1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static unsigned long scx_in_softlockup; 37 static atomic_t scx_breather_depth = ATOMIC_INIT(0); 38 static int scx_bypass_depth; 39 static bool scx_init_task_enabled; 40 static bool scx_switching_all; 41 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 42 43 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 44 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 45 46 /* 47 * A monotically increasing sequence number that is incremented every time a 48 * scheduler is enabled. This can be used by to check if any custom sched_ext 49 * scheduler has ever been used in the system. 50 */ 51 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 52 53 /* 54 * The maximum amount of time in jiffies that a task may be runnable without 55 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 56 * scx_error(). 57 */ 58 static unsigned long scx_watchdog_timeout; 59 60 /* 61 * The last time the delayed work was run. This delayed work relies on 62 * ksoftirqd being able to run to service timer interrupts, so it's possible 63 * that this work itself could get wedged. To account for this, we check that 64 * it's not stalled in the timer tick, and trigger an error if it is. 65 */ 66 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 67 68 static struct delayed_work scx_watchdog_work; 69 70 /* for %SCX_KICK_WAIT */ 71 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 72 73 /* 74 * Direct dispatch marker. 75 * 76 * Non-NULL values are used for direct dispatch from enqueue path. A valid 77 * pointer points to the task currently being enqueued. An ERR_PTR value is used 78 * to indicate that direct dispatch has already happened. 79 */ 80 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 81 82 static const struct rhashtable_params dsq_hash_params = { 83 .key_len = sizeof_field(struct scx_dispatch_q, id), 84 .key_offset = offsetof(struct scx_dispatch_q, id), 85 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 86 }; 87 88 static LLIST_HEAD(dsqs_to_free); 89 90 /* dispatch buf */ 91 struct scx_dsp_buf_ent { 92 struct task_struct *task; 93 unsigned long qseq; 94 u64 dsq_id; 95 u64 enq_flags; 96 }; 97 98 static u32 scx_dsp_max_batch; 99 100 struct scx_dsp_ctx { 101 struct rq *rq; 102 u32 cursor; 103 u32 nr_tasks; 104 struct scx_dsp_buf_ent buf[]; 105 }; 106 107 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 108 109 /* string formatting from BPF */ 110 struct scx_bstr_buf { 111 u64 data[MAX_BPRINTF_VARARGS]; 112 char line[SCX_EXIT_MSG_LEN]; 113 }; 114 115 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 116 static struct scx_bstr_buf scx_exit_bstr_buf; 117 118 /* ops debug dump */ 119 struct scx_dump_data { 120 s32 cpu; 121 bool first; 122 s32 cursor; 123 struct seq_buf *s; 124 const char *prefix; 125 struct scx_bstr_buf buf; 126 }; 127 128 static struct scx_dump_data scx_dump_data = { 129 .cpu = -1, 130 }; 131 132 /* /sys/kernel/sched_ext interface */ 133 static struct kset *scx_kset; 134 135 #define CREATE_TRACE_POINTS 136 #include <trace/events/sched_ext.h> 137 138 static void process_ddsp_deferred_locals(struct rq *rq); 139 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 140 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 141 s64 exit_code, const char *fmt, va_list args); 142 143 static __printf(4, 5) void scx_exit(struct scx_sched *sch, 144 enum scx_exit_kind kind, s64 exit_code, 145 const char *fmt, ...) 146 { 147 va_list args; 148 149 va_start(args, fmt); 150 scx_vexit(sch, kind, exit_code, fmt, args); 151 va_end(args); 152 } 153 154 static __printf(3, 4) void scx_kf_exit(enum scx_exit_kind kind, s64 exit_code, 155 const char *fmt, ...) 156 { 157 struct scx_sched *sch; 158 va_list args; 159 160 rcu_read_lock(); 161 sch = rcu_dereference(scx_root); 162 if (sch) { 163 va_start(args, fmt); 164 scx_vexit(sch, kind, exit_code, fmt, args); 165 va_end(args); 166 } 167 rcu_read_unlock(); 168 } 169 170 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 171 #define scx_kf_error(fmt, args...) scx_kf_exit(SCX_EXIT_ERROR, 0, fmt, ##args) 172 173 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 174 175 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 176 { 177 if (time_after(at, now)) 178 return jiffies_to_msecs(at - now); 179 else 180 return -(long)jiffies_to_msecs(now - at); 181 } 182 183 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 184 static u32 higher_bits(u32 flags) 185 { 186 return ~((1 << fls(flags)) - 1); 187 } 188 189 /* return the mask with only the highest bit set */ 190 static u32 highest_bit(u32 flags) 191 { 192 int bit = fls(flags); 193 return ((u64)1 << bit) >> 1; 194 } 195 196 static bool u32_before(u32 a, u32 b) 197 { 198 return (s32)(a - b) < 0; 199 } 200 201 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 202 { 203 struct scx_sched *sch = scx_root; 204 205 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 206 } 207 208 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 209 { 210 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params); 211 } 212 213 /* 214 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 215 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 216 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 217 * whether it's running from an allowed context. 218 * 219 * @mask is constant, always inline to cull the mask calculations. 220 */ 221 static __always_inline void scx_kf_allow(u32 mask) 222 { 223 /* nesting is allowed only in increasing scx_kf_mask order */ 224 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 225 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 226 current->scx.kf_mask, mask); 227 current->scx.kf_mask |= mask; 228 barrier(); 229 } 230 231 static void scx_kf_disallow(u32 mask) 232 { 233 barrier(); 234 current->scx.kf_mask &= ~mask; 235 } 236 237 /* 238 * Track the rq currently locked. 239 * 240 * This allows kfuncs to safely operate on rq from any scx ops callback, 241 * knowing which rq is already locked. 242 */ 243 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 244 245 static inline void update_locked_rq(struct rq *rq) 246 { 247 /* 248 * Check whether @rq is actually locked. This can help expose bugs 249 * or incorrect assumptions about the context in which a kfunc or 250 * callback is executed. 251 */ 252 if (rq) 253 lockdep_assert_rq_held(rq); 254 __this_cpu_write(scx_locked_rq_state, rq); 255 } 256 257 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 258 do { \ 259 if (rq) \ 260 update_locked_rq(rq); \ 261 if (mask) { \ 262 scx_kf_allow(mask); \ 263 (sch)->ops.op(args); \ 264 scx_kf_disallow(mask); \ 265 } else { \ 266 (sch)->ops.op(args); \ 267 } \ 268 if (rq) \ 269 update_locked_rq(NULL); \ 270 } while (0) 271 272 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 273 ({ \ 274 __typeof__((sch)->ops.op(args)) __ret; \ 275 \ 276 if (rq) \ 277 update_locked_rq(rq); \ 278 if (mask) { \ 279 scx_kf_allow(mask); \ 280 __ret = (sch)->ops.op(args); \ 281 scx_kf_disallow(mask); \ 282 } else { \ 283 __ret = (sch)->ops.op(args); \ 284 } \ 285 if (rq) \ 286 update_locked_rq(NULL); \ 287 __ret; \ 288 }) 289 290 /* 291 * Some kfuncs are allowed only on the tasks that are subjects of the 292 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 293 * restrictions, the following SCX_CALL_OP_*() variants should be used when 294 * invoking scx_ops operations that take task arguments. These can only be used 295 * for non-nesting operations due to the way the tasks are tracked. 296 * 297 * kfuncs which can only operate on such tasks can in turn use 298 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 299 * the specific task. 300 */ 301 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 302 do { \ 303 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 304 current->scx.kf_tasks[0] = task; \ 305 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 306 current->scx.kf_tasks[0] = NULL; \ 307 } while (0) 308 309 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 310 ({ \ 311 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 312 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 313 current->scx.kf_tasks[0] = task; \ 314 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 315 current->scx.kf_tasks[0] = NULL; \ 316 __ret; \ 317 }) 318 319 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 320 ({ \ 321 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 322 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 323 current->scx.kf_tasks[0] = task0; \ 324 current->scx.kf_tasks[1] = task1; \ 325 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 326 current->scx.kf_tasks[0] = NULL; \ 327 current->scx.kf_tasks[1] = NULL; \ 328 __ret; \ 329 }) 330 331 /* @mask is constant, always inline to cull unnecessary branches */ 332 static __always_inline bool scx_kf_allowed(u32 mask) 333 { 334 if (unlikely(!(current->scx.kf_mask & mask))) { 335 scx_kf_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 336 mask, current->scx.kf_mask); 337 return false; 338 } 339 340 /* 341 * Enforce nesting boundaries. e.g. A kfunc which can be called from 342 * DISPATCH must not be called if we're running DEQUEUE which is nested 343 * inside ops.dispatch(). We don't need to check boundaries for any 344 * blocking kfuncs as the verifier ensures they're only called from 345 * sleepable progs. 346 */ 347 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 348 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 349 scx_kf_error("cpu_release kfunc called from a nested operation"); 350 return false; 351 } 352 353 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 354 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 355 scx_kf_error("dispatch kfunc called from a nested operation"); 356 return false; 357 } 358 359 return true; 360 } 361 362 /* see SCX_CALL_OP_TASK() */ 363 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 364 struct task_struct *p) 365 { 366 if (!scx_kf_allowed(mask)) 367 return false; 368 369 if (unlikely((p != current->scx.kf_tasks[0] && 370 p != current->scx.kf_tasks[1]))) { 371 scx_kf_error("called on a task not being operated on"); 372 return false; 373 } 374 375 return true; 376 } 377 378 /** 379 * nldsq_next_task - Iterate to the next task in a non-local DSQ 380 * @dsq: user dsq being iterated 381 * @cur: current position, %NULL to start iteration 382 * @rev: walk backwards 383 * 384 * Returns %NULL when iteration is finished. 385 */ 386 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 387 struct task_struct *cur, bool rev) 388 { 389 struct list_head *list_node; 390 struct scx_dsq_list_node *dsq_lnode; 391 392 lockdep_assert_held(&dsq->lock); 393 394 if (cur) 395 list_node = &cur->scx.dsq_list.node; 396 else 397 list_node = &dsq->list; 398 399 /* find the next task, need to skip BPF iteration cursors */ 400 do { 401 if (rev) 402 list_node = list_node->prev; 403 else 404 list_node = list_node->next; 405 406 if (list_node == &dsq->list) 407 return NULL; 408 409 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 410 node); 411 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 412 413 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 414 } 415 416 #define nldsq_for_each_task(p, dsq) \ 417 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 418 (p) = nldsq_next_task((dsq), (p), false)) 419 420 421 /* 422 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 423 * dispatch order. BPF-visible iterator is opaque and larger to allow future 424 * changes without breaking backward compatibility. Can be used with 425 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 426 */ 427 enum scx_dsq_iter_flags { 428 /* iterate in the reverse dispatch order */ 429 SCX_DSQ_ITER_REV = 1U << 16, 430 431 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 432 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 433 434 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 435 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 436 __SCX_DSQ_ITER_HAS_SLICE | 437 __SCX_DSQ_ITER_HAS_VTIME, 438 }; 439 440 struct bpf_iter_scx_dsq_kern { 441 struct scx_dsq_list_node cursor; 442 struct scx_dispatch_q *dsq; 443 u64 slice; 444 u64 vtime; 445 } __attribute__((aligned(8))); 446 447 struct bpf_iter_scx_dsq { 448 u64 __opaque[6]; 449 } __attribute__((aligned(8))); 450 451 452 /* 453 * SCX task iterator. 454 */ 455 struct scx_task_iter { 456 struct sched_ext_entity cursor; 457 struct task_struct *locked_task; 458 struct rq *rq; 459 struct rq_flags rf; 460 u32 cnt; 461 bool list_locked; 462 }; 463 464 /** 465 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 466 * @iter: iterator to init 467 * 468 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 469 * must eventually be stopped with scx_task_iter_stop(). 470 * 471 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 472 * between this and the first next() call or between any two next() calls. If 473 * the locks are released between two next() calls, the caller is responsible 474 * for ensuring that the task being iterated remains accessible either through 475 * RCU read lock or obtaining a reference count. 476 * 477 * All tasks which existed when the iteration started are guaranteed to be 478 * visited as long as they still exist. 479 */ 480 static void scx_task_iter_start(struct scx_task_iter *iter) 481 { 482 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 483 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 484 485 spin_lock_irq(&scx_tasks_lock); 486 487 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 488 list_add(&iter->cursor.tasks_node, &scx_tasks); 489 iter->locked_task = NULL; 490 iter->cnt = 0; 491 iter->list_locked = true; 492 } 493 494 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 495 { 496 if (iter->locked_task) { 497 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 498 iter->locked_task = NULL; 499 } 500 } 501 502 /** 503 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 504 * @iter: iterator to unlock 505 * 506 * If @iter is in the middle of a locked iteration, it may be locking the rq of 507 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 508 * This function can be safely called anytime during an iteration. The next 509 * iterator operation will automatically restore the necessary locking. 510 */ 511 static void scx_task_iter_unlock(struct scx_task_iter *iter) 512 { 513 __scx_task_iter_rq_unlock(iter); 514 if (iter->list_locked) { 515 iter->list_locked = false; 516 spin_unlock_irq(&scx_tasks_lock); 517 } 518 } 519 520 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 521 { 522 if (!iter->list_locked) { 523 spin_lock_irq(&scx_tasks_lock); 524 iter->list_locked = true; 525 } 526 } 527 528 /** 529 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 530 * @iter: iterator to exit 531 * 532 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 533 * which is released on return. If the iterator holds a task's rq lock, that rq 534 * lock is also released. See scx_task_iter_start() for details. 535 */ 536 static void scx_task_iter_stop(struct scx_task_iter *iter) 537 { 538 __scx_task_iter_maybe_relock(iter); 539 list_del_init(&iter->cursor.tasks_node); 540 scx_task_iter_unlock(iter); 541 } 542 543 /** 544 * scx_task_iter_next - Next task 545 * @iter: iterator to walk 546 * 547 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 548 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 549 * by holding scx_tasks_lock for too long. 550 */ 551 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 552 { 553 struct list_head *cursor = &iter->cursor.tasks_node; 554 struct sched_ext_entity *pos; 555 556 __scx_task_iter_maybe_relock(iter); 557 558 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 559 scx_task_iter_unlock(iter); 560 cond_resched(); 561 __scx_task_iter_maybe_relock(iter); 562 } 563 564 list_for_each_entry(pos, cursor, tasks_node) { 565 if (&pos->tasks_node == &scx_tasks) 566 return NULL; 567 if (!(pos->flags & SCX_TASK_CURSOR)) { 568 list_move(cursor, &pos->tasks_node); 569 return container_of(pos, struct task_struct, scx); 570 } 571 } 572 573 /* can't happen, should always terminate at scx_tasks above */ 574 BUG(); 575 } 576 577 /** 578 * scx_task_iter_next_locked - Next non-idle task with its rq locked 579 * @iter: iterator to walk 580 * 581 * Visit the non-idle task with its rq lock held. Allows callers to specify 582 * whether they would like to filter out dead tasks. See scx_task_iter_start() 583 * for details. 584 */ 585 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 586 { 587 struct task_struct *p; 588 589 __scx_task_iter_rq_unlock(iter); 590 591 while ((p = scx_task_iter_next(iter))) { 592 /* 593 * scx_task_iter is used to prepare and move tasks into SCX 594 * while loading the BPF scheduler and vice-versa while 595 * unloading. The init_tasks ("swappers") should be excluded 596 * from the iteration because: 597 * 598 * - It's unsafe to use __setschduler_prio() on an init_task to 599 * determine the sched_class to use as it won't preserve its 600 * idle_sched_class. 601 * 602 * - ops.init/exit_task() can easily be confused if called with 603 * init_tasks as they, e.g., share PID 0. 604 * 605 * As init_tasks are never scheduled through SCX, they can be 606 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 607 * doesn't work here: 608 * 609 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 610 * yet been onlined. 611 * 612 * - %PF_IDLE can be set on tasks that are not init_tasks. See 613 * play_idle_precise() used by CONFIG_IDLE_INJECT. 614 * 615 * Test for idle_sched_class as only init_tasks are on it. 616 */ 617 if (p->sched_class != &idle_sched_class) 618 break; 619 } 620 if (!p) 621 return NULL; 622 623 iter->rq = task_rq_lock(p, &iter->rf); 624 iter->locked_task = p; 625 626 return p; 627 } 628 629 /** 630 * scx_add_event - Increase an event counter for 'name' by 'cnt' 631 * @sch: scx_sched to account events for 632 * @name: an event name defined in struct scx_event_stats 633 * @cnt: the number of the event occurred 634 * 635 * This can be used when preemption is not disabled. 636 */ 637 #define scx_add_event(sch, name, cnt) do { \ 638 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 639 trace_sched_ext_event(#name, (cnt)); \ 640 } while(0) 641 642 /** 643 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 644 * @sch: scx_sched to account events for 645 * @name: an event name defined in struct scx_event_stats 646 * @cnt: the number of the event occurred 647 * 648 * This should be used only when preemption is disabled. 649 */ 650 #define __scx_add_event(sch, name, cnt) do { \ 651 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 652 trace_sched_ext_event(#name, cnt); \ 653 } while(0) 654 655 /** 656 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 657 * @dst_e: destination event stats 658 * @src_e: source event stats 659 * @kind: a kind of event to be aggregated 660 */ 661 #define scx_agg_event(dst_e, src_e, kind) do { \ 662 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 663 } while(0) 664 665 /** 666 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 667 * @s: output seq_buf 668 * @events: event stats 669 * @kind: a kind of event to dump 670 */ 671 #define scx_dump_event(s, events, kind) do { \ 672 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 673 } while (0) 674 675 676 static void scx_read_events(struct scx_sched *sch, 677 struct scx_event_stats *events); 678 679 static enum scx_enable_state scx_enable_state(void) 680 { 681 return atomic_read(&scx_enable_state_var); 682 } 683 684 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 685 { 686 return atomic_xchg(&scx_enable_state_var, to); 687 } 688 689 static bool scx_tryset_enable_state(enum scx_enable_state to, 690 enum scx_enable_state from) 691 { 692 int from_v = from; 693 694 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 695 } 696 697 /** 698 * wait_ops_state - Busy-wait the specified ops state to end 699 * @p: target task 700 * @opss: state to wait the end of 701 * 702 * Busy-wait for @p to transition out of @opss. This can only be used when the 703 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 704 * has load_acquire semantics to ensure that the caller can see the updates made 705 * in the enqueueing and dispatching paths. 706 */ 707 static void wait_ops_state(struct task_struct *p, unsigned long opss) 708 { 709 do { 710 cpu_relax(); 711 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 712 } 713 714 static inline bool __cpu_valid(s32 cpu) 715 { 716 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 717 } 718 719 /** 720 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 721 * @sch: scx_sched to abort on error 722 * @cpu: cpu number which came from a BPF ops 723 * @where: extra information reported on error 724 * 725 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 726 * Verify that it is in range and one of the possible cpus. If invalid, trigger 727 * an ops error. 728 */ 729 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 730 { 731 if (__cpu_valid(cpu)) { 732 return true; 733 } else { 734 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 735 return false; 736 } 737 } 738 739 /** 740 * kf_cpu_valid - Verify a CPU number, to be used on kfunc input args 741 * @cpu: cpu number which came from a BPF ops 742 * @where: extra information reported on error 743 * 744 * The same as ops_cpu_valid() but @sch is implicit. 745 */ 746 static bool kf_cpu_valid(u32 cpu, const char *where) 747 { 748 if (__cpu_valid(cpu)) { 749 return true; 750 } else { 751 scx_kf_error("invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 752 return false; 753 } 754 } 755 756 /** 757 * ops_sanitize_err - Sanitize a -errno value 758 * @sch: scx_sched to error out on error 759 * @ops_name: operation to blame on failure 760 * @err: -errno value to sanitize 761 * 762 * Verify @err is a valid -errno. If not, trigger scx_error() and return 763 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 764 * cause misbehaviors. For an example, a large negative return from 765 * ops.init_task() triggers an oops when passed up the call chain because the 766 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 767 * handled as a pointer. 768 */ 769 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 770 { 771 if (err < 0 && err >= -MAX_ERRNO) 772 return err; 773 774 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 775 return -EPROTO; 776 } 777 778 static void run_deferred(struct rq *rq) 779 { 780 process_ddsp_deferred_locals(rq); 781 } 782 783 static void deferred_bal_cb_workfn(struct rq *rq) 784 { 785 run_deferred(rq); 786 } 787 788 static void deferred_irq_workfn(struct irq_work *irq_work) 789 { 790 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 791 792 raw_spin_rq_lock(rq); 793 run_deferred(rq); 794 raw_spin_rq_unlock(rq); 795 } 796 797 /** 798 * schedule_deferred - Schedule execution of deferred actions on an rq 799 * @rq: target rq 800 * 801 * Schedule execution of deferred actions on @rq. Must be called with @rq 802 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 803 * can unlock @rq to e.g. migrate tasks to other rqs. 804 */ 805 static void schedule_deferred(struct rq *rq) 806 { 807 lockdep_assert_rq_held(rq); 808 809 /* 810 * If in the middle of waking up a task, task_woken_scx() will be called 811 * afterwards which will then run the deferred actions, no need to 812 * schedule anything. 813 */ 814 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 815 return; 816 817 /* 818 * If in balance, the balance callbacks will be called before rq lock is 819 * released. Schedule one. 820 */ 821 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 822 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 823 deferred_bal_cb_workfn); 824 return; 825 } 826 827 /* 828 * No scheduler hooks available. Queue an irq work. They are executed on 829 * IRQ re-enable which may take a bit longer than the scheduler hooks. 830 * The above WAKEUP and BALANCE paths should cover most of the cases and 831 * the time to IRQ re-enable shouldn't be long. 832 */ 833 irq_work_queue(&rq->scx.deferred_irq_work); 834 } 835 836 /** 837 * touch_core_sched - Update timestamp used for core-sched task ordering 838 * @rq: rq to read clock from, must be locked 839 * @p: task to update the timestamp for 840 * 841 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 842 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 843 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 844 * exhaustion). 845 */ 846 static void touch_core_sched(struct rq *rq, struct task_struct *p) 847 { 848 lockdep_assert_rq_held(rq); 849 850 #ifdef CONFIG_SCHED_CORE 851 /* 852 * It's okay to update the timestamp spuriously. Use 853 * sched_core_disabled() which is cheaper than enabled(). 854 * 855 * As this is used to determine ordering between tasks of sibling CPUs, 856 * it may be better to use per-core dispatch sequence instead. 857 */ 858 if (!sched_core_disabled()) 859 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 860 #endif 861 } 862 863 /** 864 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 865 * @rq: rq to read clock from, must be locked 866 * @p: task being dispatched 867 * 868 * If the BPF scheduler implements custom core-sched ordering via 869 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 870 * ordering within each local DSQ. This function is called from dispatch paths 871 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 872 */ 873 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 874 { 875 lockdep_assert_rq_held(rq); 876 877 #ifdef CONFIG_SCHED_CORE 878 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 879 touch_core_sched(rq, p); 880 #endif 881 } 882 883 static void update_curr_scx(struct rq *rq) 884 { 885 struct task_struct *curr = rq->curr; 886 s64 delta_exec; 887 888 delta_exec = update_curr_common(rq); 889 if (unlikely(delta_exec <= 0)) 890 return; 891 892 if (curr->scx.slice != SCX_SLICE_INF) { 893 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 894 if (!curr->scx.slice) 895 touch_core_sched(rq, curr); 896 } 897 } 898 899 static bool scx_dsq_priq_less(struct rb_node *node_a, 900 const struct rb_node *node_b) 901 { 902 const struct task_struct *a = 903 container_of(node_a, struct task_struct, scx.dsq_priq); 904 const struct task_struct *b = 905 container_of(node_b, struct task_struct, scx.dsq_priq); 906 907 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 908 } 909 910 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 911 { 912 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 913 WRITE_ONCE(dsq->nr, dsq->nr + delta); 914 } 915 916 static void refill_task_slice_dfl(struct task_struct *p) 917 { 918 p->scx.slice = SCX_SLICE_DFL; 919 __scx_add_event(scx_root, SCX_EV_REFILL_SLICE_DFL, 1); 920 } 921 922 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 923 struct task_struct *p, u64 enq_flags) 924 { 925 bool is_local = dsq->id == SCX_DSQ_LOCAL; 926 927 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 928 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 929 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 930 931 if (!is_local) { 932 raw_spin_lock(&dsq->lock); 933 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 934 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 935 /* fall back to the global dsq */ 936 raw_spin_unlock(&dsq->lock); 937 dsq = find_global_dsq(p); 938 raw_spin_lock(&dsq->lock); 939 } 940 } 941 942 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 943 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 944 /* 945 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 946 * their FIFO queues. To avoid confusion and accidentally 947 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 948 * disallow any internal DSQ from doing vtime ordering of 949 * tasks. 950 */ 951 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 952 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 953 } 954 955 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 956 struct rb_node *rbp; 957 958 /* 959 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 960 * linked to both the rbtree and list on PRIQs, this can only be 961 * tested easily when adding the first task. 962 */ 963 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 964 nldsq_next_task(dsq, NULL, false))) 965 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 966 dsq->id); 967 968 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 969 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 970 971 /* 972 * Find the previous task and insert after it on the list so 973 * that @dsq->list is vtime ordered. 974 */ 975 rbp = rb_prev(&p->scx.dsq_priq); 976 if (rbp) { 977 struct task_struct *prev = 978 container_of(rbp, struct task_struct, 979 scx.dsq_priq); 980 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 981 } else { 982 list_add(&p->scx.dsq_list.node, &dsq->list); 983 } 984 } else { 985 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 986 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 987 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 988 dsq->id); 989 990 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 991 list_add(&p->scx.dsq_list.node, &dsq->list); 992 else 993 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 994 } 995 996 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 997 dsq->seq++; 998 p->scx.dsq_seq = dsq->seq; 999 1000 dsq_mod_nr(dsq, 1); 1001 p->scx.dsq = dsq; 1002 1003 /* 1004 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1005 * direct dispatch path, but we clear them here because the direct 1006 * dispatch verdict may be overridden on the enqueue path during e.g. 1007 * bypass. 1008 */ 1009 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1010 p->scx.ddsp_enq_flags = 0; 1011 1012 /* 1013 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1014 * match waiters' load_acquire. 1015 */ 1016 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1017 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1018 1019 if (is_local) { 1020 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1021 bool preempt = false; 1022 1023 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1024 rq->curr->sched_class == &ext_sched_class) { 1025 rq->curr->scx.slice = 0; 1026 preempt = true; 1027 } 1028 1029 if (preempt || sched_class_above(&ext_sched_class, 1030 rq->curr->sched_class)) 1031 resched_curr(rq); 1032 } else { 1033 raw_spin_unlock(&dsq->lock); 1034 } 1035 } 1036 1037 static void task_unlink_from_dsq(struct task_struct *p, 1038 struct scx_dispatch_q *dsq) 1039 { 1040 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1041 1042 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1043 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1044 RB_CLEAR_NODE(&p->scx.dsq_priq); 1045 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1046 } 1047 1048 list_del_init(&p->scx.dsq_list.node); 1049 dsq_mod_nr(dsq, -1); 1050 } 1051 1052 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1053 { 1054 struct scx_dispatch_q *dsq = p->scx.dsq; 1055 bool is_local = dsq == &rq->scx.local_dsq; 1056 1057 if (!dsq) { 1058 /* 1059 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1060 * Unlinking is all that's needed to cancel. 1061 */ 1062 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1063 list_del_init(&p->scx.dsq_list.node); 1064 1065 /* 1066 * When dispatching directly from the BPF scheduler to a local 1067 * DSQ, the task isn't associated with any DSQ but 1068 * @p->scx.holding_cpu may be set under the protection of 1069 * %SCX_OPSS_DISPATCHING. 1070 */ 1071 if (p->scx.holding_cpu >= 0) 1072 p->scx.holding_cpu = -1; 1073 1074 return; 1075 } 1076 1077 if (!is_local) 1078 raw_spin_lock(&dsq->lock); 1079 1080 /* 1081 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1082 * change underneath us. 1083 */ 1084 if (p->scx.holding_cpu < 0) { 1085 /* @p must still be on @dsq, dequeue */ 1086 task_unlink_from_dsq(p, dsq); 1087 } else { 1088 /* 1089 * We're racing against dispatch_to_local_dsq() which already 1090 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1091 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1092 * the race. 1093 */ 1094 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1095 p->scx.holding_cpu = -1; 1096 } 1097 p->scx.dsq = NULL; 1098 1099 if (!is_local) 1100 raw_spin_unlock(&dsq->lock); 1101 } 1102 1103 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1104 struct rq *rq, u64 dsq_id, 1105 struct task_struct *p) 1106 { 1107 struct scx_dispatch_q *dsq; 1108 1109 if (dsq_id == SCX_DSQ_LOCAL) 1110 return &rq->scx.local_dsq; 1111 1112 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1113 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1114 1115 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1116 return find_global_dsq(p); 1117 1118 return &cpu_rq(cpu)->scx.local_dsq; 1119 } 1120 1121 if (dsq_id == SCX_DSQ_GLOBAL) 1122 dsq = find_global_dsq(p); 1123 else 1124 dsq = find_user_dsq(sch, dsq_id); 1125 1126 if (unlikely(!dsq)) { 1127 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1128 dsq_id, p->comm, p->pid); 1129 return find_global_dsq(p); 1130 } 1131 1132 return dsq; 1133 } 1134 1135 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1136 struct task_struct *p, u64 dsq_id, 1137 u64 enq_flags) 1138 { 1139 /* 1140 * Mark that dispatch already happened from ops.select_cpu() or 1141 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1142 * which can never match a valid task pointer. 1143 */ 1144 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1145 1146 /* @p must match the task on the enqueue path */ 1147 if (unlikely(p != ddsp_task)) { 1148 if (IS_ERR(ddsp_task)) 1149 scx_kf_error("%s[%d] already direct-dispatched", 1150 p->comm, p->pid); 1151 else 1152 scx_kf_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1153 ddsp_task->comm, ddsp_task->pid, 1154 p->comm, p->pid); 1155 return; 1156 } 1157 1158 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1159 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1160 1161 p->scx.ddsp_dsq_id = dsq_id; 1162 p->scx.ddsp_enq_flags = enq_flags; 1163 } 1164 1165 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1166 u64 enq_flags) 1167 { 1168 struct rq *rq = task_rq(p); 1169 struct scx_dispatch_q *dsq = 1170 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1171 1172 touch_core_sched_dispatch(rq, p); 1173 1174 p->scx.ddsp_enq_flags |= enq_flags; 1175 1176 /* 1177 * We are in the enqueue path with @rq locked and pinned, and thus can't 1178 * double lock a remote rq and enqueue to its local DSQ. For 1179 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1180 * the enqueue so that it's executed when @rq can be unlocked. 1181 */ 1182 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1183 unsigned long opss; 1184 1185 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1186 1187 switch (opss & SCX_OPSS_STATE_MASK) { 1188 case SCX_OPSS_NONE: 1189 break; 1190 case SCX_OPSS_QUEUEING: 1191 /* 1192 * As @p was never passed to the BPF side, _release is 1193 * not strictly necessary. Still do it for consistency. 1194 */ 1195 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1196 break; 1197 default: 1198 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1199 p->comm, p->pid, opss); 1200 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1201 break; 1202 } 1203 1204 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1205 list_add_tail(&p->scx.dsq_list.node, 1206 &rq->scx.ddsp_deferred_locals); 1207 schedule_deferred(rq); 1208 return; 1209 } 1210 1211 dispatch_enqueue(sch, dsq, p, 1212 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1213 } 1214 1215 static bool scx_rq_online(struct rq *rq) 1216 { 1217 /* 1218 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1219 * the online state as seen from the BPF scheduler. cpu_active() test 1220 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1221 * stay set until the current scheduling operation is complete even if 1222 * we aren't locking @rq. 1223 */ 1224 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1225 } 1226 1227 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1228 int sticky_cpu) 1229 { 1230 struct scx_sched *sch = scx_root; 1231 struct task_struct **ddsp_taskp; 1232 unsigned long qseq; 1233 1234 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1235 1236 /* rq migration */ 1237 if (sticky_cpu == cpu_of(rq)) 1238 goto local_norefill; 1239 1240 /* 1241 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1242 * is offline and are just running the hotplug path. Don't bother the 1243 * BPF scheduler. 1244 */ 1245 if (!scx_rq_online(rq)) 1246 goto local; 1247 1248 if (scx_rq_bypassing(rq)) { 1249 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1250 goto global; 1251 } 1252 1253 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1254 goto direct; 1255 1256 /* see %SCX_OPS_ENQ_EXITING */ 1257 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1258 unlikely(p->flags & PF_EXITING)) { 1259 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1260 goto local; 1261 } 1262 1263 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1264 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1265 is_migration_disabled(p)) { 1266 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1267 goto local; 1268 } 1269 1270 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1271 goto global; 1272 1273 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1274 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1275 1276 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1277 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1278 1279 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1280 WARN_ON_ONCE(*ddsp_taskp); 1281 *ddsp_taskp = p; 1282 1283 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1284 1285 *ddsp_taskp = NULL; 1286 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1287 goto direct; 1288 1289 /* 1290 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1291 * dequeue may be waiting. The store_release matches their load_acquire. 1292 */ 1293 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1294 return; 1295 1296 direct: 1297 direct_dispatch(sch, p, enq_flags); 1298 return; 1299 1300 local: 1301 /* 1302 * For task-ordering, slice refill must be treated as implying the end 1303 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1304 * higher priority it becomes from scx_prio_less()'s POV. 1305 */ 1306 touch_core_sched(rq, p); 1307 refill_task_slice_dfl(p); 1308 local_norefill: 1309 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1310 return; 1311 1312 global: 1313 touch_core_sched(rq, p); /* see the comment in local: */ 1314 refill_task_slice_dfl(p); 1315 dispatch_enqueue(sch, find_global_dsq(p), p, enq_flags); 1316 } 1317 1318 static bool task_runnable(const struct task_struct *p) 1319 { 1320 return !list_empty(&p->scx.runnable_node); 1321 } 1322 1323 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1324 { 1325 lockdep_assert_rq_held(rq); 1326 1327 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1328 p->scx.runnable_at = jiffies; 1329 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1330 } 1331 1332 /* 1333 * list_add_tail() must be used. scx_bypass() depends on tasks being 1334 * appended to the runnable_list. 1335 */ 1336 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1337 } 1338 1339 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1340 { 1341 list_del_init(&p->scx.runnable_node); 1342 if (reset_runnable_at) 1343 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1344 } 1345 1346 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1347 { 1348 struct scx_sched *sch = scx_root; 1349 int sticky_cpu = p->scx.sticky_cpu; 1350 1351 if (enq_flags & ENQUEUE_WAKEUP) 1352 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1353 1354 enq_flags |= rq->scx.extra_enq_flags; 1355 1356 if (sticky_cpu >= 0) 1357 p->scx.sticky_cpu = -1; 1358 1359 /* 1360 * Restoring a running task will be immediately followed by 1361 * set_next_task_scx() which expects the task to not be on the BPF 1362 * scheduler as tasks can only start running through local DSQs. Force 1363 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1364 */ 1365 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1366 sticky_cpu = cpu_of(rq); 1367 1368 if (p->scx.flags & SCX_TASK_QUEUED) { 1369 WARN_ON_ONCE(!task_runnable(p)); 1370 goto out; 1371 } 1372 1373 set_task_runnable(rq, p); 1374 p->scx.flags |= SCX_TASK_QUEUED; 1375 rq->scx.nr_running++; 1376 add_nr_running(rq, 1); 1377 1378 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1379 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1380 1381 if (enq_flags & SCX_ENQ_WAKEUP) 1382 touch_core_sched(rq, p); 1383 1384 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1385 out: 1386 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1387 1388 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1389 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1390 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1391 } 1392 1393 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1394 { 1395 struct scx_sched *sch = scx_root; 1396 unsigned long opss; 1397 1398 /* dequeue is always temporary, don't reset runnable_at */ 1399 clr_task_runnable(p, false); 1400 1401 /* acquire ensures that we see the preceding updates on QUEUED */ 1402 opss = atomic_long_read_acquire(&p->scx.ops_state); 1403 1404 switch (opss & SCX_OPSS_STATE_MASK) { 1405 case SCX_OPSS_NONE: 1406 break; 1407 case SCX_OPSS_QUEUEING: 1408 /* 1409 * QUEUEING is started and finished while holding @p's rq lock. 1410 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1411 */ 1412 BUG(); 1413 case SCX_OPSS_QUEUED: 1414 if (SCX_HAS_OP(sch, dequeue)) 1415 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1416 p, deq_flags); 1417 1418 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1419 SCX_OPSS_NONE)) 1420 break; 1421 fallthrough; 1422 case SCX_OPSS_DISPATCHING: 1423 /* 1424 * If @p is being dispatched from the BPF scheduler to a DSQ, 1425 * wait for the transfer to complete so that @p doesn't get 1426 * added to its DSQ after dequeueing is complete. 1427 * 1428 * As we're waiting on DISPATCHING with the rq locked, the 1429 * dispatching side shouldn't try to lock the rq while 1430 * DISPATCHING is set. See dispatch_to_local_dsq(). 1431 * 1432 * DISPATCHING shouldn't have qseq set and control can reach 1433 * here with NONE @opss from the above QUEUED case block. 1434 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1435 */ 1436 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1437 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1438 break; 1439 } 1440 } 1441 1442 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1443 { 1444 struct scx_sched *sch = scx_root; 1445 1446 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1447 WARN_ON_ONCE(task_runnable(p)); 1448 return true; 1449 } 1450 1451 ops_dequeue(rq, p, deq_flags); 1452 1453 /* 1454 * A currently running task which is going off @rq first gets dequeued 1455 * and then stops running. As we want running <-> stopping transitions 1456 * to be contained within runnable <-> quiescent transitions, trigger 1457 * ->stopping() early here instead of in put_prev_task_scx(). 1458 * 1459 * @p may go through multiple stopping <-> running transitions between 1460 * here and put_prev_task_scx() if task attribute changes occur while 1461 * balance_scx() leaves @rq unlocked. However, they don't contain any 1462 * information meaningful to the BPF scheduler and can be suppressed by 1463 * skipping the callbacks if the task is !QUEUED. 1464 */ 1465 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1466 update_curr_scx(rq); 1467 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1468 } 1469 1470 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1471 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1472 1473 if (deq_flags & SCX_DEQ_SLEEP) 1474 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1475 else 1476 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1477 1478 p->scx.flags &= ~SCX_TASK_QUEUED; 1479 rq->scx.nr_running--; 1480 sub_nr_running(rq, 1); 1481 1482 dispatch_dequeue(rq, p); 1483 return true; 1484 } 1485 1486 static void yield_task_scx(struct rq *rq) 1487 { 1488 struct scx_sched *sch = scx_root; 1489 struct task_struct *p = rq->curr; 1490 1491 if (SCX_HAS_OP(sch, yield)) 1492 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1493 else 1494 p->scx.slice = 0; 1495 } 1496 1497 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1498 { 1499 struct scx_sched *sch = scx_root; 1500 struct task_struct *from = rq->curr; 1501 1502 if (SCX_HAS_OP(sch, yield)) 1503 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1504 from, to); 1505 else 1506 return false; 1507 } 1508 1509 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1510 struct scx_dispatch_q *src_dsq, 1511 struct rq *dst_rq) 1512 { 1513 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1514 1515 /* @dsq is locked and @p is on @dst_rq */ 1516 lockdep_assert_held(&src_dsq->lock); 1517 lockdep_assert_rq_held(dst_rq); 1518 1519 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1520 1521 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1522 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1523 else 1524 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1525 1526 dsq_mod_nr(dst_dsq, 1); 1527 p->scx.dsq = dst_dsq; 1528 } 1529 1530 /** 1531 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1532 * @p: task to move 1533 * @enq_flags: %SCX_ENQ_* 1534 * @src_rq: rq to move the task from, locked on entry, released on return 1535 * @dst_rq: rq to move the task into, locked on return 1536 * 1537 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1538 */ 1539 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1540 struct rq *src_rq, struct rq *dst_rq) 1541 { 1542 lockdep_assert_rq_held(src_rq); 1543 1544 /* the following marks @p MIGRATING which excludes dequeue */ 1545 deactivate_task(src_rq, p, 0); 1546 set_task_cpu(p, cpu_of(dst_rq)); 1547 p->scx.sticky_cpu = cpu_of(dst_rq); 1548 1549 raw_spin_rq_unlock(src_rq); 1550 raw_spin_rq_lock(dst_rq); 1551 1552 /* 1553 * We want to pass scx-specific enq_flags but activate_task() will 1554 * truncate the upper 32 bit. As we own @rq, we can pass them through 1555 * @rq->scx.extra_enq_flags instead. 1556 */ 1557 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1558 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1559 dst_rq->scx.extra_enq_flags = enq_flags; 1560 activate_task(dst_rq, p, 0); 1561 dst_rq->scx.extra_enq_flags = 0; 1562 } 1563 1564 /* 1565 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1566 * differences: 1567 * 1568 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1569 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1570 * this CPU?". 1571 * 1572 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1573 * must be allowed to finish on the CPU that it's currently on regardless of 1574 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1575 * BPF scheduler shouldn't attempt to migrate a task which has migration 1576 * disabled. 1577 * 1578 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1579 * no to the BPF scheduler initiated migrations while offline. 1580 * 1581 * The caller must ensure that @p and @rq are on different CPUs. 1582 */ 1583 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1584 struct task_struct *p, struct rq *rq, 1585 bool enforce) 1586 { 1587 int cpu = cpu_of(rq); 1588 1589 WARN_ON_ONCE(task_cpu(p) == cpu); 1590 1591 /* 1592 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1593 * the pinned CPU in migrate_disable_switch() while @p is being switched 1594 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1595 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1596 * @p passing the below task_allowed_on_cpu() check while migration is 1597 * disabled. 1598 * 1599 * Test the migration disabled state first as the race window is narrow 1600 * and the BPF scheduler failing to check migration disabled state can 1601 * easily be masked if task_allowed_on_cpu() is done first. 1602 */ 1603 if (unlikely(is_migration_disabled(p))) { 1604 if (enforce) 1605 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1606 p->comm, p->pid, task_cpu(p), cpu); 1607 return false; 1608 } 1609 1610 /* 1611 * We don't require the BPF scheduler to avoid dispatching to offline 1612 * CPUs mostly for convenience but also because CPUs can go offline 1613 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1614 * picked CPU is outside the allowed mask. 1615 */ 1616 if (!task_allowed_on_cpu(p, cpu)) { 1617 if (enforce) 1618 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1619 cpu, p->comm, p->pid); 1620 return false; 1621 } 1622 1623 if (!scx_rq_online(rq)) { 1624 if (enforce) 1625 __scx_add_event(scx_root, 1626 SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1627 return false; 1628 } 1629 1630 return true; 1631 } 1632 1633 /** 1634 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1635 * @p: target task 1636 * @dsq: locked DSQ @p is currently on 1637 * @src_rq: rq @p is currently on, stable with @dsq locked 1638 * 1639 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1640 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1641 * required when transferring into a local DSQ. Even when transferring into a 1642 * non-local DSQ, it's better to use the same mechanism to protect against 1643 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1644 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1645 * 1646 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1647 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1648 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1649 * dancing from our side. 1650 * 1651 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1652 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1653 * would be cleared to -1. While other cpus may have updated it to different 1654 * values afterwards, as this operation can't be preempted or recurse, the 1655 * holding_cpu can never become this CPU again before we're done. Thus, we can 1656 * tell whether we lost to dequeue by testing whether the holding_cpu still 1657 * points to this CPU. See dispatch_dequeue() for the counterpart. 1658 * 1659 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1660 * still valid. %false if lost to dequeue. 1661 */ 1662 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1663 struct scx_dispatch_q *dsq, 1664 struct rq *src_rq) 1665 { 1666 s32 cpu = raw_smp_processor_id(); 1667 1668 lockdep_assert_held(&dsq->lock); 1669 1670 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1671 task_unlink_from_dsq(p, dsq); 1672 p->scx.holding_cpu = cpu; 1673 1674 raw_spin_unlock(&dsq->lock); 1675 raw_spin_rq_lock(src_rq); 1676 1677 /* task_rq couldn't have changed if we're still the holding cpu */ 1678 return likely(p->scx.holding_cpu == cpu) && 1679 !WARN_ON_ONCE(src_rq != task_rq(p)); 1680 } 1681 1682 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1683 struct scx_dispatch_q *dsq, struct rq *src_rq) 1684 { 1685 raw_spin_rq_unlock(this_rq); 1686 1687 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1688 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1689 return true; 1690 } else { 1691 raw_spin_rq_unlock(src_rq); 1692 raw_spin_rq_lock(this_rq); 1693 return false; 1694 } 1695 } 1696 1697 /** 1698 * move_task_between_dsqs() - Move a task from one DSQ to another 1699 * @sch: scx_sched being operated on 1700 * @p: target task 1701 * @enq_flags: %SCX_ENQ_* 1702 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1703 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1704 * 1705 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1706 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1707 * will change. As @p's task_rq is locked, this function doesn't need to use the 1708 * holding_cpu mechanism. 1709 * 1710 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1711 * return value, is locked. 1712 */ 1713 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1714 struct task_struct *p, u64 enq_flags, 1715 struct scx_dispatch_q *src_dsq, 1716 struct scx_dispatch_q *dst_dsq) 1717 { 1718 struct rq *src_rq = task_rq(p), *dst_rq; 1719 1720 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1721 lockdep_assert_held(&src_dsq->lock); 1722 lockdep_assert_rq_held(src_rq); 1723 1724 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1725 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1726 if (src_rq != dst_rq && 1727 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1728 dst_dsq = find_global_dsq(p); 1729 dst_rq = src_rq; 1730 } 1731 } else { 1732 /* no need to migrate if destination is a non-local DSQ */ 1733 dst_rq = src_rq; 1734 } 1735 1736 /* 1737 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1738 * CPU, @p will be migrated. 1739 */ 1740 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1741 /* @p is going from a non-local DSQ to a local DSQ */ 1742 if (src_rq == dst_rq) { 1743 task_unlink_from_dsq(p, src_dsq); 1744 move_local_task_to_local_dsq(p, enq_flags, 1745 src_dsq, dst_rq); 1746 raw_spin_unlock(&src_dsq->lock); 1747 } else { 1748 raw_spin_unlock(&src_dsq->lock); 1749 move_remote_task_to_local_dsq(p, enq_flags, 1750 src_rq, dst_rq); 1751 } 1752 } else { 1753 /* 1754 * @p is going from a non-local DSQ to a non-local DSQ. As 1755 * $src_dsq is already locked, do an abbreviated dequeue. 1756 */ 1757 task_unlink_from_dsq(p, src_dsq); 1758 p->scx.dsq = NULL; 1759 raw_spin_unlock(&src_dsq->lock); 1760 1761 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1762 } 1763 1764 return dst_rq; 1765 } 1766 1767 /* 1768 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 1769 * banging on the same DSQ on a large NUMA system to the point where switching 1770 * to the bypass mode can take a long time. Inject artificial delays while the 1771 * bypass mode is switching to guarantee timely completion. 1772 */ 1773 static void scx_breather(struct rq *rq) 1774 { 1775 u64 until; 1776 1777 lockdep_assert_rq_held(rq); 1778 1779 if (likely(!atomic_read(&scx_breather_depth))) 1780 return; 1781 1782 raw_spin_rq_unlock(rq); 1783 1784 until = ktime_get_ns() + NSEC_PER_MSEC; 1785 1786 do { 1787 int cnt = 1024; 1788 while (atomic_read(&scx_breather_depth) && --cnt) 1789 cpu_relax(); 1790 } while (atomic_read(&scx_breather_depth) && 1791 time_before64(ktime_get_ns(), until)); 1792 1793 raw_spin_rq_lock(rq); 1794 } 1795 1796 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1797 struct scx_dispatch_q *dsq) 1798 { 1799 struct task_struct *p; 1800 retry: 1801 /* 1802 * This retry loop can repeatedly race against scx_bypass() dequeueing 1803 * tasks from @dsq trying to put the system into the bypass mode. On 1804 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock 1805 * the machine into soft lockups. Give a breather. 1806 */ 1807 scx_breather(rq); 1808 1809 /* 1810 * The caller can't expect to successfully consume a task if the task's 1811 * addition to @dsq isn't guaranteed to be visible somehow. Test 1812 * @dsq->list without locking and skip if it seems empty. 1813 */ 1814 if (list_empty(&dsq->list)) 1815 return false; 1816 1817 raw_spin_lock(&dsq->lock); 1818 1819 nldsq_for_each_task(p, dsq) { 1820 struct rq *task_rq = task_rq(p); 1821 1822 if (rq == task_rq) { 1823 task_unlink_from_dsq(p, dsq); 1824 move_local_task_to_local_dsq(p, 0, dsq, rq); 1825 raw_spin_unlock(&dsq->lock); 1826 return true; 1827 } 1828 1829 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1830 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1831 return true; 1832 goto retry; 1833 } 1834 } 1835 1836 raw_spin_unlock(&dsq->lock); 1837 return false; 1838 } 1839 1840 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1841 { 1842 int node = cpu_to_node(cpu_of(rq)); 1843 1844 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1845 } 1846 1847 /** 1848 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1849 * @sch: scx_sched being operated on 1850 * @rq: current rq which is locked 1851 * @dst_dsq: destination DSQ 1852 * @p: task to dispatch 1853 * @enq_flags: %SCX_ENQ_* 1854 * 1855 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1856 * DSQ. This function performs all the synchronization dancing needed because 1857 * local DSQs are protected with rq locks. 1858 * 1859 * The caller must have exclusive ownership of @p (e.g. through 1860 * %SCX_OPSS_DISPATCHING). 1861 */ 1862 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1863 struct scx_dispatch_q *dst_dsq, 1864 struct task_struct *p, u64 enq_flags) 1865 { 1866 struct rq *src_rq = task_rq(p); 1867 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1868 struct rq *locked_rq = rq; 1869 1870 /* 1871 * We're synchronized against dequeue through DISPATCHING. As @p can't 1872 * be dequeued, its task_rq and cpus_allowed are stable too. 1873 * 1874 * If dispatching to @rq that @p is already on, no lock dancing needed. 1875 */ 1876 if (rq == src_rq && rq == dst_rq) { 1877 dispatch_enqueue(sch, dst_dsq, p, 1878 enq_flags | SCX_ENQ_CLEAR_OPSS); 1879 return; 1880 } 1881 1882 if (src_rq != dst_rq && 1883 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1884 dispatch_enqueue(sch, find_global_dsq(p), p, 1885 enq_flags | SCX_ENQ_CLEAR_OPSS); 1886 return; 1887 } 1888 1889 /* 1890 * @p is on a possibly remote @src_rq which we need to lock to move the 1891 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1892 * on DISPATCHING, so we can't grab @src_rq lock while holding 1893 * DISPATCHING. 1894 * 1895 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1896 * we're moving from a DSQ and use the same mechanism - mark the task 1897 * under transfer with holding_cpu, release DISPATCHING and then follow 1898 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1899 */ 1900 p->scx.holding_cpu = raw_smp_processor_id(); 1901 1902 /* store_release ensures that dequeue sees the above */ 1903 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1904 1905 /* switch to @src_rq lock */ 1906 if (locked_rq != src_rq) { 1907 raw_spin_rq_unlock(locked_rq); 1908 locked_rq = src_rq; 1909 raw_spin_rq_lock(src_rq); 1910 } 1911 1912 /* task_rq couldn't have changed if we're still the holding cpu */ 1913 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 1914 !WARN_ON_ONCE(src_rq != task_rq(p))) { 1915 /* 1916 * If @p is staying on the same rq, there's no need to go 1917 * through the full deactivate/activate cycle. Optimize by 1918 * abbreviating move_remote_task_to_local_dsq(). 1919 */ 1920 if (src_rq == dst_rq) { 1921 p->scx.holding_cpu = -1; 1922 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 1923 enq_flags); 1924 } else { 1925 move_remote_task_to_local_dsq(p, enq_flags, 1926 src_rq, dst_rq); 1927 /* task has been moved to dst_rq, which is now locked */ 1928 locked_rq = dst_rq; 1929 } 1930 1931 /* if the destination CPU is idle, wake it up */ 1932 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 1933 resched_curr(dst_rq); 1934 } 1935 1936 /* switch back to @rq lock */ 1937 if (locked_rq != rq) { 1938 raw_spin_rq_unlock(locked_rq); 1939 raw_spin_rq_lock(rq); 1940 } 1941 } 1942 1943 /** 1944 * finish_dispatch - Asynchronously finish dispatching a task 1945 * @rq: current rq which is locked 1946 * @p: task to finish dispatching 1947 * @qseq_at_dispatch: qseq when @p started getting dispatched 1948 * @dsq_id: destination DSQ ID 1949 * @enq_flags: %SCX_ENQ_* 1950 * 1951 * Dispatching to local DSQs may need to wait for queueing to complete or 1952 * require rq lock dancing. As we don't wanna do either while inside 1953 * ops.dispatch() to avoid locking order inversion, we split dispatching into 1954 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 1955 * task and its qseq. Once ops.dispatch() returns, this function is called to 1956 * finish up. 1957 * 1958 * There is no guarantee that @p is still valid for dispatching or even that it 1959 * was valid in the first place. Make sure that the task is still owned by the 1960 * BPF scheduler and claim the ownership before dispatching. 1961 */ 1962 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 1963 struct task_struct *p, 1964 unsigned long qseq_at_dispatch, 1965 u64 dsq_id, u64 enq_flags) 1966 { 1967 struct scx_dispatch_q *dsq; 1968 unsigned long opss; 1969 1970 touch_core_sched_dispatch(rq, p); 1971 retry: 1972 /* 1973 * No need for _acquire here. @p is accessed only after a successful 1974 * try_cmpxchg to DISPATCHING. 1975 */ 1976 opss = atomic_long_read(&p->scx.ops_state); 1977 1978 switch (opss & SCX_OPSS_STATE_MASK) { 1979 case SCX_OPSS_DISPATCHING: 1980 case SCX_OPSS_NONE: 1981 /* someone else already got to it */ 1982 return; 1983 case SCX_OPSS_QUEUED: 1984 /* 1985 * If qseq doesn't match, @p has gone through at least one 1986 * dispatch/dequeue and re-enqueue cycle between 1987 * scx_bpf_dsq_insert() and here and we have no claim on it. 1988 */ 1989 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 1990 return; 1991 1992 /* 1993 * While we know @p is accessible, we don't yet have a claim on 1994 * it - the BPF scheduler is allowed to dispatch tasks 1995 * spuriously and there can be a racing dequeue attempt. Let's 1996 * claim @p by atomically transitioning it from QUEUED to 1997 * DISPATCHING. 1998 */ 1999 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2000 SCX_OPSS_DISPATCHING))) 2001 break; 2002 goto retry; 2003 case SCX_OPSS_QUEUEING: 2004 /* 2005 * do_enqueue_task() is in the process of transferring the task 2006 * to the BPF scheduler while holding @p's rq lock. As we aren't 2007 * holding any kernel or BPF resource that the enqueue path may 2008 * depend upon, it's safe to wait. 2009 */ 2010 wait_ops_state(p, opss); 2011 goto retry; 2012 } 2013 2014 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2015 2016 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 2017 2018 if (dsq->id == SCX_DSQ_LOCAL) 2019 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 2020 else 2021 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2022 } 2023 2024 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 2025 { 2026 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2027 u32 u; 2028 2029 for (u = 0; u < dspc->cursor; u++) { 2030 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2031 2032 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 2033 ent->enq_flags); 2034 } 2035 2036 dspc->nr_tasks += dspc->cursor; 2037 dspc->cursor = 0; 2038 } 2039 2040 static int balance_one(struct rq *rq, struct task_struct *prev) 2041 { 2042 struct scx_sched *sch = scx_root; 2043 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2044 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2045 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2046 int nr_loops = SCX_DSP_MAX_LOOPS; 2047 2048 lockdep_assert_rq_held(rq); 2049 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2050 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2051 2052 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2053 unlikely(rq->scx.cpu_released)) { 2054 /* 2055 * If the previous sched_class for the current CPU was not SCX, 2056 * notify the BPF scheduler that it again has control of the 2057 * core. This callback complements ->cpu_release(), which is 2058 * emitted in switch_class(). 2059 */ 2060 if (SCX_HAS_OP(sch, cpu_acquire)) 2061 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2062 cpu_of(rq), NULL); 2063 rq->scx.cpu_released = false; 2064 } 2065 2066 if (prev_on_scx) { 2067 update_curr_scx(rq); 2068 2069 /* 2070 * If @prev is runnable & has slice left, it has priority and 2071 * fetching more just increases latency for the fetched tasks. 2072 * Tell pick_task_scx() to keep running @prev. If the BPF 2073 * scheduler wants to handle this explicitly, it should 2074 * implement ->cpu_release(). 2075 * 2076 * See scx_disable_workfn() for the explanation on the bypassing 2077 * test. 2078 */ 2079 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2080 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2081 goto has_tasks; 2082 } 2083 } 2084 2085 /* if there already are tasks to run, nothing to do */ 2086 if (rq->scx.local_dsq.nr) 2087 goto has_tasks; 2088 2089 if (consume_global_dsq(sch, rq)) 2090 goto has_tasks; 2091 2092 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || 2093 scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2094 goto no_tasks; 2095 2096 dspc->rq = rq; 2097 2098 /* 2099 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2100 * the local DSQ might still end up empty after a successful 2101 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2102 * produced some tasks, retry. The BPF scheduler may depend on this 2103 * looping behavior to simplify its implementation. 2104 */ 2105 do { 2106 dspc->nr_tasks = 0; 2107 2108 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2109 cpu_of(rq), prev_on_scx ? prev : NULL); 2110 2111 flush_dispatch_buf(sch, rq); 2112 2113 if (prev_on_rq && prev->scx.slice) { 2114 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2115 goto has_tasks; 2116 } 2117 if (rq->scx.local_dsq.nr) 2118 goto has_tasks; 2119 if (consume_global_dsq(sch, rq)) 2120 goto has_tasks; 2121 2122 /* 2123 * ops.dispatch() can trap us in this loop by repeatedly 2124 * dispatching ineligible tasks. Break out once in a while to 2125 * allow the watchdog to run. As IRQ can't be enabled in 2126 * balance(), we want to complete this scheduling cycle and then 2127 * start a new one. IOW, we want to call resched_curr() on the 2128 * next, most likely idle, task, not the current one. Use 2129 * scx_bpf_kick_cpu() for deferred kicking. 2130 */ 2131 if (unlikely(!--nr_loops)) { 2132 scx_bpf_kick_cpu(cpu_of(rq), 0); 2133 break; 2134 } 2135 } while (dspc->nr_tasks); 2136 2137 no_tasks: 2138 /* 2139 * Didn't find another task to run. Keep running @prev unless 2140 * %SCX_OPS_ENQ_LAST is in effect. 2141 */ 2142 if (prev_on_rq && 2143 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2144 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2145 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2146 goto has_tasks; 2147 } 2148 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2149 return false; 2150 2151 has_tasks: 2152 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2153 return true; 2154 } 2155 2156 static int balance_scx(struct rq *rq, struct task_struct *prev, 2157 struct rq_flags *rf) 2158 { 2159 int ret; 2160 2161 rq_unpin_lock(rq, rf); 2162 2163 ret = balance_one(rq, prev); 2164 2165 #ifdef CONFIG_SCHED_SMT 2166 /* 2167 * When core-sched is enabled, this ops.balance() call will be followed 2168 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2169 * siblings too. 2170 */ 2171 if (sched_core_enabled(rq)) { 2172 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2173 int scpu; 2174 2175 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2176 struct rq *srq = cpu_rq(scpu); 2177 struct task_struct *sprev = srq->curr; 2178 2179 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2180 update_rq_clock(srq); 2181 balance_one(srq, sprev); 2182 } 2183 } 2184 #endif 2185 rq_repin_lock(rq, rf); 2186 2187 return ret; 2188 } 2189 2190 static void process_ddsp_deferred_locals(struct rq *rq) 2191 { 2192 struct task_struct *p; 2193 2194 lockdep_assert_rq_held(rq); 2195 2196 /* 2197 * Now that @rq can be unlocked, execute the deferred enqueueing of 2198 * tasks directly dispatched to the local DSQs of other CPUs. See 2199 * direct_dispatch(). Keep popping from the head instead of using 2200 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2201 * temporarily. 2202 */ 2203 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2204 struct task_struct, scx.dsq_list.node))) { 2205 struct scx_sched *sch = scx_root; 2206 struct scx_dispatch_q *dsq; 2207 2208 list_del_init(&p->scx.dsq_list.node); 2209 2210 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2211 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2212 dispatch_to_local_dsq(sch, rq, dsq, p, 2213 p->scx.ddsp_enq_flags); 2214 } 2215 } 2216 2217 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2218 { 2219 struct scx_sched *sch = scx_root; 2220 2221 if (p->scx.flags & SCX_TASK_QUEUED) { 2222 /* 2223 * Core-sched might decide to execute @p before it is 2224 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2225 */ 2226 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2227 dispatch_dequeue(rq, p); 2228 } 2229 2230 p->se.exec_start = rq_clock_task(rq); 2231 2232 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2233 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2234 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2235 2236 clr_task_runnable(p, true); 2237 2238 /* 2239 * @p is getting newly scheduled or got kicked after someone updated its 2240 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2241 */ 2242 if ((p->scx.slice == SCX_SLICE_INF) != 2243 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2244 if (p->scx.slice == SCX_SLICE_INF) 2245 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2246 else 2247 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2248 2249 sched_update_tick_dependency(rq); 2250 2251 /* 2252 * For now, let's refresh the load_avgs just when transitioning 2253 * in and out of nohz. In the future, we might want to add a 2254 * mechanism which calls the following periodically on 2255 * tick-stopped CPUs. 2256 */ 2257 update_other_load_avgs(rq); 2258 } 2259 } 2260 2261 static enum scx_cpu_preempt_reason 2262 preempt_reason_from_class(const struct sched_class *class) 2263 { 2264 if (class == &stop_sched_class) 2265 return SCX_CPU_PREEMPT_STOP; 2266 if (class == &dl_sched_class) 2267 return SCX_CPU_PREEMPT_DL; 2268 if (class == &rt_sched_class) 2269 return SCX_CPU_PREEMPT_RT; 2270 return SCX_CPU_PREEMPT_UNKNOWN; 2271 } 2272 2273 static void switch_class(struct rq *rq, struct task_struct *next) 2274 { 2275 struct scx_sched *sch = scx_root; 2276 const struct sched_class *next_class = next->sched_class; 2277 2278 /* 2279 * Pairs with the smp_load_acquire() issued by a CPU in 2280 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2281 * resched. 2282 */ 2283 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2284 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2285 return; 2286 2287 /* 2288 * The callback is conceptually meant to convey that the CPU is no 2289 * longer under the control of SCX. Therefore, don't invoke the callback 2290 * if the next class is below SCX (in which case the BPF scheduler has 2291 * actively decided not to schedule any tasks on the CPU). 2292 */ 2293 if (sched_class_above(&ext_sched_class, next_class)) 2294 return; 2295 2296 /* 2297 * At this point we know that SCX was preempted by a higher priority 2298 * sched_class, so invoke the ->cpu_release() callback if we have not 2299 * done so already. We only send the callback once between SCX being 2300 * preempted, and it regaining control of the CPU. 2301 * 2302 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2303 * next time that balance_scx() is invoked. 2304 */ 2305 if (!rq->scx.cpu_released) { 2306 if (SCX_HAS_OP(sch, cpu_release)) { 2307 struct scx_cpu_release_args args = { 2308 .reason = preempt_reason_from_class(next_class), 2309 .task = next, 2310 }; 2311 2312 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2313 cpu_of(rq), &args); 2314 } 2315 rq->scx.cpu_released = true; 2316 } 2317 } 2318 2319 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2320 struct task_struct *next) 2321 { 2322 struct scx_sched *sch = scx_root; 2323 update_curr_scx(rq); 2324 2325 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2326 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2327 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2328 2329 if (p->scx.flags & SCX_TASK_QUEUED) { 2330 set_task_runnable(rq, p); 2331 2332 /* 2333 * If @p has slice left and is being put, @p is getting 2334 * preempted by a higher priority scheduler class or core-sched 2335 * forcing a different task. Leave it at the head of the local 2336 * DSQ. 2337 */ 2338 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2339 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2340 SCX_ENQ_HEAD); 2341 goto switch_class; 2342 } 2343 2344 /* 2345 * If @p is runnable but we're about to enter a lower 2346 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2347 * ops.enqueue() that @p is the only one available for this cpu, 2348 * which should trigger an explicit follow-up scheduling event. 2349 */ 2350 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2351 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2352 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2353 } else { 2354 do_enqueue_task(rq, p, 0, -1); 2355 } 2356 } 2357 2358 switch_class: 2359 if (next && next->sched_class != &ext_sched_class) 2360 switch_class(rq, next); 2361 } 2362 2363 static struct task_struct *first_local_task(struct rq *rq) 2364 { 2365 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2366 struct task_struct, scx.dsq_list.node); 2367 } 2368 2369 static struct task_struct *pick_task_scx(struct rq *rq) 2370 { 2371 struct task_struct *prev = rq->curr; 2372 struct task_struct *p; 2373 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2374 bool kick_idle = false; 2375 2376 /* 2377 * WORKAROUND: 2378 * 2379 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 2380 * have gone through balance_scx(). Unfortunately, there currently is a 2381 * bug where fair could say yes on balance() but no on pick_task(), 2382 * which then ends up calling pick_task_scx() without preceding 2383 * balance_scx(). 2384 * 2385 * Keep running @prev if possible and avoid stalling from entering idle 2386 * without balancing. 2387 * 2388 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 2389 * if pick_task_scx() is called without preceding balance_scx(). 2390 */ 2391 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 2392 if (prev->scx.flags & SCX_TASK_QUEUED) { 2393 keep_prev = true; 2394 } else { 2395 keep_prev = false; 2396 kick_idle = true; 2397 } 2398 } else if (unlikely(keep_prev && 2399 prev->sched_class != &ext_sched_class)) { 2400 /* 2401 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is 2402 * conditional on scx_enabled() and may have been skipped. 2403 */ 2404 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2405 keep_prev = false; 2406 } 2407 2408 /* 2409 * If balance_scx() is telling us to keep running @prev, replenish slice 2410 * if necessary and keep running @prev. Otherwise, pop the first one 2411 * from the local DSQ. 2412 */ 2413 if (keep_prev) { 2414 p = prev; 2415 if (!p->scx.slice) 2416 refill_task_slice_dfl(p); 2417 } else { 2418 p = first_local_task(rq); 2419 if (!p) { 2420 if (kick_idle) 2421 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 2422 return NULL; 2423 } 2424 2425 if (unlikely(!p->scx.slice)) { 2426 struct scx_sched *sch = scx_root; 2427 2428 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2429 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2430 p->comm, p->pid, __func__); 2431 sch->warned_zero_slice = true; 2432 } 2433 refill_task_slice_dfl(p); 2434 } 2435 } 2436 2437 return p; 2438 } 2439 2440 #ifdef CONFIG_SCHED_CORE 2441 /** 2442 * scx_prio_less - Task ordering for core-sched 2443 * @a: task A 2444 * @b: task B 2445 * @in_fi: in forced idle state 2446 * 2447 * Core-sched is implemented as an additional scheduling layer on top of the 2448 * usual sched_class'es and needs to find out the expected task ordering. For 2449 * SCX, core-sched calls this function to interrogate the task ordering. 2450 * 2451 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2452 * to implement the default task ordering. The older the timestamp, the higher 2453 * priority the task - the global FIFO ordering matching the default scheduling 2454 * behavior. 2455 * 2456 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2457 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2458 */ 2459 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2460 bool in_fi) 2461 { 2462 struct scx_sched *sch = scx_root; 2463 2464 /* 2465 * The const qualifiers are dropped from task_struct pointers when 2466 * calling ops.core_sched_before(). Accesses are controlled by the 2467 * verifier. 2468 */ 2469 if (SCX_HAS_OP(sch, core_sched_before) && 2470 !scx_rq_bypassing(task_rq(a))) 2471 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2472 NULL, 2473 (struct task_struct *)a, 2474 (struct task_struct *)b); 2475 else 2476 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2477 } 2478 #endif /* CONFIG_SCHED_CORE */ 2479 2480 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2481 { 2482 struct scx_sched *sch = scx_root; 2483 bool rq_bypass; 2484 2485 /* 2486 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2487 * can be a good migration opportunity with low cache and memory 2488 * footprint. Returning a CPU different than @prev_cpu triggers 2489 * immediate rq migration. However, for SCX, as the current rq 2490 * association doesn't dictate where the task is going to run, this 2491 * doesn't fit well. If necessary, we can later add a dedicated method 2492 * which can decide to preempt self to force it through the regular 2493 * scheduling path. 2494 */ 2495 if (unlikely(wake_flags & WF_EXEC)) 2496 return prev_cpu; 2497 2498 rq_bypass = scx_rq_bypassing(task_rq(p)); 2499 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2500 s32 cpu; 2501 struct task_struct **ddsp_taskp; 2502 2503 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2504 WARN_ON_ONCE(*ddsp_taskp); 2505 *ddsp_taskp = p; 2506 2507 cpu = SCX_CALL_OP_TASK_RET(sch, 2508 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2509 select_cpu, NULL, p, prev_cpu, 2510 wake_flags); 2511 p->scx.selected_cpu = cpu; 2512 *ddsp_taskp = NULL; 2513 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2514 return cpu; 2515 else 2516 return prev_cpu; 2517 } else { 2518 s32 cpu; 2519 2520 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2521 if (cpu >= 0) { 2522 refill_task_slice_dfl(p); 2523 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2524 } else { 2525 cpu = prev_cpu; 2526 } 2527 p->scx.selected_cpu = cpu; 2528 2529 if (rq_bypass) 2530 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2531 return cpu; 2532 } 2533 } 2534 2535 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2536 { 2537 run_deferred(rq); 2538 } 2539 2540 static void set_cpus_allowed_scx(struct task_struct *p, 2541 struct affinity_context *ac) 2542 { 2543 struct scx_sched *sch = scx_root; 2544 2545 set_cpus_allowed_common(p, ac); 2546 2547 /* 2548 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2549 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2550 * scheduler the effective one. 2551 * 2552 * Fine-grained memory write control is enforced by BPF making the const 2553 * designation pointless. Cast it away when calling the operation. 2554 */ 2555 if (SCX_HAS_OP(sch, set_cpumask)) 2556 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2557 p, (struct cpumask *)p->cpus_ptr); 2558 } 2559 2560 static void handle_hotplug(struct rq *rq, bool online) 2561 { 2562 struct scx_sched *sch = scx_root; 2563 int cpu = cpu_of(rq); 2564 2565 atomic_long_inc(&scx_hotplug_seq); 2566 2567 /* 2568 * scx_root updates are protected by cpus_read_lock() and will stay 2569 * stable here. Note that we can't depend on scx_enabled() test as the 2570 * hotplug ops need to be enabled before __scx_enabled is set. 2571 */ 2572 if (unlikely(!sch)) 2573 return; 2574 2575 if (scx_enabled()) 2576 scx_idle_update_selcpu_topology(&sch->ops); 2577 2578 if (online && SCX_HAS_OP(sch, cpu_online)) 2579 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2580 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2581 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2582 else 2583 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2584 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2585 "cpu %d going %s, exiting scheduler", cpu, 2586 online ? "online" : "offline"); 2587 } 2588 2589 void scx_rq_activate(struct rq *rq) 2590 { 2591 handle_hotplug(rq, true); 2592 } 2593 2594 void scx_rq_deactivate(struct rq *rq) 2595 { 2596 handle_hotplug(rq, false); 2597 } 2598 2599 static void rq_online_scx(struct rq *rq) 2600 { 2601 rq->scx.flags |= SCX_RQ_ONLINE; 2602 } 2603 2604 static void rq_offline_scx(struct rq *rq) 2605 { 2606 rq->scx.flags &= ~SCX_RQ_ONLINE; 2607 } 2608 2609 2610 static bool check_rq_for_timeouts(struct rq *rq) 2611 { 2612 struct scx_sched *sch; 2613 struct task_struct *p; 2614 struct rq_flags rf; 2615 bool timed_out = false; 2616 2617 rq_lock_irqsave(rq, &rf); 2618 sch = rcu_dereference_bh(scx_root); 2619 if (unlikely(!sch)) 2620 goto out_unlock; 2621 2622 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2623 unsigned long last_runnable = p->scx.runnable_at; 2624 2625 if (unlikely(time_after(jiffies, 2626 last_runnable + scx_watchdog_timeout))) { 2627 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2628 2629 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2630 "%s[%d] failed to run for %u.%03us", 2631 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2632 timed_out = true; 2633 break; 2634 } 2635 } 2636 out_unlock: 2637 rq_unlock_irqrestore(rq, &rf); 2638 return timed_out; 2639 } 2640 2641 static void scx_watchdog_workfn(struct work_struct *work) 2642 { 2643 int cpu; 2644 2645 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2646 2647 for_each_online_cpu(cpu) { 2648 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2649 break; 2650 2651 cond_resched(); 2652 } 2653 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2654 scx_watchdog_timeout / 2); 2655 } 2656 2657 void scx_tick(struct rq *rq) 2658 { 2659 struct scx_sched *sch; 2660 unsigned long last_check; 2661 2662 if (!scx_enabled()) 2663 return; 2664 2665 sch = rcu_dereference_bh(scx_root); 2666 if (unlikely(!sch)) 2667 return; 2668 2669 last_check = READ_ONCE(scx_watchdog_timestamp); 2670 if (unlikely(time_after(jiffies, 2671 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2672 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2673 2674 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2675 "watchdog failed to check in for %u.%03us", 2676 dur_ms / 1000, dur_ms % 1000); 2677 } 2678 2679 update_other_load_avgs(rq); 2680 } 2681 2682 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2683 { 2684 struct scx_sched *sch = scx_root; 2685 2686 update_curr_scx(rq); 2687 2688 /* 2689 * While disabling, always resched and refresh core-sched timestamp as 2690 * we can't trust the slice management or ops.core_sched_before(). 2691 */ 2692 if (scx_rq_bypassing(rq)) { 2693 curr->scx.slice = 0; 2694 touch_core_sched(rq, curr); 2695 } else if (SCX_HAS_OP(sch, tick)) { 2696 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2697 } 2698 2699 if (!curr->scx.slice) 2700 resched_curr(rq); 2701 } 2702 2703 #ifdef CONFIG_EXT_GROUP_SCHED 2704 static struct cgroup *tg_cgrp(struct task_group *tg) 2705 { 2706 /* 2707 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2708 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2709 * root cgroup. 2710 */ 2711 if (tg && tg->css.cgroup) 2712 return tg->css.cgroup; 2713 else 2714 return &cgrp_dfl_root.cgrp; 2715 } 2716 2717 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2718 2719 #else /* CONFIG_EXT_GROUP_SCHED */ 2720 2721 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2722 2723 #endif /* CONFIG_EXT_GROUP_SCHED */ 2724 2725 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2726 { 2727 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2728 } 2729 2730 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2731 { 2732 enum scx_task_state prev_state = scx_get_task_state(p); 2733 bool warn = false; 2734 2735 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2736 2737 switch (state) { 2738 case SCX_TASK_NONE: 2739 break; 2740 case SCX_TASK_INIT: 2741 warn = prev_state != SCX_TASK_NONE; 2742 break; 2743 case SCX_TASK_READY: 2744 warn = prev_state == SCX_TASK_NONE; 2745 break; 2746 case SCX_TASK_ENABLED: 2747 warn = prev_state != SCX_TASK_READY; 2748 break; 2749 default: 2750 warn = true; 2751 return; 2752 } 2753 2754 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2755 prev_state, state, p->comm, p->pid); 2756 2757 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2758 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2759 } 2760 2761 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2762 { 2763 struct scx_sched *sch = scx_root; 2764 int ret; 2765 2766 p->scx.disallow = false; 2767 2768 if (SCX_HAS_OP(sch, init_task)) { 2769 struct scx_init_task_args args = { 2770 SCX_INIT_TASK_ARGS_CGROUP(tg) 2771 .fork = fork, 2772 }; 2773 2774 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2775 p, &args); 2776 if (unlikely(ret)) { 2777 ret = ops_sanitize_err(sch, "init_task", ret); 2778 return ret; 2779 } 2780 } 2781 2782 scx_set_task_state(p, SCX_TASK_INIT); 2783 2784 if (p->scx.disallow) { 2785 if (!fork) { 2786 struct rq *rq; 2787 struct rq_flags rf; 2788 2789 rq = task_rq_lock(p, &rf); 2790 2791 /* 2792 * We're in the load path and @p->policy will be applied 2793 * right after. Reverting @p->policy here and rejecting 2794 * %SCHED_EXT transitions from scx_check_setscheduler() 2795 * guarantees that if ops.init_task() sets @p->disallow, 2796 * @p can never be in SCX. 2797 */ 2798 if (p->policy == SCHED_EXT) { 2799 p->policy = SCHED_NORMAL; 2800 atomic_long_inc(&scx_nr_rejected); 2801 } 2802 2803 task_rq_unlock(rq, p, &rf); 2804 } else if (p->policy == SCHED_EXT) { 2805 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2806 p->comm, p->pid); 2807 } 2808 } 2809 2810 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2811 return 0; 2812 } 2813 2814 static void scx_enable_task(struct task_struct *p) 2815 { 2816 struct scx_sched *sch = scx_root; 2817 struct rq *rq = task_rq(p); 2818 u32 weight; 2819 2820 lockdep_assert_rq_held(rq); 2821 2822 /* 2823 * Set the weight before calling ops.enable() so that the scheduler 2824 * doesn't see a stale value if they inspect the task struct. 2825 */ 2826 if (task_has_idle_policy(p)) 2827 weight = WEIGHT_IDLEPRIO; 2828 else 2829 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2830 2831 p->scx.weight = sched_weight_to_cgroup(weight); 2832 2833 if (SCX_HAS_OP(sch, enable)) 2834 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2835 scx_set_task_state(p, SCX_TASK_ENABLED); 2836 2837 if (SCX_HAS_OP(sch, set_weight)) 2838 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2839 p, p->scx.weight); 2840 } 2841 2842 static void scx_disable_task(struct task_struct *p) 2843 { 2844 struct scx_sched *sch = scx_root; 2845 struct rq *rq = task_rq(p); 2846 2847 lockdep_assert_rq_held(rq); 2848 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2849 2850 if (SCX_HAS_OP(sch, disable)) 2851 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2852 scx_set_task_state(p, SCX_TASK_READY); 2853 } 2854 2855 static void scx_exit_task(struct task_struct *p) 2856 { 2857 struct scx_sched *sch = scx_root; 2858 struct scx_exit_task_args args = { 2859 .cancelled = false, 2860 }; 2861 2862 lockdep_assert_rq_held(task_rq(p)); 2863 2864 switch (scx_get_task_state(p)) { 2865 case SCX_TASK_NONE: 2866 return; 2867 case SCX_TASK_INIT: 2868 args.cancelled = true; 2869 break; 2870 case SCX_TASK_READY: 2871 break; 2872 case SCX_TASK_ENABLED: 2873 scx_disable_task(p); 2874 break; 2875 default: 2876 WARN_ON_ONCE(true); 2877 return; 2878 } 2879 2880 if (SCX_HAS_OP(sch, exit_task)) 2881 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2882 p, &args); 2883 scx_set_task_state(p, SCX_TASK_NONE); 2884 } 2885 2886 void init_scx_entity(struct sched_ext_entity *scx) 2887 { 2888 memset(scx, 0, sizeof(*scx)); 2889 INIT_LIST_HEAD(&scx->dsq_list.node); 2890 RB_CLEAR_NODE(&scx->dsq_priq); 2891 scx->sticky_cpu = -1; 2892 scx->holding_cpu = -1; 2893 INIT_LIST_HEAD(&scx->runnable_node); 2894 scx->runnable_at = jiffies; 2895 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2896 scx->slice = SCX_SLICE_DFL; 2897 } 2898 2899 void scx_pre_fork(struct task_struct *p) 2900 { 2901 /* 2902 * BPF scheduler enable/disable paths want to be able to iterate and 2903 * update all tasks which can become complex when racing forks. As 2904 * enable/disable are very cold paths, let's use a percpu_rwsem to 2905 * exclude forks. 2906 */ 2907 percpu_down_read(&scx_fork_rwsem); 2908 } 2909 2910 int scx_fork(struct task_struct *p) 2911 { 2912 percpu_rwsem_assert_held(&scx_fork_rwsem); 2913 2914 if (scx_init_task_enabled) 2915 return scx_init_task(p, task_group(p), true); 2916 else 2917 return 0; 2918 } 2919 2920 void scx_post_fork(struct task_struct *p) 2921 { 2922 if (scx_init_task_enabled) { 2923 scx_set_task_state(p, SCX_TASK_READY); 2924 2925 /* 2926 * Enable the task immediately if it's running on sched_ext. 2927 * Otherwise, it'll be enabled in switching_to_scx() if and 2928 * when it's ever configured to run with a SCHED_EXT policy. 2929 */ 2930 if (p->sched_class == &ext_sched_class) { 2931 struct rq_flags rf; 2932 struct rq *rq; 2933 2934 rq = task_rq_lock(p, &rf); 2935 scx_enable_task(p); 2936 task_rq_unlock(rq, p, &rf); 2937 } 2938 } 2939 2940 spin_lock_irq(&scx_tasks_lock); 2941 list_add_tail(&p->scx.tasks_node, &scx_tasks); 2942 spin_unlock_irq(&scx_tasks_lock); 2943 2944 percpu_up_read(&scx_fork_rwsem); 2945 } 2946 2947 void scx_cancel_fork(struct task_struct *p) 2948 { 2949 if (scx_enabled()) { 2950 struct rq *rq; 2951 struct rq_flags rf; 2952 2953 rq = task_rq_lock(p, &rf); 2954 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 2955 scx_exit_task(p); 2956 task_rq_unlock(rq, p, &rf); 2957 } 2958 2959 percpu_up_read(&scx_fork_rwsem); 2960 } 2961 2962 void sched_ext_free(struct task_struct *p) 2963 { 2964 unsigned long flags; 2965 2966 spin_lock_irqsave(&scx_tasks_lock, flags); 2967 list_del_init(&p->scx.tasks_node); 2968 spin_unlock_irqrestore(&scx_tasks_lock, flags); 2969 2970 /* 2971 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 2972 * transitions can't race us. Disable ops for @p. 2973 */ 2974 if (scx_get_task_state(p) != SCX_TASK_NONE) { 2975 struct rq_flags rf; 2976 struct rq *rq; 2977 2978 rq = task_rq_lock(p, &rf); 2979 scx_exit_task(p); 2980 task_rq_unlock(rq, p, &rf); 2981 } 2982 } 2983 2984 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 2985 const struct load_weight *lw) 2986 { 2987 struct scx_sched *sch = scx_root; 2988 2989 lockdep_assert_rq_held(task_rq(p)); 2990 2991 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 2992 if (SCX_HAS_OP(sch, set_weight)) 2993 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2994 p, p->scx.weight); 2995 } 2996 2997 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 2998 { 2999 } 3000 3001 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3002 { 3003 struct scx_sched *sch = scx_root; 3004 3005 scx_enable_task(p); 3006 3007 /* 3008 * set_cpus_allowed_scx() is not called while @p is associated with a 3009 * different scheduler class. Keep the BPF scheduler up-to-date. 3010 */ 3011 if (SCX_HAS_OP(sch, set_cpumask)) 3012 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 3013 p, (struct cpumask *)p->cpus_ptr); 3014 } 3015 3016 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3017 { 3018 scx_disable_task(p); 3019 } 3020 3021 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3022 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3023 3024 int scx_check_setscheduler(struct task_struct *p, int policy) 3025 { 3026 lockdep_assert_rq_held(task_rq(p)); 3027 3028 /* if disallow, reject transitioning into SCX */ 3029 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3030 p->policy != policy && policy == SCHED_EXT) 3031 return -EACCES; 3032 3033 return 0; 3034 } 3035 3036 #ifdef CONFIG_NO_HZ_FULL 3037 bool scx_can_stop_tick(struct rq *rq) 3038 { 3039 struct task_struct *p = rq->curr; 3040 3041 if (scx_rq_bypassing(rq)) 3042 return false; 3043 3044 if (p->sched_class != &ext_sched_class) 3045 return true; 3046 3047 /* 3048 * @rq can dispatch from different DSQs, so we can't tell whether it 3049 * needs the tick or not by looking at nr_running. Allow stopping ticks 3050 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3051 */ 3052 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3053 } 3054 #endif 3055 3056 #ifdef CONFIG_EXT_GROUP_SCHED 3057 3058 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3059 static bool scx_cgroup_enabled; 3060 3061 void scx_tg_init(struct task_group *tg) 3062 { 3063 tg->scx.weight = CGROUP_WEIGHT_DFL; 3064 tg->scx.bw_period_us = default_bw_period_us(); 3065 tg->scx.bw_quota_us = RUNTIME_INF; 3066 } 3067 3068 int scx_tg_online(struct task_group *tg) 3069 { 3070 struct scx_sched *sch = scx_root; 3071 int ret = 0; 3072 3073 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3074 3075 if (scx_cgroup_enabled) { 3076 if (SCX_HAS_OP(sch, cgroup_init)) { 3077 struct scx_cgroup_init_args args = 3078 { .weight = tg->scx.weight, 3079 .bw_period_us = tg->scx.bw_period_us, 3080 .bw_quota_us = tg->scx.bw_quota_us, 3081 .bw_burst_us = tg->scx.bw_burst_us }; 3082 3083 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3084 NULL, tg->css.cgroup, &args); 3085 if (ret) 3086 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3087 } 3088 if (ret == 0) 3089 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3090 } else { 3091 tg->scx.flags |= SCX_TG_ONLINE; 3092 } 3093 3094 return ret; 3095 } 3096 3097 void scx_tg_offline(struct task_group *tg) 3098 { 3099 struct scx_sched *sch = scx_root; 3100 3101 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3102 3103 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3104 (tg->scx.flags & SCX_TG_INITED)) 3105 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3106 tg->css.cgroup); 3107 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3108 } 3109 3110 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3111 { 3112 struct scx_sched *sch = scx_root; 3113 struct cgroup_subsys_state *css; 3114 struct task_struct *p; 3115 int ret; 3116 3117 if (!scx_cgroup_enabled) 3118 return 0; 3119 3120 cgroup_taskset_for_each(p, css, tset) { 3121 struct cgroup *from = tg_cgrp(task_group(p)); 3122 struct cgroup *to = tg_cgrp(css_tg(css)); 3123 3124 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3125 3126 /* 3127 * sched_move_task() omits identity migrations. Let's match the 3128 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3129 * always match one-to-one. 3130 */ 3131 if (from == to) 3132 continue; 3133 3134 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3135 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3136 cgroup_prep_move, NULL, 3137 p, from, css->cgroup); 3138 if (ret) 3139 goto err; 3140 } 3141 3142 p->scx.cgrp_moving_from = from; 3143 } 3144 3145 return 0; 3146 3147 err: 3148 cgroup_taskset_for_each(p, css, tset) { 3149 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3150 p->scx.cgrp_moving_from) 3151 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3152 p, p->scx.cgrp_moving_from, css->cgroup); 3153 p->scx.cgrp_moving_from = NULL; 3154 } 3155 3156 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3157 } 3158 3159 void scx_cgroup_move_task(struct task_struct *p) 3160 { 3161 struct scx_sched *sch = scx_root; 3162 3163 if (!scx_cgroup_enabled) 3164 return; 3165 3166 /* 3167 * @p must have ops.cgroup_prep_move() called on it and thus 3168 * cgrp_moving_from set. 3169 */ 3170 if (SCX_HAS_OP(sch, cgroup_move) && 3171 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3172 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3173 p, p->scx.cgrp_moving_from, 3174 tg_cgrp(task_group(p))); 3175 p->scx.cgrp_moving_from = NULL; 3176 } 3177 3178 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3179 { 3180 struct scx_sched *sch = scx_root; 3181 struct cgroup_subsys_state *css; 3182 struct task_struct *p; 3183 3184 if (!scx_cgroup_enabled) 3185 return; 3186 3187 cgroup_taskset_for_each(p, css, tset) { 3188 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3189 p->scx.cgrp_moving_from) 3190 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3191 p, p->scx.cgrp_moving_from, css->cgroup); 3192 p->scx.cgrp_moving_from = NULL; 3193 } 3194 } 3195 3196 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3197 { 3198 struct scx_sched *sch = scx_root; 3199 3200 percpu_down_read(&scx_cgroup_ops_rwsem); 3201 3202 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3203 tg->scx.weight != weight) 3204 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3205 tg_cgrp(tg), weight); 3206 3207 tg->scx.weight = weight; 3208 3209 percpu_up_read(&scx_cgroup_ops_rwsem); 3210 } 3211 3212 void scx_group_set_idle(struct task_group *tg, bool idle) 3213 { 3214 /* TODO: Implement ops->cgroup_set_idle() */ 3215 } 3216 3217 void scx_group_set_bandwidth(struct task_group *tg, 3218 u64 period_us, u64 quota_us, u64 burst_us) 3219 { 3220 struct scx_sched *sch = scx_root; 3221 3222 percpu_down_read(&scx_cgroup_ops_rwsem); 3223 3224 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3225 (tg->scx.bw_period_us != period_us || 3226 tg->scx.bw_quota_us != quota_us || 3227 tg->scx.bw_burst_us != burst_us)) 3228 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3229 tg_cgrp(tg), period_us, quota_us, burst_us); 3230 3231 tg->scx.bw_period_us = period_us; 3232 tg->scx.bw_quota_us = quota_us; 3233 tg->scx.bw_burst_us = burst_us; 3234 3235 percpu_up_read(&scx_cgroup_ops_rwsem); 3236 } 3237 3238 static void scx_cgroup_lock(void) 3239 { 3240 percpu_down_write(&scx_cgroup_ops_rwsem); 3241 cgroup_lock(); 3242 } 3243 3244 static void scx_cgroup_unlock(void) 3245 { 3246 cgroup_unlock(); 3247 percpu_up_write(&scx_cgroup_ops_rwsem); 3248 } 3249 3250 #else /* CONFIG_EXT_GROUP_SCHED */ 3251 3252 static void scx_cgroup_lock(void) {} 3253 static void scx_cgroup_unlock(void) {} 3254 3255 #endif /* CONFIG_EXT_GROUP_SCHED */ 3256 3257 /* 3258 * Omitted operations: 3259 * 3260 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3261 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3262 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3263 * 3264 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3265 * 3266 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3267 * their current sched_class. Call them directly from sched core instead. 3268 */ 3269 DEFINE_SCHED_CLASS(ext) = { 3270 .enqueue_task = enqueue_task_scx, 3271 .dequeue_task = dequeue_task_scx, 3272 .yield_task = yield_task_scx, 3273 .yield_to_task = yield_to_task_scx, 3274 3275 .wakeup_preempt = wakeup_preempt_scx, 3276 3277 .balance = balance_scx, 3278 .pick_task = pick_task_scx, 3279 3280 .put_prev_task = put_prev_task_scx, 3281 .set_next_task = set_next_task_scx, 3282 3283 .select_task_rq = select_task_rq_scx, 3284 .task_woken = task_woken_scx, 3285 .set_cpus_allowed = set_cpus_allowed_scx, 3286 3287 .rq_online = rq_online_scx, 3288 .rq_offline = rq_offline_scx, 3289 3290 .task_tick = task_tick_scx, 3291 3292 .switching_to = switching_to_scx, 3293 .switched_from = switched_from_scx, 3294 .switched_to = switched_to_scx, 3295 .reweight_task = reweight_task_scx, 3296 .prio_changed = prio_changed_scx, 3297 3298 .update_curr = update_curr_scx, 3299 3300 #ifdef CONFIG_UCLAMP_TASK 3301 .uclamp_enabled = 1, 3302 #endif 3303 }; 3304 3305 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3306 { 3307 memset(dsq, 0, sizeof(*dsq)); 3308 3309 raw_spin_lock_init(&dsq->lock); 3310 INIT_LIST_HEAD(&dsq->list); 3311 dsq->id = dsq_id; 3312 } 3313 3314 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3315 { 3316 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3317 struct scx_dispatch_q *dsq, *tmp_dsq; 3318 3319 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3320 kfree_rcu(dsq, rcu); 3321 } 3322 3323 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3324 3325 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3326 { 3327 struct scx_dispatch_q *dsq; 3328 unsigned long flags; 3329 3330 rcu_read_lock(); 3331 3332 dsq = find_user_dsq(sch, dsq_id); 3333 if (!dsq) 3334 goto out_unlock_rcu; 3335 3336 raw_spin_lock_irqsave(&dsq->lock, flags); 3337 3338 if (dsq->nr) { 3339 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3340 dsq->id, dsq->nr); 3341 goto out_unlock_dsq; 3342 } 3343 3344 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3345 dsq_hash_params)) 3346 goto out_unlock_dsq; 3347 3348 /* 3349 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3350 * queueing more tasks. As this function can be called from anywhere, 3351 * freeing is bounced through an irq work to avoid nesting RCU 3352 * operations inside scheduler locks. 3353 */ 3354 dsq->id = SCX_DSQ_INVALID; 3355 llist_add(&dsq->free_node, &dsqs_to_free); 3356 irq_work_queue(&free_dsq_irq_work); 3357 3358 out_unlock_dsq: 3359 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3360 out_unlock_rcu: 3361 rcu_read_unlock(); 3362 } 3363 3364 #ifdef CONFIG_EXT_GROUP_SCHED 3365 static void scx_cgroup_exit(struct scx_sched *sch) 3366 { 3367 struct cgroup_subsys_state *css; 3368 3369 scx_cgroup_enabled = false; 3370 3371 /* 3372 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3373 * cgroups and exit all the inited ones, all online cgroups are exited. 3374 */ 3375 css_for_each_descendant_post(css, &root_task_group.css) { 3376 struct task_group *tg = css_tg(css); 3377 3378 if (!(tg->scx.flags & SCX_TG_INITED)) 3379 continue; 3380 tg->scx.flags &= ~SCX_TG_INITED; 3381 3382 if (!sch->ops.cgroup_exit) 3383 continue; 3384 3385 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3386 css->cgroup); 3387 } 3388 } 3389 3390 static int scx_cgroup_init(struct scx_sched *sch) 3391 { 3392 struct cgroup_subsys_state *css; 3393 int ret; 3394 3395 /* 3396 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3397 * cgroups and init, all online cgroups are initialized. 3398 */ 3399 css_for_each_descendant_pre(css, &root_task_group.css) { 3400 struct task_group *tg = css_tg(css); 3401 struct scx_cgroup_init_args args = { 3402 .weight = tg->scx.weight, 3403 .bw_period_us = tg->scx.bw_period_us, 3404 .bw_quota_us = tg->scx.bw_quota_us, 3405 .bw_burst_us = tg->scx.bw_burst_us, 3406 }; 3407 3408 if ((tg->scx.flags & 3409 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3410 continue; 3411 3412 if (!sch->ops.cgroup_init) { 3413 tg->scx.flags |= SCX_TG_INITED; 3414 continue; 3415 } 3416 3417 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3418 css->cgroup, &args); 3419 if (ret) { 3420 css_put(css); 3421 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3422 return ret; 3423 } 3424 tg->scx.flags |= SCX_TG_INITED; 3425 } 3426 3427 WARN_ON_ONCE(scx_cgroup_enabled); 3428 scx_cgroup_enabled = true; 3429 3430 return 0; 3431 } 3432 3433 #else 3434 static void scx_cgroup_exit(struct scx_sched *sch) {} 3435 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3436 #endif 3437 3438 3439 /******************************************************************************** 3440 * Sysfs interface and ops enable/disable. 3441 */ 3442 3443 #define SCX_ATTR(_name) \ 3444 static struct kobj_attribute scx_attr_##_name = { \ 3445 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3446 .show = scx_attr_##_name##_show, \ 3447 } 3448 3449 static ssize_t scx_attr_state_show(struct kobject *kobj, 3450 struct kobj_attribute *ka, char *buf) 3451 { 3452 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3453 } 3454 SCX_ATTR(state); 3455 3456 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3457 struct kobj_attribute *ka, char *buf) 3458 { 3459 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3460 } 3461 SCX_ATTR(switch_all); 3462 3463 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3464 struct kobj_attribute *ka, char *buf) 3465 { 3466 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3467 } 3468 SCX_ATTR(nr_rejected); 3469 3470 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3471 struct kobj_attribute *ka, char *buf) 3472 { 3473 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3474 } 3475 SCX_ATTR(hotplug_seq); 3476 3477 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3478 struct kobj_attribute *ka, char *buf) 3479 { 3480 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3481 } 3482 SCX_ATTR(enable_seq); 3483 3484 static struct attribute *scx_global_attrs[] = { 3485 &scx_attr_state.attr, 3486 &scx_attr_switch_all.attr, 3487 &scx_attr_nr_rejected.attr, 3488 &scx_attr_hotplug_seq.attr, 3489 &scx_attr_enable_seq.attr, 3490 NULL, 3491 }; 3492 3493 static const struct attribute_group scx_global_attr_group = { 3494 .attrs = scx_global_attrs, 3495 }; 3496 3497 static void free_exit_info(struct scx_exit_info *ei); 3498 3499 static void scx_sched_free_rcu_work(struct work_struct *work) 3500 { 3501 struct rcu_work *rcu_work = to_rcu_work(work); 3502 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3503 struct rhashtable_iter rht_iter; 3504 struct scx_dispatch_q *dsq; 3505 int node; 3506 3507 kthread_stop(sch->helper->task); 3508 free_percpu(sch->pcpu); 3509 3510 for_each_node_state(node, N_POSSIBLE) 3511 kfree(sch->global_dsqs[node]); 3512 kfree(sch->global_dsqs); 3513 3514 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3515 do { 3516 rhashtable_walk_start(&rht_iter); 3517 3518 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3519 destroy_dsq(sch, dsq->id); 3520 3521 rhashtable_walk_stop(&rht_iter); 3522 } while (dsq == ERR_PTR(-EAGAIN)); 3523 rhashtable_walk_exit(&rht_iter); 3524 3525 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3526 free_exit_info(sch->exit_info); 3527 kfree(sch); 3528 } 3529 3530 static void scx_kobj_release(struct kobject *kobj) 3531 { 3532 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3533 3534 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3535 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3536 } 3537 3538 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3539 struct kobj_attribute *ka, char *buf) 3540 { 3541 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3542 } 3543 SCX_ATTR(ops); 3544 3545 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3546 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3547 }) 3548 3549 static ssize_t scx_attr_events_show(struct kobject *kobj, 3550 struct kobj_attribute *ka, char *buf) 3551 { 3552 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3553 struct scx_event_stats events; 3554 int at = 0; 3555 3556 scx_read_events(sch, &events); 3557 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3558 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3559 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3560 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3561 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3562 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3563 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3564 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3565 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3566 return at; 3567 } 3568 SCX_ATTR(events); 3569 3570 static struct attribute *scx_sched_attrs[] = { 3571 &scx_attr_ops.attr, 3572 &scx_attr_events.attr, 3573 NULL, 3574 }; 3575 ATTRIBUTE_GROUPS(scx_sched); 3576 3577 static const struct kobj_type scx_ktype = { 3578 .release = scx_kobj_release, 3579 .sysfs_ops = &kobj_sysfs_ops, 3580 .default_groups = scx_sched_groups, 3581 }; 3582 3583 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3584 { 3585 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3586 } 3587 3588 static const struct kset_uevent_ops scx_uevent_ops = { 3589 .uevent = scx_uevent, 3590 }; 3591 3592 /* 3593 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3594 * sched_class. dl/rt are already handled. 3595 */ 3596 bool task_should_scx(int policy) 3597 { 3598 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3599 return false; 3600 if (READ_ONCE(scx_switching_all)) 3601 return true; 3602 return policy == SCHED_EXT; 3603 } 3604 3605 bool scx_allow_ttwu_queue(const struct task_struct *p) 3606 { 3607 return !scx_enabled() || 3608 (scx_root->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) || 3609 p->sched_class != &ext_sched_class; 3610 } 3611 3612 /** 3613 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3614 * 3615 * While there are various reasons why RCU CPU stalls can occur on a system 3616 * that may not be caused by the current BPF scheduler, try kicking out the 3617 * current scheduler in an attempt to recover the system to a good state before 3618 * issuing panics. 3619 */ 3620 bool scx_rcu_cpu_stall(void) 3621 { 3622 struct scx_sched *sch; 3623 3624 rcu_read_lock(); 3625 3626 sch = rcu_dereference(scx_root); 3627 if (unlikely(!sch)) { 3628 rcu_read_unlock(); 3629 return false; 3630 } 3631 3632 switch (scx_enable_state()) { 3633 case SCX_ENABLING: 3634 case SCX_ENABLED: 3635 break; 3636 default: 3637 rcu_read_unlock(); 3638 return false; 3639 } 3640 3641 scx_error(sch, "RCU CPU stall detected!"); 3642 rcu_read_unlock(); 3643 3644 return true; 3645 } 3646 3647 /** 3648 * scx_softlockup - sched_ext softlockup handler 3649 * @dur_s: number of seconds of CPU stuck due to soft lockup 3650 * 3651 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3652 * live-lock the system by making many CPUs target the same DSQ to the point 3653 * where soft-lockup detection triggers. This function is called from 3654 * soft-lockup watchdog when the triggering point is close and tries to unjam 3655 * the system by enabling the breather and aborting the BPF scheduler. 3656 */ 3657 void scx_softlockup(u32 dur_s) 3658 { 3659 struct scx_sched *sch; 3660 3661 rcu_read_lock(); 3662 3663 sch = rcu_dereference(scx_root); 3664 if (unlikely(!sch)) 3665 goto out_unlock; 3666 3667 switch (scx_enable_state()) { 3668 case SCX_ENABLING: 3669 case SCX_ENABLED: 3670 break; 3671 default: 3672 goto out_unlock; 3673 } 3674 3675 /* allow only one instance, cleared at the end of scx_bypass() */ 3676 if (test_and_set_bit(0, &scx_in_softlockup)) 3677 goto out_unlock; 3678 3679 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 3680 smp_processor_id(), dur_s, scx_root->ops.name); 3681 3682 /* 3683 * Some CPUs may be trapped in the dispatch paths. Enable breather 3684 * immediately; otherwise, we might even be able to get to scx_bypass(). 3685 */ 3686 atomic_inc(&scx_breather_depth); 3687 3688 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s); 3689 out_unlock: 3690 rcu_read_unlock(); 3691 } 3692 3693 static void scx_clear_softlockup(void) 3694 { 3695 if (test_and_clear_bit(0, &scx_in_softlockup)) 3696 atomic_dec(&scx_breather_depth); 3697 } 3698 3699 /** 3700 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 3701 * @bypass: true for bypass, false for unbypass 3702 * 3703 * Bypassing guarantees that all runnable tasks make forward progress without 3704 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 3705 * be held by tasks that the BPF scheduler is forgetting to run, which 3706 * unfortunately also excludes toggling the static branches. 3707 * 3708 * Let's work around by overriding a couple ops and modifying behaviors based on 3709 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 3710 * to force global FIFO scheduling. 3711 * 3712 * - ops.select_cpu() is ignored and the default select_cpu() is used. 3713 * 3714 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 3715 * %SCX_OPS_ENQ_LAST is also ignored. 3716 * 3717 * - ops.dispatch() is ignored. 3718 * 3719 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 3720 * can't be trusted. Whenever a tick triggers, the running task is rotated to 3721 * the tail of the queue with core_sched_at touched. 3722 * 3723 * - pick_next_task() suppresses zero slice warning. 3724 * 3725 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 3726 * operations. 3727 * 3728 * - scx_prio_less() reverts to the default core_sched_at order. 3729 */ 3730 static void scx_bypass(bool bypass) 3731 { 3732 static DEFINE_RAW_SPINLOCK(bypass_lock); 3733 static unsigned long bypass_timestamp; 3734 struct scx_sched *sch; 3735 unsigned long flags; 3736 int cpu; 3737 3738 raw_spin_lock_irqsave(&bypass_lock, flags); 3739 sch = rcu_dereference_bh(scx_root); 3740 3741 if (bypass) { 3742 scx_bypass_depth++; 3743 WARN_ON_ONCE(scx_bypass_depth <= 0); 3744 if (scx_bypass_depth != 1) 3745 goto unlock; 3746 bypass_timestamp = ktime_get_ns(); 3747 if (sch) 3748 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 3749 } else { 3750 scx_bypass_depth--; 3751 WARN_ON_ONCE(scx_bypass_depth < 0); 3752 if (scx_bypass_depth != 0) 3753 goto unlock; 3754 if (sch) 3755 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 3756 ktime_get_ns() - bypass_timestamp); 3757 } 3758 3759 atomic_inc(&scx_breather_depth); 3760 3761 /* 3762 * No task property is changing. We just need to make sure all currently 3763 * queued tasks are re-queued according to the new scx_rq_bypassing() 3764 * state. As an optimization, walk each rq's runnable_list instead of 3765 * the scx_tasks list. 3766 * 3767 * This function can't trust the scheduler and thus can't use 3768 * cpus_read_lock(). Walk all possible CPUs instead of online. 3769 */ 3770 for_each_possible_cpu(cpu) { 3771 struct rq *rq = cpu_rq(cpu); 3772 struct task_struct *p, *n; 3773 3774 raw_spin_rq_lock(rq); 3775 3776 if (bypass) { 3777 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 3778 rq->scx.flags |= SCX_RQ_BYPASSING; 3779 } else { 3780 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 3781 rq->scx.flags &= ~SCX_RQ_BYPASSING; 3782 } 3783 3784 /* 3785 * We need to guarantee that no tasks are on the BPF scheduler 3786 * while bypassing. Either we see enabled or the enable path 3787 * sees scx_rq_bypassing() before moving tasks to SCX. 3788 */ 3789 if (!scx_enabled()) { 3790 raw_spin_rq_unlock(rq); 3791 continue; 3792 } 3793 3794 /* 3795 * The use of list_for_each_entry_safe_reverse() is required 3796 * because each task is going to be removed from and added back 3797 * to the runnable_list during iteration. Because they're added 3798 * to the tail of the list, safe reverse iteration can still 3799 * visit all nodes. 3800 */ 3801 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3802 scx.runnable_node) { 3803 struct sched_enq_and_set_ctx ctx; 3804 3805 /* cycling deq/enq is enough, see the function comment */ 3806 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3807 sched_enq_and_set_task(&ctx); 3808 } 3809 3810 /* resched to restore ticks and idle state */ 3811 if (cpu_online(cpu) || cpu == smp_processor_id()) 3812 resched_curr(rq); 3813 3814 raw_spin_rq_unlock(rq); 3815 } 3816 3817 atomic_dec(&scx_breather_depth); 3818 unlock: 3819 raw_spin_unlock_irqrestore(&bypass_lock, flags); 3820 scx_clear_softlockup(); 3821 } 3822 3823 static void free_exit_info(struct scx_exit_info *ei) 3824 { 3825 kvfree(ei->dump); 3826 kfree(ei->msg); 3827 kfree(ei->bt); 3828 kfree(ei); 3829 } 3830 3831 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3832 { 3833 struct scx_exit_info *ei; 3834 3835 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3836 if (!ei) 3837 return NULL; 3838 3839 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 3840 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3841 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 3842 3843 if (!ei->bt || !ei->msg || !ei->dump) { 3844 free_exit_info(ei); 3845 return NULL; 3846 } 3847 3848 return ei; 3849 } 3850 3851 static const char *scx_exit_reason(enum scx_exit_kind kind) 3852 { 3853 switch (kind) { 3854 case SCX_EXIT_UNREG: 3855 return "unregistered from user space"; 3856 case SCX_EXIT_UNREG_BPF: 3857 return "unregistered from BPF"; 3858 case SCX_EXIT_UNREG_KERN: 3859 return "unregistered from the main kernel"; 3860 case SCX_EXIT_SYSRQ: 3861 return "disabled by sysrq-S"; 3862 case SCX_EXIT_ERROR: 3863 return "runtime error"; 3864 case SCX_EXIT_ERROR_BPF: 3865 return "scx_bpf_error"; 3866 case SCX_EXIT_ERROR_STALL: 3867 return "runnable task stall"; 3868 default: 3869 return "<UNKNOWN>"; 3870 } 3871 } 3872 3873 static void scx_disable_workfn(struct kthread_work *work) 3874 { 3875 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 3876 struct scx_exit_info *ei = sch->exit_info; 3877 struct scx_task_iter sti; 3878 struct task_struct *p; 3879 int kind, cpu; 3880 3881 kind = atomic_read(&sch->exit_kind); 3882 while (true) { 3883 if (kind == SCX_EXIT_DONE) /* already disabled? */ 3884 return; 3885 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 3886 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 3887 break; 3888 } 3889 ei->kind = kind; 3890 ei->reason = scx_exit_reason(ei->kind); 3891 3892 /* guarantee forward progress by bypassing scx_ops */ 3893 scx_bypass(true); 3894 3895 switch (scx_set_enable_state(SCX_DISABLING)) { 3896 case SCX_DISABLING: 3897 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3898 break; 3899 case SCX_DISABLED: 3900 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3901 sch->exit_info->msg); 3902 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 3903 goto done; 3904 default: 3905 break; 3906 } 3907 3908 /* 3909 * Here, every runnable task is guaranteed to make forward progress and 3910 * we can safely use blocking synchronization constructs. Actually 3911 * disable ops. 3912 */ 3913 mutex_lock(&scx_enable_mutex); 3914 3915 static_branch_disable(&__scx_switched_all); 3916 WRITE_ONCE(scx_switching_all, false); 3917 3918 /* 3919 * Shut down cgroup support before tasks so that the cgroup attach path 3920 * doesn't race against scx_exit_task(). 3921 */ 3922 scx_cgroup_lock(); 3923 scx_cgroup_exit(sch); 3924 scx_cgroup_unlock(); 3925 3926 /* 3927 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 3928 * must be switched out and exited synchronously. 3929 */ 3930 percpu_down_write(&scx_fork_rwsem); 3931 3932 scx_init_task_enabled = false; 3933 3934 scx_task_iter_start(&sti); 3935 while ((p = scx_task_iter_next_locked(&sti))) { 3936 const struct sched_class *old_class = p->sched_class; 3937 const struct sched_class *new_class = 3938 __setscheduler_class(p->policy, p->prio); 3939 struct sched_enq_and_set_ctx ctx; 3940 3941 if (old_class != new_class && p->se.sched_delayed) 3942 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 3943 3944 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3945 3946 p->sched_class = new_class; 3947 check_class_changing(task_rq(p), p, old_class); 3948 3949 sched_enq_and_set_task(&ctx); 3950 3951 check_class_changed(task_rq(p), p, old_class, p->prio); 3952 scx_exit_task(p); 3953 } 3954 scx_task_iter_stop(&sti); 3955 percpu_up_write(&scx_fork_rwsem); 3956 3957 /* 3958 * Invalidate all the rq clocks to prevent getting outdated 3959 * rq clocks from a previous scx scheduler. 3960 */ 3961 for_each_possible_cpu(cpu) { 3962 struct rq *rq = cpu_rq(cpu); 3963 scx_rq_clock_invalidate(rq); 3964 } 3965 3966 /* no task is on scx, turn off all the switches and flush in-progress calls */ 3967 static_branch_disable(&__scx_enabled); 3968 bitmap_zero(sch->has_op, SCX_OPI_END); 3969 scx_idle_disable(); 3970 synchronize_rcu(); 3971 3972 if (ei->kind >= SCX_EXIT_ERROR) { 3973 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 3974 sch->ops.name, ei->reason); 3975 3976 if (ei->msg[0] != '\0') 3977 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 3978 #ifdef CONFIG_STACKTRACE 3979 stack_trace_print(ei->bt, ei->bt_len, 2); 3980 #endif 3981 } else { 3982 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 3983 sch->ops.name, ei->reason); 3984 } 3985 3986 if (sch->ops.exit) 3987 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 3988 3989 cancel_delayed_work_sync(&scx_watchdog_work); 3990 3991 /* 3992 * scx_root clearing must be inside cpus_read_lock(). See 3993 * handle_hotplug(). 3994 */ 3995 cpus_read_lock(); 3996 RCU_INIT_POINTER(scx_root, NULL); 3997 cpus_read_unlock(); 3998 3999 /* 4000 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 4001 * could observe an object of the same name still in the hierarchy when 4002 * the next scheduler is loaded. 4003 */ 4004 kobject_del(&sch->kobj); 4005 4006 free_percpu(scx_dsp_ctx); 4007 scx_dsp_ctx = NULL; 4008 scx_dsp_max_batch = 0; 4009 4010 mutex_unlock(&scx_enable_mutex); 4011 4012 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4013 done: 4014 scx_bypass(false); 4015 } 4016 4017 static void scx_disable(enum scx_exit_kind kind) 4018 { 4019 int none = SCX_EXIT_NONE; 4020 struct scx_sched *sch; 4021 4022 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4023 kind = SCX_EXIT_ERROR; 4024 4025 rcu_read_lock(); 4026 sch = rcu_dereference(scx_root); 4027 if (sch) { 4028 atomic_try_cmpxchg(&sch->exit_kind, &none, kind); 4029 kthread_queue_work(sch->helper, &sch->disable_work); 4030 } 4031 rcu_read_unlock(); 4032 } 4033 4034 static void dump_newline(struct seq_buf *s) 4035 { 4036 trace_sched_ext_dump(""); 4037 4038 /* @s may be zero sized and seq_buf triggers WARN if so */ 4039 if (s->size) 4040 seq_buf_putc(s, '\n'); 4041 } 4042 4043 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4044 { 4045 va_list args; 4046 4047 #ifdef CONFIG_TRACEPOINTS 4048 if (trace_sched_ext_dump_enabled()) { 4049 /* protected by scx_dump_state()::dump_lock */ 4050 static char line_buf[SCX_EXIT_MSG_LEN]; 4051 4052 va_start(args, fmt); 4053 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4054 va_end(args); 4055 4056 trace_sched_ext_dump(line_buf); 4057 } 4058 #endif 4059 /* @s may be zero sized and seq_buf triggers WARN if so */ 4060 if (s->size) { 4061 va_start(args, fmt); 4062 seq_buf_vprintf(s, fmt, args); 4063 va_end(args); 4064 4065 seq_buf_putc(s, '\n'); 4066 } 4067 } 4068 4069 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4070 const unsigned long *bt, unsigned int len) 4071 { 4072 unsigned int i; 4073 4074 for (i = 0; i < len; i++) 4075 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4076 } 4077 4078 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4079 { 4080 struct scx_dump_data *dd = &scx_dump_data; 4081 4082 lockdep_assert_irqs_disabled(); 4083 4084 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4085 dd->first = true; 4086 dd->cursor = 0; 4087 dd->s = s; 4088 dd->prefix = prefix; 4089 } 4090 4091 static void ops_dump_flush(void) 4092 { 4093 struct scx_dump_data *dd = &scx_dump_data; 4094 char *line = dd->buf.line; 4095 4096 if (!dd->cursor) 4097 return; 4098 4099 /* 4100 * There's something to flush and this is the first line. Insert a blank 4101 * line to distinguish ops dump. 4102 */ 4103 if (dd->first) { 4104 dump_newline(dd->s); 4105 dd->first = false; 4106 } 4107 4108 /* 4109 * There may be multiple lines in $line. Scan and emit each line 4110 * separately. 4111 */ 4112 while (true) { 4113 char *end = line; 4114 char c; 4115 4116 while (*end != '\n' && *end != '\0') 4117 end++; 4118 4119 /* 4120 * If $line overflowed, it may not have newline at the end. 4121 * Always emit with a newline. 4122 */ 4123 c = *end; 4124 *end = '\0'; 4125 dump_line(dd->s, "%s%s", dd->prefix, line); 4126 if (c == '\0') 4127 break; 4128 4129 /* move to the next line */ 4130 end++; 4131 if (*end == '\0') 4132 break; 4133 line = end; 4134 } 4135 4136 dd->cursor = 0; 4137 } 4138 4139 static void ops_dump_exit(void) 4140 { 4141 ops_dump_flush(); 4142 scx_dump_data.cpu = -1; 4143 } 4144 4145 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4146 struct task_struct *p, char marker) 4147 { 4148 static unsigned long bt[SCX_EXIT_BT_LEN]; 4149 struct scx_sched *sch = scx_root; 4150 char dsq_id_buf[19] = "(n/a)"; 4151 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4152 unsigned int bt_len = 0; 4153 4154 if (p->scx.dsq) 4155 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4156 (unsigned long long)p->scx.dsq->id); 4157 4158 dump_newline(s); 4159 dump_line(s, " %c%c %s[%d] %+ldms", 4160 marker, task_state_to_char(p), p->comm, p->pid, 4161 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4162 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4163 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4164 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4165 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4166 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4167 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4168 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4169 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4170 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 4171 4172 if (SCX_HAS_OP(sch, dump_task)) { 4173 ops_dump_init(s, " "); 4174 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4175 ops_dump_exit(); 4176 } 4177 4178 #ifdef CONFIG_STACKTRACE 4179 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4180 #endif 4181 if (bt_len) { 4182 dump_newline(s); 4183 dump_stack_trace(s, " ", bt, bt_len); 4184 } 4185 } 4186 4187 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4188 { 4189 static DEFINE_SPINLOCK(dump_lock); 4190 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4191 struct scx_sched *sch = scx_root; 4192 struct scx_dump_ctx dctx = { 4193 .kind = ei->kind, 4194 .exit_code = ei->exit_code, 4195 .reason = ei->reason, 4196 .at_ns = ktime_get_ns(), 4197 .at_jiffies = jiffies, 4198 }; 4199 struct seq_buf s; 4200 struct scx_event_stats events; 4201 unsigned long flags; 4202 char *buf; 4203 int cpu; 4204 4205 spin_lock_irqsave(&dump_lock, flags); 4206 4207 seq_buf_init(&s, ei->dump, dump_len); 4208 4209 if (ei->kind == SCX_EXIT_NONE) { 4210 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4211 } else { 4212 dump_line(&s, "%s[%d] triggered exit kind %d:", 4213 current->comm, current->pid, ei->kind); 4214 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4215 dump_newline(&s); 4216 dump_line(&s, "Backtrace:"); 4217 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4218 } 4219 4220 if (SCX_HAS_OP(sch, dump)) { 4221 ops_dump_init(&s, ""); 4222 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4223 ops_dump_exit(); 4224 } 4225 4226 dump_newline(&s); 4227 dump_line(&s, "CPU states"); 4228 dump_line(&s, "----------"); 4229 4230 for_each_possible_cpu(cpu) { 4231 struct rq *rq = cpu_rq(cpu); 4232 struct rq_flags rf; 4233 struct task_struct *p; 4234 struct seq_buf ns; 4235 size_t avail, used; 4236 bool idle; 4237 4238 rq_lock(rq, &rf); 4239 4240 idle = list_empty(&rq->scx.runnable_list) && 4241 rq->curr->sched_class == &idle_sched_class; 4242 4243 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4244 goto next; 4245 4246 /* 4247 * We don't yet know whether ops.dump_cpu() will produce output 4248 * and we may want to skip the default CPU dump if it doesn't. 4249 * Use a nested seq_buf to generate the standard dump so that we 4250 * can decide whether to commit later. 4251 */ 4252 avail = seq_buf_get_buf(&s, &buf); 4253 seq_buf_init(&ns, buf, avail); 4254 4255 dump_newline(&ns); 4256 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4257 cpu, rq->scx.nr_running, rq->scx.flags, 4258 rq->scx.cpu_released, rq->scx.ops_qseq, 4259 rq->scx.pnt_seq); 4260 dump_line(&ns, " curr=%s[%d] class=%ps", 4261 rq->curr->comm, rq->curr->pid, 4262 rq->curr->sched_class); 4263 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4264 dump_line(&ns, " cpus_to_kick : %*pb", 4265 cpumask_pr_args(rq->scx.cpus_to_kick)); 4266 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4267 dump_line(&ns, " idle_to_kick : %*pb", 4268 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4269 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4270 dump_line(&ns, " cpus_to_preempt: %*pb", 4271 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4272 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4273 dump_line(&ns, " cpus_to_wait : %*pb", 4274 cpumask_pr_args(rq->scx.cpus_to_wait)); 4275 4276 used = seq_buf_used(&ns); 4277 if (SCX_HAS_OP(sch, dump_cpu)) { 4278 ops_dump_init(&ns, " "); 4279 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4280 &dctx, cpu, idle); 4281 ops_dump_exit(); 4282 } 4283 4284 /* 4285 * If idle && nothing generated by ops.dump_cpu(), there's 4286 * nothing interesting. Skip. 4287 */ 4288 if (idle && used == seq_buf_used(&ns)) 4289 goto next; 4290 4291 /* 4292 * $s may already have overflowed when $ns was created. If so, 4293 * calling commit on it will trigger BUG. 4294 */ 4295 if (avail) { 4296 seq_buf_commit(&s, seq_buf_used(&ns)); 4297 if (seq_buf_has_overflowed(&ns)) 4298 seq_buf_set_overflow(&s); 4299 } 4300 4301 if (rq->curr->sched_class == &ext_sched_class) 4302 scx_dump_task(&s, &dctx, rq->curr, '*'); 4303 4304 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4305 scx_dump_task(&s, &dctx, p, ' '); 4306 next: 4307 rq_unlock(rq, &rf); 4308 } 4309 4310 dump_newline(&s); 4311 dump_line(&s, "Event counters"); 4312 dump_line(&s, "--------------"); 4313 4314 scx_read_events(sch, &events); 4315 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4316 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4317 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4318 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4319 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4320 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4321 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4322 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4323 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4324 4325 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4326 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4327 trunc_marker, sizeof(trunc_marker)); 4328 4329 spin_unlock_irqrestore(&dump_lock, flags); 4330 } 4331 4332 static void scx_error_irq_workfn(struct irq_work *irq_work) 4333 { 4334 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4335 struct scx_exit_info *ei = sch->exit_info; 4336 4337 if (ei->kind >= SCX_EXIT_ERROR) 4338 scx_dump_state(ei, sch->ops.exit_dump_len); 4339 4340 kthread_queue_work(sch->helper, &sch->disable_work); 4341 } 4342 4343 static void scx_vexit(struct scx_sched *sch, 4344 enum scx_exit_kind kind, s64 exit_code, 4345 const char *fmt, va_list args) 4346 { 4347 struct scx_exit_info *ei = sch->exit_info; 4348 int none = SCX_EXIT_NONE; 4349 4350 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4351 return; 4352 4353 ei->exit_code = exit_code; 4354 #ifdef CONFIG_STACKTRACE 4355 if (kind >= SCX_EXIT_ERROR) 4356 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4357 #endif 4358 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4359 4360 /* 4361 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4362 * in scx_disable_workfn(). 4363 */ 4364 ei->kind = kind; 4365 ei->reason = scx_exit_reason(ei->kind); 4366 4367 irq_work_queue(&sch->error_irq_work); 4368 } 4369 4370 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4371 { 4372 struct scx_sched *sch; 4373 int node, ret; 4374 4375 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4376 if (!sch) 4377 return ERR_PTR(-ENOMEM); 4378 4379 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4380 if (!sch->exit_info) { 4381 ret = -ENOMEM; 4382 goto err_free_sch; 4383 } 4384 4385 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4386 if (ret < 0) 4387 goto err_free_ei; 4388 4389 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4390 GFP_KERNEL); 4391 if (!sch->global_dsqs) { 4392 ret = -ENOMEM; 4393 goto err_free_hash; 4394 } 4395 4396 for_each_node_state(node, N_POSSIBLE) { 4397 struct scx_dispatch_q *dsq; 4398 4399 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4400 if (!dsq) { 4401 ret = -ENOMEM; 4402 goto err_free_gdsqs; 4403 } 4404 4405 init_dsq(dsq, SCX_DSQ_GLOBAL); 4406 sch->global_dsqs[node] = dsq; 4407 } 4408 4409 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4410 if (!sch->pcpu) 4411 goto err_free_gdsqs; 4412 4413 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4414 if (!sch->helper) 4415 goto err_free_pcpu; 4416 sched_set_fifo(sch->helper->task); 4417 4418 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4419 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4420 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4421 sch->ops = *ops; 4422 ops->priv = sch; 4423 4424 sch->kobj.kset = scx_kset; 4425 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4426 if (ret < 0) 4427 goto err_stop_helper; 4428 4429 return sch; 4430 4431 err_stop_helper: 4432 kthread_stop(sch->helper->task); 4433 err_free_pcpu: 4434 free_percpu(sch->pcpu); 4435 err_free_gdsqs: 4436 for_each_node_state(node, N_POSSIBLE) 4437 kfree(sch->global_dsqs[node]); 4438 kfree(sch->global_dsqs); 4439 err_free_hash: 4440 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4441 err_free_ei: 4442 free_exit_info(sch->exit_info); 4443 err_free_sch: 4444 kfree(sch); 4445 return ERR_PTR(ret); 4446 } 4447 4448 static void check_hotplug_seq(struct scx_sched *sch, 4449 const struct sched_ext_ops *ops) 4450 { 4451 unsigned long long global_hotplug_seq; 4452 4453 /* 4454 * If a hotplug event has occurred between when a scheduler was 4455 * initialized, and when we were able to attach, exit and notify user 4456 * space about it. 4457 */ 4458 if (ops->hotplug_seq) { 4459 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4460 if (ops->hotplug_seq != global_hotplug_seq) { 4461 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4462 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4463 "expected hotplug seq %llu did not match actual %llu", 4464 ops->hotplug_seq, global_hotplug_seq); 4465 } 4466 } 4467 } 4468 4469 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4470 { 4471 /* 4472 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4473 * ops.enqueue() callback isn't implemented. 4474 */ 4475 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4476 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4477 return -EINVAL; 4478 } 4479 4480 /* 4481 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4482 * selection policy to be enabled. 4483 */ 4484 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4485 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4486 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4487 return -EINVAL; 4488 } 4489 4490 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4491 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4492 4493 return 0; 4494 } 4495 4496 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4497 { 4498 struct scx_sched *sch; 4499 struct scx_task_iter sti; 4500 struct task_struct *p; 4501 unsigned long timeout; 4502 int i, cpu, ret; 4503 4504 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4505 cpu_possible_mask)) { 4506 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4507 return -EINVAL; 4508 } 4509 4510 mutex_lock(&scx_enable_mutex); 4511 4512 if (scx_enable_state() != SCX_DISABLED) { 4513 ret = -EBUSY; 4514 goto err_unlock; 4515 } 4516 4517 sch = scx_alloc_and_add_sched(ops); 4518 if (IS_ERR(sch)) { 4519 ret = PTR_ERR(sch); 4520 goto err_unlock; 4521 } 4522 4523 /* 4524 * Transition to ENABLING and clear exit info to arm the disable path. 4525 * Failure triggers full disabling from here on. 4526 */ 4527 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4528 WARN_ON_ONCE(scx_root); 4529 4530 atomic_long_set(&scx_nr_rejected, 0); 4531 4532 for_each_possible_cpu(cpu) 4533 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4534 4535 /* 4536 * Keep CPUs stable during enable so that the BPF scheduler can track 4537 * online CPUs by watching ->on/offline_cpu() after ->init(). 4538 */ 4539 cpus_read_lock(); 4540 4541 /* 4542 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4543 * See handle_hotplug(). 4544 */ 4545 rcu_assign_pointer(scx_root, sch); 4546 4547 scx_idle_enable(ops); 4548 4549 if (sch->ops.init) { 4550 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4551 if (ret) { 4552 ret = ops_sanitize_err(sch, "init", ret); 4553 cpus_read_unlock(); 4554 scx_error(sch, "ops.init() failed (%d)", ret); 4555 goto err_disable; 4556 } 4557 } 4558 4559 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4560 if (((void (**)(void))ops)[i]) 4561 set_bit(i, sch->has_op); 4562 4563 check_hotplug_seq(sch, ops); 4564 scx_idle_update_selcpu_topology(ops); 4565 4566 cpus_read_unlock(); 4567 4568 ret = validate_ops(sch, ops); 4569 if (ret) 4570 goto err_disable; 4571 4572 WARN_ON_ONCE(scx_dsp_ctx); 4573 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4574 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4575 scx_dsp_max_batch), 4576 __alignof__(struct scx_dsp_ctx)); 4577 if (!scx_dsp_ctx) { 4578 ret = -ENOMEM; 4579 goto err_disable; 4580 } 4581 4582 if (ops->timeout_ms) 4583 timeout = msecs_to_jiffies(ops->timeout_ms); 4584 else 4585 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4586 4587 WRITE_ONCE(scx_watchdog_timeout, timeout); 4588 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4589 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4590 scx_watchdog_timeout / 2); 4591 4592 /* 4593 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4594 * This can lead to stalls as some BPF schedulers (e.g. userspace 4595 * scheduling) may not function correctly before all tasks are switched. 4596 * Init in bypass mode to guarantee forward progress. 4597 */ 4598 scx_bypass(true); 4599 4600 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4601 if (((void (**)(void))ops)[i]) 4602 set_bit(i, sch->has_op); 4603 4604 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 4605 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 4606 4607 /* 4608 * Lock out forks, cgroup on/offlining and moves before opening the 4609 * floodgate so that they don't wander into the operations prematurely. 4610 */ 4611 percpu_down_write(&scx_fork_rwsem); 4612 4613 WARN_ON_ONCE(scx_init_task_enabled); 4614 scx_init_task_enabled = true; 4615 4616 /* 4617 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 4618 * preventing new tasks from being added. No need to exclude tasks 4619 * leaving as sched_ext_free() can handle both prepped and enabled 4620 * tasks. Prep all tasks first and then enable them with preemption 4621 * disabled. 4622 * 4623 * All cgroups should be initialized before scx_init_task() so that the 4624 * BPF scheduler can reliably track each task's cgroup membership from 4625 * scx_init_task(). Lock out cgroup on/offlining and task migrations 4626 * while tasks are being initialized so that scx_cgroup_can_attach() 4627 * never sees uninitialized tasks. 4628 */ 4629 scx_cgroup_lock(); 4630 ret = scx_cgroup_init(sch); 4631 if (ret) 4632 goto err_disable_unlock_all; 4633 4634 scx_task_iter_start(&sti); 4635 while ((p = scx_task_iter_next_locked(&sti))) { 4636 /* 4637 * @p may already be dead, have lost all its usages counts and 4638 * be waiting for RCU grace period before being freed. @p can't 4639 * be initialized for SCX in such cases and should be ignored. 4640 */ 4641 if (!tryget_task_struct(p)) 4642 continue; 4643 4644 scx_task_iter_unlock(&sti); 4645 4646 ret = scx_init_task(p, task_group(p), false); 4647 if (ret) { 4648 put_task_struct(p); 4649 scx_task_iter_stop(&sti); 4650 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 4651 ret, p->comm, p->pid); 4652 goto err_disable_unlock_all; 4653 } 4654 4655 scx_set_task_state(p, SCX_TASK_READY); 4656 4657 put_task_struct(p); 4658 } 4659 scx_task_iter_stop(&sti); 4660 scx_cgroup_unlock(); 4661 percpu_up_write(&scx_fork_rwsem); 4662 4663 /* 4664 * All tasks are READY. It's safe to turn on scx_enabled() and switch 4665 * all eligible tasks. 4666 */ 4667 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 4668 static_branch_enable(&__scx_enabled); 4669 4670 /* 4671 * We're fully committed and can't fail. The task READY -> ENABLED 4672 * transitions here are synchronized against sched_ext_free() through 4673 * scx_tasks_lock. 4674 */ 4675 percpu_down_write(&scx_fork_rwsem); 4676 scx_task_iter_start(&sti); 4677 while ((p = scx_task_iter_next_locked(&sti))) { 4678 const struct sched_class *old_class = p->sched_class; 4679 const struct sched_class *new_class = 4680 __setscheduler_class(p->policy, p->prio); 4681 struct sched_enq_and_set_ctx ctx; 4682 4683 if (old_class != new_class && p->se.sched_delayed) 4684 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4685 4686 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4687 4688 p->scx.slice = SCX_SLICE_DFL; 4689 p->sched_class = new_class; 4690 check_class_changing(task_rq(p), p, old_class); 4691 4692 sched_enq_and_set_task(&ctx); 4693 4694 check_class_changed(task_rq(p), p, old_class, p->prio); 4695 } 4696 scx_task_iter_stop(&sti); 4697 percpu_up_write(&scx_fork_rwsem); 4698 4699 scx_bypass(false); 4700 4701 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 4702 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 4703 goto err_disable; 4704 } 4705 4706 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 4707 static_branch_enable(&__scx_switched_all); 4708 4709 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 4710 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 4711 kobject_uevent(&sch->kobj, KOBJ_ADD); 4712 mutex_unlock(&scx_enable_mutex); 4713 4714 atomic_long_inc(&scx_enable_seq); 4715 4716 return 0; 4717 4718 err_unlock: 4719 mutex_unlock(&scx_enable_mutex); 4720 return ret; 4721 4722 err_disable_unlock_all: 4723 scx_cgroup_unlock(); 4724 percpu_up_write(&scx_fork_rwsem); 4725 /* we'll soon enter disable path, keep bypass on */ 4726 err_disable: 4727 mutex_unlock(&scx_enable_mutex); 4728 /* 4729 * Returning an error code here would not pass all the error information 4730 * to userspace. Record errno using scx_error() for cases scx_error() 4731 * wasn't already invoked and exit indicating success so that the error 4732 * is notified through ops.exit() with all the details. 4733 * 4734 * Flush scx_disable_work to ensure that error is reported before init 4735 * completion. sch's base reference will be put by bpf_scx_unreg(). 4736 */ 4737 scx_error(sch, "scx_enable() failed (%d)", ret); 4738 kthread_flush_work(&sch->disable_work); 4739 return 0; 4740 } 4741 4742 4743 /******************************************************************************** 4744 * bpf_struct_ops plumbing. 4745 */ 4746 #include <linux/bpf_verifier.h> 4747 #include <linux/bpf.h> 4748 #include <linux/btf.h> 4749 4750 static const struct btf_type *task_struct_type; 4751 4752 static bool bpf_scx_is_valid_access(int off, int size, 4753 enum bpf_access_type type, 4754 const struct bpf_prog *prog, 4755 struct bpf_insn_access_aux *info) 4756 { 4757 if (type != BPF_READ) 4758 return false; 4759 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 4760 return false; 4761 if (off % size != 0) 4762 return false; 4763 4764 return btf_ctx_access(off, size, type, prog, info); 4765 } 4766 4767 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 4768 const struct bpf_reg_state *reg, int off, 4769 int size) 4770 { 4771 const struct btf_type *t; 4772 4773 t = btf_type_by_id(reg->btf, reg->btf_id); 4774 if (t == task_struct_type) { 4775 if (off >= offsetof(struct task_struct, scx.slice) && 4776 off + size <= offsetofend(struct task_struct, scx.slice)) 4777 return SCALAR_VALUE; 4778 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 4779 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 4780 return SCALAR_VALUE; 4781 if (off >= offsetof(struct task_struct, scx.disallow) && 4782 off + size <= offsetofend(struct task_struct, scx.disallow)) 4783 return SCALAR_VALUE; 4784 } 4785 4786 return -EACCES; 4787 } 4788 4789 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 4790 .get_func_proto = bpf_base_func_proto, 4791 .is_valid_access = bpf_scx_is_valid_access, 4792 .btf_struct_access = bpf_scx_btf_struct_access, 4793 }; 4794 4795 static int bpf_scx_init_member(const struct btf_type *t, 4796 const struct btf_member *member, 4797 void *kdata, const void *udata) 4798 { 4799 const struct sched_ext_ops *uops = udata; 4800 struct sched_ext_ops *ops = kdata; 4801 u32 moff = __btf_member_bit_offset(t, member) / 8; 4802 int ret; 4803 4804 switch (moff) { 4805 case offsetof(struct sched_ext_ops, dispatch_max_batch): 4806 if (*(u32 *)(udata + moff) > INT_MAX) 4807 return -E2BIG; 4808 ops->dispatch_max_batch = *(u32 *)(udata + moff); 4809 return 1; 4810 case offsetof(struct sched_ext_ops, flags): 4811 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 4812 return -EINVAL; 4813 ops->flags = *(u64 *)(udata + moff); 4814 return 1; 4815 case offsetof(struct sched_ext_ops, name): 4816 ret = bpf_obj_name_cpy(ops->name, uops->name, 4817 sizeof(ops->name)); 4818 if (ret < 0) 4819 return ret; 4820 if (ret == 0) 4821 return -EINVAL; 4822 return 1; 4823 case offsetof(struct sched_ext_ops, timeout_ms): 4824 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 4825 SCX_WATCHDOG_MAX_TIMEOUT) 4826 return -E2BIG; 4827 ops->timeout_ms = *(u32 *)(udata + moff); 4828 return 1; 4829 case offsetof(struct sched_ext_ops, exit_dump_len): 4830 ops->exit_dump_len = 4831 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 4832 return 1; 4833 case offsetof(struct sched_ext_ops, hotplug_seq): 4834 ops->hotplug_seq = *(u64 *)(udata + moff); 4835 return 1; 4836 } 4837 4838 return 0; 4839 } 4840 4841 static int bpf_scx_check_member(const struct btf_type *t, 4842 const struct btf_member *member, 4843 const struct bpf_prog *prog) 4844 { 4845 u32 moff = __btf_member_bit_offset(t, member) / 8; 4846 4847 switch (moff) { 4848 case offsetof(struct sched_ext_ops, init_task): 4849 #ifdef CONFIG_EXT_GROUP_SCHED 4850 case offsetof(struct sched_ext_ops, cgroup_init): 4851 case offsetof(struct sched_ext_ops, cgroup_exit): 4852 case offsetof(struct sched_ext_ops, cgroup_prep_move): 4853 #endif 4854 case offsetof(struct sched_ext_ops, cpu_online): 4855 case offsetof(struct sched_ext_ops, cpu_offline): 4856 case offsetof(struct sched_ext_ops, init): 4857 case offsetof(struct sched_ext_ops, exit): 4858 break; 4859 default: 4860 if (prog->sleepable) 4861 return -EINVAL; 4862 } 4863 4864 return 0; 4865 } 4866 4867 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4868 { 4869 return scx_enable(kdata, link); 4870 } 4871 4872 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4873 { 4874 struct sched_ext_ops *ops = kdata; 4875 struct scx_sched *sch = ops->priv; 4876 4877 scx_disable(SCX_EXIT_UNREG); 4878 kthread_flush_work(&sch->disable_work); 4879 kobject_put(&sch->kobj); 4880 } 4881 4882 static int bpf_scx_init(struct btf *btf) 4883 { 4884 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 4885 4886 return 0; 4887 } 4888 4889 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 4890 { 4891 /* 4892 * sched_ext does not support updating the actively-loaded BPF 4893 * scheduler, as registering a BPF scheduler can always fail if the 4894 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 4895 * etc. Similarly, we can always race with unregistration happening 4896 * elsewhere, such as with sysrq. 4897 */ 4898 return -EOPNOTSUPP; 4899 } 4900 4901 static int bpf_scx_validate(void *kdata) 4902 { 4903 return 0; 4904 } 4905 4906 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 4907 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 4908 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 4909 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 4910 static void sched_ext_ops__tick(struct task_struct *p) {} 4911 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 4912 static void sched_ext_ops__running(struct task_struct *p) {} 4913 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 4914 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 4915 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 4916 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 4917 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 4918 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 4919 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 4920 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 4921 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 4922 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 4923 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 4924 static void sched_ext_ops__enable(struct task_struct *p) {} 4925 static void sched_ext_ops__disable(struct task_struct *p) {} 4926 #ifdef CONFIG_EXT_GROUP_SCHED 4927 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 4928 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 4929 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 4930 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 4931 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 4932 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 4933 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 4934 #endif 4935 static void sched_ext_ops__cpu_online(s32 cpu) {} 4936 static void sched_ext_ops__cpu_offline(s32 cpu) {} 4937 static s32 sched_ext_ops__init(void) { return -EINVAL; } 4938 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 4939 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 4940 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 4941 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 4942 4943 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 4944 .select_cpu = sched_ext_ops__select_cpu, 4945 .enqueue = sched_ext_ops__enqueue, 4946 .dequeue = sched_ext_ops__dequeue, 4947 .dispatch = sched_ext_ops__dispatch, 4948 .tick = sched_ext_ops__tick, 4949 .runnable = sched_ext_ops__runnable, 4950 .running = sched_ext_ops__running, 4951 .stopping = sched_ext_ops__stopping, 4952 .quiescent = sched_ext_ops__quiescent, 4953 .yield = sched_ext_ops__yield, 4954 .core_sched_before = sched_ext_ops__core_sched_before, 4955 .set_weight = sched_ext_ops__set_weight, 4956 .set_cpumask = sched_ext_ops__set_cpumask, 4957 .update_idle = sched_ext_ops__update_idle, 4958 .cpu_acquire = sched_ext_ops__cpu_acquire, 4959 .cpu_release = sched_ext_ops__cpu_release, 4960 .init_task = sched_ext_ops__init_task, 4961 .exit_task = sched_ext_ops__exit_task, 4962 .enable = sched_ext_ops__enable, 4963 .disable = sched_ext_ops__disable, 4964 #ifdef CONFIG_EXT_GROUP_SCHED 4965 .cgroup_init = sched_ext_ops__cgroup_init, 4966 .cgroup_exit = sched_ext_ops__cgroup_exit, 4967 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 4968 .cgroup_move = sched_ext_ops__cgroup_move, 4969 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 4970 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 4971 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 4972 #endif 4973 .cpu_online = sched_ext_ops__cpu_online, 4974 .cpu_offline = sched_ext_ops__cpu_offline, 4975 .init = sched_ext_ops__init, 4976 .exit = sched_ext_ops__exit, 4977 .dump = sched_ext_ops__dump, 4978 .dump_cpu = sched_ext_ops__dump_cpu, 4979 .dump_task = sched_ext_ops__dump_task, 4980 }; 4981 4982 static struct bpf_struct_ops bpf_sched_ext_ops = { 4983 .verifier_ops = &bpf_scx_verifier_ops, 4984 .reg = bpf_scx_reg, 4985 .unreg = bpf_scx_unreg, 4986 .check_member = bpf_scx_check_member, 4987 .init_member = bpf_scx_init_member, 4988 .init = bpf_scx_init, 4989 .update = bpf_scx_update, 4990 .validate = bpf_scx_validate, 4991 .name = "sched_ext_ops", 4992 .owner = THIS_MODULE, 4993 .cfi_stubs = &__bpf_ops_sched_ext_ops 4994 }; 4995 4996 4997 /******************************************************************************** 4998 * System integration and init. 4999 */ 5000 5001 static void sysrq_handle_sched_ext_reset(u8 key) 5002 { 5003 scx_disable(SCX_EXIT_SYSRQ); 5004 } 5005 5006 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5007 .handler = sysrq_handle_sched_ext_reset, 5008 .help_msg = "reset-sched-ext(S)", 5009 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5010 .enable_mask = SYSRQ_ENABLE_RTNICE, 5011 }; 5012 5013 static void sysrq_handle_sched_ext_dump(u8 key) 5014 { 5015 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5016 5017 if (scx_enabled()) 5018 scx_dump_state(&ei, 0); 5019 } 5020 5021 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5022 .handler = sysrq_handle_sched_ext_dump, 5023 .help_msg = "dump-sched-ext(D)", 5024 .action_msg = "Trigger sched_ext debug dump", 5025 .enable_mask = SYSRQ_ENABLE_RTNICE, 5026 }; 5027 5028 static bool can_skip_idle_kick(struct rq *rq) 5029 { 5030 lockdep_assert_rq_held(rq); 5031 5032 /* 5033 * We can skip idle kicking if @rq is going to go through at least one 5034 * full SCX scheduling cycle before going idle. Just checking whether 5035 * curr is not idle is insufficient because we could be racing 5036 * balance_one() trying to pull the next task from a remote rq, which 5037 * may fail, and @rq may become idle afterwards. 5038 * 5039 * The race window is small and we don't and can't guarantee that @rq is 5040 * only kicked while idle anyway. Skip only when sure. 5041 */ 5042 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5043 } 5044 5045 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5046 { 5047 struct rq *rq = cpu_rq(cpu); 5048 struct scx_rq *this_scx = &this_rq->scx; 5049 bool should_wait = false; 5050 unsigned long flags; 5051 5052 raw_spin_rq_lock_irqsave(rq, flags); 5053 5054 /* 5055 * During CPU hotplug, a CPU may depend on kicking itself to make 5056 * forward progress. Allow kicking self regardless of online state. 5057 */ 5058 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5059 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5060 if (rq->curr->sched_class == &ext_sched_class) 5061 rq->curr->scx.slice = 0; 5062 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5063 } 5064 5065 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5066 pseqs[cpu] = rq->scx.pnt_seq; 5067 should_wait = true; 5068 } 5069 5070 resched_curr(rq); 5071 } else { 5072 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5073 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5074 } 5075 5076 raw_spin_rq_unlock_irqrestore(rq, flags); 5077 5078 return should_wait; 5079 } 5080 5081 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5082 { 5083 struct rq *rq = cpu_rq(cpu); 5084 unsigned long flags; 5085 5086 raw_spin_rq_lock_irqsave(rq, flags); 5087 5088 if (!can_skip_idle_kick(rq) && 5089 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5090 resched_curr(rq); 5091 5092 raw_spin_rq_unlock_irqrestore(rq, flags); 5093 } 5094 5095 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5096 { 5097 struct rq *this_rq = this_rq(); 5098 struct scx_rq *this_scx = &this_rq->scx; 5099 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 5100 bool should_wait = false; 5101 s32 cpu; 5102 5103 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5104 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5105 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5106 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5107 } 5108 5109 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5110 kick_one_cpu_if_idle(cpu, this_rq); 5111 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5112 } 5113 5114 if (!should_wait) 5115 return; 5116 5117 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5118 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5119 5120 if (cpu != cpu_of(this_rq)) { 5121 /* 5122 * Pairs with smp_store_release() issued by this CPU in 5123 * switch_class() on the resched path. 5124 * 5125 * We busy-wait here to guarantee that no other task can 5126 * be scheduled on our core before the target CPU has 5127 * entered the resched path. 5128 */ 5129 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5130 cpu_relax(); 5131 } 5132 5133 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5134 } 5135 } 5136 5137 /** 5138 * print_scx_info - print out sched_ext scheduler state 5139 * @log_lvl: the log level to use when printing 5140 * @p: target task 5141 * 5142 * If a sched_ext scheduler is enabled, print the name and state of the 5143 * scheduler. If @p is on sched_ext, print further information about the task. 5144 * 5145 * This function can be safely called on any task as long as the task_struct 5146 * itself is accessible. While safe, this function isn't synchronized and may 5147 * print out mixups or garbages of limited length. 5148 */ 5149 void print_scx_info(const char *log_lvl, struct task_struct *p) 5150 { 5151 struct scx_sched *sch = scx_root; 5152 enum scx_enable_state state = scx_enable_state(); 5153 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5154 char runnable_at_buf[22] = "?"; 5155 struct sched_class *class; 5156 unsigned long runnable_at; 5157 5158 if (state == SCX_DISABLED) 5159 return; 5160 5161 /* 5162 * Carefully check if the task was running on sched_ext, and then 5163 * carefully copy the time it's been runnable, and its state. 5164 */ 5165 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5166 class != &ext_sched_class) { 5167 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5168 scx_enable_state_str[state], all); 5169 return; 5170 } 5171 5172 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5173 sizeof(runnable_at))) 5174 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5175 jiffies_delta_msecs(runnable_at, jiffies)); 5176 5177 /* print everything onto one line to conserve console space */ 5178 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5179 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5180 runnable_at_buf); 5181 } 5182 5183 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5184 { 5185 /* 5186 * SCX schedulers often have userspace components which are sometimes 5187 * involved in critial scheduling paths. PM operations involve freezing 5188 * userspace which can lead to scheduling misbehaviors including stalls. 5189 * Let's bypass while PM operations are in progress. 5190 */ 5191 switch (event) { 5192 case PM_HIBERNATION_PREPARE: 5193 case PM_SUSPEND_PREPARE: 5194 case PM_RESTORE_PREPARE: 5195 scx_bypass(true); 5196 break; 5197 case PM_POST_HIBERNATION: 5198 case PM_POST_SUSPEND: 5199 case PM_POST_RESTORE: 5200 scx_bypass(false); 5201 break; 5202 } 5203 5204 return NOTIFY_OK; 5205 } 5206 5207 static struct notifier_block scx_pm_notifier = { 5208 .notifier_call = scx_pm_handler, 5209 }; 5210 5211 void __init init_sched_ext_class(void) 5212 { 5213 s32 cpu, v; 5214 5215 /* 5216 * The following is to prevent the compiler from optimizing out the enum 5217 * definitions so that BPF scheduler implementations can use them 5218 * through the generated vmlinux.h. 5219 */ 5220 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5221 SCX_TG_ONLINE); 5222 5223 scx_idle_init_masks(); 5224 5225 scx_kick_cpus_pnt_seqs = 5226 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 5227 __alignof__(scx_kick_cpus_pnt_seqs[0])); 5228 BUG_ON(!scx_kick_cpus_pnt_seqs); 5229 5230 for_each_possible_cpu(cpu) { 5231 struct rq *rq = cpu_rq(cpu); 5232 int n = cpu_to_node(cpu); 5233 5234 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5235 INIT_LIST_HEAD(&rq->scx.runnable_list); 5236 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5237 5238 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5239 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5240 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5241 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5242 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5243 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5244 5245 if (cpu_online(cpu)) 5246 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5247 } 5248 5249 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5250 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5251 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5252 } 5253 5254 5255 /******************************************************************************** 5256 * Helpers that can be called from the BPF scheduler. 5257 */ 5258 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 5259 { 5260 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5261 return false; 5262 5263 lockdep_assert_irqs_disabled(); 5264 5265 if (unlikely(!p)) { 5266 scx_kf_error("called with NULL task"); 5267 return false; 5268 } 5269 5270 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5271 scx_kf_error("invalid enq_flags 0x%llx", enq_flags); 5272 return false; 5273 } 5274 5275 return true; 5276 } 5277 5278 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 5279 u64 enq_flags) 5280 { 5281 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5282 struct task_struct *ddsp_task; 5283 5284 ddsp_task = __this_cpu_read(direct_dispatch_task); 5285 if (ddsp_task) { 5286 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 5287 return; 5288 } 5289 5290 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5291 scx_kf_error("dispatch buffer overflow"); 5292 return; 5293 } 5294 5295 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5296 .task = p, 5297 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5298 .dsq_id = dsq_id, 5299 .enq_flags = enq_flags, 5300 }; 5301 } 5302 5303 __bpf_kfunc_start_defs(); 5304 5305 /** 5306 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5307 * @p: task_struct to insert 5308 * @dsq_id: DSQ to insert into 5309 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5310 * @enq_flags: SCX_ENQ_* 5311 * 5312 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5313 * call this function spuriously. Can be called from ops.enqueue(), 5314 * ops.select_cpu(), and ops.dispatch(). 5315 * 5316 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5317 * and @p must match the task being enqueued. 5318 * 5319 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5320 * will be directly inserted into the corresponding dispatch queue after 5321 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5322 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5323 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5324 * task is inserted. 5325 * 5326 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5327 * and this function can be called upto ops.dispatch_max_batch times to insert 5328 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5329 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5330 * counter. 5331 * 5332 * This function doesn't have any locking restrictions and may be called under 5333 * BPF locks (in the future when BPF introduces more flexible locking). 5334 * 5335 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5336 * exhaustion. If zero, the current residual slice is maintained. If 5337 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5338 * scx_bpf_kick_cpu() to trigger scheduling. 5339 */ 5340 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 5341 u64 enq_flags) 5342 { 5343 if (!scx_dsq_insert_preamble(p, enq_flags)) 5344 return; 5345 5346 if (slice) 5347 p->scx.slice = slice; 5348 else 5349 p->scx.slice = p->scx.slice ?: 1; 5350 5351 scx_dsq_insert_commit(p, dsq_id, enq_flags); 5352 } 5353 5354 /** 5355 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 5356 * @p: task_struct to insert 5357 * @dsq_id: DSQ to insert into 5358 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5359 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5360 * @enq_flags: SCX_ENQ_* 5361 * 5362 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 5363 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 5364 * are identical to scx_bpf_dsq_insert(). 5365 * 5366 * @vtime ordering is according to time_before64() which considers wrapping. A 5367 * numerically larger vtime may indicate an earlier position in the ordering and 5368 * vice-versa. 5369 * 5370 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5371 * function must not be called on a DSQ which already has one or more FIFO tasks 5372 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5373 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5374 */ 5375 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5376 u64 slice, u64 vtime, u64 enq_flags) 5377 { 5378 if (!scx_dsq_insert_preamble(p, enq_flags)) 5379 return; 5380 5381 if (slice) 5382 p->scx.slice = slice; 5383 else 5384 p->scx.slice = p->scx.slice ?: 1; 5385 5386 p->scx.dsq_vtime = vtime; 5387 5388 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5389 } 5390 5391 __bpf_kfunc_end_defs(); 5392 5393 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5394 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5395 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5396 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5397 5398 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5399 .owner = THIS_MODULE, 5400 .set = &scx_kfunc_ids_enqueue_dispatch, 5401 }; 5402 5403 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5404 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5405 { 5406 struct scx_sched *sch = scx_root; 5407 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5408 struct rq *this_rq, *src_rq, *locked_rq; 5409 bool dispatched = false; 5410 bool in_balance; 5411 unsigned long flags; 5412 5413 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 5414 return false; 5415 5416 /* 5417 * Can be called from either ops.dispatch() locking this_rq() or any 5418 * context where no rq lock is held. If latter, lock @p's task_rq which 5419 * we'll likely need anyway. 5420 */ 5421 src_rq = task_rq(p); 5422 5423 local_irq_save(flags); 5424 this_rq = this_rq(); 5425 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5426 5427 if (in_balance) { 5428 if (this_rq != src_rq) { 5429 raw_spin_rq_unlock(this_rq); 5430 raw_spin_rq_lock(src_rq); 5431 } 5432 } else { 5433 raw_spin_rq_lock(src_rq); 5434 } 5435 5436 /* 5437 * If the BPF scheduler keeps calling this function repeatedly, it can 5438 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 5439 * breather if necessary. 5440 */ 5441 scx_breather(src_rq); 5442 5443 locked_rq = src_rq; 5444 raw_spin_lock(&src_dsq->lock); 5445 5446 /* 5447 * Did someone else get to it? @p could have already left $src_dsq, got 5448 * re-enqueud, or be in the process of being consumed by someone else. 5449 */ 5450 if (unlikely(p->scx.dsq != src_dsq || 5451 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5452 p->scx.holding_cpu >= 0) || 5453 WARN_ON_ONCE(src_rq != task_rq(p))) { 5454 raw_spin_unlock(&src_dsq->lock); 5455 goto out; 5456 } 5457 5458 /* @p is still on $src_dsq and stable, determine the destination */ 5459 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5460 5461 /* 5462 * Apply vtime and slice updates before moving so that the new time is 5463 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5464 * this is safe as we're locking it. 5465 */ 5466 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5467 p->scx.dsq_vtime = kit->vtime; 5468 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5469 p->scx.slice = kit->slice; 5470 5471 /* execute move */ 5472 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5473 dispatched = true; 5474 out: 5475 if (in_balance) { 5476 if (this_rq != locked_rq) { 5477 raw_spin_rq_unlock(locked_rq); 5478 raw_spin_rq_lock(this_rq); 5479 } 5480 } else { 5481 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5482 } 5483 5484 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5485 __SCX_DSQ_ITER_HAS_VTIME); 5486 return dispatched; 5487 } 5488 5489 __bpf_kfunc_start_defs(); 5490 5491 /** 5492 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5493 * 5494 * Can only be called from ops.dispatch(). 5495 */ 5496 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5497 { 5498 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 5499 return 0; 5500 5501 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 5502 } 5503 5504 /** 5505 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 5506 * 5507 * Cancel the latest dispatch. Can be called multiple times to cancel further 5508 * dispatches. Can only be called from ops.dispatch(). 5509 */ 5510 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 5511 { 5512 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5513 5514 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 5515 return; 5516 5517 if (dspc->cursor > 0) 5518 dspc->cursor--; 5519 else 5520 scx_kf_error("dispatch buffer underflow"); 5521 } 5522 5523 /** 5524 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 5525 * @dsq_id: DSQ to move task from 5526 * 5527 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 5528 * local DSQ for execution. Can only be called from ops.dispatch(). 5529 * 5530 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 5531 * before trying to move from the specified DSQ. It may also grab rq locks and 5532 * thus can't be called under any BPF locks. 5533 * 5534 * Returns %true if a task has been moved, %false if there isn't any task to 5535 * move. 5536 */ 5537 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 5538 { 5539 struct scx_sched *sch = scx_root; 5540 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5541 struct scx_dispatch_q *dsq; 5542 5543 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 5544 return false; 5545 5546 flush_dispatch_buf(sch, dspc->rq); 5547 5548 dsq = find_user_dsq(sch, dsq_id); 5549 if (unlikely(!dsq)) { 5550 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 5551 return false; 5552 } 5553 5554 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 5555 /* 5556 * A successfully consumed task can be dequeued before it starts 5557 * running while the CPU is trying to migrate other dispatched 5558 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 5559 * local DSQ. 5560 */ 5561 dspc->nr_tasks++; 5562 return true; 5563 } else { 5564 return false; 5565 } 5566 } 5567 5568 /** 5569 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 5570 * @it__iter: DSQ iterator in progress 5571 * @slice: duration the moved task can run for in nsecs 5572 * 5573 * Override the slice of the next task that will be moved from @it__iter using 5574 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 5575 * slice duration is kept. 5576 */ 5577 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 5578 u64 slice) 5579 { 5580 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5581 5582 kit->slice = slice; 5583 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 5584 } 5585 5586 /** 5587 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 5588 * @it__iter: DSQ iterator in progress 5589 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 5590 * 5591 * Override the vtime of the next task that will be moved from @it__iter using 5592 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 5593 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 5594 * override is ignored and cleared. 5595 */ 5596 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 5597 u64 vtime) 5598 { 5599 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5600 5601 kit->vtime = vtime; 5602 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 5603 } 5604 5605 /** 5606 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 5607 * @it__iter: DSQ iterator in progress 5608 * @p: task to transfer 5609 * @dsq_id: DSQ to move @p to 5610 * @enq_flags: SCX_ENQ_* 5611 * 5612 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 5613 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 5614 * be the destination. 5615 * 5616 * For the transfer to be successful, @p must still be on the DSQ and have been 5617 * queued before the DSQ iteration started. This function doesn't care whether 5618 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 5619 * been queued before the iteration started. 5620 * 5621 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 5622 * 5623 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 5624 * lock (e.g. BPF timers or SYSCALL programs). 5625 * 5626 * Returns %true if @p has been consumed, %false if @p had already been consumed 5627 * or dequeued. 5628 */ 5629 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 5630 struct task_struct *p, u64 dsq_id, 5631 u64 enq_flags) 5632 { 5633 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5634 p, dsq_id, enq_flags); 5635 } 5636 5637 /** 5638 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 5639 * @it__iter: DSQ iterator in progress 5640 * @p: task to transfer 5641 * @dsq_id: DSQ to move @p to 5642 * @enq_flags: SCX_ENQ_* 5643 * 5644 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 5645 * priority queue of the DSQ specified by @dsq_id. The destination must be a 5646 * user DSQ as only user DSQs support priority queue. 5647 * 5648 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 5649 * and scx_bpf_dsq_move_set_vtime() to update. 5650 * 5651 * All other aspects are identical to scx_bpf_dsq_move(). See 5652 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 5653 */ 5654 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 5655 struct task_struct *p, u64 dsq_id, 5656 u64 enq_flags) 5657 { 5658 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5659 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5660 } 5661 5662 __bpf_kfunc_end_defs(); 5663 5664 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 5665 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 5666 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 5667 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 5668 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 5669 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 5670 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5671 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5672 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 5673 5674 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 5675 .owner = THIS_MODULE, 5676 .set = &scx_kfunc_ids_dispatch, 5677 }; 5678 5679 __bpf_kfunc_start_defs(); 5680 5681 /** 5682 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 5683 * 5684 * Iterate over all of the tasks currently enqueued on the local DSQ of the 5685 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 5686 * processed tasks. Can only be called from ops.cpu_release(). 5687 */ 5688 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 5689 { 5690 LIST_HEAD(tasks); 5691 u32 nr_enqueued = 0; 5692 struct rq *rq; 5693 struct task_struct *p, *n; 5694 5695 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 5696 return 0; 5697 5698 rq = cpu_rq(smp_processor_id()); 5699 lockdep_assert_rq_held(rq); 5700 5701 /* 5702 * The BPF scheduler may choose to dispatch tasks back to 5703 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 5704 * first to avoid processing the same tasks repeatedly. 5705 */ 5706 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 5707 scx.dsq_list.node) { 5708 /* 5709 * If @p is being migrated, @p's current CPU may not agree with 5710 * its allowed CPUs and the migration_cpu_stop is about to 5711 * deactivate and re-activate @p anyway. Skip re-enqueueing. 5712 * 5713 * While racing sched property changes may also dequeue and 5714 * re-enqueue a migrating task while its current CPU and allowed 5715 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 5716 * the current local DSQ for running tasks and thus are not 5717 * visible to the BPF scheduler. 5718 * 5719 * Also skip re-enqueueing tasks that can only run on this 5720 * CPU, as they would just be re-added to the same local 5721 * DSQ without any benefit. 5722 */ 5723 if (p->migration_pending || is_migration_disabled(p) || p->nr_cpus_allowed == 1) 5724 continue; 5725 5726 dispatch_dequeue(rq, p); 5727 list_add_tail(&p->scx.dsq_list.node, &tasks); 5728 } 5729 5730 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 5731 list_del_init(&p->scx.dsq_list.node); 5732 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 5733 nr_enqueued++; 5734 } 5735 5736 return nr_enqueued; 5737 } 5738 5739 __bpf_kfunc_end_defs(); 5740 5741 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 5742 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 5743 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 5744 5745 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 5746 .owner = THIS_MODULE, 5747 .set = &scx_kfunc_ids_cpu_release, 5748 }; 5749 5750 __bpf_kfunc_start_defs(); 5751 5752 /** 5753 * scx_bpf_create_dsq - Create a custom DSQ 5754 * @dsq_id: DSQ to create 5755 * @node: NUMA node to allocate from 5756 * 5757 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 5758 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 5759 */ 5760 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 5761 { 5762 struct scx_dispatch_q *dsq; 5763 struct scx_sched *sch; 5764 s32 ret; 5765 5766 if (unlikely(node >= (int)nr_node_ids || 5767 (node < 0 && node != NUMA_NO_NODE))) 5768 return -EINVAL; 5769 5770 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 5771 return -EINVAL; 5772 5773 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5774 if (!dsq) 5775 return -ENOMEM; 5776 5777 init_dsq(dsq, dsq_id); 5778 5779 rcu_read_lock(); 5780 5781 sch = rcu_dereference(scx_root); 5782 if (sch) 5783 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 5784 dsq_hash_params); 5785 else 5786 ret = -ENODEV; 5787 5788 rcu_read_unlock(); 5789 if (ret) 5790 kfree(dsq); 5791 return ret; 5792 } 5793 5794 __bpf_kfunc_end_defs(); 5795 5796 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 5797 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 5798 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 5799 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 5800 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5801 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5802 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 5803 5804 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 5805 .owner = THIS_MODULE, 5806 .set = &scx_kfunc_ids_unlocked, 5807 }; 5808 5809 __bpf_kfunc_start_defs(); 5810 5811 /** 5812 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 5813 * @cpu: cpu to kick 5814 * @flags: %SCX_KICK_* flags 5815 * 5816 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 5817 * trigger rescheduling on a busy CPU. This can be called from any online 5818 * scx_ops operation and the actual kicking is performed asynchronously through 5819 * an irq work. 5820 */ 5821 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 5822 { 5823 struct rq *this_rq; 5824 unsigned long irq_flags; 5825 5826 if (!kf_cpu_valid(cpu, NULL)) 5827 return; 5828 5829 local_irq_save(irq_flags); 5830 5831 this_rq = this_rq(); 5832 5833 /* 5834 * While bypassing for PM ops, IRQ handling may not be online which can 5835 * lead to irq_work_queue() malfunction such as infinite busy wait for 5836 * IRQ status update. Suppress kicking. 5837 */ 5838 if (scx_rq_bypassing(this_rq)) 5839 goto out; 5840 5841 /* 5842 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 5843 * rq locks. We can probably be smarter and avoid bouncing if called 5844 * from ops which don't hold a rq lock. 5845 */ 5846 if (flags & SCX_KICK_IDLE) { 5847 struct rq *target_rq = cpu_rq(cpu); 5848 5849 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 5850 scx_kf_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 5851 5852 if (raw_spin_rq_trylock(target_rq)) { 5853 if (can_skip_idle_kick(target_rq)) { 5854 raw_spin_rq_unlock(target_rq); 5855 goto out; 5856 } 5857 raw_spin_rq_unlock(target_rq); 5858 } 5859 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 5860 } else { 5861 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 5862 5863 if (flags & SCX_KICK_PREEMPT) 5864 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 5865 if (flags & SCX_KICK_WAIT) 5866 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 5867 } 5868 5869 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 5870 out: 5871 local_irq_restore(irq_flags); 5872 } 5873 5874 /** 5875 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 5876 * @dsq_id: id of the DSQ 5877 * 5878 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 5879 * -%ENOENT is returned. 5880 */ 5881 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 5882 { 5883 struct scx_sched *sch; 5884 struct scx_dispatch_q *dsq; 5885 s32 ret; 5886 5887 preempt_disable(); 5888 5889 sch = rcu_dereference_sched(scx_root); 5890 if (unlikely(!sch)) { 5891 ret = -ENODEV; 5892 goto out; 5893 } 5894 5895 if (dsq_id == SCX_DSQ_LOCAL) { 5896 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 5897 goto out; 5898 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 5899 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 5900 5901 if (ops_cpu_valid(sch, cpu, NULL)) { 5902 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 5903 goto out; 5904 } 5905 } else { 5906 dsq = find_user_dsq(sch, dsq_id); 5907 if (dsq) { 5908 ret = READ_ONCE(dsq->nr); 5909 goto out; 5910 } 5911 } 5912 ret = -ENOENT; 5913 out: 5914 preempt_enable(); 5915 return ret; 5916 } 5917 5918 /** 5919 * scx_bpf_destroy_dsq - Destroy a custom DSQ 5920 * @dsq_id: DSQ to destroy 5921 * 5922 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 5923 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 5924 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 5925 * which doesn't exist. Can be called from any online scx_ops operations. 5926 */ 5927 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 5928 { 5929 struct scx_sched *sch; 5930 5931 rcu_read_lock(); 5932 sch = rcu_dereference(scx_root); 5933 if (sch) 5934 destroy_dsq(sch, dsq_id); 5935 rcu_read_unlock(); 5936 } 5937 5938 /** 5939 * bpf_iter_scx_dsq_new - Create a DSQ iterator 5940 * @it: iterator to initialize 5941 * @dsq_id: DSQ to iterate 5942 * @flags: %SCX_DSQ_ITER_* 5943 * 5944 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 5945 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 5946 * tasks which are already queued when this function is invoked. 5947 */ 5948 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 5949 u64 flags) 5950 { 5951 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 5952 struct scx_sched *sch; 5953 5954 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 5955 sizeof(struct bpf_iter_scx_dsq)); 5956 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 5957 __alignof__(struct bpf_iter_scx_dsq)); 5958 5959 /* 5960 * next() and destroy() will be called regardless of the return value. 5961 * Always clear $kit->dsq. 5962 */ 5963 kit->dsq = NULL; 5964 5965 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 5966 if (unlikely(!sch)) 5967 return -ENODEV; 5968 5969 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 5970 return -EINVAL; 5971 5972 kit->dsq = find_user_dsq(sch, dsq_id); 5973 if (!kit->dsq) 5974 return -ENOENT; 5975 5976 INIT_LIST_HEAD(&kit->cursor.node); 5977 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 5978 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 5979 5980 return 0; 5981 } 5982 5983 /** 5984 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 5985 * @it: iterator to progress 5986 * 5987 * Return the next task. See bpf_iter_scx_dsq_new(). 5988 */ 5989 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 5990 { 5991 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 5992 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 5993 struct task_struct *p; 5994 unsigned long flags; 5995 5996 if (!kit->dsq) 5997 return NULL; 5998 5999 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6000 6001 if (list_empty(&kit->cursor.node)) 6002 p = NULL; 6003 else 6004 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6005 6006 /* 6007 * Only tasks which were queued before the iteration started are 6008 * visible. This bounds BPF iterations and guarantees that vtime never 6009 * jumps in the other direction while iterating. 6010 */ 6011 do { 6012 p = nldsq_next_task(kit->dsq, p, rev); 6013 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6014 6015 if (p) { 6016 if (rev) 6017 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6018 else 6019 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6020 } else { 6021 list_del_init(&kit->cursor.node); 6022 } 6023 6024 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6025 6026 return p; 6027 } 6028 6029 /** 6030 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6031 * @it: iterator to destroy 6032 * 6033 * Undo scx_iter_scx_dsq_new(). 6034 */ 6035 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6036 { 6037 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6038 6039 if (!kit->dsq) 6040 return; 6041 6042 if (!list_empty(&kit->cursor.node)) { 6043 unsigned long flags; 6044 6045 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6046 list_del_init(&kit->cursor.node); 6047 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6048 } 6049 kit->dsq = NULL; 6050 } 6051 6052 __bpf_kfunc_end_defs(); 6053 6054 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 6055 char *fmt, unsigned long long *data, u32 data__sz) 6056 { 6057 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6058 s32 ret; 6059 6060 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6061 (data__sz && !data)) { 6062 scx_kf_error("invalid data=%p and data__sz=%u", (void *)data, data__sz); 6063 return -EINVAL; 6064 } 6065 6066 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6067 if (ret < 0) { 6068 scx_kf_error("failed to read data fields (%d)", ret); 6069 return ret; 6070 } 6071 6072 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6073 &bprintf_data); 6074 if (ret < 0) { 6075 scx_kf_error("format preparation failed (%d)", ret); 6076 return ret; 6077 } 6078 6079 ret = bstr_printf(line_buf, line_size, fmt, 6080 bprintf_data.bin_args); 6081 bpf_bprintf_cleanup(&bprintf_data); 6082 if (ret < 0) { 6083 scx_kf_error("(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6084 return ret; 6085 } 6086 6087 return ret; 6088 } 6089 6090 static s32 bstr_format(struct scx_bstr_buf *buf, 6091 char *fmt, unsigned long long *data, u32 data__sz) 6092 { 6093 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 6094 fmt, data, data__sz); 6095 } 6096 6097 __bpf_kfunc_start_defs(); 6098 6099 /** 6100 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6101 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6102 * @fmt: error message format string 6103 * @data: format string parameters packaged using ___bpf_fill() macro 6104 * @data__sz: @data len, must end in '__sz' for the verifier 6105 * 6106 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6107 * disabling. 6108 */ 6109 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6110 unsigned long long *data, u32 data__sz) 6111 { 6112 unsigned long flags; 6113 6114 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6115 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6116 scx_kf_exit(SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6117 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6118 } 6119 6120 /** 6121 * scx_bpf_error_bstr - Indicate fatal error 6122 * @fmt: error message format string 6123 * @data: format string parameters packaged using ___bpf_fill() macro 6124 * @data__sz: @data len, must end in '__sz' for the verifier 6125 * 6126 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6127 * disabling. 6128 */ 6129 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6130 u32 data__sz) 6131 { 6132 unsigned long flags; 6133 6134 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6135 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6136 scx_kf_exit(SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6137 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6138 } 6139 6140 /** 6141 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6142 * @fmt: format string 6143 * @data: format string parameters packaged using ___bpf_fill() macro 6144 * @data__sz: @data len, must end in '__sz' for the verifier 6145 * 6146 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6147 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6148 * 6149 * The extra dump may be multiple lines. A single line may be split over 6150 * multiple calls. The last line is automatically terminated. 6151 */ 6152 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6153 u32 data__sz) 6154 { 6155 struct scx_dump_data *dd = &scx_dump_data; 6156 struct scx_bstr_buf *buf = &dd->buf; 6157 s32 ret; 6158 6159 if (raw_smp_processor_id() != dd->cpu) { 6160 scx_kf_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 6161 return; 6162 } 6163 6164 /* append the formatted string to the line buf */ 6165 ret = __bstr_format(buf->data, buf->line + dd->cursor, 6166 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6167 if (ret < 0) { 6168 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6169 dd->prefix, fmt, data, data__sz, ret); 6170 return; 6171 } 6172 6173 dd->cursor += ret; 6174 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6175 6176 if (!dd->cursor) 6177 return; 6178 6179 /* 6180 * If the line buf overflowed or ends in a newline, flush it into the 6181 * dump. This is to allow the caller to generate a single line over 6182 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6183 * the line buf, the only case which can lead to an unexpected 6184 * truncation is when the caller keeps generating newlines in the middle 6185 * instead of the end consecutively. Don't do that. 6186 */ 6187 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6188 ops_dump_flush(); 6189 } 6190 6191 /** 6192 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6193 * @cpu: CPU of interest 6194 * 6195 * Return the maximum relative capacity of @cpu in relation to the most 6196 * performant CPU in the system. The return value is in the range [1, 6197 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6198 */ 6199 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6200 { 6201 if (kf_cpu_valid(cpu, NULL)) 6202 return arch_scale_cpu_capacity(cpu); 6203 else 6204 return SCX_CPUPERF_ONE; 6205 } 6206 6207 /** 6208 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6209 * @cpu: CPU of interest 6210 * 6211 * Return the current relative performance of @cpu in relation to its maximum. 6212 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6213 * 6214 * The current performance level of a CPU in relation to the maximum performance 6215 * available in the system can be calculated as follows: 6216 * 6217 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6218 * 6219 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6220 */ 6221 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6222 { 6223 if (kf_cpu_valid(cpu, NULL)) 6224 return arch_scale_freq_capacity(cpu); 6225 else 6226 return SCX_CPUPERF_ONE; 6227 } 6228 6229 /** 6230 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6231 * @cpu: CPU of interest 6232 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6233 * 6234 * Set the target performance level of @cpu to @perf. @perf is in linear 6235 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6236 * schedutil cpufreq governor chooses the target frequency. 6237 * 6238 * The actual performance level chosen, CPU grouping, and the overhead and 6239 * latency of the operations are dependent on the hardware and cpufreq driver in 6240 * use. Consult hardware and cpufreq documentation for more information. The 6241 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6242 */ 6243 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6244 { 6245 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6246 scx_kf_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 6247 return; 6248 } 6249 6250 if (kf_cpu_valid(cpu, NULL)) { 6251 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6252 struct rq_flags rf; 6253 6254 /* 6255 * When called with an rq lock held, restrict the operation 6256 * to the corresponding CPU to prevent ABBA deadlocks. 6257 */ 6258 if (locked_rq && rq != locked_rq) { 6259 scx_kf_error("Invalid target CPU %d", cpu); 6260 return; 6261 } 6262 6263 /* 6264 * If no rq lock is held, allow to operate on any CPU by 6265 * acquiring the corresponding rq lock. 6266 */ 6267 if (!locked_rq) { 6268 rq_lock_irqsave(rq, &rf); 6269 update_rq_clock(rq); 6270 } 6271 6272 rq->scx.cpuperf_target = perf; 6273 cpufreq_update_util(rq, 0); 6274 6275 if (!locked_rq) 6276 rq_unlock_irqrestore(rq, &rf); 6277 } 6278 } 6279 6280 /** 6281 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6282 * 6283 * All valid node IDs in the system are smaller than the returned value. 6284 */ 6285 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6286 { 6287 return nr_node_ids; 6288 } 6289 6290 /** 6291 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6292 * 6293 * All valid CPU IDs in the system are smaller than the returned value. 6294 */ 6295 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6296 { 6297 return nr_cpu_ids; 6298 } 6299 6300 /** 6301 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6302 */ 6303 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6304 { 6305 return cpu_possible_mask; 6306 } 6307 6308 /** 6309 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6310 */ 6311 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6312 { 6313 return cpu_online_mask; 6314 } 6315 6316 /** 6317 * scx_bpf_put_cpumask - Release a possible/online cpumask 6318 * @cpumask: cpumask to release 6319 */ 6320 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6321 { 6322 /* 6323 * Empty function body because we aren't actually acquiring or releasing 6324 * a reference to a global cpumask, which is read-only in the caller and 6325 * is never released. The acquire / release semantics here are just used 6326 * to make the cpumask is a trusted pointer in the caller. 6327 */ 6328 } 6329 6330 /** 6331 * scx_bpf_task_running - Is task currently running? 6332 * @p: task of interest 6333 */ 6334 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6335 { 6336 return task_rq(p)->curr == p; 6337 } 6338 6339 /** 6340 * scx_bpf_task_cpu - CPU a task is currently associated with 6341 * @p: task of interest 6342 */ 6343 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6344 { 6345 return task_cpu(p); 6346 } 6347 6348 /** 6349 * scx_bpf_cpu_rq - Fetch the rq of a CPU 6350 * @cpu: CPU of the rq 6351 */ 6352 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 6353 { 6354 if (!kf_cpu_valid(cpu, NULL)) 6355 return NULL; 6356 6357 return cpu_rq(cpu); 6358 } 6359 6360 /** 6361 * scx_bpf_locked_rq - Return the rq currently locked by SCX 6362 * 6363 * Returns the rq if a rq lock is currently held by SCX. 6364 * Otherwise emits an error and returns NULL. 6365 */ 6366 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 6367 { 6368 struct rq *rq; 6369 6370 preempt_disable(); 6371 rq = scx_locked_rq(); 6372 if (!rq) { 6373 preempt_enable(); 6374 scx_kf_error("accessing rq without holding rq lock"); 6375 return NULL; 6376 } 6377 preempt_enable(); 6378 6379 return rq; 6380 } 6381 6382 /** 6383 * scx_bpf_cpu_curr - Return remote CPU's curr task 6384 * @cpu: CPU of interest 6385 * 6386 * Callers must hold RCU read lock (KF_RCU). 6387 */ 6388 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 6389 { 6390 if (!kf_cpu_valid(cpu, NULL)) 6391 return NULL; 6392 return rcu_dereference(cpu_rq(cpu)->curr); 6393 } 6394 6395 /** 6396 * scx_bpf_task_cgroup - Return the sched cgroup of a task 6397 * @p: task of interest 6398 * 6399 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 6400 * from the scheduler's POV. SCX operations should use this function to 6401 * determine @p's current cgroup as, unlike following @p->cgroups, 6402 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 6403 * rq-locked operations. Can be called on the parameter tasks of rq-locked 6404 * operations. The restriction guarantees that @p's rq is locked by the caller. 6405 */ 6406 #ifdef CONFIG_CGROUP_SCHED 6407 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 6408 { 6409 struct task_group *tg = p->sched_task_group; 6410 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 6411 6412 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 6413 goto out; 6414 6415 cgrp = tg_cgrp(tg); 6416 6417 out: 6418 cgroup_get(cgrp); 6419 return cgrp; 6420 } 6421 #endif 6422 6423 /** 6424 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 6425 * clock for the current CPU. The clock returned is in nanoseconds. 6426 * 6427 * It provides the following properties: 6428 * 6429 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 6430 * to account for execution time and track tasks' runtime properties. 6431 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 6432 * eventually reads a hardware timestamp counter -- is neither performant nor 6433 * scalable. scx_bpf_now() aims to provide a high-performance clock by 6434 * using the rq clock in the scheduler core whenever possible. 6435 * 6436 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 6437 * scheduler use cases, the required clock resolution is lower than the most 6438 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 6439 * uses the rq clock in the scheduler core whenever it is valid. It considers 6440 * that the rq clock is valid from the time the rq clock is updated 6441 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 6442 * 6443 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 6444 * guarantees the clock never goes backward when comparing them in the same 6445 * CPU. On the other hand, when comparing clocks in different CPUs, there 6446 * is no such guarantee -- the clock can go backward. It provides a 6447 * monotonically *non-decreasing* clock so that it would provide the same 6448 * clock values in two different scx_bpf_now() calls in the same CPU 6449 * during the same period of when the rq clock is valid. 6450 */ 6451 __bpf_kfunc u64 scx_bpf_now(void) 6452 { 6453 struct rq *rq; 6454 u64 clock; 6455 6456 preempt_disable(); 6457 6458 rq = this_rq(); 6459 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 6460 /* 6461 * If the rq clock is valid, use the cached rq clock. 6462 * 6463 * Note that scx_bpf_now() is re-entrant between a process 6464 * context and an interrupt context (e.g., timer interrupt). 6465 * However, we don't need to consider the race between them 6466 * because such race is not observable from a caller. 6467 */ 6468 clock = READ_ONCE(rq->scx.clock); 6469 } else { 6470 /* 6471 * Otherwise, return a fresh rq clock. 6472 * 6473 * The rq clock is updated outside of the rq lock. 6474 * In this case, keep the updated rq clock invalid so the next 6475 * kfunc call outside the rq lock gets a fresh rq clock. 6476 */ 6477 clock = sched_clock_cpu(cpu_of(rq)); 6478 } 6479 6480 preempt_enable(); 6481 6482 return clock; 6483 } 6484 6485 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 6486 { 6487 struct scx_event_stats *e_cpu; 6488 int cpu; 6489 6490 /* Aggregate per-CPU event counters into @events. */ 6491 memset(events, 0, sizeof(*events)); 6492 for_each_possible_cpu(cpu) { 6493 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 6494 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 6495 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 6496 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 6497 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 6498 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 6499 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 6500 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 6501 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 6502 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 6503 } 6504 } 6505 6506 /* 6507 * scx_bpf_events - Get a system-wide event counter to 6508 * @events: output buffer from a BPF program 6509 * @events__sz: @events len, must end in '__sz'' for the verifier 6510 */ 6511 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 6512 size_t events__sz) 6513 { 6514 struct scx_sched *sch; 6515 struct scx_event_stats e_sys; 6516 6517 rcu_read_lock(); 6518 sch = rcu_dereference(scx_root); 6519 if (sch) 6520 scx_read_events(sch, &e_sys); 6521 else 6522 memset(&e_sys, 0, sizeof(e_sys)); 6523 rcu_read_unlock(); 6524 6525 /* 6526 * We cannot entirely trust a BPF-provided size since a BPF program 6527 * might be compiled against a different vmlinux.h, of which 6528 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 6529 * (an older vmlinux.h). Hence, we use the smaller size to avoid 6530 * memory corruption. 6531 */ 6532 events__sz = min(events__sz, sizeof(*events)); 6533 memcpy(events, &e_sys, events__sz); 6534 } 6535 6536 __bpf_kfunc_end_defs(); 6537 6538 BTF_KFUNCS_START(scx_kfunc_ids_any) 6539 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 6540 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 6541 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 6542 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 6543 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 6544 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 6545 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 6546 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 6547 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 6548 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 6549 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 6550 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 6551 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 6552 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 6553 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 6554 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 6555 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 6556 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 6557 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 6558 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 6559 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 6560 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU) 6561 #ifdef CONFIG_CGROUP_SCHED 6562 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 6563 #endif 6564 BTF_ID_FLAGS(func, scx_bpf_now) 6565 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 6566 BTF_KFUNCS_END(scx_kfunc_ids_any) 6567 6568 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 6569 .owner = THIS_MODULE, 6570 .set = &scx_kfunc_ids_any, 6571 }; 6572 6573 static int __init scx_init(void) 6574 { 6575 int ret; 6576 6577 /* 6578 * kfunc registration can't be done from init_sched_ext_class() as 6579 * register_btf_kfunc_id_set() needs most of the system to be up. 6580 * 6581 * Some kfuncs are context-sensitive and can only be called from 6582 * specific SCX ops. They are grouped into BTF sets accordingly. 6583 * Unfortunately, BPF currently doesn't have a way of enforcing such 6584 * restrictions. Eventually, the verifier should be able to enforce 6585 * them. For now, register them the same and make each kfunc explicitly 6586 * check using scx_kf_allowed(). 6587 */ 6588 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6589 &scx_kfunc_set_enqueue_dispatch)) || 6590 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6591 &scx_kfunc_set_dispatch)) || 6592 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6593 &scx_kfunc_set_cpu_release)) || 6594 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6595 &scx_kfunc_set_unlocked)) || 6596 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6597 &scx_kfunc_set_unlocked)) || 6598 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6599 &scx_kfunc_set_any)) || 6600 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 6601 &scx_kfunc_set_any)) || 6602 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6603 &scx_kfunc_set_any))) { 6604 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 6605 return ret; 6606 } 6607 6608 ret = scx_idle_init(); 6609 if (ret) { 6610 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 6611 return ret; 6612 } 6613 6614 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 6615 if (ret) { 6616 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 6617 return ret; 6618 } 6619 6620 ret = register_pm_notifier(&scx_pm_notifier); 6621 if (ret) { 6622 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 6623 return ret; 6624 } 6625 6626 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 6627 if (!scx_kset) { 6628 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 6629 return -ENOMEM; 6630 } 6631 6632 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 6633 if (ret < 0) { 6634 pr_err("sched_ext: Failed to add global attributes\n"); 6635 return ret; 6636 } 6637 6638 return 0; 6639 } 6640 __initcall(scx_init); 6641