1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 4 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 5 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 6 */ 7 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 8 9 enum scx_consts { 10 SCX_DSP_DFL_MAX_BATCH = 32, 11 SCX_DSP_MAX_LOOPS = 32, 12 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 13 14 SCX_EXIT_BT_LEN = 64, 15 SCX_EXIT_MSG_LEN = 1024, 16 SCX_EXIT_DUMP_DFL_LEN = 32768, 17 }; 18 19 enum scx_exit_kind { 20 SCX_EXIT_NONE, 21 SCX_EXIT_DONE, 22 23 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 24 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 25 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 26 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 27 28 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 29 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 30 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 31 }; 32 33 /* 34 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 35 * being disabled. 36 */ 37 struct scx_exit_info { 38 /* %SCX_EXIT_* - broad category of the exit reason */ 39 enum scx_exit_kind kind; 40 41 /* exit code if gracefully exiting */ 42 s64 exit_code; 43 44 /* textual representation of the above */ 45 const char *reason; 46 47 /* backtrace if exiting due to an error */ 48 unsigned long *bt; 49 u32 bt_len; 50 51 /* informational message */ 52 char *msg; 53 54 /* debug dump */ 55 char *dump; 56 }; 57 58 /* sched_ext_ops.flags */ 59 enum scx_ops_flags { 60 /* 61 * Keep built-in idle tracking even if ops.update_idle() is implemented. 62 */ 63 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 64 65 /* 66 * By default, if there are no other task to run on the CPU, ext core 67 * keeps running the current task even after its slice expires. If this 68 * flag is specified, such tasks are passed to ops.enqueue() with 69 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 70 */ 71 SCX_OPS_ENQ_LAST = 1LLU << 1, 72 73 /* 74 * An exiting task may schedule after PF_EXITING is set. In such cases, 75 * bpf_task_from_pid() may not be able to find the task and if the BPF 76 * scheduler depends on pid lookup for dispatching, the task will be 77 * lost leading to various issues including RCU grace period stalls. 78 * 79 * To mask this problem, by default, unhashed tasks are automatically 80 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 81 * depend on pid lookups and wants to handle these tasks directly, the 82 * following flag can be used. 83 */ 84 SCX_OPS_ENQ_EXITING = 1LLU << 2, 85 86 /* 87 * If set, only tasks with policy set to SCHED_EXT are attached to 88 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 89 */ 90 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 91 92 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 93 SCX_OPS_ENQ_LAST | 94 SCX_OPS_ENQ_EXITING | 95 SCX_OPS_SWITCH_PARTIAL, 96 }; 97 98 /* argument container for ops.init_task() */ 99 struct scx_init_task_args { 100 /* 101 * Set if ops.init_task() is being invoked on the fork path, as opposed 102 * to the scheduler transition path. 103 */ 104 bool fork; 105 }; 106 107 /* argument container for ops.exit_task() */ 108 struct scx_exit_task_args { 109 /* Whether the task exited before running on sched_ext. */ 110 bool cancelled; 111 }; 112 113 enum scx_cpu_preempt_reason { 114 /* next task is being scheduled by &sched_class_rt */ 115 SCX_CPU_PREEMPT_RT, 116 /* next task is being scheduled by &sched_class_dl */ 117 SCX_CPU_PREEMPT_DL, 118 /* next task is being scheduled by &sched_class_stop */ 119 SCX_CPU_PREEMPT_STOP, 120 /* unknown reason for SCX being preempted */ 121 SCX_CPU_PREEMPT_UNKNOWN, 122 }; 123 124 /* 125 * Argument container for ops->cpu_acquire(). Currently empty, but may be 126 * expanded in the future. 127 */ 128 struct scx_cpu_acquire_args {}; 129 130 /* argument container for ops->cpu_release() */ 131 struct scx_cpu_release_args { 132 /* the reason the CPU was preempted */ 133 enum scx_cpu_preempt_reason reason; 134 135 /* the task that's going to be scheduled on the CPU */ 136 struct task_struct *task; 137 }; 138 139 /* 140 * Informational context provided to dump operations. 141 */ 142 struct scx_dump_ctx { 143 enum scx_exit_kind kind; 144 s64 exit_code; 145 const char *reason; 146 u64 at_ns; 147 u64 at_jiffies; 148 }; 149 150 /** 151 * struct sched_ext_ops - Operation table for BPF scheduler implementation 152 * 153 * Userland can implement an arbitrary scheduling policy by implementing and 154 * loading operations in this table. 155 */ 156 struct sched_ext_ops { 157 /** 158 * select_cpu - Pick the target CPU for a task which is being woken up 159 * @p: task being woken up 160 * @prev_cpu: the cpu @p was on before sleeping 161 * @wake_flags: SCX_WAKE_* 162 * 163 * Decision made here isn't final. @p may be moved to any CPU while it 164 * is getting dispatched for execution later. However, as @p is not on 165 * the rq at this point, getting the eventual execution CPU right here 166 * saves a small bit of overhead down the line. 167 * 168 * If an idle CPU is returned, the CPU is kicked and will try to 169 * dispatch. While an explicit custom mechanism can be added, 170 * select_cpu() serves as the default way to wake up idle CPUs. 171 * 172 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p 173 * is dispatched, the ops.enqueue() callback will be skipped. Finally, 174 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the 175 * local DSQ of whatever CPU is returned by this callback. 176 */ 177 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 178 179 /** 180 * enqueue - Enqueue a task on the BPF scheduler 181 * @p: task being enqueued 182 * @enq_flags: %SCX_ENQ_* 183 * 184 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() 185 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf 186 * scheduler owns @p and if it fails to dispatch @p, the task will 187 * stall. 188 * 189 * If @p was dispatched from ops.select_cpu(), this callback is 190 * skipped. 191 */ 192 void (*enqueue)(struct task_struct *p, u64 enq_flags); 193 194 /** 195 * dequeue - Remove a task from the BPF scheduler 196 * @p: task being dequeued 197 * @deq_flags: %SCX_DEQ_* 198 * 199 * Remove @p from the BPF scheduler. This is usually called to isolate 200 * the task while updating its scheduling properties (e.g. priority). 201 * 202 * The ext core keeps track of whether the BPF side owns a given task or 203 * not and can gracefully ignore spurious dispatches from BPF side, 204 * which makes it safe to not implement this method. However, depending 205 * on the scheduling logic, this can lead to confusing behaviors - e.g. 206 * scheduling position not being updated across a priority change. 207 */ 208 void (*dequeue)(struct task_struct *p, u64 deq_flags); 209 210 /** 211 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs 212 * @cpu: CPU to dispatch tasks for 213 * @prev: previous task being switched out 214 * 215 * Called when a CPU's local dsq is empty. The operation should dispatch 216 * one or more tasks from the BPF scheduler into the DSQs using 217 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using 218 * scx_bpf_consume(). 219 * 220 * The maximum number of times scx_bpf_dispatch() can be called without 221 * an intervening scx_bpf_consume() is specified by 222 * ops.dispatch_max_batch. See the comments on top of the two functions 223 * for more details. 224 * 225 * When not %NULL, @prev is an SCX task with its slice depleted. If 226 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 227 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 228 * ops.dispatch() returns. To keep executing @prev, return without 229 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. 230 */ 231 void (*dispatch)(s32 cpu, struct task_struct *prev); 232 233 /** 234 * tick - Periodic tick 235 * @p: task running currently 236 * 237 * This operation is called every 1/HZ seconds on CPUs which are 238 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 239 * immediate dispatch cycle on the CPU. 240 */ 241 void (*tick)(struct task_struct *p); 242 243 /** 244 * runnable - A task is becoming runnable on its associated CPU 245 * @p: task becoming runnable 246 * @enq_flags: %SCX_ENQ_* 247 * 248 * This and the following three functions can be used to track a task's 249 * execution state transitions. A task becomes ->runnable() on a CPU, 250 * and then goes through one or more ->running() and ->stopping() pairs 251 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 252 * done running on the CPU. 253 * 254 * @p is becoming runnable on the CPU because it's 255 * 256 * - waking up (%SCX_ENQ_WAKEUP) 257 * - being moved from another CPU 258 * - being restored after temporarily taken off the queue for an 259 * attribute change. 260 * 261 * This and ->enqueue() are related but not coupled. This operation 262 * notifies @p's state transition and may not be followed by ->enqueue() 263 * e.g. when @p is being dispatched to a remote CPU, or when @p is 264 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 265 * task may be ->enqueue()'d without being preceded by this operation 266 * e.g. after exhausting its slice. 267 */ 268 void (*runnable)(struct task_struct *p, u64 enq_flags); 269 270 /** 271 * running - A task is starting to run on its associated CPU 272 * @p: task starting to run 273 * 274 * See ->runnable() for explanation on the task state notifiers. 275 */ 276 void (*running)(struct task_struct *p); 277 278 /** 279 * stopping - A task is stopping execution 280 * @p: task stopping to run 281 * @runnable: is task @p still runnable? 282 * 283 * See ->runnable() for explanation on the task state notifiers. If 284 * !@runnable, ->quiescent() will be invoked after this operation 285 * returns. 286 */ 287 void (*stopping)(struct task_struct *p, bool runnable); 288 289 /** 290 * quiescent - A task is becoming not runnable on its associated CPU 291 * @p: task becoming not runnable 292 * @deq_flags: %SCX_DEQ_* 293 * 294 * See ->runnable() for explanation on the task state notifiers. 295 * 296 * @p is becoming quiescent on the CPU because it's 297 * 298 * - sleeping (%SCX_DEQ_SLEEP) 299 * - being moved to another CPU 300 * - being temporarily taken off the queue for an attribute change 301 * (%SCX_DEQ_SAVE) 302 * 303 * This and ->dequeue() are related but not coupled. This operation 304 * notifies @p's state transition and may not be preceded by ->dequeue() 305 * e.g. when @p is being dispatched to a remote CPU. 306 */ 307 void (*quiescent)(struct task_struct *p, u64 deq_flags); 308 309 /** 310 * yield - Yield CPU 311 * @from: yielding task 312 * @to: optional yield target task 313 * 314 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 315 * The BPF scheduler should ensure that other available tasks are 316 * dispatched before the yielding task. Return value is ignored in this 317 * case. 318 * 319 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 320 * scheduler can implement the request, return %true; otherwise, %false. 321 */ 322 bool (*yield)(struct task_struct *from, struct task_struct *to); 323 324 /** 325 * set_weight - Set task weight 326 * @p: task to set weight for 327 * @weight: new eight [1..10000] 328 * 329 * Update @p's weight to @weight. 330 */ 331 void (*set_weight)(struct task_struct *p, u32 weight); 332 333 /** 334 * set_cpumask - Set CPU affinity 335 * @p: task to set CPU affinity for 336 * @cpumask: cpumask of cpus that @p can run on 337 * 338 * Update @p's CPU affinity to @cpumask. 339 */ 340 void (*set_cpumask)(struct task_struct *p, 341 const struct cpumask *cpumask); 342 343 /** 344 * update_idle - Update the idle state of a CPU 345 * @cpu: CPU to udpate the idle state for 346 * @idle: whether entering or exiting the idle state 347 * 348 * This operation is called when @rq's CPU goes or leaves the idle 349 * state. By default, implementing this operation disables the built-in 350 * idle CPU tracking and the following helpers become unavailable: 351 * 352 * - scx_bpf_select_cpu_dfl() 353 * - scx_bpf_test_and_clear_cpu_idle() 354 * - scx_bpf_pick_idle_cpu() 355 * 356 * The user also must implement ops.select_cpu() as the default 357 * implementation relies on scx_bpf_select_cpu_dfl(). 358 * 359 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 360 * tracking. 361 */ 362 void (*update_idle)(s32 cpu, bool idle); 363 364 /** 365 * cpu_acquire - A CPU is becoming available to the BPF scheduler 366 * @cpu: The CPU being acquired by the BPF scheduler. 367 * @args: Acquire arguments, see the struct definition. 368 * 369 * A CPU that was previously released from the BPF scheduler is now once 370 * again under its control. 371 */ 372 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 373 374 /** 375 * cpu_release - A CPU is taken away from the BPF scheduler 376 * @cpu: The CPU being released by the BPF scheduler. 377 * @args: Release arguments, see the struct definition. 378 * 379 * The specified CPU is no longer under the control of the BPF 380 * scheduler. This could be because it was preempted by a higher 381 * priority sched_class, though there may be other reasons as well. The 382 * caller should consult @args->reason to determine the cause. 383 */ 384 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 385 386 /** 387 * init_task - Initialize a task to run in a BPF scheduler 388 * @p: task to initialize for BPF scheduling 389 * @args: init arguments, see the struct definition 390 * 391 * Either we're loading a BPF scheduler or a new task is being forked. 392 * Initialize @p for BPF scheduling. This operation may block and can 393 * be used for allocations, and is called exactly once for a task. 394 * 395 * Return 0 for success, -errno for failure. An error return while 396 * loading will abort loading of the BPF scheduler. During a fork, it 397 * will abort that specific fork. 398 */ 399 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 400 401 /** 402 * exit_task - Exit a previously-running task from the system 403 * @p: task to exit 404 * 405 * @p is exiting or the BPF scheduler is being unloaded. Perform any 406 * necessary cleanup for @p. 407 */ 408 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 409 410 /** 411 * enable - Enable BPF scheduling for a task 412 * @p: task to enable BPF scheduling for 413 * 414 * Enable @p for BPF scheduling. enable() is called on @p any time it 415 * enters SCX, and is always paired with a matching disable(). 416 */ 417 void (*enable)(struct task_struct *p); 418 419 /** 420 * disable - Disable BPF scheduling for a task 421 * @p: task to disable BPF scheduling for 422 * 423 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 424 * Disable BPF scheduling for @p. A disable() call is always matched 425 * with a prior enable() call. 426 */ 427 void (*disable)(struct task_struct *p); 428 429 /** 430 * dump - Dump BPF scheduler state on error 431 * @ctx: debug dump context 432 * 433 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 434 */ 435 void (*dump)(struct scx_dump_ctx *ctx); 436 437 /** 438 * dump_cpu - Dump BPF scheduler state for a CPU on error 439 * @ctx: debug dump context 440 * @cpu: CPU to generate debug dump for 441 * @idle: @cpu is currently idle without any runnable tasks 442 * 443 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 444 * @cpu. If @idle is %true and this operation doesn't produce any 445 * output, @cpu is skipped for dump. 446 */ 447 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 448 449 /** 450 * dump_task - Dump BPF scheduler state for a runnable task on error 451 * @ctx: debug dump context 452 * @p: runnable task to generate debug dump for 453 * 454 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 455 * @p. 456 */ 457 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 458 459 /* 460 * All online ops must come before ops.init(). 461 */ 462 463 /** 464 * init - Initialize the BPF scheduler 465 */ 466 s32 (*init)(void); 467 468 /** 469 * exit - Clean up after the BPF scheduler 470 * @info: Exit info 471 */ 472 void (*exit)(struct scx_exit_info *info); 473 474 /** 475 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 476 */ 477 u32 dispatch_max_batch; 478 479 /** 480 * flags - %SCX_OPS_* flags 481 */ 482 u64 flags; 483 484 /** 485 * timeout_ms - The maximum amount of time, in milliseconds, that a 486 * runnable task should be able to wait before being scheduled. The 487 * maximum timeout may not exceed the default timeout of 30 seconds. 488 * 489 * Defaults to the maximum allowed timeout value of 30 seconds. 490 */ 491 u32 timeout_ms; 492 493 /** 494 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 495 * value of 32768 is used. 496 */ 497 u32 exit_dump_len; 498 499 /** 500 * name - BPF scheduler's name 501 * 502 * Must be a non-zero valid BPF object name including only isalnum(), 503 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 504 * BPF scheduler is enabled. 505 */ 506 char name[SCX_OPS_NAME_LEN]; 507 }; 508 509 enum scx_opi { 510 SCX_OPI_BEGIN = 0, 511 SCX_OPI_NORMAL_BEGIN = 0, 512 SCX_OPI_NORMAL_END = SCX_OP_IDX(init), 513 SCX_OPI_END = SCX_OP_IDX(init), 514 }; 515 516 enum scx_wake_flags { 517 /* expose select WF_* flags as enums */ 518 SCX_WAKE_FORK = WF_FORK, 519 SCX_WAKE_TTWU = WF_TTWU, 520 SCX_WAKE_SYNC = WF_SYNC, 521 }; 522 523 enum scx_enq_flags { 524 /* expose select ENQUEUE_* flags as enums */ 525 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 526 SCX_ENQ_HEAD = ENQUEUE_HEAD, 527 528 /* high 32bits are SCX specific */ 529 530 /* 531 * Set the following to trigger preemption when calling 532 * scx_bpf_dispatch() with a local dsq as the target. The slice of the 533 * current task is cleared to zero and the CPU is kicked into the 534 * scheduling path. Implies %SCX_ENQ_HEAD. 535 */ 536 SCX_ENQ_PREEMPT = 1LLU << 32, 537 538 /* 539 * The task being enqueued was previously enqueued on the current CPU's 540 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 541 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 542 * invoked in a ->cpu_release() callback, and the task is again 543 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 544 * task will not be scheduled on the CPU until at least the next invocation 545 * of the ->cpu_acquire() callback. 546 */ 547 SCX_ENQ_REENQ = 1LLU << 40, 548 549 /* 550 * The task being enqueued is the only task available for the cpu. By 551 * default, ext core keeps executing such tasks but when 552 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 553 * %SCX_ENQ_LAST flag set. 554 * 555 * If the BPF scheduler wants to continue executing the task, 556 * ops.enqueue() should dispatch the task to %SCX_DSQ_LOCAL immediately. 557 * If the task gets queued on a different dsq or the BPF side, the BPF 558 * scheduler is responsible for triggering a follow-up scheduling event. 559 * Otherwise, Execution may stall. 560 */ 561 SCX_ENQ_LAST = 1LLU << 41, 562 563 /* high 8 bits are internal */ 564 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 565 566 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 567 }; 568 569 enum scx_deq_flags { 570 /* expose select DEQUEUE_* flags as enums */ 571 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 572 }; 573 574 enum scx_pick_idle_cpu_flags { 575 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 576 }; 577 578 enum scx_kick_flags { 579 /* 580 * Kick the target CPU if idle. Guarantees that the target CPU goes 581 * through at least one full scheduling cycle before going idle. If the 582 * target CPU can be determined to be currently not idle and going to go 583 * through a scheduling cycle before going idle, noop. 584 */ 585 SCX_KICK_IDLE = 1LLU << 0, 586 587 /* 588 * Preempt the current task and execute the dispatch path. If the 589 * current task of the target CPU is an SCX task, its ->scx.slice is 590 * cleared to zero before the scheduling path is invoked so that the 591 * task expires and the dispatch path is invoked. 592 */ 593 SCX_KICK_PREEMPT = 1LLU << 1, 594 595 /* 596 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 597 * return after the target CPU finishes picking the next task. 598 */ 599 SCX_KICK_WAIT = 1LLU << 2, 600 }; 601 602 enum scx_ops_enable_state { 603 SCX_OPS_PREPPING, 604 SCX_OPS_ENABLING, 605 SCX_OPS_ENABLED, 606 SCX_OPS_DISABLING, 607 SCX_OPS_DISABLED, 608 }; 609 610 static const char *scx_ops_enable_state_str[] = { 611 [SCX_OPS_PREPPING] = "prepping", 612 [SCX_OPS_ENABLING] = "enabling", 613 [SCX_OPS_ENABLED] = "enabled", 614 [SCX_OPS_DISABLING] = "disabling", 615 [SCX_OPS_DISABLED] = "disabled", 616 }; 617 618 /* 619 * sched_ext_entity->ops_state 620 * 621 * Used to track the task ownership between the SCX core and the BPF scheduler. 622 * State transitions look as follows: 623 * 624 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 625 * ^ | | 626 * | v v 627 * \-------------------------------/ 628 * 629 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 630 * sites for explanations on the conditions being waited upon and why they are 631 * safe. Transitions out of them into NONE or QUEUED must store_release and the 632 * waiters should load_acquire. 633 * 634 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 635 * any given task can be dispatched by the BPF scheduler at all times and thus 636 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 637 * to try to dispatch any task anytime regardless of its state as the SCX core 638 * can safely reject invalid dispatches. 639 */ 640 enum scx_ops_state { 641 SCX_OPSS_NONE, /* owned by the SCX core */ 642 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 643 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 644 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 645 646 /* 647 * QSEQ brands each QUEUED instance so that, when dispatch races 648 * dequeue/requeue, the dispatcher can tell whether it still has a claim 649 * on the task being dispatched. 650 * 651 * As some 32bit archs can't do 64bit store_release/load_acquire, 652 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 653 * 32bit machines. The dispatch race window QSEQ protects is very narrow 654 * and runs with IRQ disabled. 30 bits should be sufficient. 655 */ 656 SCX_OPSS_QSEQ_SHIFT = 2, 657 }; 658 659 /* Use macros to ensure that the type is unsigned long for the masks */ 660 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 661 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 662 663 /* 664 * During exit, a task may schedule after losing its PIDs. When disabling the 665 * BPF scheduler, we need to be able to iterate tasks in every state to 666 * guarantee system safety. Maintain a dedicated task list which contains every 667 * task between its fork and eventual free. 668 */ 669 static DEFINE_SPINLOCK(scx_tasks_lock); 670 static LIST_HEAD(scx_tasks); 671 672 /* ops enable/disable */ 673 static struct kthread_worker *scx_ops_helper; 674 static DEFINE_MUTEX(scx_ops_enable_mutex); 675 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 676 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 677 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 678 static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); 679 static bool scx_switching_all; 680 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 681 682 static struct sched_ext_ops scx_ops; 683 static bool scx_warned_zero_slice; 684 685 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 686 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 687 DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 688 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 689 690 struct static_key_false scx_has_op[SCX_OPI_END] = 691 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 692 693 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 694 static struct scx_exit_info *scx_exit_info; 695 696 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 697 698 /* 699 * The maximum amount of time in jiffies that a task may be runnable without 700 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 701 * scx_ops_error(). 702 */ 703 static unsigned long scx_watchdog_timeout; 704 705 /* 706 * The last time the delayed work was run. This delayed work relies on 707 * ksoftirqd being able to run to service timer interrupts, so it's possible 708 * that this work itself could get wedged. To account for this, we check that 709 * it's not stalled in the timer tick, and trigger an error if it is. 710 */ 711 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 712 713 static struct delayed_work scx_watchdog_work; 714 715 /* idle tracking */ 716 #ifdef CONFIG_SMP 717 #ifdef CONFIG_CPUMASK_OFFSTACK 718 #define CL_ALIGNED_IF_ONSTACK 719 #else 720 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 721 #endif 722 723 static struct { 724 cpumask_var_t cpu; 725 cpumask_var_t smt; 726 } idle_masks CL_ALIGNED_IF_ONSTACK; 727 728 #endif /* CONFIG_SMP */ 729 730 /* for %SCX_KICK_WAIT */ 731 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 732 733 /* 734 * Direct dispatch marker. 735 * 736 * Non-NULL values are used for direct dispatch from enqueue path. A valid 737 * pointer points to the task currently being enqueued. An ERR_PTR value is used 738 * to indicate that direct dispatch has already happened. 739 */ 740 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 741 742 /* dispatch queues */ 743 static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global; 744 745 static const struct rhashtable_params dsq_hash_params = { 746 .key_len = 8, 747 .key_offset = offsetof(struct scx_dispatch_q, id), 748 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 749 }; 750 751 static struct rhashtable dsq_hash; 752 static LLIST_HEAD(dsqs_to_free); 753 754 /* dispatch buf */ 755 struct scx_dsp_buf_ent { 756 struct task_struct *task; 757 unsigned long qseq; 758 u64 dsq_id; 759 u64 enq_flags; 760 }; 761 762 static u32 scx_dsp_max_batch; 763 764 struct scx_dsp_ctx { 765 struct rq *rq; 766 struct rq_flags *rf; 767 u32 cursor; 768 u32 nr_tasks; 769 struct scx_dsp_buf_ent buf[]; 770 }; 771 772 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 773 774 /* string formatting from BPF */ 775 struct scx_bstr_buf { 776 u64 data[MAX_BPRINTF_VARARGS]; 777 char line[SCX_EXIT_MSG_LEN]; 778 }; 779 780 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 781 static struct scx_bstr_buf scx_exit_bstr_buf; 782 783 /* ops debug dump */ 784 struct scx_dump_data { 785 s32 cpu; 786 bool first; 787 s32 cursor; 788 struct seq_buf *s; 789 const char *prefix; 790 struct scx_bstr_buf buf; 791 }; 792 793 struct scx_dump_data scx_dump_data = { 794 .cpu = -1, 795 }; 796 797 /* /sys/kernel/sched_ext interface */ 798 static struct kset *scx_kset; 799 static struct kobject *scx_root_kobj; 800 801 #define CREATE_TRACE_POINTS 802 #include <trace/events/sched_ext.h> 803 804 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 805 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 806 s64 exit_code, 807 const char *fmt, ...); 808 809 #define scx_ops_error_kind(err, fmt, args...) \ 810 scx_ops_exit_kind((err), 0, fmt, ##args) 811 812 #define scx_ops_exit(code, fmt, args...) \ 813 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 814 815 #define scx_ops_error(fmt, args...) \ 816 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 817 818 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 819 820 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 821 { 822 if (time_after(at, now)) 823 return jiffies_to_msecs(at - now); 824 else 825 return -(long)jiffies_to_msecs(now - at); 826 } 827 828 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 829 static u32 higher_bits(u32 flags) 830 { 831 return ~((1 << fls(flags)) - 1); 832 } 833 834 /* return the mask with only the highest bit set */ 835 static u32 highest_bit(u32 flags) 836 { 837 int bit = fls(flags); 838 return ((u64)1 << bit) >> 1; 839 } 840 841 /* 842 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 843 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 844 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 845 * whether it's running from an allowed context. 846 * 847 * @mask is constant, always inline to cull the mask calculations. 848 */ 849 static __always_inline void scx_kf_allow(u32 mask) 850 { 851 /* nesting is allowed only in increasing scx_kf_mask order */ 852 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 853 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 854 current->scx.kf_mask, mask); 855 current->scx.kf_mask |= mask; 856 barrier(); 857 } 858 859 static void scx_kf_disallow(u32 mask) 860 { 861 barrier(); 862 current->scx.kf_mask &= ~mask; 863 } 864 865 #define SCX_CALL_OP(mask, op, args...) \ 866 do { \ 867 if (mask) { \ 868 scx_kf_allow(mask); \ 869 scx_ops.op(args); \ 870 scx_kf_disallow(mask); \ 871 } else { \ 872 scx_ops.op(args); \ 873 } \ 874 } while (0) 875 876 #define SCX_CALL_OP_RET(mask, op, args...) \ 877 ({ \ 878 __typeof__(scx_ops.op(args)) __ret; \ 879 if (mask) { \ 880 scx_kf_allow(mask); \ 881 __ret = scx_ops.op(args); \ 882 scx_kf_disallow(mask); \ 883 } else { \ 884 __ret = scx_ops.op(args); \ 885 } \ 886 __ret; \ 887 }) 888 889 /* 890 * Some kfuncs are allowed only on the tasks that are subjects of the 891 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 892 * restrictions, the following SCX_CALL_OP_*() variants should be used when 893 * invoking scx_ops operations that take task arguments. These can only be used 894 * for non-nesting operations due to the way the tasks are tracked. 895 * 896 * kfuncs which can only operate on such tasks can in turn use 897 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 898 * the specific task. 899 */ 900 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 901 do { \ 902 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 903 current->scx.kf_tasks[0] = task; \ 904 SCX_CALL_OP(mask, op, task, ##args); \ 905 current->scx.kf_tasks[0] = NULL; \ 906 } while (0) 907 908 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 909 ({ \ 910 __typeof__(scx_ops.op(task, ##args)) __ret; \ 911 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 912 current->scx.kf_tasks[0] = task; \ 913 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 914 current->scx.kf_tasks[0] = NULL; \ 915 __ret; \ 916 }) 917 918 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 919 ({ \ 920 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 921 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 922 current->scx.kf_tasks[0] = task0; \ 923 current->scx.kf_tasks[1] = task1; \ 924 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 925 current->scx.kf_tasks[0] = NULL; \ 926 current->scx.kf_tasks[1] = NULL; \ 927 __ret; \ 928 }) 929 930 /* @mask is constant, always inline to cull unnecessary branches */ 931 static __always_inline bool scx_kf_allowed(u32 mask) 932 { 933 if (unlikely(!(current->scx.kf_mask & mask))) { 934 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 935 mask, current->scx.kf_mask); 936 return false; 937 } 938 939 if (unlikely((mask & SCX_KF_SLEEPABLE) && in_interrupt())) { 940 scx_ops_error("sleepable kfunc called from non-sleepable context"); 941 return false; 942 } 943 944 /* 945 * Enforce nesting boundaries. e.g. A kfunc which can be called from 946 * DISPATCH must not be called if we're running DEQUEUE which is nested 947 * inside ops.dispatch(). We don't need to check the SCX_KF_SLEEPABLE 948 * boundary thanks to the above in_interrupt() check. 949 */ 950 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 951 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 952 scx_ops_error("cpu_release kfunc called from a nested operation"); 953 return false; 954 } 955 956 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 957 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 958 scx_ops_error("dispatch kfunc called from a nested operation"); 959 return false; 960 } 961 962 return true; 963 } 964 965 /* see SCX_CALL_OP_TASK() */ 966 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 967 struct task_struct *p) 968 { 969 if (!scx_kf_allowed(mask)) 970 return false; 971 972 if (unlikely((p != current->scx.kf_tasks[0] && 973 p != current->scx.kf_tasks[1]))) { 974 scx_ops_error("called on a task not being operated on"); 975 return false; 976 } 977 978 return true; 979 } 980 981 982 /* 983 * SCX task iterator. 984 */ 985 struct scx_task_iter { 986 struct sched_ext_entity cursor; 987 struct task_struct *locked; 988 struct rq *rq; 989 struct rq_flags rf; 990 }; 991 992 /** 993 * scx_task_iter_init - Initialize a task iterator 994 * @iter: iterator to init 995 * 996 * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, 997 * @iter must eventually be exited with scx_task_iter_exit(). 998 * 999 * scx_tasks_lock may be released between this and the first next() call or 1000 * between any two next() calls. If scx_tasks_lock is released between two 1001 * next() calls, the caller is responsible for ensuring that the task being 1002 * iterated remains accessible either through RCU read lock or obtaining a 1003 * reference count. 1004 * 1005 * All tasks which existed when the iteration started are guaranteed to be 1006 * visited as long as they still exist. 1007 */ 1008 static void scx_task_iter_init(struct scx_task_iter *iter) 1009 { 1010 lockdep_assert_held(&scx_tasks_lock); 1011 1012 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1013 list_add(&iter->cursor.tasks_node, &scx_tasks); 1014 iter->locked = NULL; 1015 } 1016 1017 /** 1018 * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator 1019 * @iter: iterator to unlock rq for 1020 * 1021 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1022 * the task currently being visited. Unlock the rq if so. This function can be 1023 * safely called anytime during an iteration. 1024 * 1025 * Returns %true if the rq @iter was locking is unlocked. %false if @iter was 1026 * not locking an rq. 1027 */ 1028 static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1029 { 1030 if (iter->locked) { 1031 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1032 iter->locked = NULL; 1033 return true; 1034 } else { 1035 return false; 1036 } 1037 } 1038 1039 /** 1040 * scx_task_iter_exit - Exit a task iterator 1041 * @iter: iterator to exit 1042 * 1043 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. 1044 * If the iterator holds a task's rq lock, that rq lock is released. See 1045 * scx_task_iter_init() for details. 1046 */ 1047 static void scx_task_iter_exit(struct scx_task_iter *iter) 1048 { 1049 lockdep_assert_held(&scx_tasks_lock); 1050 1051 scx_task_iter_rq_unlock(iter); 1052 list_del_init(&iter->cursor.tasks_node); 1053 } 1054 1055 /** 1056 * scx_task_iter_next - Next task 1057 * @iter: iterator to walk 1058 * 1059 * Visit the next task. See scx_task_iter_init() for details. 1060 */ 1061 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1062 { 1063 struct list_head *cursor = &iter->cursor.tasks_node; 1064 struct sched_ext_entity *pos; 1065 1066 lockdep_assert_held(&scx_tasks_lock); 1067 1068 list_for_each_entry(pos, cursor, tasks_node) { 1069 if (&pos->tasks_node == &scx_tasks) 1070 return NULL; 1071 if (!(pos->flags & SCX_TASK_CURSOR)) { 1072 list_move(cursor, &pos->tasks_node); 1073 return container_of(pos, struct task_struct, scx); 1074 } 1075 } 1076 1077 /* can't happen, should always terminate at scx_tasks above */ 1078 BUG(); 1079 } 1080 1081 /** 1082 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1083 * @iter: iterator to walk 1084 * @include_dead: Whether we should include dead tasks in the iteration 1085 * 1086 * Visit the non-idle task with its rq lock held. Allows callers to specify 1087 * whether they would like to filter out dead tasks. See scx_task_iter_init() 1088 * for details. 1089 */ 1090 static struct task_struct * 1091 scx_task_iter_next_locked(struct scx_task_iter *iter, bool include_dead) 1092 { 1093 struct task_struct *p; 1094 retry: 1095 scx_task_iter_rq_unlock(iter); 1096 1097 while ((p = scx_task_iter_next(iter))) { 1098 /* 1099 * is_idle_task() tests %PF_IDLE which may not be set for CPUs 1100 * which haven't yet been onlined. Test sched_class directly. 1101 */ 1102 if (p->sched_class != &idle_sched_class) 1103 break; 1104 } 1105 if (!p) 1106 return NULL; 1107 1108 iter->rq = task_rq_lock(p, &iter->rf); 1109 iter->locked = p; 1110 1111 /* 1112 * If we see %TASK_DEAD, @p already disabled preemption, is about to do 1113 * the final __schedule(), won't ever need to be scheduled again and can 1114 * thus be safely ignored. If we don't see %TASK_DEAD, @p can't enter 1115 * the final __schedle() while we're locking its rq and thus will stay 1116 * alive until the rq is unlocked. 1117 */ 1118 if (!include_dead && READ_ONCE(p->__state) == TASK_DEAD) 1119 goto retry; 1120 1121 return p; 1122 } 1123 1124 static enum scx_ops_enable_state scx_ops_enable_state(void) 1125 { 1126 return atomic_read(&scx_ops_enable_state_var); 1127 } 1128 1129 static enum scx_ops_enable_state 1130 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1131 { 1132 return atomic_xchg(&scx_ops_enable_state_var, to); 1133 } 1134 1135 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1136 enum scx_ops_enable_state from) 1137 { 1138 int from_v = from; 1139 1140 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1141 } 1142 1143 static bool scx_ops_bypassing(void) 1144 { 1145 return unlikely(atomic_read(&scx_ops_bypass_depth)); 1146 } 1147 1148 /** 1149 * wait_ops_state - Busy-wait the specified ops state to end 1150 * @p: target task 1151 * @opss: state to wait the end of 1152 * 1153 * Busy-wait for @p to transition out of @opss. This can only be used when the 1154 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1155 * has load_acquire semantics to ensure that the caller can see the updates made 1156 * in the enqueueing and dispatching paths. 1157 */ 1158 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1159 { 1160 do { 1161 cpu_relax(); 1162 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1163 } 1164 1165 /** 1166 * ops_cpu_valid - Verify a cpu number 1167 * @cpu: cpu number which came from a BPF ops 1168 * @where: extra information reported on error 1169 * 1170 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1171 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1172 * an ops error. 1173 */ 1174 static bool ops_cpu_valid(s32 cpu, const char *where) 1175 { 1176 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1177 return true; 1178 } else { 1179 scx_ops_error("invalid CPU %d%s%s", cpu, 1180 where ? " " : "", where ?: ""); 1181 return false; 1182 } 1183 } 1184 1185 /** 1186 * ops_sanitize_err - Sanitize a -errno value 1187 * @ops_name: operation to blame on failure 1188 * @err: -errno value to sanitize 1189 * 1190 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1191 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1192 * cause misbehaviors. For an example, a large negative return from 1193 * ops.init_task() triggers an oops when passed up the call chain because the 1194 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1195 * handled as a pointer. 1196 */ 1197 static int ops_sanitize_err(const char *ops_name, s32 err) 1198 { 1199 if (err < 0 && err >= -MAX_ERRNO) 1200 return err; 1201 1202 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1203 return -EPROTO; 1204 } 1205 1206 static void update_curr_scx(struct rq *rq) 1207 { 1208 struct task_struct *curr = rq->curr; 1209 u64 now = rq_clock_task(rq); 1210 u64 delta_exec; 1211 1212 if (time_before_eq64(now, curr->se.exec_start)) 1213 return; 1214 1215 delta_exec = now - curr->se.exec_start; 1216 curr->se.exec_start = now; 1217 curr->se.sum_exec_runtime += delta_exec; 1218 account_group_exec_runtime(curr, delta_exec); 1219 cgroup_account_cputime(curr, delta_exec); 1220 1221 if (curr->scx.slice != SCX_SLICE_INF) 1222 curr->scx.slice -= min(curr->scx.slice, delta_exec); 1223 } 1224 1225 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1226 { 1227 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1228 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1229 } 1230 1231 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1232 u64 enq_flags) 1233 { 1234 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1235 1236 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_node)); 1237 1238 if (!is_local) { 1239 raw_spin_lock(&dsq->lock); 1240 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1241 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1242 /* fall back to the global dsq */ 1243 raw_spin_unlock(&dsq->lock); 1244 dsq = &scx_dsq_global; 1245 raw_spin_lock(&dsq->lock); 1246 } 1247 } 1248 1249 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1250 list_add(&p->scx.dsq_node, &dsq->list); 1251 else 1252 list_add_tail(&p->scx.dsq_node, &dsq->list); 1253 1254 dsq_mod_nr(dsq, 1); 1255 p->scx.dsq = dsq; 1256 1257 /* 1258 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1259 * direct dispatch path, but we clear them here because the direct 1260 * dispatch verdict may be overridden on the enqueue path during e.g. 1261 * bypass. 1262 */ 1263 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1264 p->scx.ddsp_enq_flags = 0; 1265 1266 /* 1267 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1268 * match waiters' load_acquire. 1269 */ 1270 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1271 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1272 1273 if (is_local) { 1274 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1275 bool preempt = false; 1276 1277 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1278 rq->curr->sched_class == &ext_sched_class) { 1279 rq->curr->scx.slice = 0; 1280 preempt = true; 1281 } 1282 1283 if (preempt || sched_class_above(&ext_sched_class, 1284 rq->curr->sched_class)) 1285 resched_curr(rq); 1286 } else { 1287 raw_spin_unlock(&dsq->lock); 1288 } 1289 } 1290 1291 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1292 { 1293 struct scx_dispatch_q *dsq = p->scx.dsq; 1294 bool is_local = dsq == &rq->scx.local_dsq; 1295 1296 if (!dsq) { 1297 WARN_ON_ONCE(!list_empty(&p->scx.dsq_node)); 1298 /* 1299 * When dispatching directly from the BPF scheduler to a local 1300 * DSQ, the task isn't associated with any DSQ but 1301 * @p->scx.holding_cpu may be set under the protection of 1302 * %SCX_OPSS_DISPATCHING. 1303 */ 1304 if (p->scx.holding_cpu >= 0) 1305 p->scx.holding_cpu = -1; 1306 return; 1307 } 1308 1309 if (!is_local) 1310 raw_spin_lock(&dsq->lock); 1311 1312 /* 1313 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_node 1314 * can't change underneath us. 1315 */ 1316 if (p->scx.holding_cpu < 0) { 1317 /* @p must still be on @dsq, dequeue */ 1318 WARN_ON_ONCE(list_empty(&p->scx.dsq_node)); 1319 list_del_init(&p->scx.dsq_node); 1320 dsq_mod_nr(dsq, -1); 1321 } else { 1322 /* 1323 * We're racing against dispatch_to_local_dsq() which already 1324 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1325 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1326 * the race. 1327 */ 1328 WARN_ON_ONCE(!list_empty(&p->scx.dsq_node)); 1329 p->scx.holding_cpu = -1; 1330 } 1331 p->scx.dsq = NULL; 1332 1333 if (!is_local) 1334 raw_spin_unlock(&dsq->lock); 1335 } 1336 1337 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1338 { 1339 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1340 } 1341 1342 static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id) 1343 { 1344 lockdep_assert(rcu_read_lock_any_held()); 1345 1346 if (dsq_id == SCX_DSQ_GLOBAL) 1347 return &scx_dsq_global; 1348 else 1349 return find_user_dsq(dsq_id); 1350 } 1351 1352 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1353 struct task_struct *p) 1354 { 1355 struct scx_dispatch_q *dsq; 1356 1357 if (dsq_id == SCX_DSQ_LOCAL) 1358 return &rq->scx.local_dsq; 1359 1360 dsq = find_non_local_dsq(dsq_id); 1361 if (unlikely(!dsq)) { 1362 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1363 dsq_id, p->comm, p->pid); 1364 return &scx_dsq_global; 1365 } 1366 1367 return dsq; 1368 } 1369 1370 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1371 struct task_struct *p, u64 dsq_id, 1372 u64 enq_flags) 1373 { 1374 /* 1375 * Mark that dispatch already happened from ops.select_cpu() or 1376 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1377 * which can never match a valid task pointer. 1378 */ 1379 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1380 1381 /* @p must match the task on the enqueue path */ 1382 if (unlikely(p != ddsp_task)) { 1383 if (IS_ERR(ddsp_task)) 1384 scx_ops_error("%s[%d] already direct-dispatched", 1385 p->comm, p->pid); 1386 else 1387 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1388 ddsp_task->comm, ddsp_task->pid, 1389 p->comm, p->pid); 1390 return; 1391 } 1392 1393 /* 1394 * %SCX_DSQ_LOCAL_ON is not supported during direct dispatch because 1395 * dispatching to the local DSQ of a different CPU requires unlocking 1396 * the current rq which isn't allowed in the enqueue path. Use 1397 * ops.select_cpu() to be on the target CPU and then %SCX_DSQ_LOCAL. 1398 */ 1399 if (unlikely((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON)) { 1400 scx_ops_error("SCX_DSQ_LOCAL_ON can't be used for direct-dispatch"); 1401 return; 1402 } 1403 1404 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1405 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1406 1407 p->scx.ddsp_dsq_id = dsq_id; 1408 p->scx.ddsp_enq_flags = enq_flags; 1409 } 1410 1411 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1412 { 1413 struct scx_dispatch_q *dsq; 1414 1415 enq_flags |= (p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1416 dsq = find_dsq_for_dispatch(task_rq(p), p->scx.ddsp_dsq_id, p); 1417 dispatch_enqueue(dsq, p, enq_flags); 1418 } 1419 1420 static bool scx_rq_online(struct rq *rq) 1421 { 1422 #ifdef CONFIG_SMP 1423 return likely(rq->online); 1424 #else 1425 return true; 1426 #endif 1427 } 1428 1429 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1430 int sticky_cpu) 1431 { 1432 struct task_struct **ddsp_taskp; 1433 unsigned long qseq; 1434 1435 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1436 1437 /* rq migration */ 1438 if (sticky_cpu == cpu_of(rq)) 1439 goto local_norefill; 1440 1441 if (!scx_rq_online(rq)) 1442 goto local; 1443 1444 if (scx_ops_bypassing()) { 1445 if (enq_flags & SCX_ENQ_LAST) 1446 goto local; 1447 else 1448 goto global; 1449 } 1450 1451 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1452 goto direct; 1453 1454 /* see %SCX_OPS_ENQ_EXITING */ 1455 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 1456 unlikely(p->flags & PF_EXITING)) 1457 goto local; 1458 1459 /* see %SCX_OPS_ENQ_LAST */ 1460 if (!static_branch_unlikely(&scx_ops_enq_last) && 1461 (enq_flags & SCX_ENQ_LAST)) 1462 goto local; 1463 1464 if (!SCX_HAS_OP(enqueue)) 1465 goto global; 1466 1467 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1468 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1469 1470 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1471 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1472 1473 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1474 WARN_ON_ONCE(*ddsp_taskp); 1475 *ddsp_taskp = p; 1476 1477 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 1478 1479 *ddsp_taskp = NULL; 1480 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1481 goto direct; 1482 1483 /* 1484 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1485 * dequeue may be waiting. The store_release matches their load_acquire. 1486 */ 1487 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1488 return; 1489 1490 direct: 1491 direct_dispatch(p, enq_flags); 1492 return; 1493 1494 local: 1495 p->scx.slice = SCX_SLICE_DFL; 1496 local_norefill: 1497 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 1498 return; 1499 1500 global: 1501 p->scx.slice = SCX_SLICE_DFL; 1502 dispatch_enqueue(&scx_dsq_global, p, enq_flags); 1503 } 1504 1505 static bool task_runnable(const struct task_struct *p) 1506 { 1507 return !list_empty(&p->scx.runnable_node); 1508 } 1509 1510 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1511 { 1512 lockdep_assert_rq_held(rq); 1513 1514 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1515 p->scx.runnable_at = jiffies; 1516 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1517 } 1518 1519 /* 1520 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 1521 * appened to the runnable_list. 1522 */ 1523 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1524 } 1525 1526 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1527 { 1528 list_del_init(&p->scx.runnable_node); 1529 if (reset_runnable_at) 1530 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1531 } 1532 1533 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1534 { 1535 int sticky_cpu = p->scx.sticky_cpu; 1536 1537 enq_flags |= rq->scx.extra_enq_flags; 1538 1539 if (sticky_cpu >= 0) 1540 p->scx.sticky_cpu = -1; 1541 1542 /* 1543 * Restoring a running task will be immediately followed by 1544 * set_next_task_scx() which expects the task to not be on the BPF 1545 * scheduler as tasks can only start running through local DSQs. Force 1546 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1547 */ 1548 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1549 sticky_cpu = cpu_of(rq); 1550 1551 if (p->scx.flags & SCX_TASK_QUEUED) { 1552 WARN_ON_ONCE(!task_runnable(p)); 1553 return; 1554 } 1555 1556 set_task_runnable(rq, p); 1557 p->scx.flags |= SCX_TASK_QUEUED; 1558 rq->scx.nr_running++; 1559 add_nr_running(rq, 1); 1560 1561 if (SCX_HAS_OP(runnable)) 1562 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 1563 1564 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1565 } 1566 1567 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 1568 { 1569 unsigned long opss; 1570 1571 /* dequeue is always temporary, don't reset runnable_at */ 1572 clr_task_runnable(p, false); 1573 1574 /* acquire ensures that we see the preceding updates on QUEUED */ 1575 opss = atomic_long_read_acquire(&p->scx.ops_state); 1576 1577 switch (opss & SCX_OPSS_STATE_MASK) { 1578 case SCX_OPSS_NONE: 1579 break; 1580 case SCX_OPSS_QUEUEING: 1581 /* 1582 * QUEUEING is started and finished while holding @p's rq lock. 1583 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1584 */ 1585 BUG(); 1586 case SCX_OPSS_QUEUED: 1587 if (SCX_HAS_OP(dequeue)) 1588 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 1589 1590 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1591 SCX_OPSS_NONE)) 1592 break; 1593 fallthrough; 1594 case SCX_OPSS_DISPATCHING: 1595 /* 1596 * If @p is being dispatched from the BPF scheduler to a DSQ, 1597 * wait for the transfer to complete so that @p doesn't get 1598 * added to its DSQ after dequeueing is complete. 1599 * 1600 * As we're waiting on DISPATCHING with the rq locked, the 1601 * dispatching side shouldn't try to lock the rq while 1602 * DISPATCHING is set. See dispatch_to_local_dsq(). 1603 * 1604 * DISPATCHING shouldn't have qseq set and control can reach 1605 * here with NONE @opss from the above QUEUED case block. 1606 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1607 */ 1608 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1609 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1610 break; 1611 } 1612 } 1613 1614 static void dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1615 { 1616 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1617 WARN_ON_ONCE(task_runnable(p)); 1618 return; 1619 } 1620 1621 ops_dequeue(p, deq_flags); 1622 1623 /* 1624 * A currently running task which is going off @rq first gets dequeued 1625 * and then stops running. As we want running <-> stopping transitions 1626 * to be contained within runnable <-> quiescent transitions, trigger 1627 * ->stopping() early here instead of in put_prev_task_scx(). 1628 * 1629 * @p may go through multiple stopping <-> running transitions between 1630 * here and put_prev_task_scx() if task attribute changes occur while 1631 * balance_scx() leaves @rq unlocked. However, they don't contain any 1632 * information meaningful to the BPF scheduler and can be suppressed by 1633 * skipping the callbacks if the task is !QUEUED. 1634 */ 1635 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 1636 update_curr_scx(rq); 1637 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 1638 } 1639 1640 if (SCX_HAS_OP(quiescent)) 1641 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 1642 1643 if (deq_flags & SCX_DEQ_SLEEP) 1644 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1645 else 1646 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1647 1648 p->scx.flags &= ~SCX_TASK_QUEUED; 1649 rq->scx.nr_running--; 1650 sub_nr_running(rq, 1); 1651 1652 dispatch_dequeue(rq, p); 1653 } 1654 1655 static void yield_task_scx(struct rq *rq) 1656 { 1657 struct task_struct *p = rq->curr; 1658 1659 if (SCX_HAS_OP(yield)) 1660 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 1661 else 1662 p->scx.slice = 0; 1663 } 1664 1665 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1666 { 1667 struct task_struct *from = rq->curr; 1668 1669 if (SCX_HAS_OP(yield)) 1670 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 1671 else 1672 return false; 1673 } 1674 1675 #ifdef CONFIG_SMP 1676 /** 1677 * move_task_to_local_dsq - Move a task from a different rq to a local DSQ 1678 * @rq: rq to move the task into, currently locked 1679 * @p: task to move 1680 * @enq_flags: %SCX_ENQ_* 1681 * 1682 * Move @p which is currently on a different rq to @rq's local DSQ. The caller 1683 * must: 1684 * 1685 * 1. Start with exclusive access to @p either through its DSQ lock or 1686 * %SCX_OPSS_DISPATCHING flag. 1687 * 1688 * 2. Set @p->scx.holding_cpu to raw_smp_processor_id(). 1689 * 1690 * 3. Remember task_rq(@p). Release the exclusive access so that we don't 1691 * deadlock with dequeue. 1692 * 1693 * 4. Lock @rq and the task_rq from #3. 1694 * 1695 * 5. Call this function. 1696 * 1697 * Returns %true if @p was successfully moved. %false after racing dequeue and 1698 * losing. 1699 */ 1700 static bool move_task_to_local_dsq(struct rq *rq, struct task_struct *p, 1701 u64 enq_flags) 1702 { 1703 struct rq *task_rq; 1704 1705 lockdep_assert_rq_held(rq); 1706 1707 /* 1708 * If dequeue got to @p while we were trying to lock both rq's, it'd 1709 * have cleared @p->scx.holding_cpu to -1. While other cpus may have 1710 * updated it to different values afterwards, as this operation can't be 1711 * preempted or recurse, @p->scx.holding_cpu can never become 1712 * raw_smp_processor_id() again before we're done. Thus, we can tell 1713 * whether we lost to dequeue by testing whether @p->scx.holding_cpu is 1714 * still raw_smp_processor_id(). 1715 * 1716 * See dispatch_dequeue() for the counterpart. 1717 */ 1718 if (unlikely(p->scx.holding_cpu != raw_smp_processor_id())) 1719 return false; 1720 1721 /* @p->rq couldn't have changed if we're still the holding cpu */ 1722 task_rq = task_rq(p); 1723 lockdep_assert_rq_held(task_rq); 1724 1725 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(rq), p->cpus_ptr)); 1726 deactivate_task(task_rq, p, 0); 1727 set_task_cpu(p, cpu_of(rq)); 1728 p->scx.sticky_cpu = cpu_of(rq); 1729 1730 /* 1731 * We want to pass scx-specific enq_flags but activate_task() will 1732 * truncate the upper 32 bit. As we own @rq, we can pass them through 1733 * @rq->scx.extra_enq_flags instead. 1734 */ 1735 WARN_ON_ONCE(rq->scx.extra_enq_flags); 1736 rq->scx.extra_enq_flags = enq_flags; 1737 activate_task(rq, p, 0); 1738 rq->scx.extra_enq_flags = 0; 1739 1740 return true; 1741 } 1742 1743 /** 1744 * dispatch_to_local_dsq_lock - Ensure source and destination rq's are locked 1745 * @rq: current rq which is locked 1746 * @rf: rq_flags to use when unlocking @rq 1747 * @src_rq: rq to move task from 1748 * @dst_rq: rq to move task to 1749 * 1750 * We're holding @rq lock and trying to dispatch a task from @src_rq to 1751 * @dst_rq's local DSQ and thus need to lock both @src_rq and @dst_rq. Whether 1752 * @rq stays locked isn't important as long as the state is restored after 1753 * dispatch_to_local_dsq_unlock(). 1754 */ 1755 static void dispatch_to_local_dsq_lock(struct rq *rq, struct rq_flags *rf, 1756 struct rq *src_rq, struct rq *dst_rq) 1757 { 1758 rq_unpin_lock(rq, rf); 1759 1760 if (src_rq == dst_rq) { 1761 raw_spin_rq_unlock(rq); 1762 raw_spin_rq_lock(dst_rq); 1763 } else if (rq == src_rq) { 1764 double_lock_balance(rq, dst_rq); 1765 rq_repin_lock(rq, rf); 1766 } else if (rq == dst_rq) { 1767 double_lock_balance(rq, src_rq); 1768 rq_repin_lock(rq, rf); 1769 } else { 1770 raw_spin_rq_unlock(rq); 1771 double_rq_lock(src_rq, dst_rq); 1772 } 1773 } 1774 1775 /** 1776 * dispatch_to_local_dsq_unlock - Undo dispatch_to_local_dsq_lock() 1777 * @rq: current rq which is locked 1778 * @rf: rq_flags to use when unlocking @rq 1779 * @src_rq: rq to move task from 1780 * @dst_rq: rq to move task to 1781 * 1782 * Unlock @src_rq and @dst_rq and ensure that @rq is locked on return. 1783 */ 1784 static void dispatch_to_local_dsq_unlock(struct rq *rq, struct rq_flags *rf, 1785 struct rq *src_rq, struct rq *dst_rq) 1786 { 1787 if (src_rq == dst_rq) { 1788 raw_spin_rq_unlock(dst_rq); 1789 raw_spin_rq_lock(rq); 1790 rq_repin_lock(rq, rf); 1791 } else if (rq == src_rq) { 1792 double_unlock_balance(rq, dst_rq); 1793 } else if (rq == dst_rq) { 1794 double_unlock_balance(rq, src_rq); 1795 } else { 1796 double_rq_unlock(src_rq, dst_rq); 1797 raw_spin_rq_lock(rq); 1798 rq_repin_lock(rq, rf); 1799 } 1800 } 1801 #endif /* CONFIG_SMP */ 1802 1803 static void consume_local_task(struct rq *rq, struct scx_dispatch_q *dsq, 1804 struct task_struct *p) 1805 { 1806 lockdep_assert_held(&dsq->lock); /* released on return */ 1807 1808 /* @dsq is locked and @p is on this rq */ 1809 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1810 list_move_tail(&p->scx.dsq_node, &rq->scx.local_dsq.list); 1811 dsq_mod_nr(dsq, -1); 1812 dsq_mod_nr(&rq->scx.local_dsq, 1); 1813 p->scx.dsq = &rq->scx.local_dsq; 1814 raw_spin_unlock(&dsq->lock); 1815 } 1816 1817 #ifdef CONFIG_SMP 1818 /* 1819 * Similar to kernel/sched/core.c::is_cpu_allowed() but we're testing whether @p 1820 * can be pulled to @rq. 1821 */ 1822 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) 1823 { 1824 int cpu = cpu_of(rq); 1825 1826 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1827 return false; 1828 if (unlikely(is_migration_disabled(p))) 1829 return false; 1830 if (!(p->flags & PF_KTHREAD) && unlikely(!task_cpu_possible(cpu, p))) 1831 return false; 1832 if (!scx_rq_online(rq)) 1833 return false; 1834 return true; 1835 } 1836 1837 static bool consume_remote_task(struct rq *rq, struct rq_flags *rf, 1838 struct scx_dispatch_q *dsq, 1839 struct task_struct *p, struct rq *task_rq) 1840 { 1841 bool moved = false; 1842 1843 lockdep_assert_held(&dsq->lock); /* released on return */ 1844 1845 /* 1846 * @dsq is locked and @p is on a remote rq. @p is currently protected by 1847 * @dsq->lock. We want to pull @p to @rq but may deadlock if we grab 1848 * @task_rq while holding @dsq and @rq locks. As dequeue can't drop the 1849 * rq lock or fail, do a little dancing from our side. See 1850 * move_task_to_local_dsq(). 1851 */ 1852 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1853 list_del_init(&p->scx.dsq_node); 1854 dsq_mod_nr(dsq, -1); 1855 p->scx.holding_cpu = raw_smp_processor_id(); 1856 raw_spin_unlock(&dsq->lock); 1857 1858 rq_unpin_lock(rq, rf); 1859 double_lock_balance(rq, task_rq); 1860 rq_repin_lock(rq, rf); 1861 1862 moved = move_task_to_local_dsq(rq, p, 0); 1863 1864 double_unlock_balance(rq, task_rq); 1865 1866 return moved; 1867 } 1868 #else /* CONFIG_SMP */ 1869 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) { return false; } 1870 static bool consume_remote_task(struct rq *rq, struct rq_flags *rf, 1871 struct scx_dispatch_q *dsq, 1872 struct task_struct *p, struct rq *task_rq) { return false; } 1873 #endif /* CONFIG_SMP */ 1874 1875 static bool consume_dispatch_q(struct rq *rq, struct rq_flags *rf, 1876 struct scx_dispatch_q *dsq) 1877 { 1878 struct task_struct *p; 1879 retry: 1880 if (list_empty(&dsq->list)) 1881 return false; 1882 1883 raw_spin_lock(&dsq->lock); 1884 1885 list_for_each_entry(p, &dsq->list, scx.dsq_node) { 1886 struct rq *task_rq = task_rq(p); 1887 1888 if (rq == task_rq) { 1889 consume_local_task(rq, dsq, p); 1890 return true; 1891 } 1892 1893 if (task_can_run_on_remote_rq(p, rq)) { 1894 if (likely(consume_remote_task(rq, rf, dsq, p, task_rq))) 1895 return true; 1896 goto retry; 1897 } 1898 } 1899 1900 raw_spin_unlock(&dsq->lock); 1901 return false; 1902 } 1903 1904 enum dispatch_to_local_dsq_ret { 1905 DTL_DISPATCHED, /* successfully dispatched */ 1906 DTL_LOST, /* lost race to dequeue */ 1907 DTL_NOT_LOCAL, /* destination is not a local DSQ */ 1908 DTL_INVALID, /* invalid local dsq_id */ 1909 }; 1910 1911 /** 1912 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1913 * @rq: current rq which is locked 1914 * @rf: rq_flags to use when unlocking @rq 1915 * @dsq_id: destination dsq ID 1916 * @p: task to dispatch 1917 * @enq_flags: %SCX_ENQ_* 1918 * 1919 * We're holding @rq lock and want to dispatch @p to the local DSQ identified by 1920 * @dsq_id. This function performs all the synchronization dancing needed 1921 * because local DSQs are protected with rq locks. 1922 * 1923 * The caller must have exclusive ownership of @p (e.g. through 1924 * %SCX_OPSS_DISPATCHING). 1925 */ 1926 static enum dispatch_to_local_dsq_ret 1927 dispatch_to_local_dsq(struct rq *rq, struct rq_flags *rf, u64 dsq_id, 1928 struct task_struct *p, u64 enq_flags) 1929 { 1930 struct rq *src_rq = task_rq(p); 1931 struct rq *dst_rq; 1932 1933 /* 1934 * We're synchronized against dequeue through DISPATCHING. As @p can't 1935 * be dequeued, its task_rq and cpus_allowed are stable too. 1936 */ 1937 if (dsq_id == SCX_DSQ_LOCAL) { 1938 dst_rq = rq; 1939 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1940 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1941 1942 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1943 return DTL_INVALID; 1944 dst_rq = cpu_rq(cpu); 1945 } else { 1946 return DTL_NOT_LOCAL; 1947 } 1948 1949 /* if dispatching to @rq that @p is already on, no lock dancing needed */ 1950 if (rq == src_rq && rq == dst_rq) { 1951 dispatch_enqueue(&dst_rq->scx.local_dsq, p, 1952 enq_flags | SCX_ENQ_CLEAR_OPSS); 1953 return DTL_DISPATCHED; 1954 } 1955 1956 #ifdef CONFIG_SMP 1957 if (cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)) { 1958 struct rq *locked_dst_rq = dst_rq; 1959 bool dsp; 1960 1961 /* 1962 * @p is on a possibly remote @src_rq which we need to lock to 1963 * move the task. If dequeue is in progress, it'd be locking 1964 * @src_rq and waiting on DISPATCHING, so we can't grab @src_rq 1965 * lock while holding DISPATCHING. 1966 * 1967 * As DISPATCHING guarantees that @p is wholly ours, we can 1968 * pretend that we're moving from a DSQ and use the same 1969 * mechanism - mark the task under transfer with holding_cpu, 1970 * release DISPATCHING and then follow the same protocol. 1971 */ 1972 p->scx.holding_cpu = raw_smp_processor_id(); 1973 1974 /* store_release ensures that dequeue sees the above */ 1975 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1976 1977 dispatch_to_local_dsq_lock(rq, rf, src_rq, locked_dst_rq); 1978 1979 /* 1980 * We don't require the BPF scheduler to avoid dispatching to 1981 * offline CPUs mostly for convenience but also because CPUs can 1982 * go offline between scx_bpf_dispatch() calls and here. If @p 1983 * is destined to an offline CPU, queue it on its current CPU 1984 * instead, which should always be safe. As this is an allowed 1985 * behavior, don't trigger an ops error. 1986 */ 1987 if (!scx_rq_online(dst_rq)) 1988 dst_rq = src_rq; 1989 1990 if (src_rq == dst_rq) { 1991 /* 1992 * As @p is staying on the same rq, there's no need to 1993 * go through the full deactivate/activate cycle. 1994 * Optimize by abbreviating the operations in 1995 * move_task_to_local_dsq(). 1996 */ 1997 dsp = p->scx.holding_cpu == raw_smp_processor_id(); 1998 if (likely(dsp)) { 1999 p->scx.holding_cpu = -1; 2000 dispatch_enqueue(&dst_rq->scx.local_dsq, p, 2001 enq_flags); 2002 } 2003 } else { 2004 dsp = move_task_to_local_dsq(dst_rq, p, enq_flags); 2005 } 2006 2007 /* if the destination CPU is idle, wake it up */ 2008 if (dsp && sched_class_above(p->sched_class, 2009 dst_rq->curr->sched_class)) 2010 resched_curr(dst_rq); 2011 2012 dispatch_to_local_dsq_unlock(rq, rf, src_rq, locked_dst_rq); 2013 2014 return dsp ? DTL_DISPATCHED : DTL_LOST; 2015 } 2016 #endif /* CONFIG_SMP */ 2017 2018 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2019 cpu_of(dst_rq), p->comm, p->pid); 2020 return DTL_INVALID; 2021 } 2022 2023 /** 2024 * finish_dispatch - Asynchronously finish dispatching a task 2025 * @rq: current rq which is locked 2026 * @rf: rq_flags to use when unlocking @rq 2027 * @p: task to finish dispatching 2028 * @qseq_at_dispatch: qseq when @p started getting dispatched 2029 * @dsq_id: destination DSQ ID 2030 * @enq_flags: %SCX_ENQ_* 2031 * 2032 * Dispatching to local DSQs may need to wait for queueing to complete or 2033 * require rq lock dancing. As we don't wanna do either while inside 2034 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2035 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the 2036 * task and its qseq. Once ops.dispatch() returns, this function is called to 2037 * finish up. 2038 * 2039 * There is no guarantee that @p is still valid for dispatching or even that it 2040 * was valid in the first place. Make sure that the task is still owned by the 2041 * BPF scheduler and claim the ownership before dispatching. 2042 */ 2043 static void finish_dispatch(struct rq *rq, struct rq_flags *rf, 2044 struct task_struct *p, 2045 unsigned long qseq_at_dispatch, 2046 u64 dsq_id, u64 enq_flags) 2047 { 2048 struct scx_dispatch_q *dsq; 2049 unsigned long opss; 2050 2051 retry: 2052 /* 2053 * No need for _acquire here. @p is accessed only after a successful 2054 * try_cmpxchg to DISPATCHING. 2055 */ 2056 opss = atomic_long_read(&p->scx.ops_state); 2057 2058 switch (opss & SCX_OPSS_STATE_MASK) { 2059 case SCX_OPSS_DISPATCHING: 2060 case SCX_OPSS_NONE: 2061 /* someone else already got to it */ 2062 return; 2063 case SCX_OPSS_QUEUED: 2064 /* 2065 * If qseq doesn't match, @p has gone through at least one 2066 * dispatch/dequeue and re-enqueue cycle between 2067 * scx_bpf_dispatch() and here and we have no claim on it. 2068 */ 2069 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2070 return; 2071 2072 /* 2073 * While we know @p is accessible, we don't yet have a claim on 2074 * it - the BPF scheduler is allowed to dispatch tasks 2075 * spuriously and there can be a racing dequeue attempt. Let's 2076 * claim @p by atomically transitioning it from QUEUED to 2077 * DISPATCHING. 2078 */ 2079 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2080 SCX_OPSS_DISPATCHING))) 2081 break; 2082 goto retry; 2083 case SCX_OPSS_QUEUEING: 2084 /* 2085 * do_enqueue_task() is in the process of transferring the task 2086 * to the BPF scheduler while holding @p's rq lock. As we aren't 2087 * holding any kernel or BPF resource that the enqueue path may 2088 * depend upon, it's safe to wait. 2089 */ 2090 wait_ops_state(p, opss); 2091 goto retry; 2092 } 2093 2094 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2095 2096 switch (dispatch_to_local_dsq(rq, rf, dsq_id, p, enq_flags)) { 2097 case DTL_DISPATCHED: 2098 break; 2099 case DTL_LOST: 2100 break; 2101 case DTL_INVALID: 2102 dsq_id = SCX_DSQ_GLOBAL; 2103 fallthrough; 2104 case DTL_NOT_LOCAL: 2105 dsq = find_dsq_for_dispatch(cpu_rq(raw_smp_processor_id()), 2106 dsq_id, p); 2107 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2108 break; 2109 } 2110 } 2111 2112 static void flush_dispatch_buf(struct rq *rq, struct rq_flags *rf) 2113 { 2114 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2115 u32 u; 2116 2117 for (u = 0; u < dspc->cursor; u++) { 2118 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2119 2120 finish_dispatch(rq, rf, ent->task, ent->qseq, ent->dsq_id, 2121 ent->enq_flags); 2122 } 2123 2124 dspc->nr_tasks += dspc->cursor; 2125 dspc->cursor = 0; 2126 } 2127 2128 static int balance_scx(struct rq *rq, struct task_struct *prev, 2129 struct rq_flags *rf) 2130 { 2131 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2132 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2133 int nr_loops = SCX_DSP_MAX_LOOPS; 2134 bool has_tasks = false; 2135 2136 lockdep_assert_rq_held(rq); 2137 rq->scx.flags |= SCX_RQ_BALANCING; 2138 2139 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2140 unlikely(rq->scx.cpu_released)) { 2141 /* 2142 * If the previous sched_class for the current CPU was not SCX, 2143 * notify the BPF scheduler that it again has control of the 2144 * core. This callback complements ->cpu_release(), which is 2145 * emitted in scx_next_task_picked(). 2146 */ 2147 if (SCX_HAS_OP(cpu_acquire)) 2148 SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); 2149 rq->scx.cpu_released = false; 2150 } 2151 2152 if (prev_on_scx) { 2153 WARN_ON_ONCE(prev->scx.flags & SCX_TASK_BAL_KEEP); 2154 update_curr_scx(rq); 2155 2156 /* 2157 * If @prev is runnable & has slice left, it has priority and 2158 * fetching more just increases latency for the fetched tasks. 2159 * Tell put_prev_task_scx() to put @prev on local_dsq. If the 2160 * BPF scheduler wants to handle this explicitly, it should 2161 * implement ->cpu_released(). 2162 * 2163 * See scx_ops_disable_workfn() for the explanation on the 2164 * bypassing test. 2165 */ 2166 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2167 prev->scx.slice && !scx_ops_bypassing()) { 2168 prev->scx.flags |= SCX_TASK_BAL_KEEP; 2169 goto has_tasks; 2170 } 2171 } 2172 2173 /* if there already are tasks to run, nothing to do */ 2174 if (rq->scx.local_dsq.nr) 2175 goto has_tasks; 2176 2177 if (consume_dispatch_q(rq, rf, &scx_dsq_global)) 2178 goto has_tasks; 2179 2180 if (!SCX_HAS_OP(dispatch) || scx_ops_bypassing() || !scx_rq_online(rq)) 2181 goto out; 2182 2183 dspc->rq = rq; 2184 dspc->rf = rf; 2185 2186 /* 2187 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2188 * the local DSQ might still end up empty after a successful 2189 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2190 * produced some tasks, retry. The BPF scheduler may depend on this 2191 * looping behavior to simplify its implementation. 2192 */ 2193 do { 2194 dspc->nr_tasks = 0; 2195 2196 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2197 prev_on_scx ? prev : NULL); 2198 2199 flush_dispatch_buf(rq, rf); 2200 2201 if (rq->scx.local_dsq.nr) 2202 goto has_tasks; 2203 if (consume_dispatch_q(rq, rf, &scx_dsq_global)) 2204 goto has_tasks; 2205 2206 /* 2207 * ops.dispatch() can trap us in this loop by repeatedly 2208 * dispatching ineligible tasks. Break out once in a while to 2209 * allow the watchdog to run. As IRQ can't be enabled in 2210 * balance(), we want to complete this scheduling cycle and then 2211 * start a new one. IOW, we want to call resched_curr() on the 2212 * next, most likely idle, task, not the current one. Use 2213 * scx_bpf_kick_cpu() for deferred kicking. 2214 */ 2215 if (unlikely(!--nr_loops)) { 2216 scx_bpf_kick_cpu(cpu_of(rq), 0); 2217 break; 2218 } 2219 } while (dspc->nr_tasks); 2220 2221 goto out; 2222 2223 has_tasks: 2224 has_tasks = true; 2225 out: 2226 rq->scx.flags &= ~SCX_RQ_BALANCING; 2227 return has_tasks; 2228 } 2229 2230 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2231 { 2232 if (p->scx.flags & SCX_TASK_QUEUED) { 2233 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2234 dispatch_dequeue(rq, p); 2235 } 2236 2237 p->se.exec_start = rq_clock_task(rq); 2238 2239 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2240 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2241 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2242 2243 clr_task_runnable(p, true); 2244 2245 /* 2246 * @p is getting newly scheduled or got kicked after someone updated its 2247 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2248 */ 2249 if ((p->scx.slice == SCX_SLICE_INF) != 2250 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2251 if (p->scx.slice == SCX_SLICE_INF) 2252 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2253 else 2254 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2255 2256 sched_update_tick_dependency(rq); 2257 2258 /* 2259 * For now, let's refresh the load_avgs just when transitioning 2260 * in and out of nohz. In the future, we might want to add a 2261 * mechanism which calls the following periodically on 2262 * tick-stopped CPUs. 2263 */ 2264 update_other_load_avgs(rq); 2265 } 2266 } 2267 2268 static void put_prev_task_scx(struct rq *rq, struct task_struct *p) 2269 { 2270 #ifndef CONFIG_SMP 2271 /* 2272 * UP workaround. 2273 * 2274 * Because SCX may transfer tasks across CPUs during dispatch, dispatch 2275 * is performed from its balance operation which isn't called in UP. 2276 * Let's work around by calling it from the operations which come right 2277 * after. 2278 * 2279 * 1. If the prev task is on SCX, pick_next_task() calls 2280 * .put_prev_task() right after. As .put_prev_task() is also called 2281 * from other places, we need to distinguish the calls which can be 2282 * done by looking at the previous task's state - if still queued or 2283 * dequeued with %SCX_DEQ_SLEEP, the caller must be pick_next_task(). 2284 * This case is handled here. 2285 * 2286 * 2. If the prev task is not on SCX, the first following call into SCX 2287 * will be .pick_next_task(), which is covered by calling 2288 * balance_scx() from pick_next_task_scx(). 2289 * 2290 * Note that we can't merge the first case into the second as 2291 * balance_scx() must be called before the previous SCX task goes 2292 * through put_prev_task_scx(). 2293 * 2294 * As UP doesn't transfer tasks around, balance_scx() doesn't need @rf. 2295 * Pass in %NULL. 2296 */ 2297 if (p->scx.flags & (SCX_TASK_QUEUED | SCX_TASK_DEQD_FOR_SLEEP)) 2298 balance_scx(rq, p, NULL); 2299 #endif 2300 2301 update_curr_scx(rq); 2302 2303 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2304 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2305 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 2306 2307 /* 2308 * If we're being called from put_prev_task_balance(), balance_scx() may 2309 * have decided that @p should keep running. 2310 */ 2311 if (p->scx.flags & SCX_TASK_BAL_KEEP) { 2312 p->scx.flags &= ~SCX_TASK_BAL_KEEP; 2313 set_task_runnable(rq, p); 2314 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2315 return; 2316 } 2317 2318 if (p->scx.flags & SCX_TASK_QUEUED) { 2319 set_task_runnable(rq, p); 2320 2321 /* 2322 * If @p has slice left and balance_scx() didn't tag it for 2323 * keeping, @p is getting preempted by a higher priority 2324 * scheduler class. Leave it at the head of the local DSQ. 2325 */ 2326 if (p->scx.slice && !scx_ops_bypassing()) { 2327 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2328 return; 2329 } 2330 2331 /* 2332 * If we're in the pick_next_task path, balance_scx() should 2333 * have already populated the local DSQ if there are any other 2334 * available tasks. If empty, tell ops.enqueue() that @p is the 2335 * only one available for this cpu. ops.enqueue() should put it 2336 * on the local DSQ so that the subsequent pick_next_task_scx() 2337 * can find the task unless it wants to trigger a separate 2338 * follow-up scheduling event. 2339 */ 2340 if (list_empty(&rq->scx.local_dsq.list)) 2341 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2342 else 2343 do_enqueue_task(rq, p, 0, -1); 2344 } 2345 } 2346 2347 static struct task_struct *first_local_task(struct rq *rq) 2348 { 2349 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2350 struct task_struct, scx.dsq_node); 2351 } 2352 2353 static struct task_struct *pick_next_task_scx(struct rq *rq) 2354 { 2355 struct task_struct *p; 2356 2357 #ifndef CONFIG_SMP 2358 /* UP workaround - see the comment at the head of put_prev_task_scx() */ 2359 if (unlikely(rq->curr->sched_class != &ext_sched_class)) 2360 balance_scx(rq, rq->curr, NULL); 2361 #endif 2362 2363 p = first_local_task(rq); 2364 if (!p) 2365 return NULL; 2366 2367 set_next_task_scx(rq, p, true); 2368 2369 if (unlikely(!p->scx.slice)) { 2370 if (!scx_ops_bypassing() && !scx_warned_zero_slice) { 2371 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", 2372 p->comm, p->pid); 2373 scx_warned_zero_slice = true; 2374 } 2375 p->scx.slice = SCX_SLICE_DFL; 2376 } 2377 2378 return p; 2379 } 2380 2381 static enum scx_cpu_preempt_reason 2382 preempt_reason_from_class(const struct sched_class *class) 2383 { 2384 #ifdef CONFIG_SMP 2385 if (class == &stop_sched_class) 2386 return SCX_CPU_PREEMPT_STOP; 2387 #endif 2388 if (class == &dl_sched_class) 2389 return SCX_CPU_PREEMPT_DL; 2390 if (class == &rt_sched_class) 2391 return SCX_CPU_PREEMPT_RT; 2392 return SCX_CPU_PREEMPT_UNKNOWN; 2393 } 2394 2395 void scx_next_task_picked(struct rq *rq, struct task_struct *p, 2396 const struct sched_class *active) 2397 { 2398 lockdep_assert_rq_held(rq); 2399 2400 if (!scx_enabled()) 2401 return; 2402 #ifdef CONFIG_SMP 2403 /* 2404 * Pairs with the smp_load_acquire() issued by a CPU in 2405 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2406 * resched. 2407 */ 2408 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2409 #endif 2410 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2411 return; 2412 2413 /* 2414 * The callback is conceptually meant to convey that the CPU is no 2415 * longer under the control of SCX. Therefore, don't invoke the 2416 * callback if the CPU is is staying on SCX, or going idle (in which 2417 * case the SCX scheduler has actively decided not to schedule any 2418 * tasks on the CPU). 2419 */ 2420 if (likely(active >= &ext_sched_class)) 2421 return; 2422 2423 /* 2424 * At this point we know that SCX was preempted by a higher priority 2425 * sched_class, so invoke the ->cpu_release() callback if we have not 2426 * done so already. We only send the callback once between SCX being 2427 * preempted, and it regaining control of the CPU. 2428 * 2429 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2430 * next time that balance_scx() is invoked. 2431 */ 2432 if (!rq->scx.cpu_released) { 2433 if (SCX_HAS_OP(cpu_release)) { 2434 struct scx_cpu_release_args args = { 2435 .reason = preempt_reason_from_class(active), 2436 .task = p, 2437 }; 2438 2439 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 2440 cpu_release, cpu_of(rq), &args); 2441 } 2442 rq->scx.cpu_released = true; 2443 } 2444 } 2445 2446 #ifdef CONFIG_SMP 2447 2448 static bool test_and_clear_cpu_idle(int cpu) 2449 { 2450 #ifdef CONFIG_SCHED_SMT 2451 /* 2452 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 2453 * cluster is not wholly idle either way. This also prevents 2454 * scx_pick_idle_cpu() from getting caught in an infinite loop. 2455 */ 2456 if (sched_smt_active()) { 2457 const struct cpumask *smt = cpu_smt_mask(cpu); 2458 2459 /* 2460 * If offline, @cpu is not its own sibling and 2461 * scx_pick_idle_cpu() can get caught in an infinite loop as 2462 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 2463 * is eventually cleared. 2464 */ 2465 if (cpumask_intersects(smt, idle_masks.smt)) 2466 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 2467 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 2468 __cpumask_clear_cpu(cpu, idle_masks.smt); 2469 } 2470 #endif 2471 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 2472 } 2473 2474 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 2475 { 2476 int cpu; 2477 2478 retry: 2479 if (sched_smt_active()) { 2480 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 2481 if (cpu < nr_cpu_ids) 2482 goto found; 2483 2484 if (flags & SCX_PICK_IDLE_CORE) 2485 return -EBUSY; 2486 } 2487 2488 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 2489 if (cpu >= nr_cpu_ids) 2490 return -EBUSY; 2491 2492 found: 2493 if (test_and_clear_cpu_idle(cpu)) 2494 return cpu; 2495 else 2496 goto retry; 2497 } 2498 2499 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 2500 u64 wake_flags, bool *found) 2501 { 2502 s32 cpu; 2503 2504 *found = false; 2505 2506 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 2507 scx_ops_error("built-in idle tracking is disabled"); 2508 return prev_cpu; 2509 } 2510 2511 /* 2512 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is 2513 * under utilized, wake up @p to the local DSQ of the waker. Checking 2514 * only for an empty local DSQ is insufficient as it could give the 2515 * wakee an unfair advantage when the system is oversaturated. 2516 * Checking only for the presence of idle CPUs is also insufficient as 2517 * the local DSQ of the waker could have tasks piled up on it even if 2518 * there is an idle core elsewhere on the system. 2519 */ 2520 cpu = smp_processor_id(); 2521 if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 && 2522 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && 2523 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 2524 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 2525 goto cpu_found; 2526 } 2527 2528 if (p->nr_cpus_allowed == 1) { 2529 if (test_and_clear_cpu_idle(prev_cpu)) { 2530 cpu = prev_cpu; 2531 goto cpu_found; 2532 } else { 2533 return prev_cpu; 2534 } 2535 } 2536 2537 /* 2538 * If CPU has SMT, any wholly idle CPU is likely a better pick than 2539 * partially idle @prev_cpu. 2540 */ 2541 if (sched_smt_active()) { 2542 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 2543 test_and_clear_cpu_idle(prev_cpu)) { 2544 cpu = prev_cpu; 2545 goto cpu_found; 2546 } 2547 2548 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 2549 if (cpu >= 0) 2550 goto cpu_found; 2551 } 2552 2553 if (test_and_clear_cpu_idle(prev_cpu)) { 2554 cpu = prev_cpu; 2555 goto cpu_found; 2556 } 2557 2558 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 2559 if (cpu >= 0) 2560 goto cpu_found; 2561 2562 return prev_cpu; 2563 2564 cpu_found: 2565 *found = true; 2566 return cpu; 2567 } 2568 2569 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2570 { 2571 /* 2572 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2573 * can be a good migration opportunity with low cache and memory 2574 * footprint. Returning a CPU different than @prev_cpu triggers 2575 * immediate rq migration. However, for SCX, as the current rq 2576 * association doesn't dictate where the task is going to run, this 2577 * doesn't fit well. If necessary, we can later add a dedicated method 2578 * which can decide to preempt self to force it through the regular 2579 * scheduling path. 2580 */ 2581 if (unlikely(wake_flags & WF_EXEC)) 2582 return prev_cpu; 2583 2584 if (SCX_HAS_OP(select_cpu)) { 2585 s32 cpu; 2586 struct task_struct **ddsp_taskp; 2587 2588 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2589 WARN_ON_ONCE(*ddsp_taskp); 2590 *ddsp_taskp = p; 2591 2592 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2593 select_cpu, p, prev_cpu, wake_flags); 2594 *ddsp_taskp = NULL; 2595 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 2596 return cpu; 2597 else 2598 return prev_cpu; 2599 } else { 2600 bool found; 2601 s32 cpu; 2602 2603 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 2604 if (found) { 2605 p->scx.slice = SCX_SLICE_DFL; 2606 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2607 } 2608 return cpu; 2609 } 2610 } 2611 2612 static void set_cpus_allowed_scx(struct task_struct *p, 2613 struct affinity_context *ac) 2614 { 2615 set_cpus_allowed_common(p, ac); 2616 2617 /* 2618 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2619 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2620 * scheduler the effective one. 2621 * 2622 * Fine-grained memory write control is enforced by BPF making the const 2623 * designation pointless. Cast it away when calling the operation. 2624 */ 2625 if (SCX_HAS_OP(set_cpumask)) 2626 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 2627 (struct cpumask *)p->cpus_ptr); 2628 } 2629 2630 static void reset_idle_masks(void) 2631 { 2632 /* 2633 * Consider all online cpus idle. Should converge to the actual state 2634 * quickly. 2635 */ 2636 cpumask_copy(idle_masks.cpu, cpu_online_mask); 2637 cpumask_copy(idle_masks.smt, cpu_online_mask); 2638 } 2639 2640 void __scx_update_idle(struct rq *rq, bool idle) 2641 { 2642 int cpu = cpu_of(rq); 2643 2644 if (SCX_HAS_OP(update_idle)) { 2645 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 2646 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 2647 return; 2648 } 2649 2650 if (idle) 2651 cpumask_set_cpu(cpu, idle_masks.cpu); 2652 else 2653 cpumask_clear_cpu(cpu, idle_masks.cpu); 2654 2655 #ifdef CONFIG_SCHED_SMT 2656 if (sched_smt_active()) { 2657 const struct cpumask *smt = cpu_smt_mask(cpu); 2658 2659 if (idle) { 2660 /* 2661 * idle_masks.smt handling is racy but that's fine as 2662 * it's only for optimization and self-correcting. 2663 */ 2664 for_each_cpu(cpu, smt) { 2665 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 2666 return; 2667 } 2668 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 2669 } else { 2670 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 2671 } 2672 } 2673 #endif 2674 } 2675 2676 #else /* CONFIG_SMP */ 2677 2678 static bool test_and_clear_cpu_idle(int cpu) { return false; } 2679 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 2680 static void reset_idle_masks(void) {} 2681 2682 #endif /* CONFIG_SMP */ 2683 2684 static bool check_rq_for_timeouts(struct rq *rq) 2685 { 2686 struct task_struct *p; 2687 struct rq_flags rf; 2688 bool timed_out = false; 2689 2690 rq_lock_irqsave(rq, &rf); 2691 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2692 unsigned long last_runnable = p->scx.runnable_at; 2693 2694 if (unlikely(time_after(jiffies, 2695 last_runnable + scx_watchdog_timeout))) { 2696 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2697 2698 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 2699 "%s[%d] failed to run for %u.%03us", 2700 p->comm, p->pid, 2701 dur_ms / 1000, dur_ms % 1000); 2702 timed_out = true; 2703 break; 2704 } 2705 } 2706 rq_unlock_irqrestore(rq, &rf); 2707 2708 return timed_out; 2709 } 2710 2711 static void scx_watchdog_workfn(struct work_struct *work) 2712 { 2713 int cpu; 2714 2715 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2716 2717 for_each_online_cpu(cpu) { 2718 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2719 break; 2720 2721 cond_resched(); 2722 } 2723 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2724 scx_watchdog_timeout / 2); 2725 } 2726 2727 void scx_tick(struct rq *rq) 2728 { 2729 unsigned long last_check; 2730 2731 if (!scx_enabled()) 2732 return; 2733 2734 last_check = READ_ONCE(scx_watchdog_timestamp); 2735 if (unlikely(time_after(jiffies, 2736 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2737 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2738 2739 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 2740 "watchdog failed to check in for %u.%03us", 2741 dur_ms / 1000, dur_ms % 1000); 2742 } 2743 2744 update_other_load_avgs(rq); 2745 } 2746 2747 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2748 { 2749 update_curr_scx(rq); 2750 2751 /* 2752 * While bypassing, always resched as we can't trust the slice 2753 * management. 2754 */ 2755 if (scx_ops_bypassing()) 2756 curr->scx.slice = 0; 2757 else if (SCX_HAS_OP(tick)) 2758 SCX_CALL_OP(SCX_KF_REST, tick, curr); 2759 2760 if (!curr->scx.slice) 2761 resched_curr(rq); 2762 } 2763 2764 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2765 { 2766 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2767 } 2768 2769 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2770 { 2771 enum scx_task_state prev_state = scx_get_task_state(p); 2772 bool warn = false; 2773 2774 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2775 2776 switch (state) { 2777 case SCX_TASK_NONE: 2778 break; 2779 case SCX_TASK_INIT: 2780 warn = prev_state != SCX_TASK_NONE; 2781 break; 2782 case SCX_TASK_READY: 2783 warn = prev_state == SCX_TASK_NONE; 2784 break; 2785 case SCX_TASK_ENABLED: 2786 warn = prev_state != SCX_TASK_READY; 2787 break; 2788 default: 2789 warn = true; 2790 return; 2791 } 2792 2793 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2794 prev_state, state, p->comm, p->pid); 2795 2796 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2797 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2798 } 2799 2800 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2801 { 2802 int ret; 2803 2804 p->scx.disallow = false; 2805 2806 if (SCX_HAS_OP(init_task)) { 2807 struct scx_init_task_args args = { 2808 .fork = fork, 2809 }; 2810 2811 ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init_task, p, &args); 2812 if (unlikely(ret)) { 2813 ret = ops_sanitize_err("init_task", ret); 2814 return ret; 2815 } 2816 } 2817 2818 scx_set_task_state(p, SCX_TASK_INIT); 2819 2820 if (p->scx.disallow) { 2821 struct rq *rq; 2822 struct rq_flags rf; 2823 2824 rq = task_rq_lock(p, &rf); 2825 2826 /* 2827 * We're either in fork or load path and @p->policy will be 2828 * applied right after. Reverting @p->policy here and rejecting 2829 * %SCHED_EXT transitions from scx_check_setscheduler() 2830 * guarantees that if ops.init_task() sets @p->disallow, @p can 2831 * never be in SCX. 2832 */ 2833 if (p->policy == SCHED_EXT) { 2834 p->policy = SCHED_NORMAL; 2835 atomic_long_inc(&scx_nr_rejected); 2836 } 2837 2838 task_rq_unlock(rq, p, &rf); 2839 } 2840 2841 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2842 return 0; 2843 } 2844 2845 static void set_task_scx_weight(struct task_struct *p) 2846 { 2847 u32 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2848 2849 p->scx.weight = sched_weight_to_cgroup(weight); 2850 } 2851 2852 static void scx_ops_enable_task(struct task_struct *p) 2853 { 2854 lockdep_assert_rq_held(task_rq(p)); 2855 2856 /* 2857 * Set the weight before calling ops.enable() so that the scheduler 2858 * doesn't see a stale value if they inspect the task struct. 2859 */ 2860 set_task_scx_weight(p); 2861 if (SCX_HAS_OP(enable)) 2862 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 2863 scx_set_task_state(p, SCX_TASK_ENABLED); 2864 2865 if (SCX_HAS_OP(set_weight)) 2866 SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight); 2867 } 2868 2869 static void scx_ops_disable_task(struct task_struct *p) 2870 { 2871 lockdep_assert_rq_held(task_rq(p)); 2872 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2873 2874 if (SCX_HAS_OP(disable)) 2875 SCX_CALL_OP(SCX_KF_REST, disable, p); 2876 scx_set_task_state(p, SCX_TASK_READY); 2877 } 2878 2879 static void scx_ops_exit_task(struct task_struct *p) 2880 { 2881 struct scx_exit_task_args args = { 2882 .cancelled = false, 2883 }; 2884 2885 lockdep_assert_rq_held(task_rq(p)); 2886 2887 switch (scx_get_task_state(p)) { 2888 case SCX_TASK_NONE: 2889 return; 2890 case SCX_TASK_INIT: 2891 args.cancelled = true; 2892 break; 2893 case SCX_TASK_READY: 2894 break; 2895 case SCX_TASK_ENABLED: 2896 scx_ops_disable_task(p); 2897 break; 2898 default: 2899 WARN_ON_ONCE(true); 2900 return; 2901 } 2902 2903 if (SCX_HAS_OP(exit_task)) 2904 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 2905 scx_set_task_state(p, SCX_TASK_NONE); 2906 } 2907 2908 void init_scx_entity(struct sched_ext_entity *scx) 2909 { 2910 /* 2911 * init_idle() calls this function again after fork sequence is 2912 * complete. Don't touch ->tasks_node as it's already linked. 2913 */ 2914 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); 2915 2916 INIT_LIST_HEAD(&scx->dsq_node); 2917 scx->sticky_cpu = -1; 2918 scx->holding_cpu = -1; 2919 INIT_LIST_HEAD(&scx->runnable_node); 2920 scx->runnable_at = jiffies; 2921 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2922 scx->slice = SCX_SLICE_DFL; 2923 } 2924 2925 void scx_pre_fork(struct task_struct *p) 2926 { 2927 /* 2928 * BPF scheduler enable/disable paths want to be able to iterate and 2929 * update all tasks which can become complex when racing forks. As 2930 * enable/disable are very cold paths, let's use a percpu_rwsem to 2931 * exclude forks. 2932 */ 2933 percpu_down_read(&scx_fork_rwsem); 2934 } 2935 2936 int scx_fork(struct task_struct *p) 2937 { 2938 percpu_rwsem_assert_held(&scx_fork_rwsem); 2939 2940 if (scx_enabled()) 2941 return scx_ops_init_task(p, task_group(p), true); 2942 else 2943 return 0; 2944 } 2945 2946 void scx_post_fork(struct task_struct *p) 2947 { 2948 if (scx_enabled()) { 2949 scx_set_task_state(p, SCX_TASK_READY); 2950 2951 /* 2952 * Enable the task immediately if it's running on sched_ext. 2953 * Otherwise, it'll be enabled in switching_to_scx() if and 2954 * when it's ever configured to run with a SCHED_EXT policy. 2955 */ 2956 if (p->sched_class == &ext_sched_class) { 2957 struct rq_flags rf; 2958 struct rq *rq; 2959 2960 rq = task_rq_lock(p, &rf); 2961 scx_ops_enable_task(p); 2962 task_rq_unlock(rq, p, &rf); 2963 } 2964 } 2965 2966 spin_lock_irq(&scx_tasks_lock); 2967 list_add_tail(&p->scx.tasks_node, &scx_tasks); 2968 spin_unlock_irq(&scx_tasks_lock); 2969 2970 percpu_up_read(&scx_fork_rwsem); 2971 } 2972 2973 void scx_cancel_fork(struct task_struct *p) 2974 { 2975 if (scx_enabled()) { 2976 struct rq *rq; 2977 struct rq_flags rf; 2978 2979 rq = task_rq_lock(p, &rf); 2980 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 2981 scx_ops_exit_task(p); 2982 task_rq_unlock(rq, p, &rf); 2983 } 2984 2985 percpu_up_read(&scx_fork_rwsem); 2986 } 2987 2988 void sched_ext_free(struct task_struct *p) 2989 { 2990 unsigned long flags; 2991 2992 spin_lock_irqsave(&scx_tasks_lock, flags); 2993 list_del_init(&p->scx.tasks_node); 2994 spin_unlock_irqrestore(&scx_tasks_lock, flags); 2995 2996 /* 2997 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 2998 * ENABLED transitions can't race us. Disable ops for @p. 2999 */ 3000 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3001 struct rq_flags rf; 3002 struct rq *rq; 3003 3004 rq = task_rq_lock(p, &rf); 3005 scx_ops_exit_task(p); 3006 task_rq_unlock(rq, p, &rf); 3007 } 3008 } 3009 3010 static void reweight_task_scx(struct rq *rq, struct task_struct *p, int newprio) 3011 { 3012 lockdep_assert_rq_held(task_rq(p)); 3013 3014 set_task_scx_weight(p); 3015 if (SCX_HAS_OP(set_weight)) 3016 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3017 } 3018 3019 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 3020 { 3021 } 3022 3023 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3024 { 3025 scx_ops_enable_task(p); 3026 3027 /* 3028 * set_cpus_allowed_scx() is not called while @p is associated with a 3029 * different scheduler class. Keep the BPF scheduler up-to-date. 3030 */ 3031 if (SCX_HAS_OP(set_cpumask)) 3032 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3033 (struct cpumask *)p->cpus_ptr); 3034 } 3035 3036 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3037 { 3038 scx_ops_disable_task(p); 3039 } 3040 3041 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3042 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3043 3044 int scx_check_setscheduler(struct task_struct *p, int policy) 3045 { 3046 lockdep_assert_rq_held(task_rq(p)); 3047 3048 /* if disallow, reject transitioning into SCX */ 3049 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3050 p->policy != policy && policy == SCHED_EXT) 3051 return -EACCES; 3052 3053 return 0; 3054 } 3055 3056 #ifdef CONFIG_NO_HZ_FULL 3057 bool scx_can_stop_tick(struct rq *rq) 3058 { 3059 struct task_struct *p = rq->curr; 3060 3061 if (scx_ops_bypassing()) 3062 return false; 3063 3064 if (p->sched_class != &ext_sched_class) 3065 return true; 3066 3067 /* 3068 * @rq can dispatch from different DSQs, so we can't tell whether it 3069 * needs the tick or not by looking at nr_running. Allow stopping ticks 3070 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3071 */ 3072 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3073 } 3074 #endif 3075 3076 /* 3077 * Omitted operations: 3078 * 3079 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3080 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3081 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3082 * 3083 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3084 * 3085 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3086 * their current sched_class. Call them directly from sched core instead. 3087 * 3088 * - task_woken: Unnecessary. 3089 */ 3090 DEFINE_SCHED_CLASS(ext) = { 3091 .enqueue_task = enqueue_task_scx, 3092 .dequeue_task = dequeue_task_scx, 3093 .yield_task = yield_task_scx, 3094 .yield_to_task = yield_to_task_scx, 3095 3096 .wakeup_preempt = wakeup_preempt_scx, 3097 3098 .pick_next_task = pick_next_task_scx, 3099 3100 .put_prev_task = put_prev_task_scx, 3101 .set_next_task = set_next_task_scx, 3102 3103 #ifdef CONFIG_SMP 3104 .balance = balance_scx, 3105 .select_task_rq = select_task_rq_scx, 3106 .set_cpus_allowed = set_cpus_allowed_scx, 3107 #endif 3108 3109 .task_tick = task_tick_scx, 3110 3111 .switching_to = switching_to_scx, 3112 .switched_from = switched_from_scx, 3113 .switched_to = switched_to_scx, 3114 .reweight_task = reweight_task_scx, 3115 .prio_changed = prio_changed_scx, 3116 3117 .update_curr = update_curr_scx, 3118 3119 #ifdef CONFIG_UCLAMP_TASK 3120 .uclamp_enabled = 0, 3121 #endif 3122 }; 3123 3124 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3125 { 3126 memset(dsq, 0, sizeof(*dsq)); 3127 3128 raw_spin_lock_init(&dsq->lock); 3129 INIT_LIST_HEAD(&dsq->list); 3130 dsq->id = dsq_id; 3131 } 3132 3133 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 3134 { 3135 struct scx_dispatch_q *dsq; 3136 int ret; 3137 3138 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 3139 return ERR_PTR(-EINVAL); 3140 3141 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 3142 if (!dsq) 3143 return ERR_PTR(-ENOMEM); 3144 3145 init_dsq(dsq, dsq_id); 3146 3147 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 3148 dsq_hash_params); 3149 if (ret) { 3150 kfree(dsq); 3151 return ERR_PTR(ret); 3152 } 3153 return dsq; 3154 } 3155 3156 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3157 { 3158 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3159 struct scx_dispatch_q *dsq, *tmp_dsq; 3160 3161 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3162 kfree_rcu(dsq, rcu); 3163 } 3164 3165 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3166 3167 static void destroy_dsq(u64 dsq_id) 3168 { 3169 struct scx_dispatch_q *dsq; 3170 unsigned long flags; 3171 3172 rcu_read_lock(); 3173 3174 dsq = find_user_dsq(dsq_id); 3175 if (!dsq) 3176 goto out_unlock_rcu; 3177 3178 raw_spin_lock_irqsave(&dsq->lock, flags); 3179 3180 if (dsq->nr) { 3181 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3182 dsq->id, dsq->nr); 3183 goto out_unlock_dsq; 3184 } 3185 3186 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 3187 goto out_unlock_dsq; 3188 3189 /* 3190 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3191 * queueing more tasks. As this function can be called from anywhere, 3192 * freeing is bounced through an irq work to avoid nesting RCU 3193 * operations inside scheduler locks. 3194 */ 3195 dsq->id = SCX_DSQ_INVALID; 3196 llist_add(&dsq->free_node, &dsqs_to_free); 3197 irq_work_queue(&free_dsq_irq_work); 3198 3199 out_unlock_dsq: 3200 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3201 out_unlock_rcu: 3202 rcu_read_unlock(); 3203 } 3204 3205 3206 /******************************************************************************** 3207 * Sysfs interface and ops enable/disable. 3208 */ 3209 3210 #define SCX_ATTR(_name) \ 3211 static struct kobj_attribute scx_attr_##_name = { \ 3212 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3213 .show = scx_attr_##_name##_show, \ 3214 } 3215 3216 static ssize_t scx_attr_state_show(struct kobject *kobj, 3217 struct kobj_attribute *ka, char *buf) 3218 { 3219 return sysfs_emit(buf, "%s\n", 3220 scx_ops_enable_state_str[scx_ops_enable_state()]); 3221 } 3222 SCX_ATTR(state); 3223 3224 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3225 struct kobj_attribute *ka, char *buf) 3226 { 3227 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3228 } 3229 SCX_ATTR(switch_all); 3230 3231 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3232 struct kobj_attribute *ka, char *buf) 3233 { 3234 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3235 } 3236 SCX_ATTR(nr_rejected); 3237 3238 static struct attribute *scx_global_attrs[] = { 3239 &scx_attr_state.attr, 3240 &scx_attr_switch_all.attr, 3241 &scx_attr_nr_rejected.attr, 3242 NULL, 3243 }; 3244 3245 static const struct attribute_group scx_global_attr_group = { 3246 .attrs = scx_global_attrs, 3247 }; 3248 3249 static void scx_kobj_release(struct kobject *kobj) 3250 { 3251 kfree(kobj); 3252 } 3253 3254 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3255 struct kobj_attribute *ka, char *buf) 3256 { 3257 return sysfs_emit(buf, "%s\n", scx_ops.name); 3258 } 3259 SCX_ATTR(ops); 3260 3261 static struct attribute *scx_sched_attrs[] = { 3262 &scx_attr_ops.attr, 3263 NULL, 3264 }; 3265 ATTRIBUTE_GROUPS(scx_sched); 3266 3267 static const struct kobj_type scx_ktype = { 3268 .release = scx_kobj_release, 3269 .sysfs_ops = &kobj_sysfs_ops, 3270 .default_groups = scx_sched_groups, 3271 }; 3272 3273 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3274 { 3275 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 3276 } 3277 3278 static const struct kset_uevent_ops scx_uevent_ops = { 3279 .uevent = scx_uevent, 3280 }; 3281 3282 /* 3283 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3284 * sched_class. dl/rt are already handled. 3285 */ 3286 bool task_should_scx(struct task_struct *p) 3287 { 3288 if (!scx_enabled() || 3289 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 3290 return false; 3291 if (READ_ONCE(scx_switching_all)) 3292 return true; 3293 return p->policy == SCHED_EXT; 3294 } 3295 3296 /** 3297 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 3298 * 3299 * Bypassing guarantees that all runnable tasks make forward progress without 3300 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 3301 * be held by tasks that the BPF scheduler is forgetting to run, which 3302 * unfortunately also excludes toggling the static branches. 3303 * 3304 * Let's work around by overriding a couple ops and modifying behaviors based on 3305 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 3306 * to force global FIFO scheduling. 3307 * 3308 * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 3309 * 3310 * b. ops.dispatch() is ignored. 3311 * 3312 * c. balance_scx() never sets %SCX_TASK_BAL_KEEP as the slice value can't be 3313 * trusted. Whenever a tick triggers, the running task is rotated to the tail 3314 * of the queue. 3315 * 3316 * d. pick_next_task() suppresses zero slice warning. 3317 * 3318 * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 3319 * operations. 3320 */ 3321 static void scx_ops_bypass(bool bypass) 3322 { 3323 int depth, cpu; 3324 3325 if (bypass) { 3326 depth = atomic_inc_return(&scx_ops_bypass_depth); 3327 WARN_ON_ONCE(depth <= 0); 3328 if (depth != 1) 3329 return; 3330 } else { 3331 depth = atomic_dec_return(&scx_ops_bypass_depth); 3332 WARN_ON_ONCE(depth < 0); 3333 if (depth != 0) 3334 return; 3335 } 3336 3337 /* 3338 * We need to guarantee that no tasks are on the BPF scheduler while 3339 * bypassing. Either we see enabled or the enable path sees the 3340 * increased bypass_depth before moving tasks to SCX. 3341 */ 3342 if (!scx_enabled()) 3343 return; 3344 3345 /* 3346 * No task property is changing. We just need to make sure all currently 3347 * queued tasks are re-queued according to the new scx_ops_bypassing() 3348 * state. As an optimization, walk each rq's runnable_list instead of 3349 * the scx_tasks list. 3350 * 3351 * This function can't trust the scheduler and thus can't use 3352 * cpus_read_lock(). Walk all possible CPUs instead of online. 3353 */ 3354 for_each_possible_cpu(cpu) { 3355 struct rq *rq = cpu_rq(cpu); 3356 struct rq_flags rf; 3357 struct task_struct *p, *n; 3358 3359 rq_lock_irqsave(rq, &rf); 3360 3361 /* 3362 * The use of list_for_each_entry_safe_reverse() is required 3363 * because each task is going to be removed from and added back 3364 * to the runnable_list during iteration. Because they're added 3365 * to the tail of the list, safe reverse iteration can still 3366 * visit all nodes. 3367 */ 3368 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3369 scx.runnable_node) { 3370 struct sched_enq_and_set_ctx ctx; 3371 3372 /* cycling deq/enq is enough, see the function comment */ 3373 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3374 sched_enq_and_set_task(&ctx); 3375 } 3376 3377 rq_unlock_irqrestore(rq, &rf); 3378 3379 /* kick to restore ticks */ 3380 resched_cpu(cpu); 3381 } 3382 } 3383 3384 static void free_exit_info(struct scx_exit_info *ei) 3385 { 3386 kfree(ei->dump); 3387 kfree(ei->msg); 3388 kfree(ei->bt); 3389 kfree(ei); 3390 } 3391 3392 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3393 { 3394 struct scx_exit_info *ei; 3395 3396 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3397 if (!ei) 3398 return NULL; 3399 3400 ei->bt = kcalloc(sizeof(ei->bt[0]), SCX_EXIT_BT_LEN, GFP_KERNEL); 3401 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3402 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 3403 3404 if (!ei->bt || !ei->msg || !ei->dump) { 3405 free_exit_info(ei); 3406 return NULL; 3407 } 3408 3409 return ei; 3410 } 3411 3412 static const char *scx_exit_reason(enum scx_exit_kind kind) 3413 { 3414 switch (kind) { 3415 case SCX_EXIT_UNREG: 3416 return "Scheduler unregistered from user space"; 3417 case SCX_EXIT_UNREG_BPF: 3418 return "Scheduler unregistered from BPF"; 3419 case SCX_EXIT_UNREG_KERN: 3420 return "Scheduler unregistered from the main kernel"; 3421 case SCX_EXIT_SYSRQ: 3422 return "disabled by sysrq-S"; 3423 case SCX_EXIT_ERROR: 3424 return "runtime error"; 3425 case SCX_EXIT_ERROR_BPF: 3426 return "scx_bpf_error"; 3427 case SCX_EXIT_ERROR_STALL: 3428 return "runnable task stall"; 3429 default: 3430 return "<UNKNOWN>"; 3431 } 3432 } 3433 3434 static void scx_ops_disable_workfn(struct kthread_work *work) 3435 { 3436 struct scx_exit_info *ei = scx_exit_info; 3437 struct scx_task_iter sti; 3438 struct task_struct *p; 3439 struct rhashtable_iter rht_iter; 3440 struct scx_dispatch_q *dsq; 3441 int i, kind; 3442 3443 kind = atomic_read(&scx_exit_kind); 3444 while (true) { 3445 /* 3446 * NONE indicates that a new scx_ops has been registered since 3447 * disable was scheduled - don't kill the new ops. DONE 3448 * indicates that the ops has already been disabled. 3449 */ 3450 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 3451 return; 3452 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 3453 break; 3454 } 3455 ei->kind = kind; 3456 ei->reason = scx_exit_reason(ei->kind); 3457 3458 /* guarantee forward progress by bypassing scx_ops */ 3459 scx_ops_bypass(true); 3460 3461 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 3462 case SCX_OPS_DISABLING: 3463 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3464 break; 3465 case SCX_OPS_DISABLED: 3466 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3467 scx_exit_info->msg); 3468 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 3469 SCX_OPS_DISABLING); 3470 goto done; 3471 default: 3472 break; 3473 } 3474 3475 /* 3476 * Here, every runnable task is guaranteed to make forward progress and 3477 * we can safely use blocking synchronization constructs. Actually 3478 * disable ops. 3479 */ 3480 mutex_lock(&scx_ops_enable_mutex); 3481 3482 static_branch_disable(&__scx_switched_all); 3483 WRITE_ONCE(scx_switching_all, false); 3484 3485 /* 3486 * Avoid racing against fork. See scx_ops_enable() for explanation on 3487 * the locking order. 3488 */ 3489 percpu_down_write(&scx_fork_rwsem); 3490 cpus_read_lock(); 3491 3492 spin_lock_irq(&scx_tasks_lock); 3493 scx_task_iter_init(&sti); 3494 /* 3495 * Invoke scx_ops_exit_task() on all non-idle tasks, including 3496 * TASK_DEAD tasks. Because dead tasks may have a nonzero refcount, 3497 * we may not have invoked sched_ext_free() on them by the time a 3498 * scheduler is disabled. We must therefore exit the task here, or we'd 3499 * fail to invoke ops.exit_task(), as the scheduler will have been 3500 * unloaded by the time the task is subsequently exited on the 3501 * sched_ext_free() path. 3502 */ 3503 while ((p = scx_task_iter_next_locked(&sti, true))) { 3504 const struct sched_class *old_class = p->sched_class; 3505 struct sched_enq_and_set_ctx ctx; 3506 3507 if (READ_ONCE(p->__state) != TASK_DEAD) { 3508 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, 3509 &ctx); 3510 3511 p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); 3512 __setscheduler_prio(p, p->prio); 3513 check_class_changing(task_rq(p), p, old_class); 3514 3515 sched_enq_and_set_task(&ctx); 3516 3517 check_class_changed(task_rq(p), p, old_class, p->prio); 3518 } 3519 scx_ops_exit_task(p); 3520 } 3521 scx_task_iter_exit(&sti); 3522 spin_unlock_irq(&scx_tasks_lock); 3523 3524 /* no task is on scx, turn off all the switches and flush in-progress calls */ 3525 static_branch_disable_cpuslocked(&__scx_ops_enabled); 3526 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 3527 static_branch_disable_cpuslocked(&scx_has_op[i]); 3528 static_branch_disable_cpuslocked(&scx_ops_enq_last); 3529 static_branch_disable_cpuslocked(&scx_ops_enq_exiting); 3530 static_branch_disable_cpuslocked(&scx_ops_cpu_preempt); 3531 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); 3532 synchronize_rcu(); 3533 3534 cpus_read_unlock(); 3535 percpu_up_write(&scx_fork_rwsem); 3536 3537 if (ei->kind >= SCX_EXIT_ERROR) { 3538 printk(KERN_ERR "sched_ext: BPF scheduler \"%s\" errored, disabling\n", scx_ops.name); 3539 3540 if (ei->msg[0] == '\0') 3541 printk(KERN_ERR "sched_ext: %s\n", ei->reason); 3542 else 3543 printk(KERN_ERR "sched_ext: %s (%s)\n", ei->reason, ei->msg); 3544 3545 stack_trace_print(ei->bt, ei->bt_len, 2); 3546 } 3547 3548 if (scx_ops.exit) 3549 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 3550 3551 cancel_delayed_work_sync(&scx_watchdog_work); 3552 3553 /* 3554 * Delete the kobject from the hierarchy eagerly in addition to just 3555 * dropping a reference. Otherwise, if the object is deleted 3556 * asynchronously, sysfs could observe an object of the same name still 3557 * in the hierarchy when another scheduler is loaded. 3558 */ 3559 kobject_del(scx_root_kobj); 3560 kobject_put(scx_root_kobj); 3561 scx_root_kobj = NULL; 3562 3563 memset(&scx_ops, 0, sizeof(scx_ops)); 3564 3565 rhashtable_walk_enter(&dsq_hash, &rht_iter); 3566 do { 3567 rhashtable_walk_start(&rht_iter); 3568 3569 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3570 destroy_dsq(dsq->id); 3571 3572 rhashtable_walk_stop(&rht_iter); 3573 } while (dsq == ERR_PTR(-EAGAIN)); 3574 rhashtable_walk_exit(&rht_iter); 3575 3576 free_percpu(scx_dsp_ctx); 3577 scx_dsp_ctx = NULL; 3578 scx_dsp_max_batch = 0; 3579 3580 free_exit_info(scx_exit_info); 3581 scx_exit_info = NULL; 3582 3583 mutex_unlock(&scx_ops_enable_mutex); 3584 3585 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 3586 SCX_OPS_DISABLING); 3587 done: 3588 scx_ops_bypass(false); 3589 } 3590 3591 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 3592 3593 static void schedule_scx_ops_disable_work(void) 3594 { 3595 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 3596 3597 /* 3598 * We may be called spuriously before the first bpf_sched_ext_reg(). If 3599 * scx_ops_helper isn't set up yet, there's nothing to do. 3600 */ 3601 if (helper) 3602 kthread_queue_work(helper, &scx_ops_disable_work); 3603 } 3604 3605 static void scx_ops_disable(enum scx_exit_kind kind) 3606 { 3607 int none = SCX_EXIT_NONE; 3608 3609 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 3610 kind = SCX_EXIT_ERROR; 3611 3612 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 3613 3614 schedule_scx_ops_disable_work(); 3615 } 3616 3617 static void dump_newline(struct seq_buf *s) 3618 { 3619 trace_sched_ext_dump(""); 3620 3621 /* @s may be zero sized and seq_buf triggers WARN if so */ 3622 if (s->size) 3623 seq_buf_putc(s, '\n'); 3624 } 3625 3626 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 3627 { 3628 va_list args; 3629 3630 #ifdef CONFIG_TRACEPOINTS 3631 if (trace_sched_ext_dump_enabled()) { 3632 /* protected by scx_dump_state()::dump_lock */ 3633 static char line_buf[SCX_EXIT_MSG_LEN]; 3634 3635 va_start(args, fmt); 3636 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 3637 va_end(args); 3638 3639 trace_sched_ext_dump(line_buf); 3640 } 3641 #endif 3642 /* @s may be zero sized and seq_buf triggers WARN if so */ 3643 if (s->size) { 3644 va_start(args, fmt); 3645 seq_buf_vprintf(s, fmt, args); 3646 va_end(args); 3647 3648 seq_buf_putc(s, '\n'); 3649 } 3650 } 3651 3652 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 3653 const unsigned long *bt, unsigned int len) 3654 { 3655 unsigned int i; 3656 3657 for (i = 0; i < len; i++) 3658 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 3659 } 3660 3661 static void ops_dump_init(struct seq_buf *s, const char *prefix) 3662 { 3663 struct scx_dump_data *dd = &scx_dump_data; 3664 3665 lockdep_assert_irqs_disabled(); 3666 3667 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 3668 dd->first = true; 3669 dd->cursor = 0; 3670 dd->s = s; 3671 dd->prefix = prefix; 3672 } 3673 3674 static void ops_dump_flush(void) 3675 { 3676 struct scx_dump_data *dd = &scx_dump_data; 3677 char *line = dd->buf.line; 3678 3679 if (!dd->cursor) 3680 return; 3681 3682 /* 3683 * There's something to flush and this is the first line. Insert a blank 3684 * line to distinguish ops dump. 3685 */ 3686 if (dd->first) { 3687 dump_newline(dd->s); 3688 dd->first = false; 3689 } 3690 3691 /* 3692 * There may be multiple lines in $line. Scan and emit each line 3693 * separately. 3694 */ 3695 while (true) { 3696 char *end = line; 3697 char c; 3698 3699 while (*end != '\n' && *end != '\0') 3700 end++; 3701 3702 /* 3703 * If $line overflowed, it may not have newline at the end. 3704 * Always emit with a newline. 3705 */ 3706 c = *end; 3707 *end = '\0'; 3708 dump_line(dd->s, "%s%s", dd->prefix, line); 3709 if (c == '\0') 3710 break; 3711 3712 /* move to the next line */ 3713 end++; 3714 if (*end == '\0') 3715 break; 3716 line = end; 3717 } 3718 3719 dd->cursor = 0; 3720 } 3721 3722 static void ops_dump_exit(void) 3723 { 3724 ops_dump_flush(); 3725 scx_dump_data.cpu = -1; 3726 } 3727 3728 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 3729 struct task_struct *p, char marker) 3730 { 3731 static unsigned long bt[SCX_EXIT_BT_LEN]; 3732 char dsq_id_buf[19] = "(n/a)"; 3733 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 3734 unsigned int bt_len; 3735 3736 if (p->scx.dsq) 3737 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 3738 (unsigned long long)p->scx.dsq->id); 3739 3740 dump_newline(s); 3741 dump_line(s, " %c%c %s[%d] %+ldms", 3742 marker, task_state_to_char(p), p->comm, p->pid, 3743 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 3744 dump_line(s, " scx_state/flags=%u/0x%x ops_state/qseq=%lu/%lu", 3745 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 3746 ops_state & SCX_OPSS_STATE_MASK, 3747 ops_state >> SCX_OPSS_QSEQ_SHIFT); 3748 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 3749 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 3750 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 3751 3752 if (SCX_HAS_OP(dump_task)) { 3753 ops_dump_init(s, " "); 3754 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 3755 ops_dump_exit(); 3756 } 3757 3758 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 3759 if (bt_len) { 3760 dump_newline(s); 3761 dump_stack_trace(s, " ", bt, bt_len); 3762 } 3763 } 3764 3765 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 3766 { 3767 static DEFINE_SPINLOCK(dump_lock); 3768 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 3769 struct scx_dump_ctx dctx = { 3770 .kind = ei->kind, 3771 .exit_code = ei->exit_code, 3772 .reason = ei->reason, 3773 .at_ns = ktime_get_ns(), 3774 .at_jiffies = jiffies, 3775 }; 3776 struct seq_buf s; 3777 unsigned long flags; 3778 char *buf; 3779 int cpu; 3780 3781 spin_lock_irqsave(&dump_lock, flags); 3782 3783 seq_buf_init(&s, ei->dump, dump_len); 3784 3785 if (ei->kind == SCX_EXIT_NONE) { 3786 dump_line(&s, "Debug dump triggered by %s", ei->reason); 3787 } else { 3788 dump_line(&s, "%s[%d] triggered exit kind %d:", 3789 current->comm, current->pid, ei->kind); 3790 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 3791 dump_newline(&s); 3792 dump_line(&s, "Backtrace:"); 3793 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 3794 } 3795 3796 if (SCX_HAS_OP(dump)) { 3797 ops_dump_init(&s, ""); 3798 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 3799 ops_dump_exit(); 3800 } 3801 3802 dump_newline(&s); 3803 dump_line(&s, "CPU states"); 3804 dump_line(&s, "----------"); 3805 3806 for_each_possible_cpu(cpu) { 3807 struct rq *rq = cpu_rq(cpu); 3808 struct rq_flags rf; 3809 struct task_struct *p; 3810 struct seq_buf ns; 3811 size_t avail, used; 3812 bool idle; 3813 3814 rq_lock(rq, &rf); 3815 3816 idle = list_empty(&rq->scx.runnable_list) && 3817 rq->curr->sched_class == &idle_sched_class; 3818 3819 if (idle && !SCX_HAS_OP(dump_cpu)) 3820 goto next; 3821 3822 /* 3823 * We don't yet know whether ops.dump_cpu() will produce output 3824 * and we may want to skip the default CPU dump if it doesn't. 3825 * Use a nested seq_buf to generate the standard dump so that we 3826 * can decide whether to commit later. 3827 */ 3828 avail = seq_buf_get_buf(&s, &buf); 3829 seq_buf_init(&ns, buf, avail); 3830 3831 dump_newline(&ns); 3832 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 3833 cpu, rq->scx.nr_running, rq->scx.flags, 3834 rq->scx.cpu_released, rq->scx.ops_qseq, 3835 rq->scx.pnt_seq); 3836 dump_line(&ns, " curr=%s[%d] class=%ps", 3837 rq->curr->comm, rq->curr->pid, 3838 rq->curr->sched_class); 3839 if (!cpumask_empty(rq->scx.cpus_to_kick)) 3840 dump_line(&ns, " cpus_to_kick : %*pb", 3841 cpumask_pr_args(rq->scx.cpus_to_kick)); 3842 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 3843 dump_line(&ns, " idle_to_kick : %*pb", 3844 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 3845 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 3846 dump_line(&ns, " cpus_to_preempt: %*pb", 3847 cpumask_pr_args(rq->scx.cpus_to_preempt)); 3848 if (!cpumask_empty(rq->scx.cpus_to_wait)) 3849 dump_line(&ns, " cpus_to_wait : %*pb", 3850 cpumask_pr_args(rq->scx.cpus_to_wait)); 3851 3852 used = seq_buf_used(&ns); 3853 if (SCX_HAS_OP(dump_cpu)) { 3854 ops_dump_init(&ns, " "); 3855 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 3856 ops_dump_exit(); 3857 } 3858 3859 /* 3860 * If idle && nothing generated by ops.dump_cpu(), there's 3861 * nothing interesting. Skip. 3862 */ 3863 if (idle && used == seq_buf_used(&ns)) 3864 goto next; 3865 3866 /* 3867 * $s may already have overflowed when $ns was created. If so, 3868 * calling commit on it will trigger BUG. 3869 */ 3870 if (avail) { 3871 seq_buf_commit(&s, seq_buf_used(&ns)); 3872 if (seq_buf_has_overflowed(&ns)) 3873 seq_buf_set_overflow(&s); 3874 } 3875 3876 if (rq->curr->sched_class == &ext_sched_class) 3877 scx_dump_task(&s, &dctx, rq->curr, '*'); 3878 3879 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 3880 scx_dump_task(&s, &dctx, p, ' '); 3881 next: 3882 rq_unlock(rq, &rf); 3883 } 3884 3885 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 3886 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 3887 trunc_marker, sizeof(trunc_marker)); 3888 3889 spin_unlock_irqrestore(&dump_lock, flags); 3890 } 3891 3892 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 3893 { 3894 struct scx_exit_info *ei = scx_exit_info; 3895 3896 if (ei->kind >= SCX_EXIT_ERROR) 3897 scx_dump_state(ei, scx_ops.exit_dump_len); 3898 3899 schedule_scx_ops_disable_work(); 3900 } 3901 3902 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 3903 3904 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 3905 s64 exit_code, 3906 const char *fmt, ...) 3907 { 3908 struct scx_exit_info *ei = scx_exit_info; 3909 int none = SCX_EXIT_NONE; 3910 va_list args; 3911 3912 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 3913 return; 3914 3915 ei->exit_code = exit_code; 3916 3917 if (kind >= SCX_EXIT_ERROR) 3918 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 3919 3920 va_start(args, fmt); 3921 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 3922 va_end(args); 3923 3924 /* 3925 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 3926 * in scx_ops_disable_workfn(). 3927 */ 3928 ei->kind = kind; 3929 ei->reason = scx_exit_reason(ei->kind); 3930 3931 irq_work_queue(&scx_ops_error_irq_work); 3932 } 3933 3934 static struct kthread_worker *scx_create_rt_helper(const char *name) 3935 { 3936 struct kthread_worker *helper; 3937 3938 helper = kthread_create_worker(0, name); 3939 if (helper) 3940 sched_set_fifo(helper->task); 3941 return helper; 3942 } 3943 3944 static int validate_ops(const struct sched_ext_ops *ops) 3945 { 3946 /* 3947 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 3948 * ops.enqueue() callback isn't implemented. 3949 */ 3950 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 3951 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 3952 return -EINVAL; 3953 } 3954 3955 return 0; 3956 } 3957 3958 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 3959 { 3960 struct scx_task_iter sti; 3961 struct task_struct *p; 3962 unsigned long timeout; 3963 int i, ret; 3964 3965 mutex_lock(&scx_ops_enable_mutex); 3966 3967 if (!scx_ops_helper) { 3968 WRITE_ONCE(scx_ops_helper, 3969 scx_create_rt_helper("sched_ext_ops_helper")); 3970 if (!scx_ops_helper) { 3971 ret = -ENOMEM; 3972 goto err_unlock; 3973 } 3974 } 3975 3976 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 3977 ret = -EBUSY; 3978 goto err_unlock; 3979 } 3980 3981 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 3982 if (!scx_root_kobj) { 3983 ret = -ENOMEM; 3984 goto err_unlock; 3985 } 3986 3987 scx_root_kobj->kset = scx_kset; 3988 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 3989 if (ret < 0) 3990 goto err; 3991 3992 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 3993 if (!scx_exit_info) { 3994 ret = -ENOMEM; 3995 goto err_del; 3996 } 3997 3998 /* 3999 * Set scx_ops, transition to PREPPING and clear exit info to arm the 4000 * disable path. Failure triggers full disabling from here on. 4001 */ 4002 scx_ops = *ops; 4003 4004 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) != 4005 SCX_OPS_DISABLED); 4006 4007 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 4008 scx_warned_zero_slice = false; 4009 4010 atomic_long_set(&scx_nr_rejected, 0); 4011 4012 /* 4013 * Keep CPUs stable during enable so that the BPF scheduler can track 4014 * online CPUs by watching ->on/offline_cpu() after ->init(). 4015 */ 4016 cpus_read_lock(); 4017 4018 if (scx_ops.init) { 4019 ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init); 4020 if (ret) { 4021 ret = ops_sanitize_err("init", ret); 4022 goto err_disable_unlock_cpus; 4023 } 4024 } 4025 4026 cpus_read_unlock(); 4027 4028 ret = validate_ops(ops); 4029 if (ret) 4030 goto err_disable; 4031 4032 WARN_ON_ONCE(scx_dsp_ctx); 4033 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4034 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4035 scx_dsp_max_batch), 4036 __alignof__(struct scx_dsp_ctx)); 4037 if (!scx_dsp_ctx) { 4038 ret = -ENOMEM; 4039 goto err_disable; 4040 } 4041 4042 if (ops->timeout_ms) 4043 timeout = msecs_to_jiffies(ops->timeout_ms); 4044 else 4045 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4046 4047 WRITE_ONCE(scx_watchdog_timeout, timeout); 4048 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4049 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4050 scx_watchdog_timeout / 2); 4051 4052 /* 4053 * Lock out forks before opening the floodgate so that they don't wander 4054 * into the operations prematurely. 4055 * 4056 * We don't need to keep the CPUs stable but grab cpus_read_lock() to 4057 * ease future locking changes for cgroup suport. 4058 * 4059 * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the 4060 * following dependency chain: 4061 * 4062 * scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock 4063 */ 4064 percpu_down_write(&scx_fork_rwsem); 4065 cpus_read_lock(); 4066 4067 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4068 if (((void (**)(void))ops)[i]) 4069 static_branch_enable_cpuslocked(&scx_has_op[i]); 4070 4071 if (ops->flags & SCX_OPS_ENQ_LAST) 4072 static_branch_enable_cpuslocked(&scx_ops_enq_last); 4073 4074 if (ops->flags & SCX_OPS_ENQ_EXITING) 4075 static_branch_enable_cpuslocked(&scx_ops_enq_exiting); 4076 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 4077 static_branch_enable_cpuslocked(&scx_ops_cpu_preempt); 4078 4079 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 4080 reset_idle_masks(); 4081 static_branch_enable_cpuslocked(&scx_builtin_idle_enabled); 4082 } else { 4083 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); 4084 } 4085 4086 static_branch_enable_cpuslocked(&__scx_ops_enabled); 4087 4088 /* 4089 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 4090 * preventing new tasks from being added. No need to exclude tasks 4091 * leaving as sched_ext_free() can handle both prepped and enabled 4092 * tasks. Prep all tasks first and then enable them with preemption 4093 * disabled. 4094 */ 4095 spin_lock_irq(&scx_tasks_lock); 4096 4097 scx_task_iter_init(&sti); 4098 while ((p = scx_task_iter_next_locked(&sti, false))) { 4099 get_task_struct(p); 4100 scx_task_iter_rq_unlock(&sti); 4101 spin_unlock_irq(&scx_tasks_lock); 4102 4103 ret = scx_ops_init_task(p, task_group(p), false); 4104 if (ret) { 4105 put_task_struct(p); 4106 spin_lock_irq(&scx_tasks_lock); 4107 scx_task_iter_exit(&sti); 4108 spin_unlock_irq(&scx_tasks_lock); 4109 pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n", 4110 ret, p->comm, p->pid); 4111 goto err_disable_unlock_all; 4112 } 4113 4114 put_task_struct(p); 4115 spin_lock_irq(&scx_tasks_lock); 4116 } 4117 scx_task_iter_exit(&sti); 4118 4119 /* 4120 * All tasks are prepped but are still ops-disabled. Ensure that 4121 * %current can't be scheduled out and switch everyone. 4122 * preempt_disable() is necessary because we can't guarantee that 4123 * %current won't be starved if scheduled out while switching. 4124 */ 4125 preempt_disable(); 4126 4127 /* 4128 * From here on, the disable path must assume that tasks have ops 4129 * enabled and need to be recovered. 4130 * 4131 * Transition to ENABLING fails iff the BPF scheduler has already 4132 * triggered scx_bpf_error(). Returning an error code here would lose 4133 * the recorded error information. Exit indicating success so that the 4134 * error is notified through ops.exit() with all the details. 4135 */ 4136 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) { 4137 preempt_enable(); 4138 spin_unlock_irq(&scx_tasks_lock); 4139 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 4140 ret = 0; 4141 goto err_disable_unlock_all; 4142 } 4143 4144 /* 4145 * We're fully committed and can't fail. The PREPPED -> ENABLED 4146 * transitions here are synchronized against sched_ext_free() through 4147 * scx_tasks_lock. 4148 */ 4149 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 4150 4151 scx_task_iter_init(&sti); 4152 while ((p = scx_task_iter_next_locked(&sti, false))) { 4153 const struct sched_class *old_class = p->sched_class; 4154 struct sched_enq_and_set_ctx ctx; 4155 4156 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4157 4158 scx_set_task_state(p, SCX_TASK_READY); 4159 __setscheduler_prio(p, p->prio); 4160 check_class_changing(task_rq(p), p, old_class); 4161 4162 sched_enq_and_set_task(&ctx); 4163 4164 check_class_changed(task_rq(p), p, old_class, p->prio); 4165 } 4166 scx_task_iter_exit(&sti); 4167 4168 spin_unlock_irq(&scx_tasks_lock); 4169 preempt_enable(); 4170 cpus_read_unlock(); 4171 percpu_up_write(&scx_fork_rwsem); 4172 4173 /* see above ENABLING transition for the explanation on exiting with 0 */ 4174 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 4175 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 4176 ret = 0; 4177 goto err_disable; 4178 } 4179 4180 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 4181 static_branch_enable(&__scx_switched_all); 4182 4183 kobject_uevent(scx_root_kobj, KOBJ_ADD); 4184 mutex_unlock(&scx_ops_enable_mutex); 4185 4186 return 0; 4187 4188 err_del: 4189 kobject_del(scx_root_kobj); 4190 err: 4191 kobject_put(scx_root_kobj); 4192 scx_root_kobj = NULL; 4193 if (scx_exit_info) { 4194 free_exit_info(scx_exit_info); 4195 scx_exit_info = NULL; 4196 } 4197 err_unlock: 4198 mutex_unlock(&scx_ops_enable_mutex); 4199 return ret; 4200 4201 err_disable_unlock_all: 4202 percpu_up_write(&scx_fork_rwsem); 4203 err_disable_unlock_cpus: 4204 cpus_read_unlock(); 4205 err_disable: 4206 mutex_unlock(&scx_ops_enable_mutex); 4207 /* must be fully disabled before returning */ 4208 scx_ops_disable(SCX_EXIT_ERROR); 4209 kthread_flush_work(&scx_ops_disable_work); 4210 return ret; 4211 } 4212 4213 4214 /******************************************************************************** 4215 * bpf_struct_ops plumbing. 4216 */ 4217 #include <linux/bpf_verifier.h> 4218 #include <linux/bpf.h> 4219 #include <linux/btf.h> 4220 4221 extern struct btf *btf_vmlinux; 4222 static const struct btf_type *task_struct_type; 4223 static u32 task_struct_type_id; 4224 4225 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, 4226 enum bpf_access_type type, 4227 const struct bpf_prog *prog, 4228 struct bpf_insn_access_aux *info) 4229 { 4230 struct btf *btf = bpf_get_btf_vmlinux(); 4231 const struct bpf_struct_ops_desc *st_ops_desc; 4232 const struct btf_member *member; 4233 const struct btf_type *t; 4234 u32 btf_id, member_idx; 4235 const char *mname; 4236 4237 /* struct_ops op args are all sequential, 64-bit numbers */ 4238 if (off != arg_n * sizeof(__u64)) 4239 return false; 4240 4241 /* btf_id should be the type id of struct sched_ext_ops */ 4242 btf_id = prog->aux->attach_btf_id; 4243 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 4244 if (!st_ops_desc) 4245 return false; 4246 4247 /* BTF type of struct sched_ext_ops */ 4248 t = st_ops_desc->type; 4249 4250 member_idx = prog->expected_attach_type; 4251 if (member_idx >= btf_type_vlen(t)) 4252 return false; 4253 4254 /* 4255 * Get the member name of this struct_ops program, which corresponds to 4256 * a field in struct sched_ext_ops. For example, the member name of the 4257 * dispatch struct_ops program (callback) is "dispatch". 4258 */ 4259 member = &btf_type_member(t)[member_idx]; 4260 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 4261 4262 if (!strcmp(mname, op)) { 4263 /* 4264 * The value is a pointer to a type (struct task_struct) given 4265 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), 4266 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program 4267 * should check the pointer to make sure it is not NULL before 4268 * using it, or the verifier will reject the program. 4269 * 4270 * Longer term, this is something that should be addressed by 4271 * BTF, and be fully contained within the verifier. 4272 */ 4273 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; 4274 info->btf = btf_vmlinux; 4275 info->btf_id = task_struct_type_id; 4276 4277 return true; 4278 } 4279 4280 return false; 4281 } 4282 4283 static bool bpf_scx_is_valid_access(int off, int size, 4284 enum bpf_access_type type, 4285 const struct bpf_prog *prog, 4286 struct bpf_insn_access_aux *info) 4287 { 4288 if (type != BPF_READ) 4289 return false; 4290 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || 4291 set_arg_maybe_null("yield", 1, off, size, type, prog, info)) 4292 return true; 4293 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 4294 return false; 4295 if (off % size != 0) 4296 return false; 4297 4298 return btf_ctx_access(off, size, type, prog, info); 4299 } 4300 4301 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 4302 const struct bpf_reg_state *reg, int off, 4303 int size) 4304 { 4305 const struct btf_type *t; 4306 4307 t = btf_type_by_id(reg->btf, reg->btf_id); 4308 if (t == task_struct_type) { 4309 if (off >= offsetof(struct task_struct, scx.slice) && 4310 off + size <= offsetofend(struct task_struct, scx.slice)) 4311 return SCALAR_VALUE; 4312 if (off >= offsetof(struct task_struct, scx.disallow) && 4313 off + size <= offsetofend(struct task_struct, scx.disallow)) 4314 return SCALAR_VALUE; 4315 } 4316 4317 return -EACCES; 4318 } 4319 4320 static const struct bpf_func_proto * 4321 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 4322 { 4323 switch (func_id) { 4324 case BPF_FUNC_task_storage_get: 4325 return &bpf_task_storage_get_proto; 4326 case BPF_FUNC_task_storage_delete: 4327 return &bpf_task_storage_delete_proto; 4328 default: 4329 return bpf_base_func_proto(func_id, prog); 4330 } 4331 } 4332 4333 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 4334 .get_func_proto = bpf_scx_get_func_proto, 4335 .is_valid_access = bpf_scx_is_valid_access, 4336 .btf_struct_access = bpf_scx_btf_struct_access, 4337 }; 4338 4339 static int bpf_scx_init_member(const struct btf_type *t, 4340 const struct btf_member *member, 4341 void *kdata, const void *udata) 4342 { 4343 const struct sched_ext_ops *uops = udata; 4344 struct sched_ext_ops *ops = kdata; 4345 u32 moff = __btf_member_bit_offset(t, member) / 8; 4346 int ret; 4347 4348 switch (moff) { 4349 case offsetof(struct sched_ext_ops, dispatch_max_batch): 4350 if (*(u32 *)(udata + moff) > INT_MAX) 4351 return -E2BIG; 4352 ops->dispatch_max_batch = *(u32 *)(udata + moff); 4353 return 1; 4354 case offsetof(struct sched_ext_ops, flags): 4355 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 4356 return -EINVAL; 4357 ops->flags = *(u64 *)(udata + moff); 4358 return 1; 4359 case offsetof(struct sched_ext_ops, name): 4360 ret = bpf_obj_name_cpy(ops->name, uops->name, 4361 sizeof(ops->name)); 4362 if (ret < 0) 4363 return ret; 4364 if (ret == 0) 4365 return -EINVAL; 4366 return 1; 4367 case offsetof(struct sched_ext_ops, timeout_ms): 4368 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 4369 SCX_WATCHDOG_MAX_TIMEOUT) 4370 return -E2BIG; 4371 ops->timeout_ms = *(u32 *)(udata + moff); 4372 return 1; 4373 case offsetof(struct sched_ext_ops, exit_dump_len): 4374 ops->exit_dump_len = 4375 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 4376 return 1; 4377 } 4378 4379 return 0; 4380 } 4381 4382 static int bpf_scx_check_member(const struct btf_type *t, 4383 const struct btf_member *member, 4384 const struct bpf_prog *prog) 4385 { 4386 u32 moff = __btf_member_bit_offset(t, member) / 8; 4387 4388 switch (moff) { 4389 case offsetof(struct sched_ext_ops, init_task): 4390 case offsetof(struct sched_ext_ops, init): 4391 case offsetof(struct sched_ext_ops, exit): 4392 break; 4393 default: 4394 if (prog->sleepable) 4395 return -EINVAL; 4396 } 4397 4398 return 0; 4399 } 4400 4401 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4402 { 4403 return scx_ops_enable(kdata, link); 4404 } 4405 4406 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4407 { 4408 scx_ops_disable(SCX_EXIT_UNREG); 4409 kthread_flush_work(&scx_ops_disable_work); 4410 } 4411 4412 static int bpf_scx_init(struct btf *btf) 4413 { 4414 u32 type_id; 4415 4416 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); 4417 if (type_id < 0) 4418 return -EINVAL; 4419 task_struct_type = btf_type_by_id(btf, type_id); 4420 task_struct_type_id = type_id; 4421 4422 return 0; 4423 } 4424 4425 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 4426 { 4427 /* 4428 * sched_ext does not support updating the actively-loaded BPF 4429 * scheduler, as registering a BPF scheduler can always fail if the 4430 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 4431 * etc. Similarly, we can always race with unregistration happening 4432 * elsewhere, such as with sysrq. 4433 */ 4434 return -EOPNOTSUPP; 4435 } 4436 4437 static int bpf_scx_validate(void *kdata) 4438 { 4439 return 0; 4440 } 4441 4442 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 4443 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} 4444 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} 4445 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} 4446 static void runnable_stub(struct task_struct *p, u64 enq_flags) {} 4447 static void running_stub(struct task_struct *p) {} 4448 static void stopping_stub(struct task_struct *p, bool runnable) {} 4449 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} 4450 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } 4451 static void set_weight_stub(struct task_struct *p, u32 weight) {} 4452 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} 4453 static void update_idle_stub(s32 cpu, bool idle) {} 4454 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} 4455 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} 4456 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 4457 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} 4458 static void enable_stub(struct task_struct *p) {} 4459 static void disable_stub(struct task_struct *p) {} 4460 static s32 init_stub(void) { return -EINVAL; } 4461 static void exit_stub(struct scx_exit_info *info) {} 4462 4463 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 4464 .select_cpu = select_cpu_stub, 4465 .enqueue = enqueue_stub, 4466 .dequeue = dequeue_stub, 4467 .dispatch = dispatch_stub, 4468 .runnable = runnable_stub, 4469 .running = running_stub, 4470 .stopping = stopping_stub, 4471 .quiescent = quiescent_stub, 4472 .yield = yield_stub, 4473 .set_weight = set_weight_stub, 4474 .set_cpumask = set_cpumask_stub, 4475 .update_idle = update_idle_stub, 4476 .cpu_acquire = cpu_acquire_stub, 4477 .cpu_release = cpu_release_stub, 4478 .init_task = init_task_stub, 4479 .exit_task = exit_task_stub, 4480 .enable = enable_stub, 4481 .disable = disable_stub, 4482 .init = init_stub, 4483 .exit = exit_stub, 4484 }; 4485 4486 static struct bpf_struct_ops bpf_sched_ext_ops = { 4487 .verifier_ops = &bpf_scx_verifier_ops, 4488 .reg = bpf_scx_reg, 4489 .unreg = bpf_scx_unreg, 4490 .check_member = bpf_scx_check_member, 4491 .init_member = bpf_scx_init_member, 4492 .init = bpf_scx_init, 4493 .update = bpf_scx_update, 4494 .validate = bpf_scx_validate, 4495 .name = "sched_ext_ops", 4496 .owner = THIS_MODULE, 4497 .cfi_stubs = &__bpf_ops_sched_ext_ops 4498 }; 4499 4500 4501 /******************************************************************************** 4502 * System integration and init. 4503 */ 4504 4505 static void sysrq_handle_sched_ext_reset(u8 key) 4506 { 4507 if (scx_ops_helper) 4508 scx_ops_disable(SCX_EXIT_SYSRQ); 4509 else 4510 pr_info("sched_ext: BPF scheduler not yet used\n"); 4511 } 4512 4513 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 4514 .handler = sysrq_handle_sched_ext_reset, 4515 .help_msg = "reset-sched-ext(S)", 4516 .action_msg = "Disable sched_ext and revert all tasks to CFS", 4517 .enable_mask = SYSRQ_ENABLE_RTNICE, 4518 }; 4519 4520 static void sysrq_handle_sched_ext_dump(u8 key) 4521 { 4522 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 4523 4524 if (scx_enabled()) 4525 scx_dump_state(&ei, 0); 4526 } 4527 4528 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 4529 .handler = sysrq_handle_sched_ext_dump, 4530 .help_msg = "dump-sched-ext(D)", 4531 .action_msg = "Trigger sched_ext debug dump", 4532 .enable_mask = SYSRQ_ENABLE_RTNICE, 4533 }; 4534 4535 static bool can_skip_idle_kick(struct rq *rq) 4536 { 4537 lockdep_assert_rq_held(rq); 4538 4539 /* 4540 * We can skip idle kicking if @rq is going to go through at least one 4541 * full SCX scheduling cycle before going idle. Just checking whether 4542 * curr is not idle is insufficient because we could be racing 4543 * balance_one() trying to pull the next task from a remote rq, which 4544 * may fail, and @rq may become idle afterwards. 4545 * 4546 * The race window is small and we don't and can't guarantee that @rq is 4547 * only kicked while idle anyway. Skip only when sure. 4548 */ 4549 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_BALANCING); 4550 } 4551 4552 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 4553 { 4554 struct rq *rq = cpu_rq(cpu); 4555 struct scx_rq *this_scx = &this_rq->scx; 4556 bool should_wait = false; 4557 unsigned long flags; 4558 4559 raw_spin_rq_lock_irqsave(rq, flags); 4560 4561 /* 4562 * During CPU hotplug, a CPU may depend on kicking itself to make 4563 * forward progress. Allow kicking self regardless of online state. 4564 */ 4565 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 4566 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 4567 if (rq->curr->sched_class == &ext_sched_class) 4568 rq->curr->scx.slice = 0; 4569 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 4570 } 4571 4572 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 4573 pseqs[cpu] = rq->scx.pnt_seq; 4574 should_wait = true; 4575 } 4576 4577 resched_curr(rq); 4578 } else { 4579 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 4580 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 4581 } 4582 4583 raw_spin_rq_unlock_irqrestore(rq, flags); 4584 4585 return should_wait; 4586 } 4587 4588 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 4589 { 4590 struct rq *rq = cpu_rq(cpu); 4591 unsigned long flags; 4592 4593 raw_spin_rq_lock_irqsave(rq, flags); 4594 4595 if (!can_skip_idle_kick(rq) && 4596 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 4597 resched_curr(rq); 4598 4599 raw_spin_rq_unlock_irqrestore(rq, flags); 4600 } 4601 4602 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 4603 { 4604 struct rq *this_rq = this_rq(); 4605 struct scx_rq *this_scx = &this_rq->scx; 4606 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 4607 bool should_wait = false; 4608 s32 cpu; 4609 4610 for_each_cpu(cpu, this_scx->cpus_to_kick) { 4611 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 4612 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 4613 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 4614 } 4615 4616 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 4617 kick_one_cpu_if_idle(cpu, this_rq); 4618 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 4619 } 4620 4621 if (!should_wait) 4622 return; 4623 4624 for_each_cpu(cpu, this_scx->cpus_to_wait) { 4625 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 4626 4627 if (cpu != cpu_of(this_rq)) { 4628 /* 4629 * Pairs with smp_store_release() issued by this CPU in 4630 * scx_next_task_picked() on the resched path. 4631 * 4632 * We busy-wait here to guarantee that no other task can 4633 * be scheduled on our core before the target CPU has 4634 * entered the resched path. 4635 */ 4636 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 4637 cpu_relax(); 4638 } 4639 4640 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 4641 } 4642 } 4643 4644 /** 4645 * print_scx_info - print out sched_ext scheduler state 4646 * @log_lvl: the log level to use when printing 4647 * @p: target task 4648 * 4649 * If a sched_ext scheduler is enabled, print the name and state of the 4650 * scheduler. If @p is on sched_ext, print further information about the task. 4651 * 4652 * This function can be safely called on any task as long as the task_struct 4653 * itself is accessible. While safe, this function isn't synchronized and may 4654 * print out mixups or garbages of limited length. 4655 */ 4656 void print_scx_info(const char *log_lvl, struct task_struct *p) 4657 { 4658 enum scx_ops_enable_state state = scx_ops_enable_state(); 4659 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 4660 char runnable_at_buf[22] = "?"; 4661 struct sched_class *class; 4662 unsigned long runnable_at; 4663 4664 if (state == SCX_OPS_DISABLED) 4665 return; 4666 4667 /* 4668 * Carefully check if the task was running on sched_ext, and then 4669 * carefully copy the time it's been runnable, and its state. 4670 */ 4671 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 4672 class != &ext_sched_class) { 4673 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 4674 scx_ops_enable_state_str[state], all); 4675 return; 4676 } 4677 4678 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 4679 sizeof(runnable_at))) 4680 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 4681 jiffies_delta_msecs(runnable_at, jiffies)); 4682 4683 /* print everything onto one line to conserve console space */ 4684 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 4685 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 4686 runnable_at_buf); 4687 } 4688 4689 void __init init_sched_ext_class(void) 4690 { 4691 s32 cpu, v; 4692 4693 /* 4694 * The following is to prevent the compiler from optimizing out the enum 4695 * definitions so that BPF scheduler implementations can use them 4696 * through the generated vmlinux.h. 4697 */ 4698 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT); 4699 4700 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 4701 init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL); 4702 #ifdef CONFIG_SMP 4703 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 4704 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 4705 #endif 4706 scx_kick_cpus_pnt_seqs = 4707 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 4708 __alignof__(scx_kick_cpus_pnt_seqs[0])); 4709 BUG_ON(!scx_kick_cpus_pnt_seqs); 4710 4711 for_each_possible_cpu(cpu) { 4712 struct rq *rq = cpu_rq(cpu); 4713 4714 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 4715 INIT_LIST_HEAD(&rq->scx.runnable_list); 4716 4717 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 4718 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 4719 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 4720 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 4721 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 4722 } 4723 4724 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 4725 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 4726 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 4727 } 4728 4729 4730 /******************************************************************************** 4731 * Helpers that can be called from the BPF scheduler. 4732 */ 4733 #include <linux/btf_ids.h> 4734 4735 __bpf_kfunc_start_defs(); 4736 4737 /** 4738 * scx_bpf_create_dsq - Create a custom DSQ 4739 * @dsq_id: DSQ to create 4740 * @node: NUMA node to allocate from 4741 * 4742 * Create a custom DSQ identified by @dsq_id. Can be called from ops.init() and 4743 * ops.init_task(). 4744 */ 4745 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 4746 { 4747 if (!scx_kf_allowed(SCX_KF_SLEEPABLE)) 4748 return -EINVAL; 4749 4750 if (unlikely(node >= (int)nr_node_ids || 4751 (node < 0 && node != NUMA_NO_NODE))) 4752 return -EINVAL; 4753 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 4754 } 4755 4756 __bpf_kfunc_end_defs(); 4757 4758 BTF_KFUNCS_START(scx_kfunc_ids_sleepable) 4759 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 4760 BTF_KFUNCS_END(scx_kfunc_ids_sleepable) 4761 4762 static const struct btf_kfunc_id_set scx_kfunc_set_sleepable = { 4763 .owner = THIS_MODULE, 4764 .set = &scx_kfunc_ids_sleepable, 4765 }; 4766 4767 __bpf_kfunc_start_defs(); 4768 4769 /** 4770 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 4771 * @p: task_struct to select a CPU for 4772 * @prev_cpu: CPU @p was on previously 4773 * @wake_flags: %SCX_WAKE_* flags 4774 * @is_idle: out parameter indicating whether the returned CPU is idle 4775 * 4776 * Can only be called from ops.select_cpu() if the built-in CPU selection is 4777 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 4778 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 4779 * 4780 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 4781 * currently idle and thus a good candidate for direct dispatching. 4782 */ 4783 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 4784 u64 wake_flags, bool *is_idle) 4785 { 4786 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { 4787 *is_idle = false; 4788 return prev_cpu; 4789 } 4790 #ifdef CONFIG_SMP 4791 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 4792 #else 4793 *is_idle = false; 4794 return prev_cpu; 4795 #endif 4796 } 4797 4798 __bpf_kfunc_end_defs(); 4799 4800 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 4801 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 4802 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 4803 4804 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 4805 .owner = THIS_MODULE, 4806 .set = &scx_kfunc_ids_select_cpu, 4807 }; 4808 4809 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) 4810 { 4811 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 4812 return false; 4813 4814 lockdep_assert_irqs_disabled(); 4815 4816 if (unlikely(!p)) { 4817 scx_ops_error("called with NULL task"); 4818 return false; 4819 } 4820 4821 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 4822 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 4823 return false; 4824 } 4825 4826 return true; 4827 } 4828 4829 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) 4830 { 4831 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 4832 struct task_struct *ddsp_task; 4833 4834 ddsp_task = __this_cpu_read(direct_dispatch_task); 4835 if (ddsp_task) { 4836 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 4837 return; 4838 } 4839 4840 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 4841 scx_ops_error("dispatch buffer overflow"); 4842 return; 4843 } 4844 4845 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 4846 .task = p, 4847 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 4848 .dsq_id = dsq_id, 4849 .enq_flags = enq_flags, 4850 }; 4851 } 4852 4853 __bpf_kfunc_start_defs(); 4854 4855 /** 4856 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ 4857 * @p: task_struct to dispatch 4858 * @dsq_id: DSQ to dispatch to 4859 * @slice: duration @p can run for in nsecs 4860 * @enq_flags: SCX_ENQ_* 4861 * 4862 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe 4863 * to call this function spuriously. Can be called from ops.enqueue(), 4864 * ops.select_cpu(), and ops.dispatch(). 4865 * 4866 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 4867 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 4868 * used to target the local DSQ of a CPU other than the enqueueing one. Use 4869 * ops.select_cpu() to be on the target CPU in the first place. 4870 * 4871 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 4872 * will be directly dispatched to the corresponding dispatch queue after 4873 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be 4874 * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). 4875 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 4876 * task is dispatched. 4877 * 4878 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 4879 * and this function can be called upto ops.dispatch_max_batch times to dispatch 4880 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 4881 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 4882 * 4883 * This function doesn't have any locking restrictions and may be called under 4884 * BPF locks (in the future when BPF introduces more flexible locking). 4885 * 4886 * @p is allowed to run for @slice. The scheduling path is triggered on slice 4887 * exhaustion. If zero, the current residual slice is maintained. If 4888 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 4889 * scx_bpf_kick_cpu() to trigger scheduling. 4890 */ 4891 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 4892 u64 enq_flags) 4893 { 4894 if (!scx_dispatch_preamble(p, enq_flags)) 4895 return; 4896 4897 if (slice) 4898 p->scx.slice = slice; 4899 else 4900 p->scx.slice = p->scx.slice ?: 1; 4901 4902 scx_dispatch_commit(p, dsq_id, enq_flags); 4903 } 4904 4905 __bpf_kfunc_end_defs(); 4906 4907 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 4908 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 4909 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 4910 4911 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 4912 .owner = THIS_MODULE, 4913 .set = &scx_kfunc_ids_enqueue_dispatch, 4914 }; 4915 4916 __bpf_kfunc_start_defs(); 4917 4918 /** 4919 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 4920 * 4921 * Can only be called from ops.dispatch(). 4922 */ 4923 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 4924 { 4925 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 4926 return 0; 4927 4928 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 4929 } 4930 4931 /** 4932 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 4933 * 4934 * Cancel the latest dispatch. Can be called multiple times to cancel further 4935 * dispatches. Can only be called from ops.dispatch(). 4936 */ 4937 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 4938 { 4939 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 4940 4941 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 4942 return; 4943 4944 if (dspc->cursor > 0) 4945 dspc->cursor--; 4946 else 4947 scx_ops_error("dispatch buffer underflow"); 4948 } 4949 4950 /** 4951 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ 4952 * @dsq_id: DSQ to consume 4953 * 4954 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it 4955 * to the current CPU's local DSQ for execution. Can only be called from 4956 * ops.dispatch(). 4957 * 4958 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before 4959 * trying to consume the specified DSQ. It may also grab rq locks and thus can't 4960 * be called under any BPF locks. 4961 * 4962 * Returns %true if a task has been consumed, %false if there isn't any task to 4963 * consume. 4964 */ 4965 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 4966 { 4967 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 4968 struct scx_dispatch_q *dsq; 4969 4970 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 4971 return false; 4972 4973 flush_dispatch_buf(dspc->rq, dspc->rf); 4974 4975 dsq = find_non_local_dsq(dsq_id); 4976 if (unlikely(!dsq)) { 4977 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 4978 return false; 4979 } 4980 4981 if (consume_dispatch_q(dspc->rq, dspc->rf, dsq)) { 4982 /* 4983 * A successfully consumed task can be dequeued before it starts 4984 * running while the CPU is trying to migrate other dispatched 4985 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 4986 * local DSQ. 4987 */ 4988 dspc->nr_tasks++; 4989 return true; 4990 } else { 4991 return false; 4992 } 4993 } 4994 4995 __bpf_kfunc_end_defs(); 4996 4997 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 4998 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 4999 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 5000 BTF_ID_FLAGS(func, scx_bpf_consume) 5001 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 5002 5003 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 5004 .owner = THIS_MODULE, 5005 .set = &scx_kfunc_ids_dispatch, 5006 }; 5007 5008 __bpf_kfunc_start_defs(); 5009 5010 /** 5011 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 5012 * 5013 * Iterate over all of the tasks currently enqueued on the local DSQ of the 5014 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 5015 * processed tasks. Can only be called from ops.cpu_release(). 5016 */ 5017 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 5018 { 5019 u32 nr_enqueued, i; 5020 struct rq *rq; 5021 5022 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 5023 return 0; 5024 5025 rq = cpu_rq(smp_processor_id()); 5026 lockdep_assert_rq_held(rq); 5027 5028 /* 5029 * Get the number of tasks on the local DSQ before iterating over it to 5030 * pull off tasks. The enqueue callback below can signal that it wants 5031 * the task to stay on the local DSQ, and we want to prevent the BPF 5032 * scheduler from causing us to loop indefinitely. 5033 */ 5034 nr_enqueued = rq->scx.local_dsq.nr; 5035 for (i = 0; i < nr_enqueued; i++) { 5036 struct task_struct *p; 5037 5038 p = first_local_task(rq); 5039 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != 5040 SCX_OPSS_NONE); 5041 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 5042 WARN_ON_ONCE(p->scx.holding_cpu != -1); 5043 dispatch_dequeue(rq, p); 5044 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 5045 } 5046 5047 return nr_enqueued; 5048 } 5049 5050 __bpf_kfunc_end_defs(); 5051 5052 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 5053 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 5054 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 5055 5056 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 5057 .owner = THIS_MODULE, 5058 .set = &scx_kfunc_ids_cpu_release, 5059 }; 5060 5061 __bpf_kfunc_start_defs(); 5062 5063 /** 5064 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 5065 * @cpu: cpu to kick 5066 * @flags: %SCX_KICK_* flags 5067 * 5068 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 5069 * trigger rescheduling on a busy CPU. This can be called from any online 5070 * scx_ops operation and the actual kicking is performed asynchronously through 5071 * an irq work. 5072 */ 5073 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 5074 { 5075 struct rq *this_rq; 5076 unsigned long irq_flags; 5077 5078 if (!ops_cpu_valid(cpu, NULL)) 5079 return; 5080 5081 /* 5082 * While bypassing for PM ops, IRQ handling may not be online which can 5083 * lead to irq_work_queue() malfunction such as infinite busy wait for 5084 * IRQ status update. Suppress kicking. 5085 */ 5086 if (scx_ops_bypassing()) 5087 return; 5088 5089 local_irq_save(irq_flags); 5090 5091 this_rq = this_rq(); 5092 5093 /* 5094 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 5095 * rq locks. We can probably be smarter and avoid bouncing if called 5096 * from ops which don't hold a rq lock. 5097 */ 5098 if (flags & SCX_KICK_IDLE) { 5099 struct rq *target_rq = cpu_rq(cpu); 5100 5101 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 5102 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 5103 5104 if (raw_spin_rq_trylock(target_rq)) { 5105 if (can_skip_idle_kick(target_rq)) { 5106 raw_spin_rq_unlock(target_rq); 5107 goto out; 5108 } 5109 raw_spin_rq_unlock(target_rq); 5110 } 5111 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 5112 } else { 5113 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 5114 5115 if (flags & SCX_KICK_PREEMPT) 5116 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 5117 if (flags & SCX_KICK_WAIT) 5118 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 5119 } 5120 5121 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 5122 out: 5123 local_irq_restore(irq_flags); 5124 } 5125 5126 /** 5127 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 5128 * @dsq_id: id of the DSQ 5129 * 5130 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 5131 * -%ENOENT is returned. 5132 */ 5133 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 5134 { 5135 struct scx_dispatch_q *dsq; 5136 s32 ret; 5137 5138 preempt_disable(); 5139 5140 if (dsq_id == SCX_DSQ_LOCAL) { 5141 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 5142 goto out; 5143 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 5144 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 5145 5146 if (ops_cpu_valid(cpu, NULL)) { 5147 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 5148 goto out; 5149 } 5150 } else { 5151 dsq = find_non_local_dsq(dsq_id); 5152 if (dsq) { 5153 ret = READ_ONCE(dsq->nr); 5154 goto out; 5155 } 5156 } 5157 ret = -ENOENT; 5158 out: 5159 preempt_enable(); 5160 return ret; 5161 } 5162 5163 /** 5164 * scx_bpf_destroy_dsq - Destroy a custom DSQ 5165 * @dsq_id: DSQ to destroy 5166 * 5167 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 5168 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 5169 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 5170 * which doesn't exist. Can be called from any online scx_ops operations. 5171 */ 5172 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 5173 { 5174 destroy_dsq(dsq_id); 5175 } 5176 5177 __bpf_kfunc_end_defs(); 5178 5179 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 5180 char *fmt, unsigned long long *data, u32 data__sz) 5181 { 5182 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 5183 s32 ret; 5184 5185 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 5186 (data__sz && !data)) { 5187 scx_ops_error("invalid data=%p and data__sz=%u", 5188 (void *)data, data__sz); 5189 return -EINVAL; 5190 } 5191 5192 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 5193 if (ret < 0) { 5194 scx_ops_error("failed to read data fields (%d)", ret); 5195 return ret; 5196 } 5197 5198 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 5199 &bprintf_data); 5200 if (ret < 0) { 5201 scx_ops_error("format preparation failed (%d)", ret); 5202 return ret; 5203 } 5204 5205 ret = bstr_printf(line_buf, line_size, fmt, 5206 bprintf_data.bin_args); 5207 bpf_bprintf_cleanup(&bprintf_data); 5208 if (ret < 0) { 5209 scx_ops_error("(\"%s\", %p, %u) failed to format", 5210 fmt, data, data__sz); 5211 return ret; 5212 } 5213 5214 return ret; 5215 } 5216 5217 static s32 bstr_format(struct scx_bstr_buf *buf, 5218 char *fmt, unsigned long long *data, u32 data__sz) 5219 { 5220 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 5221 fmt, data, data__sz); 5222 } 5223 5224 __bpf_kfunc_start_defs(); 5225 5226 /** 5227 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 5228 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 5229 * @fmt: error message format string 5230 * @data: format string parameters packaged using ___bpf_fill() macro 5231 * @data__sz: @data len, must end in '__sz' for the verifier 5232 * 5233 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 5234 * disabling. 5235 */ 5236 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 5237 unsigned long long *data, u32 data__sz) 5238 { 5239 unsigned long flags; 5240 5241 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 5242 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 5243 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 5244 scx_exit_bstr_buf.line); 5245 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 5246 } 5247 5248 /** 5249 * scx_bpf_error_bstr - Indicate fatal error 5250 * @fmt: error message format string 5251 * @data: format string parameters packaged using ___bpf_fill() macro 5252 * @data__sz: @data len, must end in '__sz' for the verifier 5253 * 5254 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 5255 * disabling. 5256 */ 5257 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 5258 u32 data__sz) 5259 { 5260 unsigned long flags; 5261 5262 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 5263 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 5264 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 5265 scx_exit_bstr_buf.line); 5266 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 5267 } 5268 5269 /** 5270 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 5271 * @fmt: format string 5272 * @data: format string parameters packaged using ___bpf_fill() macro 5273 * @data__sz: @data len, must end in '__sz' for the verifier 5274 * 5275 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 5276 * dump_task() to generate extra debug dump specific to the BPF scheduler. 5277 * 5278 * The extra dump may be multiple lines. A single line may be split over 5279 * multiple calls. The last line is automatically terminated. 5280 */ 5281 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 5282 u32 data__sz) 5283 { 5284 struct scx_dump_data *dd = &scx_dump_data; 5285 struct scx_bstr_buf *buf = &dd->buf; 5286 s32 ret; 5287 5288 if (raw_smp_processor_id() != dd->cpu) { 5289 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 5290 return; 5291 } 5292 5293 /* append the formatted string to the line buf */ 5294 ret = __bstr_format(buf->data, buf->line + dd->cursor, 5295 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 5296 if (ret < 0) { 5297 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 5298 dd->prefix, fmt, data, data__sz, ret); 5299 return; 5300 } 5301 5302 dd->cursor += ret; 5303 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 5304 5305 if (!dd->cursor) 5306 return; 5307 5308 /* 5309 * If the line buf overflowed or ends in a newline, flush it into the 5310 * dump. This is to allow the caller to generate a single line over 5311 * multiple calls. As ops_dump_flush() can also handle multiple lines in 5312 * the line buf, the only case which can lead to an unexpected 5313 * truncation is when the caller keeps generating newlines in the middle 5314 * instead of the end consecutively. Don't do that. 5315 */ 5316 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 5317 ops_dump_flush(); 5318 } 5319 5320 /** 5321 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 5322 * 5323 * All valid CPU IDs in the system are smaller than the returned value. 5324 */ 5325 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 5326 { 5327 return nr_cpu_ids; 5328 } 5329 5330 /** 5331 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 5332 */ 5333 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 5334 { 5335 return cpu_possible_mask; 5336 } 5337 5338 /** 5339 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 5340 */ 5341 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 5342 { 5343 return cpu_online_mask; 5344 } 5345 5346 /** 5347 * scx_bpf_put_cpumask - Release a possible/online cpumask 5348 * @cpumask: cpumask to release 5349 */ 5350 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 5351 { 5352 /* 5353 * Empty function body because we aren't actually acquiring or releasing 5354 * a reference to a global cpumask, which is read-only in the caller and 5355 * is never released. The acquire / release semantics here are just used 5356 * to make the cpumask is a trusted pointer in the caller. 5357 */ 5358 } 5359 5360 /** 5361 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 5362 * per-CPU cpumask. 5363 * 5364 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 5365 */ 5366 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 5367 { 5368 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5369 scx_ops_error("built-in idle tracking is disabled"); 5370 return cpu_none_mask; 5371 } 5372 5373 #ifdef CONFIG_SMP 5374 return idle_masks.cpu; 5375 #else 5376 return cpu_none_mask; 5377 #endif 5378 } 5379 5380 /** 5381 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 5382 * per-physical-core cpumask. Can be used to determine if an entire physical 5383 * core is free. 5384 * 5385 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 5386 */ 5387 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 5388 { 5389 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5390 scx_ops_error("built-in idle tracking is disabled"); 5391 return cpu_none_mask; 5392 } 5393 5394 #ifdef CONFIG_SMP 5395 if (sched_smt_active()) 5396 return idle_masks.smt; 5397 else 5398 return idle_masks.cpu; 5399 #else 5400 return cpu_none_mask; 5401 #endif 5402 } 5403 5404 /** 5405 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 5406 * either the percpu, or SMT idle-tracking cpumask. 5407 */ 5408 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 5409 { 5410 /* 5411 * Empty function body because we aren't actually acquiring or releasing 5412 * a reference to a global idle cpumask, which is read-only in the 5413 * caller and is never released. The acquire / release semantics here 5414 * are just used to make the cpumask a trusted pointer in the caller. 5415 */ 5416 } 5417 5418 /** 5419 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 5420 * @cpu: cpu to test and clear idle for 5421 * 5422 * Returns %true if @cpu was idle and its idle state was successfully cleared. 5423 * %false otherwise. 5424 * 5425 * Unavailable if ops.update_idle() is implemented and 5426 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 5427 */ 5428 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 5429 { 5430 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5431 scx_ops_error("built-in idle tracking is disabled"); 5432 return false; 5433 } 5434 5435 if (ops_cpu_valid(cpu, NULL)) 5436 return test_and_clear_cpu_idle(cpu); 5437 else 5438 return false; 5439 } 5440 5441 /** 5442 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 5443 * @cpus_allowed: Allowed cpumask 5444 * @flags: %SCX_PICK_IDLE_CPU_* flags 5445 * 5446 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 5447 * number on success. -%EBUSY if no matching cpu was found. 5448 * 5449 * Idle CPU tracking may race against CPU scheduling state transitions. For 5450 * example, this function may return -%EBUSY as CPUs are transitioning into the 5451 * idle state. If the caller then assumes that there will be dispatch events on 5452 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 5453 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 5454 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 5455 * event in the near future. 5456 * 5457 * Unavailable if ops.update_idle() is implemented and 5458 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 5459 */ 5460 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 5461 u64 flags) 5462 { 5463 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5464 scx_ops_error("built-in idle tracking is disabled"); 5465 return -EBUSY; 5466 } 5467 5468 return scx_pick_idle_cpu(cpus_allowed, flags); 5469 } 5470 5471 /** 5472 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 5473 * @cpus_allowed: Allowed cpumask 5474 * @flags: %SCX_PICK_IDLE_CPU_* flags 5475 * 5476 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 5477 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 5478 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 5479 * empty. 5480 * 5481 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 5482 * set, this function can't tell which CPUs are idle and will always pick any 5483 * CPU. 5484 */ 5485 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 5486 u64 flags) 5487 { 5488 s32 cpu; 5489 5490 if (static_branch_likely(&scx_builtin_idle_enabled)) { 5491 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 5492 if (cpu >= 0) 5493 return cpu; 5494 } 5495 5496 cpu = cpumask_any_distribute(cpus_allowed); 5497 if (cpu < nr_cpu_ids) 5498 return cpu; 5499 else 5500 return -EBUSY; 5501 } 5502 5503 /** 5504 * scx_bpf_task_running - Is task currently running? 5505 * @p: task of interest 5506 */ 5507 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 5508 { 5509 return task_rq(p)->curr == p; 5510 } 5511 5512 /** 5513 * scx_bpf_task_cpu - CPU a task is currently associated with 5514 * @p: task of interest 5515 */ 5516 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 5517 { 5518 return task_cpu(p); 5519 } 5520 5521 __bpf_kfunc_end_defs(); 5522 5523 BTF_KFUNCS_START(scx_kfunc_ids_any) 5524 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 5525 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 5526 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 5527 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 5528 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 5529 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 5530 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 5531 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 5532 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 5533 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 5534 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 5535 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 5536 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 5537 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 5538 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 5539 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 5540 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 5541 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 5542 BTF_KFUNCS_END(scx_kfunc_ids_any) 5543 5544 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 5545 .owner = THIS_MODULE, 5546 .set = &scx_kfunc_ids_any, 5547 }; 5548 5549 static int __init scx_init(void) 5550 { 5551 int ret; 5552 5553 /* 5554 * kfunc registration can't be done from init_sched_ext_class() as 5555 * register_btf_kfunc_id_set() needs most of the system to be up. 5556 * 5557 * Some kfuncs are context-sensitive and can only be called from 5558 * specific SCX ops. They are grouped into BTF sets accordingly. 5559 * Unfortunately, BPF currently doesn't have a way of enforcing such 5560 * restrictions. Eventually, the verifier should be able to enforce 5561 * them. For now, register them the same and make each kfunc explicitly 5562 * check using scx_kf_allowed(). 5563 */ 5564 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5565 &scx_kfunc_set_sleepable)) || 5566 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5567 &scx_kfunc_set_select_cpu)) || 5568 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5569 &scx_kfunc_set_enqueue_dispatch)) || 5570 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5571 &scx_kfunc_set_dispatch)) || 5572 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5573 &scx_kfunc_set_cpu_release)) || 5574 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 5575 &scx_kfunc_set_any)) || 5576 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 5577 &scx_kfunc_set_any)) || 5578 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 5579 &scx_kfunc_set_any))) { 5580 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 5581 return ret; 5582 } 5583 5584 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 5585 if (ret) { 5586 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 5587 return ret; 5588 } 5589 5590 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 5591 if (!scx_kset) { 5592 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 5593 return -ENOMEM; 5594 } 5595 5596 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 5597 if (ret < 0) { 5598 pr_err("sched_ext: Failed to add global attributes\n"); 5599 return ret; 5600 } 5601 5602 return 0; 5603 } 5604 __initcall(scx_init); 5605