1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static unsigned long scx_in_softlockup; 37 static atomic_t scx_breather_depth = ATOMIC_INIT(0); 38 static int scx_bypass_depth; 39 static bool scx_init_task_enabled; 40 static bool scx_switching_all; 41 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 42 43 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 44 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 45 46 /* 47 * A monotically increasing sequence number that is incremented every time a 48 * scheduler is enabled. This can be used by to check if any custom sched_ext 49 * scheduler has ever been used in the system. 50 */ 51 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 52 53 /* 54 * The maximum amount of time in jiffies that a task may be runnable without 55 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 56 * scx_error(). 57 */ 58 static unsigned long scx_watchdog_timeout; 59 60 /* 61 * The last time the delayed work was run. This delayed work relies on 62 * ksoftirqd being able to run to service timer interrupts, so it's possible 63 * that this work itself could get wedged. To account for this, we check that 64 * it's not stalled in the timer tick, and trigger an error if it is. 65 */ 66 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 67 68 static struct delayed_work scx_watchdog_work; 69 70 /* for %SCX_KICK_WAIT */ 71 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 72 73 /* 74 * Direct dispatch marker. 75 * 76 * Non-NULL values are used for direct dispatch from enqueue path. A valid 77 * pointer points to the task currently being enqueued. An ERR_PTR value is used 78 * to indicate that direct dispatch has already happened. 79 */ 80 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 81 82 static const struct rhashtable_params dsq_hash_params = { 83 .key_len = sizeof_field(struct scx_dispatch_q, id), 84 .key_offset = offsetof(struct scx_dispatch_q, id), 85 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 86 }; 87 88 static LLIST_HEAD(dsqs_to_free); 89 90 /* dispatch buf */ 91 struct scx_dsp_buf_ent { 92 struct task_struct *task; 93 unsigned long qseq; 94 u64 dsq_id; 95 u64 enq_flags; 96 }; 97 98 static u32 scx_dsp_max_batch; 99 100 struct scx_dsp_ctx { 101 struct rq *rq; 102 u32 cursor; 103 u32 nr_tasks; 104 struct scx_dsp_buf_ent buf[]; 105 }; 106 107 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 108 109 /* string formatting from BPF */ 110 struct scx_bstr_buf { 111 u64 data[MAX_BPRINTF_VARARGS]; 112 char line[SCX_EXIT_MSG_LEN]; 113 }; 114 115 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 116 static struct scx_bstr_buf scx_exit_bstr_buf; 117 118 /* ops debug dump */ 119 struct scx_dump_data { 120 s32 cpu; 121 bool first; 122 s32 cursor; 123 struct seq_buf *s; 124 const char *prefix; 125 struct scx_bstr_buf buf; 126 }; 127 128 static struct scx_dump_data scx_dump_data = { 129 .cpu = -1, 130 }; 131 132 /* /sys/kernel/sched_ext interface */ 133 static struct kset *scx_kset; 134 135 #define CREATE_TRACE_POINTS 136 #include <trace/events/sched_ext.h> 137 138 static void process_ddsp_deferred_locals(struct rq *rq); 139 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags); 140 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 141 s64 exit_code, const char *fmt, va_list args); 142 143 static __printf(4, 5) void scx_exit(struct scx_sched *sch, 144 enum scx_exit_kind kind, s64 exit_code, 145 const char *fmt, ...) 146 { 147 va_list args; 148 149 va_start(args, fmt); 150 scx_vexit(sch, kind, exit_code, fmt, args); 151 va_end(args); 152 } 153 154 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 155 156 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 157 158 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 159 { 160 if (time_after(at, now)) 161 return jiffies_to_msecs(at - now); 162 else 163 return -(long)jiffies_to_msecs(now - at); 164 } 165 166 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 167 static u32 higher_bits(u32 flags) 168 { 169 return ~((1 << fls(flags)) - 1); 170 } 171 172 /* return the mask with only the highest bit set */ 173 static u32 highest_bit(u32 flags) 174 { 175 int bit = fls(flags); 176 return ((u64)1 << bit) >> 1; 177 } 178 179 static bool u32_before(u32 a, u32 b) 180 { 181 return (s32)(a - b) < 0; 182 } 183 184 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch, 185 struct task_struct *p) 186 { 187 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 188 } 189 190 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 191 { 192 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params); 193 } 194 195 /* 196 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 197 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 198 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 199 * whether it's running from an allowed context. 200 * 201 * @mask is constant, always inline to cull the mask calculations. 202 */ 203 static __always_inline void scx_kf_allow(u32 mask) 204 { 205 /* nesting is allowed only in increasing scx_kf_mask order */ 206 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 207 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 208 current->scx.kf_mask, mask); 209 current->scx.kf_mask |= mask; 210 barrier(); 211 } 212 213 static void scx_kf_disallow(u32 mask) 214 { 215 barrier(); 216 current->scx.kf_mask &= ~mask; 217 } 218 219 /* 220 * Track the rq currently locked. 221 * 222 * This allows kfuncs to safely operate on rq from any scx ops callback, 223 * knowing which rq is already locked. 224 */ 225 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 226 227 static inline void update_locked_rq(struct rq *rq) 228 { 229 /* 230 * Check whether @rq is actually locked. This can help expose bugs 231 * or incorrect assumptions about the context in which a kfunc or 232 * callback is executed. 233 */ 234 if (rq) 235 lockdep_assert_rq_held(rq); 236 __this_cpu_write(scx_locked_rq_state, rq); 237 } 238 239 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 240 do { \ 241 if (rq) \ 242 update_locked_rq(rq); \ 243 if (mask) { \ 244 scx_kf_allow(mask); \ 245 (sch)->ops.op(args); \ 246 scx_kf_disallow(mask); \ 247 } else { \ 248 (sch)->ops.op(args); \ 249 } \ 250 if (rq) \ 251 update_locked_rq(NULL); \ 252 } while (0) 253 254 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 255 ({ \ 256 __typeof__((sch)->ops.op(args)) __ret; \ 257 \ 258 if (rq) \ 259 update_locked_rq(rq); \ 260 if (mask) { \ 261 scx_kf_allow(mask); \ 262 __ret = (sch)->ops.op(args); \ 263 scx_kf_disallow(mask); \ 264 } else { \ 265 __ret = (sch)->ops.op(args); \ 266 } \ 267 if (rq) \ 268 update_locked_rq(NULL); \ 269 __ret; \ 270 }) 271 272 /* 273 * Some kfuncs are allowed only on the tasks that are subjects of the 274 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 275 * restrictions, the following SCX_CALL_OP_*() variants should be used when 276 * invoking scx_ops operations that take task arguments. These can only be used 277 * for non-nesting operations due to the way the tasks are tracked. 278 * 279 * kfuncs which can only operate on such tasks can in turn use 280 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 281 * the specific task. 282 */ 283 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 284 do { \ 285 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 286 current->scx.kf_tasks[0] = task; \ 287 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 288 current->scx.kf_tasks[0] = NULL; \ 289 } while (0) 290 291 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 292 ({ \ 293 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 294 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 295 current->scx.kf_tasks[0] = task; \ 296 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 297 current->scx.kf_tasks[0] = NULL; \ 298 __ret; \ 299 }) 300 301 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 302 ({ \ 303 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 304 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 305 current->scx.kf_tasks[0] = task0; \ 306 current->scx.kf_tasks[1] = task1; \ 307 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 308 current->scx.kf_tasks[0] = NULL; \ 309 current->scx.kf_tasks[1] = NULL; \ 310 __ret; \ 311 }) 312 313 /* @mask is constant, always inline to cull unnecessary branches */ 314 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask) 315 { 316 if (unlikely(!(current->scx.kf_mask & mask))) { 317 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x", 318 mask, current->scx.kf_mask); 319 return false; 320 } 321 322 /* 323 * Enforce nesting boundaries. e.g. A kfunc which can be called from 324 * DISPATCH must not be called if we're running DEQUEUE which is nested 325 * inside ops.dispatch(). We don't need to check boundaries for any 326 * blocking kfuncs as the verifier ensures they're only called from 327 * sleepable progs. 328 */ 329 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 330 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 331 scx_error(sch, "cpu_release kfunc called from a nested operation"); 332 return false; 333 } 334 335 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 336 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 337 scx_error(sch, "dispatch kfunc called from a nested operation"); 338 return false; 339 } 340 341 return true; 342 } 343 344 /* see SCX_CALL_OP_TASK() */ 345 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch, 346 u32 mask, 347 struct task_struct *p) 348 { 349 if (!scx_kf_allowed(sch, mask)) 350 return false; 351 352 if (unlikely((p != current->scx.kf_tasks[0] && 353 p != current->scx.kf_tasks[1]))) { 354 scx_error(sch, "called on a task not being operated on"); 355 return false; 356 } 357 358 return true; 359 } 360 361 /** 362 * nldsq_next_task - Iterate to the next task in a non-local DSQ 363 * @dsq: user dsq being iterated 364 * @cur: current position, %NULL to start iteration 365 * @rev: walk backwards 366 * 367 * Returns %NULL when iteration is finished. 368 */ 369 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 370 struct task_struct *cur, bool rev) 371 { 372 struct list_head *list_node; 373 struct scx_dsq_list_node *dsq_lnode; 374 375 lockdep_assert_held(&dsq->lock); 376 377 if (cur) 378 list_node = &cur->scx.dsq_list.node; 379 else 380 list_node = &dsq->list; 381 382 /* find the next task, need to skip BPF iteration cursors */ 383 do { 384 if (rev) 385 list_node = list_node->prev; 386 else 387 list_node = list_node->next; 388 389 if (list_node == &dsq->list) 390 return NULL; 391 392 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 393 node); 394 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 395 396 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 397 } 398 399 #define nldsq_for_each_task(p, dsq) \ 400 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 401 (p) = nldsq_next_task((dsq), (p), false)) 402 403 404 /* 405 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 406 * dispatch order. BPF-visible iterator is opaque and larger to allow future 407 * changes without breaking backward compatibility. Can be used with 408 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 409 */ 410 enum scx_dsq_iter_flags { 411 /* iterate in the reverse dispatch order */ 412 SCX_DSQ_ITER_REV = 1U << 16, 413 414 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 415 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 416 417 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 418 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 419 __SCX_DSQ_ITER_HAS_SLICE | 420 __SCX_DSQ_ITER_HAS_VTIME, 421 }; 422 423 struct bpf_iter_scx_dsq_kern { 424 struct scx_dsq_list_node cursor; 425 struct scx_dispatch_q *dsq; 426 u64 slice; 427 u64 vtime; 428 } __attribute__((aligned(8))); 429 430 struct bpf_iter_scx_dsq { 431 u64 __opaque[6]; 432 } __attribute__((aligned(8))); 433 434 435 /* 436 * SCX task iterator. 437 */ 438 struct scx_task_iter { 439 struct sched_ext_entity cursor; 440 struct task_struct *locked_task; 441 struct rq *rq; 442 struct rq_flags rf; 443 u32 cnt; 444 bool list_locked; 445 }; 446 447 /** 448 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 449 * @iter: iterator to init 450 * 451 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 452 * must eventually be stopped with scx_task_iter_stop(). 453 * 454 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 455 * between this and the first next() call or between any two next() calls. If 456 * the locks are released between two next() calls, the caller is responsible 457 * for ensuring that the task being iterated remains accessible either through 458 * RCU read lock or obtaining a reference count. 459 * 460 * All tasks which existed when the iteration started are guaranteed to be 461 * visited as long as they still exist. 462 */ 463 static void scx_task_iter_start(struct scx_task_iter *iter) 464 { 465 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 466 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 467 468 spin_lock_irq(&scx_tasks_lock); 469 470 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 471 list_add(&iter->cursor.tasks_node, &scx_tasks); 472 iter->locked_task = NULL; 473 iter->cnt = 0; 474 iter->list_locked = true; 475 } 476 477 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 478 { 479 if (iter->locked_task) { 480 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 481 iter->locked_task = NULL; 482 } 483 } 484 485 /** 486 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 487 * @iter: iterator to unlock 488 * 489 * If @iter is in the middle of a locked iteration, it may be locking the rq of 490 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 491 * This function can be safely called anytime during an iteration. The next 492 * iterator operation will automatically restore the necessary locking. 493 */ 494 static void scx_task_iter_unlock(struct scx_task_iter *iter) 495 { 496 __scx_task_iter_rq_unlock(iter); 497 if (iter->list_locked) { 498 iter->list_locked = false; 499 spin_unlock_irq(&scx_tasks_lock); 500 } 501 } 502 503 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 504 { 505 if (!iter->list_locked) { 506 spin_lock_irq(&scx_tasks_lock); 507 iter->list_locked = true; 508 } 509 } 510 511 /** 512 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 513 * @iter: iterator to exit 514 * 515 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 516 * which is released on return. If the iterator holds a task's rq lock, that rq 517 * lock is also released. See scx_task_iter_start() for details. 518 */ 519 static void scx_task_iter_stop(struct scx_task_iter *iter) 520 { 521 __scx_task_iter_maybe_relock(iter); 522 list_del_init(&iter->cursor.tasks_node); 523 scx_task_iter_unlock(iter); 524 } 525 526 /** 527 * scx_task_iter_next - Next task 528 * @iter: iterator to walk 529 * 530 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 531 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 532 * by holding scx_tasks_lock for too long. 533 */ 534 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 535 { 536 struct list_head *cursor = &iter->cursor.tasks_node; 537 struct sched_ext_entity *pos; 538 539 __scx_task_iter_maybe_relock(iter); 540 541 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 542 scx_task_iter_unlock(iter); 543 cond_resched(); 544 __scx_task_iter_maybe_relock(iter); 545 } 546 547 list_for_each_entry(pos, cursor, tasks_node) { 548 if (&pos->tasks_node == &scx_tasks) 549 return NULL; 550 if (!(pos->flags & SCX_TASK_CURSOR)) { 551 list_move(cursor, &pos->tasks_node); 552 return container_of(pos, struct task_struct, scx); 553 } 554 } 555 556 /* can't happen, should always terminate at scx_tasks above */ 557 BUG(); 558 } 559 560 /** 561 * scx_task_iter_next_locked - Next non-idle task with its rq locked 562 * @iter: iterator to walk 563 * 564 * Visit the non-idle task with its rq lock held. Allows callers to specify 565 * whether they would like to filter out dead tasks. See scx_task_iter_start() 566 * for details. 567 */ 568 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 569 { 570 struct task_struct *p; 571 572 __scx_task_iter_rq_unlock(iter); 573 574 while ((p = scx_task_iter_next(iter))) { 575 /* 576 * scx_task_iter is used to prepare and move tasks into SCX 577 * while loading the BPF scheduler and vice-versa while 578 * unloading. The init_tasks ("swappers") should be excluded 579 * from the iteration because: 580 * 581 * - It's unsafe to use __setschduler_prio() on an init_task to 582 * determine the sched_class to use as it won't preserve its 583 * idle_sched_class. 584 * 585 * - ops.init/exit_task() can easily be confused if called with 586 * init_tasks as they, e.g., share PID 0. 587 * 588 * As init_tasks are never scheduled through SCX, they can be 589 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 590 * doesn't work here: 591 * 592 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 593 * yet been onlined. 594 * 595 * - %PF_IDLE can be set on tasks that are not init_tasks. See 596 * play_idle_precise() used by CONFIG_IDLE_INJECT. 597 * 598 * Test for idle_sched_class as only init_tasks are on it. 599 */ 600 if (p->sched_class != &idle_sched_class) 601 break; 602 } 603 if (!p) 604 return NULL; 605 606 iter->rq = task_rq_lock(p, &iter->rf); 607 iter->locked_task = p; 608 609 return p; 610 } 611 612 /** 613 * scx_add_event - Increase an event counter for 'name' by 'cnt' 614 * @sch: scx_sched to account events for 615 * @name: an event name defined in struct scx_event_stats 616 * @cnt: the number of the event occurred 617 * 618 * This can be used when preemption is not disabled. 619 */ 620 #define scx_add_event(sch, name, cnt) do { \ 621 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 622 trace_sched_ext_event(#name, (cnt)); \ 623 } while(0) 624 625 /** 626 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 627 * @sch: scx_sched to account events for 628 * @name: an event name defined in struct scx_event_stats 629 * @cnt: the number of the event occurred 630 * 631 * This should be used only when preemption is disabled. 632 */ 633 #define __scx_add_event(sch, name, cnt) do { \ 634 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 635 trace_sched_ext_event(#name, cnt); \ 636 } while(0) 637 638 /** 639 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 640 * @dst_e: destination event stats 641 * @src_e: source event stats 642 * @kind: a kind of event to be aggregated 643 */ 644 #define scx_agg_event(dst_e, src_e, kind) do { \ 645 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 646 } while(0) 647 648 /** 649 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 650 * @s: output seq_buf 651 * @events: event stats 652 * @kind: a kind of event to dump 653 */ 654 #define scx_dump_event(s, events, kind) do { \ 655 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 656 } while (0) 657 658 659 static void scx_read_events(struct scx_sched *sch, 660 struct scx_event_stats *events); 661 662 static enum scx_enable_state scx_enable_state(void) 663 { 664 return atomic_read(&scx_enable_state_var); 665 } 666 667 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 668 { 669 return atomic_xchg(&scx_enable_state_var, to); 670 } 671 672 static bool scx_tryset_enable_state(enum scx_enable_state to, 673 enum scx_enable_state from) 674 { 675 int from_v = from; 676 677 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 678 } 679 680 /** 681 * wait_ops_state - Busy-wait the specified ops state to end 682 * @p: target task 683 * @opss: state to wait the end of 684 * 685 * Busy-wait for @p to transition out of @opss. This can only be used when the 686 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 687 * has load_acquire semantics to ensure that the caller can see the updates made 688 * in the enqueueing and dispatching paths. 689 */ 690 static void wait_ops_state(struct task_struct *p, unsigned long opss) 691 { 692 do { 693 cpu_relax(); 694 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 695 } 696 697 static inline bool __cpu_valid(s32 cpu) 698 { 699 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 700 } 701 702 /** 703 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 704 * @sch: scx_sched to abort on error 705 * @cpu: cpu number which came from a BPF ops 706 * @where: extra information reported on error 707 * 708 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 709 * Verify that it is in range and one of the possible cpus. If invalid, trigger 710 * an ops error. 711 */ 712 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 713 { 714 if (__cpu_valid(cpu)) { 715 return true; 716 } else { 717 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 718 return false; 719 } 720 } 721 722 /** 723 * ops_sanitize_err - Sanitize a -errno value 724 * @sch: scx_sched to error out on error 725 * @ops_name: operation to blame on failure 726 * @err: -errno value to sanitize 727 * 728 * Verify @err is a valid -errno. If not, trigger scx_error() and return 729 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 730 * cause misbehaviors. For an example, a large negative return from 731 * ops.init_task() triggers an oops when passed up the call chain because the 732 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 733 * handled as a pointer. 734 */ 735 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 736 { 737 if (err < 0 && err >= -MAX_ERRNO) 738 return err; 739 740 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 741 return -EPROTO; 742 } 743 744 static void run_deferred(struct rq *rq) 745 { 746 process_ddsp_deferred_locals(rq); 747 } 748 749 static void deferred_bal_cb_workfn(struct rq *rq) 750 { 751 run_deferred(rq); 752 } 753 754 static void deferred_irq_workfn(struct irq_work *irq_work) 755 { 756 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 757 758 raw_spin_rq_lock(rq); 759 run_deferred(rq); 760 raw_spin_rq_unlock(rq); 761 } 762 763 /** 764 * schedule_deferred - Schedule execution of deferred actions on an rq 765 * @rq: target rq 766 * 767 * Schedule execution of deferred actions on @rq. Must be called with @rq 768 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 769 * can unlock @rq to e.g. migrate tasks to other rqs. 770 */ 771 static void schedule_deferred(struct rq *rq) 772 { 773 lockdep_assert_rq_held(rq); 774 775 /* 776 * If in the middle of waking up a task, task_woken_scx() will be called 777 * afterwards which will then run the deferred actions, no need to 778 * schedule anything. 779 */ 780 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 781 return; 782 783 /* 784 * If in balance, the balance callbacks will be called before rq lock is 785 * released. Schedule one. 786 */ 787 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 788 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 789 deferred_bal_cb_workfn); 790 return; 791 } 792 793 /* 794 * No scheduler hooks available. Queue an irq work. They are executed on 795 * IRQ re-enable which may take a bit longer than the scheduler hooks. 796 * The above WAKEUP and BALANCE paths should cover most of the cases and 797 * the time to IRQ re-enable shouldn't be long. 798 */ 799 irq_work_queue(&rq->scx.deferred_irq_work); 800 } 801 802 /** 803 * touch_core_sched - Update timestamp used for core-sched task ordering 804 * @rq: rq to read clock from, must be locked 805 * @p: task to update the timestamp for 806 * 807 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 808 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 809 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 810 * exhaustion). 811 */ 812 static void touch_core_sched(struct rq *rq, struct task_struct *p) 813 { 814 lockdep_assert_rq_held(rq); 815 816 #ifdef CONFIG_SCHED_CORE 817 /* 818 * It's okay to update the timestamp spuriously. Use 819 * sched_core_disabled() which is cheaper than enabled(). 820 * 821 * As this is used to determine ordering between tasks of sibling CPUs, 822 * it may be better to use per-core dispatch sequence instead. 823 */ 824 if (!sched_core_disabled()) 825 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 826 #endif 827 } 828 829 /** 830 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 831 * @rq: rq to read clock from, must be locked 832 * @p: task being dispatched 833 * 834 * If the BPF scheduler implements custom core-sched ordering via 835 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 836 * ordering within each local DSQ. This function is called from dispatch paths 837 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 838 */ 839 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 840 { 841 lockdep_assert_rq_held(rq); 842 843 #ifdef CONFIG_SCHED_CORE 844 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 845 touch_core_sched(rq, p); 846 #endif 847 } 848 849 static void update_curr_scx(struct rq *rq) 850 { 851 struct task_struct *curr = rq->curr; 852 s64 delta_exec; 853 854 delta_exec = update_curr_common(rq); 855 if (unlikely(delta_exec <= 0)) 856 return; 857 858 if (curr->scx.slice != SCX_SLICE_INF) { 859 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 860 if (!curr->scx.slice) 861 touch_core_sched(rq, curr); 862 } 863 } 864 865 static bool scx_dsq_priq_less(struct rb_node *node_a, 866 const struct rb_node *node_b) 867 { 868 const struct task_struct *a = 869 container_of(node_a, struct task_struct, scx.dsq_priq); 870 const struct task_struct *b = 871 container_of(node_b, struct task_struct, scx.dsq_priq); 872 873 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 874 } 875 876 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 877 { 878 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 879 WRITE_ONCE(dsq->nr, dsq->nr + delta); 880 } 881 882 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p) 883 { 884 p->scx.slice = SCX_SLICE_DFL; 885 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1); 886 } 887 888 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 889 struct task_struct *p, u64 enq_flags) 890 { 891 bool is_local = dsq->id == SCX_DSQ_LOCAL; 892 893 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 894 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 895 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 896 897 if (!is_local) { 898 raw_spin_lock(&dsq->lock); 899 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 900 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 901 /* fall back to the global dsq */ 902 raw_spin_unlock(&dsq->lock); 903 dsq = find_global_dsq(sch, p); 904 raw_spin_lock(&dsq->lock); 905 } 906 } 907 908 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 909 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 910 /* 911 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 912 * their FIFO queues. To avoid confusion and accidentally 913 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 914 * disallow any internal DSQ from doing vtime ordering of 915 * tasks. 916 */ 917 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 918 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 919 } 920 921 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 922 struct rb_node *rbp; 923 924 /* 925 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 926 * linked to both the rbtree and list on PRIQs, this can only be 927 * tested easily when adding the first task. 928 */ 929 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 930 nldsq_next_task(dsq, NULL, false))) 931 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 932 dsq->id); 933 934 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 935 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 936 937 /* 938 * Find the previous task and insert after it on the list so 939 * that @dsq->list is vtime ordered. 940 */ 941 rbp = rb_prev(&p->scx.dsq_priq); 942 if (rbp) { 943 struct task_struct *prev = 944 container_of(rbp, struct task_struct, 945 scx.dsq_priq); 946 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 947 } else { 948 list_add(&p->scx.dsq_list.node, &dsq->list); 949 } 950 } else { 951 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 952 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 953 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 954 dsq->id); 955 956 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 957 list_add(&p->scx.dsq_list.node, &dsq->list); 958 else 959 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 960 } 961 962 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 963 dsq->seq++; 964 p->scx.dsq_seq = dsq->seq; 965 966 dsq_mod_nr(dsq, 1); 967 p->scx.dsq = dsq; 968 969 /* 970 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 971 * direct dispatch path, but we clear them here because the direct 972 * dispatch verdict may be overridden on the enqueue path during e.g. 973 * bypass. 974 */ 975 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 976 p->scx.ddsp_enq_flags = 0; 977 978 /* 979 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 980 * match waiters' load_acquire. 981 */ 982 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 983 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 984 985 if (is_local) { 986 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 987 bool preempt = false; 988 989 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 990 rq->curr->sched_class == &ext_sched_class) { 991 rq->curr->scx.slice = 0; 992 preempt = true; 993 } 994 995 if (preempt || sched_class_above(&ext_sched_class, 996 rq->curr->sched_class)) 997 resched_curr(rq); 998 } else { 999 raw_spin_unlock(&dsq->lock); 1000 } 1001 } 1002 1003 static void task_unlink_from_dsq(struct task_struct *p, 1004 struct scx_dispatch_q *dsq) 1005 { 1006 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1007 1008 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1009 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1010 RB_CLEAR_NODE(&p->scx.dsq_priq); 1011 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1012 } 1013 1014 list_del_init(&p->scx.dsq_list.node); 1015 dsq_mod_nr(dsq, -1); 1016 } 1017 1018 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1019 { 1020 struct scx_dispatch_q *dsq = p->scx.dsq; 1021 bool is_local = dsq == &rq->scx.local_dsq; 1022 1023 if (!dsq) { 1024 /* 1025 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1026 * Unlinking is all that's needed to cancel. 1027 */ 1028 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1029 list_del_init(&p->scx.dsq_list.node); 1030 1031 /* 1032 * When dispatching directly from the BPF scheduler to a local 1033 * DSQ, the task isn't associated with any DSQ but 1034 * @p->scx.holding_cpu may be set under the protection of 1035 * %SCX_OPSS_DISPATCHING. 1036 */ 1037 if (p->scx.holding_cpu >= 0) 1038 p->scx.holding_cpu = -1; 1039 1040 return; 1041 } 1042 1043 if (!is_local) 1044 raw_spin_lock(&dsq->lock); 1045 1046 /* 1047 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1048 * change underneath us. 1049 */ 1050 if (p->scx.holding_cpu < 0) { 1051 /* @p must still be on @dsq, dequeue */ 1052 task_unlink_from_dsq(p, dsq); 1053 } else { 1054 /* 1055 * We're racing against dispatch_to_local_dsq() which already 1056 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1057 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1058 * the race. 1059 */ 1060 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1061 p->scx.holding_cpu = -1; 1062 } 1063 p->scx.dsq = NULL; 1064 1065 if (!is_local) 1066 raw_spin_unlock(&dsq->lock); 1067 } 1068 1069 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1070 struct rq *rq, u64 dsq_id, 1071 struct task_struct *p) 1072 { 1073 struct scx_dispatch_q *dsq; 1074 1075 if (dsq_id == SCX_DSQ_LOCAL) 1076 return &rq->scx.local_dsq; 1077 1078 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1079 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1080 1081 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1082 return find_global_dsq(sch, p); 1083 1084 return &cpu_rq(cpu)->scx.local_dsq; 1085 } 1086 1087 if (dsq_id == SCX_DSQ_GLOBAL) 1088 dsq = find_global_dsq(sch, p); 1089 else 1090 dsq = find_user_dsq(sch, dsq_id); 1091 1092 if (unlikely(!dsq)) { 1093 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1094 dsq_id, p->comm, p->pid); 1095 return find_global_dsq(sch, p); 1096 } 1097 1098 return dsq; 1099 } 1100 1101 static void mark_direct_dispatch(struct scx_sched *sch, 1102 struct task_struct *ddsp_task, 1103 struct task_struct *p, u64 dsq_id, 1104 u64 enq_flags) 1105 { 1106 /* 1107 * Mark that dispatch already happened from ops.select_cpu() or 1108 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1109 * which can never match a valid task pointer. 1110 */ 1111 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1112 1113 /* @p must match the task on the enqueue path */ 1114 if (unlikely(p != ddsp_task)) { 1115 if (IS_ERR(ddsp_task)) 1116 scx_error(sch, "%s[%d] already direct-dispatched", 1117 p->comm, p->pid); 1118 else 1119 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1120 ddsp_task->comm, ddsp_task->pid, 1121 p->comm, p->pid); 1122 return; 1123 } 1124 1125 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1126 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1127 1128 p->scx.ddsp_dsq_id = dsq_id; 1129 p->scx.ddsp_enq_flags = enq_flags; 1130 } 1131 1132 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1133 u64 enq_flags) 1134 { 1135 struct rq *rq = task_rq(p); 1136 struct scx_dispatch_q *dsq = 1137 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1138 1139 touch_core_sched_dispatch(rq, p); 1140 1141 p->scx.ddsp_enq_flags |= enq_flags; 1142 1143 /* 1144 * We are in the enqueue path with @rq locked and pinned, and thus can't 1145 * double lock a remote rq and enqueue to its local DSQ. For 1146 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1147 * the enqueue so that it's executed when @rq can be unlocked. 1148 */ 1149 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1150 unsigned long opss; 1151 1152 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1153 1154 switch (opss & SCX_OPSS_STATE_MASK) { 1155 case SCX_OPSS_NONE: 1156 break; 1157 case SCX_OPSS_QUEUEING: 1158 /* 1159 * As @p was never passed to the BPF side, _release is 1160 * not strictly necessary. Still do it for consistency. 1161 */ 1162 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1163 break; 1164 default: 1165 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1166 p->comm, p->pid, opss); 1167 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1168 break; 1169 } 1170 1171 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1172 list_add_tail(&p->scx.dsq_list.node, 1173 &rq->scx.ddsp_deferred_locals); 1174 schedule_deferred(rq); 1175 return; 1176 } 1177 1178 dispatch_enqueue(sch, dsq, p, 1179 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1180 } 1181 1182 static bool scx_rq_online(struct rq *rq) 1183 { 1184 /* 1185 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1186 * the online state as seen from the BPF scheduler. cpu_active() test 1187 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1188 * stay set until the current scheduling operation is complete even if 1189 * we aren't locking @rq. 1190 */ 1191 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1192 } 1193 1194 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1195 int sticky_cpu) 1196 { 1197 struct scx_sched *sch = scx_root; 1198 struct task_struct **ddsp_taskp; 1199 unsigned long qseq; 1200 1201 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1202 1203 /* rq migration */ 1204 if (sticky_cpu == cpu_of(rq)) 1205 goto local_norefill; 1206 1207 /* 1208 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1209 * is offline and are just running the hotplug path. Don't bother the 1210 * BPF scheduler. 1211 */ 1212 if (!scx_rq_online(rq)) 1213 goto local; 1214 1215 if (scx_rq_bypassing(rq)) { 1216 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1217 goto global; 1218 } 1219 1220 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1221 goto direct; 1222 1223 /* see %SCX_OPS_ENQ_EXITING */ 1224 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1225 unlikely(p->flags & PF_EXITING)) { 1226 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1227 goto local; 1228 } 1229 1230 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1231 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1232 is_migration_disabled(p)) { 1233 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1234 goto local; 1235 } 1236 1237 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1238 goto global; 1239 1240 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1241 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1242 1243 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1244 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1245 1246 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1247 WARN_ON_ONCE(*ddsp_taskp); 1248 *ddsp_taskp = p; 1249 1250 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1251 1252 *ddsp_taskp = NULL; 1253 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1254 goto direct; 1255 1256 /* 1257 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1258 * dequeue may be waiting. The store_release matches their load_acquire. 1259 */ 1260 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1261 return; 1262 1263 direct: 1264 direct_dispatch(sch, p, enq_flags); 1265 return; 1266 1267 local: 1268 /* 1269 * For task-ordering, slice refill must be treated as implying the end 1270 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1271 * higher priority it becomes from scx_prio_less()'s POV. 1272 */ 1273 touch_core_sched(rq, p); 1274 refill_task_slice_dfl(sch, p); 1275 local_norefill: 1276 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1277 return; 1278 1279 global: 1280 touch_core_sched(rq, p); /* see the comment in local: */ 1281 refill_task_slice_dfl(sch, p); 1282 dispatch_enqueue(sch, find_global_dsq(sch, p), p, enq_flags); 1283 } 1284 1285 static bool task_runnable(const struct task_struct *p) 1286 { 1287 return !list_empty(&p->scx.runnable_node); 1288 } 1289 1290 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1291 { 1292 lockdep_assert_rq_held(rq); 1293 1294 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1295 p->scx.runnable_at = jiffies; 1296 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1297 } 1298 1299 /* 1300 * list_add_tail() must be used. scx_bypass() depends on tasks being 1301 * appended to the runnable_list. 1302 */ 1303 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1304 } 1305 1306 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1307 { 1308 list_del_init(&p->scx.runnable_node); 1309 if (reset_runnable_at) 1310 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1311 } 1312 1313 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1314 { 1315 struct scx_sched *sch = scx_root; 1316 int sticky_cpu = p->scx.sticky_cpu; 1317 1318 if (enq_flags & ENQUEUE_WAKEUP) 1319 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1320 1321 enq_flags |= rq->scx.extra_enq_flags; 1322 1323 if (sticky_cpu >= 0) 1324 p->scx.sticky_cpu = -1; 1325 1326 /* 1327 * Restoring a running task will be immediately followed by 1328 * set_next_task_scx() which expects the task to not be on the BPF 1329 * scheduler as tasks can only start running through local DSQs. Force 1330 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1331 */ 1332 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1333 sticky_cpu = cpu_of(rq); 1334 1335 if (p->scx.flags & SCX_TASK_QUEUED) { 1336 WARN_ON_ONCE(!task_runnable(p)); 1337 goto out; 1338 } 1339 1340 set_task_runnable(rq, p); 1341 p->scx.flags |= SCX_TASK_QUEUED; 1342 rq->scx.nr_running++; 1343 add_nr_running(rq, 1); 1344 1345 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1346 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1347 1348 if (enq_flags & SCX_ENQ_WAKEUP) 1349 touch_core_sched(rq, p); 1350 1351 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1352 out: 1353 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1354 1355 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1356 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1357 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1358 } 1359 1360 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1361 { 1362 struct scx_sched *sch = scx_root; 1363 unsigned long opss; 1364 1365 /* dequeue is always temporary, don't reset runnable_at */ 1366 clr_task_runnable(p, false); 1367 1368 /* acquire ensures that we see the preceding updates on QUEUED */ 1369 opss = atomic_long_read_acquire(&p->scx.ops_state); 1370 1371 switch (opss & SCX_OPSS_STATE_MASK) { 1372 case SCX_OPSS_NONE: 1373 break; 1374 case SCX_OPSS_QUEUEING: 1375 /* 1376 * QUEUEING is started and finished while holding @p's rq lock. 1377 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1378 */ 1379 BUG(); 1380 case SCX_OPSS_QUEUED: 1381 if (SCX_HAS_OP(sch, dequeue)) 1382 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1383 p, deq_flags); 1384 1385 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1386 SCX_OPSS_NONE)) 1387 break; 1388 fallthrough; 1389 case SCX_OPSS_DISPATCHING: 1390 /* 1391 * If @p is being dispatched from the BPF scheduler to a DSQ, 1392 * wait for the transfer to complete so that @p doesn't get 1393 * added to its DSQ after dequeueing is complete. 1394 * 1395 * As we're waiting on DISPATCHING with the rq locked, the 1396 * dispatching side shouldn't try to lock the rq while 1397 * DISPATCHING is set. See dispatch_to_local_dsq(). 1398 * 1399 * DISPATCHING shouldn't have qseq set and control can reach 1400 * here with NONE @opss from the above QUEUED case block. 1401 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1402 */ 1403 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1404 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1405 break; 1406 } 1407 } 1408 1409 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1410 { 1411 struct scx_sched *sch = scx_root; 1412 1413 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1414 WARN_ON_ONCE(task_runnable(p)); 1415 return true; 1416 } 1417 1418 ops_dequeue(rq, p, deq_flags); 1419 1420 /* 1421 * A currently running task which is going off @rq first gets dequeued 1422 * and then stops running. As we want running <-> stopping transitions 1423 * to be contained within runnable <-> quiescent transitions, trigger 1424 * ->stopping() early here instead of in put_prev_task_scx(). 1425 * 1426 * @p may go through multiple stopping <-> running transitions between 1427 * here and put_prev_task_scx() if task attribute changes occur while 1428 * balance_scx() leaves @rq unlocked. However, they don't contain any 1429 * information meaningful to the BPF scheduler and can be suppressed by 1430 * skipping the callbacks if the task is !QUEUED. 1431 */ 1432 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1433 update_curr_scx(rq); 1434 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1435 } 1436 1437 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1438 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1439 1440 if (deq_flags & SCX_DEQ_SLEEP) 1441 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1442 else 1443 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1444 1445 p->scx.flags &= ~SCX_TASK_QUEUED; 1446 rq->scx.nr_running--; 1447 sub_nr_running(rq, 1); 1448 1449 dispatch_dequeue(rq, p); 1450 return true; 1451 } 1452 1453 static void yield_task_scx(struct rq *rq) 1454 { 1455 struct scx_sched *sch = scx_root; 1456 struct task_struct *p = rq->curr; 1457 1458 if (SCX_HAS_OP(sch, yield)) 1459 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1460 else 1461 p->scx.slice = 0; 1462 } 1463 1464 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1465 { 1466 struct scx_sched *sch = scx_root; 1467 struct task_struct *from = rq->curr; 1468 1469 if (SCX_HAS_OP(sch, yield)) 1470 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1471 from, to); 1472 else 1473 return false; 1474 } 1475 1476 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1477 struct scx_dispatch_q *src_dsq, 1478 struct rq *dst_rq) 1479 { 1480 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1481 1482 /* @dsq is locked and @p is on @dst_rq */ 1483 lockdep_assert_held(&src_dsq->lock); 1484 lockdep_assert_rq_held(dst_rq); 1485 1486 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1487 1488 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1489 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1490 else 1491 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1492 1493 dsq_mod_nr(dst_dsq, 1); 1494 p->scx.dsq = dst_dsq; 1495 } 1496 1497 /** 1498 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1499 * @p: task to move 1500 * @enq_flags: %SCX_ENQ_* 1501 * @src_rq: rq to move the task from, locked on entry, released on return 1502 * @dst_rq: rq to move the task into, locked on return 1503 * 1504 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1505 */ 1506 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1507 struct rq *src_rq, struct rq *dst_rq) 1508 { 1509 lockdep_assert_rq_held(src_rq); 1510 1511 /* the following marks @p MIGRATING which excludes dequeue */ 1512 deactivate_task(src_rq, p, 0); 1513 set_task_cpu(p, cpu_of(dst_rq)); 1514 p->scx.sticky_cpu = cpu_of(dst_rq); 1515 1516 raw_spin_rq_unlock(src_rq); 1517 raw_spin_rq_lock(dst_rq); 1518 1519 /* 1520 * We want to pass scx-specific enq_flags but activate_task() will 1521 * truncate the upper 32 bit. As we own @rq, we can pass them through 1522 * @rq->scx.extra_enq_flags instead. 1523 */ 1524 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1525 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1526 dst_rq->scx.extra_enq_flags = enq_flags; 1527 activate_task(dst_rq, p, 0); 1528 dst_rq->scx.extra_enq_flags = 0; 1529 } 1530 1531 /* 1532 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1533 * differences: 1534 * 1535 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1536 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1537 * this CPU?". 1538 * 1539 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1540 * must be allowed to finish on the CPU that it's currently on regardless of 1541 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1542 * BPF scheduler shouldn't attempt to migrate a task which has migration 1543 * disabled. 1544 * 1545 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1546 * no to the BPF scheduler initiated migrations while offline. 1547 * 1548 * The caller must ensure that @p and @rq are on different CPUs. 1549 */ 1550 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1551 struct task_struct *p, struct rq *rq, 1552 bool enforce) 1553 { 1554 int cpu = cpu_of(rq); 1555 1556 WARN_ON_ONCE(task_cpu(p) == cpu); 1557 1558 /* 1559 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1560 * the pinned CPU in migrate_disable_switch() while @p is being switched 1561 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1562 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1563 * @p passing the below task_allowed_on_cpu() check while migration is 1564 * disabled. 1565 * 1566 * Test the migration disabled state first as the race window is narrow 1567 * and the BPF scheduler failing to check migration disabled state can 1568 * easily be masked if task_allowed_on_cpu() is done first. 1569 */ 1570 if (unlikely(is_migration_disabled(p))) { 1571 if (enforce) 1572 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1573 p->comm, p->pid, task_cpu(p), cpu); 1574 return false; 1575 } 1576 1577 /* 1578 * We don't require the BPF scheduler to avoid dispatching to offline 1579 * CPUs mostly for convenience but also because CPUs can go offline 1580 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1581 * picked CPU is outside the allowed mask. 1582 */ 1583 if (!task_allowed_on_cpu(p, cpu)) { 1584 if (enforce) 1585 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1586 cpu, p->comm, p->pid); 1587 return false; 1588 } 1589 1590 if (!scx_rq_online(rq)) { 1591 if (enforce) 1592 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1593 return false; 1594 } 1595 1596 return true; 1597 } 1598 1599 /** 1600 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1601 * @p: target task 1602 * @dsq: locked DSQ @p is currently on 1603 * @src_rq: rq @p is currently on, stable with @dsq locked 1604 * 1605 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1606 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1607 * required when transferring into a local DSQ. Even when transferring into a 1608 * non-local DSQ, it's better to use the same mechanism to protect against 1609 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1610 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1611 * 1612 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1613 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1614 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1615 * dancing from our side. 1616 * 1617 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1618 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1619 * would be cleared to -1. While other cpus may have updated it to different 1620 * values afterwards, as this operation can't be preempted or recurse, the 1621 * holding_cpu can never become this CPU again before we're done. Thus, we can 1622 * tell whether we lost to dequeue by testing whether the holding_cpu still 1623 * points to this CPU. See dispatch_dequeue() for the counterpart. 1624 * 1625 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1626 * still valid. %false if lost to dequeue. 1627 */ 1628 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1629 struct scx_dispatch_q *dsq, 1630 struct rq *src_rq) 1631 { 1632 s32 cpu = raw_smp_processor_id(); 1633 1634 lockdep_assert_held(&dsq->lock); 1635 1636 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1637 task_unlink_from_dsq(p, dsq); 1638 p->scx.holding_cpu = cpu; 1639 1640 raw_spin_unlock(&dsq->lock); 1641 raw_spin_rq_lock(src_rq); 1642 1643 /* task_rq couldn't have changed if we're still the holding cpu */ 1644 return likely(p->scx.holding_cpu == cpu) && 1645 !WARN_ON_ONCE(src_rq != task_rq(p)); 1646 } 1647 1648 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1649 struct scx_dispatch_q *dsq, struct rq *src_rq) 1650 { 1651 raw_spin_rq_unlock(this_rq); 1652 1653 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1654 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1655 return true; 1656 } else { 1657 raw_spin_rq_unlock(src_rq); 1658 raw_spin_rq_lock(this_rq); 1659 return false; 1660 } 1661 } 1662 1663 /** 1664 * move_task_between_dsqs() - Move a task from one DSQ to another 1665 * @sch: scx_sched being operated on 1666 * @p: target task 1667 * @enq_flags: %SCX_ENQ_* 1668 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1669 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1670 * 1671 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1672 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1673 * will change. As @p's task_rq is locked, this function doesn't need to use the 1674 * holding_cpu mechanism. 1675 * 1676 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1677 * return value, is locked. 1678 */ 1679 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1680 struct task_struct *p, u64 enq_flags, 1681 struct scx_dispatch_q *src_dsq, 1682 struct scx_dispatch_q *dst_dsq) 1683 { 1684 struct rq *src_rq = task_rq(p), *dst_rq; 1685 1686 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1687 lockdep_assert_held(&src_dsq->lock); 1688 lockdep_assert_rq_held(src_rq); 1689 1690 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1691 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1692 if (src_rq != dst_rq && 1693 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1694 dst_dsq = find_global_dsq(sch, p); 1695 dst_rq = src_rq; 1696 } 1697 } else { 1698 /* no need to migrate if destination is a non-local DSQ */ 1699 dst_rq = src_rq; 1700 } 1701 1702 /* 1703 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1704 * CPU, @p will be migrated. 1705 */ 1706 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1707 /* @p is going from a non-local DSQ to a local DSQ */ 1708 if (src_rq == dst_rq) { 1709 task_unlink_from_dsq(p, src_dsq); 1710 move_local_task_to_local_dsq(p, enq_flags, 1711 src_dsq, dst_rq); 1712 raw_spin_unlock(&src_dsq->lock); 1713 } else { 1714 raw_spin_unlock(&src_dsq->lock); 1715 move_remote_task_to_local_dsq(p, enq_flags, 1716 src_rq, dst_rq); 1717 } 1718 } else { 1719 /* 1720 * @p is going from a non-local DSQ to a non-local DSQ. As 1721 * $src_dsq is already locked, do an abbreviated dequeue. 1722 */ 1723 task_unlink_from_dsq(p, src_dsq); 1724 p->scx.dsq = NULL; 1725 raw_spin_unlock(&src_dsq->lock); 1726 1727 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1728 } 1729 1730 return dst_rq; 1731 } 1732 1733 /* 1734 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 1735 * banging on the same DSQ on a large NUMA system to the point where switching 1736 * to the bypass mode can take a long time. Inject artificial delays while the 1737 * bypass mode is switching to guarantee timely completion. 1738 */ 1739 static void scx_breather(struct rq *rq) 1740 { 1741 u64 until; 1742 1743 lockdep_assert_rq_held(rq); 1744 1745 if (likely(!atomic_read(&scx_breather_depth))) 1746 return; 1747 1748 raw_spin_rq_unlock(rq); 1749 1750 until = ktime_get_ns() + NSEC_PER_MSEC; 1751 1752 do { 1753 int cnt = 1024; 1754 while (atomic_read(&scx_breather_depth) && --cnt) 1755 cpu_relax(); 1756 } while (atomic_read(&scx_breather_depth) && 1757 time_before64(ktime_get_ns(), until)); 1758 1759 raw_spin_rq_lock(rq); 1760 } 1761 1762 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1763 struct scx_dispatch_q *dsq) 1764 { 1765 struct task_struct *p; 1766 retry: 1767 /* 1768 * This retry loop can repeatedly race against scx_bypass() dequeueing 1769 * tasks from @dsq trying to put the system into the bypass mode. On 1770 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock 1771 * the machine into soft lockups. Give a breather. 1772 */ 1773 scx_breather(rq); 1774 1775 /* 1776 * The caller can't expect to successfully consume a task if the task's 1777 * addition to @dsq isn't guaranteed to be visible somehow. Test 1778 * @dsq->list without locking and skip if it seems empty. 1779 */ 1780 if (list_empty(&dsq->list)) 1781 return false; 1782 1783 raw_spin_lock(&dsq->lock); 1784 1785 nldsq_for_each_task(p, dsq) { 1786 struct rq *task_rq = task_rq(p); 1787 1788 if (rq == task_rq) { 1789 task_unlink_from_dsq(p, dsq); 1790 move_local_task_to_local_dsq(p, 0, dsq, rq); 1791 raw_spin_unlock(&dsq->lock); 1792 return true; 1793 } 1794 1795 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1796 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1797 return true; 1798 goto retry; 1799 } 1800 } 1801 1802 raw_spin_unlock(&dsq->lock); 1803 return false; 1804 } 1805 1806 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1807 { 1808 int node = cpu_to_node(cpu_of(rq)); 1809 1810 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1811 } 1812 1813 /** 1814 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1815 * @sch: scx_sched being operated on 1816 * @rq: current rq which is locked 1817 * @dst_dsq: destination DSQ 1818 * @p: task to dispatch 1819 * @enq_flags: %SCX_ENQ_* 1820 * 1821 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1822 * DSQ. This function performs all the synchronization dancing needed because 1823 * local DSQs are protected with rq locks. 1824 * 1825 * The caller must have exclusive ownership of @p (e.g. through 1826 * %SCX_OPSS_DISPATCHING). 1827 */ 1828 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1829 struct scx_dispatch_q *dst_dsq, 1830 struct task_struct *p, u64 enq_flags) 1831 { 1832 struct rq *src_rq = task_rq(p); 1833 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1834 struct rq *locked_rq = rq; 1835 1836 /* 1837 * We're synchronized against dequeue through DISPATCHING. As @p can't 1838 * be dequeued, its task_rq and cpus_allowed are stable too. 1839 * 1840 * If dispatching to @rq that @p is already on, no lock dancing needed. 1841 */ 1842 if (rq == src_rq && rq == dst_rq) { 1843 dispatch_enqueue(sch, dst_dsq, p, 1844 enq_flags | SCX_ENQ_CLEAR_OPSS); 1845 return; 1846 } 1847 1848 if (src_rq != dst_rq && 1849 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1850 dispatch_enqueue(sch, find_global_dsq(sch, p), p, 1851 enq_flags | SCX_ENQ_CLEAR_OPSS); 1852 return; 1853 } 1854 1855 /* 1856 * @p is on a possibly remote @src_rq which we need to lock to move the 1857 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1858 * on DISPATCHING, so we can't grab @src_rq lock while holding 1859 * DISPATCHING. 1860 * 1861 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1862 * we're moving from a DSQ and use the same mechanism - mark the task 1863 * under transfer with holding_cpu, release DISPATCHING and then follow 1864 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1865 */ 1866 p->scx.holding_cpu = raw_smp_processor_id(); 1867 1868 /* store_release ensures that dequeue sees the above */ 1869 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1870 1871 /* switch to @src_rq lock */ 1872 if (locked_rq != src_rq) { 1873 raw_spin_rq_unlock(locked_rq); 1874 locked_rq = src_rq; 1875 raw_spin_rq_lock(src_rq); 1876 } 1877 1878 /* task_rq couldn't have changed if we're still the holding cpu */ 1879 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 1880 !WARN_ON_ONCE(src_rq != task_rq(p))) { 1881 /* 1882 * If @p is staying on the same rq, there's no need to go 1883 * through the full deactivate/activate cycle. Optimize by 1884 * abbreviating move_remote_task_to_local_dsq(). 1885 */ 1886 if (src_rq == dst_rq) { 1887 p->scx.holding_cpu = -1; 1888 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 1889 enq_flags); 1890 } else { 1891 move_remote_task_to_local_dsq(p, enq_flags, 1892 src_rq, dst_rq); 1893 /* task has been moved to dst_rq, which is now locked */ 1894 locked_rq = dst_rq; 1895 } 1896 1897 /* if the destination CPU is idle, wake it up */ 1898 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 1899 resched_curr(dst_rq); 1900 } 1901 1902 /* switch back to @rq lock */ 1903 if (locked_rq != rq) { 1904 raw_spin_rq_unlock(locked_rq); 1905 raw_spin_rq_lock(rq); 1906 } 1907 } 1908 1909 /** 1910 * finish_dispatch - Asynchronously finish dispatching a task 1911 * @rq: current rq which is locked 1912 * @p: task to finish dispatching 1913 * @qseq_at_dispatch: qseq when @p started getting dispatched 1914 * @dsq_id: destination DSQ ID 1915 * @enq_flags: %SCX_ENQ_* 1916 * 1917 * Dispatching to local DSQs may need to wait for queueing to complete or 1918 * require rq lock dancing. As we don't wanna do either while inside 1919 * ops.dispatch() to avoid locking order inversion, we split dispatching into 1920 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 1921 * task and its qseq. Once ops.dispatch() returns, this function is called to 1922 * finish up. 1923 * 1924 * There is no guarantee that @p is still valid for dispatching or even that it 1925 * was valid in the first place. Make sure that the task is still owned by the 1926 * BPF scheduler and claim the ownership before dispatching. 1927 */ 1928 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 1929 struct task_struct *p, 1930 unsigned long qseq_at_dispatch, 1931 u64 dsq_id, u64 enq_flags) 1932 { 1933 struct scx_dispatch_q *dsq; 1934 unsigned long opss; 1935 1936 touch_core_sched_dispatch(rq, p); 1937 retry: 1938 /* 1939 * No need for _acquire here. @p is accessed only after a successful 1940 * try_cmpxchg to DISPATCHING. 1941 */ 1942 opss = atomic_long_read(&p->scx.ops_state); 1943 1944 switch (opss & SCX_OPSS_STATE_MASK) { 1945 case SCX_OPSS_DISPATCHING: 1946 case SCX_OPSS_NONE: 1947 /* someone else already got to it */ 1948 return; 1949 case SCX_OPSS_QUEUED: 1950 /* 1951 * If qseq doesn't match, @p has gone through at least one 1952 * dispatch/dequeue and re-enqueue cycle between 1953 * scx_bpf_dsq_insert() and here and we have no claim on it. 1954 */ 1955 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 1956 return; 1957 1958 /* 1959 * While we know @p is accessible, we don't yet have a claim on 1960 * it - the BPF scheduler is allowed to dispatch tasks 1961 * spuriously and there can be a racing dequeue attempt. Let's 1962 * claim @p by atomically transitioning it from QUEUED to 1963 * DISPATCHING. 1964 */ 1965 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1966 SCX_OPSS_DISPATCHING))) 1967 break; 1968 goto retry; 1969 case SCX_OPSS_QUEUEING: 1970 /* 1971 * do_enqueue_task() is in the process of transferring the task 1972 * to the BPF scheduler while holding @p's rq lock. As we aren't 1973 * holding any kernel or BPF resource that the enqueue path may 1974 * depend upon, it's safe to wait. 1975 */ 1976 wait_ops_state(p, opss); 1977 goto retry; 1978 } 1979 1980 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 1981 1982 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 1983 1984 if (dsq->id == SCX_DSQ_LOCAL) 1985 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 1986 else 1987 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 1988 } 1989 1990 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 1991 { 1992 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 1993 u32 u; 1994 1995 for (u = 0; u < dspc->cursor; u++) { 1996 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 1997 1998 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 1999 ent->enq_flags); 2000 } 2001 2002 dspc->nr_tasks += dspc->cursor; 2003 dspc->cursor = 0; 2004 } 2005 2006 static int balance_one(struct rq *rq, struct task_struct *prev) 2007 { 2008 struct scx_sched *sch = scx_root; 2009 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2010 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2011 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2012 int nr_loops = SCX_DSP_MAX_LOOPS; 2013 2014 lockdep_assert_rq_held(rq); 2015 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2016 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2017 2018 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2019 unlikely(rq->scx.cpu_released)) { 2020 /* 2021 * If the previous sched_class for the current CPU was not SCX, 2022 * notify the BPF scheduler that it again has control of the 2023 * core. This callback complements ->cpu_release(), which is 2024 * emitted in switch_class(). 2025 */ 2026 if (SCX_HAS_OP(sch, cpu_acquire)) 2027 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2028 cpu_of(rq), NULL); 2029 rq->scx.cpu_released = false; 2030 } 2031 2032 if (prev_on_scx) { 2033 update_curr_scx(rq); 2034 2035 /* 2036 * If @prev is runnable & has slice left, it has priority and 2037 * fetching more just increases latency for the fetched tasks. 2038 * Tell pick_task_scx() to keep running @prev. If the BPF 2039 * scheduler wants to handle this explicitly, it should 2040 * implement ->cpu_release(). 2041 * 2042 * See scx_disable_workfn() for the explanation on the bypassing 2043 * test. 2044 */ 2045 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2046 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2047 goto has_tasks; 2048 } 2049 } 2050 2051 /* if there already are tasks to run, nothing to do */ 2052 if (rq->scx.local_dsq.nr) 2053 goto has_tasks; 2054 2055 if (consume_global_dsq(sch, rq)) 2056 goto has_tasks; 2057 2058 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || 2059 scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2060 goto no_tasks; 2061 2062 dspc->rq = rq; 2063 2064 /* 2065 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2066 * the local DSQ might still end up empty after a successful 2067 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2068 * produced some tasks, retry. The BPF scheduler may depend on this 2069 * looping behavior to simplify its implementation. 2070 */ 2071 do { 2072 dspc->nr_tasks = 0; 2073 2074 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2075 cpu_of(rq), prev_on_scx ? prev : NULL); 2076 2077 flush_dispatch_buf(sch, rq); 2078 2079 if (prev_on_rq && prev->scx.slice) { 2080 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2081 goto has_tasks; 2082 } 2083 if (rq->scx.local_dsq.nr) 2084 goto has_tasks; 2085 if (consume_global_dsq(sch, rq)) 2086 goto has_tasks; 2087 2088 /* 2089 * ops.dispatch() can trap us in this loop by repeatedly 2090 * dispatching ineligible tasks. Break out once in a while to 2091 * allow the watchdog to run. As IRQ can't be enabled in 2092 * balance(), we want to complete this scheduling cycle and then 2093 * start a new one. IOW, we want to call resched_curr() on the 2094 * next, most likely idle, task, not the current one. Use 2095 * scx_kick_cpu() for deferred kicking. 2096 */ 2097 if (unlikely(!--nr_loops)) { 2098 scx_kick_cpu(sch, cpu_of(rq), 0); 2099 break; 2100 } 2101 } while (dspc->nr_tasks); 2102 2103 no_tasks: 2104 /* 2105 * Didn't find another task to run. Keep running @prev unless 2106 * %SCX_OPS_ENQ_LAST is in effect. 2107 */ 2108 if (prev_on_rq && 2109 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2110 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2111 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2112 goto has_tasks; 2113 } 2114 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2115 return false; 2116 2117 has_tasks: 2118 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2119 return true; 2120 } 2121 2122 static int balance_scx(struct rq *rq, struct task_struct *prev, 2123 struct rq_flags *rf) 2124 { 2125 int ret; 2126 2127 rq_unpin_lock(rq, rf); 2128 2129 ret = balance_one(rq, prev); 2130 2131 #ifdef CONFIG_SCHED_SMT 2132 /* 2133 * When core-sched is enabled, this ops.balance() call will be followed 2134 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2135 * siblings too. 2136 */ 2137 if (sched_core_enabled(rq)) { 2138 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2139 int scpu; 2140 2141 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2142 struct rq *srq = cpu_rq(scpu); 2143 struct task_struct *sprev = srq->curr; 2144 2145 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2146 update_rq_clock(srq); 2147 balance_one(srq, sprev); 2148 } 2149 } 2150 #endif 2151 rq_repin_lock(rq, rf); 2152 2153 return ret; 2154 } 2155 2156 static void process_ddsp_deferred_locals(struct rq *rq) 2157 { 2158 struct task_struct *p; 2159 2160 lockdep_assert_rq_held(rq); 2161 2162 /* 2163 * Now that @rq can be unlocked, execute the deferred enqueueing of 2164 * tasks directly dispatched to the local DSQs of other CPUs. See 2165 * direct_dispatch(). Keep popping from the head instead of using 2166 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2167 * temporarily. 2168 */ 2169 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2170 struct task_struct, scx.dsq_list.node))) { 2171 struct scx_sched *sch = scx_root; 2172 struct scx_dispatch_q *dsq; 2173 2174 list_del_init(&p->scx.dsq_list.node); 2175 2176 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2177 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2178 dispatch_to_local_dsq(sch, rq, dsq, p, 2179 p->scx.ddsp_enq_flags); 2180 } 2181 } 2182 2183 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2184 { 2185 struct scx_sched *sch = scx_root; 2186 2187 if (p->scx.flags & SCX_TASK_QUEUED) { 2188 /* 2189 * Core-sched might decide to execute @p before it is 2190 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2191 */ 2192 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2193 dispatch_dequeue(rq, p); 2194 } 2195 2196 p->se.exec_start = rq_clock_task(rq); 2197 2198 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2199 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2200 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2201 2202 clr_task_runnable(p, true); 2203 2204 /* 2205 * @p is getting newly scheduled or got kicked after someone updated its 2206 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2207 */ 2208 if ((p->scx.slice == SCX_SLICE_INF) != 2209 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2210 if (p->scx.slice == SCX_SLICE_INF) 2211 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2212 else 2213 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2214 2215 sched_update_tick_dependency(rq); 2216 2217 /* 2218 * For now, let's refresh the load_avgs just when transitioning 2219 * in and out of nohz. In the future, we might want to add a 2220 * mechanism which calls the following periodically on 2221 * tick-stopped CPUs. 2222 */ 2223 update_other_load_avgs(rq); 2224 } 2225 } 2226 2227 static enum scx_cpu_preempt_reason 2228 preempt_reason_from_class(const struct sched_class *class) 2229 { 2230 if (class == &stop_sched_class) 2231 return SCX_CPU_PREEMPT_STOP; 2232 if (class == &dl_sched_class) 2233 return SCX_CPU_PREEMPT_DL; 2234 if (class == &rt_sched_class) 2235 return SCX_CPU_PREEMPT_RT; 2236 return SCX_CPU_PREEMPT_UNKNOWN; 2237 } 2238 2239 static void switch_class(struct rq *rq, struct task_struct *next) 2240 { 2241 struct scx_sched *sch = scx_root; 2242 const struct sched_class *next_class = next->sched_class; 2243 2244 /* 2245 * Pairs with the smp_load_acquire() issued by a CPU in 2246 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2247 * resched. 2248 */ 2249 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2250 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2251 return; 2252 2253 /* 2254 * The callback is conceptually meant to convey that the CPU is no 2255 * longer under the control of SCX. Therefore, don't invoke the callback 2256 * if the next class is below SCX (in which case the BPF scheduler has 2257 * actively decided not to schedule any tasks on the CPU). 2258 */ 2259 if (sched_class_above(&ext_sched_class, next_class)) 2260 return; 2261 2262 /* 2263 * At this point we know that SCX was preempted by a higher priority 2264 * sched_class, so invoke the ->cpu_release() callback if we have not 2265 * done so already. We only send the callback once between SCX being 2266 * preempted, and it regaining control of the CPU. 2267 * 2268 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2269 * next time that balance_scx() is invoked. 2270 */ 2271 if (!rq->scx.cpu_released) { 2272 if (SCX_HAS_OP(sch, cpu_release)) { 2273 struct scx_cpu_release_args args = { 2274 .reason = preempt_reason_from_class(next_class), 2275 .task = next, 2276 }; 2277 2278 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2279 cpu_of(rq), &args); 2280 } 2281 rq->scx.cpu_released = true; 2282 } 2283 } 2284 2285 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2286 struct task_struct *next) 2287 { 2288 struct scx_sched *sch = scx_root; 2289 update_curr_scx(rq); 2290 2291 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2292 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2293 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2294 2295 if (p->scx.flags & SCX_TASK_QUEUED) { 2296 set_task_runnable(rq, p); 2297 2298 /* 2299 * If @p has slice left and is being put, @p is getting 2300 * preempted by a higher priority scheduler class or core-sched 2301 * forcing a different task. Leave it at the head of the local 2302 * DSQ. 2303 */ 2304 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2305 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2306 SCX_ENQ_HEAD); 2307 goto switch_class; 2308 } 2309 2310 /* 2311 * If @p is runnable but we're about to enter a lower 2312 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2313 * ops.enqueue() that @p is the only one available for this cpu, 2314 * which should trigger an explicit follow-up scheduling event. 2315 */ 2316 if (sched_class_above(&ext_sched_class, next->sched_class)) { 2317 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2318 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2319 } else { 2320 do_enqueue_task(rq, p, 0, -1); 2321 } 2322 } 2323 2324 switch_class: 2325 if (next && next->sched_class != &ext_sched_class) 2326 switch_class(rq, next); 2327 } 2328 2329 static struct task_struct *first_local_task(struct rq *rq) 2330 { 2331 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2332 struct task_struct, scx.dsq_list.node); 2333 } 2334 2335 static struct task_struct *pick_task_scx(struct rq *rq) 2336 { 2337 struct task_struct *prev = rq->curr; 2338 struct task_struct *p; 2339 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2340 bool kick_idle = false; 2341 2342 /* 2343 * WORKAROUND: 2344 * 2345 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 2346 * have gone through balance_scx(). Unfortunately, there currently is a 2347 * bug where fair could say yes on balance() but no on pick_task(), 2348 * which then ends up calling pick_task_scx() without preceding 2349 * balance_scx(). 2350 * 2351 * Keep running @prev if possible and avoid stalling from entering idle 2352 * without balancing. 2353 * 2354 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 2355 * if pick_task_scx() is called without preceding balance_scx(). 2356 */ 2357 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 2358 if (prev->scx.flags & SCX_TASK_QUEUED) { 2359 keep_prev = true; 2360 } else { 2361 keep_prev = false; 2362 kick_idle = true; 2363 } 2364 } else if (unlikely(keep_prev && 2365 prev->sched_class != &ext_sched_class)) { 2366 /* 2367 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is 2368 * conditional on scx_enabled() and may have been skipped. 2369 */ 2370 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2371 keep_prev = false; 2372 } 2373 2374 /* 2375 * If balance_scx() is telling us to keep running @prev, replenish slice 2376 * if necessary and keep running @prev. Otherwise, pop the first one 2377 * from the local DSQ. 2378 */ 2379 if (keep_prev) { 2380 p = prev; 2381 if (!p->scx.slice) 2382 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p); 2383 } else { 2384 p = first_local_task(rq); 2385 if (!p) { 2386 if (kick_idle) 2387 scx_kick_cpu(rcu_dereference_sched(scx_root), 2388 cpu_of(rq), SCX_KICK_IDLE); 2389 return NULL; 2390 } 2391 2392 if (unlikely(!p->scx.slice)) { 2393 struct scx_sched *sch = rcu_dereference_sched(scx_root); 2394 2395 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2396 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2397 p->comm, p->pid, __func__); 2398 sch->warned_zero_slice = true; 2399 } 2400 refill_task_slice_dfl(sch, p); 2401 } 2402 } 2403 2404 return p; 2405 } 2406 2407 #ifdef CONFIG_SCHED_CORE 2408 /** 2409 * scx_prio_less - Task ordering for core-sched 2410 * @a: task A 2411 * @b: task B 2412 * @in_fi: in forced idle state 2413 * 2414 * Core-sched is implemented as an additional scheduling layer on top of the 2415 * usual sched_class'es and needs to find out the expected task ordering. For 2416 * SCX, core-sched calls this function to interrogate the task ordering. 2417 * 2418 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2419 * to implement the default task ordering. The older the timestamp, the higher 2420 * priority the task - the global FIFO ordering matching the default scheduling 2421 * behavior. 2422 * 2423 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2424 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2425 */ 2426 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2427 bool in_fi) 2428 { 2429 struct scx_sched *sch = scx_root; 2430 2431 /* 2432 * The const qualifiers are dropped from task_struct pointers when 2433 * calling ops.core_sched_before(). Accesses are controlled by the 2434 * verifier. 2435 */ 2436 if (SCX_HAS_OP(sch, core_sched_before) && 2437 !scx_rq_bypassing(task_rq(a))) 2438 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2439 NULL, 2440 (struct task_struct *)a, 2441 (struct task_struct *)b); 2442 else 2443 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2444 } 2445 #endif /* CONFIG_SCHED_CORE */ 2446 2447 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2448 { 2449 struct scx_sched *sch = scx_root; 2450 bool rq_bypass; 2451 2452 /* 2453 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2454 * can be a good migration opportunity with low cache and memory 2455 * footprint. Returning a CPU different than @prev_cpu triggers 2456 * immediate rq migration. However, for SCX, as the current rq 2457 * association doesn't dictate where the task is going to run, this 2458 * doesn't fit well. If necessary, we can later add a dedicated method 2459 * which can decide to preempt self to force it through the regular 2460 * scheduling path. 2461 */ 2462 if (unlikely(wake_flags & WF_EXEC)) 2463 return prev_cpu; 2464 2465 rq_bypass = scx_rq_bypassing(task_rq(p)); 2466 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2467 s32 cpu; 2468 struct task_struct **ddsp_taskp; 2469 2470 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2471 WARN_ON_ONCE(*ddsp_taskp); 2472 *ddsp_taskp = p; 2473 2474 cpu = SCX_CALL_OP_TASK_RET(sch, 2475 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2476 select_cpu, NULL, p, prev_cpu, 2477 wake_flags); 2478 p->scx.selected_cpu = cpu; 2479 *ddsp_taskp = NULL; 2480 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2481 return cpu; 2482 else 2483 return prev_cpu; 2484 } else { 2485 s32 cpu; 2486 2487 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2488 if (cpu >= 0) { 2489 refill_task_slice_dfl(sch, p); 2490 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2491 } else { 2492 cpu = prev_cpu; 2493 } 2494 p->scx.selected_cpu = cpu; 2495 2496 if (rq_bypass) 2497 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2498 return cpu; 2499 } 2500 } 2501 2502 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2503 { 2504 run_deferred(rq); 2505 } 2506 2507 static void set_cpus_allowed_scx(struct task_struct *p, 2508 struct affinity_context *ac) 2509 { 2510 struct scx_sched *sch = scx_root; 2511 2512 set_cpus_allowed_common(p, ac); 2513 2514 /* 2515 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2516 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2517 * scheduler the effective one. 2518 * 2519 * Fine-grained memory write control is enforced by BPF making the const 2520 * designation pointless. Cast it away when calling the operation. 2521 */ 2522 if (SCX_HAS_OP(sch, set_cpumask)) 2523 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2524 p, (struct cpumask *)p->cpus_ptr); 2525 } 2526 2527 static void handle_hotplug(struct rq *rq, bool online) 2528 { 2529 struct scx_sched *sch = scx_root; 2530 int cpu = cpu_of(rq); 2531 2532 atomic_long_inc(&scx_hotplug_seq); 2533 2534 /* 2535 * scx_root updates are protected by cpus_read_lock() and will stay 2536 * stable here. Note that we can't depend on scx_enabled() test as the 2537 * hotplug ops need to be enabled before __scx_enabled is set. 2538 */ 2539 if (unlikely(!sch)) 2540 return; 2541 2542 if (scx_enabled()) 2543 scx_idle_update_selcpu_topology(&sch->ops); 2544 2545 if (online && SCX_HAS_OP(sch, cpu_online)) 2546 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2547 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2548 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2549 else 2550 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2551 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2552 "cpu %d going %s, exiting scheduler", cpu, 2553 online ? "online" : "offline"); 2554 } 2555 2556 void scx_rq_activate(struct rq *rq) 2557 { 2558 handle_hotplug(rq, true); 2559 } 2560 2561 void scx_rq_deactivate(struct rq *rq) 2562 { 2563 handle_hotplug(rq, false); 2564 } 2565 2566 static void rq_online_scx(struct rq *rq) 2567 { 2568 rq->scx.flags |= SCX_RQ_ONLINE; 2569 } 2570 2571 static void rq_offline_scx(struct rq *rq) 2572 { 2573 rq->scx.flags &= ~SCX_RQ_ONLINE; 2574 } 2575 2576 2577 static bool check_rq_for_timeouts(struct rq *rq) 2578 { 2579 struct scx_sched *sch; 2580 struct task_struct *p; 2581 struct rq_flags rf; 2582 bool timed_out = false; 2583 2584 rq_lock_irqsave(rq, &rf); 2585 sch = rcu_dereference_bh(scx_root); 2586 if (unlikely(!sch)) 2587 goto out_unlock; 2588 2589 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2590 unsigned long last_runnable = p->scx.runnable_at; 2591 2592 if (unlikely(time_after(jiffies, 2593 last_runnable + scx_watchdog_timeout))) { 2594 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2595 2596 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2597 "%s[%d] failed to run for %u.%03us", 2598 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2599 timed_out = true; 2600 break; 2601 } 2602 } 2603 out_unlock: 2604 rq_unlock_irqrestore(rq, &rf); 2605 return timed_out; 2606 } 2607 2608 static void scx_watchdog_workfn(struct work_struct *work) 2609 { 2610 int cpu; 2611 2612 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2613 2614 for_each_online_cpu(cpu) { 2615 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2616 break; 2617 2618 cond_resched(); 2619 } 2620 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2621 scx_watchdog_timeout / 2); 2622 } 2623 2624 void scx_tick(struct rq *rq) 2625 { 2626 struct scx_sched *sch; 2627 unsigned long last_check; 2628 2629 if (!scx_enabled()) 2630 return; 2631 2632 sch = rcu_dereference_bh(scx_root); 2633 if (unlikely(!sch)) 2634 return; 2635 2636 last_check = READ_ONCE(scx_watchdog_timestamp); 2637 if (unlikely(time_after(jiffies, 2638 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2639 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2640 2641 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2642 "watchdog failed to check in for %u.%03us", 2643 dur_ms / 1000, dur_ms % 1000); 2644 } 2645 2646 update_other_load_avgs(rq); 2647 } 2648 2649 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2650 { 2651 struct scx_sched *sch = scx_root; 2652 2653 update_curr_scx(rq); 2654 2655 /* 2656 * While disabling, always resched and refresh core-sched timestamp as 2657 * we can't trust the slice management or ops.core_sched_before(). 2658 */ 2659 if (scx_rq_bypassing(rq)) { 2660 curr->scx.slice = 0; 2661 touch_core_sched(rq, curr); 2662 } else if (SCX_HAS_OP(sch, tick)) { 2663 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2664 } 2665 2666 if (!curr->scx.slice) 2667 resched_curr(rq); 2668 } 2669 2670 #ifdef CONFIG_EXT_GROUP_SCHED 2671 static struct cgroup *tg_cgrp(struct task_group *tg) 2672 { 2673 /* 2674 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2675 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2676 * root cgroup. 2677 */ 2678 if (tg && tg->css.cgroup) 2679 return tg->css.cgroup; 2680 else 2681 return &cgrp_dfl_root.cgrp; 2682 } 2683 2684 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2685 2686 #else /* CONFIG_EXT_GROUP_SCHED */ 2687 2688 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2689 2690 #endif /* CONFIG_EXT_GROUP_SCHED */ 2691 2692 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2693 { 2694 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2695 } 2696 2697 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2698 { 2699 enum scx_task_state prev_state = scx_get_task_state(p); 2700 bool warn = false; 2701 2702 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2703 2704 switch (state) { 2705 case SCX_TASK_NONE: 2706 break; 2707 case SCX_TASK_INIT: 2708 warn = prev_state != SCX_TASK_NONE; 2709 break; 2710 case SCX_TASK_READY: 2711 warn = prev_state == SCX_TASK_NONE; 2712 break; 2713 case SCX_TASK_ENABLED: 2714 warn = prev_state != SCX_TASK_READY; 2715 break; 2716 default: 2717 warn = true; 2718 return; 2719 } 2720 2721 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2722 prev_state, state, p->comm, p->pid); 2723 2724 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2725 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2726 } 2727 2728 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2729 { 2730 struct scx_sched *sch = scx_root; 2731 int ret; 2732 2733 p->scx.disallow = false; 2734 2735 if (SCX_HAS_OP(sch, init_task)) { 2736 struct scx_init_task_args args = { 2737 SCX_INIT_TASK_ARGS_CGROUP(tg) 2738 .fork = fork, 2739 }; 2740 2741 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2742 p, &args); 2743 if (unlikely(ret)) { 2744 ret = ops_sanitize_err(sch, "init_task", ret); 2745 return ret; 2746 } 2747 } 2748 2749 scx_set_task_state(p, SCX_TASK_INIT); 2750 2751 if (p->scx.disallow) { 2752 if (!fork) { 2753 struct rq *rq; 2754 struct rq_flags rf; 2755 2756 rq = task_rq_lock(p, &rf); 2757 2758 /* 2759 * We're in the load path and @p->policy will be applied 2760 * right after. Reverting @p->policy here and rejecting 2761 * %SCHED_EXT transitions from scx_check_setscheduler() 2762 * guarantees that if ops.init_task() sets @p->disallow, 2763 * @p can never be in SCX. 2764 */ 2765 if (p->policy == SCHED_EXT) { 2766 p->policy = SCHED_NORMAL; 2767 atomic_long_inc(&scx_nr_rejected); 2768 } 2769 2770 task_rq_unlock(rq, p, &rf); 2771 } else if (p->policy == SCHED_EXT) { 2772 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2773 p->comm, p->pid); 2774 } 2775 } 2776 2777 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2778 return 0; 2779 } 2780 2781 static void scx_enable_task(struct task_struct *p) 2782 { 2783 struct scx_sched *sch = scx_root; 2784 struct rq *rq = task_rq(p); 2785 u32 weight; 2786 2787 lockdep_assert_rq_held(rq); 2788 2789 /* 2790 * Set the weight before calling ops.enable() so that the scheduler 2791 * doesn't see a stale value if they inspect the task struct. 2792 */ 2793 if (task_has_idle_policy(p)) 2794 weight = WEIGHT_IDLEPRIO; 2795 else 2796 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2797 2798 p->scx.weight = sched_weight_to_cgroup(weight); 2799 2800 if (SCX_HAS_OP(sch, enable)) 2801 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2802 scx_set_task_state(p, SCX_TASK_ENABLED); 2803 2804 if (SCX_HAS_OP(sch, set_weight)) 2805 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2806 p, p->scx.weight); 2807 } 2808 2809 static void scx_disable_task(struct task_struct *p) 2810 { 2811 struct scx_sched *sch = scx_root; 2812 struct rq *rq = task_rq(p); 2813 2814 lockdep_assert_rq_held(rq); 2815 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2816 2817 if (SCX_HAS_OP(sch, disable)) 2818 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2819 scx_set_task_state(p, SCX_TASK_READY); 2820 } 2821 2822 static void scx_exit_task(struct task_struct *p) 2823 { 2824 struct scx_sched *sch = scx_root; 2825 struct scx_exit_task_args args = { 2826 .cancelled = false, 2827 }; 2828 2829 lockdep_assert_rq_held(task_rq(p)); 2830 2831 switch (scx_get_task_state(p)) { 2832 case SCX_TASK_NONE: 2833 return; 2834 case SCX_TASK_INIT: 2835 args.cancelled = true; 2836 break; 2837 case SCX_TASK_READY: 2838 break; 2839 case SCX_TASK_ENABLED: 2840 scx_disable_task(p); 2841 break; 2842 default: 2843 WARN_ON_ONCE(true); 2844 return; 2845 } 2846 2847 if (SCX_HAS_OP(sch, exit_task)) 2848 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2849 p, &args); 2850 scx_set_task_state(p, SCX_TASK_NONE); 2851 } 2852 2853 void init_scx_entity(struct sched_ext_entity *scx) 2854 { 2855 memset(scx, 0, sizeof(*scx)); 2856 INIT_LIST_HEAD(&scx->dsq_list.node); 2857 RB_CLEAR_NODE(&scx->dsq_priq); 2858 scx->sticky_cpu = -1; 2859 scx->holding_cpu = -1; 2860 INIT_LIST_HEAD(&scx->runnable_node); 2861 scx->runnable_at = jiffies; 2862 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2863 scx->slice = SCX_SLICE_DFL; 2864 } 2865 2866 void scx_pre_fork(struct task_struct *p) 2867 { 2868 /* 2869 * BPF scheduler enable/disable paths want to be able to iterate and 2870 * update all tasks which can become complex when racing forks. As 2871 * enable/disable are very cold paths, let's use a percpu_rwsem to 2872 * exclude forks. 2873 */ 2874 percpu_down_read(&scx_fork_rwsem); 2875 } 2876 2877 int scx_fork(struct task_struct *p) 2878 { 2879 percpu_rwsem_assert_held(&scx_fork_rwsem); 2880 2881 if (scx_init_task_enabled) 2882 return scx_init_task(p, task_group(p), true); 2883 else 2884 return 0; 2885 } 2886 2887 void scx_post_fork(struct task_struct *p) 2888 { 2889 if (scx_init_task_enabled) { 2890 scx_set_task_state(p, SCX_TASK_READY); 2891 2892 /* 2893 * Enable the task immediately if it's running on sched_ext. 2894 * Otherwise, it'll be enabled in switching_to_scx() if and 2895 * when it's ever configured to run with a SCHED_EXT policy. 2896 */ 2897 if (p->sched_class == &ext_sched_class) { 2898 struct rq_flags rf; 2899 struct rq *rq; 2900 2901 rq = task_rq_lock(p, &rf); 2902 scx_enable_task(p); 2903 task_rq_unlock(rq, p, &rf); 2904 } 2905 } 2906 2907 spin_lock_irq(&scx_tasks_lock); 2908 list_add_tail(&p->scx.tasks_node, &scx_tasks); 2909 spin_unlock_irq(&scx_tasks_lock); 2910 2911 percpu_up_read(&scx_fork_rwsem); 2912 } 2913 2914 void scx_cancel_fork(struct task_struct *p) 2915 { 2916 if (scx_enabled()) { 2917 struct rq *rq; 2918 struct rq_flags rf; 2919 2920 rq = task_rq_lock(p, &rf); 2921 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 2922 scx_exit_task(p); 2923 task_rq_unlock(rq, p, &rf); 2924 } 2925 2926 percpu_up_read(&scx_fork_rwsem); 2927 } 2928 2929 void sched_ext_free(struct task_struct *p) 2930 { 2931 unsigned long flags; 2932 2933 spin_lock_irqsave(&scx_tasks_lock, flags); 2934 list_del_init(&p->scx.tasks_node); 2935 spin_unlock_irqrestore(&scx_tasks_lock, flags); 2936 2937 /* 2938 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 2939 * transitions can't race us. Disable ops for @p. 2940 */ 2941 if (scx_get_task_state(p) != SCX_TASK_NONE) { 2942 struct rq_flags rf; 2943 struct rq *rq; 2944 2945 rq = task_rq_lock(p, &rf); 2946 scx_exit_task(p); 2947 task_rq_unlock(rq, p, &rf); 2948 } 2949 } 2950 2951 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 2952 const struct load_weight *lw) 2953 { 2954 struct scx_sched *sch = scx_root; 2955 2956 lockdep_assert_rq_held(task_rq(p)); 2957 2958 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 2959 if (SCX_HAS_OP(sch, set_weight)) 2960 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2961 p, p->scx.weight); 2962 } 2963 2964 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 2965 { 2966 } 2967 2968 static void switching_to_scx(struct rq *rq, struct task_struct *p) 2969 { 2970 struct scx_sched *sch = scx_root; 2971 2972 scx_enable_task(p); 2973 2974 /* 2975 * set_cpus_allowed_scx() is not called while @p is associated with a 2976 * different scheduler class. Keep the BPF scheduler up-to-date. 2977 */ 2978 if (SCX_HAS_OP(sch, set_cpumask)) 2979 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 2980 p, (struct cpumask *)p->cpus_ptr); 2981 } 2982 2983 static void switched_from_scx(struct rq *rq, struct task_struct *p) 2984 { 2985 scx_disable_task(p); 2986 } 2987 2988 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 2989 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 2990 2991 int scx_check_setscheduler(struct task_struct *p, int policy) 2992 { 2993 lockdep_assert_rq_held(task_rq(p)); 2994 2995 /* if disallow, reject transitioning into SCX */ 2996 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 2997 p->policy != policy && policy == SCHED_EXT) 2998 return -EACCES; 2999 3000 return 0; 3001 } 3002 3003 #ifdef CONFIG_NO_HZ_FULL 3004 bool scx_can_stop_tick(struct rq *rq) 3005 { 3006 struct task_struct *p = rq->curr; 3007 3008 if (scx_rq_bypassing(rq)) 3009 return false; 3010 3011 if (p->sched_class != &ext_sched_class) 3012 return true; 3013 3014 /* 3015 * @rq can dispatch from different DSQs, so we can't tell whether it 3016 * needs the tick or not by looking at nr_running. Allow stopping ticks 3017 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3018 */ 3019 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3020 } 3021 #endif 3022 3023 #ifdef CONFIG_EXT_GROUP_SCHED 3024 3025 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3026 static bool scx_cgroup_enabled; 3027 3028 void scx_tg_init(struct task_group *tg) 3029 { 3030 tg->scx.weight = CGROUP_WEIGHT_DFL; 3031 tg->scx.bw_period_us = default_bw_period_us(); 3032 tg->scx.bw_quota_us = RUNTIME_INF; 3033 } 3034 3035 int scx_tg_online(struct task_group *tg) 3036 { 3037 struct scx_sched *sch = scx_root; 3038 int ret = 0; 3039 3040 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3041 3042 if (scx_cgroup_enabled) { 3043 if (SCX_HAS_OP(sch, cgroup_init)) { 3044 struct scx_cgroup_init_args args = 3045 { .weight = tg->scx.weight, 3046 .bw_period_us = tg->scx.bw_period_us, 3047 .bw_quota_us = tg->scx.bw_quota_us, 3048 .bw_burst_us = tg->scx.bw_burst_us }; 3049 3050 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3051 NULL, tg->css.cgroup, &args); 3052 if (ret) 3053 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3054 } 3055 if (ret == 0) 3056 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3057 } else { 3058 tg->scx.flags |= SCX_TG_ONLINE; 3059 } 3060 3061 return ret; 3062 } 3063 3064 void scx_tg_offline(struct task_group *tg) 3065 { 3066 struct scx_sched *sch = scx_root; 3067 3068 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3069 3070 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3071 (tg->scx.flags & SCX_TG_INITED)) 3072 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3073 tg->css.cgroup); 3074 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3075 } 3076 3077 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3078 { 3079 struct scx_sched *sch = scx_root; 3080 struct cgroup_subsys_state *css; 3081 struct task_struct *p; 3082 int ret; 3083 3084 if (!scx_cgroup_enabled) 3085 return 0; 3086 3087 cgroup_taskset_for_each(p, css, tset) { 3088 struct cgroup *from = tg_cgrp(task_group(p)); 3089 struct cgroup *to = tg_cgrp(css_tg(css)); 3090 3091 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3092 3093 /* 3094 * sched_move_task() omits identity migrations. Let's match the 3095 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3096 * always match one-to-one. 3097 */ 3098 if (from == to) 3099 continue; 3100 3101 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3102 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3103 cgroup_prep_move, NULL, 3104 p, from, css->cgroup); 3105 if (ret) 3106 goto err; 3107 } 3108 3109 p->scx.cgrp_moving_from = from; 3110 } 3111 3112 return 0; 3113 3114 err: 3115 cgroup_taskset_for_each(p, css, tset) { 3116 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3117 p->scx.cgrp_moving_from) 3118 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3119 p, p->scx.cgrp_moving_from, css->cgroup); 3120 p->scx.cgrp_moving_from = NULL; 3121 } 3122 3123 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3124 } 3125 3126 void scx_cgroup_move_task(struct task_struct *p) 3127 { 3128 struct scx_sched *sch = scx_root; 3129 3130 if (!scx_cgroup_enabled) 3131 return; 3132 3133 /* 3134 * @p must have ops.cgroup_prep_move() called on it and thus 3135 * cgrp_moving_from set. 3136 */ 3137 if (SCX_HAS_OP(sch, cgroup_move) && 3138 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3139 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3140 p, p->scx.cgrp_moving_from, 3141 tg_cgrp(task_group(p))); 3142 p->scx.cgrp_moving_from = NULL; 3143 } 3144 3145 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3146 { 3147 struct scx_sched *sch = scx_root; 3148 struct cgroup_subsys_state *css; 3149 struct task_struct *p; 3150 3151 if (!scx_cgroup_enabled) 3152 return; 3153 3154 cgroup_taskset_for_each(p, css, tset) { 3155 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3156 p->scx.cgrp_moving_from) 3157 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3158 p, p->scx.cgrp_moving_from, css->cgroup); 3159 p->scx.cgrp_moving_from = NULL; 3160 } 3161 } 3162 3163 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3164 { 3165 struct scx_sched *sch = scx_root; 3166 3167 percpu_down_read(&scx_cgroup_ops_rwsem); 3168 3169 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3170 tg->scx.weight != weight) 3171 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3172 tg_cgrp(tg), weight); 3173 3174 tg->scx.weight = weight; 3175 3176 percpu_up_read(&scx_cgroup_ops_rwsem); 3177 } 3178 3179 void scx_group_set_idle(struct task_group *tg, bool idle) 3180 { 3181 /* TODO: Implement ops->cgroup_set_idle() */ 3182 } 3183 3184 void scx_group_set_bandwidth(struct task_group *tg, 3185 u64 period_us, u64 quota_us, u64 burst_us) 3186 { 3187 struct scx_sched *sch = scx_root; 3188 3189 percpu_down_read(&scx_cgroup_ops_rwsem); 3190 3191 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3192 (tg->scx.bw_period_us != period_us || 3193 tg->scx.bw_quota_us != quota_us || 3194 tg->scx.bw_burst_us != burst_us)) 3195 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3196 tg_cgrp(tg), period_us, quota_us, burst_us); 3197 3198 tg->scx.bw_period_us = period_us; 3199 tg->scx.bw_quota_us = quota_us; 3200 tg->scx.bw_burst_us = burst_us; 3201 3202 percpu_up_read(&scx_cgroup_ops_rwsem); 3203 } 3204 3205 static void scx_cgroup_lock(void) 3206 { 3207 percpu_down_write(&scx_cgroup_ops_rwsem); 3208 cgroup_lock(); 3209 } 3210 3211 static void scx_cgroup_unlock(void) 3212 { 3213 cgroup_unlock(); 3214 percpu_up_write(&scx_cgroup_ops_rwsem); 3215 } 3216 3217 #else /* CONFIG_EXT_GROUP_SCHED */ 3218 3219 static void scx_cgroup_lock(void) {} 3220 static void scx_cgroup_unlock(void) {} 3221 3222 #endif /* CONFIG_EXT_GROUP_SCHED */ 3223 3224 /* 3225 * Omitted operations: 3226 * 3227 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3228 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3229 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3230 * 3231 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3232 * 3233 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3234 * their current sched_class. Call them directly from sched core instead. 3235 */ 3236 DEFINE_SCHED_CLASS(ext) = { 3237 .enqueue_task = enqueue_task_scx, 3238 .dequeue_task = dequeue_task_scx, 3239 .yield_task = yield_task_scx, 3240 .yield_to_task = yield_to_task_scx, 3241 3242 .wakeup_preempt = wakeup_preempt_scx, 3243 3244 .balance = balance_scx, 3245 .pick_task = pick_task_scx, 3246 3247 .put_prev_task = put_prev_task_scx, 3248 .set_next_task = set_next_task_scx, 3249 3250 .select_task_rq = select_task_rq_scx, 3251 .task_woken = task_woken_scx, 3252 .set_cpus_allowed = set_cpus_allowed_scx, 3253 3254 .rq_online = rq_online_scx, 3255 .rq_offline = rq_offline_scx, 3256 3257 .task_tick = task_tick_scx, 3258 3259 .switching_to = switching_to_scx, 3260 .switched_from = switched_from_scx, 3261 .switched_to = switched_to_scx, 3262 .reweight_task = reweight_task_scx, 3263 .prio_changed = prio_changed_scx, 3264 3265 .update_curr = update_curr_scx, 3266 3267 #ifdef CONFIG_UCLAMP_TASK 3268 .uclamp_enabled = 1, 3269 #endif 3270 }; 3271 3272 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3273 { 3274 memset(dsq, 0, sizeof(*dsq)); 3275 3276 raw_spin_lock_init(&dsq->lock); 3277 INIT_LIST_HEAD(&dsq->list); 3278 dsq->id = dsq_id; 3279 } 3280 3281 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3282 { 3283 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3284 struct scx_dispatch_q *dsq, *tmp_dsq; 3285 3286 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3287 kfree_rcu(dsq, rcu); 3288 } 3289 3290 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3291 3292 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3293 { 3294 struct scx_dispatch_q *dsq; 3295 unsigned long flags; 3296 3297 rcu_read_lock(); 3298 3299 dsq = find_user_dsq(sch, dsq_id); 3300 if (!dsq) 3301 goto out_unlock_rcu; 3302 3303 raw_spin_lock_irqsave(&dsq->lock, flags); 3304 3305 if (dsq->nr) { 3306 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3307 dsq->id, dsq->nr); 3308 goto out_unlock_dsq; 3309 } 3310 3311 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3312 dsq_hash_params)) 3313 goto out_unlock_dsq; 3314 3315 /* 3316 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3317 * queueing more tasks. As this function can be called from anywhere, 3318 * freeing is bounced through an irq work to avoid nesting RCU 3319 * operations inside scheduler locks. 3320 */ 3321 dsq->id = SCX_DSQ_INVALID; 3322 llist_add(&dsq->free_node, &dsqs_to_free); 3323 irq_work_queue(&free_dsq_irq_work); 3324 3325 out_unlock_dsq: 3326 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3327 out_unlock_rcu: 3328 rcu_read_unlock(); 3329 } 3330 3331 #ifdef CONFIG_EXT_GROUP_SCHED 3332 static void scx_cgroup_exit(struct scx_sched *sch) 3333 { 3334 struct cgroup_subsys_state *css; 3335 3336 scx_cgroup_enabled = false; 3337 3338 /* 3339 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3340 * cgroups and exit all the inited ones, all online cgroups are exited. 3341 */ 3342 css_for_each_descendant_post(css, &root_task_group.css) { 3343 struct task_group *tg = css_tg(css); 3344 3345 if (!(tg->scx.flags & SCX_TG_INITED)) 3346 continue; 3347 tg->scx.flags &= ~SCX_TG_INITED; 3348 3349 if (!sch->ops.cgroup_exit) 3350 continue; 3351 3352 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3353 css->cgroup); 3354 } 3355 } 3356 3357 static int scx_cgroup_init(struct scx_sched *sch) 3358 { 3359 struct cgroup_subsys_state *css; 3360 int ret; 3361 3362 /* 3363 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3364 * cgroups and init, all online cgroups are initialized. 3365 */ 3366 css_for_each_descendant_pre(css, &root_task_group.css) { 3367 struct task_group *tg = css_tg(css); 3368 struct scx_cgroup_init_args args = { 3369 .weight = tg->scx.weight, 3370 .bw_period_us = tg->scx.bw_period_us, 3371 .bw_quota_us = tg->scx.bw_quota_us, 3372 .bw_burst_us = tg->scx.bw_burst_us, 3373 }; 3374 3375 if ((tg->scx.flags & 3376 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3377 continue; 3378 3379 if (!sch->ops.cgroup_init) { 3380 tg->scx.flags |= SCX_TG_INITED; 3381 continue; 3382 } 3383 3384 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3385 css->cgroup, &args); 3386 if (ret) { 3387 css_put(css); 3388 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3389 return ret; 3390 } 3391 tg->scx.flags |= SCX_TG_INITED; 3392 } 3393 3394 WARN_ON_ONCE(scx_cgroup_enabled); 3395 scx_cgroup_enabled = true; 3396 3397 return 0; 3398 } 3399 3400 #else 3401 static void scx_cgroup_exit(struct scx_sched *sch) {} 3402 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3403 #endif 3404 3405 3406 /******************************************************************************** 3407 * Sysfs interface and ops enable/disable. 3408 */ 3409 3410 #define SCX_ATTR(_name) \ 3411 static struct kobj_attribute scx_attr_##_name = { \ 3412 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3413 .show = scx_attr_##_name##_show, \ 3414 } 3415 3416 static ssize_t scx_attr_state_show(struct kobject *kobj, 3417 struct kobj_attribute *ka, char *buf) 3418 { 3419 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3420 } 3421 SCX_ATTR(state); 3422 3423 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3424 struct kobj_attribute *ka, char *buf) 3425 { 3426 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3427 } 3428 SCX_ATTR(switch_all); 3429 3430 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3431 struct kobj_attribute *ka, char *buf) 3432 { 3433 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3434 } 3435 SCX_ATTR(nr_rejected); 3436 3437 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3438 struct kobj_attribute *ka, char *buf) 3439 { 3440 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3441 } 3442 SCX_ATTR(hotplug_seq); 3443 3444 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3445 struct kobj_attribute *ka, char *buf) 3446 { 3447 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3448 } 3449 SCX_ATTR(enable_seq); 3450 3451 static struct attribute *scx_global_attrs[] = { 3452 &scx_attr_state.attr, 3453 &scx_attr_switch_all.attr, 3454 &scx_attr_nr_rejected.attr, 3455 &scx_attr_hotplug_seq.attr, 3456 &scx_attr_enable_seq.attr, 3457 NULL, 3458 }; 3459 3460 static const struct attribute_group scx_global_attr_group = { 3461 .attrs = scx_global_attrs, 3462 }; 3463 3464 static void free_exit_info(struct scx_exit_info *ei); 3465 3466 static void scx_sched_free_rcu_work(struct work_struct *work) 3467 { 3468 struct rcu_work *rcu_work = to_rcu_work(work); 3469 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3470 struct rhashtable_iter rht_iter; 3471 struct scx_dispatch_q *dsq; 3472 int node; 3473 3474 kthread_stop(sch->helper->task); 3475 free_percpu(sch->pcpu); 3476 3477 for_each_node_state(node, N_POSSIBLE) 3478 kfree(sch->global_dsqs[node]); 3479 kfree(sch->global_dsqs); 3480 3481 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3482 do { 3483 rhashtable_walk_start(&rht_iter); 3484 3485 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3486 destroy_dsq(sch, dsq->id); 3487 3488 rhashtable_walk_stop(&rht_iter); 3489 } while (dsq == ERR_PTR(-EAGAIN)); 3490 rhashtable_walk_exit(&rht_iter); 3491 3492 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3493 free_exit_info(sch->exit_info); 3494 kfree(sch); 3495 } 3496 3497 static void scx_kobj_release(struct kobject *kobj) 3498 { 3499 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3500 3501 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3502 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3503 } 3504 3505 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3506 struct kobj_attribute *ka, char *buf) 3507 { 3508 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3509 } 3510 SCX_ATTR(ops); 3511 3512 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3513 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3514 }) 3515 3516 static ssize_t scx_attr_events_show(struct kobject *kobj, 3517 struct kobj_attribute *ka, char *buf) 3518 { 3519 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3520 struct scx_event_stats events; 3521 int at = 0; 3522 3523 scx_read_events(sch, &events); 3524 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3525 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3526 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3527 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3528 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3529 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3530 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3531 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3532 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3533 return at; 3534 } 3535 SCX_ATTR(events); 3536 3537 static struct attribute *scx_sched_attrs[] = { 3538 &scx_attr_ops.attr, 3539 &scx_attr_events.attr, 3540 NULL, 3541 }; 3542 ATTRIBUTE_GROUPS(scx_sched); 3543 3544 static const struct kobj_type scx_ktype = { 3545 .release = scx_kobj_release, 3546 .sysfs_ops = &kobj_sysfs_ops, 3547 .default_groups = scx_sched_groups, 3548 }; 3549 3550 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3551 { 3552 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3553 } 3554 3555 static const struct kset_uevent_ops scx_uevent_ops = { 3556 .uevent = scx_uevent, 3557 }; 3558 3559 /* 3560 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3561 * sched_class. dl/rt are already handled. 3562 */ 3563 bool task_should_scx(int policy) 3564 { 3565 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3566 return false; 3567 if (READ_ONCE(scx_switching_all)) 3568 return true; 3569 return policy == SCHED_EXT; 3570 } 3571 3572 bool scx_allow_ttwu_queue(const struct task_struct *p) 3573 { 3574 struct scx_sched *sch; 3575 3576 if (!scx_enabled()) 3577 return true; 3578 3579 sch = rcu_dereference_sched(scx_root); 3580 if (unlikely(!sch)) 3581 return true; 3582 3583 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 3584 return true; 3585 3586 if (unlikely(p->sched_class != &ext_sched_class)) 3587 return true; 3588 3589 return false; 3590 } 3591 3592 /** 3593 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3594 * 3595 * While there are various reasons why RCU CPU stalls can occur on a system 3596 * that may not be caused by the current BPF scheduler, try kicking out the 3597 * current scheduler in an attempt to recover the system to a good state before 3598 * issuing panics. 3599 */ 3600 bool scx_rcu_cpu_stall(void) 3601 { 3602 struct scx_sched *sch; 3603 3604 rcu_read_lock(); 3605 3606 sch = rcu_dereference(scx_root); 3607 if (unlikely(!sch)) { 3608 rcu_read_unlock(); 3609 return false; 3610 } 3611 3612 switch (scx_enable_state()) { 3613 case SCX_ENABLING: 3614 case SCX_ENABLED: 3615 break; 3616 default: 3617 rcu_read_unlock(); 3618 return false; 3619 } 3620 3621 scx_error(sch, "RCU CPU stall detected!"); 3622 rcu_read_unlock(); 3623 3624 return true; 3625 } 3626 3627 /** 3628 * scx_softlockup - sched_ext softlockup handler 3629 * @dur_s: number of seconds of CPU stuck due to soft lockup 3630 * 3631 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3632 * live-lock the system by making many CPUs target the same DSQ to the point 3633 * where soft-lockup detection triggers. This function is called from 3634 * soft-lockup watchdog when the triggering point is close and tries to unjam 3635 * the system by enabling the breather and aborting the BPF scheduler. 3636 */ 3637 void scx_softlockup(u32 dur_s) 3638 { 3639 struct scx_sched *sch; 3640 3641 rcu_read_lock(); 3642 3643 sch = rcu_dereference(scx_root); 3644 if (unlikely(!sch)) 3645 goto out_unlock; 3646 3647 switch (scx_enable_state()) { 3648 case SCX_ENABLING: 3649 case SCX_ENABLED: 3650 break; 3651 default: 3652 goto out_unlock; 3653 } 3654 3655 /* allow only one instance, cleared at the end of scx_bypass() */ 3656 if (test_and_set_bit(0, &scx_in_softlockup)) 3657 goto out_unlock; 3658 3659 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 3660 smp_processor_id(), dur_s, scx_root->ops.name); 3661 3662 /* 3663 * Some CPUs may be trapped in the dispatch paths. Enable breather 3664 * immediately; otherwise, we might even be able to get to scx_bypass(). 3665 */ 3666 atomic_inc(&scx_breather_depth); 3667 3668 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s); 3669 out_unlock: 3670 rcu_read_unlock(); 3671 } 3672 3673 static void scx_clear_softlockup(void) 3674 { 3675 if (test_and_clear_bit(0, &scx_in_softlockup)) 3676 atomic_dec(&scx_breather_depth); 3677 } 3678 3679 /** 3680 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 3681 * @bypass: true for bypass, false for unbypass 3682 * 3683 * Bypassing guarantees that all runnable tasks make forward progress without 3684 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 3685 * be held by tasks that the BPF scheduler is forgetting to run, which 3686 * unfortunately also excludes toggling the static branches. 3687 * 3688 * Let's work around by overriding a couple ops and modifying behaviors based on 3689 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 3690 * to force global FIFO scheduling. 3691 * 3692 * - ops.select_cpu() is ignored and the default select_cpu() is used. 3693 * 3694 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 3695 * %SCX_OPS_ENQ_LAST is also ignored. 3696 * 3697 * - ops.dispatch() is ignored. 3698 * 3699 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 3700 * can't be trusted. Whenever a tick triggers, the running task is rotated to 3701 * the tail of the queue with core_sched_at touched. 3702 * 3703 * - pick_next_task() suppresses zero slice warning. 3704 * 3705 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM 3706 * operations. 3707 * 3708 * - scx_prio_less() reverts to the default core_sched_at order. 3709 */ 3710 static void scx_bypass(bool bypass) 3711 { 3712 static DEFINE_RAW_SPINLOCK(bypass_lock); 3713 static unsigned long bypass_timestamp; 3714 struct scx_sched *sch; 3715 unsigned long flags; 3716 int cpu; 3717 3718 raw_spin_lock_irqsave(&bypass_lock, flags); 3719 sch = rcu_dereference_bh(scx_root); 3720 3721 if (bypass) { 3722 scx_bypass_depth++; 3723 WARN_ON_ONCE(scx_bypass_depth <= 0); 3724 if (scx_bypass_depth != 1) 3725 goto unlock; 3726 bypass_timestamp = ktime_get_ns(); 3727 if (sch) 3728 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 3729 } else { 3730 scx_bypass_depth--; 3731 WARN_ON_ONCE(scx_bypass_depth < 0); 3732 if (scx_bypass_depth != 0) 3733 goto unlock; 3734 if (sch) 3735 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 3736 ktime_get_ns() - bypass_timestamp); 3737 } 3738 3739 atomic_inc(&scx_breather_depth); 3740 3741 /* 3742 * No task property is changing. We just need to make sure all currently 3743 * queued tasks are re-queued according to the new scx_rq_bypassing() 3744 * state. As an optimization, walk each rq's runnable_list instead of 3745 * the scx_tasks list. 3746 * 3747 * This function can't trust the scheduler and thus can't use 3748 * cpus_read_lock(). Walk all possible CPUs instead of online. 3749 */ 3750 for_each_possible_cpu(cpu) { 3751 struct rq *rq = cpu_rq(cpu); 3752 struct task_struct *p, *n; 3753 3754 raw_spin_rq_lock(rq); 3755 3756 if (bypass) { 3757 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 3758 rq->scx.flags |= SCX_RQ_BYPASSING; 3759 } else { 3760 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 3761 rq->scx.flags &= ~SCX_RQ_BYPASSING; 3762 } 3763 3764 /* 3765 * We need to guarantee that no tasks are on the BPF scheduler 3766 * while bypassing. Either we see enabled or the enable path 3767 * sees scx_rq_bypassing() before moving tasks to SCX. 3768 */ 3769 if (!scx_enabled()) { 3770 raw_spin_rq_unlock(rq); 3771 continue; 3772 } 3773 3774 /* 3775 * The use of list_for_each_entry_safe_reverse() is required 3776 * because each task is going to be removed from and added back 3777 * to the runnable_list during iteration. Because they're added 3778 * to the tail of the list, safe reverse iteration can still 3779 * visit all nodes. 3780 */ 3781 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3782 scx.runnable_node) { 3783 struct sched_enq_and_set_ctx ctx; 3784 3785 /* cycling deq/enq is enough, see the function comment */ 3786 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3787 sched_enq_and_set_task(&ctx); 3788 } 3789 3790 /* resched to restore ticks and idle state */ 3791 if (cpu_online(cpu) || cpu == smp_processor_id()) 3792 resched_curr(rq); 3793 3794 raw_spin_rq_unlock(rq); 3795 } 3796 3797 atomic_dec(&scx_breather_depth); 3798 unlock: 3799 raw_spin_unlock_irqrestore(&bypass_lock, flags); 3800 scx_clear_softlockup(); 3801 } 3802 3803 static void free_exit_info(struct scx_exit_info *ei) 3804 { 3805 kvfree(ei->dump); 3806 kfree(ei->msg); 3807 kfree(ei->bt); 3808 kfree(ei); 3809 } 3810 3811 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3812 { 3813 struct scx_exit_info *ei; 3814 3815 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3816 if (!ei) 3817 return NULL; 3818 3819 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 3820 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3821 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 3822 3823 if (!ei->bt || !ei->msg || !ei->dump) { 3824 free_exit_info(ei); 3825 return NULL; 3826 } 3827 3828 return ei; 3829 } 3830 3831 static const char *scx_exit_reason(enum scx_exit_kind kind) 3832 { 3833 switch (kind) { 3834 case SCX_EXIT_UNREG: 3835 return "unregistered from user space"; 3836 case SCX_EXIT_UNREG_BPF: 3837 return "unregistered from BPF"; 3838 case SCX_EXIT_UNREG_KERN: 3839 return "unregistered from the main kernel"; 3840 case SCX_EXIT_SYSRQ: 3841 return "disabled by sysrq-S"; 3842 case SCX_EXIT_ERROR: 3843 return "runtime error"; 3844 case SCX_EXIT_ERROR_BPF: 3845 return "scx_bpf_error"; 3846 case SCX_EXIT_ERROR_STALL: 3847 return "runnable task stall"; 3848 default: 3849 return "<UNKNOWN>"; 3850 } 3851 } 3852 3853 static void scx_disable_workfn(struct kthread_work *work) 3854 { 3855 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 3856 struct scx_exit_info *ei = sch->exit_info; 3857 struct scx_task_iter sti; 3858 struct task_struct *p; 3859 int kind, cpu; 3860 3861 kind = atomic_read(&sch->exit_kind); 3862 while (true) { 3863 if (kind == SCX_EXIT_DONE) /* already disabled? */ 3864 return; 3865 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 3866 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 3867 break; 3868 } 3869 ei->kind = kind; 3870 ei->reason = scx_exit_reason(ei->kind); 3871 3872 /* guarantee forward progress by bypassing scx_ops */ 3873 scx_bypass(true); 3874 3875 switch (scx_set_enable_state(SCX_DISABLING)) { 3876 case SCX_DISABLING: 3877 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3878 break; 3879 case SCX_DISABLED: 3880 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3881 sch->exit_info->msg); 3882 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 3883 goto done; 3884 default: 3885 break; 3886 } 3887 3888 /* 3889 * Here, every runnable task is guaranteed to make forward progress and 3890 * we can safely use blocking synchronization constructs. Actually 3891 * disable ops. 3892 */ 3893 mutex_lock(&scx_enable_mutex); 3894 3895 static_branch_disable(&__scx_switched_all); 3896 WRITE_ONCE(scx_switching_all, false); 3897 3898 /* 3899 * Shut down cgroup support before tasks so that the cgroup attach path 3900 * doesn't race against scx_exit_task(). 3901 */ 3902 scx_cgroup_lock(); 3903 scx_cgroup_exit(sch); 3904 scx_cgroup_unlock(); 3905 3906 /* 3907 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 3908 * must be switched out and exited synchronously. 3909 */ 3910 percpu_down_write(&scx_fork_rwsem); 3911 3912 scx_init_task_enabled = false; 3913 3914 scx_task_iter_start(&sti); 3915 while ((p = scx_task_iter_next_locked(&sti))) { 3916 const struct sched_class *old_class = p->sched_class; 3917 const struct sched_class *new_class = 3918 __setscheduler_class(p->policy, p->prio); 3919 struct sched_enq_and_set_ctx ctx; 3920 3921 if (old_class != new_class && p->se.sched_delayed) 3922 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 3923 3924 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3925 3926 p->sched_class = new_class; 3927 check_class_changing(task_rq(p), p, old_class); 3928 3929 sched_enq_and_set_task(&ctx); 3930 3931 check_class_changed(task_rq(p), p, old_class, p->prio); 3932 scx_exit_task(p); 3933 } 3934 scx_task_iter_stop(&sti); 3935 percpu_up_write(&scx_fork_rwsem); 3936 3937 /* 3938 * Invalidate all the rq clocks to prevent getting outdated 3939 * rq clocks from a previous scx scheduler. 3940 */ 3941 for_each_possible_cpu(cpu) { 3942 struct rq *rq = cpu_rq(cpu); 3943 scx_rq_clock_invalidate(rq); 3944 } 3945 3946 /* no task is on scx, turn off all the switches and flush in-progress calls */ 3947 static_branch_disable(&__scx_enabled); 3948 bitmap_zero(sch->has_op, SCX_OPI_END); 3949 scx_idle_disable(); 3950 synchronize_rcu(); 3951 3952 if (ei->kind >= SCX_EXIT_ERROR) { 3953 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 3954 sch->ops.name, ei->reason); 3955 3956 if (ei->msg[0] != '\0') 3957 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 3958 #ifdef CONFIG_STACKTRACE 3959 stack_trace_print(ei->bt, ei->bt_len, 2); 3960 #endif 3961 } else { 3962 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 3963 sch->ops.name, ei->reason); 3964 } 3965 3966 if (sch->ops.exit) 3967 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 3968 3969 cancel_delayed_work_sync(&scx_watchdog_work); 3970 3971 /* 3972 * scx_root clearing must be inside cpus_read_lock(). See 3973 * handle_hotplug(). 3974 */ 3975 cpus_read_lock(); 3976 RCU_INIT_POINTER(scx_root, NULL); 3977 cpus_read_unlock(); 3978 3979 /* 3980 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 3981 * could observe an object of the same name still in the hierarchy when 3982 * the next scheduler is loaded. 3983 */ 3984 kobject_del(&sch->kobj); 3985 3986 free_percpu(scx_dsp_ctx); 3987 scx_dsp_ctx = NULL; 3988 scx_dsp_max_batch = 0; 3989 3990 mutex_unlock(&scx_enable_mutex); 3991 3992 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 3993 done: 3994 scx_bypass(false); 3995 } 3996 3997 static void scx_disable(enum scx_exit_kind kind) 3998 { 3999 int none = SCX_EXIT_NONE; 4000 struct scx_sched *sch; 4001 4002 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4003 kind = SCX_EXIT_ERROR; 4004 4005 rcu_read_lock(); 4006 sch = rcu_dereference(scx_root); 4007 if (sch) { 4008 atomic_try_cmpxchg(&sch->exit_kind, &none, kind); 4009 kthread_queue_work(sch->helper, &sch->disable_work); 4010 } 4011 rcu_read_unlock(); 4012 } 4013 4014 static void dump_newline(struct seq_buf *s) 4015 { 4016 trace_sched_ext_dump(""); 4017 4018 /* @s may be zero sized and seq_buf triggers WARN if so */ 4019 if (s->size) 4020 seq_buf_putc(s, '\n'); 4021 } 4022 4023 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4024 { 4025 va_list args; 4026 4027 #ifdef CONFIG_TRACEPOINTS 4028 if (trace_sched_ext_dump_enabled()) { 4029 /* protected by scx_dump_state()::dump_lock */ 4030 static char line_buf[SCX_EXIT_MSG_LEN]; 4031 4032 va_start(args, fmt); 4033 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4034 va_end(args); 4035 4036 trace_sched_ext_dump(line_buf); 4037 } 4038 #endif 4039 /* @s may be zero sized and seq_buf triggers WARN if so */ 4040 if (s->size) { 4041 va_start(args, fmt); 4042 seq_buf_vprintf(s, fmt, args); 4043 va_end(args); 4044 4045 seq_buf_putc(s, '\n'); 4046 } 4047 } 4048 4049 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4050 const unsigned long *bt, unsigned int len) 4051 { 4052 unsigned int i; 4053 4054 for (i = 0; i < len; i++) 4055 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4056 } 4057 4058 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4059 { 4060 struct scx_dump_data *dd = &scx_dump_data; 4061 4062 lockdep_assert_irqs_disabled(); 4063 4064 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4065 dd->first = true; 4066 dd->cursor = 0; 4067 dd->s = s; 4068 dd->prefix = prefix; 4069 } 4070 4071 static void ops_dump_flush(void) 4072 { 4073 struct scx_dump_data *dd = &scx_dump_data; 4074 char *line = dd->buf.line; 4075 4076 if (!dd->cursor) 4077 return; 4078 4079 /* 4080 * There's something to flush and this is the first line. Insert a blank 4081 * line to distinguish ops dump. 4082 */ 4083 if (dd->first) { 4084 dump_newline(dd->s); 4085 dd->first = false; 4086 } 4087 4088 /* 4089 * There may be multiple lines in $line. Scan and emit each line 4090 * separately. 4091 */ 4092 while (true) { 4093 char *end = line; 4094 char c; 4095 4096 while (*end != '\n' && *end != '\0') 4097 end++; 4098 4099 /* 4100 * If $line overflowed, it may not have newline at the end. 4101 * Always emit with a newline. 4102 */ 4103 c = *end; 4104 *end = '\0'; 4105 dump_line(dd->s, "%s%s", dd->prefix, line); 4106 if (c == '\0') 4107 break; 4108 4109 /* move to the next line */ 4110 end++; 4111 if (*end == '\0') 4112 break; 4113 line = end; 4114 } 4115 4116 dd->cursor = 0; 4117 } 4118 4119 static void ops_dump_exit(void) 4120 { 4121 ops_dump_flush(); 4122 scx_dump_data.cpu = -1; 4123 } 4124 4125 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4126 struct task_struct *p, char marker) 4127 { 4128 static unsigned long bt[SCX_EXIT_BT_LEN]; 4129 struct scx_sched *sch = scx_root; 4130 char dsq_id_buf[19] = "(n/a)"; 4131 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4132 unsigned int bt_len = 0; 4133 4134 if (p->scx.dsq) 4135 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4136 (unsigned long long)p->scx.dsq->id); 4137 4138 dump_newline(s); 4139 dump_line(s, " %c%c %s[%d] %+ldms", 4140 marker, task_state_to_char(p), p->comm, p->pid, 4141 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4142 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4143 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4144 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4145 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4146 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4147 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4148 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4149 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4150 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr), 4151 p->migration_disabled); 4152 4153 if (SCX_HAS_OP(sch, dump_task)) { 4154 ops_dump_init(s, " "); 4155 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4156 ops_dump_exit(); 4157 } 4158 4159 #ifdef CONFIG_STACKTRACE 4160 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4161 #endif 4162 if (bt_len) { 4163 dump_newline(s); 4164 dump_stack_trace(s, " ", bt, bt_len); 4165 } 4166 } 4167 4168 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4169 { 4170 static DEFINE_SPINLOCK(dump_lock); 4171 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4172 struct scx_sched *sch = scx_root; 4173 struct scx_dump_ctx dctx = { 4174 .kind = ei->kind, 4175 .exit_code = ei->exit_code, 4176 .reason = ei->reason, 4177 .at_ns = ktime_get_ns(), 4178 .at_jiffies = jiffies, 4179 }; 4180 struct seq_buf s; 4181 struct scx_event_stats events; 4182 unsigned long flags; 4183 char *buf; 4184 int cpu; 4185 4186 spin_lock_irqsave(&dump_lock, flags); 4187 4188 seq_buf_init(&s, ei->dump, dump_len); 4189 4190 if (ei->kind == SCX_EXIT_NONE) { 4191 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4192 } else { 4193 dump_line(&s, "%s[%d] triggered exit kind %d:", 4194 current->comm, current->pid, ei->kind); 4195 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4196 dump_newline(&s); 4197 dump_line(&s, "Backtrace:"); 4198 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4199 } 4200 4201 if (SCX_HAS_OP(sch, dump)) { 4202 ops_dump_init(&s, ""); 4203 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4204 ops_dump_exit(); 4205 } 4206 4207 dump_newline(&s); 4208 dump_line(&s, "CPU states"); 4209 dump_line(&s, "----------"); 4210 4211 for_each_possible_cpu(cpu) { 4212 struct rq *rq = cpu_rq(cpu); 4213 struct rq_flags rf; 4214 struct task_struct *p; 4215 struct seq_buf ns; 4216 size_t avail, used; 4217 bool idle; 4218 4219 rq_lock(rq, &rf); 4220 4221 idle = list_empty(&rq->scx.runnable_list) && 4222 rq->curr->sched_class == &idle_sched_class; 4223 4224 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4225 goto next; 4226 4227 /* 4228 * We don't yet know whether ops.dump_cpu() will produce output 4229 * and we may want to skip the default CPU dump if it doesn't. 4230 * Use a nested seq_buf to generate the standard dump so that we 4231 * can decide whether to commit later. 4232 */ 4233 avail = seq_buf_get_buf(&s, &buf); 4234 seq_buf_init(&ns, buf, avail); 4235 4236 dump_newline(&ns); 4237 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4238 cpu, rq->scx.nr_running, rq->scx.flags, 4239 rq->scx.cpu_released, rq->scx.ops_qseq, 4240 rq->scx.pnt_seq); 4241 dump_line(&ns, " curr=%s[%d] class=%ps", 4242 rq->curr->comm, rq->curr->pid, 4243 rq->curr->sched_class); 4244 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4245 dump_line(&ns, " cpus_to_kick : %*pb", 4246 cpumask_pr_args(rq->scx.cpus_to_kick)); 4247 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4248 dump_line(&ns, " idle_to_kick : %*pb", 4249 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4250 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4251 dump_line(&ns, " cpus_to_preempt: %*pb", 4252 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4253 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4254 dump_line(&ns, " cpus_to_wait : %*pb", 4255 cpumask_pr_args(rq->scx.cpus_to_wait)); 4256 4257 used = seq_buf_used(&ns); 4258 if (SCX_HAS_OP(sch, dump_cpu)) { 4259 ops_dump_init(&ns, " "); 4260 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4261 &dctx, cpu, idle); 4262 ops_dump_exit(); 4263 } 4264 4265 /* 4266 * If idle && nothing generated by ops.dump_cpu(), there's 4267 * nothing interesting. Skip. 4268 */ 4269 if (idle && used == seq_buf_used(&ns)) 4270 goto next; 4271 4272 /* 4273 * $s may already have overflowed when $ns was created. If so, 4274 * calling commit on it will trigger BUG. 4275 */ 4276 if (avail) { 4277 seq_buf_commit(&s, seq_buf_used(&ns)); 4278 if (seq_buf_has_overflowed(&ns)) 4279 seq_buf_set_overflow(&s); 4280 } 4281 4282 if (rq->curr->sched_class == &ext_sched_class) 4283 scx_dump_task(&s, &dctx, rq->curr, '*'); 4284 4285 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4286 scx_dump_task(&s, &dctx, p, ' '); 4287 next: 4288 rq_unlock(rq, &rf); 4289 } 4290 4291 dump_newline(&s); 4292 dump_line(&s, "Event counters"); 4293 dump_line(&s, "--------------"); 4294 4295 scx_read_events(sch, &events); 4296 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4297 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4298 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4299 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4300 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4301 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4302 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4303 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4304 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4305 4306 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4307 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4308 trunc_marker, sizeof(trunc_marker)); 4309 4310 spin_unlock_irqrestore(&dump_lock, flags); 4311 } 4312 4313 static void scx_error_irq_workfn(struct irq_work *irq_work) 4314 { 4315 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4316 struct scx_exit_info *ei = sch->exit_info; 4317 4318 if (ei->kind >= SCX_EXIT_ERROR) 4319 scx_dump_state(ei, sch->ops.exit_dump_len); 4320 4321 kthread_queue_work(sch->helper, &sch->disable_work); 4322 } 4323 4324 static void scx_vexit(struct scx_sched *sch, 4325 enum scx_exit_kind kind, s64 exit_code, 4326 const char *fmt, va_list args) 4327 { 4328 struct scx_exit_info *ei = sch->exit_info; 4329 int none = SCX_EXIT_NONE; 4330 4331 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4332 return; 4333 4334 ei->exit_code = exit_code; 4335 #ifdef CONFIG_STACKTRACE 4336 if (kind >= SCX_EXIT_ERROR) 4337 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4338 #endif 4339 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4340 4341 /* 4342 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4343 * in scx_disable_workfn(). 4344 */ 4345 ei->kind = kind; 4346 ei->reason = scx_exit_reason(ei->kind); 4347 4348 irq_work_queue(&sch->error_irq_work); 4349 } 4350 4351 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4352 { 4353 struct scx_sched *sch; 4354 int node, ret; 4355 4356 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4357 if (!sch) 4358 return ERR_PTR(-ENOMEM); 4359 4360 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4361 if (!sch->exit_info) { 4362 ret = -ENOMEM; 4363 goto err_free_sch; 4364 } 4365 4366 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4367 if (ret < 0) 4368 goto err_free_ei; 4369 4370 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4371 GFP_KERNEL); 4372 if (!sch->global_dsqs) { 4373 ret = -ENOMEM; 4374 goto err_free_hash; 4375 } 4376 4377 for_each_node_state(node, N_POSSIBLE) { 4378 struct scx_dispatch_q *dsq; 4379 4380 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4381 if (!dsq) { 4382 ret = -ENOMEM; 4383 goto err_free_gdsqs; 4384 } 4385 4386 init_dsq(dsq, SCX_DSQ_GLOBAL); 4387 sch->global_dsqs[node] = dsq; 4388 } 4389 4390 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4391 if (!sch->pcpu) 4392 goto err_free_gdsqs; 4393 4394 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4395 if (!sch->helper) 4396 goto err_free_pcpu; 4397 sched_set_fifo(sch->helper->task); 4398 4399 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4400 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4401 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4402 sch->ops = *ops; 4403 ops->priv = sch; 4404 4405 sch->kobj.kset = scx_kset; 4406 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4407 if (ret < 0) 4408 goto err_stop_helper; 4409 4410 return sch; 4411 4412 err_stop_helper: 4413 kthread_stop(sch->helper->task); 4414 err_free_pcpu: 4415 free_percpu(sch->pcpu); 4416 err_free_gdsqs: 4417 for_each_node_state(node, N_POSSIBLE) 4418 kfree(sch->global_dsqs[node]); 4419 kfree(sch->global_dsqs); 4420 err_free_hash: 4421 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4422 err_free_ei: 4423 free_exit_info(sch->exit_info); 4424 err_free_sch: 4425 kfree(sch); 4426 return ERR_PTR(ret); 4427 } 4428 4429 static void check_hotplug_seq(struct scx_sched *sch, 4430 const struct sched_ext_ops *ops) 4431 { 4432 unsigned long long global_hotplug_seq; 4433 4434 /* 4435 * If a hotplug event has occurred between when a scheduler was 4436 * initialized, and when we were able to attach, exit and notify user 4437 * space about it. 4438 */ 4439 if (ops->hotplug_seq) { 4440 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4441 if (ops->hotplug_seq != global_hotplug_seq) { 4442 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4443 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4444 "expected hotplug seq %llu did not match actual %llu", 4445 ops->hotplug_seq, global_hotplug_seq); 4446 } 4447 } 4448 } 4449 4450 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4451 { 4452 /* 4453 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4454 * ops.enqueue() callback isn't implemented. 4455 */ 4456 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4457 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4458 return -EINVAL; 4459 } 4460 4461 /* 4462 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4463 * selection policy to be enabled. 4464 */ 4465 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4466 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4467 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4468 return -EINVAL; 4469 } 4470 4471 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4472 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4473 4474 return 0; 4475 } 4476 4477 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4478 { 4479 struct scx_sched *sch; 4480 struct scx_task_iter sti; 4481 struct task_struct *p; 4482 unsigned long timeout; 4483 int i, cpu, ret; 4484 4485 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4486 cpu_possible_mask)) { 4487 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4488 return -EINVAL; 4489 } 4490 4491 mutex_lock(&scx_enable_mutex); 4492 4493 if (scx_enable_state() != SCX_DISABLED) { 4494 ret = -EBUSY; 4495 goto err_unlock; 4496 } 4497 4498 sch = scx_alloc_and_add_sched(ops); 4499 if (IS_ERR(sch)) { 4500 ret = PTR_ERR(sch); 4501 goto err_unlock; 4502 } 4503 4504 /* 4505 * Transition to ENABLING and clear exit info to arm the disable path. 4506 * Failure triggers full disabling from here on. 4507 */ 4508 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4509 WARN_ON_ONCE(scx_root); 4510 4511 atomic_long_set(&scx_nr_rejected, 0); 4512 4513 for_each_possible_cpu(cpu) 4514 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4515 4516 /* 4517 * Keep CPUs stable during enable so that the BPF scheduler can track 4518 * online CPUs by watching ->on/offline_cpu() after ->init(). 4519 */ 4520 cpus_read_lock(); 4521 4522 /* 4523 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4524 * See handle_hotplug(). 4525 */ 4526 rcu_assign_pointer(scx_root, sch); 4527 4528 scx_idle_enable(ops); 4529 4530 if (sch->ops.init) { 4531 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4532 if (ret) { 4533 ret = ops_sanitize_err(sch, "init", ret); 4534 cpus_read_unlock(); 4535 scx_error(sch, "ops.init() failed (%d)", ret); 4536 goto err_disable; 4537 } 4538 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED; 4539 } 4540 4541 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4542 if (((void (**)(void))ops)[i]) 4543 set_bit(i, sch->has_op); 4544 4545 check_hotplug_seq(sch, ops); 4546 scx_idle_update_selcpu_topology(ops); 4547 4548 cpus_read_unlock(); 4549 4550 ret = validate_ops(sch, ops); 4551 if (ret) 4552 goto err_disable; 4553 4554 WARN_ON_ONCE(scx_dsp_ctx); 4555 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4556 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4557 scx_dsp_max_batch), 4558 __alignof__(struct scx_dsp_ctx)); 4559 if (!scx_dsp_ctx) { 4560 ret = -ENOMEM; 4561 goto err_disable; 4562 } 4563 4564 if (ops->timeout_ms) 4565 timeout = msecs_to_jiffies(ops->timeout_ms); 4566 else 4567 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4568 4569 WRITE_ONCE(scx_watchdog_timeout, timeout); 4570 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4571 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4572 scx_watchdog_timeout / 2); 4573 4574 /* 4575 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4576 * This can lead to stalls as some BPF schedulers (e.g. userspace 4577 * scheduling) may not function correctly before all tasks are switched. 4578 * Init in bypass mode to guarantee forward progress. 4579 */ 4580 scx_bypass(true); 4581 4582 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4583 if (((void (**)(void))ops)[i]) 4584 set_bit(i, sch->has_op); 4585 4586 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 4587 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 4588 4589 /* 4590 * Lock out forks, cgroup on/offlining and moves before opening the 4591 * floodgate so that they don't wander into the operations prematurely. 4592 */ 4593 percpu_down_write(&scx_fork_rwsem); 4594 4595 WARN_ON_ONCE(scx_init_task_enabled); 4596 scx_init_task_enabled = true; 4597 4598 /* 4599 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 4600 * preventing new tasks from being added. No need to exclude tasks 4601 * leaving as sched_ext_free() can handle both prepped and enabled 4602 * tasks. Prep all tasks first and then enable them with preemption 4603 * disabled. 4604 * 4605 * All cgroups should be initialized before scx_init_task() so that the 4606 * BPF scheduler can reliably track each task's cgroup membership from 4607 * scx_init_task(). Lock out cgroup on/offlining and task migrations 4608 * while tasks are being initialized so that scx_cgroup_can_attach() 4609 * never sees uninitialized tasks. 4610 */ 4611 scx_cgroup_lock(); 4612 ret = scx_cgroup_init(sch); 4613 if (ret) 4614 goto err_disable_unlock_all; 4615 4616 scx_task_iter_start(&sti); 4617 while ((p = scx_task_iter_next_locked(&sti))) { 4618 /* 4619 * @p may already be dead, have lost all its usages counts and 4620 * be waiting for RCU grace period before being freed. @p can't 4621 * be initialized for SCX in such cases and should be ignored. 4622 */ 4623 if (!tryget_task_struct(p)) 4624 continue; 4625 4626 scx_task_iter_unlock(&sti); 4627 4628 ret = scx_init_task(p, task_group(p), false); 4629 if (ret) { 4630 put_task_struct(p); 4631 scx_task_iter_stop(&sti); 4632 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 4633 ret, p->comm, p->pid); 4634 goto err_disable_unlock_all; 4635 } 4636 4637 scx_set_task_state(p, SCX_TASK_READY); 4638 4639 put_task_struct(p); 4640 } 4641 scx_task_iter_stop(&sti); 4642 scx_cgroup_unlock(); 4643 percpu_up_write(&scx_fork_rwsem); 4644 4645 /* 4646 * All tasks are READY. It's safe to turn on scx_enabled() and switch 4647 * all eligible tasks. 4648 */ 4649 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 4650 static_branch_enable(&__scx_enabled); 4651 4652 /* 4653 * We're fully committed and can't fail. The task READY -> ENABLED 4654 * transitions here are synchronized against sched_ext_free() through 4655 * scx_tasks_lock. 4656 */ 4657 percpu_down_write(&scx_fork_rwsem); 4658 scx_task_iter_start(&sti); 4659 while ((p = scx_task_iter_next_locked(&sti))) { 4660 const struct sched_class *old_class = p->sched_class; 4661 const struct sched_class *new_class = 4662 __setscheduler_class(p->policy, p->prio); 4663 struct sched_enq_and_set_ctx ctx; 4664 4665 if (!tryget_task_struct(p)) 4666 continue; 4667 4668 if (old_class != new_class && p->se.sched_delayed) 4669 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4670 4671 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4672 4673 p->scx.slice = SCX_SLICE_DFL; 4674 p->sched_class = new_class; 4675 check_class_changing(task_rq(p), p, old_class); 4676 4677 sched_enq_and_set_task(&ctx); 4678 4679 check_class_changed(task_rq(p), p, old_class, p->prio); 4680 put_task_struct(p); 4681 } 4682 scx_task_iter_stop(&sti); 4683 percpu_up_write(&scx_fork_rwsem); 4684 4685 scx_bypass(false); 4686 4687 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 4688 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 4689 goto err_disable; 4690 } 4691 4692 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 4693 static_branch_enable(&__scx_switched_all); 4694 4695 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 4696 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 4697 kobject_uevent(&sch->kobj, KOBJ_ADD); 4698 mutex_unlock(&scx_enable_mutex); 4699 4700 atomic_long_inc(&scx_enable_seq); 4701 4702 return 0; 4703 4704 err_unlock: 4705 mutex_unlock(&scx_enable_mutex); 4706 return ret; 4707 4708 err_disable_unlock_all: 4709 scx_cgroup_unlock(); 4710 percpu_up_write(&scx_fork_rwsem); 4711 /* we'll soon enter disable path, keep bypass on */ 4712 err_disable: 4713 mutex_unlock(&scx_enable_mutex); 4714 /* 4715 * Returning an error code here would not pass all the error information 4716 * to userspace. Record errno using scx_error() for cases scx_error() 4717 * wasn't already invoked and exit indicating success so that the error 4718 * is notified through ops.exit() with all the details. 4719 * 4720 * Flush scx_disable_work to ensure that error is reported before init 4721 * completion. sch's base reference will be put by bpf_scx_unreg(). 4722 */ 4723 scx_error(sch, "scx_enable() failed (%d)", ret); 4724 kthread_flush_work(&sch->disable_work); 4725 return 0; 4726 } 4727 4728 4729 /******************************************************************************** 4730 * bpf_struct_ops plumbing. 4731 */ 4732 #include <linux/bpf_verifier.h> 4733 #include <linux/bpf.h> 4734 #include <linux/btf.h> 4735 4736 static const struct btf_type *task_struct_type; 4737 4738 static bool bpf_scx_is_valid_access(int off, int size, 4739 enum bpf_access_type type, 4740 const struct bpf_prog *prog, 4741 struct bpf_insn_access_aux *info) 4742 { 4743 if (type != BPF_READ) 4744 return false; 4745 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 4746 return false; 4747 if (off % size != 0) 4748 return false; 4749 4750 return btf_ctx_access(off, size, type, prog, info); 4751 } 4752 4753 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 4754 const struct bpf_reg_state *reg, int off, 4755 int size) 4756 { 4757 const struct btf_type *t; 4758 4759 t = btf_type_by_id(reg->btf, reg->btf_id); 4760 if (t == task_struct_type) { 4761 if (off >= offsetof(struct task_struct, scx.slice) && 4762 off + size <= offsetofend(struct task_struct, scx.slice)) 4763 return SCALAR_VALUE; 4764 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 4765 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 4766 return SCALAR_VALUE; 4767 if (off >= offsetof(struct task_struct, scx.disallow) && 4768 off + size <= offsetofend(struct task_struct, scx.disallow)) 4769 return SCALAR_VALUE; 4770 } 4771 4772 return -EACCES; 4773 } 4774 4775 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 4776 .get_func_proto = bpf_base_func_proto, 4777 .is_valid_access = bpf_scx_is_valid_access, 4778 .btf_struct_access = bpf_scx_btf_struct_access, 4779 }; 4780 4781 static int bpf_scx_init_member(const struct btf_type *t, 4782 const struct btf_member *member, 4783 void *kdata, const void *udata) 4784 { 4785 const struct sched_ext_ops *uops = udata; 4786 struct sched_ext_ops *ops = kdata; 4787 u32 moff = __btf_member_bit_offset(t, member) / 8; 4788 int ret; 4789 4790 switch (moff) { 4791 case offsetof(struct sched_ext_ops, dispatch_max_batch): 4792 if (*(u32 *)(udata + moff) > INT_MAX) 4793 return -E2BIG; 4794 ops->dispatch_max_batch = *(u32 *)(udata + moff); 4795 return 1; 4796 case offsetof(struct sched_ext_ops, flags): 4797 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 4798 return -EINVAL; 4799 ops->flags = *(u64 *)(udata + moff); 4800 return 1; 4801 case offsetof(struct sched_ext_ops, name): 4802 ret = bpf_obj_name_cpy(ops->name, uops->name, 4803 sizeof(ops->name)); 4804 if (ret < 0) 4805 return ret; 4806 if (ret == 0) 4807 return -EINVAL; 4808 return 1; 4809 case offsetof(struct sched_ext_ops, timeout_ms): 4810 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 4811 SCX_WATCHDOG_MAX_TIMEOUT) 4812 return -E2BIG; 4813 ops->timeout_ms = *(u32 *)(udata + moff); 4814 return 1; 4815 case offsetof(struct sched_ext_ops, exit_dump_len): 4816 ops->exit_dump_len = 4817 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 4818 return 1; 4819 case offsetof(struct sched_ext_ops, hotplug_seq): 4820 ops->hotplug_seq = *(u64 *)(udata + moff); 4821 return 1; 4822 } 4823 4824 return 0; 4825 } 4826 4827 static int bpf_scx_check_member(const struct btf_type *t, 4828 const struct btf_member *member, 4829 const struct bpf_prog *prog) 4830 { 4831 u32 moff = __btf_member_bit_offset(t, member) / 8; 4832 4833 switch (moff) { 4834 case offsetof(struct sched_ext_ops, init_task): 4835 #ifdef CONFIG_EXT_GROUP_SCHED 4836 case offsetof(struct sched_ext_ops, cgroup_init): 4837 case offsetof(struct sched_ext_ops, cgroup_exit): 4838 case offsetof(struct sched_ext_ops, cgroup_prep_move): 4839 #endif 4840 case offsetof(struct sched_ext_ops, cpu_online): 4841 case offsetof(struct sched_ext_ops, cpu_offline): 4842 case offsetof(struct sched_ext_ops, init): 4843 case offsetof(struct sched_ext_ops, exit): 4844 break; 4845 default: 4846 if (prog->sleepable) 4847 return -EINVAL; 4848 } 4849 4850 return 0; 4851 } 4852 4853 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4854 { 4855 return scx_enable(kdata, link); 4856 } 4857 4858 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4859 { 4860 struct sched_ext_ops *ops = kdata; 4861 struct scx_sched *sch = ops->priv; 4862 4863 scx_disable(SCX_EXIT_UNREG); 4864 kthread_flush_work(&sch->disable_work); 4865 kobject_put(&sch->kobj); 4866 } 4867 4868 static int bpf_scx_init(struct btf *btf) 4869 { 4870 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 4871 4872 return 0; 4873 } 4874 4875 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 4876 { 4877 /* 4878 * sched_ext does not support updating the actively-loaded BPF 4879 * scheduler, as registering a BPF scheduler can always fail if the 4880 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 4881 * etc. Similarly, we can always race with unregistration happening 4882 * elsewhere, such as with sysrq. 4883 */ 4884 return -EOPNOTSUPP; 4885 } 4886 4887 static int bpf_scx_validate(void *kdata) 4888 { 4889 return 0; 4890 } 4891 4892 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 4893 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 4894 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 4895 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 4896 static void sched_ext_ops__tick(struct task_struct *p) {} 4897 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 4898 static void sched_ext_ops__running(struct task_struct *p) {} 4899 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 4900 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 4901 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 4902 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 4903 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 4904 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 4905 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 4906 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 4907 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 4908 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 4909 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 4910 static void sched_ext_ops__enable(struct task_struct *p) {} 4911 static void sched_ext_ops__disable(struct task_struct *p) {} 4912 #ifdef CONFIG_EXT_GROUP_SCHED 4913 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 4914 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 4915 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 4916 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 4917 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 4918 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 4919 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 4920 #endif 4921 static void sched_ext_ops__cpu_online(s32 cpu) {} 4922 static void sched_ext_ops__cpu_offline(s32 cpu) {} 4923 static s32 sched_ext_ops__init(void) { return -EINVAL; } 4924 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 4925 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 4926 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 4927 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 4928 4929 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 4930 .select_cpu = sched_ext_ops__select_cpu, 4931 .enqueue = sched_ext_ops__enqueue, 4932 .dequeue = sched_ext_ops__dequeue, 4933 .dispatch = sched_ext_ops__dispatch, 4934 .tick = sched_ext_ops__tick, 4935 .runnable = sched_ext_ops__runnable, 4936 .running = sched_ext_ops__running, 4937 .stopping = sched_ext_ops__stopping, 4938 .quiescent = sched_ext_ops__quiescent, 4939 .yield = sched_ext_ops__yield, 4940 .core_sched_before = sched_ext_ops__core_sched_before, 4941 .set_weight = sched_ext_ops__set_weight, 4942 .set_cpumask = sched_ext_ops__set_cpumask, 4943 .update_idle = sched_ext_ops__update_idle, 4944 .cpu_acquire = sched_ext_ops__cpu_acquire, 4945 .cpu_release = sched_ext_ops__cpu_release, 4946 .init_task = sched_ext_ops__init_task, 4947 .exit_task = sched_ext_ops__exit_task, 4948 .enable = sched_ext_ops__enable, 4949 .disable = sched_ext_ops__disable, 4950 #ifdef CONFIG_EXT_GROUP_SCHED 4951 .cgroup_init = sched_ext_ops__cgroup_init, 4952 .cgroup_exit = sched_ext_ops__cgroup_exit, 4953 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 4954 .cgroup_move = sched_ext_ops__cgroup_move, 4955 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 4956 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 4957 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 4958 #endif 4959 .cpu_online = sched_ext_ops__cpu_online, 4960 .cpu_offline = sched_ext_ops__cpu_offline, 4961 .init = sched_ext_ops__init, 4962 .exit = sched_ext_ops__exit, 4963 .dump = sched_ext_ops__dump, 4964 .dump_cpu = sched_ext_ops__dump_cpu, 4965 .dump_task = sched_ext_ops__dump_task, 4966 }; 4967 4968 static struct bpf_struct_ops bpf_sched_ext_ops = { 4969 .verifier_ops = &bpf_scx_verifier_ops, 4970 .reg = bpf_scx_reg, 4971 .unreg = bpf_scx_unreg, 4972 .check_member = bpf_scx_check_member, 4973 .init_member = bpf_scx_init_member, 4974 .init = bpf_scx_init, 4975 .update = bpf_scx_update, 4976 .validate = bpf_scx_validate, 4977 .name = "sched_ext_ops", 4978 .owner = THIS_MODULE, 4979 .cfi_stubs = &__bpf_ops_sched_ext_ops 4980 }; 4981 4982 4983 /******************************************************************************** 4984 * System integration and init. 4985 */ 4986 4987 static void sysrq_handle_sched_ext_reset(u8 key) 4988 { 4989 scx_disable(SCX_EXIT_SYSRQ); 4990 } 4991 4992 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 4993 .handler = sysrq_handle_sched_ext_reset, 4994 .help_msg = "reset-sched-ext(S)", 4995 .action_msg = "Disable sched_ext and revert all tasks to CFS", 4996 .enable_mask = SYSRQ_ENABLE_RTNICE, 4997 }; 4998 4999 static void sysrq_handle_sched_ext_dump(u8 key) 5000 { 5001 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5002 5003 if (scx_enabled()) 5004 scx_dump_state(&ei, 0); 5005 } 5006 5007 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5008 .handler = sysrq_handle_sched_ext_dump, 5009 .help_msg = "dump-sched-ext(D)", 5010 .action_msg = "Trigger sched_ext debug dump", 5011 .enable_mask = SYSRQ_ENABLE_RTNICE, 5012 }; 5013 5014 static bool can_skip_idle_kick(struct rq *rq) 5015 { 5016 lockdep_assert_rq_held(rq); 5017 5018 /* 5019 * We can skip idle kicking if @rq is going to go through at least one 5020 * full SCX scheduling cycle before going idle. Just checking whether 5021 * curr is not idle is insufficient because we could be racing 5022 * balance_one() trying to pull the next task from a remote rq, which 5023 * may fail, and @rq may become idle afterwards. 5024 * 5025 * The race window is small and we don't and can't guarantee that @rq is 5026 * only kicked while idle anyway. Skip only when sure. 5027 */ 5028 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5029 } 5030 5031 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5032 { 5033 struct rq *rq = cpu_rq(cpu); 5034 struct scx_rq *this_scx = &this_rq->scx; 5035 bool should_wait = false; 5036 unsigned long flags; 5037 5038 raw_spin_rq_lock_irqsave(rq, flags); 5039 5040 /* 5041 * During CPU hotplug, a CPU may depend on kicking itself to make 5042 * forward progress. Allow kicking self regardless of online state. 5043 */ 5044 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5045 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5046 if (rq->curr->sched_class == &ext_sched_class) 5047 rq->curr->scx.slice = 0; 5048 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5049 } 5050 5051 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5052 pseqs[cpu] = rq->scx.pnt_seq; 5053 should_wait = true; 5054 } 5055 5056 resched_curr(rq); 5057 } else { 5058 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5059 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5060 } 5061 5062 raw_spin_rq_unlock_irqrestore(rq, flags); 5063 5064 return should_wait; 5065 } 5066 5067 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5068 { 5069 struct rq *rq = cpu_rq(cpu); 5070 unsigned long flags; 5071 5072 raw_spin_rq_lock_irqsave(rq, flags); 5073 5074 if (!can_skip_idle_kick(rq) && 5075 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5076 resched_curr(rq); 5077 5078 raw_spin_rq_unlock_irqrestore(rq, flags); 5079 } 5080 5081 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5082 { 5083 struct rq *this_rq = this_rq(); 5084 struct scx_rq *this_scx = &this_rq->scx; 5085 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 5086 bool should_wait = false; 5087 s32 cpu; 5088 5089 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5090 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5091 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5092 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5093 } 5094 5095 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5096 kick_one_cpu_if_idle(cpu, this_rq); 5097 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5098 } 5099 5100 if (!should_wait) 5101 return; 5102 5103 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5104 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5105 5106 if (cpu != cpu_of(this_rq)) { 5107 /* 5108 * Pairs with smp_store_release() issued by this CPU in 5109 * switch_class() on the resched path. 5110 * 5111 * We busy-wait here to guarantee that no other task can 5112 * be scheduled on our core before the target CPU has 5113 * entered the resched path. 5114 */ 5115 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5116 cpu_relax(); 5117 } 5118 5119 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5120 } 5121 } 5122 5123 /** 5124 * print_scx_info - print out sched_ext scheduler state 5125 * @log_lvl: the log level to use when printing 5126 * @p: target task 5127 * 5128 * If a sched_ext scheduler is enabled, print the name and state of the 5129 * scheduler. If @p is on sched_ext, print further information about the task. 5130 * 5131 * This function can be safely called on any task as long as the task_struct 5132 * itself is accessible. While safe, this function isn't synchronized and may 5133 * print out mixups or garbages of limited length. 5134 */ 5135 void print_scx_info(const char *log_lvl, struct task_struct *p) 5136 { 5137 struct scx_sched *sch = scx_root; 5138 enum scx_enable_state state = scx_enable_state(); 5139 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5140 char runnable_at_buf[22] = "?"; 5141 struct sched_class *class; 5142 unsigned long runnable_at; 5143 5144 if (state == SCX_DISABLED) 5145 return; 5146 5147 /* 5148 * Carefully check if the task was running on sched_ext, and then 5149 * carefully copy the time it's been runnable, and its state. 5150 */ 5151 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5152 class != &ext_sched_class) { 5153 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5154 scx_enable_state_str[state], all); 5155 return; 5156 } 5157 5158 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5159 sizeof(runnable_at))) 5160 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5161 jiffies_delta_msecs(runnable_at, jiffies)); 5162 5163 /* print everything onto one line to conserve console space */ 5164 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5165 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5166 runnable_at_buf); 5167 } 5168 5169 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5170 { 5171 /* 5172 * SCX schedulers often have userspace components which are sometimes 5173 * involved in critial scheduling paths. PM operations involve freezing 5174 * userspace which can lead to scheduling misbehaviors including stalls. 5175 * Let's bypass while PM operations are in progress. 5176 */ 5177 switch (event) { 5178 case PM_HIBERNATION_PREPARE: 5179 case PM_SUSPEND_PREPARE: 5180 case PM_RESTORE_PREPARE: 5181 scx_bypass(true); 5182 break; 5183 case PM_POST_HIBERNATION: 5184 case PM_POST_SUSPEND: 5185 case PM_POST_RESTORE: 5186 scx_bypass(false); 5187 break; 5188 } 5189 5190 return NOTIFY_OK; 5191 } 5192 5193 static struct notifier_block scx_pm_notifier = { 5194 .notifier_call = scx_pm_handler, 5195 }; 5196 5197 void __init init_sched_ext_class(void) 5198 { 5199 s32 cpu, v; 5200 5201 /* 5202 * The following is to prevent the compiler from optimizing out the enum 5203 * definitions so that BPF scheduler implementations can use them 5204 * through the generated vmlinux.h. 5205 */ 5206 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5207 SCX_TG_ONLINE); 5208 5209 scx_idle_init_masks(); 5210 5211 scx_kick_cpus_pnt_seqs = 5212 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 5213 __alignof__(scx_kick_cpus_pnt_seqs[0])); 5214 BUG_ON(!scx_kick_cpus_pnt_seqs); 5215 5216 for_each_possible_cpu(cpu) { 5217 struct rq *rq = cpu_rq(cpu); 5218 int n = cpu_to_node(cpu); 5219 5220 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5221 INIT_LIST_HEAD(&rq->scx.runnable_list); 5222 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5223 5224 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5225 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5226 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5227 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5228 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 5229 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5230 5231 if (cpu_online(cpu)) 5232 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5233 } 5234 5235 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5236 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5237 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5238 } 5239 5240 5241 /******************************************************************************** 5242 * Helpers that can be called from the BPF scheduler. 5243 */ 5244 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p, 5245 u64 enq_flags) 5246 { 5247 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5248 return false; 5249 5250 lockdep_assert_irqs_disabled(); 5251 5252 if (unlikely(!p)) { 5253 scx_error(sch, "called with NULL task"); 5254 return false; 5255 } 5256 5257 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5258 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags); 5259 return false; 5260 } 5261 5262 return true; 5263 } 5264 5265 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p, 5266 u64 dsq_id, u64 enq_flags) 5267 { 5268 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5269 struct task_struct *ddsp_task; 5270 5271 ddsp_task = __this_cpu_read(direct_dispatch_task); 5272 if (ddsp_task) { 5273 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags); 5274 return; 5275 } 5276 5277 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5278 scx_error(sch, "dispatch buffer overflow"); 5279 return; 5280 } 5281 5282 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5283 .task = p, 5284 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5285 .dsq_id = dsq_id, 5286 .enq_flags = enq_flags, 5287 }; 5288 } 5289 5290 __bpf_kfunc_start_defs(); 5291 5292 /** 5293 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5294 * @p: task_struct to insert 5295 * @dsq_id: DSQ to insert into 5296 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5297 * @enq_flags: SCX_ENQ_* 5298 * 5299 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5300 * call this function spuriously. Can be called from ops.enqueue(), 5301 * ops.select_cpu(), and ops.dispatch(). 5302 * 5303 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5304 * and @p must match the task being enqueued. 5305 * 5306 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5307 * will be directly inserted into the corresponding dispatch queue after 5308 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5309 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5310 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5311 * task is inserted. 5312 * 5313 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5314 * and this function can be called upto ops.dispatch_max_batch times to insert 5315 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5316 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5317 * counter. 5318 * 5319 * This function doesn't have any locking restrictions and may be called under 5320 * BPF locks (in the future when BPF introduces more flexible locking). 5321 * 5322 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5323 * exhaustion. If zero, the current residual slice is maintained. If 5324 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5325 * scx_bpf_kick_cpu() to trigger scheduling. 5326 */ 5327 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 5328 u64 enq_flags) 5329 { 5330 struct scx_sched *sch; 5331 5332 guard(rcu)(); 5333 sch = rcu_dereference(scx_root); 5334 if (unlikely(!sch)) 5335 return; 5336 5337 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5338 return; 5339 5340 if (slice) 5341 p->scx.slice = slice; 5342 else 5343 p->scx.slice = p->scx.slice ?: 1; 5344 5345 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags); 5346 } 5347 5348 /** 5349 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 5350 * @p: task_struct to insert 5351 * @dsq_id: DSQ to insert into 5352 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5353 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5354 * @enq_flags: SCX_ENQ_* 5355 * 5356 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 5357 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 5358 * are identical to scx_bpf_dsq_insert(). 5359 * 5360 * @vtime ordering is according to time_before64() which considers wrapping. A 5361 * numerically larger vtime may indicate an earlier position in the ordering and 5362 * vice-versa. 5363 * 5364 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5365 * function must not be called on a DSQ which already has one or more FIFO tasks 5366 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5367 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5368 */ 5369 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5370 u64 slice, u64 vtime, u64 enq_flags) 5371 { 5372 struct scx_sched *sch; 5373 5374 guard(rcu)(); 5375 sch = rcu_dereference(scx_root); 5376 if (unlikely(!sch)) 5377 return; 5378 5379 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5380 return; 5381 5382 if (slice) 5383 p->scx.slice = slice; 5384 else 5385 p->scx.slice = p->scx.slice ?: 1; 5386 5387 p->scx.dsq_vtime = vtime; 5388 5389 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5390 } 5391 5392 __bpf_kfunc_end_defs(); 5393 5394 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5395 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5396 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5397 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5398 5399 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5400 .owner = THIS_MODULE, 5401 .set = &scx_kfunc_ids_enqueue_dispatch, 5402 }; 5403 5404 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5405 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5406 { 5407 struct scx_sched *sch = scx_root; 5408 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5409 struct rq *this_rq, *src_rq, *locked_rq; 5410 bool dispatched = false; 5411 bool in_balance; 5412 unsigned long flags; 5413 5414 if (!scx_kf_allowed_if_unlocked() && 5415 !scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5416 return false; 5417 5418 /* 5419 * Can be called from either ops.dispatch() locking this_rq() or any 5420 * context where no rq lock is held. If latter, lock @p's task_rq which 5421 * we'll likely need anyway. 5422 */ 5423 src_rq = task_rq(p); 5424 5425 local_irq_save(flags); 5426 this_rq = this_rq(); 5427 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5428 5429 if (in_balance) { 5430 if (this_rq != src_rq) { 5431 raw_spin_rq_unlock(this_rq); 5432 raw_spin_rq_lock(src_rq); 5433 } 5434 } else { 5435 raw_spin_rq_lock(src_rq); 5436 } 5437 5438 /* 5439 * If the BPF scheduler keeps calling this function repeatedly, it can 5440 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 5441 * breather if necessary. 5442 */ 5443 scx_breather(src_rq); 5444 5445 locked_rq = src_rq; 5446 raw_spin_lock(&src_dsq->lock); 5447 5448 /* 5449 * Did someone else get to it? @p could have already left $src_dsq, got 5450 * re-enqueud, or be in the process of being consumed by someone else. 5451 */ 5452 if (unlikely(p->scx.dsq != src_dsq || 5453 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5454 p->scx.holding_cpu >= 0) || 5455 WARN_ON_ONCE(src_rq != task_rq(p))) { 5456 raw_spin_unlock(&src_dsq->lock); 5457 goto out; 5458 } 5459 5460 /* @p is still on $src_dsq and stable, determine the destination */ 5461 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5462 5463 /* 5464 * Apply vtime and slice updates before moving so that the new time is 5465 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5466 * this is safe as we're locking it. 5467 */ 5468 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5469 p->scx.dsq_vtime = kit->vtime; 5470 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5471 p->scx.slice = kit->slice; 5472 5473 /* execute move */ 5474 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5475 dispatched = true; 5476 out: 5477 if (in_balance) { 5478 if (this_rq != locked_rq) { 5479 raw_spin_rq_unlock(locked_rq); 5480 raw_spin_rq_lock(this_rq); 5481 } 5482 } else { 5483 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5484 } 5485 5486 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5487 __SCX_DSQ_ITER_HAS_VTIME); 5488 return dispatched; 5489 } 5490 5491 __bpf_kfunc_start_defs(); 5492 5493 /** 5494 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5495 * 5496 * Can only be called from ops.dispatch(). 5497 */ 5498 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5499 { 5500 struct scx_sched *sch; 5501 5502 guard(rcu)(); 5503 5504 sch = rcu_dereference(scx_root); 5505 if (unlikely(!sch)) 5506 return 0; 5507 5508 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5509 return 0; 5510 5511 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 5512 } 5513 5514 /** 5515 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 5516 * 5517 * Cancel the latest dispatch. Can be called multiple times to cancel further 5518 * dispatches. Can only be called from ops.dispatch(). 5519 */ 5520 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 5521 { 5522 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5523 struct scx_sched *sch; 5524 5525 guard(rcu)(); 5526 5527 sch = rcu_dereference(scx_root); 5528 if (unlikely(!sch)) 5529 return; 5530 5531 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5532 return; 5533 5534 if (dspc->cursor > 0) 5535 dspc->cursor--; 5536 else 5537 scx_error(sch, "dispatch buffer underflow"); 5538 } 5539 5540 /** 5541 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 5542 * @dsq_id: DSQ to move task from 5543 * 5544 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 5545 * local DSQ for execution. Can only be called from ops.dispatch(). 5546 * 5547 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 5548 * before trying to move from the specified DSQ. It may also grab rq locks and 5549 * thus can't be called under any BPF locks. 5550 * 5551 * Returns %true if a task has been moved, %false if there isn't any task to 5552 * move. 5553 */ 5554 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 5555 { 5556 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5557 struct scx_dispatch_q *dsq; 5558 struct scx_sched *sch; 5559 5560 guard(rcu)(); 5561 5562 sch = rcu_dereference(scx_root); 5563 if (unlikely(!sch)) 5564 return false; 5565 5566 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5567 return false; 5568 5569 flush_dispatch_buf(sch, dspc->rq); 5570 5571 dsq = find_user_dsq(sch, dsq_id); 5572 if (unlikely(!dsq)) { 5573 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 5574 return false; 5575 } 5576 5577 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 5578 /* 5579 * A successfully consumed task can be dequeued before it starts 5580 * running while the CPU is trying to migrate other dispatched 5581 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 5582 * local DSQ. 5583 */ 5584 dspc->nr_tasks++; 5585 return true; 5586 } else { 5587 return false; 5588 } 5589 } 5590 5591 /** 5592 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 5593 * @it__iter: DSQ iterator in progress 5594 * @slice: duration the moved task can run for in nsecs 5595 * 5596 * Override the slice of the next task that will be moved from @it__iter using 5597 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 5598 * slice duration is kept. 5599 */ 5600 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 5601 u64 slice) 5602 { 5603 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5604 5605 kit->slice = slice; 5606 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 5607 } 5608 5609 /** 5610 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 5611 * @it__iter: DSQ iterator in progress 5612 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 5613 * 5614 * Override the vtime of the next task that will be moved from @it__iter using 5615 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 5616 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 5617 * override is ignored and cleared. 5618 */ 5619 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 5620 u64 vtime) 5621 { 5622 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 5623 5624 kit->vtime = vtime; 5625 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 5626 } 5627 5628 /** 5629 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 5630 * @it__iter: DSQ iterator in progress 5631 * @p: task to transfer 5632 * @dsq_id: DSQ to move @p to 5633 * @enq_flags: SCX_ENQ_* 5634 * 5635 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 5636 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 5637 * be the destination. 5638 * 5639 * For the transfer to be successful, @p must still be on the DSQ and have been 5640 * queued before the DSQ iteration started. This function doesn't care whether 5641 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 5642 * been queued before the iteration started. 5643 * 5644 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 5645 * 5646 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 5647 * lock (e.g. BPF timers or SYSCALL programs). 5648 * 5649 * Returns %true if @p has been consumed, %false if @p had already been consumed 5650 * or dequeued. 5651 */ 5652 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 5653 struct task_struct *p, u64 dsq_id, 5654 u64 enq_flags) 5655 { 5656 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5657 p, dsq_id, enq_flags); 5658 } 5659 5660 /** 5661 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 5662 * @it__iter: DSQ iterator in progress 5663 * @p: task to transfer 5664 * @dsq_id: DSQ to move @p to 5665 * @enq_flags: SCX_ENQ_* 5666 * 5667 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 5668 * priority queue of the DSQ specified by @dsq_id. The destination must be a 5669 * user DSQ as only user DSQs support priority queue. 5670 * 5671 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 5672 * and scx_bpf_dsq_move_set_vtime() to update. 5673 * 5674 * All other aspects are identical to scx_bpf_dsq_move(). See 5675 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 5676 */ 5677 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 5678 struct task_struct *p, u64 dsq_id, 5679 u64 enq_flags) 5680 { 5681 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 5682 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5683 } 5684 5685 __bpf_kfunc_end_defs(); 5686 5687 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 5688 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 5689 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 5690 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 5691 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 5692 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 5693 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5694 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5695 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 5696 5697 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 5698 .owner = THIS_MODULE, 5699 .set = &scx_kfunc_ids_dispatch, 5700 }; 5701 5702 __bpf_kfunc_start_defs(); 5703 5704 /** 5705 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 5706 * 5707 * Iterate over all of the tasks currently enqueued on the local DSQ of the 5708 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 5709 * processed tasks. Can only be called from ops.cpu_release(). 5710 */ 5711 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 5712 { 5713 struct scx_sched *sch; 5714 LIST_HEAD(tasks); 5715 u32 nr_enqueued = 0; 5716 struct rq *rq; 5717 struct task_struct *p, *n; 5718 5719 guard(rcu)(); 5720 sch = rcu_dereference(scx_root); 5721 if (unlikely(!sch)) 5722 return 0; 5723 5724 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE)) 5725 return 0; 5726 5727 rq = cpu_rq(smp_processor_id()); 5728 lockdep_assert_rq_held(rq); 5729 5730 /* 5731 * The BPF scheduler may choose to dispatch tasks back to 5732 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 5733 * first to avoid processing the same tasks repeatedly. 5734 */ 5735 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 5736 scx.dsq_list.node) { 5737 /* 5738 * If @p is being migrated, @p's current CPU may not agree with 5739 * its allowed CPUs and the migration_cpu_stop is about to 5740 * deactivate and re-activate @p anyway. Skip re-enqueueing. 5741 * 5742 * While racing sched property changes may also dequeue and 5743 * re-enqueue a migrating task while its current CPU and allowed 5744 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 5745 * the current local DSQ for running tasks and thus are not 5746 * visible to the BPF scheduler. 5747 */ 5748 if (p->migration_pending) 5749 continue; 5750 5751 dispatch_dequeue(rq, p); 5752 list_add_tail(&p->scx.dsq_list.node, &tasks); 5753 } 5754 5755 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 5756 list_del_init(&p->scx.dsq_list.node); 5757 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 5758 nr_enqueued++; 5759 } 5760 5761 return nr_enqueued; 5762 } 5763 5764 __bpf_kfunc_end_defs(); 5765 5766 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 5767 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 5768 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 5769 5770 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 5771 .owner = THIS_MODULE, 5772 .set = &scx_kfunc_ids_cpu_release, 5773 }; 5774 5775 __bpf_kfunc_start_defs(); 5776 5777 /** 5778 * scx_bpf_create_dsq - Create a custom DSQ 5779 * @dsq_id: DSQ to create 5780 * @node: NUMA node to allocate from 5781 * 5782 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 5783 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 5784 */ 5785 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 5786 { 5787 struct scx_dispatch_q *dsq; 5788 struct scx_sched *sch; 5789 s32 ret; 5790 5791 if (unlikely(node >= (int)nr_node_ids || 5792 (node < 0 && node != NUMA_NO_NODE))) 5793 return -EINVAL; 5794 5795 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 5796 return -EINVAL; 5797 5798 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5799 if (!dsq) 5800 return -ENOMEM; 5801 5802 init_dsq(dsq, dsq_id); 5803 5804 rcu_read_lock(); 5805 5806 sch = rcu_dereference(scx_root); 5807 if (sch) 5808 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 5809 dsq_hash_params); 5810 else 5811 ret = -ENODEV; 5812 5813 rcu_read_unlock(); 5814 if (ret) 5815 kfree(dsq); 5816 return ret; 5817 } 5818 5819 __bpf_kfunc_end_defs(); 5820 5821 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 5822 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 5823 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 5824 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 5825 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 5826 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 5827 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 5828 5829 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 5830 .owner = THIS_MODULE, 5831 .set = &scx_kfunc_ids_unlocked, 5832 }; 5833 5834 __bpf_kfunc_start_defs(); 5835 5836 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags) 5837 { 5838 struct rq *this_rq; 5839 unsigned long irq_flags; 5840 5841 if (!ops_cpu_valid(sch, cpu, NULL)) 5842 return; 5843 5844 local_irq_save(irq_flags); 5845 5846 this_rq = this_rq(); 5847 5848 /* 5849 * While bypassing for PM ops, IRQ handling may not be online which can 5850 * lead to irq_work_queue() malfunction such as infinite busy wait for 5851 * IRQ status update. Suppress kicking. 5852 */ 5853 if (scx_rq_bypassing(this_rq)) 5854 goto out; 5855 5856 /* 5857 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 5858 * rq locks. We can probably be smarter and avoid bouncing if called 5859 * from ops which don't hold a rq lock. 5860 */ 5861 if (flags & SCX_KICK_IDLE) { 5862 struct rq *target_rq = cpu_rq(cpu); 5863 5864 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 5865 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 5866 5867 if (raw_spin_rq_trylock(target_rq)) { 5868 if (can_skip_idle_kick(target_rq)) { 5869 raw_spin_rq_unlock(target_rq); 5870 goto out; 5871 } 5872 raw_spin_rq_unlock(target_rq); 5873 } 5874 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 5875 } else { 5876 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 5877 5878 if (flags & SCX_KICK_PREEMPT) 5879 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 5880 if (flags & SCX_KICK_WAIT) 5881 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 5882 } 5883 5884 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 5885 out: 5886 local_irq_restore(irq_flags); 5887 } 5888 5889 /** 5890 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 5891 * @cpu: cpu to kick 5892 * @flags: %SCX_KICK_* flags 5893 * 5894 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 5895 * trigger rescheduling on a busy CPU. This can be called from any online 5896 * scx_ops operation and the actual kicking is performed asynchronously through 5897 * an irq work. 5898 */ 5899 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 5900 { 5901 struct scx_sched *sch; 5902 5903 guard(rcu)(); 5904 sch = rcu_dereference(scx_root); 5905 if (likely(sch)) 5906 scx_kick_cpu(sch, cpu, flags); 5907 } 5908 5909 /** 5910 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 5911 * @dsq_id: id of the DSQ 5912 * 5913 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 5914 * -%ENOENT is returned. 5915 */ 5916 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 5917 { 5918 struct scx_sched *sch; 5919 struct scx_dispatch_q *dsq; 5920 s32 ret; 5921 5922 preempt_disable(); 5923 5924 sch = rcu_dereference_sched(scx_root); 5925 if (unlikely(!sch)) { 5926 ret = -ENODEV; 5927 goto out; 5928 } 5929 5930 if (dsq_id == SCX_DSQ_LOCAL) { 5931 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 5932 goto out; 5933 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 5934 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 5935 5936 if (ops_cpu_valid(sch, cpu, NULL)) { 5937 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 5938 goto out; 5939 } 5940 } else { 5941 dsq = find_user_dsq(sch, dsq_id); 5942 if (dsq) { 5943 ret = READ_ONCE(dsq->nr); 5944 goto out; 5945 } 5946 } 5947 ret = -ENOENT; 5948 out: 5949 preempt_enable(); 5950 return ret; 5951 } 5952 5953 /** 5954 * scx_bpf_destroy_dsq - Destroy a custom DSQ 5955 * @dsq_id: DSQ to destroy 5956 * 5957 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 5958 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 5959 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 5960 * which doesn't exist. Can be called from any online scx_ops operations. 5961 */ 5962 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 5963 { 5964 struct scx_sched *sch; 5965 5966 rcu_read_lock(); 5967 sch = rcu_dereference(scx_root); 5968 if (sch) 5969 destroy_dsq(sch, dsq_id); 5970 rcu_read_unlock(); 5971 } 5972 5973 /** 5974 * bpf_iter_scx_dsq_new - Create a DSQ iterator 5975 * @it: iterator to initialize 5976 * @dsq_id: DSQ to iterate 5977 * @flags: %SCX_DSQ_ITER_* 5978 * 5979 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 5980 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 5981 * tasks which are already queued when this function is invoked. 5982 */ 5983 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 5984 u64 flags) 5985 { 5986 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 5987 struct scx_sched *sch; 5988 5989 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 5990 sizeof(struct bpf_iter_scx_dsq)); 5991 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 5992 __alignof__(struct bpf_iter_scx_dsq)); 5993 5994 /* 5995 * next() and destroy() will be called regardless of the return value. 5996 * Always clear $kit->dsq. 5997 */ 5998 kit->dsq = NULL; 5999 6000 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 6001 if (unlikely(!sch)) 6002 return -ENODEV; 6003 6004 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6005 return -EINVAL; 6006 6007 kit->dsq = find_user_dsq(sch, dsq_id); 6008 if (!kit->dsq) 6009 return -ENOENT; 6010 6011 INIT_LIST_HEAD(&kit->cursor.node); 6012 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 6013 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6014 6015 return 0; 6016 } 6017 6018 /** 6019 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6020 * @it: iterator to progress 6021 * 6022 * Return the next task. See bpf_iter_scx_dsq_new(). 6023 */ 6024 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6025 { 6026 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6027 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6028 struct task_struct *p; 6029 unsigned long flags; 6030 6031 if (!kit->dsq) 6032 return NULL; 6033 6034 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6035 6036 if (list_empty(&kit->cursor.node)) 6037 p = NULL; 6038 else 6039 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6040 6041 /* 6042 * Only tasks which were queued before the iteration started are 6043 * visible. This bounds BPF iterations and guarantees that vtime never 6044 * jumps in the other direction while iterating. 6045 */ 6046 do { 6047 p = nldsq_next_task(kit->dsq, p, rev); 6048 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6049 6050 if (p) { 6051 if (rev) 6052 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6053 else 6054 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6055 } else { 6056 list_del_init(&kit->cursor.node); 6057 } 6058 6059 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6060 6061 return p; 6062 } 6063 6064 /** 6065 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6066 * @it: iterator to destroy 6067 * 6068 * Undo scx_iter_scx_dsq_new(). 6069 */ 6070 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6071 { 6072 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6073 6074 if (!kit->dsq) 6075 return; 6076 6077 if (!list_empty(&kit->cursor.node)) { 6078 unsigned long flags; 6079 6080 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6081 list_del_init(&kit->cursor.node); 6082 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6083 } 6084 kit->dsq = NULL; 6085 } 6086 6087 __bpf_kfunc_end_defs(); 6088 6089 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf, 6090 size_t line_size, char *fmt, unsigned long long *data, 6091 u32 data__sz) 6092 { 6093 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6094 s32 ret; 6095 6096 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6097 (data__sz && !data)) { 6098 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz); 6099 return -EINVAL; 6100 } 6101 6102 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6103 if (ret < 0) { 6104 scx_error(sch, "failed to read data fields (%d)", ret); 6105 return ret; 6106 } 6107 6108 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6109 &bprintf_data); 6110 if (ret < 0) { 6111 scx_error(sch, "format preparation failed (%d)", ret); 6112 return ret; 6113 } 6114 6115 ret = bstr_printf(line_buf, line_size, fmt, 6116 bprintf_data.bin_args); 6117 bpf_bprintf_cleanup(&bprintf_data); 6118 if (ret < 0) { 6119 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6120 return ret; 6121 } 6122 6123 return ret; 6124 } 6125 6126 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf, 6127 char *fmt, unsigned long long *data, u32 data__sz) 6128 { 6129 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line), 6130 fmt, data, data__sz); 6131 } 6132 6133 __bpf_kfunc_start_defs(); 6134 6135 /** 6136 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6137 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6138 * @fmt: error message format string 6139 * @data: format string parameters packaged using ___bpf_fill() macro 6140 * @data__sz: @data len, must end in '__sz' for the verifier 6141 * 6142 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6143 * disabling. 6144 */ 6145 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6146 unsigned long long *data, u32 data__sz) 6147 { 6148 struct scx_sched *sch; 6149 unsigned long flags; 6150 6151 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6152 sch = rcu_dereference_bh(scx_root); 6153 if (likely(sch) && 6154 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6155 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6156 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6157 } 6158 6159 /** 6160 * scx_bpf_error_bstr - Indicate fatal error 6161 * @fmt: error message format string 6162 * @data: format string parameters packaged using ___bpf_fill() macro 6163 * @data__sz: @data len, must end in '__sz' for the verifier 6164 * 6165 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6166 * disabling. 6167 */ 6168 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6169 u32 data__sz) 6170 { 6171 struct scx_sched *sch; 6172 unsigned long flags; 6173 6174 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6175 sch = rcu_dereference_bh(scx_root); 6176 if (likely(sch) && 6177 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6178 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6179 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6180 } 6181 6182 /** 6183 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6184 * @fmt: format string 6185 * @data: format string parameters packaged using ___bpf_fill() macro 6186 * @data__sz: @data len, must end in '__sz' for the verifier 6187 * 6188 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6189 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6190 * 6191 * The extra dump may be multiple lines. A single line may be split over 6192 * multiple calls. The last line is automatically terminated. 6193 */ 6194 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6195 u32 data__sz) 6196 { 6197 struct scx_sched *sch; 6198 struct scx_dump_data *dd = &scx_dump_data; 6199 struct scx_bstr_buf *buf = &dd->buf; 6200 s32 ret; 6201 6202 guard(rcu)(); 6203 6204 sch = rcu_dereference(scx_root); 6205 if (unlikely(!sch)) 6206 return; 6207 6208 if (raw_smp_processor_id() != dd->cpu) { 6209 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends"); 6210 return; 6211 } 6212 6213 /* append the formatted string to the line buf */ 6214 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor, 6215 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6216 if (ret < 0) { 6217 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6218 dd->prefix, fmt, data, data__sz, ret); 6219 return; 6220 } 6221 6222 dd->cursor += ret; 6223 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6224 6225 if (!dd->cursor) 6226 return; 6227 6228 /* 6229 * If the line buf overflowed or ends in a newline, flush it into the 6230 * dump. This is to allow the caller to generate a single line over 6231 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6232 * the line buf, the only case which can lead to an unexpected 6233 * truncation is when the caller keeps generating newlines in the middle 6234 * instead of the end consecutively. Don't do that. 6235 */ 6236 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6237 ops_dump_flush(); 6238 } 6239 6240 /** 6241 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6242 * @cpu: CPU of interest 6243 * 6244 * Return the maximum relative capacity of @cpu in relation to the most 6245 * performant CPU in the system. The return value is in the range [1, 6246 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6247 */ 6248 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6249 { 6250 struct scx_sched *sch; 6251 6252 guard(rcu)(); 6253 6254 sch = rcu_dereference(scx_root); 6255 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6256 return arch_scale_cpu_capacity(cpu); 6257 else 6258 return SCX_CPUPERF_ONE; 6259 } 6260 6261 /** 6262 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6263 * @cpu: CPU of interest 6264 * 6265 * Return the current relative performance of @cpu in relation to its maximum. 6266 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6267 * 6268 * The current performance level of a CPU in relation to the maximum performance 6269 * available in the system can be calculated as follows: 6270 * 6271 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6272 * 6273 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6274 */ 6275 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6276 { 6277 struct scx_sched *sch; 6278 6279 guard(rcu)(); 6280 6281 sch = rcu_dereference(scx_root); 6282 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6283 return arch_scale_freq_capacity(cpu); 6284 else 6285 return SCX_CPUPERF_ONE; 6286 } 6287 6288 /** 6289 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6290 * @cpu: CPU of interest 6291 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6292 * 6293 * Set the target performance level of @cpu to @perf. @perf is in linear 6294 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6295 * schedutil cpufreq governor chooses the target frequency. 6296 * 6297 * The actual performance level chosen, CPU grouping, and the overhead and 6298 * latency of the operations are dependent on the hardware and cpufreq driver in 6299 * use. Consult hardware and cpufreq documentation for more information. The 6300 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6301 */ 6302 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6303 { 6304 struct scx_sched *sch; 6305 6306 guard(rcu)(); 6307 6308 sch = rcu_dereference(sch); 6309 if (unlikely(!sch)) 6310 return; 6311 6312 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6313 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu); 6314 return; 6315 } 6316 6317 if (ops_cpu_valid(sch, cpu, NULL)) { 6318 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6319 struct rq_flags rf; 6320 6321 /* 6322 * When called with an rq lock held, restrict the operation 6323 * to the corresponding CPU to prevent ABBA deadlocks. 6324 */ 6325 if (locked_rq && rq != locked_rq) { 6326 scx_error(sch, "Invalid target CPU %d", cpu); 6327 return; 6328 } 6329 6330 /* 6331 * If no rq lock is held, allow to operate on any CPU by 6332 * acquiring the corresponding rq lock. 6333 */ 6334 if (!locked_rq) { 6335 rq_lock_irqsave(rq, &rf); 6336 update_rq_clock(rq); 6337 } 6338 6339 rq->scx.cpuperf_target = perf; 6340 cpufreq_update_util(rq, 0); 6341 6342 if (!locked_rq) 6343 rq_unlock_irqrestore(rq, &rf); 6344 } 6345 } 6346 6347 /** 6348 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6349 * 6350 * All valid node IDs in the system are smaller than the returned value. 6351 */ 6352 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6353 { 6354 return nr_node_ids; 6355 } 6356 6357 /** 6358 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6359 * 6360 * All valid CPU IDs in the system are smaller than the returned value. 6361 */ 6362 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6363 { 6364 return nr_cpu_ids; 6365 } 6366 6367 /** 6368 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6369 */ 6370 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6371 { 6372 return cpu_possible_mask; 6373 } 6374 6375 /** 6376 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6377 */ 6378 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6379 { 6380 return cpu_online_mask; 6381 } 6382 6383 /** 6384 * scx_bpf_put_cpumask - Release a possible/online cpumask 6385 * @cpumask: cpumask to release 6386 */ 6387 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6388 { 6389 /* 6390 * Empty function body because we aren't actually acquiring or releasing 6391 * a reference to a global cpumask, which is read-only in the caller and 6392 * is never released. The acquire / release semantics here are just used 6393 * to make the cpumask is a trusted pointer in the caller. 6394 */ 6395 } 6396 6397 /** 6398 * scx_bpf_task_running - Is task currently running? 6399 * @p: task of interest 6400 */ 6401 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6402 { 6403 return task_rq(p)->curr == p; 6404 } 6405 6406 /** 6407 * scx_bpf_task_cpu - CPU a task is currently associated with 6408 * @p: task of interest 6409 */ 6410 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6411 { 6412 return task_cpu(p); 6413 } 6414 6415 /** 6416 * scx_bpf_cpu_rq - Fetch the rq of a CPU 6417 * @cpu: CPU of the rq 6418 */ 6419 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 6420 { 6421 struct scx_sched *sch; 6422 6423 guard(rcu)(); 6424 6425 sch = rcu_dereference(scx_root); 6426 if (unlikely(!sch)) 6427 return NULL; 6428 6429 if (!ops_cpu_valid(sch, cpu, NULL)) 6430 return NULL; 6431 6432 if (!sch->warned_deprecated_rq) { 6433 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; " 6434 "use scx_bpf_locked_rq() when holding rq lock " 6435 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__); 6436 sch->warned_deprecated_rq = true; 6437 } 6438 6439 return cpu_rq(cpu); 6440 } 6441 6442 /** 6443 * scx_bpf_locked_rq - Return the rq currently locked by SCX 6444 * 6445 * Returns the rq if a rq lock is currently held by SCX. 6446 * Otherwise emits an error and returns NULL. 6447 */ 6448 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 6449 { 6450 struct scx_sched *sch; 6451 struct rq *rq; 6452 6453 guard(preempt)(); 6454 6455 sch = rcu_dereference_sched(scx_root); 6456 if (unlikely(!sch)) 6457 return NULL; 6458 6459 rq = scx_locked_rq(); 6460 if (!rq) { 6461 scx_error(sch, "accessing rq without holding rq lock"); 6462 return NULL; 6463 } 6464 6465 return rq; 6466 } 6467 6468 /** 6469 * scx_bpf_cpu_curr - Return remote CPU's curr task 6470 * @cpu: CPU of interest 6471 * 6472 * Callers must hold RCU read lock (KF_RCU). 6473 */ 6474 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 6475 { 6476 struct scx_sched *sch; 6477 6478 guard(rcu)(); 6479 6480 sch = rcu_dereference(scx_root); 6481 if (unlikely(!sch)) 6482 return NULL; 6483 6484 if (!ops_cpu_valid(sch, cpu, NULL)) 6485 return NULL; 6486 6487 return rcu_dereference(cpu_rq(cpu)->curr); 6488 } 6489 6490 /** 6491 * scx_bpf_task_cgroup - Return the sched cgroup of a task 6492 * @p: task of interest 6493 * 6494 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 6495 * from the scheduler's POV. SCX operations should use this function to 6496 * determine @p's current cgroup as, unlike following @p->cgroups, 6497 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 6498 * rq-locked operations. Can be called on the parameter tasks of rq-locked 6499 * operations. The restriction guarantees that @p's rq is locked by the caller. 6500 */ 6501 #ifdef CONFIG_CGROUP_SCHED 6502 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 6503 { 6504 struct task_group *tg = p->sched_task_group; 6505 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 6506 struct scx_sched *sch; 6507 6508 guard(rcu)(); 6509 6510 sch = rcu_dereference(scx_root); 6511 if (unlikely(!sch)) 6512 goto out; 6513 6514 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p)) 6515 goto out; 6516 6517 cgrp = tg_cgrp(tg); 6518 6519 out: 6520 cgroup_get(cgrp); 6521 return cgrp; 6522 } 6523 #endif 6524 6525 /** 6526 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 6527 * clock for the current CPU. The clock returned is in nanoseconds. 6528 * 6529 * It provides the following properties: 6530 * 6531 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 6532 * to account for execution time and track tasks' runtime properties. 6533 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 6534 * eventually reads a hardware timestamp counter -- is neither performant nor 6535 * scalable. scx_bpf_now() aims to provide a high-performance clock by 6536 * using the rq clock in the scheduler core whenever possible. 6537 * 6538 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 6539 * scheduler use cases, the required clock resolution is lower than the most 6540 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 6541 * uses the rq clock in the scheduler core whenever it is valid. It considers 6542 * that the rq clock is valid from the time the rq clock is updated 6543 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 6544 * 6545 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 6546 * guarantees the clock never goes backward when comparing them in the same 6547 * CPU. On the other hand, when comparing clocks in different CPUs, there 6548 * is no such guarantee -- the clock can go backward. It provides a 6549 * monotonically *non-decreasing* clock so that it would provide the same 6550 * clock values in two different scx_bpf_now() calls in the same CPU 6551 * during the same period of when the rq clock is valid. 6552 */ 6553 __bpf_kfunc u64 scx_bpf_now(void) 6554 { 6555 struct rq *rq; 6556 u64 clock; 6557 6558 preempt_disable(); 6559 6560 rq = this_rq(); 6561 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 6562 /* 6563 * If the rq clock is valid, use the cached rq clock. 6564 * 6565 * Note that scx_bpf_now() is re-entrant between a process 6566 * context and an interrupt context (e.g., timer interrupt). 6567 * However, we don't need to consider the race between them 6568 * because such race is not observable from a caller. 6569 */ 6570 clock = READ_ONCE(rq->scx.clock); 6571 } else { 6572 /* 6573 * Otherwise, return a fresh rq clock. 6574 * 6575 * The rq clock is updated outside of the rq lock. 6576 * In this case, keep the updated rq clock invalid so the next 6577 * kfunc call outside the rq lock gets a fresh rq clock. 6578 */ 6579 clock = sched_clock_cpu(cpu_of(rq)); 6580 } 6581 6582 preempt_enable(); 6583 6584 return clock; 6585 } 6586 6587 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 6588 { 6589 struct scx_event_stats *e_cpu; 6590 int cpu; 6591 6592 /* Aggregate per-CPU event counters into @events. */ 6593 memset(events, 0, sizeof(*events)); 6594 for_each_possible_cpu(cpu) { 6595 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 6596 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 6597 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 6598 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 6599 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 6600 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 6601 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 6602 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 6603 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 6604 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 6605 } 6606 } 6607 6608 /* 6609 * scx_bpf_events - Get a system-wide event counter to 6610 * @events: output buffer from a BPF program 6611 * @events__sz: @events len, must end in '__sz'' for the verifier 6612 */ 6613 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 6614 size_t events__sz) 6615 { 6616 struct scx_sched *sch; 6617 struct scx_event_stats e_sys; 6618 6619 rcu_read_lock(); 6620 sch = rcu_dereference(scx_root); 6621 if (sch) 6622 scx_read_events(sch, &e_sys); 6623 else 6624 memset(&e_sys, 0, sizeof(e_sys)); 6625 rcu_read_unlock(); 6626 6627 /* 6628 * We cannot entirely trust a BPF-provided size since a BPF program 6629 * might be compiled against a different vmlinux.h, of which 6630 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 6631 * (an older vmlinux.h). Hence, we use the smaller size to avoid 6632 * memory corruption. 6633 */ 6634 events__sz = min(events__sz, sizeof(*events)); 6635 memcpy(events, &e_sys, events__sz); 6636 } 6637 6638 __bpf_kfunc_end_defs(); 6639 6640 BTF_KFUNCS_START(scx_kfunc_ids_any) 6641 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 6642 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 6643 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 6644 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 6645 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 6646 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 6647 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 6648 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 6649 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 6650 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 6651 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 6652 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 6653 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 6654 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 6655 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 6656 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 6657 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 6658 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 6659 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 6660 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 6661 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 6662 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED) 6663 #ifdef CONFIG_CGROUP_SCHED 6664 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 6665 #endif 6666 BTF_ID_FLAGS(func, scx_bpf_now) 6667 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 6668 BTF_KFUNCS_END(scx_kfunc_ids_any) 6669 6670 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 6671 .owner = THIS_MODULE, 6672 .set = &scx_kfunc_ids_any, 6673 }; 6674 6675 static int __init scx_init(void) 6676 { 6677 int ret; 6678 6679 /* 6680 * kfunc registration can't be done from init_sched_ext_class() as 6681 * register_btf_kfunc_id_set() needs most of the system to be up. 6682 * 6683 * Some kfuncs are context-sensitive and can only be called from 6684 * specific SCX ops. They are grouped into BTF sets accordingly. 6685 * Unfortunately, BPF currently doesn't have a way of enforcing such 6686 * restrictions. Eventually, the verifier should be able to enforce 6687 * them. For now, register them the same and make each kfunc explicitly 6688 * check using scx_kf_allowed(). 6689 */ 6690 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6691 &scx_kfunc_set_enqueue_dispatch)) || 6692 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6693 &scx_kfunc_set_dispatch)) || 6694 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6695 &scx_kfunc_set_cpu_release)) || 6696 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6697 &scx_kfunc_set_unlocked)) || 6698 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6699 &scx_kfunc_set_unlocked)) || 6700 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6701 &scx_kfunc_set_any)) || 6702 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 6703 &scx_kfunc_set_any)) || 6704 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6705 &scx_kfunc_set_any))) { 6706 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 6707 return ret; 6708 } 6709 6710 ret = scx_idle_init(); 6711 if (ret) { 6712 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 6713 return ret; 6714 } 6715 6716 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 6717 if (ret) { 6718 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 6719 return ret; 6720 } 6721 6722 ret = register_pm_notifier(&scx_pm_notifier); 6723 if (ret) { 6724 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 6725 return ret; 6726 } 6727 6728 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 6729 if (!scx_kset) { 6730 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 6731 return -ENOMEM; 6732 } 6733 6734 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 6735 if (ret < 0) { 6736 pr_err("sched_ext: Failed to add global attributes\n"); 6737 return ret; 6738 } 6739 6740 return 0; 6741 } 6742 __initcall(scx_init); 6743