465 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2466 { 2467 struct scx_sched *sch = scx_root; 2468 bool rq_bypass; 2469 2470 /* 2471 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2472 * can be a good migration opportunity with low cache and memory 2473 * footprint. Returning a CPU different than @prev_cpu triggers 2474 * immediate rq migration. However, for SCX, as the current rq 2475 * association doesn't dictate where the task is going to run, this 2476 * doesn't fit well. If necessary, we can later add a dedicated method 2477 * which can decide to preempt self to force it through the regular 2478 * scheduling path. 2479 */ 2480 if (unlikely(wake_flags & WF_EXEC)) 2481 return prev_cpu; 2482 2483 rq_bypass = scx_rq_bypassing(task_rq(p)); 2484 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2485 s32 cpu; 2486 struct task_struct **ddsp_taskp; 2487 2488 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2489 WARN_ON_ONCE(*ddsp_taskp); 2490 *ddsp_taskp = p; 2491 2492 cpu = SCX_CALL_OP_TASK_RET(sch, 2493 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2494 select_cpu, NULL, p, prev_cpu, 2495 wake_flags); 2496 p->scx.selected_cpu = cpu; 2497 *ddsp_taskp = NULL; 2498 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2499 return cpu; 2500 else 2501 return prev_cpu; 2502 } else { 2503 s32 cpu; 2504 2505 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2506 if (cpu >= 0) { 2507 refill_task_slice_dfl(sch, p); 2508 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2509 } else { 2510 cpu = prev_cpu; 2511 } 2512 p->scx.selected_cpu = cpu; 2513 2514 if (rq_bypass) 2515 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2516 return cpu; 2517 } 2518 } 2519 2520 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2521 { 2522 run_deferred(rq); 2523 } 2524 2525 static void set_cpus_allowed_scx(struct task_struct *p, 2526 struct affinity_context *ac) 2527 { 2528 struct scx_sched *sch = scx_root; 2529 2530 set_cpus_allowed_common(p, ac); 2531 2532 /* 2533 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2534 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2535 * scheduler the effective one. 2536 * 2537 * Fine-grained memory write control is enforced by BPF making the const 2538 * designation pointless. Cast it away when calling the operation. 2539 */ 2540 if (SCX_HAS_OP(sch, set_cpumask)) 2541 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2542 p, (struct cpumask *)p->cpus_ptr); 2543 } 2544 2545 static void handle_hotplug(struct rq *rq, bool online) 2546 { 2547 struct scx_sched *sch = scx_root; 2548 int cpu = cpu_of(rq); 2549 2550 atomic_long_inc(&scx_hotplug_seq); 2551 2552 /* 2553 * scx_root updates are protected by cpus_read_lock() and will stay 2554 * stable here. Note that we can't depend on scx_enabled() test as the 2555 * hotplug ops need to be enabled before __scx_enabled is set. 2556 */ 2557 if (unlikely(!sch)) 2558 return; 2559 2560 if (scx_enabled()) 2561 scx_idle_update_selcpu_topology(&sch->ops); 2562 2563 if (online && SCX_HAS_OP(sch, cpu_online)) 2564 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2565 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2566 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2567 else 2568 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2569 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2570 "cpu %d going %s, exiting scheduler", cpu, 2571 online ? "online" : "offline"); 2572 } 2573 2574 void scx_rq_activate(struct rq *rq) 2575 { 2576 handle_hotplug(rq, true); 2577 } 2578 2579 void scx_rq_deactivate(struct rq *rq) 2580 { 2581 handle_hotplug(rq, false); 2582 } 2583 2584 static void rq_online_scx(struct rq *rq) 2585 { 2586 rq->scx.flags |= SCX_RQ_ONLINE; 2587 } 2588 2589 static void rq_offline_scx(struct rq *rq) 2590 { 2591 rq->scx.flags &= ~SCX_RQ_ONLINE; 2592 } 2593 2594 2595 static bool check_rq_for_timeouts(struct rq *rq) 2596 { 2597 struct scx_sched *sch; 2598 struct task_struct *p; 2599 struct rq_flags rf; 2600 bool timed_out = false; 2601 2602 rq_lock_irqsave(rq, &rf); 2603 sch = rcu_dereference_bh(scx_root); 2604 if (unlikely(!sch)) 2605 goto out_unlock; 2606 2607 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2608 unsigned long last_runnable = p->scx.runnable_at; 2609 2610 if (unlikely(time_after(jiffies, 2611 last_runnable + scx_watchdog_timeout))) { 2612 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2613 2614 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2615 "%s[%d] failed to run for %u.%03us", 2616 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2617 timed_out = true; 2618 break; 2619 } 2620 } 2621 out_unlock: 2622 rq_unlock_irqrestore(rq, &rf); 2623 return timed_out; 2624 } 2625 2626 static void scx_watchdog_workfn(struct work_struct *work) 2627 { 2628 int cpu; 2629 2630 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2631 2632 for_each_online_cpu(cpu) { 2633 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2634 break; 2635 2636 cond_resched(); 2637 } 2638 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2639 scx_watchdog_timeout / 2); 2640 } 2641 2642 void scx_tick(struct rq *rq) 2643 { 2644 struct scx_sched *sch; 2645 unsigned long last_check; 2646 2647 if (!scx_enabled()) 2648 return; 2649 2650 sch = rcu_dereference_bh(scx_root); 2651 if (unlikely(!sch)) 2652 return; 2653 2654 last_check = READ_ONCE(scx_watchdog_timestamp); 2655 if (unlikely(time_after(jiffies, 2656 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2657 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2658 2659 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2660 "watchdog failed to check in for %u.%03us", 2661 dur_ms / 1000, dur_ms % 1000); 2662 } 2663 2664 update_other_load_avgs(rq); 2665 } 2666 2667 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2668 { 2669 struct scx_sched *sch = scx_root; 2670 2671 update_curr_scx(rq); 2672 2673 /* 2674 * While disabling, always resched and refresh core-sched timestamp as 2675 * we can't trust the slice management or ops.core_sched_before(). 2676 */ 2677 if (scx_rq_bypassing(rq)) { 2678 curr->scx.slice = 0; 2679 touch_core_sched(rq, curr); 2680 } else if (SCX_HAS_OP(sch, tick)) { 2681 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2682 } 2683 2684 if (!curr->scx.slice) 2685 resched_curr(rq); 2686 } 2687 2688 #ifdef CONFIG_EXT_GROUP_SCHED 2689 static struct cgroup *tg_cgrp(struct task_group *tg) 2690 { 2691 /* 2692 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2693 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2694 * root cgroup. 2695 */ 2696 if (tg && tg->css.cgroup) 2697 return tg->css.cgroup; 2698 else 2699 return &cgrp_dfl_root.cgrp; 2700 } 2701 2702 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2703 2704 #else /* CONFIG_EXT_GROUP_SCHED */ 2705 2706 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2707 2708 #endif /* CONFIG_EXT_GROUP_SCHED */ 2709 2710 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2711 { 2712 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2713 } 2714 2715 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2716 { 2717 enum scx_task_state prev_state = scx_get_task_state(p); 2718 bool warn = false; 2719 2720 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2721 2722 switch (state) { 2723 case SCX_TASK_NONE: 2724 break; 2725 case SCX_TASK_INIT: 2726 warn = prev_state != SCX_TASK_NONE; 2727 break; 2728 case SCX_TASK_READY: 2729 warn = prev_state == SCX_TASK_NONE; 2730 break; 2731 case SCX_TASK_ENABLED: 2732 warn = prev_state != SCX_TASK_READY; 2733 break; 2734 default: 2735 warn = true; 2736 return; 2737 } 2738 2739 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2740 prev_state, state, p->comm, p->pid); 2741 2742 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2743 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2744 } 2745 2746 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2747 { 2748 struct scx_sched *sch = scx_root; 2749 int ret; 2750 2751 p->scx.disallow = false; 2752 2753 if (SCX_HAS_OP(sch, init_task)) { 2754 struct scx_init_task_args args = { 2755 SCX_INIT_TASK_ARGS_CGROUP(tg) 2756 .fork = fork, 2757 }; 2758 2759 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2760 p, &args); 2761 if (unlikely(ret)) { 2762 ret = ops_sanitize_err(sch, "init_task", ret); 2763 return ret; 2764 } 2765 } 2766 2767 scx_set_task_state(p, SCX_TASK_INIT); 2768 2769 if (p->scx.disallow) { 2770 if (!fork) { 2771 struct rq *rq; 2772 struct rq_flags rf; 2773 2774 rq = task_rq_lock(p, &rf); 2775 2776 /* 2777 * We're in the load path and @p->policy will be applied 2778 * right after. Reverting @p->policy here and rejecting 2779 * %SCHED_EXT transitions from scx_check_setscheduler() 2780 * guarantees that if ops.init_task() sets @p->disallow, 2781 * @p can never be in SCX. 2782 */ 2783 if (p->policy == SCHED_EXT) { 2784 p->policy = SCHED_NORMAL; 2785 atomic_long_inc(&scx_nr_rejected); 2786 } 2787 2788 task_rq_unlock(rq, p, &rf); 2789 } else if (p->policy == SCHED_EXT) { 2790 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2791 p->comm, p->pid); 2792 } 2793 } 2794 2795 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2796 return 0; 2797 } 2798 2799 static void scx_enable_task(struct task_struct *p) 2800 { 2801 struct scx_sched *sch = scx_root; 2802 struct rq *rq = task_rq(p); 2803 u32 weight; 2804 2805 lockdep_assert_rq_held(rq); 2806 2807 /* 2808 * Set the weight before calling ops.enable() so that the scheduler 2809 * doesn't see a stale value if they inspect the task struct. 2810 */ 2811 if (task_has_idle_policy(p)) 2812 weight = WEIGHT_IDLEPRIO; 2813 else 2814 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2815 2816 p->scx.weight = sched_weight_to_cgroup(weight); 2817 2818 if (SCX_HAS_OP(sch, enable)) 2819 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2820 scx_set_task_state(p, SCX_TASK_ENABLED); 2821 2822 if (SCX_HAS_OP(sch, set_weight)) 2823 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2824 p, p->scx.weight); 2825 } 2826 2827 static void scx_disable_task(struct task_struct *p) 2828 { 2829 struct scx_sched *sch = scx_root; 2830 struct rq *rq = task_rq(p); 2831 2832 lockdep_assert_rq_held(rq); 2833 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2834 2835 if (SCX_HAS_OP(sch, disable)) 2836 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2837 scx_set_task_state(p, SCX_TASK_READY); 2838 } 2839 2840 static void scx_exit_task(struct task_struct *p) 2841 { 2842 struct scx_sched *sch = scx_root; 2843 struct scx_exit_task_args args = { 2844 .cancelled = false, 2845 }; 2846 2847 lockdep_assert_rq_held(task_rq(p)); 2848 2849 switch (scx_get_task_state(p)) { 2850 case SCX_TASK_NONE: 2851 return; 2852 case SCX_TASK_INIT: 2853 args.cancelled = true; 2854 break; 2855 case SCX_TASK_READY: 2856 break; 2857 case SCX_TASK_ENABLED: 2858 scx_disable_task(p); 2859 break; 2860 default: 2861 WARN_ON_ONCE(true); 2862 return; 2863 } 2864 2865 if (SCX_HAS_OP(sch, exit_task)) 2866 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2867 p, &args); 2868 scx_set_task_state(p, SCX_TASK_NONE); 2869 } 2870 2871 void init_scx_entity(struct sched_ext_entity *scx) 2872 { 2873 memset(scx, 0, sizeof(*scx)); 2874 INIT_LIST_HEAD(&scx->dsq_list.node); 2875 RB_CLEAR_NODE(&scx->dsq_priq); 2876 scx->sticky_cpu = -1; 2877 scx->holding_cpu = -1; 2878 INIT_LIST_HEAD(&scx->runnable_node); 2879 scx->runnable_at = jiffies; 2880 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2881 scx->slice = SCX_SLICE_DFL; 2882 } 2883 2884 void scx_pre_fork(struct task_struct *p) 2885 { 2886 /* 2887 * BPF scheduler enable/disable paths want to be able to iterate and 2888 * update all tasks which can become complex when racing forks. As 2889 * enable/disable are very cold paths, let's use a percpu_rwsem to 2890 * exclude forks. 2891 */ 2892 percpu_down_read(&scx_fork_rwsem); 2893 } 2894 2895 int scx_fork(struct task_struct *p) 2896 { 2897 percpu_rwsem_assert_held(&scx_fork_rwsem); 2898 2899 if (scx_init_task_enabled) 2900 return scx_init_task(p, task_group(p), true); 2901 else 2902 return 0; 2903 } 2904 2905 void scx_post_fork(struct task_struct *p) 2906 { 2907 if (scx_init_task_enabled) { 2908 scx_set_task_state(p, SCX_TASK_READY); 2909 2910 /* 2911 * Enable the task immediately if it's running on sched_ext. 2912 * Otherwise, it'll be enabled in switching_to_scx() if and 2913 * when it's ever configured to run with a SCHED_EXT policy. 2914 */ 2915 if (p->sched_class == &ext_sched_class) { 2916 struct rq_flags rf; 2917 struct rq *rq; 2918 2919 rq = task_rq_lock(p, &rf); 2920 scx_enable_task(p); 2921 task_rq_unlock(rq, p, &rf); 2922 } 2923 } 2924 2925 spin_lock_irq(&scx_tasks_lock); 2926 list_add_tail(&p->scx.tasks_node, &scx_tasks); 2927 spin_unlock_irq(&scx_tasks_lock); 2928 2929 percpu_up_read(&scx_fork_rwsem); 2930 } 2931 2932 void scx_cancel_fork(struct task_struct *p) 2933 { 2934 if (scx_enabled()) { 2935 struct rq *rq; 2936 struct rq_flags rf; 2937 2938 rq = task_rq_lock(p, &rf); 2939 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 2940 scx_exit_task(p); 2941 task_rq_unlock(rq, p, &rf); 2942 } 2943 2944 percpu_up_read(&scx_fork_rwsem); 2945 } 2946 2947 void sched_ext_free(struct task_struct *p) 2948 { 2949 unsigned long flags; 2950 2951 spin_lock_irqsave(&scx_tasks_lock, flags); 2952 list_del_init(&p->scx.tasks_node); 2953 spin_unlock_irqrestore(&scx_tasks_lock, flags); 2954 2955 /* 2956 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 2957 * transitions can't race us. Disable ops for @p. 2958 */ 2959 if (scx_get_task_state(p) != SCX_TASK_NONE) { 2960 struct rq_flags rf; 2961 struct rq *rq; 2962 2963 rq = task_rq_lock(p, &rf); 2964 scx_exit_task(p); 2965 task_rq_unlock(rq, p, &rf); 2966 } 2967 } 2968 2969 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 2970 const struct load_weight *lw) 2971 { 2972 struct scx_sched *sch = scx_root; 2973 2974 lockdep_assert_rq_held(task_rq(p)); 2975 2976 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 2977 if (SCX_HAS_OP(sch, set_weight)) 2978 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2979 p, p->scx.weight); 2980 } 2981 2982 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio) 2983 { 2984 } 2985 2986 static void switching_to_scx(struct rq *rq, struct task_struct *p) 2987 { 2988 struct scx_sched *sch = scx_root; 2989 2990 scx_enable_task(p); 2991 2992 /* 2993 * set_cpus_allowed_scx() is not called while @p is associated with a 2994 * different scheduler class. Keep the BPF scheduler up-to-date. 2995 */ 2996 if (SCX_HAS_OP(sch, set_cpumask)) 2997 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 2998 p, (struct cpumask *)p->cpus_ptr); 2999 } 3000 3001 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3002 { 3003 scx_disable_task(p); 3004 } 3005 3006 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3007 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3008 3009 int scx_check_setscheduler(struct task_struct *p, int policy) 3010 { 3011 lockdep_assert_rq_held(task_rq(p)); 3012 3013 /* if disallow, reject transitioning into SCX */ 3014 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3015 p->policy != policy && policy == SCHED_EXT) 3016 return -EACCES; 3017 3018 return 0; 3019 } 3020 3021 #ifdef CONFIG_NO_HZ_FULL 3022 bool scx_can_stop_tick(struct rq *rq) 3023 { 3024 struct task_struct *p = rq->curr; 3025 3026 if (scx_rq_bypassing(rq)) 3027 return false; 3028 3029 if (p->sched_class != &ext_sched_class) 3030 return true; 3031 3032 /* 3033 * @rq can dispatch from different DSQs, so we can't tell whether it 3034 * needs the tick or not by looking at nr_running. Allow stopping ticks 3035 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3036 */ 3037 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3038 } 3039 #endif 3040 3041 #ifdef CONFIG_EXT_GROUP_SCHED 3042 3043 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3044 static bool scx_cgroup_enabled; 3045 3046 void scx_tg_init(struct task_group *tg) 3047 { 3048 tg->scx.weight = CGROUP_WEIGHT_DFL; 3049 tg->scx.bw_period_us = default_bw_period_us(); 3050 tg->scx.bw_quota_us = RUNTIME_INF; 3051 tg->scx.idle = false; 3052 } 3053 3054 int scx_tg_online(struct task_group *tg) 3055 { 3056 struct scx_sched *sch = scx_root; 3057 int ret = 0; 3058 3059 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3060 3061 if (scx_cgroup_enabled) { 3062 if (SCX_HAS_OP(sch, cgroup_init)) { 3063 struct scx_cgroup_init_args args = 3064 { .weight = tg->scx.weight, 3065 .bw_period_us = tg->scx.bw_period_us, 3066 .bw_quota_us = tg->scx.bw_quota_us, 3067 .bw_burst_us = tg->scx.bw_burst_us }; 3068 3069 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3070 NULL, tg->css.cgroup, &args); 3071 if (ret) 3072 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3073 } 3074 if (ret == 0) 3075 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3076 } else { 3077 tg->scx.flags |= SCX_TG_ONLINE; 3078 } 3079 3080 return ret; 3081 } 3082 3083 void scx_tg_offline(struct task_group *tg) 3084 { 3085 struct scx_sched *sch = scx_root; 3086 3087 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3088 3089 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3090 (tg->scx.flags & SCX_TG_INITED)) 3091 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3092 tg->css.cgroup); 3093 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3094 } 3095 3096 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3097 { 3098 struct scx_sched *sch = scx_root; 3099 struct cgroup_subsys_state *css; 3100 struct task_struct *p; 3101 int ret; 3102 3103 if (!scx_cgroup_enabled) 3104 return 0; 3105 3106 cgroup_taskset_for_each(p, css, tset) { 3107 struct cgroup *from = tg_cgrp(task_group(p)); 3108 struct cgroup *to = tg_cgrp(css_tg(css)); 3109 3110 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3111 3112 /* 3113 * sched_move_task() omits identity migrations. Let's match the 3114 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3115 * always match one-to-one. 3116 */ 3117 if (from == to) 3118 continue; 3119 3120 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3121 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3122 cgroup_prep_move, NULL, 3123 p, from, css->cgroup); 3124 if (ret) 3125 goto err; 3126 } 3127 3128 p->scx.cgrp_moving_from = from; 3129 } 3130 3131 return 0; 3132 3133 err: 3134 cgroup_taskset_for_each(p, css, tset) { 3135 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3136 p->scx.cgrp_moving_from) 3137 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3138 p, p->scx.cgrp_moving_from, css->cgroup); 3139 p->scx.cgrp_moving_from = NULL; 3140 } 3141 3142 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3143 } 3144 3145 void scx_cgroup_move_task(struct task_struct *p) 3146 { 3147 struct scx_sched *sch = scx_root; 3148 3149 if (!scx_cgroup_enabled) 3150 return; 3151 3152 /* 3153 * @p must have ops.cgroup_prep_move() called on it and thus 3154 * cgrp_moving_from set. 3155 */ 3156 if (SCX_HAS_OP(sch, cgroup_move) && 3157 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3158 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3159 p, p->scx.cgrp_moving_from, 3160 tg_cgrp(task_group(p))); 3161 p->scx.cgrp_moving_from = NULL; 3162 } 3163 3164 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3165 { 3166 struct scx_sched *sch = scx_root; 3167 struct cgroup_subsys_state *css; 3168 struct task_struct *p; 3169 3170 if (!scx_cgroup_enabled) 3171 return; 3172 3173 cgroup_taskset_for_each(p, css, tset) { 3174 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3175 p->scx.cgrp_moving_from) 3176 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3177 p, p->scx.cgrp_moving_from, css->cgroup); 3178 p->scx.cgrp_moving_from = NULL; 3179 } 3180 } 3181 3182 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3183 { 3184 struct scx_sched *sch = scx_root; 3185 3186 percpu_down_read(&scx_cgroup_ops_rwsem); 3187 3188 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3189 tg->scx.weight != weight) 3190 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3191 tg_cgrp(tg), weight); 3192 3193 tg->scx.weight = weight; 3194 3195 percpu_up_read(&scx_cgroup_ops_rwsem); 3196 } 3197 3198 void scx_group_set_idle(struct task_group *tg, bool idle) 3199 { 3200 struct scx_sched *sch = scx_root; 3201 3202 percpu_down_read(&scx_cgroup_ops_rwsem); 3203 3204 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle)) 3205 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL, 3206 tg_cgrp(tg), idle); 3207 3208 /* Update the task group's idle state */ 3209 tg->scx.idle = idle; 3210 3211 percpu_up_read(&scx_cgroup_ops_rwsem); 3212 } 3213 3214 void scx_group_set_bandwidth(struct task_group *tg, 3215 u64 period_us, u64 quota_us, u64 burst_us) 3216 { 3217 struct scx_sched *sch = scx_root; 3218 3219 percpu_down_read(&scx_cgroup_ops_rwsem); 3220 3221 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3222 (tg->scx.bw_period_us != period_us || 3223 tg->scx.bw_quota_us != quota_us || 3224 tg->scx.bw_burst_us != burst_us)) 3225 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3226 tg_cgrp(tg), period_us, quota_us, burst_us); 3227 3228 tg->scx.bw_period_us = period_us; 3229 tg->scx.bw_quota_us = quota_us; 3230 tg->scx.bw_burst_us = burst_us; 3231 3232 percpu_up_read(&scx_cgroup_ops_rwsem); 3233 } 3234 3235 static void scx_cgroup_lock(void) 3236 { 3237 percpu_down_write(&scx_cgroup_ops_rwsem); 3238 cgroup_lock(); 3239 } 3240 3241 static void scx_cgroup_unlock(void) 3242 { 3243 cgroup_unlock(); 3244 percpu_up_write(&scx_cgroup_ops_rwsem); 3245 } 3246 3247 #else /* CONFIG_EXT_GROUP_SCHED */ 3248 3249 static void scx_cgroup_lock(void) {} 3250 static void scx_cgroup_unlock(void) {} 3251 3252 #endif /* CONFIG_EXT_GROUP_SCHED */ 3253 3254 /* 3255 * Omitted operations: 3256 * 3257 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3258 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3259 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3260 * 3261 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3262 * 3263 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3264 * their current sched_class. Call them directly from sched core instead. 3265 */ 3266 DEFINE_SCHED_CLASS(ext) = { 3267 .queue_mask = 1, 3268 3269 .enqueue_task = enqueue_task_scx, 3270 .dequeue_task = dequeue_task_scx, 3271 .yield_task = yield_task_scx, 3272 .yield_to_task = yield_to_task_scx, 3273 3274 .wakeup_preempt = wakeup_preempt_scx, 3275 3276 .pick_task = pick_task_scx, 3277 3278 .put_prev_task = put_prev_task_scx, 3279 .set_next_task = set_next_task_scx, 3280 3281 .select_task_rq = select_task_rq_scx, 3282 .task_woken = task_woken_scx, 3283 .set_cpus_allowed = set_cpus_allowed_scx, 3284 3285 .rq_online = rq_online_scx, 3286 .rq_offline = rq_offline_scx, 3287 3288 .task_tick = task_tick_scx, 3289 3290 .switching_to = switching_to_scx, 3291 .switched_from = switched_from_scx, 3292 .switched_to = switched_to_scx, 3293 .reweight_task = reweight_task_scx, 3294 .prio_changed = prio_changed_scx, 3295 3296 .update_curr = update_curr_scx, 3297 3298 #ifdef CONFIG_UCLAMP_TASK 3299 .uclamp_enabled = 1, 3300 #endif 3301 }; 3302 3303 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3304 { 3305 memset(dsq, 0, sizeof(*dsq)); 3306 3307 raw_spin_lock_init(&dsq->lock); 3308 INIT_LIST_HEAD(&dsq->list); 3309 dsq->id = dsq_id; 3310 } 3311 3312 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3313 { 3314 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3315 struct scx_dispatch_q *dsq, *tmp_dsq; 3316 3317 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3318 kfree_rcu(dsq, rcu); 3319 } 3320 3321 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3322 3323 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3324 { 3325 struct scx_dispatch_q *dsq; 3326 unsigned long flags; 3327 3328 rcu_read_lock(); 3329 3330 dsq = find_user_dsq(sch, dsq_id); 3331 if (!dsq) 3332 goto out_unlock_rcu; 3333 3334 raw_spin_lock_irqsave(&dsq->lock, flags); 3335 3336 if (dsq->nr) { 3337 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3338 dsq->id, dsq->nr); 3339 goto out_unlock_dsq; 3340 } 3341 3342 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3343 dsq_hash_params)) 3344 goto out_unlock_dsq; 3345 3346 /* 3347 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3348 * queueing more tasks. As this function can be called from anywhere, 3349 * freeing is bounced through an irq work to avoid nesting RCU 3350 * operations inside scheduler locks. 3351 */ 3352 dsq->id = SCX_DSQ_INVALID; 3353 llist_add(&dsq->free_node, &dsqs_to_free); 3354 irq_work_queue(&free_dsq_irq_work); 3355 3356 out_unlock_dsq: 3357 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3358 out_unlock_rcu: 3359 rcu_read_unlock(); 3360 } 3361 3362 #ifdef CONFIG_EXT_GROUP_SCHED 3363 static void scx_cgroup_exit(struct scx_sched *sch) 3364 { 3365 struct cgroup_subsys_state *css; 3366 3367 scx_cgroup_enabled = false; 3368 3369 /* 3370 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3371 * cgroups and exit all the inited ones, all online cgroups are exited. 3372 */ 3373 css_for_each_descendant_post(css, &root_task_group.css) { 3374 struct task_group *tg = css_tg(css); 3375 3376 if (!(tg->scx.flags & SCX_TG_INITED)) 3377 continue; 3378 tg->scx.flags &= ~SCX_TG_INITED; 3379 3380 if (!sch->ops.cgroup_exit) 3381 continue; 3382 3383 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3384 css->cgroup); 3385 } 3386 } 3387 3388 static int scx_cgroup_init(struct scx_sched *sch) 3389 { 3390 struct cgroup_subsys_state *css; 3391 int ret; 3392 3393 /* 3394 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3395 * cgroups and init, all online cgroups are initialized. 3396 */ 3397 css_for_each_descendant_pre(css, &root_task_group.css) { 3398 struct task_group *tg = css_tg(css); 3399 struct scx_cgroup_init_args args = { 3400 .weight = tg->scx.weight, 3401 .bw_period_us = tg->scx.bw_period_us, 3402 .bw_quota_us = tg->scx.bw_quota_us, 3403 .bw_burst_us = tg->scx.bw_burst_us, 3404 }; 3405 3406 if ((tg->scx.flags & 3407 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3408 continue; 3409 3410 if (!sch->ops.cgroup_init) { 3411 tg->scx.flags |= SCX_TG_INITED; 3412 continue; 3413 } 3414 3415 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3416 css->cgroup, &args); 3417 if (ret) { 3418 css_put(css); 3419 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3420 return ret; 3421 } 3422 tg->scx.flags |= SCX_TG_INITED; 3423 } 3424 3425 WARN_ON_ONCE(scx_cgroup_enabled); 3426 scx_cgroup_enabled = true; 3427 3428 return 0; 3429 } 3430 3431 #else 3432 static void scx_cgroup_exit(struct scx_sched *sch) {} 3433 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3434 #endif 3435 3436 3437 /******************************************************************************** 3438 * Sysfs interface and ops enable/disable. 3439 */ 3440 3441 #define SCX_ATTR(_name) \ 3442 static struct kobj_attribute scx_attr_##_name = { \ 3443 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3444 .show = scx_attr_##_name##_show, \ 3445 } 3446 3447 static ssize_t scx_attr_state_show(struct kobject *kobj, 3448 struct kobj_attribute *ka, char *buf) 3449 { 3450 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3451 } 3452 SCX_ATTR(state); 3453 3454 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3455 struct kobj_attribute *ka, char *buf) 3456 { 3457 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3458 } 3459 SCX_ATTR(switch_all); 3460 3461 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3462 struct kobj_attribute *ka, char *buf) 3463 { 3464 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3465 } 3466 SCX_ATTR(nr_rejected); 3467 3468 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3469 struct kobj_attribute *ka, char *buf) 3470 { 3471 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3472 } 3473 SCX_ATTR(hotplug_seq); 3474 3475 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3476 struct kobj_attribute *ka, char *buf) 3477 { 3478 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3479 } 3480 SCX_ATTR(enable_seq); 3481 3482 static struct attribute *scx_global_attrs[] = { 3483 &scx_attr_state.attr, 3484 &scx_attr_switch_all.attr, 3485 &scx_attr_nr_rejected.attr, 3486 &scx_attr_hotplug_seq.attr, 3487 &scx_attr_enable_seq.attr, 3488 NULL, 3489 }; 3490 3491 static const struct attribute_group scx_global_attr_group = { 3492 .attrs = scx_global_attrs, 3493 }; 3494 3495 static void free_exit_info(struct scx_exit_info *ei); 3496 3497 static void scx_sched_free_rcu_work(struct work_struct *work) 3498 { 3499 struct rcu_work *rcu_work = to_rcu_work(work); 3500 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3501 struct rhashtable_iter rht_iter; 3502 struct scx_dispatch_q *dsq; 3503 int node; 3504 3505 irq_work_sync(&sch->error_irq_work); 3506 kthread_stop(sch->helper->task); 3507 3508 free_percpu(sch->pcpu); 3509 3510 for_each_node_state(node, N_POSSIBLE) 3511 kfree(sch->global_dsqs[node]); 3512 kfree(sch->global_dsqs); 3513 3514 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3515 do { 3516 rhashtable_walk_start(&rht_iter); 3517 3518 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3519 destroy_dsq(sch, dsq->id); 3520 3521 rhashtable_walk_stop(&rht_iter); 3522 } while (dsq == ERR_PTR(-EAGAIN)); 3523 rhashtable_walk_exit(&rht_iter); 3524 3525 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3526 free_exit_info(sch->exit_info); 3527 kfree(sch); 3528 } 3529 3530 static void scx_kobj_release(struct kobject *kobj) 3531 { 3532 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3533 3534 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3535 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3536 } 3537 3538 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3539 struct kobj_attribute *ka, char *buf) 3540 { 3541 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3542 } 3543 SCX_ATTR(ops); 3544 3545 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3546 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3547 }) 3548 3549 static ssize_t scx_attr_events_show(struct kobject *kobj, 3550 struct kobj_attribute *ka, char *buf) 3551 { 3552 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3553 struct scx_event_stats events; 3554 int at = 0; 3555 3556 scx_read_events(sch, &events); 3557 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3558 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3559 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3560 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3561 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3562 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3563 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3564 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3565 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3566 return at; 3567 } 3568 SCX_ATTR(events); 3569 3570 static struct attribute *scx_sched_attrs[] = { 3571 &scx_attr_ops.attr, 3572 &scx_attr_events.attr, 3573 NULL, 3574 }; 3575 ATTRIBUTE_GROUPS(scx_sched); 3576 3577 static const struct kobj_type scx_ktype = { 3578 .release = scx_kobj_release, 3579 .sysfs_ops = &kobj_sysfs_ops, 3580 .default_groups = scx_sched_groups, 3581 }; 3582 3583 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3584 { 3585 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3586 } 3587 3588 static const struct kset_uevent_ops scx_uevent_ops = { 3589 .uevent = scx_uevent, 3590 }; 3591 3592 /* 3593 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3594 * sched_class. dl/rt are already handled. 3595 */ 3596 bool task_should_scx(int policy) 3597 { 3598 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3599 return false; 3600 if (READ_ONCE(scx_switching_all)) 3601 return true; 3602 return policy == SCHED_EXT; 3603 } 3604 3605 bool scx_allow_ttwu_queue(const struct task_struct *p) 3606 { 3607 struct scx_sched *sch; 3608 3609 if (!scx_enabled()) 3610 return true; 3611 3612 sch = rcu_dereference_sched(scx_root); 3613 if (unlikely(!sch)) 3614 return true; 3615 3616 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 3617 return true; 3618 3619 if (unlikely(p->sched_class != &ext_sched_class)) 3620 return true; 3621 3622 return false; 3623 } 3624 3625 /** 3626 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3627 * 3628 * While there are various reasons why RCU CPU stalls can occur on a system 3629 * that may not be caused by the current BPF scheduler, try kicking out the 3630 * current scheduler in an attempt to recover the system to a good state before 3631 * issuing panics. 3632 */ 3633 bool scx_rcu_cpu_stall(void) 3634 { 3635 struct scx_sched *sch; 3636 3637 rcu_read_lock(); 3638 3639 sch = rcu_dereference(scx_root); 3640 if (unlikely(!sch)) { 3641 rcu_read_unlock(); 3642 return false; 3643 } 3644 3645 switch (scx_enable_state()) { 3646 case SCX_ENABLING: 3647 case SCX_ENABLED: 3648 break; 3649 default: 3650 rcu_read_unlock(); 3651 return false; 3652 } 3653 3654 scx_error(sch, "RCU CPU stall detected!"); 3655 rcu_read_unlock(); 3656 3657 return true; 3658 } 3659 3660 /** 3661 * scx_softlockup - sched_ext softlockup handler 3662 * @dur_s: number of seconds of CPU stuck due to soft lockup 3663 * 3664 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3665 * live-lock the system by making many CPUs target the same DSQ to the point 3666 * where soft-lockup detection triggers. This function is called from 3667 * soft-lockup watchdog when the triggering point is close and tries to unjam 3668 * the system by enabling the breather and aborting the BPF scheduler. 3669 */ 3670 void scx_softlockup(u32 dur_s) 3671 { 3672 struct scx_sched *sch; 3673 3674 rcu_read_lock(); 3675 3676 sch = rcu_dereference(scx_root); 3677 if (unlikely(!sch)) 3678 goto out_unlock; 3679 3680 switch (scx_enable_state()) { 3681 case SCX_ENABLING: 3682 case SCX_ENABLED: 3683 break; 3684 default: 3685 goto out_unlock; 3686 } 3687 3688 /* allow only one instance, cleared at the end of scx_bypass() */ 3689 if (test_and_set_bit(0, &scx_in_softlockup)) 3690 goto out_unlock; 3691 3692 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 3693 smp_processor_id(), dur_s, scx_root->ops.name); 3694 3695 /* 3696 * Some CPUs may be trapped in the dispatch paths. Enable breather 3697 * immediately; otherwise, we might even be able to get to scx_bypass(). 3698 */ 3699 atomic_inc(&scx_breather_depth); 3700 3701 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s); 3702 out_unlock: 3703 rcu_read_unlock(); 3704 } 3705 3706 static void scx_clear_softlockup(void) 3707 { 3708 if (test_and_clear_bit(0, &scx_in_softlockup)) 3709 atomic_dec(&scx_breather_depth); 3710 } 3711 3712 /** 3713 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 3714 * @bypass: true for bypass, false for unbypass 3715 * 3716 * Bypassing guarantees that all runnable tasks make forward progress without 3717 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 3718 * be held by tasks that the BPF scheduler is forgetting to run, which 3719 * unfortunately also excludes toggling the static branches. 3720 * 3721 * Let's work around by overriding a couple ops and modifying behaviors based on 3722 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 3723 * to force global FIFO scheduling. 3724 * 3725 * - ops.select_cpu() is ignored and the default select_cpu() is used. 3726 * 3727 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 3728 * %SCX_OPS_ENQ_LAST is also ignored. 3729 * 3730 * - ops.dispatch() is ignored. 3731 * 3732 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 3733 * can't be trusted. Whenever a tick triggers, the running task is rotated to 3734 * the tail of the queue with core_sched_at touched. 3735 * 3736 * - pick_next_task() suppresses zero slice warning. 3737 * 3738 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM 3739 * operations. 3740 * 3741 * - scx_prio_less() reverts to the default core_sched_at order. 3742 */ 3743 static void scx_bypass(bool bypass) 3744 { 3745 static DEFINE_RAW_SPINLOCK(bypass_lock); 3746 static unsigned long bypass_timestamp; 3747 struct scx_sched *sch; 3748 unsigned long flags; 3749 int cpu; 3750 3751 raw_spin_lock_irqsave(&bypass_lock, flags); 3752 sch = rcu_dereference_bh(scx_root); 3753 3754 if (bypass) { 3755 scx_bypass_depth++; 3756 WARN_ON_ONCE(scx_bypass_depth <= 0); 3757 if (scx_bypass_depth != 1) 3758 goto unlock; 3759 bypass_timestamp = ktime_get_ns(); 3760 if (sch) 3761 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 3762 } else { 3763 scx_bypass_depth--; 3764 WARN_ON_ONCE(scx_bypass_depth < 0); 3765 if (scx_bypass_depth != 0) 3766 goto unlock; 3767 if (sch) 3768 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 3769 ktime_get_ns() - bypass_timestamp); 3770 } 3771 3772 atomic_inc(&scx_breather_depth); 3773 3774 /* 3775 * No task property is changing. We just need to make sure all currently 3776 * queued tasks are re-queued according to the new scx_rq_bypassing() 3777 * state. As an optimization, walk each rq's runnable_list instead of 3778 * the scx_tasks list. 3779 * 3780 * This function can't trust the scheduler and thus can't use 3781 * cpus_read_lock(). Walk all possible CPUs instead of online. 3782 */ 3783 for_each_possible_cpu(cpu) { 3784 struct rq *rq = cpu_rq(cpu); 3785 struct task_struct *p, *n; 3786 3787 raw_spin_rq_lock(rq); 3788 3789 if (bypass) { 3790 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 3791 rq->scx.flags |= SCX_RQ_BYPASSING; 3792 } else { 3793 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 3794 rq->scx.flags &= ~SCX_RQ_BYPASSING; 3795 } 3796 3797 /* 3798 * We need to guarantee that no tasks are on the BPF scheduler 3799 * while bypassing. Either we see enabled or the enable path 3800 * sees scx_rq_bypassing() before moving tasks to SCX. 3801 */ 3802 if (!scx_enabled()) { 3803 raw_spin_rq_unlock(rq); 3804 continue; 3805 } 3806 3807 /* 3808 * The use of list_for_each_entry_safe_reverse() is required 3809 * because each task is going to be removed from and added back 3810 * to the runnable_list during iteration. Because they're added 3811 * to the tail of the list, safe reverse iteration can still 3812 * visit all nodes. 3813 */ 3814 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3815 scx.runnable_node) { 3816 /* cycling deq/enq is enough, see the function comment */ 3817 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) { 3818 /* nothing */ ; 3819 } 3820 } 3821 3822 /* resched to restore ticks and idle state */ 3823 if (cpu_online(cpu) || cpu == smp_processor_id()) 3824 resched_curr(rq); 3825 3826 raw_spin_rq_unlock(rq); 3827 } 3828 3829 atomic_dec(&scx_breather_depth); 3830 unlock: 3831 raw_spin_unlock_irqrestore(&bypass_lock, flags); 3832 scx_clear_softlockup(); 3833 } 3834 3835 static void free_exit_info(struct scx_exit_info *ei) 3836 { 3837 kvfree(ei->dump); 3838 kfree(ei->msg); 3839 kfree(ei->bt); 3840 kfree(ei); 3841 } 3842 3843 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3844 { 3845 struct scx_exit_info *ei; 3846 3847 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3848 if (!ei) 3849 return NULL; 3850 3851 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 3852 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3853 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 3854 3855 if (!ei->bt || !ei->msg || !ei->dump) { 3856 free_exit_info(ei); 3857 return NULL; 3858 } 3859 3860 return ei; 3861 } 3862 3863 static const char *scx_exit_reason(enum scx_exit_kind kind) 3864 { 3865 switch (kind) { 3866 case SCX_EXIT_UNREG: 3867 return "unregistered from user space"; 3868 case SCX_EXIT_UNREG_BPF: 3869 return "unregistered from BPF"; 3870 case SCX_EXIT_UNREG_KERN: 3871 return "unregistered from the main kernel"; 3872 case SCX_EXIT_SYSRQ: 3873 return "disabled by sysrq-S"; 3874 case SCX_EXIT_ERROR: 3875 return "runtime error"; 3876 case SCX_EXIT_ERROR_BPF: 3877 return "scx_bpf_error"; 3878 case SCX_EXIT_ERROR_STALL: 3879 return "runnable task stall"; 3880 default: 3881 return "<UNKNOWN>"; 3882 } 3883 } 3884 3885 static void free_kick_pseqs_rcu(struct rcu_head *rcu) 3886 { 3887 struct scx_kick_pseqs *pseqs = container_of(rcu, struct scx_kick_pseqs, rcu); 3888 3889 kvfree(pseqs); 3890 } 3891 3892 static void free_kick_pseqs(void) 3893 { 3894 int cpu; 3895 3896 for_each_possible_cpu(cpu) { 3897 struct scx_kick_pseqs **pseqs = per_cpu_ptr(&scx_kick_pseqs, cpu); 3898 struct scx_kick_pseqs *to_free; 3899 3900 to_free = rcu_replace_pointer(*pseqs, NULL, true); 3901 if (to_free) 3902 call_rcu(&to_free->rcu, free_kick_pseqs_rcu); 3903 } 3904 } 3905 3906 static void scx_disable_workfn(struct kthread_work *work) 3907 { 3908 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 3909 struct scx_exit_info *ei = sch->exit_info; 3910 struct scx_task_iter sti; 3911 struct task_struct *p; 3912 int kind, cpu; 3913 3914 kind = atomic_read(&sch->exit_kind); 3915 while (true) { 3916 if (kind == SCX_EXIT_DONE) /* already disabled? */ 3917 return; 3918 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 3919 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 3920 break; 3921 } 3922 ei->kind = kind; 3923 ei->reason = scx_exit_reason(ei->kind); 3924 3925 /* guarantee forward progress by bypassing scx_ops */ 3926 scx_bypass(true); 3927 3928 switch (scx_set_enable_state(SCX_DISABLING)) { 3929 case SCX_DISABLING: 3930 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3931 break; 3932 case SCX_DISABLED: 3933 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3934 sch->exit_info->msg); 3935 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 3936 goto done; 3937 default: 3938 break; 3939 } 3940 3941 /* 3942 * Here, every runnable task is guaranteed to make forward progress and 3943 * we can safely use blocking synchronization constructs. Actually 3944 * disable ops. 3945 */ 3946 mutex_lock(&scx_enable_mutex); 3947 3948 static_branch_disable(&__scx_switched_all); 3949 WRITE_ONCE(scx_switching_all, false); 3950 3951 /* 3952 * Shut down cgroup support before tasks so that the cgroup attach path 3953 * doesn't race against scx_exit_task(). 3954 */ 3955 scx_cgroup_lock(); 3956 scx_cgroup_exit(sch); 3957 scx_cgroup_unlock(); 3958 3959 /* 3960 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 3961 * must be switched out and exited synchronously. 3962 */ 3963 percpu_down_write(&scx_fork_rwsem); 3964 3965 scx_init_task_enabled = false; 3966 3967 scx_task_iter_start(&sti); 3968 while ((p = scx_task_iter_next_locked(&sti))) { 3969 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3970 const struct sched_class *old_class = p->sched_class; 3971 const struct sched_class *new_class = 3972 __setscheduler_class(p->policy, p->prio); 3973 3974 update_rq_clock(task_rq(p)); 3975 3976 if (old_class != new_class) 3977 queue_flags |= DEQUEUE_CLASS; 3978 3979 scoped_guard (sched_change, p, queue_flags) { 3980 p->sched_class = new_class; 3981 } 3982 3983 scx_exit_task(p); 3984 } 3985 scx_task_iter_stop(&sti); 3986 percpu_up_write(&scx_fork_rwsem); 3987 3988 /* 3989 * Invalidate all the rq clocks to prevent getting outdated 3990 * rq clocks from a previous scx scheduler. 3991 */ 3992 for_each_possible_cpu(cpu) { 3993 struct rq *rq = cpu_rq(cpu); 3994 scx_rq_clock_invalidate(rq); 3995 } 3996 3997 /* no task is on scx, turn off all the switches and flush in-progress calls */ 3998 static_branch_disable(&__scx_enabled); 3999 bitmap_zero(sch->has_op, SCX_OPI_END); 4000 scx_idle_disable(); 4001 synchronize_rcu(); 4002 4003 if (ei->kind >= SCX_EXIT_ERROR) { 4004 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4005 sch->ops.name, ei->reason); 4006 4007 if (ei->msg[0] != '\0') 4008 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 4009 #ifdef CONFIG_STACKTRACE 4010 stack_trace_print(ei->bt, ei->bt_len, 2); 4011 #endif 4012 } else { 4013 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4014 sch->ops.name, ei->reason); 4015 } 4016 4017 if (sch->ops.exit) 4018 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 4019 4020 cancel_delayed_work_sync(&scx_watchdog_work); 4021 4022 /* 4023 * scx_root clearing must be inside cpus_read_lock(). See 4024 * handle_hotplug(). 4025 */ 4026 cpus_read_lock(); 4027 RCU_INIT_POINTER(scx_root, NULL); 4028 cpus_read_unlock(); 4029 4030 /* 4031 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 4032 * could observe an object of the same name still in the hierarchy when 4033 * the next scheduler is loaded. 4034 */ 4035 kobject_del(&sch->kobj); 4036 4037 free_percpu(scx_dsp_ctx); 4038 scx_dsp_ctx = NULL; 4039 scx_dsp_max_batch = 0; 4040 free_kick_pseqs(); 4041 4042 mutex_unlock(&scx_enable_mutex); 4043 4044 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4045 done: 4046 scx_bypass(false); 4047 } 4048 4049 static void scx_disable(enum scx_exit_kind kind) 4050 { 4051 int none = SCX_EXIT_NONE; 4052 struct scx_sched *sch; 4053 4054 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4055 kind = SCX_EXIT_ERROR; 4056 4057 rcu_read_lock(); 4058 sch = rcu_dereference(scx_root); 4059 if (sch) { 4060 atomic_try_cmpxchg(&sch->exit_kind, &none, kind); 4061 kthread_queue_work(sch->helper, &sch->disable_work); 4062 } 4063 rcu_read_unlock(); 4064 } 4065 4066 static void dump_newline(struct seq_buf *s) 4067 { 4068 trace_sched_ext_dump(""); 4069 4070 /* @s may be zero sized and seq_buf triggers WARN if so */ 4071 if (s->size) 4072 seq_buf_putc(s, '\n'); 4073 } 4074 4075 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4076 { 4077 va_list args; 4078 4079 #ifdef CONFIG_TRACEPOINTS 4080 if (trace_sched_ext_dump_enabled()) { 4081 /* protected by scx_dump_state()::dump_lock */ 4082 static char line_buf[SCX_EXIT_MSG_LEN]; 4083 4084 va_start(args, fmt); 4085 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4086 va_end(args); 4087 4088 trace_sched_ext_dump(line_buf); 4089 } 4090 #endif 4091 /* @s may be zero sized and seq_buf triggers WARN if so */ 4092 if (s->size) { 4093 va_start(args, fmt); 4094 seq_buf_vprintf(s, fmt, args); 4095 va_end(args); 4096 4097 seq_buf_putc(s, '\n'); 4098 } 4099 } 4100 4101 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4102 const unsigned long *bt, unsigned int len) 4103 { 4104 unsigned int i; 4105 4106 for (i = 0; i < len; i++) 4107 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4108 } 4109 4110 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4111 { 4112 struct scx_dump_data *dd = &scx_dump_data; 4113 4114 lockdep_assert_irqs_disabled(); 4115 4116 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4117 dd->first = true; 4118 dd->cursor = 0; 4119 dd->s = s; 4120 dd->prefix = prefix; 4121 } 4122 4123 static void ops_dump_flush(void) 4124 { 4125 struct scx_dump_data *dd = &scx_dump_data; 4126 char *line = dd->buf.line; 4127 4128 if (!dd->cursor) 4129 return; 4130 4131 /* 4132 * There's something to flush and this is the first line. Insert a blank 4133 * line to distinguish ops dump. 4134 */ 4135 if (dd->first) { 4136 dump_newline(dd->s); 4137 dd->first = false; 4138 } 4139 4140 /* 4141 * There may be multiple lines in $line. Scan and emit each line 4142 * separately. 4143 */ 4144 while (true) { 4145 char *end = line; 4146 char c; 4147 4148 while (*end != '\n' && *end != '\0') 4149 end++; 4150 4151 /* 4152 * If $line overflowed, it may not have newline at the end. 4153 * Always emit with a newline. 4154 */ 4155 c = *end; 4156 *end = '\0'; 4157 dump_line(dd->s, "%s%s", dd->prefix, line); 4158 if (c == '\0') 4159 break; 4160 4161 /* move to the next line */ 4162 end++; 4163 if (*end == '\0') 4164 break; 4165 line = end; 4166 } 4167 4168 dd->cursor = 0; 4169 } 4170 4171 static void ops_dump_exit(void) 4172 { 4173 ops_dump_flush(); 4174 scx_dump_data.cpu = -1; 4175 } 4176 4177 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4178 struct task_struct *p, char marker) 4179 { 4180 static unsigned long bt[SCX_EXIT_BT_LEN]; 4181 struct scx_sched *sch = scx_root; 4182 char dsq_id_buf[19] = "(n/a)"; 4183 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4184 unsigned int bt_len = 0; 4185 4186 if (p->scx.dsq) 4187 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4188 (unsigned long long)p->scx.dsq->id); 4189 4190 dump_newline(s); 4191 dump_line(s, " %c%c %s[%d] %+ldms", 4192 marker, task_state_to_char(p), p->comm, p->pid, 4193 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4194 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4195 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4196 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4197 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4198 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4199 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4200 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4201 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4202 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr), 4203 p->migration_disabled); 4204 4205 if (SCX_HAS_OP(sch, dump_task)) { 4206 ops_dump_init(s, " "); 4207 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4208 ops_dump_exit(); 4209 } 4210 4211 #ifdef CONFIG_STACKTRACE 4212 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4213 #endif 4214 if (bt_len) { 4215 dump_newline(s); 4216 dump_stack_trace(s, " ", bt, bt_len); 4217 } 4218 } 4219 4220 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4221 { 4222 static DEFINE_SPINLOCK(dump_lock); 4223 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4224 struct scx_sched *sch = scx_root; 4225 struct scx_dump_ctx dctx = { 4226 .kind = ei->kind, 4227 .exit_code = ei->exit_code, 4228 .reason = ei->reason, 4229 .at_ns = ktime_get_ns(), 4230 .at_jiffies = jiffies, 4231 }; 4232 struct seq_buf s; 4233 struct scx_event_stats events; 4234 unsigned long flags; 4235 char *buf; 4236 int cpu; 4237 4238 spin_lock_irqsave(&dump_lock, flags); 4239 4240 seq_buf_init(&s, ei->dump, dump_len); 4241 4242 if (ei->kind == SCX_EXIT_NONE) { 4243 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4244 } else { 4245 dump_line(&s, "%s[%d] triggered exit kind %d:", 4246 current->comm, current->pid, ei->kind); 4247 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4248 dump_newline(&s); 4249 dump_line(&s, "Backtrace:"); 4250 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4251 } 4252 4253 if (SCX_HAS_OP(sch, dump)) { 4254 ops_dump_init(&s, ""); 4255 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4256 ops_dump_exit(); 4257 } 4258 4259 dump_newline(&s); 4260 dump_line(&s, "CPU states"); 4261 dump_line(&s, "----------"); 4262 4263 for_each_possible_cpu(cpu) { 4264 struct rq *rq = cpu_rq(cpu); 4265 struct rq_flags rf; 4266 struct task_struct *p; 4267 struct seq_buf ns; 4268 size_t avail, used; 4269 bool idle; 4270 4271 rq_lock(rq, &rf); 4272 4273 idle = list_empty(&rq->scx.runnable_list) && 4274 rq->curr->sched_class == &idle_sched_class; 4275 4276 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4277 goto next; 4278 4279 /* 4280 * We don't yet know whether ops.dump_cpu() will produce output 4281 * and we may want to skip the default CPU dump if it doesn't. 4282 * Use a nested seq_buf to generate the standard dump so that we 4283 * can decide whether to commit later. 4284 */ 4285 avail = seq_buf_get_buf(&s, &buf); 4286 seq_buf_init(&ns, buf, avail); 4287 4288 dump_newline(&ns); 4289 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4290 cpu, rq->scx.nr_running, rq->scx.flags, 4291 rq->scx.cpu_released, rq->scx.ops_qseq, 4292 rq->scx.pnt_seq); 4293 dump_line(&ns, " curr=%s[%d] class=%ps", 4294 rq->curr->comm, rq->curr->pid, 4295 rq->curr->sched_class); 4296 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4297 dump_line(&ns, " cpus_to_kick : %*pb", 4298 cpumask_pr_args(rq->scx.cpus_to_kick)); 4299 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4300 dump_line(&ns, " idle_to_kick : %*pb", 4301 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4302 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4303 dump_line(&ns, " cpus_to_preempt: %*pb", 4304 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4305 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4306 dump_line(&ns, " cpus_to_wait : %*pb", 4307 cpumask_pr_args(rq->scx.cpus_to_wait)); 4308 4309 used = seq_buf_used(&ns); 4310 if (SCX_HAS_OP(sch, dump_cpu)) { 4311 ops_dump_init(&ns, " "); 4312 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4313 &dctx, cpu, idle); 4314 ops_dump_exit(); 4315 } 4316 4317 /* 4318 * If idle && nothing generated by ops.dump_cpu(), there's 4319 * nothing interesting. Skip. 4320 */ 4321 if (idle && used == seq_buf_used(&ns)) 4322 goto next; 4323 4324 /* 4325 * $s may already have overflowed when $ns was created. If so, 4326 * calling commit on it will trigger BUG. 4327 */ 4328 if (avail) { 4329 seq_buf_commit(&s, seq_buf_used(&ns)); 4330 if (seq_buf_has_overflowed(&ns)) 4331 seq_buf_set_overflow(&s); 4332 } 4333 4334 if (rq->curr->sched_class == &ext_sched_class) 4335 scx_dump_task(&s, &dctx, rq->curr, '*'); 4336 4337 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4338 scx_dump_task(&s, &dctx, p, ' '); 4339 next: 4340 rq_unlock(rq, &rf); 4341 } 4342 4343 dump_newline(&s); 4344 dump_line(&s, "Event counters"); 4345 dump_line(&s, "--------------"); 4346 4347 scx_read_events(sch, &events); 4348 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4349 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4350 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4351 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4352 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4353 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4354 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4355 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4356 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4357 4358 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4359 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4360 trunc_marker, sizeof(trunc_marker)); 4361 4362 spin_unlock_irqrestore(&dump_lock, flags); 4363 } 4364 4365 static void scx_error_irq_workfn(struct irq_work *irq_work) 4366 { 4367 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4368 struct scx_exit_info *ei = sch->exit_info; 4369 4370 if (ei->kind >= SCX_EXIT_ERROR) 4371 scx_dump_state(ei, sch->ops.exit_dump_len); 4372 4373 kthread_queue_work(sch->helper, &sch->disable_work); 4374 } 4375 4376 static void scx_vexit(struct scx_sched *sch, 4377 enum scx_exit_kind kind, s64 exit_code, 4378 const char *fmt, va_list args) 4379 { 4380 struct scx_exit_info *ei = sch->exit_info; 4381 int none = SCX_EXIT_NONE; 4382 4383 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4384 return; 4385 4386 ei->exit_code = exit_code; 4387 #ifdef CONFIG_STACKTRACE 4388 if (kind >= SCX_EXIT_ERROR) 4389 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4390 #endif 4391 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4392 4393 /* 4394 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4395 * in scx_disable_workfn(). 4396 */ 4397 ei->kind = kind; 4398 ei->reason = scx_exit_reason(ei->kind); 4399 4400 irq_work_queue(&sch->error_irq_work); 4401 } 4402 4403 static int alloc_kick_pseqs(void) 4404 { 4405 int cpu; 4406 4407 /* 4408 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size 4409 * can exceed percpu allocator limits on large machines. 4410 */ 4411 for_each_possible_cpu(cpu) { 4412 struct scx_kick_pseqs **pseqs = per_cpu_ptr(&scx_kick_pseqs, cpu); 4413 struct scx_kick_pseqs *new_pseqs; 4414 4415 WARN_ON_ONCE(rcu_access_pointer(*pseqs)); 4416 4417 new_pseqs = kvzalloc_node(struct_size(new_pseqs, seqs, nr_cpu_ids), 4418 GFP_KERNEL, cpu_to_node(cpu)); 4419 if (!new_pseqs) { 4420 free_kick_pseqs(); 4421 return -ENOMEM; 4422 } 4423 4424 rcu_assign_pointer(*pseqs, new_pseqs); 4425 } 4426 4427 return 0; 4428 } 4429 4430 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4431 { 4432 struct scx_sched *sch; 4433 int node, ret; 4434 4435 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4436 if (!sch) 4437 return ERR_PTR(-ENOMEM); 4438 4439 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4440 if (!sch->exit_info) { 4441 ret = -ENOMEM; 4442 goto err_free_sch; 4443 } 4444 4445 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4446 if (ret < 0) 4447 goto err_free_ei; 4448 4449 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4450 GFP_KERNEL); 4451 if (!sch->global_dsqs) { 4452 ret = -ENOMEM; 4453 goto err_free_hash; 4454 } 4455 4456 for_each_node_state(node, N_POSSIBLE) { 4457 struct scx_dispatch_q *dsq; 4458 4459 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4460 if (!dsq) { 4461 ret = -ENOMEM; 4462 goto err_free_gdsqs; 4463 } 4464 4465 init_dsq(dsq, SCX_DSQ_GLOBAL); 4466 sch->global_dsqs[node] = dsq; 4467 } 4468 4469 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4470 if (!sch->pcpu) 4471 goto err_free_gdsqs; 4472 4473 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4474 if (!sch->helper) 4475 goto err_free_pcpu; 4476 sched_set_fifo(sch->helper->task); 4477 4478 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4479 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4480 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4481 sch->ops = *ops; 4482 ops->priv = sch; 4483 4484 sch->kobj.kset = scx_kset; 4485 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4486 if (ret < 0) 4487 goto err_stop_helper; 4488 4489 return sch; 4490 4491 err_stop_helper: 4492 kthread_stop(sch->helper->task); 4493 err_free_pcpu: 4494 free_percpu(sch->pcpu); 4495 err_free_gdsqs: 4496 for_each_node_state(node, N_POSSIBLE) 4497 kfree(sch->global_dsqs[node]); 4498 kfree(sch->global_dsqs); 4499 err_free_hash: 4500 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4501 err_free_ei: 4502 free_exit_info(sch->exit_info); 4503 err_free_sch: 4504 kfree(sch); 4505 return ERR_PTR(ret); 4506 } 4507 4508 static int check_hotplug_seq(struct scx_sched *sch, 4509 const struct sched_ext_ops *ops) 4510 { 4511 unsigned long long global_hotplug_seq; 4512 4513 /* 4514 * If a hotplug event has occurred between when a scheduler was 4515 * initialized, and when we were able to attach, exit and notify user 4516 * space about it. 4517 */ 4518 if (ops->hotplug_seq) { 4519 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4520 if (ops->hotplug_seq != global_hotplug_seq) { 4521 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4522 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4523 "expected hotplug seq %llu did not match actual %llu", 4524 ops->hotplug_seq, global_hotplug_seq); 4525 return -EBUSY; 4526 } 4527 } 4528 4529 return 0; 4530 } 4531 4532 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4533 { 4534 /* 4535 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4536 * ops.enqueue() callback isn't implemented. 4537 */ 4538 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4539 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4540 return -EINVAL; 4541 } 4542 4543 /* 4544 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4545 * selection policy to be enabled. 4546 */ 4547 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4548 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4549 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4550 return -EINVAL; 4551 } 4552 4553 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4554 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4555 4556 return 0; 4557 } 4558 4559 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4560 { 4561 struct scx_sched *sch; 4562 struct scx_task_iter sti; 4563 struct task_struct *p; 4564 unsigned long timeout; 4565 int i, cpu, ret; 4566 4567 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4568 cpu_possible_mask)) { 4569 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4570 return -EINVAL; 4571 } 4572 4573 mutex_lock(&scx_enable_mutex); 4574 4575 if (scx_enable_state() != SCX_DISABLED) { 4576 ret = -EBUSY; 4577 goto err_unlock; 4578 } 4579 4580 ret = alloc_kick_pseqs(); 4581 if (ret) 4582 goto err_unlock; 4583 4584 sch = scx_alloc_and_add_sched(ops); 4585 if (IS_ERR(sch)) { 4586 ret = PTR_ERR(sch); 4587 goto err_free_pseqs; 4588 } 4589 4590 /* 4591 * Transition to ENABLING and clear exit info to arm the disable path. 4592 * Failure triggers full disabling from here on. 4593 */ 4594 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4595 WARN_ON_ONCE(scx_root); 4596 4597 atomic_long_set(&scx_nr_rejected, 0); 4598 4599 for_each_possible_cpu(cpu) 4600 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4601 4602 /* 4603 * Keep CPUs stable during enable so that the BPF scheduler can track 4604 * online CPUs by watching ->on/offline_cpu() after ->init(). 4605 */ 4606 cpus_read_lock(); 4607 4608 /* 4609 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4610 * See handle_hotplug(). 4611 */ 4612 rcu_assign_pointer(scx_root, sch); 4613 4614 scx_idle_enable(ops); 4615 4616 if (sch->ops.init) { 4617 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4618 if (ret) { 4619 ret = ops_sanitize_err(sch, "init", ret); 4620 cpus_read_unlock(); 4621 scx_error(sch, "ops.init() failed (%d)", ret); 4622 goto err_disable; 4623 } 4624 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED; 4625 } 4626 4627 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4628 if (((void (**)(void))ops)[i]) 4629 set_bit(i, sch->has_op); 4630 4631 ret = check_hotplug_seq(sch, ops); 4632 if (ret) { 4633 cpus_read_unlock(); 4634 goto err_disable; 4635 } 4636 scx_idle_update_selcpu_topology(ops); 4637 4638 cpus_read_unlock(); 4639 4640 ret = validate_ops(sch, ops); 4641 if (ret) 4642 goto err_disable; 4643 4644 WARN_ON_ONCE(scx_dsp_ctx); 4645 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4646 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4647 scx_dsp_max_batch), 4648 __alignof__(struct scx_dsp_ctx)); 4649 if (!scx_dsp_ctx) { 4650 ret = -ENOMEM; 4651 goto err_disable; 4652 } 4653 4654 if (ops->timeout_ms) 4655 timeout = msecs_to_jiffies(ops->timeout_ms); 4656 else 4657 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4658 4659 WRITE_ONCE(scx_watchdog_timeout, timeout); 4660 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4661 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4662 scx_watchdog_timeout / 2); 4663 4664 /* 4665 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4666 * This can lead to stalls as some BPF schedulers (e.g. userspace 4667 * scheduling) may not function correctly before all tasks are switched. 4668 * Init in bypass mode to guarantee forward progress. 4669 */ 4670 scx_bypass(true); 4671 4672 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4673 if (((void (**)(void))ops)[i]) 4674 set_bit(i, sch->has_op); 4675 4676 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 4677 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 4678 4679 /* 4680 * Lock out forks, cgroup on/offlining and moves before opening the 4681 * floodgate so that they don't wander into the operations prematurely. 4682 */ 4683 percpu_down_write(&scx_fork_rwsem); 4684 4685 WARN_ON_ONCE(scx_init_task_enabled); 4686 scx_init_task_enabled = true; 4687 4688 /* 4689 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 4690 * preventing new tasks from being added. No need to exclude tasks 4691 * leaving as sched_ext_free() can handle both prepped and enabled 4692 * tasks. Prep all tasks first and then enable them with preemption 4693 * disabled. 4694 * 4695 * All cgroups should be initialized before scx_init_task() so that the 4696 * BPF scheduler can reliably track each task's cgroup membership from 4697 * scx_init_task(). Lock out cgroup on/offlining and task migrations 4698 * while tasks are being initialized so that scx_cgroup_can_attach() 4699 * never sees uninitialized tasks. 4700 */ 4701 scx_cgroup_lock(); 4702 ret = scx_cgroup_init(sch); 4703 if (ret) 4704 goto err_disable_unlock_all; 4705 4706 scx_task_iter_start(&sti); 4707 while ((p = scx_task_iter_next_locked(&sti))) { 4708 /* 4709 * @p may already be dead, have lost all its usages counts and 4710 * be waiting for RCU grace period before being freed. @p can't 4711 * be initialized for SCX in such cases and should be ignored. 4712 */ 4713 if (!tryget_task_struct(p)) 4714 continue; 4715 4716 scx_task_iter_unlock(&sti); 4717 4718 ret = scx_init_task(p, task_group(p), false); 4719 if (ret) { 4720 put_task_struct(p); 4721 scx_task_iter_stop(&sti); 4722 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 4723 ret, p->comm, p->pid); 4724 goto err_disable_unlock_all; 4725 } 4726 4727 scx_set_task_state(p, SCX_TASK_READY); 4728 4729 put_task_struct(p); 4730 } 4731 scx_task_iter_stop(&sti); 4732 scx_cgroup_unlock(); 4733 percpu_up_write(&scx_fork_rwsem); 4734 4735 /* 4736 * All tasks are READY. It's safe to turn on scx_enabled() and switch 4737 * all eligible tasks. 4738 */ 4739 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 4740 static_branch_enable(&__scx_enabled); 4741 4742 /* 4743 * We're fully committed and can't fail. The task READY -> ENABLED 4744 * transitions here are synchronized against sched_ext_free() through 4745 * scx_tasks_lock. 4746 */ 4747 percpu_down_write(&scx_fork_rwsem); 4748 scx_task_iter_start(&sti); 4749 while ((p = scx_task_iter_next_locked(&sti))) { 4750 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 4751 const struct sched_class *old_class = p->sched_class; 4752 const struct sched_class *new_class = 4753 __setscheduler_class(p->policy, p->prio); 4754 4755 if (!tryget_task_struct(p)) 4756 continue; 4757 4758 if (old_class != new_class) 4759 queue_flags |= DEQUEUE_CLASS; 4760 4761 scoped_guard (sched_change, p, queue_flags) { 4762 p->scx.slice = SCX_SLICE_DFL; 4763 p->sched_class = new_class; 4764 } 4765 4766 put_task_struct(p); 4767 } 4768 scx_task_iter_stop(&sti); 4769 percpu_up_write(&scx_fork_rwsem); 4770 4771 scx_bypass(false); 4772 4773 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 4774 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 4775 goto err_disable; 4776 } 4777 4778 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 4779 static_branch_enable(&__scx_switched_all); 4780 4781 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 4782 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 4783 kobject_uevent(&sch->kobj, KOBJ_ADD); 4784 mutex_unlock(&scx_enable_mutex); 4785 4786 atomic_long_inc(&scx_enable_seq); 4787 4788 return 0; 4789 4790 err_free_pseqs: 4791 free_kick_pseqs(); 4792 err_unlock: 4793 mutex_unlock(&scx_enable_mutex); 4794 return ret; 4795 4796 err_disable_unlock_all: 4797 scx_cgroup_unlock(); 4798 percpu_up_write(&scx_fork_rwsem); 4799 /* we'll soon enter disable path, keep bypass on */ 4800 err_disable: 4801 mutex_unlock(&scx_enable_mutex); 4802 /* 4803 * Returning an error code here would not pass all the error information 4804 * to userspace. Record errno using scx_error() for cases scx_error() 4805 * wasn't already invoked and exit indicating success so that the error 4806 * is notified through ops.exit() with all the details. 4807 * 4808 * Flush scx_disable_work to ensure that error is reported before init 4809 * completion. sch's base reference will be put by bpf_scx_unreg(). 4810 */ 4811 scx_error(sch, "scx_enable() failed (%d)", ret); 4812 kthread_flush_work(&sch->disable_work); 4813 return 0; 4814 } 4815 4816 4817 /******************************************************************************** 4818 * bpf_struct_ops plumbing. 4819 */ 4820 #include <linux/bpf_verifier.h> 4821 #include <linux/bpf.h> 4822 #include <linux/btf.h> 4823 4824 static const struct btf_type *task_struct_type; 4825 4826 static bool bpf_scx_is_valid_access(int off, int size, 4827 enum bpf_access_type type, 4828 const struct bpf_prog *prog, 4829 struct bpf_insn_access_aux *info) 4830 { 4831 if (type != BPF_READ) 4832 return false; 4833 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 4834 return false; 4835 if (off % size != 0) 4836 return false; 4837 4838 return btf_ctx_access(off, size, type, prog, info); 4839 } 4840 4841 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 4842 const struct bpf_reg_state *reg, int off, 4843 int size) 4844 { 4845 const struct btf_type *t; 4846 4847 t = btf_type_by_id(reg->btf, reg->btf_id); 4848 if (t == task_struct_type) { 4849 if (off >= offsetof(struct task_struct, scx.slice) && 4850 off + size <= offsetofend(struct task_struct, scx.slice)) 4851 return SCALAR_VALUE; 4852 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 4853 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 4854 return SCALAR_VALUE; 4855 if (off >= offsetof(struct task_struct, scx.disallow) && 4856 off + size <= offsetofend(struct task_struct, scx.disallow)) 4857 return SCALAR_VALUE; 4858 } 4859 4860 return -EACCES; 4861 } 4862 4863 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 4864 .get_func_proto = bpf_base_func_proto, 4865 .is_valid_access = bpf_scx_is_valid_access, 4866 .btf_struct_access = bpf_scx_btf_struct_access, 4867 }; 4868 4869 static int bpf_scx_init_member(const struct btf_type *t, 4870 const struct btf_member *member, 4871 void *kdata, const void *udata) 4872 { 4873 const struct sched_ext_ops *uops = udata; 4874 struct sched_ext_ops *ops = kdata; 4875 u32 moff = __btf_member_bit_offset(t, member) / 8; 4876 int ret; 4877 4878 switch (moff) { 4879 case offsetof(struct sched_ext_ops, dispatch_max_batch): 4880 if (*(u32 *)(udata + moff) > INT_MAX) 4881 return -E2BIG; 4882 ops->dispatch_max_batch = *(u32 *)(udata + moff); 4883 return 1; 4884 case offsetof(struct sched_ext_ops, flags): 4885 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 4886 return -EINVAL; 4887 ops->flags = *(u64 *)(udata + moff); 4888 return 1; 4889 case offsetof(struct sched_ext_ops, name): 4890 ret = bpf_obj_name_cpy(ops->name, uops->name, 4891 sizeof(ops->name)); 4892 if (ret < 0) 4893 return ret; 4894 if (ret == 0) 4895 return -EINVAL; 4896 return 1; 4897 case offsetof(struct sched_ext_ops, timeout_ms): 4898 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 4899 SCX_WATCHDOG_MAX_TIMEOUT) 4900 return -E2BIG; 4901 ops->timeout_ms = *(u32 *)(udata + moff); 4902 return 1; 4903 case offsetof(struct sched_ext_ops, exit_dump_len): 4904 ops->exit_dump_len = 4905 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 4906 return 1; 4907 case offsetof(struct sched_ext_ops, hotplug_seq): 4908 ops->hotplug_seq = *(u64 *)(udata + moff); 4909 return 1; 4910 } 4911 4912 return 0; 4913 } 4914 4915 static int bpf_scx_check_member(const struct btf_type *t, 4916 const struct btf_member *member, 4917 const struct bpf_prog *prog) 4918 { 4919 u32 moff = __btf_member_bit_offset(t, member) / 8; 4920 4921 switch (moff) { 4922 case offsetof(struct sched_ext_ops, init_task): 4923 #ifdef CONFIG_EXT_GROUP_SCHED 4924 case offsetof(struct sched_ext_ops, cgroup_init): 4925 case offsetof(struct sched_ext_ops, cgroup_exit): 4926 case offsetof(struct sched_ext_ops, cgroup_prep_move): 4927 #endif 4928 case offsetof(struct sched_ext_ops, cpu_online): 4929 case offsetof(struct sched_ext_ops, cpu_offline): 4930 case offsetof(struct sched_ext_ops, init): 4931 case offsetof(struct sched_ext_ops, exit): 4932 break; 4933 default: 4934 if (prog->sleepable) 4935 return -EINVAL; 4936 } 4937 4938 return 0; 4939 } 4940 4941 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4942 { 4943 return scx_enable(kdata, link); 4944 } 4945 4946 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4947 { 4948 struct sched_ext_ops *ops = kdata; 4949 struct scx_sched *sch = ops->priv; 4950 4951 scx_disable(SCX_EXIT_UNREG); 4952 kthread_flush_work(&sch->disable_work); 4953 kobject_put(&sch->kobj); 4954 } 4955 4956 static int bpf_scx_init(struct btf *btf) 4957 { 4958 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 4959 4960 return 0; 4961 } 4962 4963 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 4964 { 4965 /* 4966 * sched_ext does not support updating the actively-loaded BPF 4967 * scheduler, as registering a BPF scheduler can always fail if the 4968 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 4969 * etc. Similarly, we can always race with unregistration happening 4970 * elsewhere, such as with sysrq. 4971 */ 4972 return -EOPNOTSUPP; 4973 } 4974 4975 static int bpf_scx_validate(void *kdata) 4976 { 4977 return 0; 4978 } 4979 4980 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 4981 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 4982 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 4983 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 4984 static void sched_ext_ops__tick(struct task_struct *p) {} 4985 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 4986 static void sched_ext_ops__running(struct task_struct *p) {} 4987 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 4988 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 4989 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 4990 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 4991 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 4992 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 4993 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 4994 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 4995 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 4996 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 4997 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 4998 static void sched_ext_ops__enable(struct task_struct *p) {} 4999 static void sched_ext_ops__disable(struct task_struct *p) {} 5000 #ifdef CONFIG_EXT_GROUP_SCHED 5001 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5002 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5003 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5004 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5005 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5006 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5007 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 5008 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {} 5009 #endif 5010 static void sched_ext_ops__cpu_online(s32 cpu) {} 5011 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5012 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5013 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5014 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5015 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5016 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5017 5018 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5019 .select_cpu = sched_ext_ops__select_cpu, 5020 .enqueue = sched_ext_ops__enqueue, 5021 .dequeue = sched_ext_ops__dequeue, 5022 .dispatch = sched_ext_ops__dispatch, 5023 .tick = sched_ext_ops__tick, 5024 .runnable = sched_ext_ops__runnable, 5025 .running = sched_ext_ops__running, 5026 .stopping = sched_ext_ops__stopping, 5027 .quiescent = sched_ext_ops__quiescent, 5028 .yield = sched_ext_ops__yield, 5029 .core_sched_before = sched_ext_ops__core_sched_before, 5030 .set_weight = sched_ext_ops__set_weight, 5031 .set_cpumask = sched_ext_ops__set_cpumask, 5032 .update_idle = sched_ext_ops__update_idle, 5033 .cpu_acquire = sched_ext_ops__cpu_acquire, 5034 .cpu_release = sched_ext_ops__cpu_release, 5035 .init_task = sched_ext_ops__init_task, 5036 .exit_task = sched_ext_ops__exit_task, 5037 .enable = sched_ext_ops__enable, 5038 .disable = sched_ext_ops__disable, 5039 #ifdef CONFIG_EXT_GROUP_SCHED 5040 .cgroup_init = sched_ext_ops__cgroup_init, 5041 .cgroup_exit = sched_ext_ops__cgroup_exit, 5042 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5043 .cgroup_move = sched_ext_ops__cgroup_move, 5044 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5045 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5046 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 5047 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle, 5048 #endif 5049 .cpu_online = sched_ext_ops__cpu_online, 5050 .cpu_offline = sched_ext_ops__cpu_offline, 5051 .init = sched_ext_ops__init, 5052 .exit = sched_ext_ops__exit, 5053 .dump = sched_ext_ops__dump, 5054 .dump_cpu = sched_ext_ops__dump_cpu, 5055 .dump_task = sched_ext_ops__dump_task, 5056 }; 5057 5058 static struct bpf_struct_ops bpf_sched_ext_ops = { 5059 .verifier_ops = &bpf_scx_verifier_ops, 5060 .reg = bpf_scx_reg, 5061 .unreg = bpf_scx_unreg, 5062 .check_member = bpf_scx_check_member, 5063 .init_member = bpf_scx_init_member, 5064 .init = bpf_scx_init, 5065 .update = bpf_scx_update, 5066 .validate = bpf_scx_validate, 5067 .name = "sched_ext_ops", 5068 .owner = THIS_MODULE, 5069 .cfi_stubs = &__bpf_ops_sched_ext_ops 5070 }; 5071 5072 5073 /******************************************************************************** 5074 * System integration and init. 5075 */ 5076 5077 static void sysrq_handle_sched_ext_reset(u8 key) 5078 { 5079 scx_disable(SCX_EXIT_SYSRQ); 5080 } 5081 5082 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5083 .handler = sysrq_handle_sched_ext_reset, 5084 .help_msg = "reset-sched-ext(S)", 5085 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5086 .enable_mask = SYSRQ_ENABLE_RTNICE, 5087 }; 5088 5089 static void sysrq_handle_sched_ext_dump(u8 key) 5090 { 5091 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5092 5093 if (scx_enabled()) 5094 scx_dump_state(&ei, 0); 5095 } 5096 5097 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5098 .handler = sysrq_handle_sched_ext_dump, 5099 .help_msg = "dump-sched-ext(D)", 5100 .action_msg = "Trigger sched_ext debug dump", 5101 .enable_mask = SYSRQ_ENABLE_RTNICE, 5102 }; 5103 5104 static bool can_skip_idle_kick(struct rq *rq) 5105 { 5106 lockdep_assert_rq_held(rq); 5107 5108 /* 5109 * We can skip idle kicking if @rq is going to go through at least one 5110 * full SCX scheduling cycle before going idle. Just checking whether 5111 * curr is not idle is insufficient because we could be racing 5112 * balance_one() trying to pull the next task from a remote rq, which 5113 * may fail, and @rq may become idle afterwards. 5114 * 5115 * The race window is small and we don't and can't guarantee that @rq is 5116 * only kicked while idle anyway. Skip only when sure. 5117 */ 5118 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5119 } 5120 5121 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5122 { 5123 struct rq *rq = cpu_rq(cpu); 5124 struct scx_rq *this_scx = &this_rq->scx; 5125 bool should_wait = false; 5126 unsigned long flags; 5127 5128 raw_spin_rq_lock_irqsave(rq, flags); 5129 5130 /* 5131 * During CPU hotplug, a CPU may depend on kicking itself to make 5132 * forward progress. Allow kicking self regardless of online state. 5133 */ 5134 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5135 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5136 if (rq->curr->sched_class == &ext_sched_class) 5137 rq->curr->scx.slice = 0; 5138 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5139 } 5140 5141 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5142 pseqs[cpu] = rq->scx.pnt_seq; 5143 should_wait = true; 5144 } 5145 5146 resched_curr(rq); 5147 } else { 5148 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5149 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5150 } 5151 5152 raw_spin_rq_unlock_irqrestore(rq, flags); 5153 5154 return should_wait; 5155 } 5156 5157 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5158 { 5159 struct rq *rq = cpu_rq(cpu); 5160 unsigned long flags; 5161 5162 raw_spin_rq_lock_irqsave(rq, flags); 5163 5164 if (!can_skip_idle_kick(rq) && 5165 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5166 resched_curr(rq); 5167 5168 raw_spin_rq_unlock_irqrestore(rq, flags); 5169 } 5170 5171 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5172 { 5173 struct rq *this_rq = this_rq(); 5174 struct scx_rq *this_scx = &this_rq->scx; 5175 struct scx_kick_pseqs __rcu *pseqs_pcpu = __this_cpu_read(scx_kick_pseqs); 5176 bool should_wait = false; 5177 unsigned long *pseqs; 5178 s32 cpu; 5179 5180 if (unlikely(!pseqs_pcpu)) { 5181 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_pseqs"); 5182 return; 5183 } 5184 5185 pseqs = rcu_dereference_bh(pseqs_pcpu)->seqs; 5186 5187 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5188 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5189 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5190 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5191 } 5192 5193 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5194 kick_one_cpu_if_idle(cpu, this_rq); 5195 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5196 } 5197 5198 if (!should_wait) 5199 return; 5200 5201 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5202 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5203 5204 if (cpu != cpu_of(this_rq)) { 5205 /* 5206 * Pairs with smp_store_release() issued by this CPU in 5207 * switch_class() on the resched path. 5208 * 5209 * We busy-wait here to guarantee that no other task can 5210 * be scheduled on our core before the target CPU has 5211 * entered the resched path. 5212 */ 5213 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5214 cpu_relax(); 5215 } 5216 5217 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5218 } 5219 } 5220 5221 /** 5222 * print_scx_info - print out sched_ext scheduler state 5223 * @log_lvl: the log level to use when printing 5224 * @p: target task 5225 * 5226 * If a sched_ext scheduler is enabled, print the name and state of the 5227 * scheduler. If @p is on sched_ext, print further information about the task. 5228 * 5229 * This function can be safely called on any task as long as the task_struct 5230 * itself is accessible. While safe, this function isn't synchronized and may 5231 * print out mixups or garbages of limited length. 5232 */ 5233 void print_scx_info(const char *log_lvl, struct task_struct *p) 5234 { 5235 struct scx_sched *sch = scx_root; 5236 enum scx_enable_state state = scx_enable_state(); 5237 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5238 char runnable_at_buf[22] = "?"; 5239 struct sched_class *class; 5240 unsigned long runnable_at; 5241 5242 if (state == SCX_DISABLED) 5243 return; 5244 5245 /* 5246 * Carefully check if the task was running on sched_ext, and then 5247 * carefully copy the time it's been runnable, and its state. 5248 */ 5249 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5250 class != &ext_sched_class) { 5251 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5252 scx_enable_state_str[state], all); 5253 return; 5254 } 5255 5256 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5257 sizeof(runnable_at))) 5258 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5259 jiffies_delta_msecs(runnable_at, jiffies)); 5260 5261 /* print everything onto one line to conserve console space */ 5262 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5263 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5264 runnable_at_buf); 5265 } 5266 5267 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5268 { 5269 /* 5270 * SCX schedulers often have userspace components which are sometimes 5271 * involved in critial scheduling paths. PM operations involve freezing 5272 * userspace which can lead to scheduling misbehaviors including stalls. 5273 * Let's bypass while PM operations are in progress. 5274 */ 5275 switch (event) { 5276 case PM_HIBERNATION_PREPARE: 5277 case PM_SUSPEND_PREPARE: 5278 case PM_RESTORE_PREPARE: 5279 scx_bypass(true); 5280 break; 5281 case PM_POST_HIBERNATION: 5282 case PM_POST_SUSPEND: 5283 case PM_POST_RESTORE: 5284 scx_bypass(false); 5285 break; 5286 } 5287 5288 return NOTIFY_OK; 5289 } 5290 5291 static struct notifier_block scx_pm_notifier = { 5292 .notifier_call = scx_pm_handler, 5293 }; 5294 5295 void __init init_sched_ext_class(void) 5296 { 5297 s32 cpu, v; 5298 5299 /* 5300 * The following is to prevent the compiler from optimizing out the enum 5301 * definitions so that BPF scheduler implementations can use them 5302 * through the generated vmlinux.h. 5303 */ 5304 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5305 SCX_TG_ONLINE); 5306 5307 scx_idle_init_masks(); 5308 5309 for_each_possible_cpu(cpu) { 5310 struct rq *rq = cpu_rq(cpu); 5311 int n = cpu_to_node(cpu); 5312 5313 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5314 INIT_LIST_HEAD(&rq->scx.runnable_list); 5315 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5316 5317 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5318 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5319 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5320 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5321 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5322 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5323 5324 if (cpu_online(cpu)) 5325 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5326 } 5327 5328 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5329 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5330 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5331 } 5332 5333 5334 /******************************************************************************** 5335 * Helpers that can be called from the BPF scheduler. 5336 */ 5337 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p, 5338 u64 enq_flags) 5339 { 5340 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5341 return false; 5342 5343 lockdep_assert_irqs_disabled(); 5344 5345 if (unlikely(!p)) { 5346 scx_error(sch, "called with NULL task"); 5347 return false; 5348 } 5349 5350 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5351 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags); 5352 return false; 5353 } 5354 5355 return true; 5356 } 5357 5358 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p, 5359 u64 dsq_id, u64 enq_flags) 5360 { 5361 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5362 struct task_struct *ddsp_task; 5363 5364 ddsp_task = __this_cpu_read(direct_dispatch_task); 5365 if (ddsp_task) { 5366 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags); 5367 return; 5368 } 5369 5370 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5371 scx_error(sch, "dispatch buffer overflow"); 5372 return; 5373 } 5374 5375 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5376 .task = p, 5377 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5378 .dsq_id = dsq_id, 5379 .enq_flags = enq_flags, 5380 }; 5381 } 5382 5383 __bpf_kfunc_start_defs(); 5384 5385 /** 5386 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5387 * @p: task_struct to insert 5388 * @dsq_id: DSQ to insert into 5389 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5390 * @enq_flags: SCX_ENQ_* 5391 * 5392 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5393 * call this function spuriously. Can be called from ops.enqueue(), 5394 * ops.select_cpu(), and ops.dispatch(). 5395 * 5396 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5397 * and @p must match the task being enqueued. 5398 * 5399 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5400 * will be directly inserted into the corresponding dispatch queue after 5401 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5402 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5403 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5404 * task is inserted. 5405 * 5406 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5407 * and this function can be called upto ops.dispatch_max_batch times to insert 5408 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5409 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5410 * counter. 5411 * 5412 * This function doesn't have any locking restrictions and may be called under 5413 * BPF locks (in the future when BPF introduces more flexible locking). 5414 * 5415 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5416 * exhaustion. If zero, the current residual slice is maintained. If 5417 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5418 * scx_bpf_kick_cpu() to trigger scheduling. 5419 * 5420 * Returns %true on successful insertion, %false on failure. On the root 5421 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5422 * to check the return value. 5423 */ 5424 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id, 5425 u64 slice, u64 enq_flags) 5426 { 5427 struct scx_sched *sch; 5428 5429 guard(rcu)(); 5430 sch = rcu_dereference(scx_root); 5431 if (unlikely(!sch)) 5432 return false; 5433 5434 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5435 return false; 5436 5437 if (slice) 5438 p->scx.slice = slice; 5439 else 5440 p->scx.slice = p->scx.slice ?: 1; 5441 5442 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags); 5443 5444 return true; 5445 } 5446 5447 /* 5448 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix. 5449 */ 5450 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, 5451 u64 slice, u64 enq_flags) 5452 { 5453 scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags); 5454 } 5455 5456 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p, 5457 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) 5458 { 5459 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5460 return false; 5461 5462 if (slice) 5463 p->scx.slice = slice; 5464 else 5465 p->scx.slice = p->scx.slice ?: 1; 5466 5467 p->scx.dsq_vtime = vtime; 5468 5469 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5470 5471 return true; 5472 } 5473 5474 struct scx_bpf_dsq_insert_vtime_args { 5475 /* @p can't be packed together as KF_RCU is not transitive */ 5476 u64 dsq_id; 5477 u64 slice; 5478 u64 vtime; 5479 u64 enq_flags; 5480 }; 5481 5482 /** 5483 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion 5484 * @p: task_struct to insert 5485 * @args: struct containing the rest of the arguments 5486 * @args->dsq_id: DSQ to insert into 5487 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value 5488 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5489 * @args->enq_flags: SCX_ENQ_* 5490 * 5491 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument 5492 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided 5493 * as an inline wrapper in common.bpf.h. 5494 * 5495 * Insert @p into the vtime priority queue of the DSQ identified by 5496 * @args->dsq_id. Tasks queued into the priority queue are ordered by 5497 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert(). 5498 * 5499 * @args->vtime ordering is according to time_before64() which considers 5500 * wrapping. A numerically larger vtime may indicate an earlier position in the 5501 * ordering and vice-versa. 5502 * 5503 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5504 * function must not be called on a DSQ which already has one or more FIFO tasks 5505 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5506 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5507 * 5508 * Returns %true on successful insertion, %false on failure. On the root 5509 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5510 * to check the return value. 5511 */ 5512 __bpf_kfunc bool 5513 __scx_bpf_dsq_insert_vtime(struct task_struct *p, 5514 struct scx_bpf_dsq_insert_vtime_args *args) 5515 { 5516 struct scx_sched *sch; 5517 5518 guard(rcu)(); 5519 5520 sch = rcu_dereference(scx_root); 5521 if (unlikely(!sch)) 5522 return false; 5523 5524 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice, 5525 args->vtime, args->enq_flags); 5526 } 5527 5528 /* 5529 * COMPAT: Will be removed in v6.23. 5530 */ 5531 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5532 u64 slice, u64 vtime, u64 enq_flags) 5533 { 5534 struct scx_sched *sch; 5535 5536 guard(rcu)(); 5537 5538 sch = rcu_dereference(scx_root); 5539 if (unlikely(!sch)) 5540 return; 5541 5542 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags); 5543 } 5544 5545 __bpf_kfunc_end_defs(); 5546 5547 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5548 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5549 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU) 5550 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU) 5551 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5552 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5553 5554 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5555 .owner = THIS_MODULE, 5556 .set = &scx_kfunc_ids_enqueue_dispatch, 5557 }; 5558 5559 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5560 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5561 { 5562 struct scx_sched *sch = scx_root; 5563 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5564 struct rq *this_rq, *src_rq, *locked_rq; 5565 bool dispatched = false; 5566 bool in_balance; 5567 unsigned long flags; 5568 5569 if (!scx_kf_allowed_if_unlocked() && 5570 !scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5571 return false; 5572 5573 /* 5574 * Can be called from either ops.dispatch() locking this_rq() or any 5575 * context where no rq lock is held. If latter, lock @p's task_rq which 5576 * we'll likely need anyway. 5577 */ 5578 src_rq = task_rq(p); 5579 5580 local_irq_save(flags); 5581 this_rq = this_rq(); 5582 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5583 5584 if (in_balance) { 5585 if (this_rq != src_rq) { 5586 raw_spin_rq_unlock(this_rq); 5587 raw_spin_rq_lock(src_rq); 5588 } 5589 } else { 5590 raw_spin_rq_lock(src_rq); 5591 } 5592 5593 /* 5594 * If the BPF scheduler keeps calling this function repeatedly, it can 5595 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 5596 * breather if necessary. 5597 */ 5598 scx_breather(src_rq); 5599 5600 locked_rq = src_rq; 5601 raw_spin_lock(&src_dsq->lock); 5602 5603 /* 5604 * Did someone else get to it? @p could have already left $src_dsq, got 5605 * re-enqueud, or be in the process of being consumed by someone else. 5606 */ 5607 if (unlikely(p->scx.dsq != src_dsq || 5608 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5609 p->scx.holding_cpu >= 0) || 5610 WARN_ON_ONCE(src_rq != task_rq(p))) { 5611 raw_spin_unlock(&src_dsq->lock); 5612 goto out; 5613 } 5614 5615 /* @p is still on $src_dsq and stable, determine the destination */ 5616 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5617 5618 /* 5619 * Apply vtime and slice updates before moving so that the new time is 5620 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5621 * this is safe as we're locking it. 5622 */ 5623 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5624 p->scx.dsq_vtime = kit->vtime; 5625 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5626 p->scx.slice = kit->slice; 5627 5628 /* execute move */ 5629 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5630 dispatched = true; 5631 out: 5632 if (in_balance) { 5633 if (this_rq != locked_rq) { 5634 raw_spin_rq_unlock(locked_rq); 5635 raw_spin_rq_lock(this_rq); 5636 } 5637 } else { 5638 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5639 } 5640 5641 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5642 __SCX_DSQ_ITER_HAS_VTIME); 5643 return dispatched; 5644 } 5645 5646 __bpf_kfunc_start_defs(); 5647 5648 /** 5649 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5650 * 5651 * Can only be called from ops.dispatch(). 5652 */ 5653 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5654 { 5655 struct scx_sched *sch; 5656 5657 guard(rcu)(); 5658 5659 sch = rcu_dereference(scx_root); 5660 if (unlikely(!sch)) 5661 return 0; 5662 5663 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5664 return 0; 5665 5666 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 5667 } 5668 5669 /** 5670 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 5671 * 5672 * Cancel the latest dispatch. Can be called multiple times to cancel further 5673 * dispatches. Can only be called from ops.dispatch(). 5674 */ 5675 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 5676 { 5677 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5678 struct scx_sched *sch; 5679 5680 guard(rcu)(); 5681 5682 sch = rcu_dereference(scx_root); 5683 if (unlikely(!sch)) 5684 return; 5685 5686 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5687 return; 5688 5689 if (dspc->cursor > 0) 5690 dspc->cursor--; 5691 else 5692 scx_error(sch, "dispatch buffer underflow"); 5693 } 5694 5695 /** 5696 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 5697 * @dsq_id: DSQ to move task from 5698 * 5699 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 5700 * local DSQ for execution. Can only be called from ops.dispatch(). 5701 * 5702 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 5703 * before trying to move from the specified DSQ. It may also grab rq locks and 5704 * thus can't be called under any BPF locks. 5705 * 5706 * Returns %true if a task has been moved, %false if there isn't any task to 5707 * move. 5708 */ 5709 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 5710 { 5711 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5712 struct scx_dispatch_q *dsq; 5713 struct scx_sched *sch; 5714 5715 guard(rcu)(); 5716 5717 sch = rcu_dereference(scx_root); 5718 if (unlikely(!sch)) 5719 return false; 5720 5721 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5722 return false; 5723 5724 flush_dispatch_buf(sch, dspc->rq); 5725 5726 dsq = find_user_dsq(sch, dsq_id); 5727 if (unlikely(!dsq)) { 5728 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 5729 return false; 5730 } 5731 5732 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 5733 /* 5734 * A successfully consumed task can be dequeued before it starts 5735 * running while the CPU is trying to migrate other dispatched 5736 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 5737 * local DSQ. 5738 */ 5739 dspc->nr_tasks++; 5740 return true; 5741 } else { 5742 return false; 5743 } 5744 } 5745 5746 /** 5747 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 5748 * @it__iter: DSQ iterator in progress 5749 * @slice: duration the moved task can run for in nsecs 5750 * 5751 * Override the slice of the next task that will be moved from @it__iter using 5752 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 5753 * slice duration is kept. 5754 */ 5755 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 5756 u64 slice) 5757 { 5758 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5759 5760 kit->slice = slice; 5761 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 5762 } 5763 5764 /** 5765 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 5766 * @it__iter: DSQ iterator in progress 5767 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 5768 * 5769 * Override the vtime of the next task that will be moved from @it__iter using 5770 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 5771 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 5772 * override is ignored and cleared. 5773 */ 5774 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 5775 u64 vtime) 5776 { 5777 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5778 5779 kit->vtime = vtime; 5780 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 5781 } 5782 5783 /** 5784 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 5785 * @it__iter: DSQ iterator in progress 5786 * @p: task to transfer 5787 * @dsq_id: DSQ to move @p to 5788 * @enq_flags: SCX_ENQ_* 5789 * 5790 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 5791 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 5792 * be the destination. 5793 * 5794 * For the transfer to be successful, @p must still be on the DSQ and have been 5795 * queued before the DSQ iteration started. This function doesn't care whether 5796 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 5797 * been queued before the iteration started. 5798 * 5799 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 5800 * 5801 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 5802 * lock (e.g. BPF timers or SYSCALL programs). 5803 * 5804 * Returns %true if @p has been consumed, %false if @p had already been 5805 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local 5806 * DSQ. 5807 */ 5808 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 5809 struct task_struct *p, u64 dsq_id, 5810 u64 enq_flags) 5811 { 5812 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5813 p, dsq_id, enq_flags); 5814 } 5815 5816 /** 5817 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 5818 * @it__iter: DSQ iterator in progress 5819 * @p: task to transfer 5820 * @dsq_id: DSQ to move @p to 5821 * @enq_flags: SCX_ENQ_* 5822 * 5823 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 5824 * priority queue of the DSQ specified by @dsq_id. The destination must be a 5825 * user DSQ as only user DSQs support priority queue. 5826 * 5827 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 5828 * and scx_bpf_dsq_move_set_vtime() to update. 5829 * 5830 * All other aspects are identical to scx_bpf_dsq_move(). See 5831 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 5832 */ 5833 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 5834 struct task_struct *p, u64 dsq_id, 5835 u64 enq_flags) 5836 { 5837 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5838 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5839 } 5840 5841 __bpf_kfunc_end_defs(); 5842 5843 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 5844 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 5845 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 5846 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 5847 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 5848 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 5849 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5850 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5851 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 5852 5853 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 5854 .owner = THIS_MODULE, 5855 .set = &scx_kfunc_ids_dispatch, 5856 }; 5857 5858 __bpf_kfunc_start_defs(); 5859 5860 /** 5861 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 5862 * 5863 * Iterate over all of the tasks currently enqueued on the local DSQ of the 5864 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 5865 * processed tasks. Can only be called from ops.cpu_release(). 5866 */ 5867 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 5868 { 5869 struct scx_sched *sch; 5870 LIST_HEAD(tasks); 5871 u32 nr_enqueued = 0; 5872 struct rq *rq; 5873 struct task_struct *p, *n; 5874 5875 guard(rcu)(); 5876 sch = rcu_dereference(scx_root); 5877 if (unlikely(!sch)) 5878 return 0; 5879 5880 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE)) 5881 return 0; 5882 5883 rq = cpu_rq(smp_processor_id()); 5884 lockdep_assert_rq_held(rq); 5885 5886 /* 5887 * The BPF scheduler may choose to dispatch tasks back to 5888 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 5889 * first to avoid processing the same tasks repeatedly. 5890 */ 5891 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 5892 scx.dsq_list.node) { 5893 /* 5894 * If @p is being migrated, @p's current CPU may not agree with 5895 * its allowed CPUs and the migration_cpu_stop is about to 5896 * deactivate and re-activate @p anyway. Skip re-enqueueing. 5897 * 5898 * While racing sched property changes may also dequeue and 5899 * re-enqueue a migrating task while its current CPU and allowed 5900 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 5901 * the current local DSQ for running tasks and thus are not 5902 * visible to the BPF scheduler. 5903 */ 5904 if (p->migration_pending) 5905 continue; 5906 5907 dispatch_dequeue(rq, p); 5908 list_add_tail(&p->scx.dsq_list.node, &tasks); 5909 } 5910 5911 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 5912 list_del_init(&p->scx.dsq_list.node); 5913 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 5914 nr_enqueued++; 5915 } 5916 5917 return nr_enqueued; 5918 } 5919 5920 __bpf_kfunc_end_defs(); 5921 5922 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 5923 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 5924 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 5925 5926 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 5927 .owner = THIS_MODULE, 5928 .set = &scx_kfunc_ids_cpu_release, 5929 }; 5930 5931 __bpf_kfunc_start_defs(); 5932 5933 /** 5934 * scx_bpf_create_dsq - Create a custom DSQ 5935 * @dsq_id: DSQ to create 5936 * @node: NUMA node to allocate from 5937 * 5938 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 5939 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 5940 */ 5941 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 5942 { 5943 struct scx_dispatch_q *dsq; 5944 struct scx_sched *sch; 5945 s32 ret; 5946 5947 if (unlikely(node >= (int)nr_node_ids || 5948 (node < 0 && node != NUMA_NO_NODE))) 5949 return -EINVAL; 5950 5951 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 5952 return -EINVAL; 5953 5954 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5955 if (!dsq) 5956 return -ENOMEM; 5957 5958 init_dsq(dsq, dsq_id); 5959 5960 rcu_read_lock(); 5961 5962 sch = rcu_dereference(scx_root); 5963 if (sch) 5964 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 5965 dsq_hash_params); 5966 else 5967 ret = -ENODEV; 5968 5969 rcu_read_unlock(); 5970 if (ret) 5971 kfree(dsq); 5972 return ret; 5973 } 5974 5975 __bpf_kfunc_end_defs(); 5976 5977 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 5978 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 5979 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 5980 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 5981 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5982 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5983 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 5984 5985 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 5986 .owner = THIS_MODULE, 5987 .set = &scx_kfunc_ids_unlocked, 5988 }; 5989 5990 __bpf_kfunc_start_defs(); 5991 5992 /** 5993 * scx_bpf_task_set_slice - Set task's time slice 5994 * @p: task of interest 5995 * @slice: time slice to set in nsecs 5996 * 5997 * Set @p's time slice to @slice. Returns %true on success, %false if the 5998 * calling scheduler doesn't have authority over @p. 5999 */ 6000 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice) 6001 { 6002 p->scx.slice = slice; 6003 return true; 6004 } 6005 6006 /** 6007 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering 6008 * @p: task of interest 6009 * @vtime: virtual time to set 6010 * 6011 * Set @p's virtual time to @vtime. Returns %true on success, %false if the 6012 * calling scheduler doesn't have authority over @p. 6013 */ 6014 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime) 6015 { 6016 p->scx.dsq_vtime = vtime; 6017 return true; 6018 } 6019 6020 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags) 6021 { 6022 struct rq *this_rq; 6023 unsigned long irq_flags; 6024 6025 if (!ops_cpu_valid(sch, cpu, NULL)) 6026 return; 6027 6028 local_irq_save(irq_flags); 6029 6030 this_rq = this_rq(); 6031 6032 /* 6033 * While bypassing for PM ops, IRQ handling may not be online which can 6034 * lead to irq_work_queue() malfunction such as infinite busy wait for 6035 * IRQ status update. Suppress kicking. 6036 */ 6037 if (scx_rq_bypassing(this_rq)) 6038 goto out; 6039 6040 /* 6041 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6042 * rq locks. We can probably be smarter and avoid bouncing if called 6043 * from ops which don't hold a rq lock. 6044 */ 6045 if (flags & SCX_KICK_IDLE) { 6046 struct rq *target_rq = cpu_rq(cpu); 6047 6048 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6049 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6050 6051 if (raw_spin_rq_trylock(target_rq)) { 6052 if (can_skip_idle_kick(target_rq)) { 6053 raw_spin_rq_unlock(target_rq); 6054 goto out; 6055 } 6056 raw_spin_rq_unlock(target_rq); 6057 } 6058 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6059 } else { 6060 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6061 6062 if (flags & SCX_KICK_PREEMPT) 6063 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6064 if (flags & SCX_KICK_WAIT) 6065 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6066 } 6067 6068 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6069 out: 6070 local_irq_restore(irq_flags); 6071 } 6072 6073 /** 6074 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6075 * @cpu: cpu to kick 6076 * @flags: %SCX_KICK_* flags 6077 * 6078 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6079 * trigger rescheduling on a busy CPU. This can be called from any online 6080 * scx_ops operation and the actual kicking is performed asynchronously through 6081 * an irq work. 6082 */ 6083 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6084 { 6085 struct scx_sched *sch; 6086 6087 guard(rcu)(); 6088 sch = rcu_dereference(scx_root); 6089 if (likely(sch)) 6090 scx_kick_cpu(sch, cpu, flags); 6091 } 6092 6093 /** 6094 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6095 * @dsq_id: id of the DSQ 6096 * 6097 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6098 * -%ENOENT is returned. 6099 */ 6100 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6101 { 6102 struct scx_sched *sch; 6103 struct scx_dispatch_q *dsq; 6104 s32 ret; 6105 6106 preempt_disable(); 6107 6108 sch = rcu_dereference_sched(scx_root); 6109 if (unlikely(!sch)) { 6110 ret = -ENODEV; 6111 goto out; 6112 } 6113 6114 if (dsq_id == SCX_DSQ_LOCAL) { 6115 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6116 goto out; 6117 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6118 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6119 6120 if (ops_cpu_valid(sch, cpu, NULL)) { 6121 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6122 goto out; 6123 } 6124 } else { 6125 dsq = find_user_dsq(sch, dsq_id); 6126 if (dsq) { 6127 ret = READ_ONCE(dsq->nr); 6128 goto out; 6129 } 6130 } 6131 ret = -ENOENT; 6132 out: 6133 preempt_enable(); 6134 return ret; 6135 } 6136 6137 /** 6138 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6139 * @dsq_id: DSQ to destroy 6140 * 6141 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6142 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6143 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6144 * which doesn't exist. Can be called from any online scx_ops operations. 6145 */ 6146 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6147 { 6148 struct scx_sched *sch; 6149 6150 rcu_read_lock(); 6151 sch = rcu_dereference(scx_root); 6152 if (sch) 6153 destroy_dsq(sch, dsq_id); 6154 rcu_read_unlock(); 6155 } 6156 6157 /** 6158 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6159 * @it: iterator to initialize 6160 * @dsq_id: DSQ to iterate 6161 * @flags: %SCX_DSQ_ITER_* 6162 * 6163 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6164 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6165 * tasks which are already queued when this function is invoked. 6166 */ 6167 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6168 u64 flags) 6169 { 6170 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6171 struct scx_sched *sch; 6172 6173 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6174 sizeof(struct bpf_iter_scx_dsq)); 6175 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6176 __alignof__(struct bpf_iter_scx_dsq)); 6177 6178 /* 6179 * next() and destroy() will be called regardless of the return value. 6180 * Always clear $kit->dsq. 6181 */ 6182 kit->dsq = NULL; 6183 6184 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 6185 if (unlikely(!sch)) 6186 return -ENODEV; 6187 6188 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6189 return -EINVAL; 6190 6191 kit->dsq = find_user_dsq(sch, dsq_id); 6192 if (!kit->dsq) 6193 return -ENOENT; 6194 6195 INIT_LIST_HEAD(&kit->cursor.node); 6196 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 6197 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6198 6199 return 0; 6200 } 6201 6202 /** 6203 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6204 * @it: iterator to progress 6205 * 6206 * Return the next task. See bpf_iter_scx_dsq_new(). 6207 */ 6208 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6209 { 6210 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6211 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6212 struct task_struct *p; 6213 unsigned long flags; 6214 6215 if (!kit->dsq) 6216 return NULL; 6217 6218 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6219 6220 if (list_empty(&kit->cursor.node)) 6221 p = NULL; 6222 else 6223 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6224 6225 /* 6226 * Only tasks which were queued before the iteration started are 6227 * visible. This bounds BPF iterations and guarantees that vtime never 6228 * jumps in the other direction while iterating. 6229 */ 6230 do { 6231 p = nldsq_next_task(kit->dsq, p, rev); 6232 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6233 6234 if (p) { 6235 if (rev) 6236 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6237 else 6238 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6239 } else { 6240 list_del_init(&kit->cursor.node); 6241 } 6242 6243 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6244 6245 return p; 6246 } 6247 6248 /** 6249 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6250 * @it: iterator to destroy 6251 * 6252 * Undo scx_iter_scx_dsq_new(). 6253 */ 6254 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6255 { 6256 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6257 6258 if (!kit->dsq) 6259 return; 6260 6261 if (!list_empty(&kit->cursor.node)) { 6262 unsigned long flags; 6263 6264 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6265 list_del_init(&kit->cursor.node); 6266 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6267 } 6268 kit->dsq = NULL; 6269 } 6270 6271 /** 6272 * scx_bpf_dsq_peek - Lockless peek at the first element. 6273 * @dsq_id: DSQ to examine. 6274 * 6275 * Read the first element in the DSQ. This is semantically equivalent to using 6276 * the DSQ iterator, but is lockfree. Of course, like any lockless operation, 6277 * this provides only a point-in-time snapshot, and the contents may change 6278 * by the time any subsequent locking operation reads the queue. 6279 * 6280 * Returns the pointer, or NULL indicates an empty queue OR internal error. 6281 */ 6282 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id) 6283 { 6284 struct scx_sched *sch; 6285 struct scx_dispatch_q *dsq; 6286 6287 sch = rcu_dereference(scx_root); 6288 if (unlikely(!sch)) 6289 return NULL; 6290 6291 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) { 6292 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id); 6293 return NULL; 6294 } 6295 6296 dsq = find_user_dsq(sch, dsq_id); 6297 if (unlikely(!dsq)) { 6298 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id); 6299 return NULL; 6300 } 6301 6302 return rcu_dereference(dsq->first_task); 6303 } 6304 6305 __bpf_kfunc_end_defs(); 6306 6307 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf, 6308 size_t line_size, char *fmt, unsigned long long *data, 6309 u32 data__sz) 6310 { 6311 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6312 s32 ret; 6313 6314 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6315 (data__sz && !data)) { 6316 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz); 6317 return -EINVAL; 6318 } 6319 6320 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6321 if (ret < 0) { 6322 scx_error(sch, "failed to read data fields (%d)", ret); 6323 return ret; 6324 } 6325 6326 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6327 &bprintf_data); 6328 if (ret < 0) { 6329 scx_error(sch, "format preparation failed (%d)", ret); 6330 return ret; 6331 } 6332 6333 ret = bstr_printf(line_buf, line_size, fmt, 6334 bprintf_data.bin_args); 6335 bpf_bprintf_cleanup(&bprintf_data); 6336 if (ret < 0) { 6337 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6338 return ret; 6339 } 6340 6341 return ret; 6342 } 6343 6344 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf, 6345 char *fmt, unsigned long long *data, u32 data__sz) 6346 { 6347 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line), 6348 fmt, data, data__sz); 6349 } 6350 6351 __bpf_kfunc_start_defs(); 6352 6353 /** 6354 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6355 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6356 * @fmt: error message format string 6357 * @data: format string parameters packaged using ___bpf_fill() macro 6358 * @data__sz: @data len, must end in '__sz' for the verifier 6359 * 6360 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6361 * disabling. 6362 */ 6363 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6364 unsigned long long *data, u32 data__sz) 6365 { 6366 struct scx_sched *sch; 6367 unsigned long flags; 6368 6369 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6370 sch = rcu_dereference_bh(scx_root); 6371 if (likely(sch) && 6372 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6373 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6374 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6375 } 6376 6377 /** 6378 * scx_bpf_error_bstr - Indicate fatal error 6379 * @fmt: error message format string 6380 * @data: format string parameters packaged using ___bpf_fill() macro 6381 * @data__sz: @data len, must end in '__sz' for the verifier 6382 * 6383 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6384 * disabling. 6385 */ 6386 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6387 u32 data__sz) 6388 { 6389 struct scx_sched *sch; 6390 unsigned long flags; 6391 6392 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6393 sch = rcu_dereference_bh(scx_root); 6394 if (likely(sch) && 6395 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6396 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6397 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6398 } 6399 6400 /** 6401 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6402 * @fmt: format string 6403 * @data: format string parameters packaged using ___bpf_fill() macro 6404 * @data__sz: @data len, must end in '__sz' for the verifier 6405 * 6406 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6407 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6408 * 6409 * The extra dump may be multiple lines. A single line may be split over 6410 * multiple calls. The last line is automatically terminated. 6411 */ 6412 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6413 u32 data__sz) 6414 { 6415 struct scx_sched *sch; 6416 struct scx_dump_data *dd = &scx_dump_data; 6417 struct scx_bstr_buf *buf = &dd->buf; 6418 s32 ret; 6419 6420 guard(rcu)(); 6421 6422 sch = rcu_dereference(scx_root); 6423 if (unlikely(!sch)) 6424 return; 6425 6426 if (raw_smp_processor_id() != dd->cpu) { 6427 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends"); 6428 return; 6429 } 6430 6431 /* append the formatted string to the line buf */ 6432 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor, 6433 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6434 if (ret < 0) { 6435 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6436 dd->prefix, fmt, data, data__sz, ret); 6437 return; 6438 } 6439 6440 dd->cursor += ret; 6441 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6442 6443 if (!dd->cursor) 6444 return; 6445 6446 /* 6447 * If the line buf overflowed or ends in a newline, flush it into the 6448 * dump. This is to allow the caller to generate a single line over 6449 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6450 * the line buf, the only case which can lead to an unexpected 6451 * truncation is when the caller keeps generating newlines in the middle 6452 * instead of the end consecutively. Don't do that. 6453 */ 6454 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6455 ops_dump_flush(); 6456 } 6457 6458 /** 6459 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6460 * @cpu: CPU of interest 6461 * 6462 * Return the maximum relative capacity of @cpu in relation to the most 6463 * performant CPU in the system. The return value is in the range [1, 6464 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6465 */ 6466 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6467 { 6468 struct scx_sched *sch; 6469 6470 guard(rcu)(); 6471 6472 sch = rcu_dereference(scx_root); 6473 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6474 return arch_scale_cpu_capacity(cpu); 6475 else 6476 return SCX_CPUPERF_ONE; 6477 } 6478 6479 /** 6480 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6481 * @cpu: CPU of interest 6482 * 6483 * Return the current relative performance of @cpu in relation to its maximum. 6484 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6485 * 6486 * The current performance level of a CPU in relation to the maximum performance 6487 * available in the system can be calculated as follows: 6488 * 6489 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6490 * 6491 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6492 */ 6493 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6494 { 6495 struct scx_sched *sch; 6496 6497 guard(rcu)(); 6498 6499 sch = rcu_dereference(scx_root); 6500 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6501 return arch_scale_freq_capacity(cpu); 6502 else 6503 return SCX_CPUPERF_ONE; 6504 } 6505 6506 /** 6507 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6508 * @cpu: CPU of interest 6509 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6510 * 6511 * Set the target performance level of @cpu to @perf. @perf is in linear 6512 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6513 * schedutil cpufreq governor chooses the target frequency. 6514 * 6515 * The actual performance level chosen, CPU grouping, and the overhead and 6516 * latency of the operations are dependent on the hardware and cpufreq driver in 6517 * use. Consult hardware and cpufreq documentation for more information. The 6518 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6519 */ 6520 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6521 { 6522 struct scx_sched *sch; 6523 6524 guard(rcu)(); 6525 6526 sch = rcu_dereference(sch); 6527 if (unlikely(!sch)) 6528 return; 6529 6530 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6531 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu); 6532 return; 6533 } 6534 6535 if (ops_cpu_valid(sch, cpu, NULL)) { 6536 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6537 struct rq_flags rf; 6538 6539 /* 6540 * When called with an rq lock held, restrict the operation 6541 * to the corresponding CPU to prevent ABBA deadlocks. 6542 */ 6543 if (locked_rq && rq != locked_rq) { 6544 scx_error(sch, "Invalid target CPU %d", cpu); 6545 return; 6546 } 6547 6548 /* 6549 * If no rq lock is held, allow to operate on any CPU by 6550 * acquiring the corresponding rq lock. 6551 */ 6552 if (!locked_rq) { 6553 rq_lock_irqsave(rq, &rf); 6554 update_rq_clock(rq); 6555 } 6556 6557 rq->scx.cpuperf_target = perf; 6558 cpufreq_update_util(rq, 0); 6559 6560 if (!locked_rq) 6561 rq_unlock_irqrestore(rq, &rf); 6562 } 6563 } 6564 6565 /** 6566 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6567 * 6568 * All valid node IDs in the system are smaller than the returned value. 6569 */ 6570 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6571 { 6572 return nr_node_ids; 6573 } 6574 6575 /** 6576 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6577 * 6578 * All valid CPU IDs in the system are smaller than the returned value. 6579 */ 6580 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6581 { 6582 return nr_cpu_ids; 6583 } 6584 6585 /** 6586 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6587 */ 6588 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6589 { 6590 return cpu_possible_mask; 6591 } 6592 6593 /** 6594 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6595 */ 6596 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6597 { 6598 return cpu_online_mask; 6599 } 6600 6601 /** 6602 * scx_bpf_put_cpumask - Release a possible/online cpumask 6603 * @cpumask: cpumask to release 6604 */ 6605 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6606 { 6607 /* 6608 * Empty function body because we aren't actually acquiring or releasing 6609 * a reference to a global cpumask, which is read-only in the caller and 6610 * is never released. The acquire / release semantics here are just used 6611 * to make the cpumask is a trusted pointer in the caller. 6612 */ 6613 } 6614 6615 /** 6616 * scx_bpf_task_running - Is task currently running? 6617 * @p: task of interest 6618 */ 6619 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6620 { 6621 return task_rq(p)->curr == p; 6622 } 6623 6624 /** 6625 * scx_bpf_task_cpu - CPU a task is currently associated with 6626 * @p: task of interest 6627 */ 6628 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6629 { 6630 return task_cpu(p); 6631 } 6632 6633 /** 6634 * scx_bpf_cpu_rq - Fetch the rq of a CPU 6635 * @cpu: CPU of the rq 6636 */ 6637 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 6638 { 6639 struct scx_sched *sch; 6640 6641 guard(rcu)(); 6642 6643 sch = rcu_dereference(scx_root); 6644 if (unlikely(!sch)) 6645 return NULL; 6646 6647 if (!ops_cpu_valid(sch, cpu, NULL)) 6648 return NULL; 6649 6650 if (!sch->warned_deprecated_rq) { 6651 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; " 6652 "use scx_bpf_locked_rq() when holding rq lock " 6653 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__); 6654 sch->warned_deprecated_rq = true; 6655 } 6656 6657 return cpu_rq(cpu); 6658 } 6659 6660 /** 6661 * scx_bpf_locked_rq - Return the rq currently locked by SCX 6662 * 6663 * Returns the rq if a rq lock is currently held by SCX. 6664 * Otherwise emits an error and returns NULL. 6665 */ 6666 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 6667 { 6668 struct scx_sched *sch; 6669 struct rq *rq; 6670 6671 guard(preempt)(); 6672 6673 sch = rcu_dereference_sched(scx_root); 6674 if (unlikely(!sch)) 6675 return NULL; 6676 6677 rq = scx_locked_rq(); 6678 if (!rq) { 6679 scx_error(sch, "accessing rq without holding rq lock"); 6680 return NULL; 6681 } 6682 6683 return rq; 6684 } 6685 6686 /** 6687 * scx_bpf_cpu_curr - Return remote CPU's curr task 6688 * @cpu: CPU of interest 6689 * 6690 * Callers must hold RCU read lock (KF_RCU). 6691 */ 6692 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 6693 { 6694 struct scx_sched *sch; 6695 6696 guard(rcu)(); 6697 6698 sch = rcu_dereference(scx_root); 6699 if (unlikely(!sch)) 6700 return NULL; 6701 6702 if (!ops_cpu_valid(sch, cpu, NULL)) 6703 return NULL; 6704 6705 return rcu_dereference(cpu_rq(cpu)->curr); 6706 } 6707 6708 /** 6709 * scx_bpf_task_cgroup - Return the sched cgroup of a task 6710 * @p: task of interest 6711 * 6712 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 6713 * from the scheduler's POV. SCX operations should use this function to 6714 * determine @p's current cgroup as, unlike following @p->cgroups, 6715 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 6716 * rq-locked operations. Can be called on the parameter tasks of rq-locked 6717 * operations. The restriction guarantees that @p's rq is locked by the caller. 6718 */ 6719 #ifdef CONFIG_CGROUP_SCHED 6720 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 6721 { 6722 struct task_group *tg = p->sched_task_group; 6723 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 6724 struct scx_sched *sch; 6725 6726 guard(rcu)(); 6727 6728 sch = rcu_dereference(scx_root); 6729 if (unlikely(!sch)) 6730 goto out; 6731 6732 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p)) 6733 goto out; 6734 6735 cgrp = tg_cgrp(tg); 6736 6737 out: 6738 cgroup_get(cgrp); 6739 return cgrp; 6740 } 6741 #endif 6742 6743 /** 6744 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 6745 * clock for the current CPU. The clock returned is in nanoseconds. 6746 * 6747 * It provides the following properties: 6748 * 6749 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 6750 * to account for execution time and track tasks' runtime properties. 6751 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 6752 * eventually reads a hardware timestamp counter -- is neither performant nor 6753 * scalable. scx_bpf_now() aims to provide a high-performance clock by 6754 * using the rq clock in the scheduler core whenever possible. 6755 * 6756 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 6757 * scheduler use cases, the required clock resolution is lower than the most 6758 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 6759 * uses the rq clock in the scheduler core whenever it is valid. It considers 6760 * that the rq clock is valid from the time the rq clock is updated 6761 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 6762 * 6763 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 6764 * guarantees the clock never goes backward when comparing them in the same 6765 * CPU. On the other hand, when comparing clocks in different CPUs, there 6766 * is no such guarantee -- the clock can go backward. It provides a 6767 * monotonically *non-decreasing* clock so that it would provide the same 6768 * clock values in two different scx_bpf_now() calls in the same CPU 6769 * during the same period of when the rq clock is valid. 6770 */ 6771 __bpf_kfunc u64 scx_bpf_now(void) 6772 { 6773 struct rq *rq; 6774 u64 clock; 6775 6776 preempt_disable(); 6777 6778 rq = this_rq(); 6779 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 6780 /* 6781 * If the rq clock is valid, use the cached rq clock. 6782 * 6783 * Note that scx_bpf_now() is re-entrant between a process 6784 * context and an interrupt context (e.g., timer interrupt). 6785 * However, we don't need to consider the race between them 6786 * because such race is not observable from a caller. 6787 */ 6788 clock = READ_ONCE(rq->scx.clock); 6789 } else { 6790 /* 6791 * Otherwise, return a fresh rq clock. 6792 * 6793 * The rq clock is updated outside of the rq lock. 6794 * In this case, keep the updated rq clock invalid so the next 6795 * kfunc call outside the rq lock gets a fresh rq clock. 6796 */ 6797 clock = sched_clock_cpu(cpu_of(rq)); 6798 } 6799 6800 preempt_enable(); 6801 6802 return clock; 6803 } 6804 6805 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 6806 { 6807 struct scx_event_stats *e_cpu; 6808 int cpu; 6809 6810 /* Aggregate per-CPU event counters into @events. */ 6811 memset(events, 0, sizeof(*events)); 6812 for_each_possible_cpu(cpu) { 6813 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 6814 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 6815 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 6816 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 6817 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 6818 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 6819 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 6820 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 6821 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 6822 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 6823 } 6824 } 6825 6826 /* 6827 * scx_bpf_events - Get a system-wide event counter to 6828 * @events: output buffer from a BPF program 6829 * @events__sz: @events len, must end in '__sz'' for the verifier 6830 */ 6831 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 6832 size_t events__sz) 6833 { 6834 struct scx_sched *sch; 6835 struct scx_event_stats e_sys; 6836 6837 rcu_read_lock(); 6838 sch = rcu_dereference(scx_root); 6839 if (sch) 6840 scx_read_events(sch, &e_sys); 6841 else 6842 memset(&e_sys, 0, sizeof(e_sys)); 6843 rcu_read_unlock(); 6844 6845 /* 6846 * We cannot entirely trust a BPF-provided size since a BPF program 6847 * might be compiled against a different vmlinux.h, of which 6848 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 6849 * (an older vmlinux.h). Hence, we use the smaller size to avoid 6850 * memory corruption. 6851 */ 6852 events__sz = min(events__sz, sizeof(*events)); 6853 memcpy(events, &e_sys, events__sz); 6854 } 6855 6856 __bpf_kfunc_end_defs(); 6857 6858 BTF_KFUNCS_START(scx_kfunc_ids_any) 6859 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU); 6860 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU); 6861 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 6862 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 6863 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 6864 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL) 6865 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 6866 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 6867 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 6868 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 6869 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 6870 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 6871 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 6872 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 6873 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 6874 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 6875 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 6876 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 6877 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 6878 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 6879 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 6880 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 6881 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 6882 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 6883 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED) 6884 #ifdef CONFIG_CGROUP_SCHED 6885 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 6886 #endif 6887 BTF_ID_FLAGS(func, scx_bpf_now) 6888 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 6889 BTF_KFUNCS_END(scx_kfunc_ids_any) 6890 6891 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 6892 .owner = THIS_MODULE, 6893 .set = &scx_kfunc_ids_any, 6894 }; 6895 6896 static int __init scx_init(void) 6897 { 6898 int ret; 6899 6900 /* 6901 * kfunc registration can't be done from init_sched_ext_class() as 6902 * register_btf_kfunc_id_set() needs most of the system to be up. 6903 * 6904 * Some kfuncs are context-sensitive and can only be called from 6905 * specific SCX ops. They are grouped into BTF sets accordingly. 6906 * Unfortunately, BPF currently doesn't have a way of enforcing such 6907 * restrictions. Eventually, the verifier should be able to enforce 6908 * them. For now, register them the same and make each kfunc explicitly 6909 * check using scx_kf_allowed(). 6910 */ 6911 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6912 &scx_kfunc_set_enqueue_dispatch)) || 6913 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6914 &scx_kfunc_set_dispatch)) || 6915 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6916 &scx_kfunc_set_cpu_release)) || 6917 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6918 &scx_kfunc_set_unlocked)) || 6919 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6920 &scx_kfunc_set_unlocked)) || 6921 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6922 &scx_kfunc_set_any)) || 6923 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 6924 &scx_kfunc_set_any)) || 6925 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6926 &scx_kfunc_set_any))) { 6927 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 6928 return ret; 6929 } 6930 6931 ret = scx_idle_init(); 6932 if (ret) { 6933 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 6934 return ret; 6935 } 6936 6937 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 6938 if (ret) { 6939 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 6940 return ret; 6941 } 6942 6943 ret = register_pm_notifier(&scx_pm_notifier); 6944 if (ret) { 6945 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 6946 return ret; 6947 } 6948 6949 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 6950 if (!scx_kset) { 6951 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 6952 return -ENOMEM; 6953 } 6954 6955 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 6956 if (ret < 0) { 6957 pr_err("sched_ext: Failed to add global attributes\n"); 6958 return ret; 6959 } 6960 6961 return 0; 6962 } 6963 __initcall(scx_init); 6964