1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 4 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 5 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 6 */ 7 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 8 9 enum scx_consts { 10 SCX_DSP_DFL_MAX_BATCH = 32, 11 SCX_DSP_MAX_LOOPS = 32, 12 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 13 14 SCX_EXIT_BT_LEN = 64, 15 SCX_EXIT_MSG_LEN = 1024, 16 SCX_EXIT_DUMP_DFL_LEN = 32768, 17 }; 18 19 enum scx_exit_kind { 20 SCX_EXIT_NONE, 21 SCX_EXIT_DONE, 22 23 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 24 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 25 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 26 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 27 28 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 29 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 30 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 31 }; 32 33 /* 34 * An exit code can be specified when exiting with scx_bpf_exit() or 35 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 36 * respectively. The codes are 64bit of the format: 37 * 38 * Bits: [63 .. 48 47 .. 32 31 .. 0] 39 * [ SYS ACT ] [ SYS RSN ] [ USR ] 40 * 41 * SYS ACT: System-defined exit actions 42 * SYS RSN: System-defined exit reasons 43 * USR : User-defined exit codes and reasons 44 * 45 * Using the above, users may communicate intention and context by ORing system 46 * actions and/or system reasons with a user-defined exit code. 47 */ 48 enum scx_exit_code { 49 /* Reasons */ 50 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 51 52 /* Actions */ 53 SCX_ECODE_ACT_RESTART = 1LLU << 48, 54 }; 55 56 /* 57 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 58 * being disabled. 59 */ 60 struct scx_exit_info { 61 /* %SCX_EXIT_* - broad category of the exit reason */ 62 enum scx_exit_kind kind; 63 64 /* exit code if gracefully exiting */ 65 s64 exit_code; 66 67 /* textual representation of the above */ 68 const char *reason; 69 70 /* backtrace if exiting due to an error */ 71 unsigned long *bt; 72 u32 bt_len; 73 74 /* informational message */ 75 char *msg; 76 77 /* debug dump */ 78 char *dump; 79 }; 80 81 /* sched_ext_ops.flags */ 82 enum scx_ops_flags { 83 /* 84 * Keep built-in idle tracking even if ops.update_idle() is implemented. 85 */ 86 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 87 88 /* 89 * By default, if there are no other task to run on the CPU, ext core 90 * keeps running the current task even after its slice expires. If this 91 * flag is specified, such tasks are passed to ops.enqueue() with 92 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 93 */ 94 SCX_OPS_ENQ_LAST = 1LLU << 1, 95 96 /* 97 * An exiting task may schedule after PF_EXITING is set. In such cases, 98 * bpf_task_from_pid() may not be able to find the task and if the BPF 99 * scheduler depends on pid lookup for dispatching, the task will be 100 * lost leading to various issues including RCU grace period stalls. 101 * 102 * To mask this problem, by default, unhashed tasks are automatically 103 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 104 * depend on pid lookups and wants to handle these tasks directly, the 105 * following flag can be used. 106 */ 107 SCX_OPS_ENQ_EXITING = 1LLU << 2, 108 109 /* 110 * If set, only tasks with policy set to SCHED_EXT are attached to 111 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 112 */ 113 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 114 115 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 116 SCX_OPS_ENQ_LAST | 117 SCX_OPS_ENQ_EXITING | 118 SCX_OPS_SWITCH_PARTIAL, 119 }; 120 121 /* argument container for ops.init_task() */ 122 struct scx_init_task_args { 123 /* 124 * Set if ops.init_task() is being invoked on the fork path, as opposed 125 * to the scheduler transition path. 126 */ 127 bool fork; 128 }; 129 130 /* argument container for ops.exit_task() */ 131 struct scx_exit_task_args { 132 /* Whether the task exited before running on sched_ext. */ 133 bool cancelled; 134 }; 135 136 enum scx_cpu_preempt_reason { 137 /* next task is being scheduled by &sched_class_rt */ 138 SCX_CPU_PREEMPT_RT, 139 /* next task is being scheduled by &sched_class_dl */ 140 SCX_CPU_PREEMPT_DL, 141 /* next task is being scheduled by &sched_class_stop */ 142 SCX_CPU_PREEMPT_STOP, 143 /* unknown reason for SCX being preempted */ 144 SCX_CPU_PREEMPT_UNKNOWN, 145 }; 146 147 /* 148 * Argument container for ops->cpu_acquire(). Currently empty, but may be 149 * expanded in the future. 150 */ 151 struct scx_cpu_acquire_args {}; 152 153 /* argument container for ops->cpu_release() */ 154 struct scx_cpu_release_args { 155 /* the reason the CPU was preempted */ 156 enum scx_cpu_preempt_reason reason; 157 158 /* the task that's going to be scheduled on the CPU */ 159 struct task_struct *task; 160 }; 161 162 /* 163 * Informational context provided to dump operations. 164 */ 165 struct scx_dump_ctx { 166 enum scx_exit_kind kind; 167 s64 exit_code; 168 const char *reason; 169 u64 at_ns; 170 u64 at_jiffies; 171 }; 172 173 /** 174 * struct sched_ext_ops - Operation table for BPF scheduler implementation 175 * 176 * Userland can implement an arbitrary scheduling policy by implementing and 177 * loading operations in this table. 178 */ 179 struct sched_ext_ops { 180 /** 181 * select_cpu - Pick the target CPU for a task which is being woken up 182 * @p: task being woken up 183 * @prev_cpu: the cpu @p was on before sleeping 184 * @wake_flags: SCX_WAKE_* 185 * 186 * Decision made here isn't final. @p may be moved to any CPU while it 187 * is getting dispatched for execution later. However, as @p is not on 188 * the rq at this point, getting the eventual execution CPU right here 189 * saves a small bit of overhead down the line. 190 * 191 * If an idle CPU is returned, the CPU is kicked and will try to 192 * dispatch. While an explicit custom mechanism can be added, 193 * select_cpu() serves as the default way to wake up idle CPUs. 194 * 195 * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p 196 * is dispatched, the ops.enqueue() callback will be skipped. Finally, 197 * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the 198 * local DSQ of whatever CPU is returned by this callback. 199 */ 200 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 201 202 /** 203 * enqueue - Enqueue a task on the BPF scheduler 204 * @p: task being enqueued 205 * @enq_flags: %SCX_ENQ_* 206 * 207 * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() 208 * or enqueue on the BPF scheduler. If not directly dispatched, the bpf 209 * scheduler owns @p and if it fails to dispatch @p, the task will 210 * stall. 211 * 212 * If @p was dispatched from ops.select_cpu(), this callback is 213 * skipped. 214 */ 215 void (*enqueue)(struct task_struct *p, u64 enq_flags); 216 217 /** 218 * dequeue - Remove a task from the BPF scheduler 219 * @p: task being dequeued 220 * @deq_flags: %SCX_DEQ_* 221 * 222 * Remove @p from the BPF scheduler. This is usually called to isolate 223 * the task while updating its scheduling properties (e.g. priority). 224 * 225 * The ext core keeps track of whether the BPF side owns a given task or 226 * not and can gracefully ignore spurious dispatches from BPF side, 227 * which makes it safe to not implement this method. However, depending 228 * on the scheduling logic, this can lead to confusing behaviors - e.g. 229 * scheduling position not being updated across a priority change. 230 */ 231 void (*dequeue)(struct task_struct *p, u64 deq_flags); 232 233 /** 234 * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs 235 * @cpu: CPU to dispatch tasks for 236 * @prev: previous task being switched out 237 * 238 * Called when a CPU's local dsq is empty. The operation should dispatch 239 * one or more tasks from the BPF scheduler into the DSQs using 240 * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using 241 * scx_bpf_consume(). 242 * 243 * The maximum number of times scx_bpf_dispatch() can be called without 244 * an intervening scx_bpf_consume() is specified by 245 * ops.dispatch_max_batch. See the comments on top of the two functions 246 * for more details. 247 * 248 * When not %NULL, @prev is an SCX task with its slice depleted. If 249 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 250 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 251 * ops.dispatch() returns. To keep executing @prev, return without 252 * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. 253 */ 254 void (*dispatch)(s32 cpu, struct task_struct *prev); 255 256 /** 257 * tick - Periodic tick 258 * @p: task running currently 259 * 260 * This operation is called every 1/HZ seconds on CPUs which are 261 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 262 * immediate dispatch cycle on the CPU. 263 */ 264 void (*tick)(struct task_struct *p); 265 266 /** 267 * runnable - A task is becoming runnable on its associated CPU 268 * @p: task becoming runnable 269 * @enq_flags: %SCX_ENQ_* 270 * 271 * This and the following three functions can be used to track a task's 272 * execution state transitions. A task becomes ->runnable() on a CPU, 273 * and then goes through one or more ->running() and ->stopping() pairs 274 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 275 * done running on the CPU. 276 * 277 * @p is becoming runnable on the CPU because it's 278 * 279 * - waking up (%SCX_ENQ_WAKEUP) 280 * - being moved from another CPU 281 * - being restored after temporarily taken off the queue for an 282 * attribute change. 283 * 284 * This and ->enqueue() are related but not coupled. This operation 285 * notifies @p's state transition and may not be followed by ->enqueue() 286 * e.g. when @p is being dispatched to a remote CPU, or when @p is 287 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 288 * task may be ->enqueue()'d without being preceded by this operation 289 * e.g. after exhausting its slice. 290 */ 291 void (*runnable)(struct task_struct *p, u64 enq_flags); 292 293 /** 294 * running - A task is starting to run on its associated CPU 295 * @p: task starting to run 296 * 297 * See ->runnable() for explanation on the task state notifiers. 298 */ 299 void (*running)(struct task_struct *p); 300 301 /** 302 * stopping - A task is stopping execution 303 * @p: task stopping to run 304 * @runnable: is task @p still runnable? 305 * 306 * See ->runnable() for explanation on the task state notifiers. If 307 * !@runnable, ->quiescent() will be invoked after this operation 308 * returns. 309 */ 310 void (*stopping)(struct task_struct *p, bool runnable); 311 312 /** 313 * quiescent - A task is becoming not runnable on its associated CPU 314 * @p: task becoming not runnable 315 * @deq_flags: %SCX_DEQ_* 316 * 317 * See ->runnable() for explanation on the task state notifiers. 318 * 319 * @p is becoming quiescent on the CPU because it's 320 * 321 * - sleeping (%SCX_DEQ_SLEEP) 322 * - being moved to another CPU 323 * - being temporarily taken off the queue for an attribute change 324 * (%SCX_DEQ_SAVE) 325 * 326 * This and ->dequeue() are related but not coupled. This operation 327 * notifies @p's state transition and may not be preceded by ->dequeue() 328 * e.g. when @p is being dispatched to a remote CPU. 329 */ 330 void (*quiescent)(struct task_struct *p, u64 deq_flags); 331 332 /** 333 * yield - Yield CPU 334 * @from: yielding task 335 * @to: optional yield target task 336 * 337 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 338 * The BPF scheduler should ensure that other available tasks are 339 * dispatched before the yielding task. Return value is ignored in this 340 * case. 341 * 342 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 343 * scheduler can implement the request, return %true; otherwise, %false. 344 */ 345 bool (*yield)(struct task_struct *from, struct task_struct *to); 346 347 /** 348 * core_sched_before - Task ordering for core-sched 349 * @a: task A 350 * @b: task B 351 * 352 * Used by core-sched to determine the ordering between two tasks. See 353 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 354 * core-sched. 355 * 356 * Both @a and @b are runnable and may or may not currently be queued on 357 * the BPF scheduler. Should return %true if @a should run before @b. 358 * %false if there's no required ordering or @b should run before @a. 359 * 360 * If not specified, the default is ordering them according to when they 361 * became runnable. 362 */ 363 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 364 365 /** 366 * set_weight - Set task weight 367 * @p: task to set weight for 368 * @weight: new eight [1..10000] 369 * 370 * Update @p's weight to @weight. 371 */ 372 void (*set_weight)(struct task_struct *p, u32 weight); 373 374 /** 375 * set_cpumask - Set CPU affinity 376 * @p: task to set CPU affinity for 377 * @cpumask: cpumask of cpus that @p can run on 378 * 379 * Update @p's CPU affinity to @cpumask. 380 */ 381 void (*set_cpumask)(struct task_struct *p, 382 const struct cpumask *cpumask); 383 384 /** 385 * update_idle - Update the idle state of a CPU 386 * @cpu: CPU to udpate the idle state for 387 * @idle: whether entering or exiting the idle state 388 * 389 * This operation is called when @rq's CPU goes or leaves the idle 390 * state. By default, implementing this operation disables the built-in 391 * idle CPU tracking and the following helpers become unavailable: 392 * 393 * - scx_bpf_select_cpu_dfl() 394 * - scx_bpf_test_and_clear_cpu_idle() 395 * - scx_bpf_pick_idle_cpu() 396 * 397 * The user also must implement ops.select_cpu() as the default 398 * implementation relies on scx_bpf_select_cpu_dfl(). 399 * 400 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 401 * tracking. 402 */ 403 void (*update_idle)(s32 cpu, bool idle); 404 405 /** 406 * cpu_acquire - A CPU is becoming available to the BPF scheduler 407 * @cpu: The CPU being acquired by the BPF scheduler. 408 * @args: Acquire arguments, see the struct definition. 409 * 410 * A CPU that was previously released from the BPF scheduler is now once 411 * again under its control. 412 */ 413 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 414 415 /** 416 * cpu_release - A CPU is taken away from the BPF scheduler 417 * @cpu: The CPU being released by the BPF scheduler. 418 * @args: Release arguments, see the struct definition. 419 * 420 * The specified CPU is no longer under the control of the BPF 421 * scheduler. This could be because it was preempted by a higher 422 * priority sched_class, though there may be other reasons as well. The 423 * caller should consult @args->reason to determine the cause. 424 */ 425 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 426 427 /** 428 * init_task - Initialize a task to run in a BPF scheduler 429 * @p: task to initialize for BPF scheduling 430 * @args: init arguments, see the struct definition 431 * 432 * Either we're loading a BPF scheduler or a new task is being forked. 433 * Initialize @p for BPF scheduling. This operation may block and can 434 * be used for allocations, and is called exactly once for a task. 435 * 436 * Return 0 for success, -errno for failure. An error return while 437 * loading will abort loading of the BPF scheduler. During a fork, it 438 * will abort that specific fork. 439 */ 440 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 441 442 /** 443 * exit_task - Exit a previously-running task from the system 444 * @p: task to exit 445 * 446 * @p is exiting or the BPF scheduler is being unloaded. Perform any 447 * necessary cleanup for @p. 448 */ 449 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 450 451 /** 452 * enable - Enable BPF scheduling for a task 453 * @p: task to enable BPF scheduling for 454 * 455 * Enable @p for BPF scheduling. enable() is called on @p any time it 456 * enters SCX, and is always paired with a matching disable(). 457 */ 458 void (*enable)(struct task_struct *p); 459 460 /** 461 * disable - Disable BPF scheduling for a task 462 * @p: task to disable BPF scheduling for 463 * 464 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 465 * Disable BPF scheduling for @p. A disable() call is always matched 466 * with a prior enable() call. 467 */ 468 void (*disable)(struct task_struct *p); 469 470 /** 471 * dump - Dump BPF scheduler state on error 472 * @ctx: debug dump context 473 * 474 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 475 */ 476 void (*dump)(struct scx_dump_ctx *ctx); 477 478 /** 479 * dump_cpu - Dump BPF scheduler state for a CPU on error 480 * @ctx: debug dump context 481 * @cpu: CPU to generate debug dump for 482 * @idle: @cpu is currently idle without any runnable tasks 483 * 484 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 485 * @cpu. If @idle is %true and this operation doesn't produce any 486 * output, @cpu is skipped for dump. 487 */ 488 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 489 490 /** 491 * dump_task - Dump BPF scheduler state for a runnable task on error 492 * @ctx: debug dump context 493 * @p: runnable task to generate debug dump for 494 * 495 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 496 * @p. 497 */ 498 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 499 500 /* 501 * All online ops must come before ops.cpu_online(). 502 */ 503 504 /** 505 * cpu_online - A CPU became online 506 * @cpu: CPU which just came up 507 * 508 * @cpu just came online. @cpu will not call ops.enqueue() or 509 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 510 */ 511 void (*cpu_online)(s32 cpu); 512 513 /** 514 * cpu_offline - A CPU is going offline 515 * @cpu: CPU which is going offline 516 * 517 * @cpu is going offline. @cpu will not call ops.enqueue() or 518 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 519 */ 520 void (*cpu_offline)(s32 cpu); 521 522 /* 523 * All CPU hotplug ops must come before ops.init(). 524 */ 525 526 /** 527 * init - Initialize the BPF scheduler 528 */ 529 s32 (*init)(void); 530 531 /** 532 * exit - Clean up after the BPF scheduler 533 * @info: Exit info 534 */ 535 void (*exit)(struct scx_exit_info *info); 536 537 /** 538 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch 539 */ 540 u32 dispatch_max_batch; 541 542 /** 543 * flags - %SCX_OPS_* flags 544 */ 545 u64 flags; 546 547 /** 548 * timeout_ms - The maximum amount of time, in milliseconds, that a 549 * runnable task should be able to wait before being scheduled. The 550 * maximum timeout may not exceed the default timeout of 30 seconds. 551 * 552 * Defaults to the maximum allowed timeout value of 30 seconds. 553 */ 554 u32 timeout_ms; 555 556 /** 557 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default 558 * value of 32768 is used. 559 */ 560 u32 exit_dump_len; 561 562 /** 563 * hotplug_seq - A sequence number that may be set by the scheduler to 564 * detect when a hotplug event has occurred during the loading process. 565 * If 0, no detection occurs. Otherwise, the scheduler will fail to 566 * load if the sequence number does not match @scx_hotplug_seq on the 567 * enable path. 568 */ 569 u64 hotplug_seq; 570 571 /** 572 * name - BPF scheduler's name 573 * 574 * Must be a non-zero valid BPF object name including only isalnum(), 575 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 576 * BPF scheduler is enabled. 577 */ 578 char name[SCX_OPS_NAME_LEN]; 579 }; 580 581 enum scx_opi { 582 SCX_OPI_BEGIN = 0, 583 SCX_OPI_NORMAL_BEGIN = 0, 584 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 585 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 586 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 587 SCX_OPI_END = SCX_OP_IDX(init), 588 }; 589 590 enum scx_wake_flags { 591 /* expose select WF_* flags as enums */ 592 SCX_WAKE_FORK = WF_FORK, 593 SCX_WAKE_TTWU = WF_TTWU, 594 SCX_WAKE_SYNC = WF_SYNC, 595 }; 596 597 enum scx_enq_flags { 598 /* expose select ENQUEUE_* flags as enums */ 599 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 600 SCX_ENQ_HEAD = ENQUEUE_HEAD, 601 602 /* high 32bits are SCX specific */ 603 604 /* 605 * Set the following to trigger preemption when calling 606 * scx_bpf_dispatch() with a local dsq as the target. The slice of the 607 * current task is cleared to zero and the CPU is kicked into the 608 * scheduling path. Implies %SCX_ENQ_HEAD. 609 */ 610 SCX_ENQ_PREEMPT = 1LLU << 32, 611 612 /* 613 * The task being enqueued was previously enqueued on the current CPU's 614 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 615 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 616 * invoked in a ->cpu_release() callback, and the task is again 617 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 618 * task will not be scheduled on the CPU until at least the next invocation 619 * of the ->cpu_acquire() callback. 620 */ 621 SCX_ENQ_REENQ = 1LLU << 40, 622 623 /* 624 * The task being enqueued is the only task available for the cpu. By 625 * default, ext core keeps executing such tasks but when 626 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 627 * %SCX_ENQ_LAST flag set. 628 * 629 * If the BPF scheduler wants to continue executing the task, 630 * ops.enqueue() should dispatch the task to %SCX_DSQ_LOCAL immediately. 631 * If the task gets queued on a different dsq or the BPF side, the BPF 632 * scheduler is responsible for triggering a follow-up scheduling event. 633 * Otherwise, Execution may stall. 634 */ 635 SCX_ENQ_LAST = 1LLU << 41, 636 637 /* high 8 bits are internal */ 638 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 639 640 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 641 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 642 }; 643 644 enum scx_deq_flags { 645 /* expose select DEQUEUE_* flags as enums */ 646 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 647 648 /* high 32bits are SCX specific */ 649 650 /* 651 * The generic core-sched layer decided to execute the task even though 652 * it hasn't been dispatched yet. Dequeue from the BPF side. 653 */ 654 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 655 }; 656 657 enum scx_pick_idle_cpu_flags { 658 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 659 }; 660 661 enum scx_kick_flags { 662 /* 663 * Kick the target CPU if idle. Guarantees that the target CPU goes 664 * through at least one full scheduling cycle before going idle. If the 665 * target CPU can be determined to be currently not idle and going to go 666 * through a scheduling cycle before going idle, noop. 667 */ 668 SCX_KICK_IDLE = 1LLU << 0, 669 670 /* 671 * Preempt the current task and execute the dispatch path. If the 672 * current task of the target CPU is an SCX task, its ->scx.slice is 673 * cleared to zero before the scheduling path is invoked so that the 674 * task expires and the dispatch path is invoked. 675 */ 676 SCX_KICK_PREEMPT = 1LLU << 1, 677 678 /* 679 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 680 * return after the target CPU finishes picking the next task. 681 */ 682 SCX_KICK_WAIT = 1LLU << 2, 683 }; 684 685 enum scx_ops_enable_state { 686 SCX_OPS_PREPPING, 687 SCX_OPS_ENABLING, 688 SCX_OPS_ENABLED, 689 SCX_OPS_DISABLING, 690 SCX_OPS_DISABLED, 691 }; 692 693 static const char *scx_ops_enable_state_str[] = { 694 [SCX_OPS_PREPPING] = "prepping", 695 [SCX_OPS_ENABLING] = "enabling", 696 [SCX_OPS_ENABLED] = "enabled", 697 [SCX_OPS_DISABLING] = "disabling", 698 [SCX_OPS_DISABLED] = "disabled", 699 }; 700 701 /* 702 * sched_ext_entity->ops_state 703 * 704 * Used to track the task ownership between the SCX core and the BPF scheduler. 705 * State transitions look as follows: 706 * 707 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 708 * ^ | | 709 * | v v 710 * \-------------------------------/ 711 * 712 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 713 * sites for explanations on the conditions being waited upon and why they are 714 * safe. Transitions out of them into NONE or QUEUED must store_release and the 715 * waiters should load_acquire. 716 * 717 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 718 * any given task can be dispatched by the BPF scheduler at all times and thus 719 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 720 * to try to dispatch any task anytime regardless of its state as the SCX core 721 * can safely reject invalid dispatches. 722 */ 723 enum scx_ops_state { 724 SCX_OPSS_NONE, /* owned by the SCX core */ 725 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 726 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 727 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 728 729 /* 730 * QSEQ brands each QUEUED instance so that, when dispatch races 731 * dequeue/requeue, the dispatcher can tell whether it still has a claim 732 * on the task being dispatched. 733 * 734 * As some 32bit archs can't do 64bit store_release/load_acquire, 735 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 736 * 32bit machines. The dispatch race window QSEQ protects is very narrow 737 * and runs with IRQ disabled. 30 bits should be sufficient. 738 */ 739 SCX_OPSS_QSEQ_SHIFT = 2, 740 }; 741 742 /* Use macros to ensure that the type is unsigned long for the masks */ 743 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 744 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 745 746 /* 747 * During exit, a task may schedule after losing its PIDs. When disabling the 748 * BPF scheduler, we need to be able to iterate tasks in every state to 749 * guarantee system safety. Maintain a dedicated task list which contains every 750 * task between its fork and eventual free. 751 */ 752 static DEFINE_SPINLOCK(scx_tasks_lock); 753 static LIST_HEAD(scx_tasks); 754 755 /* ops enable/disable */ 756 static struct kthread_worker *scx_ops_helper; 757 static DEFINE_MUTEX(scx_ops_enable_mutex); 758 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 759 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 760 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 761 static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); 762 static bool scx_switching_all; 763 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 764 765 static struct sched_ext_ops scx_ops; 766 static bool scx_warned_zero_slice; 767 768 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 769 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 770 DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 771 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 772 773 struct static_key_false scx_has_op[SCX_OPI_END] = 774 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 775 776 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 777 static struct scx_exit_info *scx_exit_info; 778 779 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 780 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 781 782 /* 783 * The maximum amount of time in jiffies that a task may be runnable without 784 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 785 * scx_ops_error(). 786 */ 787 static unsigned long scx_watchdog_timeout; 788 789 /* 790 * The last time the delayed work was run. This delayed work relies on 791 * ksoftirqd being able to run to service timer interrupts, so it's possible 792 * that this work itself could get wedged. To account for this, we check that 793 * it's not stalled in the timer tick, and trigger an error if it is. 794 */ 795 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 796 797 static struct delayed_work scx_watchdog_work; 798 799 /* idle tracking */ 800 #ifdef CONFIG_SMP 801 #ifdef CONFIG_CPUMASK_OFFSTACK 802 #define CL_ALIGNED_IF_ONSTACK 803 #else 804 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 805 #endif 806 807 static struct { 808 cpumask_var_t cpu; 809 cpumask_var_t smt; 810 } idle_masks CL_ALIGNED_IF_ONSTACK; 811 812 #endif /* CONFIG_SMP */ 813 814 /* for %SCX_KICK_WAIT */ 815 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 816 817 /* 818 * Direct dispatch marker. 819 * 820 * Non-NULL values are used for direct dispatch from enqueue path. A valid 821 * pointer points to the task currently being enqueued. An ERR_PTR value is used 822 * to indicate that direct dispatch has already happened. 823 */ 824 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 825 826 /* dispatch queues */ 827 static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global; 828 829 static const struct rhashtable_params dsq_hash_params = { 830 .key_len = 8, 831 .key_offset = offsetof(struct scx_dispatch_q, id), 832 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 833 }; 834 835 static struct rhashtable dsq_hash; 836 static LLIST_HEAD(dsqs_to_free); 837 838 /* dispatch buf */ 839 struct scx_dsp_buf_ent { 840 struct task_struct *task; 841 unsigned long qseq; 842 u64 dsq_id; 843 u64 enq_flags; 844 }; 845 846 static u32 scx_dsp_max_batch; 847 848 struct scx_dsp_ctx { 849 struct rq *rq; 850 struct rq_flags *rf; 851 u32 cursor; 852 u32 nr_tasks; 853 struct scx_dsp_buf_ent buf[]; 854 }; 855 856 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 857 858 /* string formatting from BPF */ 859 struct scx_bstr_buf { 860 u64 data[MAX_BPRINTF_VARARGS]; 861 char line[SCX_EXIT_MSG_LEN]; 862 }; 863 864 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 865 static struct scx_bstr_buf scx_exit_bstr_buf; 866 867 /* ops debug dump */ 868 struct scx_dump_data { 869 s32 cpu; 870 bool first; 871 s32 cursor; 872 struct seq_buf *s; 873 const char *prefix; 874 struct scx_bstr_buf buf; 875 }; 876 877 struct scx_dump_data scx_dump_data = { 878 .cpu = -1, 879 }; 880 881 /* /sys/kernel/sched_ext interface */ 882 static struct kset *scx_kset; 883 static struct kobject *scx_root_kobj; 884 885 #define CREATE_TRACE_POINTS 886 #include <trace/events/sched_ext.h> 887 888 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 889 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 890 s64 exit_code, 891 const char *fmt, ...); 892 893 #define scx_ops_error_kind(err, fmt, args...) \ 894 scx_ops_exit_kind((err), 0, fmt, ##args) 895 896 #define scx_ops_exit(code, fmt, args...) \ 897 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 898 899 #define scx_ops_error(fmt, args...) \ 900 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 901 902 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 903 904 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 905 { 906 if (time_after(at, now)) 907 return jiffies_to_msecs(at - now); 908 else 909 return -(long)jiffies_to_msecs(now - at); 910 } 911 912 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 913 static u32 higher_bits(u32 flags) 914 { 915 return ~((1 << fls(flags)) - 1); 916 } 917 918 /* return the mask with only the highest bit set */ 919 static u32 highest_bit(u32 flags) 920 { 921 int bit = fls(flags); 922 return ((u64)1 << bit) >> 1; 923 } 924 925 /* 926 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 927 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 928 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 929 * whether it's running from an allowed context. 930 * 931 * @mask is constant, always inline to cull the mask calculations. 932 */ 933 static __always_inline void scx_kf_allow(u32 mask) 934 { 935 /* nesting is allowed only in increasing scx_kf_mask order */ 936 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 937 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 938 current->scx.kf_mask, mask); 939 current->scx.kf_mask |= mask; 940 barrier(); 941 } 942 943 static void scx_kf_disallow(u32 mask) 944 { 945 barrier(); 946 current->scx.kf_mask &= ~mask; 947 } 948 949 #define SCX_CALL_OP(mask, op, args...) \ 950 do { \ 951 if (mask) { \ 952 scx_kf_allow(mask); \ 953 scx_ops.op(args); \ 954 scx_kf_disallow(mask); \ 955 } else { \ 956 scx_ops.op(args); \ 957 } \ 958 } while (0) 959 960 #define SCX_CALL_OP_RET(mask, op, args...) \ 961 ({ \ 962 __typeof__(scx_ops.op(args)) __ret; \ 963 if (mask) { \ 964 scx_kf_allow(mask); \ 965 __ret = scx_ops.op(args); \ 966 scx_kf_disallow(mask); \ 967 } else { \ 968 __ret = scx_ops.op(args); \ 969 } \ 970 __ret; \ 971 }) 972 973 /* 974 * Some kfuncs are allowed only on the tasks that are subjects of the 975 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 976 * restrictions, the following SCX_CALL_OP_*() variants should be used when 977 * invoking scx_ops operations that take task arguments. These can only be used 978 * for non-nesting operations due to the way the tasks are tracked. 979 * 980 * kfuncs which can only operate on such tasks can in turn use 981 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 982 * the specific task. 983 */ 984 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 985 do { \ 986 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 987 current->scx.kf_tasks[0] = task; \ 988 SCX_CALL_OP(mask, op, task, ##args); \ 989 current->scx.kf_tasks[0] = NULL; \ 990 } while (0) 991 992 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 993 ({ \ 994 __typeof__(scx_ops.op(task, ##args)) __ret; \ 995 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 996 current->scx.kf_tasks[0] = task; \ 997 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 998 current->scx.kf_tasks[0] = NULL; \ 999 __ret; \ 1000 }) 1001 1002 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1003 ({ \ 1004 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1005 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1006 current->scx.kf_tasks[0] = task0; \ 1007 current->scx.kf_tasks[1] = task1; \ 1008 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1009 current->scx.kf_tasks[0] = NULL; \ 1010 current->scx.kf_tasks[1] = NULL; \ 1011 __ret; \ 1012 }) 1013 1014 /* @mask is constant, always inline to cull unnecessary branches */ 1015 static __always_inline bool scx_kf_allowed(u32 mask) 1016 { 1017 if (unlikely(!(current->scx.kf_mask & mask))) { 1018 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1019 mask, current->scx.kf_mask); 1020 return false; 1021 } 1022 1023 if (unlikely((mask & SCX_KF_SLEEPABLE) && in_interrupt())) { 1024 scx_ops_error("sleepable kfunc called from non-sleepable context"); 1025 return false; 1026 } 1027 1028 /* 1029 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1030 * DISPATCH must not be called if we're running DEQUEUE which is nested 1031 * inside ops.dispatch(). We don't need to check the SCX_KF_SLEEPABLE 1032 * boundary thanks to the above in_interrupt() check. 1033 */ 1034 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1035 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1036 scx_ops_error("cpu_release kfunc called from a nested operation"); 1037 return false; 1038 } 1039 1040 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1041 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1042 scx_ops_error("dispatch kfunc called from a nested operation"); 1043 return false; 1044 } 1045 1046 return true; 1047 } 1048 1049 /* see SCX_CALL_OP_TASK() */ 1050 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1051 struct task_struct *p) 1052 { 1053 if (!scx_kf_allowed(mask)) 1054 return false; 1055 1056 if (unlikely((p != current->scx.kf_tasks[0] && 1057 p != current->scx.kf_tasks[1]))) { 1058 scx_ops_error("called on a task not being operated on"); 1059 return false; 1060 } 1061 1062 return true; 1063 } 1064 1065 1066 /* 1067 * SCX task iterator. 1068 */ 1069 struct scx_task_iter { 1070 struct sched_ext_entity cursor; 1071 struct task_struct *locked; 1072 struct rq *rq; 1073 struct rq_flags rf; 1074 }; 1075 1076 /** 1077 * scx_task_iter_init - Initialize a task iterator 1078 * @iter: iterator to init 1079 * 1080 * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, 1081 * @iter must eventually be exited with scx_task_iter_exit(). 1082 * 1083 * scx_tasks_lock may be released between this and the first next() call or 1084 * between any two next() calls. If scx_tasks_lock is released between two 1085 * next() calls, the caller is responsible for ensuring that the task being 1086 * iterated remains accessible either through RCU read lock or obtaining a 1087 * reference count. 1088 * 1089 * All tasks which existed when the iteration started are guaranteed to be 1090 * visited as long as they still exist. 1091 */ 1092 static void scx_task_iter_init(struct scx_task_iter *iter) 1093 { 1094 lockdep_assert_held(&scx_tasks_lock); 1095 1096 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1097 list_add(&iter->cursor.tasks_node, &scx_tasks); 1098 iter->locked = NULL; 1099 } 1100 1101 /** 1102 * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator 1103 * @iter: iterator to unlock rq for 1104 * 1105 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1106 * the task currently being visited. Unlock the rq if so. This function can be 1107 * safely called anytime during an iteration. 1108 * 1109 * Returns %true if the rq @iter was locking is unlocked. %false if @iter was 1110 * not locking an rq. 1111 */ 1112 static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1113 { 1114 if (iter->locked) { 1115 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1116 iter->locked = NULL; 1117 return true; 1118 } else { 1119 return false; 1120 } 1121 } 1122 1123 /** 1124 * scx_task_iter_exit - Exit a task iterator 1125 * @iter: iterator to exit 1126 * 1127 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. 1128 * If the iterator holds a task's rq lock, that rq lock is released. See 1129 * scx_task_iter_init() for details. 1130 */ 1131 static void scx_task_iter_exit(struct scx_task_iter *iter) 1132 { 1133 lockdep_assert_held(&scx_tasks_lock); 1134 1135 scx_task_iter_rq_unlock(iter); 1136 list_del_init(&iter->cursor.tasks_node); 1137 } 1138 1139 /** 1140 * scx_task_iter_next - Next task 1141 * @iter: iterator to walk 1142 * 1143 * Visit the next task. See scx_task_iter_init() for details. 1144 */ 1145 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1146 { 1147 struct list_head *cursor = &iter->cursor.tasks_node; 1148 struct sched_ext_entity *pos; 1149 1150 lockdep_assert_held(&scx_tasks_lock); 1151 1152 list_for_each_entry(pos, cursor, tasks_node) { 1153 if (&pos->tasks_node == &scx_tasks) 1154 return NULL; 1155 if (!(pos->flags & SCX_TASK_CURSOR)) { 1156 list_move(cursor, &pos->tasks_node); 1157 return container_of(pos, struct task_struct, scx); 1158 } 1159 } 1160 1161 /* can't happen, should always terminate at scx_tasks above */ 1162 BUG(); 1163 } 1164 1165 /** 1166 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1167 * @iter: iterator to walk 1168 * @include_dead: Whether we should include dead tasks in the iteration 1169 * 1170 * Visit the non-idle task with its rq lock held. Allows callers to specify 1171 * whether they would like to filter out dead tasks. See scx_task_iter_init() 1172 * for details. 1173 */ 1174 static struct task_struct * 1175 scx_task_iter_next_locked(struct scx_task_iter *iter, bool include_dead) 1176 { 1177 struct task_struct *p; 1178 retry: 1179 scx_task_iter_rq_unlock(iter); 1180 1181 while ((p = scx_task_iter_next(iter))) { 1182 /* 1183 * is_idle_task() tests %PF_IDLE which may not be set for CPUs 1184 * which haven't yet been onlined. Test sched_class directly. 1185 */ 1186 if (p->sched_class != &idle_sched_class) 1187 break; 1188 } 1189 if (!p) 1190 return NULL; 1191 1192 iter->rq = task_rq_lock(p, &iter->rf); 1193 iter->locked = p; 1194 1195 /* 1196 * If we see %TASK_DEAD, @p already disabled preemption, is about to do 1197 * the final __schedule(), won't ever need to be scheduled again and can 1198 * thus be safely ignored. If we don't see %TASK_DEAD, @p can't enter 1199 * the final __schedle() while we're locking its rq and thus will stay 1200 * alive until the rq is unlocked. 1201 */ 1202 if (!include_dead && READ_ONCE(p->__state) == TASK_DEAD) 1203 goto retry; 1204 1205 return p; 1206 } 1207 1208 static enum scx_ops_enable_state scx_ops_enable_state(void) 1209 { 1210 return atomic_read(&scx_ops_enable_state_var); 1211 } 1212 1213 static enum scx_ops_enable_state 1214 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1215 { 1216 return atomic_xchg(&scx_ops_enable_state_var, to); 1217 } 1218 1219 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1220 enum scx_ops_enable_state from) 1221 { 1222 int from_v = from; 1223 1224 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1225 } 1226 1227 static bool scx_ops_bypassing(void) 1228 { 1229 return unlikely(atomic_read(&scx_ops_bypass_depth)); 1230 } 1231 1232 /** 1233 * wait_ops_state - Busy-wait the specified ops state to end 1234 * @p: target task 1235 * @opss: state to wait the end of 1236 * 1237 * Busy-wait for @p to transition out of @opss. This can only be used when the 1238 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1239 * has load_acquire semantics to ensure that the caller can see the updates made 1240 * in the enqueueing and dispatching paths. 1241 */ 1242 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1243 { 1244 do { 1245 cpu_relax(); 1246 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1247 } 1248 1249 /** 1250 * ops_cpu_valid - Verify a cpu number 1251 * @cpu: cpu number which came from a BPF ops 1252 * @where: extra information reported on error 1253 * 1254 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1255 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1256 * an ops error. 1257 */ 1258 static bool ops_cpu_valid(s32 cpu, const char *where) 1259 { 1260 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1261 return true; 1262 } else { 1263 scx_ops_error("invalid CPU %d%s%s", cpu, 1264 where ? " " : "", where ?: ""); 1265 return false; 1266 } 1267 } 1268 1269 /** 1270 * ops_sanitize_err - Sanitize a -errno value 1271 * @ops_name: operation to blame on failure 1272 * @err: -errno value to sanitize 1273 * 1274 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1275 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1276 * cause misbehaviors. For an example, a large negative return from 1277 * ops.init_task() triggers an oops when passed up the call chain because the 1278 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1279 * handled as a pointer. 1280 */ 1281 static int ops_sanitize_err(const char *ops_name, s32 err) 1282 { 1283 if (err < 0 && err >= -MAX_ERRNO) 1284 return err; 1285 1286 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1287 return -EPROTO; 1288 } 1289 1290 /** 1291 * touch_core_sched - Update timestamp used for core-sched task ordering 1292 * @rq: rq to read clock from, must be locked 1293 * @p: task to update the timestamp for 1294 * 1295 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1296 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1297 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1298 * exhaustion). 1299 */ 1300 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1301 { 1302 #ifdef CONFIG_SCHED_CORE 1303 /* 1304 * It's okay to update the timestamp spuriously. Use 1305 * sched_core_disabled() which is cheaper than enabled(). 1306 */ 1307 if (!sched_core_disabled()) 1308 p->scx.core_sched_at = rq_clock_task(rq); 1309 #endif 1310 } 1311 1312 /** 1313 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1314 * @rq: rq to read clock from, must be locked 1315 * @p: task being dispatched 1316 * 1317 * If the BPF scheduler implements custom core-sched ordering via 1318 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1319 * ordering within each local DSQ. This function is called from dispatch paths 1320 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1321 */ 1322 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1323 { 1324 lockdep_assert_rq_held(rq); 1325 assert_clock_updated(rq); 1326 1327 #ifdef CONFIG_SCHED_CORE 1328 if (SCX_HAS_OP(core_sched_before)) 1329 touch_core_sched(rq, p); 1330 #endif 1331 } 1332 1333 static void update_curr_scx(struct rq *rq) 1334 { 1335 struct task_struct *curr = rq->curr; 1336 u64 now = rq_clock_task(rq); 1337 u64 delta_exec; 1338 1339 if (time_before_eq64(now, curr->se.exec_start)) 1340 return; 1341 1342 delta_exec = now - curr->se.exec_start; 1343 curr->se.exec_start = now; 1344 curr->se.sum_exec_runtime += delta_exec; 1345 account_group_exec_runtime(curr, delta_exec); 1346 cgroup_account_cputime(curr, delta_exec); 1347 1348 if (curr->scx.slice != SCX_SLICE_INF) { 1349 curr->scx.slice -= min(curr->scx.slice, delta_exec); 1350 if (!curr->scx.slice) 1351 touch_core_sched(rq, curr); 1352 } 1353 } 1354 1355 static bool scx_dsq_priq_less(struct rb_node *node_a, 1356 const struct rb_node *node_b) 1357 { 1358 const struct task_struct *a = 1359 container_of(node_a, struct task_struct, scx.dsq_node.priq); 1360 const struct task_struct *b = 1361 container_of(node_b, struct task_struct, scx.dsq_node.priq); 1362 1363 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1364 } 1365 1366 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1367 { 1368 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1369 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1370 } 1371 1372 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1373 u64 enq_flags) 1374 { 1375 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1376 1377 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_node.list)); 1378 WARN_ON_ONCE((p->scx.dsq_node.flags & SCX_TASK_DSQ_ON_PRIQ) || 1379 !RB_EMPTY_NODE(&p->scx.dsq_node.priq)); 1380 1381 if (!is_local) { 1382 raw_spin_lock(&dsq->lock); 1383 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1384 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1385 /* fall back to the global dsq */ 1386 raw_spin_unlock(&dsq->lock); 1387 dsq = &scx_dsq_global; 1388 raw_spin_lock(&dsq->lock); 1389 } 1390 } 1391 1392 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1393 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1394 /* 1395 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1396 * their FIFO queues. To avoid confusion and accidentally 1397 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1398 * disallow any internal DSQ from doing vtime ordering of 1399 * tasks. 1400 */ 1401 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1402 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1403 } 1404 1405 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1406 struct rb_node *rbp; 1407 1408 /* 1409 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1410 * linked to both the rbtree and list on PRIQs, this can only be 1411 * tested easily when adding the first task. 1412 */ 1413 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1414 !list_empty(&dsq->list))) 1415 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1416 dsq->id); 1417 1418 p->scx.dsq_node.flags |= SCX_TASK_DSQ_ON_PRIQ; 1419 rb_add(&p->scx.dsq_node.priq, &dsq->priq, scx_dsq_priq_less); 1420 1421 /* 1422 * Find the previous task and insert after it on the list so 1423 * that @dsq->list is vtime ordered. 1424 */ 1425 rbp = rb_prev(&p->scx.dsq_node.priq); 1426 if (rbp) { 1427 struct task_struct *prev = 1428 container_of(rbp, struct task_struct, 1429 scx.dsq_node.priq); 1430 list_add(&p->scx.dsq_node.list, &prev->scx.dsq_node.list); 1431 } else { 1432 list_add(&p->scx.dsq_node.list, &dsq->list); 1433 } 1434 } else { 1435 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1436 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1437 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1438 dsq->id); 1439 1440 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1441 list_add(&p->scx.dsq_node.list, &dsq->list); 1442 else 1443 list_add_tail(&p->scx.dsq_node.list, &dsq->list); 1444 } 1445 1446 dsq_mod_nr(dsq, 1); 1447 p->scx.dsq = dsq; 1448 1449 /* 1450 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1451 * direct dispatch path, but we clear them here because the direct 1452 * dispatch verdict may be overridden on the enqueue path during e.g. 1453 * bypass. 1454 */ 1455 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1456 p->scx.ddsp_enq_flags = 0; 1457 1458 /* 1459 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1460 * match waiters' load_acquire. 1461 */ 1462 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1463 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1464 1465 if (is_local) { 1466 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1467 bool preempt = false; 1468 1469 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1470 rq->curr->sched_class == &ext_sched_class) { 1471 rq->curr->scx.slice = 0; 1472 preempt = true; 1473 } 1474 1475 if (preempt || sched_class_above(&ext_sched_class, 1476 rq->curr->sched_class)) 1477 resched_curr(rq); 1478 } else { 1479 raw_spin_unlock(&dsq->lock); 1480 } 1481 } 1482 1483 static void task_unlink_from_dsq(struct task_struct *p, 1484 struct scx_dispatch_q *dsq) 1485 { 1486 if (p->scx.dsq_node.flags & SCX_TASK_DSQ_ON_PRIQ) { 1487 rb_erase(&p->scx.dsq_node.priq, &dsq->priq); 1488 RB_CLEAR_NODE(&p->scx.dsq_node.priq); 1489 p->scx.dsq_node.flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1490 } 1491 1492 list_del_init(&p->scx.dsq_node.list); 1493 } 1494 1495 static bool task_linked_on_dsq(struct task_struct *p) 1496 { 1497 return !list_empty(&p->scx.dsq_node.list); 1498 } 1499 1500 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1501 { 1502 struct scx_dispatch_q *dsq = p->scx.dsq; 1503 bool is_local = dsq == &rq->scx.local_dsq; 1504 1505 if (!dsq) { 1506 WARN_ON_ONCE(task_linked_on_dsq(p)); 1507 /* 1508 * When dispatching directly from the BPF scheduler to a local 1509 * DSQ, the task isn't associated with any DSQ but 1510 * @p->scx.holding_cpu may be set under the protection of 1511 * %SCX_OPSS_DISPATCHING. 1512 */ 1513 if (p->scx.holding_cpu >= 0) 1514 p->scx.holding_cpu = -1; 1515 return; 1516 } 1517 1518 if (!is_local) 1519 raw_spin_lock(&dsq->lock); 1520 1521 /* 1522 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_node 1523 * can't change underneath us. 1524 */ 1525 if (p->scx.holding_cpu < 0) { 1526 /* @p must still be on @dsq, dequeue */ 1527 WARN_ON_ONCE(!task_linked_on_dsq(p)); 1528 task_unlink_from_dsq(p, dsq); 1529 dsq_mod_nr(dsq, -1); 1530 } else { 1531 /* 1532 * We're racing against dispatch_to_local_dsq() which already 1533 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1534 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1535 * the race. 1536 */ 1537 WARN_ON_ONCE(task_linked_on_dsq(p)); 1538 p->scx.holding_cpu = -1; 1539 } 1540 p->scx.dsq = NULL; 1541 1542 if (!is_local) 1543 raw_spin_unlock(&dsq->lock); 1544 } 1545 1546 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1547 { 1548 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1549 } 1550 1551 static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id) 1552 { 1553 lockdep_assert(rcu_read_lock_any_held()); 1554 1555 if (dsq_id == SCX_DSQ_GLOBAL) 1556 return &scx_dsq_global; 1557 else 1558 return find_user_dsq(dsq_id); 1559 } 1560 1561 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1562 struct task_struct *p) 1563 { 1564 struct scx_dispatch_q *dsq; 1565 1566 if (dsq_id == SCX_DSQ_LOCAL) 1567 return &rq->scx.local_dsq; 1568 1569 dsq = find_non_local_dsq(dsq_id); 1570 if (unlikely(!dsq)) { 1571 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1572 dsq_id, p->comm, p->pid); 1573 return &scx_dsq_global; 1574 } 1575 1576 return dsq; 1577 } 1578 1579 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1580 struct task_struct *p, u64 dsq_id, 1581 u64 enq_flags) 1582 { 1583 /* 1584 * Mark that dispatch already happened from ops.select_cpu() or 1585 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1586 * which can never match a valid task pointer. 1587 */ 1588 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1589 1590 /* @p must match the task on the enqueue path */ 1591 if (unlikely(p != ddsp_task)) { 1592 if (IS_ERR(ddsp_task)) 1593 scx_ops_error("%s[%d] already direct-dispatched", 1594 p->comm, p->pid); 1595 else 1596 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1597 ddsp_task->comm, ddsp_task->pid, 1598 p->comm, p->pid); 1599 return; 1600 } 1601 1602 /* 1603 * %SCX_DSQ_LOCAL_ON is not supported during direct dispatch because 1604 * dispatching to the local DSQ of a different CPU requires unlocking 1605 * the current rq which isn't allowed in the enqueue path. Use 1606 * ops.select_cpu() to be on the target CPU and then %SCX_DSQ_LOCAL. 1607 */ 1608 if (unlikely((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON)) { 1609 scx_ops_error("SCX_DSQ_LOCAL_ON can't be used for direct-dispatch"); 1610 return; 1611 } 1612 1613 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1614 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1615 1616 p->scx.ddsp_dsq_id = dsq_id; 1617 p->scx.ddsp_enq_flags = enq_flags; 1618 } 1619 1620 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1621 { 1622 struct scx_dispatch_q *dsq; 1623 1624 touch_core_sched_dispatch(task_rq(p), p); 1625 1626 enq_flags |= (p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1627 dsq = find_dsq_for_dispatch(task_rq(p), p->scx.ddsp_dsq_id, p); 1628 dispatch_enqueue(dsq, p, enq_flags); 1629 } 1630 1631 static bool scx_rq_online(struct rq *rq) 1632 { 1633 return likely(rq->scx.flags & SCX_RQ_ONLINE); 1634 } 1635 1636 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1637 int sticky_cpu) 1638 { 1639 struct task_struct **ddsp_taskp; 1640 unsigned long qseq; 1641 1642 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1643 1644 /* rq migration */ 1645 if (sticky_cpu == cpu_of(rq)) 1646 goto local_norefill; 1647 1648 /* 1649 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1650 * is offline and are just running the hotplug path. Don't bother the 1651 * BPF scheduler. 1652 */ 1653 if (!scx_rq_online(rq)) 1654 goto local; 1655 1656 if (scx_ops_bypassing()) { 1657 if (enq_flags & SCX_ENQ_LAST) 1658 goto local; 1659 else 1660 goto global; 1661 } 1662 1663 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1664 goto direct; 1665 1666 /* see %SCX_OPS_ENQ_EXITING */ 1667 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 1668 unlikely(p->flags & PF_EXITING)) 1669 goto local; 1670 1671 /* see %SCX_OPS_ENQ_LAST */ 1672 if (!static_branch_unlikely(&scx_ops_enq_last) && 1673 (enq_flags & SCX_ENQ_LAST)) 1674 goto local; 1675 1676 if (!SCX_HAS_OP(enqueue)) 1677 goto global; 1678 1679 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1680 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1681 1682 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1683 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1684 1685 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1686 WARN_ON_ONCE(*ddsp_taskp); 1687 *ddsp_taskp = p; 1688 1689 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 1690 1691 *ddsp_taskp = NULL; 1692 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1693 goto direct; 1694 1695 /* 1696 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1697 * dequeue may be waiting. The store_release matches their load_acquire. 1698 */ 1699 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1700 return; 1701 1702 direct: 1703 direct_dispatch(p, enq_flags); 1704 return; 1705 1706 local: 1707 /* 1708 * For task-ordering, slice refill must be treated as implying the end 1709 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1710 * higher priority it becomes from scx_prio_less()'s POV. 1711 */ 1712 touch_core_sched(rq, p); 1713 p->scx.slice = SCX_SLICE_DFL; 1714 local_norefill: 1715 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 1716 return; 1717 1718 global: 1719 touch_core_sched(rq, p); /* see the comment in local: */ 1720 p->scx.slice = SCX_SLICE_DFL; 1721 dispatch_enqueue(&scx_dsq_global, p, enq_flags); 1722 } 1723 1724 static bool task_runnable(const struct task_struct *p) 1725 { 1726 return !list_empty(&p->scx.runnable_node); 1727 } 1728 1729 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1730 { 1731 lockdep_assert_rq_held(rq); 1732 1733 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1734 p->scx.runnable_at = jiffies; 1735 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1736 } 1737 1738 /* 1739 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 1740 * appened to the runnable_list. 1741 */ 1742 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1743 } 1744 1745 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1746 { 1747 list_del_init(&p->scx.runnable_node); 1748 if (reset_runnable_at) 1749 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1750 } 1751 1752 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1753 { 1754 int sticky_cpu = p->scx.sticky_cpu; 1755 1756 enq_flags |= rq->scx.extra_enq_flags; 1757 1758 if (sticky_cpu >= 0) 1759 p->scx.sticky_cpu = -1; 1760 1761 /* 1762 * Restoring a running task will be immediately followed by 1763 * set_next_task_scx() which expects the task to not be on the BPF 1764 * scheduler as tasks can only start running through local DSQs. Force 1765 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1766 */ 1767 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1768 sticky_cpu = cpu_of(rq); 1769 1770 if (p->scx.flags & SCX_TASK_QUEUED) { 1771 WARN_ON_ONCE(!task_runnable(p)); 1772 return; 1773 } 1774 1775 set_task_runnable(rq, p); 1776 p->scx.flags |= SCX_TASK_QUEUED; 1777 rq->scx.nr_running++; 1778 add_nr_running(rq, 1); 1779 1780 if (SCX_HAS_OP(runnable)) 1781 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 1782 1783 if (enq_flags & SCX_ENQ_WAKEUP) 1784 touch_core_sched(rq, p); 1785 1786 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1787 } 1788 1789 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 1790 { 1791 unsigned long opss; 1792 1793 /* dequeue is always temporary, don't reset runnable_at */ 1794 clr_task_runnable(p, false); 1795 1796 /* acquire ensures that we see the preceding updates on QUEUED */ 1797 opss = atomic_long_read_acquire(&p->scx.ops_state); 1798 1799 switch (opss & SCX_OPSS_STATE_MASK) { 1800 case SCX_OPSS_NONE: 1801 break; 1802 case SCX_OPSS_QUEUEING: 1803 /* 1804 * QUEUEING is started and finished while holding @p's rq lock. 1805 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1806 */ 1807 BUG(); 1808 case SCX_OPSS_QUEUED: 1809 if (SCX_HAS_OP(dequeue)) 1810 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 1811 1812 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1813 SCX_OPSS_NONE)) 1814 break; 1815 fallthrough; 1816 case SCX_OPSS_DISPATCHING: 1817 /* 1818 * If @p is being dispatched from the BPF scheduler to a DSQ, 1819 * wait for the transfer to complete so that @p doesn't get 1820 * added to its DSQ after dequeueing is complete. 1821 * 1822 * As we're waiting on DISPATCHING with the rq locked, the 1823 * dispatching side shouldn't try to lock the rq while 1824 * DISPATCHING is set. See dispatch_to_local_dsq(). 1825 * 1826 * DISPATCHING shouldn't have qseq set and control can reach 1827 * here with NONE @opss from the above QUEUED case block. 1828 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1829 */ 1830 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1831 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1832 break; 1833 } 1834 } 1835 1836 static void dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1837 { 1838 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1839 WARN_ON_ONCE(task_runnable(p)); 1840 return; 1841 } 1842 1843 ops_dequeue(p, deq_flags); 1844 1845 /* 1846 * A currently running task which is going off @rq first gets dequeued 1847 * and then stops running. As we want running <-> stopping transitions 1848 * to be contained within runnable <-> quiescent transitions, trigger 1849 * ->stopping() early here instead of in put_prev_task_scx(). 1850 * 1851 * @p may go through multiple stopping <-> running transitions between 1852 * here and put_prev_task_scx() if task attribute changes occur while 1853 * balance_scx() leaves @rq unlocked. However, they don't contain any 1854 * information meaningful to the BPF scheduler and can be suppressed by 1855 * skipping the callbacks if the task is !QUEUED. 1856 */ 1857 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 1858 update_curr_scx(rq); 1859 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 1860 } 1861 1862 if (SCX_HAS_OP(quiescent)) 1863 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 1864 1865 if (deq_flags & SCX_DEQ_SLEEP) 1866 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1867 else 1868 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1869 1870 p->scx.flags &= ~SCX_TASK_QUEUED; 1871 rq->scx.nr_running--; 1872 sub_nr_running(rq, 1); 1873 1874 dispatch_dequeue(rq, p); 1875 } 1876 1877 static void yield_task_scx(struct rq *rq) 1878 { 1879 struct task_struct *p = rq->curr; 1880 1881 if (SCX_HAS_OP(yield)) 1882 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 1883 else 1884 p->scx.slice = 0; 1885 } 1886 1887 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1888 { 1889 struct task_struct *from = rq->curr; 1890 1891 if (SCX_HAS_OP(yield)) 1892 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 1893 else 1894 return false; 1895 } 1896 1897 #ifdef CONFIG_SMP 1898 /** 1899 * move_task_to_local_dsq - Move a task from a different rq to a local DSQ 1900 * @rq: rq to move the task into, currently locked 1901 * @p: task to move 1902 * @enq_flags: %SCX_ENQ_* 1903 * 1904 * Move @p which is currently on a different rq to @rq's local DSQ. The caller 1905 * must: 1906 * 1907 * 1. Start with exclusive access to @p either through its DSQ lock or 1908 * %SCX_OPSS_DISPATCHING flag. 1909 * 1910 * 2. Set @p->scx.holding_cpu to raw_smp_processor_id(). 1911 * 1912 * 3. Remember task_rq(@p). Release the exclusive access so that we don't 1913 * deadlock with dequeue. 1914 * 1915 * 4. Lock @rq and the task_rq from #3. 1916 * 1917 * 5. Call this function. 1918 * 1919 * Returns %true if @p was successfully moved. %false after racing dequeue and 1920 * losing. 1921 */ 1922 static bool move_task_to_local_dsq(struct rq *rq, struct task_struct *p, 1923 u64 enq_flags) 1924 { 1925 struct rq *task_rq; 1926 1927 lockdep_assert_rq_held(rq); 1928 1929 /* 1930 * If dequeue got to @p while we were trying to lock both rq's, it'd 1931 * have cleared @p->scx.holding_cpu to -1. While other cpus may have 1932 * updated it to different values afterwards, as this operation can't be 1933 * preempted or recurse, @p->scx.holding_cpu can never become 1934 * raw_smp_processor_id() again before we're done. Thus, we can tell 1935 * whether we lost to dequeue by testing whether @p->scx.holding_cpu is 1936 * still raw_smp_processor_id(). 1937 * 1938 * See dispatch_dequeue() for the counterpart. 1939 */ 1940 if (unlikely(p->scx.holding_cpu != raw_smp_processor_id())) 1941 return false; 1942 1943 /* @p->rq couldn't have changed if we're still the holding cpu */ 1944 task_rq = task_rq(p); 1945 lockdep_assert_rq_held(task_rq); 1946 1947 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(rq), p->cpus_ptr)); 1948 deactivate_task(task_rq, p, 0); 1949 set_task_cpu(p, cpu_of(rq)); 1950 p->scx.sticky_cpu = cpu_of(rq); 1951 1952 /* 1953 * We want to pass scx-specific enq_flags but activate_task() will 1954 * truncate the upper 32 bit. As we own @rq, we can pass them through 1955 * @rq->scx.extra_enq_flags instead. 1956 */ 1957 WARN_ON_ONCE(rq->scx.extra_enq_flags); 1958 rq->scx.extra_enq_flags = enq_flags; 1959 activate_task(rq, p, 0); 1960 rq->scx.extra_enq_flags = 0; 1961 1962 return true; 1963 } 1964 1965 /** 1966 * dispatch_to_local_dsq_lock - Ensure source and destination rq's are locked 1967 * @rq: current rq which is locked 1968 * @rf: rq_flags to use when unlocking @rq 1969 * @src_rq: rq to move task from 1970 * @dst_rq: rq to move task to 1971 * 1972 * We're holding @rq lock and trying to dispatch a task from @src_rq to 1973 * @dst_rq's local DSQ and thus need to lock both @src_rq and @dst_rq. Whether 1974 * @rq stays locked isn't important as long as the state is restored after 1975 * dispatch_to_local_dsq_unlock(). 1976 */ 1977 static void dispatch_to_local_dsq_lock(struct rq *rq, struct rq_flags *rf, 1978 struct rq *src_rq, struct rq *dst_rq) 1979 { 1980 rq_unpin_lock(rq, rf); 1981 1982 if (src_rq == dst_rq) { 1983 raw_spin_rq_unlock(rq); 1984 raw_spin_rq_lock(dst_rq); 1985 } else if (rq == src_rq) { 1986 double_lock_balance(rq, dst_rq); 1987 rq_repin_lock(rq, rf); 1988 } else if (rq == dst_rq) { 1989 double_lock_balance(rq, src_rq); 1990 rq_repin_lock(rq, rf); 1991 } else { 1992 raw_spin_rq_unlock(rq); 1993 double_rq_lock(src_rq, dst_rq); 1994 } 1995 } 1996 1997 /** 1998 * dispatch_to_local_dsq_unlock - Undo dispatch_to_local_dsq_lock() 1999 * @rq: current rq which is locked 2000 * @rf: rq_flags to use when unlocking @rq 2001 * @src_rq: rq to move task from 2002 * @dst_rq: rq to move task to 2003 * 2004 * Unlock @src_rq and @dst_rq and ensure that @rq is locked on return. 2005 */ 2006 static void dispatch_to_local_dsq_unlock(struct rq *rq, struct rq_flags *rf, 2007 struct rq *src_rq, struct rq *dst_rq) 2008 { 2009 if (src_rq == dst_rq) { 2010 raw_spin_rq_unlock(dst_rq); 2011 raw_spin_rq_lock(rq); 2012 rq_repin_lock(rq, rf); 2013 } else if (rq == src_rq) { 2014 double_unlock_balance(rq, dst_rq); 2015 } else if (rq == dst_rq) { 2016 double_unlock_balance(rq, src_rq); 2017 } else { 2018 double_rq_unlock(src_rq, dst_rq); 2019 raw_spin_rq_lock(rq); 2020 rq_repin_lock(rq, rf); 2021 } 2022 } 2023 #endif /* CONFIG_SMP */ 2024 2025 static void consume_local_task(struct rq *rq, struct scx_dispatch_q *dsq, 2026 struct task_struct *p) 2027 { 2028 lockdep_assert_held(&dsq->lock); /* released on return */ 2029 2030 /* @dsq is locked and @p is on this rq */ 2031 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2032 task_unlink_from_dsq(p, dsq); 2033 list_add_tail(&p->scx.dsq_node.list, &rq->scx.local_dsq.list); 2034 dsq_mod_nr(dsq, -1); 2035 dsq_mod_nr(&rq->scx.local_dsq, 1); 2036 p->scx.dsq = &rq->scx.local_dsq; 2037 raw_spin_unlock(&dsq->lock); 2038 } 2039 2040 #ifdef CONFIG_SMP 2041 /* 2042 * Similar to kernel/sched/core.c::is_cpu_allowed() but we're testing whether @p 2043 * can be pulled to @rq. 2044 */ 2045 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) 2046 { 2047 int cpu = cpu_of(rq); 2048 2049 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2050 return false; 2051 if (unlikely(is_migration_disabled(p))) 2052 return false; 2053 if (!(p->flags & PF_KTHREAD) && unlikely(!task_cpu_possible(cpu, p))) 2054 return false; 2055 if (!scx_rq_online(rq)) 2056 return false; 2057 return true; 2058 } 2059 2060 static bool consume_remote_task(struct rq *rq, struct rq_flags *rf, 2061 struct scx_dispatch_q *dsq, 2062 struct task_struct *p, struct rq *task_rq) 2063 { 2064 bool moved = false; 2065 2066 lockdep_assert_held(&dsq->lock); /* released on return */ 2067 2068 /* 2069 * @dsq is locked and @p is on a remote rq. @p is currently protected by 2070 * @dsq->lock. We want to pull @p to @rq but may deadlock if we grab 2071 * @task_rq while holding @dsq and @rq locks. As dequeue can't drop the 2072 * rq lock or fail, do a little dancing from our side. See 2073 * move_task_to_local_dsq(). 2074 */ 2075 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2076 task_unlink_from_dsq(p, dsq); 2077 dsq_mod_nr(dsq, -1); 2078 p->scx.holding_cpu = raw_smp_processor_id(); 2079 raw_spin_unlock(&dsq->lock); 2080 2081 rq_unpin_lock(rq, rf); 2082 double_lock_balance(rq, task_rq); 2083 rq_repin_lock(rq, rf); 2084 2085 moved = move_task_to_local_dsq(rq, p, 0); 2086 2087 double_unlock_balance(rq, task_rq); 2088 2089 return moved; 2090 } 2091 #else /* CONFIG_SMP */ 2092 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) { return false; } 2093 static bool consume_remote_task(struct rq *rq, struct rq_flags *rf, 2094 struct scx_dispatch_q *dsq, 2095 struct task_struct *p, struct rq *task_rq) { return false; } 2096 #endif /* CONFIG_SMP */ 2097 2098 static bool consume_dispatch_q(struct rq *rq, struct rq_flags *rf, 2099 struct scx_dispatch_q *dsq) 2100 { 2101 struct task_struct *p; 2102 retry: 2103 if (list_empty(&dsq->list)) 2104 return false; 2105 2106 raw_spin_lock(&dsq->lock); 2107 2108 list_for_each_entry(p, &dsq->list, scx.dsq_node.list) { 2109 struct rq *task_rq = task_rq(p); 2110 2111 if (rq == task_rq) { 2112 consume_local_task(rq, dsq, p); 2113 return true; 2114 } 2115 2116 if (task_can_run_on_remote_rq(p, rq)) { 2117 if (likely(consume_remote_task(rq, rf, dsq, p, task_rq))) 2118 return true; 2119 goto retry; 2120 } 2121 } 2122 2123 raw_spin_unlock(&dsq->lock); 2124 return false; 2125 } 2126 2127 enum dispatch_to_local_dsq_ret { 2128 DTL_DISPATCHED, /* successfully dispatched */ 2129 DTL_LOST, /* lost race to dequeue */ 2130 DTL_NOT_LOCAL, /* destination is not a local DSQ */ 2131 DTL_INVALID, /* invalid local dsq_id */ 2132 }; 2133 2134 /** 2135 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2136 * @rq: current rq which is locked 2137 * @rf: rq_flags to use when unlocking @rq 2138 * @dsq_id: destination dsq ID 2139 * @p: task to dispatch 2140 * @enq_flags: %SCX_ENQ_* 2141 * 2142 * We're holding @rq lock and want to dispatch @p to the local DSQ identified by 2143 * @dsq_id. This function performs all the synchronization dancing needed 2144 * because local DSQs are protected with rq locks. 2145 * 2146 * The caller must have exclusive ownership of @p (e.g. through 2147 * %SCX_OPSS_DISPATCHING). 2148 */ 2149 static enum dispatch_to_local_dsq_ret 2150 dispatch_to_local_dsq(struct rq *rq, struct rq_flags *rf, u64 dsq_id, 2151 struct task_struct *p, u64 enq_flags) 2152 { 2153 struct rq *src_rq = task_rq(p); 2154 struct rq *dst_rq; 2155 2156 /* 2157 * We're synchronized against dequeue through DISPATCHING. As @p can't 2158 * be dequeued, its task_rq and cpus_allowed are stable too. 2159 */ 2160 if (dsq_id == SCX_DSQ_LOCAL) { 2161 dst_rq = rq; 2162 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 2163 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 2164 2165 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 2166 return DTL_INVALID; 2167 dst_rq = cpu_rq(cpu); 2168 } else { 2169 return DTL_NOT_LOCAL; 2170 } 2171 2172 /* if dispatching to @rq that @p is already on, no lock dancing needed */ 2173 if (rq == src_rq && rq == dst_rq) { 2174 dispatch_enqueue(&dst_rq->scx.local_dsq, p, 2175 enq_flags | SCX_ENQ_CLEAR_OPSS); 2176 return DTL_DISPATCHED; 2177 } 2178 2179 #ifdef CONFIG_SMP 2180 if (cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)) { 2181 struct rq *locked_dst_rq = dst_rq; 2182 bool dsp; 2183 2184 /* 2185 * @p is on a possibly remote @src_rq which we need to lock to 2186 * move the task. If dequeue is in progress, it'd be locking 2187 * @src_rq and waiting on DISPATCHING, so we can't grab @src_rq 2188 * lock while holding DISPATCHING. 2189 * 2190 * As DISPATCHING guarantees that @p is wholly ours, we can 2191 * pretend that we're moving from a DSQ and use the same 2192 * mechanism - mark the task under transfer with holding_cpu, 2193 * release DISPATCHING and then follow the same protocol. 2194 */ 2195 p->scx.holding_cpu = raw_smp_processor_id(); 2196 2197 /* store_release ensures that dequeue sees the above */ 2198 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2199 2200 dispatch_to_local_dsq_lock(rq, rf, src_rq, locked_dst_rq); 2201 2202 /* 2203 * We don't require the BPF scheduler to avoid dispatching to 2204 * offline CPUs mostly for convenience but also because CPUs can 2205 * go offline between scx_bpf_dispatch() calls and here. If @p 2206 * is destined to an offline CPU, queue it on its current CPU 2207 * instead, which should always be safe. As this is an allowed 2208 * behavior, don't trigger an ops error. 2209 */ 2210 if (!scx_rq_online(dst_rq)) 2211 dst_rq = src_rq; 2212 2213 if (src_rq == dst_rq) { 2214 /* 2215 * As @p is staying on the same rq, there's no need to 2216 * go through the full deactivate/activate cycle. 2217 * Optimize by abbreviating the operations in 2218 * move_task_to_local_dsq(). 2219 */ 2220 dsp = p->scx.holding_cpu == raw_smp_processor_id(); 2221 if (likely(dsp)) { 2222 p->scx.holding_cpu = -1; 2223 dispatch_enqueue(&dst_rq->scx.local_dsq, p, 2224 enq_flags); 2225 } 2226 } else { 2227 dsp = move_task_to_local_dsq(dst_rq, p, enq_flags); 2228 } 2229 2230 /* if the destination CPU is idle, wake it up */ 2231 if (dsp && sched_class_above(p->sched_class, 2232 dst_rq->curr->sched_class)) 2233 resched_curr(dst_rq); 2234 2235 dispatch_to_local_dsq_unlock(rq, rf, src_rq, locked_dst_rq); 2236 2237 return dsp ? DTL_DISPATCHED : DTL_LOST; 2238 } 2239 #endif /* CONFIG_SMP */ 2240 2241 scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", 2242 cpu_of(dst_rq), p->comm, p->pid); 2243 return DTL_INVALID; 2244 } 2245 2246 /** 2247 * finish_dispatch - Asynchronously finish dispatching a task 2248 * @rq: current rq which is locked 2249 * @rf: rq_flags to use when unlocking @rq 2250 * @p: task to finish dispatching 2251 * @qseq_at_dispatch: qseq when @p started getting dispatched 2252 * @dsq_id: destination DSQ ID 2253 * @enq_flags: %SCX_ENQ_* 2254 * 2255 * Dispatching to local DSQs may need to wait for queueing to complete or 2256 * require rq lock dancing. As we don't wanna do either while inside 2257 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2258 * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the 2259 * task and its qseq. Once ops.dispatch() returns, this function is called to 2260 * finish up. 2261 * 2262 * There is no guarantee that @p is still valid for dispatching or even that it 2263 * was valid in the first place. Make sure that the task is still owned by the 2264 * BPF scheduler and claim the ownership before dispatching. 2265 */ 2266 static void finish_dispatch(struct rq *rq, struct rq_flags *rf, 2267 struct task_struct *p, 2268 unsigned long qseq_at_dispatch, 2269 u64 dsq_id, u64 enq_flags) 2270 { 2271 struct scx_dispatch_q *dsq; 2272 unsigned long opss; 2273 2274 touch_core_sched_dispatch(rq, p); 2275 retry: 2276 /* 2277 * No need for _acquire here. @p is accessed only after a successful 2278 * try_cmpxchg to DISPATCHING. 2279 */ 2280 opss = atomic_long_read(&p->scx.ops_state); 2281 2282 switch (opss & SCX_OPSS_STATE_MASK) { 2283 case SCX_OPSS_DISPATCHING: 2284 case SCX_OPSS_NONE: 2285 /* someone else already got to it */ 2286 return; 2287 case SCX_OPSS_QUEUED: 2288 /* 2289 * If qseq doesn't match, @p has gone through at least one 2290 * dispatch/dequeue and re-enqueue cycle between 2291 * scx_bpf_dispatch() and here and we have no claim on it. 2292 */ 2293 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2294 return; 2295 2296 /* 2297 * While we know @p is accessible, we don't yet have a claim on 2298 * it - the BPF scheduler is allowed to dispatch tasks 2299 * spuriously and there can be a racing dequeue attempt. Let's 2300 * claim @p by atomically transitioning it from QUEUED to 2301 * DISPATCHING. 2302 */ 2303 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2304 SCX_OPSS_DISPATCHING))) 2305 break; 2306 goto retry; 2307 case SCX_OPSS_QUEUEING: 2308 /* 2309 * do_enqueue_task() is in the process of transferring the task 2310 * to the BPF scheduler while holding @p's rq lock. As we aren't 2311 * holding any kernel or BPF resource that the enqueue path may 2312 * depend upon, it's safe to wait. 2313 */ 2314 wait_ops_state(p, opss); 2315 goto retry; 2316 } 2317 2318 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2319 2320 switch (dispatch_to_local_dsq(rq, rf, dsq_id, p, enq_flags)) { 2321 case DTL_DISPATCHED: 2322 break; 2323 case DTL_LOST: 2324 break; 2325 case DTL_INVALID: 2326 dsq_id = SCX_DSQ_GLOBAL; 2327 fallthrough; 2328 case DTL_NOT_LOCAL: 2329 dsq = find_dsq_for_dispatch(cpu_rq(raw_smp_processor_id()), 2330 dsq_id, p); 2331 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2332 break; 2333 } 2334 } 2335 2336 static void flush_dispatch_buf(struct rq *rq, struct rq_flags *rf) 2337 { 2338 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2339 u32 u; 2340 2341 for (u = 0; u < dspc->cursor; u++) { 2342 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2343 2344 finish_dispatch(rq, rf, ent->task, ent->qseq, ent->dsq_id, 2345 ent->enq_flags); 2346 } 2347 2348 dspc->nr_tasks += dspc->cursor; 2349 dspc->cursor = 0; 2350 } 2351 2352 static int balance_one(struct rq *rq, struct task_struct *prev, 2353 struct rq_flags *rf, bool local) 2354 { 2355 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2356 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2357 int nr_loops = SCX_DSP_MAX_LOOPS; 2358 bool has_tasks = false; 2359 2360 lockdep_assert_rq_held(rq); 2361 rq->scx.flags |= SCX_RQ_BALANCING; 2362 2363 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2364 unlikely(rq->scx.cpu_released)) { 2365 /* 2366 * If the previous sched_class for the current CPU was not SCX, 2367 * notify the BPF scheduler that it again has control of the 2368 * core. This callback complements ->cpu_release(), which is 2369 * emitted in scx_next_task_picked(). 2370 */ 2371 if (SCX_HAS_OP(cpu_acquire)) 2372 SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); 2373 rq->scx.cpu_released = false; 2374 } 2375 2376 if (prev_on_scx) { 2377 WARN_ON_ONCE(local && (prev->scx.flags & SCX_TASK_BAL_KEEP)); 2378 update_curr_scx(rq); 2379 2380 /* 2381 * If @prev is runnable & has slice left, it has priority and 2382 * fetching more just increases latency for the fetched tasks. 2383 * Tell put_prev_task_scx() to put @prev on local_dsq. If the 2384 * BPF scheduler wants to handle this explicitly, it should 2385 * implement ->cpu_released(). 2386 * 2387 * See scx_ops_disable_workfn() for the explanation on the 2388 * bypassing test. 2389 * 2390 * When balancing a remote CPU for core-sched, there won't be a 2391 * following put_prev_task_scx() call and we don't own 2392 * %SCX_TASK_BAL_KEEP. Instead, pick_task_scx() will test the 2393 * same conditions later and pick @rq->curr accordingly. 2394 */ 2395 if ((prev->scx.flags & SCX_TASK_QUEUED) && 2396 prev->scx.slice && !scx_ops_bypassing()) { 2397 if (local) 2398 prev->scx.flags |= SCX_TASK_BAL_KEEP; 2399 goto has_tasks; 2400 } 2401 } 2402 2403 /* if there already are tasks to run, nothing to do */ 2404 if (rq->scx.local_dsq.nr) 2405 goto has_tasks; 2406 2407 if (consume_dispatch_q(rq, rf, &scx_dsq_global)) 2408 goto has_tasks; 2409 2410 if (!SCX_HAS_OP(dispatch) || scx_ops_bypassing() || !scx_rq_online(rq)) 2411 goto out; 2412 2413 dspc->rq = rq; 2414 dspc->rf = rf; 2415 2416 /* 2417 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2418 * the local DSQ might still end up empty after a successful 2419 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2420 * produced some tasks, retry. The BPF scheduler may depend on this 2421 * looping behavior to simplify its implementation. 2422 */ 2423 do { 2424 dspc->nr_tasks = 0; 2425 2426 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2427 prev_on_scx ? prev : NULL); 2428 2429 flush_dispatch_buf(rq, rf); 2430 2431 if (rq->scx.local_dsq.nr) 2432 goto has_tasks; 2433 if (consume_dispatch_q(rq, rf, &scx_dsq_global)) 2434 goto has_tasks; 2435 2436 /* 2437 * ops.dispatch() can trap us in this loop by repeatedly 2438 * dispatching ineligible tasks. Break out once in a while to 2439 * allow the watchdog to run. As IRQ can't be enabled in 2440 * balance(), we want to complete this scheduling cycle and then 2441 * start a new one. IOW, we want to call resched_curr() on the 2442 * next, most likely idle, task, not the current one. Use 2443 * scx_bpf_kick_cpu() for deferred kicking. 2444 */ 2445 if (unlikely(!--nr_loops)) { 2446 scx_bpf_kick_cpu(cpu_of(rq), 0); 2447 break; 2448 } 2449 } while (dspc->nr_tasks); 2450 2451 goto out; 2452 2453 has_tasks: 2454 has_tasks = true; 2455 out: 2456 rq->scx.flags &= ~SCX_RQ_BALANCING; 2457 return has_tasks; 2458 } 2459 2460 static int balance_scx(struct rq *rq, struct task_struct *prev, 2461 struct rq_flags *rf) 2462 { 2463 int ret; 2464 2465 ret = balance_one(rq, prev, rf, true); 2466 2467 #ifdef CONFIG_SCHED_SMT 2468 /* 2469 * When core-sched is enabled, this ops.balance() call will be followed 2470 * by put_prev_scx() and pick_task_scx() on this CPU and pick_task_scx() 2471 * on the SMT siblings. Balance the siblings too. 2472 */ 2473 if (sched_core_enabled(rq)) { 2474 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2475 int scpu; 2476 2477 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2478 struct rq *srq = cpu_rq(scpu); 2479 struct rq_flags srf; 2480 struct task_struct *sprev = srq->curr; 2481 2482 /* 2483 * While core-scheduling, rq lock is shared among 2484 * siblings but the debug annotations and rq clock 2485 * aren't. Do pinning dance to transfer the ownership. 2486 */ 2487 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2488 rq_unpin_lock(rq, rf); 2489 rq_pin_lock(srq, &srf); 2490 2491 update_rq_clock(srq); 2492 balance_one(srq, sprev, &srf, false); 2493 2494 rq_unpin_lock(srq, &srf); 2495 rq_repin_lock(rq, rf); 2496 } 2497 } 2498 #endif 2499 return ret; 2500 } 2501 2502 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2503 { 2504 if (p->scx.flags & SCX_TASK_QUEUED) { 2505 /* 2506 * Core-sched might decide to execute @p before it is 2507 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2508 */ 2509 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2510 dispatch_dequeue(rq, p); 2511 } 2512 2513 p->se.exec_start = rq_clock_task(rq); 2514 2515 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2516 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2517 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2518 2519 clr_task_runnable(p, true); 2520 2521 /* 2522 * @p is getting newly scheduled or got kicked after someone updated its 2523 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2524 */ 2525 if ((p->scx.slice == SCX_SLICE_INF) != 2526 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2527 if (p->scx.slice == SCX_SLICE_INF) 2528 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2529 else 2530 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2531 2532 sched_update_tick_dependency(rq); 2533 2534 /* 2535 * For now, let's refresh the load_avgs just when transitioning 2536 * in and out of nohz. In the future, we might want to add a 2537 * mechanism which calls the following periodically on 2538 * tick-stopped CPUs. 2539 */ 2540 update_other_load_avgs(rq); 2541 } 2542 } 2543 2544 static void put_prev_task_scx(struct rq *rq, struct task_struct *p) 2545 { 2546 #ifndef CONFIG_SMP 2547 /* 2548 * UP workaround. 2549 * 2550 * Because SCX may transfer tasks across CPUs during dispatch, dispatch 2551 * is performed from its balance operation which isn't called in UP. 2552 * Let's work around by calling it from the operations which come right 2553 * after. 2554 * 2555 * 1. If the prev task is on SCX, pick_next_task() calls 2556 * .put_prev_task() right after. As .put_prev_task() is also called 2557 * from other places, we need to distinguish the calls which can be 2558 * done by looking at the previous task's state - if still queued or 2559 * dequeued with %SCX_DEQ_SLEEP, the caller must be pick_next_task(). 2560 * This case is handled here. 2561 * 2562 * 2. If the prev task is not on SCX, the first following call into SCX 2563 * will be .pick_next_task(), which is covered by calling 2564 * balance_scx() from pick_next_task_scx(). 2565 * 2566 * Note that we can't merge the first case into the second as 2567 * balance_scx() must be called before the previous SCX task goes 2568 * through put_prev_task_scx(). 2569 * 2570 * As UP doesn't transfer tasks around, balance_scx() doesn't need @rf. 2571 * Pass in %NULL. 2572 */ 2573 if (p->scx.flags & (SCX_TASK_QUEUED | SCX_TASK_DEQD_FOR_SLEEP)) 2574 balance_scx(rq, p, NULL); 2575 #endif 2576 2577 update_curr_scx(rq); 2578 2579 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2580 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2581 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 2582 2583 /* 2584 * If we're being called from put_prev_task_balance(), balance_scx() may 2585 * have decided that @p should keep running. 2586 */ 2587 if (p->scx.flags & SCX_TASK_BAL_KEEP) { 2588 p->scx.flags &= ~SCX_TASK_BAL_KEEP; 2589 set_task_runnable(rq, p); 2590 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2591 return; 2592 } 2593 2594 if (p->scx.flags & SCX_TASK_QUEUED) { 2595 set_task_runnable(rq, p); 2596 2597 /* 2598 * If @p has slice left and balance_scx() didn't tag it for 2599 * keeping, @p is getting preempted by a higher priority 2600 * scheduler class or core-sched forcing a different task. Leave 2601 * it at the head of the local DSQ. 2602 */ 2603 if (p->scx.slice && !scx_ops_bypassing()) { 2604 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 2605 return; 2606 } 2607 2608 /* 2609 * If we're in the pick_next_task path, balance_scx() should 2610 * have already populated the local DSQ if there are any other 2611 * available tasks. If empty, tell ops.enqueue() that @p is the 2612 * only one available for this cpu. ops.enqueue() should put it 2613 * on the local DSQ so that the subsequent pick_next_task_scx() 2614 * can find the task unless it wants to trigger a separate 2615 * follow-up scheduling event. 2616 */ 2617 if (list_empty(&rq->scx.local_dsq.list)) 2618 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2619 else 2620 do_enqueue_task(rq, p, 0, -1); 2621 } 2622 } 2623 2624 static struct task_struct *first_local_task(struct rq *rq) 2625 { 2626 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2627 struct task_struct, scx.dsq_node.list); 2628 } 2629 2630 static struct task_struct *pick_next_task_scx(struct rq *rq) 2631 { 2632 struct task_struct *p; 2633 2634 #ifndef CONFIG_SMP 2635 /* UP workaround - see the comment at the head of put_prev_task_scx() */ 2636 if (unlikely(rq->curr->sched_class != &ext_sched_class)) 2637 balance_scx(rq, rq->curr, NULL); 2638 #endif 2639 2640 p = first_local_task(rq); 2641 if (!p) 2642 return NULL; 2643 2644 set_next_task_scx(rq, p, true); 2645 2646 if (unlikely(!p->scx.slice)) { 2647 if (!scx_ops_bypassing() && !scx_warned_zero_slice) { 2648 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", 2649 p->comm, p->pid); 2650 scx_warned_zero_slice = true; 2651 } 2652 p->scx.slice = SCX_SLICE_DFL; 2653 } 2654 2655 return p; 2656 } 2657 2658 #ifdef CONFIG_SCHED_CORE 2659 /** 2660 * scx_prio_less - Task ordering for core-sched 2661 * @a: task A 2662 * @b: task B 2663 * 2664 * Core-sched is implemented as an additional scheduling layer on top of the 2665 * usual sched_class'es and needs to find out the expected task ordering. For 2666 * SCX, core-sched calls this function to interrogate the task ordering. 2667 * 2668 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2669 * to implement the default task ordering. The older the timestamp, the higher 2670 * prority the task - the global FIFO ordering matching the default scheduling 2671 * behavior. 2672 * 2673 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2674 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2675 */ 2676 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2677 bool in_fi) 2678 { 2679 /* 2680 * The const qualifiers are dropped from task_struct pointers when 2681 * calling ops.core_sched_before(). Accesses are controlled by the 2682 * verifier. 2683 */ 2684 if (SCX_HAS_OP(core_sched_before) && !scx_ops_bypassing()) 2685 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 2686 (struct task_struct *)a, 2687 (struct task_struct *)b); 2688 else 2689 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2690 } 2691 2692 /** 2693 * pick_task_scx - Pick a candidate task for core-sched 2694 * @rq: rq to pick the candidate task from 2695 * 2696 * Core-sched calls this function on each SMT sibling to determine the next 2697 * tasks to run on the SMT siblings. balance_one() has been called on all 2698 * siblings and put_prev_task_scx() has been called only for the current CPU. 2699 * 2700 * As put_prev_task_scx() hasn't been called on remote CPUs, we can't just look 2701 * at the first task in the local dsq. @rq->curr has to be considered explicitly 2702 * to mimic %SCX_TASK_BAL_KEEP. 2703 */ 2704 static struct task_struct *pick_task_scx(struct rq *rq) 2705 { 2706 struct task_struct *curr = rq->curr; 2707 struct task_struct *first = first_local_task(rq); 2708 2709 if (curr->scx.flags & SCX_TASK_QUEUED) { 2710 /* is curr the only runnable task? */ 2711 if (!first) 2712 return curr; 2713 2714 /* 2715 * Does curr trump first? We can always go by core_sched_at for 2716 * this comparison as it represents global FIFO ordering when 2717 * the default core-sched ordering is used and local-DSQ FIFO 2718 * ordering otherwise. 2719 * 2720 * We can have a task with an earlier timestamp on the DSQ. For 2721 * example, when a current task is preempted by a sibling 2722 * picking a different cookie, the task would be requeued at the 2723 * head of the local DSQ with an earlier timestamp than the 2724 * core-sched picked next task. Besides, the BPF scheduler may 2725 * dispatch any tasks to the local DSQ anytime. 2726 */ 2727 if (curr->scx.slice && time_before64(curr->scx.core_sched_at, 2728 first->scx.core_sched_at)) 2729 return curr; 2730 } 2731 2732 return first; /* this may be %NULL */ 2733 } 2734 #endif /* CONFIG_SCHED_CORE */ 2735 2736 static enum scx_cpu_preempt_reason 2737 preempt_reason_from_class(const struct sched_class *class) 2738 { 2739 #ifdef CONFIG_SMP 2740 if (class == &stop_sched_class) 2741 return SCX_CPU_PREEMPT_STOP; 2742 #endif 2743 if (class == &dl_sched_class) 2744 return SCX_CPU_PREEMPT_DL; 2745 if (class == &rt_sched_class) 2746 return SCX_CPU_PREEMPT_RT; 2747 return SCX_CPU_PREEMPT_UNKNOWN; 2748 } 2749 2750 void scx_next_task_picked(struct rq *rq, struct task_struct *p, 2751 const struct sched_class *active) 2752 { 2753 lockdep_assert_rq_held(rq); 2754 2755 if (!scx_enabled()) 2756 return; 2757 #ifdef CONFIG_SMP 2758 /* 2759 * Pairs with the smp_load_acquire() issued by a CPU in 2760 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 2761 * resched. 2762 */ 2763 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 2764 #endif 2765 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 2766 return; 2767 2768 /* 2769 * The callback is conceptually meant to convey that the CPU is no 2770 * longer under the control of SCX. Therefore, don't invoke the 2771 * callback if the CPU is is staying on SCX, or going idle (in which 2772 * case the SCX scheduler has actively decided not to schedule any 2773 * tasks on the CPU). 2774 */ 2775 if (likely(active >= &ext_sched_class)) 2776 return; 2777 2778 /* 2779 * At this point we know that SCX was preempted by a higher priority 2780 * sched_class, so invoke the ->cpu_release() callback if we have not 2781 * done so already. We only send the callback once between SCX being 2782 * preempted, and it regaining control of the CPU. 2783 * 2784 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2785 * next time that balance_scx() is invoked. 2786 */ 2787 if (!rq->scx.cpu_released) { 2788 if (SCX_HAS_OP(cpu_release)) { 2789 struct scx_cpu_release_args args = { 2790 .reason = preempt_reason_from_class(active), 2791 .task = p, 2792 }; 2793 2794 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 2795 cpu_release, cpu_of(rq), &args); 2796 } 2797 rq->scx.cpu_released = true; 2798 } 2799 } 2800 2801 #ifdef CONFIG_SMP 2802 2803 static bool test_and_clear_cpu_idle(int cpu) 2804 { 2805 #ifdef CONFIG_SCHED_SMT 2806 /* 2807 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 2808 * cluster is not wholly idle either way. This also prevents 2809 * scx_pick_idle_cpu() from getting caught in an infinite loop. 2810 */ 2811 if (sched_smt_active()) { 2812 const struct cpumask *smt = cpu_smt_mask(cpu); 2813 2814 /* 2815 * If offline, @cpu is not its own sibling and 2816 * scx_pick_idle_cpu() can get caught in an infinite loop as 2817 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 2818 * is eventually cleared. 2819 */ 2820 if (cpumask_intersects(smt, idle_masks.smt)) 2821 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 2822 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 2823 __cpumask_clear_cpu(cpu, idle_masks.smt); 2824 } 2825 #endif 2826 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 2827 } 2828 2829 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 2830 { 2831 int cpu; 2832 2833 retry: 2834 if (sched_smt_active()) { 2835 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 2836 if (cpu < nr_cpu_ids) 2837 goto found; 2838 2839 if (flags & SCX_PICK_IDLE_CORE) 2840 return -EBUSY; 2841 } 2842 2843 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 2844 if (cpu >= nr_cpu_ids) 2845 return -EBUSY; 2846 2847 found: 2848 if (test_and_clear_cpu_idle(cpu)) 2849 return cpu; 2850 else 2851 goto retry; 2852 } 2853 2854 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 2855 u64 wake_flags, bool *found) 2856 { 2857 s32 cpu; 2858 2859 *found = false; 2860 2861 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 2862 scx_ops_error("built-in idle tracking is disabled"); 2863 return prev_cpu; 2864 } 2865 2866 /* 2867 * If WAKE_SYNC, the waker's local DSQ is empty, and the system is 2868 * under utilized, wake up @p to the local DSQ of the waker. Checking 2869 * only for an empty local DSQ is insufficient as it could give the 2870 * wakee an unfair advantage when the system is oversaturated. 2871 * Checking only for the presence of idle CPUs is also insufficient as 2872 * the local DSQ of the waker could have tasks piled up on it even if 2873 * there is an idle core elsewhere on the system. 2874 */ 2875 cpu = smp_processor_id(); 2876 if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 && 2877 !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && 2878 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 2879 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 2880 goto cpu_found; 2881 } 2882 2883 if (p->nr_cpus_allowed == 1) { 2884 if (test_and_clear_cpu_idle(prev_cpu)) { 2885 cpu = prev_cpu; 2886 goto cpu_found; 2887 } else { 2888 return prev_cpu; 2889 } 2890 } 2891 2892 /* 2893 * If CPU has SMT, any wholly idle CPU is likely a better pick than 2894 * partially idle @prev_cpu. 2895 */ 2896 if (sched_smt_active()) { 2897 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 2898 test_and_clear_cpu_idle(prev_cpu)) { 2899 cpu = prev_cpu; 2900 goto cpu_found; 2901 } 2902 2903 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 2904 if (cpu >= 0) 2905 goto cpu_found; 2906 } 2907 2908 if (test_and_clear_cpu_idle(prev_cpu)) { 2909 cpu = prev_cpu; 2910 goto cpu_found; 2911 } 2912 2913 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 2914 if (cpu >= 0) 2915 goto cpu_found; 2916 2917 return prev_cpu; 2918 2919 cpu_found: 2920 *found = true; 2921 return cpu; 2922 } 2923 2924 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2925 { 2926 /* 2927 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2928 * can be a good migration opportunity with low cache and memory 2929 * footprint. Returning a CPU different than @prev_cpu triggers 2930 * immediate rq migration. However, for SCX, as the current rq 2931 * association doesn't dictate where the task is going to run, this 2932 * doesn't fit well. If necessary, we can later add a dedicated method 2933 * which can decide to preempt self to force it through the regular 2934 * scheduling path. 2935 */ 2936 if (unlikely(wake_flags & WF_EXEC)) 2937 return prev_cpu; 2938 2939 if (SCX_HAS_OP(select_cpu)) { 2940 s32 cpu; 2941 struct task_struct **ddsp_taskp; 2942 2943 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2944 WARN_ON_ONCE(*ddsp_taskp); 2945 *ddsp_taskp = p; 2946 2947 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2948 select_cpu, p, prev_cpu, wake_flags); 2949 *ddsp_taskp = NULL; 2950 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 2951 return cpu; 2952 else 2953 return prev_cpu; 2954 } else { 2955 bool found; 2956 s32 cpu; 2957 2958 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 2959 if (found) { 2960 p->scx.slice = SCX_SLICE_DFL; 2961 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2962 } 2963 return cpu; 2964 } 2965 } 2966 2967 static void set_cpus_allowed_scx(struct task_struct *p, 2968 struct affinity_context *ac) 2969 { 2970 set_cpus_allowed_common(p, ac); 2971 2972 /* 2973 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2974 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2975 * scheduler the effective one. 2976 * 2977 * Fine-grained memory write control is enforced by BPF making the const 2978 * designation pointless. Cast it away when calling the operation. 2979 */ 2980 if (SCX_HAS_OP(set_cpumask)) 2981 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 2982 (struct cpumask *)p->cpus_ptr); 2983 } 2984 2985 static void reset_idle_masks(void) 2986 { 2987 /* 2988 * Consider all online cpus idle. Should converge to the actual state 2989 * quickly. 2990 */ 2991 cpumask_copy(idle_masks.cpu, cpu_online_mask); 2992 cpumask_copy(idle_masks.smt, cpu_online_mask); 2993 } 2994 2995 void __scx_update_idle(struct rq *rq, bool idle) 2996 { 2997 int cpu = cpu_of(rq); 2998 2999 if (SCX_HAS_OP(update_idle)) { 3000 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3001 if (!static_branch_unlikely(&scx_builtin_idle_enabled)) 3002 return; 3003 } 3004 3005 if (idle) 3006 cpumask_set_cpu(cpu, idle_masks.cpu); 3007 else 3008 cpumask_clear_cpu(cpu, idle_masks.cpu); 3009 3010 #ifdef CONFIG_SCHED_SMT 3011 if (sched_smt_active()) { 3012 const struct cpumask *smt = cpu_smt_mask(cpu); 3013 3014 if (idle) { 3015 /* 3016 * idle_masks.smt handling is racy but that's fine as 3017 * it's only for optimization and self-correcting. 3018 */ 3019 for_each_cpu(cpu, smt) { 3020 if (!cpumask_test_cpu(cpu, idle_masks.cpu)) 3021 return; 3022 } 3023 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3024 } else { 3025 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3026 } 3027 } 3028 #endif 3029 } 3030 3031 static void handle_hotplug(struct rq *rq, bool online) 3032 { 3033 int cpu = cpu_of(rq); 3034 3035 atomic_long_inc(&scx_hotplug_seq); 3036 3037 if (online && SCX_HAS_OP(cpu_online)) 3038 SCX_CALL_OP(SCX_KF_SLEEPABLE, cpu_online, cpu); 3039 else if (!online && SCX_HAS_OP(cpu_offline)) 3040 SCX_CALL_OP(SCX_KF_SLEEPABLE, cpu_offline, cpu); 3041 else 3042 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3043 "cpu %d going %s, exiting scheduler", cpu, 3044 online ? "online" : "offline"); 3045 } 3046 3047 void scx_rq_activate(struct rq *rq) 3048 { 3049 handle_hotplug(rq, true); 3050 } 3051 3052 void scx_rq_deactivate(struct rq *rq) 3053 { 3054 handle_hotplug(rq, false); 3055 } 3056 3057 static void rq_online_scx(struct rq *rq) 3058 { 3059 rq->scx.flags |= SCX_RQ_ONLINE; 3060 } 3061 3062 static void rq_offline_scx(struct rq *rq) 3063 { 3064 rq->scx.flags &= ~SCX_RQ_ONLINE; 3065 } 3066 3067 #else /* CONFIG_SMP */ 3068 3069 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3070 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3071 static void reset_idle_masks(void) {} 3072 3073 #endif /* CONFIG_SMP */ 3074 3075 static bool check_rq_for_timeouts(struct rq *rq) 3076 { 3077 struct task_struct *p; 3078 struct rq_flags rf; 3079 bool timed_out = false; 3080 3081 rq_lock_irqsave(rq, &rf); 3082 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3083 unsigned long last_runnable = p->scx.runnable_at; 3084 3085 if (unlikely(time_after(jiffies, 3086 last_runnable + scx_watchdog_timeout))) { 3087 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3088 3089 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3090 "%s[%d] failed to run for %u.%03us", 3091 p->comm, p->pid, 3092 dur_ms / 1000, dur_ms % 1000); 3093 timed_out = true; 3094 break; 3095 } 3096 } 3097 rq_unlock_irqrestore(rq, &rf); 3098 3099 return timed_out; 3100 } 3101 3102 static void scx_watchdog_workfn(struct work_struct *work) 3103 { 3104 int cpu; 3105 3106 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3107 3108 for_each_online_cpu(cpu) { 3109 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3110 break; 3111 3112 cond_resched(); 3113 } 3114 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3115 scx_watchdog_timeout / 2); 3116 } 3117 3118 void scx_tick(struct rq *rq) 3119 { 3120 unsigned long last_check; 3121 3122 if (!scx_enabled()) 3123 return; 3124 3125 last_check = READ_ONCE(scx_watchdog_timestamp); 3126 if (unlikely(time_after(jiffies, 3127 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3128 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3129 3130 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3131 "watchdog failed to check in for %u.%03us", 3132 dur_ms / 1000, dur_ms % 1000); 3133 } 3134 3135 update_other_load_avgs(rq); 3136 } 3137 3138 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3139 { 3140 update_curr_scx(rq); 3141 3142 /* 3143 * While disabling, always resched and refresh core-sched timestamp as 3144 * we can't trust the slice management or ops.core_sched_before(). 3145 */ 3146 if (scx_ops_bypassing()) { 3147 curr->scx.slice = 0; 3148 touch_core_sched(rq, curr); 3149 } else if (SCX_HAS_OP(tick)) { 3150 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3151 } 3152 3153 if (!curr->scx.slice) 3154 resched_curr(rq); 3155 } 3156 3157 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3158 { 3159 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3160 } 3161 3162 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3163 { 3164 enum scx_task_state prev_state = scx_get_task_state(p); 3165 bool warn = false; 3166 3167 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3168 3169 switch (state) { 3170 case SCX_TASK_NONE: 3171 break; 3172 case SCX_TASK_INIT: 3173 warn = prev_state != SCX_TASK_NONE; 3174 break; 3175 case SCX_TASK_READY: 3176 warn = prev_state == SCX_TASK_NONE; 3177 break; 3178 case SCX_TASK_ENABLED: 3179 warn = prev_state != SCX_TASK_READY; 3180 break; 3181 default: 3182 warn = true; 3183 return; 3184 } 3185 3186 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3187 prev_state, state, p->comm, p->pid); 3188 3189 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3190 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3191 } 3192 3193 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3194 { 3195 int ret; 3196 3197 p->scx.disallow = false; 3198 3199 if (SCX_HAS_OP(init_task)) { 3200 struct scx_init_task_args args = { 3201 .fork = fork, 3202 }; 3203 3204 ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init_task, p, &args); 3205 if (unlikely(ret)) { 3206 ret = ops_sanitize_err("init_task", ret); 3207 return ret; 3208 } 3209 } 3210 3211 scx_set_task_state(p, SCX_TASK_INIT); 3212 3213 if (p->scx.disallow) { 3214 struct rq *rq; 3215 struct rq_flags rf; 3216 3217 rq = task_rq_lock(p, &rf); 3218 3219 /* 3220 * We're either in fork or load path and @p->policy will be 3221 * applied right after. Reverting @p->policy here and rejecting 3222 * %SCHED_EXT transitions from scx_check_setscheduler() 3223 * guarantees that if ops.init_task() sets @p->disallow, @p can 3224 * never be in SCX. 3225 */ 3226 if (p->policy == SCHED_EXT) { 3227 p->policy = SCHED_NORMAL; 3228 atomic_long_inc(&scx_nr_rejected); 3229 } 3230 3231 task_rq_unlock(rq, p, &rf); 3232 } 3233 3234 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3235 return 0; 3236 } 3237 3238 static void set_task_scx_weight(struct task_struct *p) 3239 { 3240 u32 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3241 3242 p->scx.weight = sched_weight_to_cgroup(weight); 3243 } 3244 3245 static void scx_ops_enable_task(struct task_struct *p) 3246 { 3247 lockdep_assert_rq_held(task_rq(p)); 3248 3249 /* 3250 * Set the weight before calling ops.enable() so that the scheduler 3251 * doesn't see a stale value if they inspect the task struct. 3252 */ 3253 set_task_scx_weight(p); 3254 if (SCX_HAS_OP(enable)) 3255 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3256 scx_set_task_state(p, SCX_TASK_ENABLED); 3257 3258 if (SCX_HAS_OP(set_weight)) 3259 SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight); 3260 } 3261 3262 static void scx_ops_disable_task(struct task_struct *p) 3263 { 3264 lockdep_assert_rq_held(task_rq(p)); 3265 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3266 3267 if (SCX_HAS_OP(disable)) 3268 SCX_CALL_OP(SCX_KF_REST, disable, p); 3269 scx_set_task_state(p, SCX_TASK_READY); 3270 } 3271 3272 static void scx_ops_exit_task(struct task_struct *p) 3273 { 3274 struct scx_exit_task_args args = { 3275 .cancelled = false, 3276 }; 3277 3278 lockdep_assert_rq_held(task_rq(p)); 3279 3280 switch (scx_get_task_state(p)) { 3281 case SCX_TASK_NONE: 3282 return; 3283 case SCX_TASK_INIT: 3284 args.cancelled = true; 3285 break; 3286 case SCX_TASK_READY: 3287 break; 3288 case SCX_TASK_ENABLED: 3289 scx_ops_disable_task(p); 3290 break; 3291 default: 3292 WARN_ON_ONCE(true); 3293 return; 3294 } 3295 3296 if (SCX_HAS_OP(exit_task)) 3297 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3298 scx_set_task_state(p, SCX_TASK_NONE); 3299 } 3300 3301 void init_scx_entity(struct sched_ext_entity *scx) 3302 { 3303 /* 3304 * init_idle() calls this function again after fork sequence is 3305 * complete. Don't touch ->tasks_node as it's already linked. 3306 */ 3307 memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); 3308 3309 INIT_LIST_HEAD(&scx->dsq_node.list); 3310 RB_CLEAR_NODE(&scx->dsq_node.priq); 3311 scx->sticky_cpu = -1; 3312 scx->holding_cpu = -1; 3313 INIT_LIST_HEAD(&scx->runnable_node); 3314 scx->runnable_at = jiffies; 3315 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3316 scx->slice = SCX_SLICE_DFL; 3317 } 3318 3319 void scx_pre_fork(struct task_struct *p) 3320 { 3321 /* 3322 * BPF scheduler enable/disable paths want to be able to iterate and 3323 * update all tasks which can become complex when racing forks. As 3324 * enable/disable are very cold paths, let's use a percpu_rwsem to 3325 * exclude forks. 3326 */ 3327 percpu_down_read(&scx_fork_rwsem); 3328 } 3329 3330 int scx_fork(struct task_struct *p) 3331 { 3332 percpu_rwsem_assert_held(&scx_fork_rwsem); 3333 3334 if (scx_enabled()) 3335 return scx_ops_init_task(p, task_group(p), true); 3336 else 3337 return 0; 3338 } 3339 3340 void scx_post_fork(struct task_struct *p) 3341 { 3342 if (scx_enabled()) { 3343 scx_set_task_state(p, SCX_TASK_READY); 3344 3345 /* 3346 * Enable the task immediately if it's running on sched_ext. 3347 * Otherwise, it'll be enabled in switching_to_scx() if and 3348 * when it's ever configured to run with a SCHED_EXT policy. 3349 */ 3350 if (p->sched_class == &ext_sched_class) { 3351 struct rq_flags rf; 3352 struct rq *rq; 3353 3354 rq = task_rq_lock(p, &rf); 3355 scx_ops_enable_task(p); 3356 task_rq_unlock(rq, p, &rf); 3357 } 3358 } 3359 3360 spin_lock_irq(&scx_tasks_lock); 3361 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3362 spin_unlock_irq(&scx_tasks_lock); 3363 3364 percpu_up_read(&scx_fork_rwsem); 3365 } 3366 3367 void scx_cancel_fork(struct task_struct *p) 3368 { 3369 if (scx_enabled()) { 3370 struct rq *rq; 3371 struct rq_flags rf; 3372 3373 rq = task_rq_lock(p, &rf); 3374 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3375 scx_ops_exit_task(p); 3376 task_rq_unlock(rq, p, &rf); 3377 } 3378 3379 percpu_up_read(&scx_fork_rwsem); 3380 } 3381 3382 void sched_ext_free(struct task_struct *p) 3383 { 3384 unsigned long flags; 3385 3386 spin_lock_irqsave(&scx_tasks_lock, flags); 3387 list_del_init(&p->scx.tasks_node); 3388 spin_unlock_irqrestore(&scx_tasks_lock, flags); 3389 3390 /* 3391 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 3392 * ENABLED transitions can't race us. Disable ops for @p. 3393 */ 3394 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3395 struct rq_flags rf; 3396 struct rq *rq; 3397 3398 rq = task_rq_lock(p, &rf); 3399 scx_ops_exit_task(p); 3400 task_rq_unlock(rq, p, &rf); 3401 } 3402 } 3403 3404 static void reweight_task_scx(struct rq *rq, struct task_struct *p, int newprio) 3405 { 3406 lockdep_assert_rq_held(task_rq(p)); 3407 3408 set_task_scx_weight(p); 3409 if (SCX_HAS_OP(set_weight)) 3410 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3411 } 3412 3413 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 3414 { 3415 } 3416 3417 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3418 { 3419 scx_ops_enable_task(p); 3420 3421 /* 3422 * set_cpus_allowed_scx() is not called while @p is associated with a 3423 * different scheduler class. Keep the BPF scheduler up-to-date. 3424 */ 3425 if (SCX_HAS_OP(set_cpumask)) 3426 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3427 (struct cpumask *)p->cpus_ptr); 3428 } 3429 3430 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3431 { 3432 scx_ops_disable_task(p); 3433 } 3434 3435 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3436 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3437 3438 int scx_check_setscheduler(struct task_struct *p, int policy) 3439 { 3440 lockdep_assert_rq_held(task_rq(p)); 3441 3442 /* if disallow, reject transitioning into SCX */ 3443 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3444 p->policy != policy && policy == SCHED_EXT) 3445 return -EACCES; 3446 3447 return 0; 3448 } 3449 3450 #ifdef CONFIG_NO_HZ_FULL 3451 bool scx_can_stop_tick(struct rq *rq) 3452 { 3453 struct task_struct *p = rq->curr; 3454 3455 if (scx_ops_bypassing()) 3456 return false; 3457 3458 if (p->sched_class != &ext_sched_class) 3459 return true; 3460 3461 /* 3462 * @rq can dispatch from different DSQs, so we can't tell whether it 3463 * needs the tick or not by looking at nr_running. Allow stopping ticks 3464 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3465 */ 3466 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3467 } 3468 #endif 3469 3470 /* 3471 * Omitted operations: 3472 * 3473 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3474 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3475 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3476 * 3477 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3478 * 3479 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3480 * their current sched_class. Call them directly from sched core instead. 3481 * 3482 * - task_woken: Unnecessary. 3483 */ 3484 DEFINE_SCHED_CLASS(ext) = { 3485 .enqueue_task = enqueue_task_scx, 3486 .dequeue_task = dequeue_task_scx, 3487 .yield_task = yield_task_scx, 3488 .yield_to_task = yield_to_task_scx, 3489 3490 .wakeup_preempt = wakeup_preempt_scx, 3491 3492 .pick_next_task = pick_next_task_scx, 3493 3494 .put_prev_task = put_prev_task_scx, 3495 .set_next_task = set_next_task_scx, 3496 3497 #ifdef CONFIG_SMP 3498 .balance = balance_scx, 3499 .select_task_rq = select_task_rq_scx, 3500 .set_cpus_allowed = set_cpus_allowed_scx, 3501 3502 .rq_online = rq_online_scx, 3503 .rq_offline = rq_offline_scx, 3504 #endif 3505 3506 #ifdef CONFIG_SCHED_CORE 3507 .pick_task = pick_task_scx, 3508 #endif 3509 3510 .task_tick = task_tick_scx, 3511 3512 .switching_to = switching_to_scx, 3513 .switched_from = switched_from_scx, 3514 .switched_to = switched_to_scx, 3515 .reweight_task = reweight_task_scx, 3516 .prio_changed = prio_changed_scx, 3517 3518 .update_curr = update_curr_scx, 3519 3520 #ifdef CONFIG_UCLAMP_TASK 3521 .uclamp_enabled = 0, 3522 #endif 3523 }; 3524 3525 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3526 { 3527 memset(dsq, 0, sizeof(*dsq)); 3528 3529 raw_spin_lock_init(&dsq->lock); 3530 INIT_LIST_HEAD(&dsq->list); 3531 dsq->id = dsq_id; 3532 } 3533 3534 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 3535 { 3536 struct scx_dispatch_q *dsq; 3537 int ret; 3538 3539 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 3540 return ERR_PTR(-EINVAL); 3541 3542 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 3543 if (!dsq) 3544 return ERR_PTR(-ENOMEM); 3545 3546 init_dsq(dsq, dsq_id); 3547 3548 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 3549 dsq_hash_params); 3550 if (ret) { 3551 kfree(dsq); 3552 return ERR_PTR(ret); 3553 } 3554 return dsq; 3555 } 3556 3557 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3558 { 3559 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3560 struct scx_dispatch_q *dsq, *tmp_dsq; 3561 3562 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3563 kfree_rcu(dsq, rcu); 3564 } 3565 3566 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3567 3568 static void destroy_dsq(u64 dsq_id) 3569 { 3570 struct scx_dispatch_q *dsq; 3571 unsigned long flags; 3572 3573 rcu_read_lock(); 3574 3575 dsq = find_user_dsq(dsq_id); 3576 if (!dsq) 3577 goto out_unlock_rcu; 3578 3579 raw_spin_lock_irqsave(&dsq->lock, flags); 3580 3581 if (dsq->nr) { 3582 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3583 dsq->id, dsq->nr); 3584 goto out_unlock_dsq; 3585 } 3586 3587 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 3588 goto out_unlock_dsq; 3589 3590 /* 3591 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3592 * queueing more tasks. As this function can be called from anywhere, 3593 * freeing is bounced through an irq work to avoid nesting RCU 3594 * operations inside scheduler locks. 3595 */ 3596 dsq->id = SCX_DSQ_INVALID; 3597 llist_add(&dsq->free_node, &dsqs_to_free); 3598 irq_work_queue(&free_dsq_irq_work); 3599 3600 out_unlock_dsq: 3601 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3602 out_unlock_rcu: 3603 rcu_read_unlock(); 3604 } 3605 3606 3607 /******************************************************************************** 3608 * Sysfs interface and ops enable/disable. 3609 */ 3610 3611 #define SCX_ATTR(_name) \ 3612 static struct kobj_attribute scx_attr_##_name = { \ 3613 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3614 .show = scx_attr_##_name##_show, \ 3615 } 3616 3617 static ssize_t scx_attr_state_show(struct kobject *kobj, 3618 struct kobj_attribute *ka, char *buf) 3619 { 3620 return sysfs_emit(buf, "%s\n", 3621 scx_ops_enable_state_str[scx_ops_enable_state()]); 3622 } 3623 SCX_ATTR(state); 3624 3625 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3626 struct kobj_attribute *ka, char *buf) 3627 { 3628 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3629 } 3630 SCX_ATTR(switch_all); 3631 3632 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3633 struct kobj_attribute *ka, char *buf) 3634 { 3635 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3636 } 3637 SCX_ATTR(nr_rejected); 3638 3639 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3640 struct kobj_attribute *ka, char *buf) 3641 { 3642 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3643 } 3644 SCX_ATTR(hotplug_seq); 3645 3646 static struct attribute *scx_global_attrs[] = { 3647 &scx_attr_state.attr, 3648 &scx_attr_switch_all.attr, 3649 &scx_attr_nr_rejected.attr, 3650 &scx_attr_hotplug_seq.attr, 3651 NULL, 3652 }; 3653 3654 static const struct attribute_group scx_global_attr_group = { 3655 .attrs = scx_global_attrs, 3656 }; 3657 3658 static void scx_kobj_release(struct kobject *kobj) 3659 { 3660 kfree(kobj); 3661 } 3662 3663 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3664 struct kobj_attribute *ka, char *buf) 3665 { 3666 return sysfs_emit(buf, "%s\n", scx_ops.name); 3667 } 3668 SCX_ATTR(ops); 3669 3670 static struct attribute *scx_sched_attrs[] = { 3671 &scx_attr_ops.attr, 3672 NULL, 3673 }; 3674 ATTRIBUTE_GROUPS(scx_sched); 3675 3676 static const struct kobj_type scx_ktype = { 3677 .release = scx_kobj_release, 3678 .sysfs_ops = &kobj_sysfs_ops, 3679 .default_groups = scx_sched_groups, 3680 }; 3681 3682 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3683 { 3684 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 3685 } 3686 3687 static const struct kset_uevent_ops scx_uevent_ops = { 3688 .uevent = scx_uevent, 3689 }; 3690 3691 /* 3692 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3693 * sched_class. dl/rt are already handled. 3694 */ 3695 bool task_should_scx(struct task_struct *p) 3696 { 3697 if (!scx_enabled() || 3698 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 3699 return false; 3700 if (READ_ONCE(scx_switching_all)) 3701 return true; 3702 return p->policy == SCHED_EXT; 3703 } 3704 3705 /** 3706 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 3707 * 3708 * Bypassing guarantees that all runnable tasks make forward progress without 3709 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 3710 * be held by tasks that the BPF scheduler is forgetting to run, which 3711 * unfortunately also excludes toggling the static branches. 3712 * 3713 * Let's work around by overriding a couple ops and modifying behaviors based on 3714 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 3715 * to force global FIFO scheduling. 3716 * 3717 * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 3718 * 3719 * b. ops.dispatch() is ignored. 3720 * 3721 * c. balance_scx() never sets %SCX_TASK_BAL_KEEP as the slice value can't be 3722 * trusted. Whenever a tick triggers, the running task is rotated to the tail 3723 * of the queue with core_sched_at touched. 3724 * 3725 * d. pick_next_task() suppresses zero slice warning. 3726 * 3727 * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 3728 * operations. 3729 * 3730 * f. scx_prio_less() reverts to the default core_sched_at order. 3731 */ 3732 static void scx_ops_bypass(bool bypass) 3733 { 3734 int depth, cpu; 3735 3736 if (bypass) { 3737 depth = atomic_inc_return(&scx_ops_bypass_depth); 3738 WARN_ON_ONCE(depth <= 0); 3739 if (depth != 1) 3740 return; 3741 } else { 3742 depth = atomic_dec_return(&scx_ops_bypass_depth); 3743 WARN_ON_ONCE(depth < 0); 3744 if (depth != 0) 3745 return; 3746 } 3747 3748 /* 3749 * We need to guarantee that no tasks are on the BPF scheduler while 3750 * bypassing. Either we see enabled or the enable path sees the 3751 * increased bypass_depth before moving tasks to SCX. 3752 */ 3753 if (!scx_enabled()) 3754 return; 3755 3756 /* 3757 * No task property is changing. We just need to make sure all currently 3758 * queued tasks are re-queued according to the new scx_ops_bypassing() 3759 * state. As an optimization, walk each rq's runnable_list instead of 3760 * the scx_tasks list. 3761 * 3762 * This function can't trust the scheduler and thus can't use 3763 * cpus_read_lock(). Walk all possible CPUs instead of online. 3764 */ 3765 for_each_possible_cpu(cpu) { 3766 struct rq *rq = cpu_rq(cpu); 3767 struct rq_flags rf; 3768 struct task_struct *p, *n; 3769 3770 rq_lock_irqsave(rq, &rf); 3771 3772 /* 3773 * The use of list_for_each_entry_safe_reverse() is required 3774 * because each task is going to be removed from and added back 3775 * to the runnable_list during iteration. Because they're added 3776 * to the tail of the list, safe reverse iteration can still 3777 * visit all nodes. 3778 */ 3779 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 3780 scx.runnable_node) { 3781 struct sched_enq_and_set_ctx ctx; 3782 3783 /* cycling deq/enq is enough, see the function comment */ 3784 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 3785 sched_enq_and_set_task(&ctx); 3786 } 3787 3788 rq_unlock_irqrestore(rq, &rf); 3789 3790 /* kick to restore ticks */ 3791 resched_cpu(cpu); 3792 } 3793 } 3794 3795 static void free_exit_info(struct scx_exit_info *ei) 3796 { 3797 kfree(ei->dump); 3798 kfree(ei->msg); 3799 kfree(ei->bt); 3800 kfree(ei); 3801 } 3802 3803 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 3804 { 3805 struct scx_exit_info *ei; 3806 3807 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 3808 if (!ei) 3809 return NULL; 3810 3811 ei->bt = kcalloc(sizeof(ei->bt[0]), SCX_EXIT_BT_LEN, GFP_KERNEL); 3812 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 3813 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 3814 3815 if (!ei->bt || !ei->msg || !ei->dump) { 3816 free_exit_info(ei); 3817 return NULL; 3818 } 3819 3820 return ei; 3821 } 3822 3823 static const char *scx_exit_reason(enum scx_exit_kind kind) 3824 { 3825 switch (kind) { 3826 case SCX_EXIT_UNREG: 3827 return "Scheduler unregistered from user space"; 3828 case SCX_EXIT_UNREG_BPF: 3829 return "Scheduler unregistered from BPF"; 3830 case SCX_EXIT_UNREG_KERN: 3831 return "Scheduler unregistered from the main kernel"; 3832 case SCX_EXIT_SYSRQ: 3833 return "disabled by sysrq-S"; 3834 case SCX_EXIT_ERROR: 3835 return "runtime error"; 3836 case SCX_EXIT_ERROR_BPF: 3837 return "scx_bpf_error"; 3838 case SCX_EXIT_ERROR_STALL: 3839 return "runnable task stall"; 3840 default: 3841 return "<UNKNOWN>"; 3842 } 3843 } 3844 3845 static void scx_ops_disable_workfn(struct kthread_work *work) 3846 { 3847 struct scx_exit_info *ei = scx_exit_info; 3848 struct scx_task_iter sti; 3849 struct task_struct *p; 3850 struct rhashtable_iter rht_iter; 3851 struct scx_dispatch_q *dsq; 3852 int i, kind; 3853 3854 kind = atomic_read(&scx_exit_kind); 3855 while (true) { 3856 /* 3857 * NONE indicates that a new scx_ops has been registered since 3858 * disable was scheduled - don't kill the new ops. DONE 3859 * indicates that the ops has already been disabled. 3860 */ 3861 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 3862 return; 3863 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 3864 break; 3865 } 3866 ei->kind = kind; 3867 ei->reason = scx_exit_reason(ei->kind); 3868 3869 /* guarantee forward progress by bypassing scx_ops */ 3870 scx_ops_bypass(true); 3871 3872 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 3873 case SCX_OPS_DISABLING: 3874 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 3875 break; 3876 case SCX_OPS_DISABLED: 3877 pr_warn("sched_ext: ops error detected without ops (%s)\n", 3878 scx_exit_info->msg); 3879 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 3880 SCX_OPS_DISABLING); 3881 goto done; 3882 default: 3883 break; 3884 } 3885 3886 /* 3887 * Here, every runnable task is guaranteed to make forward progress and 3888 * we can safely use blocking synchronization constructs. Actually 3889 * disable ops. 3890 */ 3891 mutex_lock(&scx_ops_enable_mutex); 3892 3893 static_branch_disable(&__scx_switched_all); 3894 WRITE_ONCE(scx_switching_all, false); 3895 3896 /* 3897 * Avoid racing against fork. See scx_ops_enable() for explanation on 3898 * the locking order. 3899 */ 3900 percpu_down_write(&scx_fork_rwsem); 3901 cpus_read_lock(); 3902 3903 spin_lock_irq(&scx_tasks_lock); 3904 scx_task_iter_init(&sti); 3905 /* 3906 * Invoke scx_ops_exit_task() on all non-idle tasks, including 3907 * TASK_DEAD tasks. Because dead tasks may have a nonzero refcount, 3908 * we may not have invoked sched_ext_free() on them by the time a 3909 * scheduler is disabled. We must therefore exit the task here, or we'd 3910 * fail to invoke ops.exit_task(), as the scheduler will have been 3911 * unloaded by the time the task is subsequently exited on the 3912 * sched_ext_free() path. 3913 */ 3914 while ((p = scx_task_iter_next_locked(&sti, true))) { 3915 const struct sched_class *old_class = p->sched_class; 3916 struct sched_enq_and_set_ctx ctx; 3917 3918 if (READ_ONCE(p->__state) != TASK_DEAD) { 3919 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, 3920 &ctx); 3921 3922 p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); 3923 __setscheduler_prio(p, p->prio); 3924 check_class_changing(task_rq(p), p, old_class); 3925 3926 sched_enq_and_set_task(&ctx); 3927 3928 check_class_changed(task_rq(p), p, old_class, p->prio); 3929 } 3930 scx_ops_exit_task(p); 3931 } 3932 scx_task_iter_exit(&sti); 3933 spin_unlock_irq(&scx_tasks_lock); 3934 3935 /* no task is on scx, turn off all the switches and flush in-progress calls */ 3936 static_branch_disable_cpuslocked(&__scx_ops_enabled); 3937 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 3938 static_branch_disable_cpuslocked(&scx_has_op[i]); 3939 static_branch_disable_cpuslocked(&scx_ops_enq_last); 3940 static_branch_disable_cpuslocked(&scx_ops_enq_exiting); 3941 static_branch_disable_cpuslocked(&scx_ops_cpu_preempt); 3942 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); 3943 synchronize_rcu(); 3944 3945 cpus_read_unlock(); 3946 percpu_up_write(&scx_fork_rwsem); 3947 3948 if (ei->kind >= SCX_EXIT_ERROR) { 3949 printk(KERN_ERR "sched_ext: BPF scheduler \"%s\" errored, disabling\n", scx_ops.name); 3950 3951 if (ei->msg[0] == '\0') 3952 printk(KERN_ERR "sched_ext: %s\n", ei->reason); 3953 else 3954 printk(KERN_ERR "sched_ext: %s (%s)\n", ei->reason, ei->msg); 3955 3956 stack_trace_print(ei->bt, ei->bt_len, 2); 3957 } 3958 3959 if (scx_ops.exit) 3960 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 3961 3962 cancel_delayed_work_sync(&scx_watchdog_work); 3963 3964 /* 3965 * Delete the kobject from the hierarchy eagerly in addition to just 3966 * dropping a reference. Otherwise, if the object is deleted 3967 * asynchronously, sysfs could observe an object of the same name still 3968 * in the hierarchy when another scheduler is loaded. 3969 */ 3970 kobject_del(scx_root_kobj); 3971 kobject_put(scx_root_kobj); 3972 scx_root_kobj = NULL; 3973 3974 memset(&scx_ops, 0, sizeof(scx_ops)); 3975 3976 rhashtable_walk_enter(&dsq_hash, &rht_iter); 3977 do { 3978 rhashtable_walk_start(&rht_iter); 3979 3980 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3981 destroy_dsq(dsq->id); 3982 3983 rhashtable_walk_stop(&rht_iter); 3984 } while (dsq == ERR_PTR(-EAGAIN)); 3985 rhashtable_walk_exit(&rht_iter); 3986 3987 free_percpu(scx_dsp_ctx); 3988 scx_dsp_ctx = NULL; 3989 scx_dsp_max_batch = 0; 3990 3991 free_exit_info(scx_exit_info); 3992 scx_exit_info = NULL; 3993 3994 mutex_unlock(&scx_ops_enable_mutex); 3995 3996 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 3997 SCX_OPS_DISABLING); 3998 done: 3999 scx_ops_bypass(false); 4000 } 4001 4002 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 4003 4004 static void schedule_scx_ops_disable_work(void) 4005 { 4006 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 4007 4008 /* 4009 * We may be called spuriously before the first bpf_sched_ext_reg(). If 4010 * scx_ops_helper isn't set up yet, there's nothing to do. 4011 */ 4012 if (helper) 4013 kthread_queue_work(helper, &scx_ops_disable_work); 4014 } 4015 4016 static void scx_ops_disable(enum scx_exit_kind kind) 4017 { 4018 int none = SCX_EXIT_NONE; 4019 4020 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4021 kind = SCX_EXIT_ERROR; 4022 4023 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 4024 4025 schedule_scx_ops_disable_work(); 4026 } 4027 4028 static void dump_newline(struct seq_buf *s) 4029 { 4030 trace_sched_ext_dump(""); 4031 4032 /* @s may be zero sized and seq_buf triggers WARN if so */ 4033 if (s->size) 4034 seq_buf_putc(s, '\n'); 4035 } 4036 4037 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4038 { 4039 va_list args; 4040 4041 #ifdef CONFIG_TRACEPOINTS 4042 if (trace_sched_ext_dump_enabled()) { 4043 /* protected by scx_dump_state()::dump_lock */ 4044 static char line_buf[SCX_EXIT_MSG_LEN]; 4045 4046 va_start(args, fmt); 4047 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4048 va_end(args); 4049 4050 trace_sched_ext_dump(line_buf); 4051 } 4052 #endif 4053 /* @s may be zero sized and seq_buf triggers WARN if so */ 4054 if (s->size) { 4055 va_start(args, fmt); 4056 seq_buf_vprintf(s, fmt, args); 4057 va_end(args); 4058 4059 seq_buf_putc(s, '\n'); 4060 } 4061 } 4062 4063 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4064 const unsigned long *bt, unsigned int len) 4065 { 4066 unsigned int i; 4067 4068 for (i = 0; i < len; i++) 4069 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4070 } 4071 4072 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4073 { 4074 struct scx_dump_data *dd = &scx_dump_data; 4075 4076 lockdep_assert_irqs_disabled(); 4077 4078 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4079 dd->first = true; 4080 dd->cursor = 0; 4081 dd->s = s; 4082 dd->prefix = prefix; 4083 } 4084 4085 static void ops_dump_flush(void) 4086 { 4087 struct scx_dump_data *dd = &scx_dump_data; 4088 char *line = dd->buf.line; 4089 4090 if (!dd->cursor) 4091 return; 4092 4093 /* 4094 * There's something to flush and this is the first line. Insert a blank 4095 * line to distinguish ops dump. 4096 */ 4097 if (dd->first) { 4098 dump_newline(dd->s); 4099 dd->first = false; 4100 } 4101 4102 /* 4103 * There may be multiple lines in $line. Scan and emit each line 4104 * separately. 4105 */ 4106 while (true) { 4107 char *end = line; 4108 char c; 4109 4110 while (*end != '\n' && *end != '\0') 4111 end++; 4112 4113 /* 4114 * If $line overflowed, it may not have newline at the end. 4115 * Always emit with a newline. 4116 */ 4117 c = *end; 4118 *end = '\0'; 4119 dump_line(dd->s, "%s%s", dd->prefix, line); 4120 if (c == '\0') 4121 break; 4122 4123 /* move to the next line */ 4124 end++; 4125 if (*end == '\0') 4126 break; 4127 line = end; 4128 } 4129 4130 dd->cursor = 0; 4131 } 4132 4133 static void ops_dump_exit(void) 4134 { 4135 ops_dump_flush(); 4136 scx_dump_data.cpu = -1; 4137 } 4138 4139 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4140 struct task_struct *p, char marker) 4141 { 4142 static unsigned long bt[SCX_EXIT_BT_LEN]; 4143 char dsq_id_buf[19] = "(n/a)"; 4144 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4145 unsigned int bt_len; 4146 4147 if (p->scx.dsq) 4148 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4149 (unsigned long long)p->scx.dsq->id); 4150 4151 dump_newline(s); 4152 dump_line(s, " %c%c %s[%d] %+ldms", 4153 marker, task_state_to_char(p), p->comm, p->pid, 4154 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4155 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4156 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4157 p->scx.dsq_node.flags, ops_state & SCX_OPSS_STATE_MASK, 4158 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4159 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", 4160 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, 4161 p->scx.dsq_vtime); 4162 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 4163 4164 if (SCX_HAS_OP(dump_task)) { 4165 ops_dump_init(s, " "); 4166 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 4167 ops_dump_exit(); 4168 } 4169 4170 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4171 if (bt_len) { 4172 dump_newline(s); 4173 dump_stack_trace(s, " ", bt, bt_len); 4174 } 4175 } 4176 4177 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4178 { 4179 static DEFINE_SPINLOCK(dump_lock); 4180 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4181 struct scx_dump_ctx dctx = { 4182 .kind = ei->kind, 4183 .exit_code = ei->exit_code, 4184 .reason = ei->reason, 4185 .at_ns = ktime_get_ns(), 4186 .at_jiffies = jiffies, 4187 }; 4188 struct seq_buf s; 4189 unsigned long flags; 4190 char *buf; 4191 int cpu; 4192 4193 spin_lock_irqsave(&dump_lock, flags); 4194 4195 seq_buf_init(&s, ei->dump, dump_len); 4196 4197 if (ei->kind == SCX_EXIT_NONE) { 4198 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4199 } else { 4200 dump_line(&s, "%s[%d] triggered exit kind %d:", 4201 current->comm, current->pid, ei->kind); 4202 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4203 dump_newline(&s); 4204 dump_line(&s, "Backtrace:"); 4205 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4206 } 4207 4208 if (SCX_HAS_OP(dump)) { 4209 ops_dump_init(&s, ""); 4210 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 4211 ops_dump_exit(); 4212 } 4213 4214 dump_newline(&s); 4215 dump_line(&s, "CPU states"); 4216 dump_line(&s, "----------"); 4217 4218 for_each_possible_cpu(cpu) { 4219 struct rq *rq = cpu_rq(cpu); 4220 struct rq_flags rf; 4221 struct task_struct *p; 4222 struct seq_buf ns; 4223 size_t avail, used; 4224 bool idle; 4225 4226 rq_lock(rq, &rf); 4227 4228 idle = list_empty(&rq->scx.runnable_list) && 4229 rq->curr->sched_class == &idle_sched_class; 4230 4231 if (idle && !SCX_HAS_OP(dump_cpu)) 4232 goto next; 4233 4234 /* 4235 * We don't yet know whether ops.dump_cpu() will produce output 4236 * and we may want to skip the default CPU dump if it doesn't. 4237 * Use a nested seq_buf to generate the standard dump so that we 4238 * can decide whether to commit later. 4239 */ 4240 avail = seq_buf_get_buf(&s, &buf); 4241 seq_buf_init(&ns, buf, avail); 4242 4243 dump_newline(&ns); 4244 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 4245 cpu, rq->scx.nr_running, rq->scx.flags, 4246 rq->scx.cpu_released, rq->scx.ops_qseq, 4247 rq->scx.pnt_seq); 4248 dump_line(&ns, " curr=%s[%d] class=%ps", 4249 rq->curr->comm, rq->curr->pid, 4250 rq->curr->sched_class); 4251 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4252 dump_line(&ns, " cpus_to_kick : %*pb", 4253 cpumask_pr_args(rq->scx.cpus_to_kick)); 4254 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4255 dump_line(&ns, " idle_to_kick : %*pb", 4256 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4257 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4258 dump_line(&ns, " cpus_to_preempt: %*pb", 4259 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4260 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4261 dump_line(&ns, " cpus_to_wait : %*pb", 4262 cpumask_pr_args(rq->scx.cpus_to_wait)); 4263 4264 used = seq_buf_used(&ns); 4265 if (SCX_HAS_OP(dump_cpu)) { 4266 ops_dump_init(&ns, " "); 4267 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 4268 ops_dump_exit(); 4269 } 4270 4271 /* 4272 * If idle && nothing generated by ops.dump_cpu(), there's 4273 * nothing interesting. Skip. 4274 */ 4275 if (idle && used == seq_buf_used(&ns)) 4276 goto next; 4277 4278 /* 4279 * $s may already have overflowed when $ns was created. If so, 4280 * calling commit on it will trigger BUG. 4281 */ 4282 if (avail) { 4283 seq_buf_commit(&s, seq_buf_used(&ns)); 4284 if (seq_buf_has_overflowed(&ns)) 4285 seq_buf_set_overflow(&s); 4286 } 4287 4288 if (rq->curr->sched_class == &ext_sched_class) 4289 scx_dump_task(&s, &dctx, rq->curr, '*'); 4290 4291 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4292 scx_dump_task(&s, &dctx, p, ' '); 4293 next: 4294 rq_unlock(rq, &rf); 4295 } 4296 4297 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4298 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4299 trunc_marker, sizeof(trunc_marker)); 4300 4301 spin_unlock_irqrestore(&dump_lock, flags); 4302 } 4303 4304 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 4305 { 4306 struct scx_exit_info *ei = scx_exit_info; 4307 4308 if (ei->kind >= SCX_EXIT_ERROR) 4309 scx_dump_state(ei, scx_ops.exit_dump_len); 4310 4311 schedule_scx_ops_disable_work(); 4312 } 4313 4314 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 4315 4316 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 4317 s64 exit_code, 4318 const char *fmt, ...) 4319 { 4320 struct scx_exit_info *ei = scx_exit_info; 4321 int none = SCX_EXIT_NONE; 4322 va_list args; 4323 4324 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 4325 return; 4326 4327 ei->exit_code = exit_code; 4328 4329 if (kind >= SCX_EXIT_ERROR) 4330 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4331 4332 va_start(args, fmt); 4333 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4334 va_end(args); 4335 4336 /* 4337 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4338 * in scx_ops_disable_workfn(). 4339 */ 4340 ei->kind = kind; 4341 ei->reason = scx_exit_reason(ei->kind); 4342 4343 irq_work_queue(&scx_ops_error_irq_work); 4344 } 4345 4346 static struct kthread_worker *scx_create_rt_helper(const char *name) 4347 { 4348 struct kthread_worker *helper; 4349 4350 helper = kthread_create_worker(0, name); 4351 if (helper) 4352 sched_set_fifo(helper->task); 4353 return helper; 4354 } 4355 4356 static void check_hotplug_seq(const struct sched_ext_ops *ops) 4357 { 4358 unsigned long long global_hotplug_seq; 4359 4360 /* 4361 * If a hotplug event has occurred between when a scheduler was 4362 * initialized, and when we were able to attach, exit and notify user 4363 * space about it. 4364 */ 4365 if (ops->hotplug_seq) { 4366 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4367 if (ops->hotplug_seq != global_hotplug_seq) { 4368 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4369 "expected hotplug seq %llu did not match actual %llu", 4370 ops->hotplug_seq, global_hotplug_seq); 4371 } 4372 } 4373 } 4374 4375 static int validate_ops(const struct sched_ext_ops *ops) 4376 { 4377 /* 4378 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4379 * ops.enqueue() callback isn't implemented. 4380 */ 4381 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4382 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4383 return -EINVAL; 4384 } 4385 4386 return 0; 4387 } 4388 4389 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4390 { 4391 struct scx_task_iter sti; 4392 struct task_struct *p; 4393 unsigned long timeout; 4394 int i, ret; 4395 4396 mutex_lock(&scx_ops_enable_mutex); 4397 4398 if (!scx_ops_helper) { 4399 WRITE_ONCE(scx_ops_helper, 4400 scx_create_rt_helper("sched_ext_ops_helper")); 4401 if (!scx_ops_helper) { 4402 ret = -ENOMEM; 4403 goto err_unlock; 4404 } 4405 } 4406 4407 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 4408 ret = -EBUSY; 4409 goto err_unlock; 4410 } 4411 4412 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 4413 if (!scx_root_kobj) { 4414 ret = -ENOMEM; 4415 goto err_unlock; 4416 } 4417 4418 scx_root_kobj->kset = scx_kset; 4419 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 4420 if (ret < 0) 4421 goto err; 4422 4423 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 4424 if (!scx_exit_info) { 4425 ret = -ENOMEM; 4426 goto err_del; 4427 } 4428 4429 /* 4430 * Set scx_ops, transition to PREPPING and clear exit info to arm the 4431 * disable path. Failure triggers full disabling from here on. 4432 */ 4433 scx_ops = *ops; 4434 4435 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) != 4436 SCX_OPS_DISABLED); 4437 4438 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 4439 scx_warned_zero_slice = false; 4440 4441 atomic_long_set(&scx_nr_rejected, 0); 4442 4443 /* 4444 * Keep CPUs stable during enable so that the BPF scheduler can track 4445 * online CPUs by watching ->on/offline_cpu() after ->init(). 4446 */ 4447 cpus_read_lock(); 4448 4449 if (scx_ops.init) { 4450 ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init); 4451 if (ret) { 4452 ret = ops_sanitize_err("init", ret); 4453 goto err_disable_unlock_cpus; 4454 } 4455 } 4456 4457 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4458 if (((void (**)(void))ops)[i]) 4459 static_branch_enable_cpuslocked(&scx_has_op[i]); 4460 4461 cpus_read_unlock(); 4462 4463 ret = validate_ops(ops); 4464 if (ret) 4465 goto err_disable; 4466 4467 WARN_ON_ONCE(scx_dsp_ctx); 4468 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4469 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4470 scx_dsp_max_batch), 4471 __alignof__(struct scx_dsp_ctx)); 4472 if (!scx_dsp_ctx) { 4473 ret = -ENOMEM; 4474 goto err_disable; 4475 } 4476 4477 if (ops->timeout_ms) 4478 timeout = msecs_to_jiffies(ops->timeout_ms); 4479 else 4480 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4481 4482 WRITE_ONCE(scx_watchdog_timeout, timeout); 4483 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4484 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4485 scx_watchdog_timeout / 2); 4486 4487 /* 4488 * Lock out forks before opening the floodgate so that they don't wander 4489 * into the operations prematurely. 4490 * 4491 * We don't need to keep the CPUs stable but grab cpus_read_lock() to 4492 * ease future locking changes for cgroup suport. 4493 * 4494 * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the 4495 * following dependency chain: 4496 * 4497 * scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock 4498 */ 4499 percpu_down_write(&scx_fork_rwsem); 4500 cpus_read_lock(); 4501 4502 check_hotplug_seq(ops); 4503 4504 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4505 if (((void (**)(void))ops)[i]) 4506 static_branch_enable_cpuslocked(&scx_has_op[i]); 4507 4508 if (ops->flags & SCX_OPS_ENQ_LAST) 4509 static_branch_enable_cpuslocked(&scx_ops_enq_last); 4510 4511 if (ops->flags & SCX_OPS_ENQ_EXITING) 4512 static_branch_enable_cpuslocked(&scx_ops_enq_exiting); 4513 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 4514 static_branch_enable_cpuslocked(&scx_ops_cpu_preempt); 4515 4516 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 4517 reset_idle_masks(); 4518 static_branch_enable_cpuslocked(&scx_builtin_idle_enabled); 4519 } else { 4520 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); 4521 } 4522 4523 static_branch_enable_cpuslocked(&__scx_ops_enabled); 4524 4525 /* 4526 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 4527 * preventing new tasks from being added. No need to exclude tasks 4528 * leaving as sched_ext_free() can handle both prepped and enabled 4529 * tasks. Prep all tasks first and then enable them with preemption 4530 * disabled. 4531 */ 4532 spin_lock_irq(&scx_tasks_lock); 4533 4534 scx_task_iter_init(&sti); 4535 while ((p = scx_task_iter_next_locked(&sti, false))) { 4536 get_task_struct(p); 4537 scx_task_iter_rq_unlock(&sti); 4538 spin_unlock_irq(&scx_tasks_lock); 4539 4540 ret = scx_ops_init_task(p, task_group(p), false); 4541 if (ret) { 4542 put_task_struct(p); 4543 spin_lock_irq(&scx_tasks_lock); 4544 scx_task_iter_exit(&sti); 4545 spin_unlock_irq(&scx_tasks_lock); 4546 pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n", 4547 ret, p->comm, p->pid); 4548 goto err_disable_unlock_all; 4549 } 4550 4551 put_task_struct(p); 4552 spin_lock_irq(&scx_tasks_lock); 4553 } 4554 scx_task_iter_exit(&sti); 4555 4556 /* 4557 * All tasks are prepped but are still ops-disabled. Ensure that 4558 * %current can't be scheduled out and switch everyone. 4559 * preempt_disable() is necessary because we can't guarantee that 4560 * %current won't be starved if scheduled out while switching. 4561 */ 4562 preempt_disable(); 4563 4564 /* 4565 * From here on, the disable path must assume that tasks have ops 4566 * enabled and need to be recovered. 4567 * 4568 * Transition to ENABLING fails iff the BPF scheduler has already 4569 * triggered scx_bpf_error(). Returning an error code here would lose 4570 * the recorded error information. Exit indicating success so that the 4571 * error is notified through ops.exit() with all the details. 4572 */ 4573 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) { 4574 preempt_enable(); 4575 spin_unlock_irq(&scx_tasks_lock); 4576 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 4577 ret = 0; 4578 goto err_disable_unlock_all; 4579 } 4580 4581 /* 4582 * We're fully committed and can't fail. The PREPPED -> ENABLED 4583 * transitions here are synchronized against sched_ext_free() through 4584 * scx_tasks_lock. 4585 */ 4586 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 4587 4588 scx_task_iter_init(&sti); 4589 while ((p = scx_task_iter_next_locked(&sti, false))) { 4590 const struct sched_class *old_class = p->sched_class; 4591 struct sched_enq_and_set_ctx ctx; 4592 4593 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4594 4595 scx_set_task_state(p, SCX_TASK_READY); 4596 __setscheduler_prio(p, p->prio); 4597 check_class_changing(task_rq(p), p, old_class); 4598 4599 sched_enq_and_set_task(&ctx); 4600 4601 check_class_changed(task_rq(p), p, old_class, p->prio); 4602 } 4603 scx_task_iter_exit(&sti); 4604 4605 spin_unlock_irq(&scx_tasks_lock); 4606 preempt_enable(); 4607 cpus_read_unlock(); 4608 percpu_up_write(&scx_fork_rwsem); 4609 4610 /* see above ENABLING transition for the explanation on exiting with 0 */ 4611 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 4612 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 4613 ret = 0; 4614 goto err_disable; 4615 } 4616 4617 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 4618 static_branch_enable(&__scx_switched_all); 4619 4620 kobject_uevent(scx_root_kobj, KOBJ_ADD); 4621 mutex_unlock(&scx_ops_enable_mutex); 4622 4623 return 0; 4624 4625 err_del: 4626 kobject_del(scx_root_kobj); 4627 err: 4628 kobject_put(scx_root_kobj); 4629 scx_root_kobj = NULL; 4630 if (scx_exit_info) { 4631 free_exit_info(scx_exit_info); 4632 scx_exit_info = NULL; 4633 } 4634 err_unlock: 4635 mutex_unlock(&scx_ops_enable_mutex); 4636 return ret; 4637 4638 err_disable_unlock_all: 4639 percpu_up_write(&scx_fork_rwsem); 4640 err_disable_unlock_cpus: 4641 cpus_read_unlock(); 4642 err_disable: 4643 mutex_unlock(&scx_ops_enable_mutex); 4644 /* must be fully disabled before returning */ 4645 scx_ops_disable(SCX_EXIT_ERROR); 4646 kthread_flush_work(&scx_ops_disable_work); 4647 return ret; 4648 } 4649 4650 4651 /******************************************************************************** 4652 * bpf_struct_ops plumbing. 4653 */ 4654 #include <linux/bpf_verifier.h> 4655 #include <linux/bpf.h> 4656 #include <linux/btf.h> 4657 4658 extern struct btf *btf_vmlinux; 4659 static const struct btf_type *task_struct_type; 4660 static u32 task_struct_type_id; 4661 4662 static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, 4663 enum bpf_access_type type, 4664 const struct bpf_prog *prog, 4665 struct bpf_insn_access_aux *info) 4666 { 4667 struct btf *btf = bpf_get_btf_vmlinux(); 4668 const struct bpf_struct_ops_desc *st_ops_desc; 4669 const struct btf_member *member; 4670 const struct btf_type *t; 4671 u32 btf_id, member_idx; 4672 const char *mname; 4673 4674 /* struct_ops op args are all sequential, 64-bit numbers */ 4675 if (off != arg_n * sizeof(__u64)) 4676 return false; 4677 4678 /* btf_id should be the type id of struct sched_ext_ops */ 4679 btf_id = prog->aux->attach_btf_id; 4680 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 4681 if (!st_ops_desc) 4682 return false; 4683 4684 /* BTF type of struct sched_ext_ops */ 4685 t = st_ops_desc->type; 4686 4687 member_idx = prog->expected_attach_type; 4688 if (member_idx >= btf_type_vlen(t)) 4689 return false; 4690 4691 /* 4692 * Get the member name of this struct_ops program, which corresponds to 4693 * a field in struct sched_ext_ops. For example, the member name of the 4694 * dispatch struct_ops program (callback) is "dispatch". 4695 */ 4696 member = &btf_type_member(t)[member_idx]; 4697 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 4698 4699 if (!strcmp(mname, op)) { 4700 /* 4701 * The value is a pointer to a type (struct task_struct) given 4702 * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), 4703 * however, can be a NULL (PTR_MAYBE_NULL). The BPF program 4704 * should check the pointer to make sure it is not NULL before 4705 * using it, or the verifier will reject the program. 4706 * 4707 * Longer term, this is something that should be addressed by 4708 * BTF, and be fully contained within the verifier. 4709 */ 4710 info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; 4711 info->btf = btf_vmlinux; 4712 info->btf_id = task_struct_type_id; 4713 4714 return true; 4715 } 4716 4717 return false; 4718 } 4719 4720 static bool bpf_scx_is_valid_access(int off, int size, 4721 enum bpf_access_type type, 4722 const struct bpf_prog *prog, 4723 struct bpf_insn_access_aux *info) 4724 { 4725 if (type != BPF_READ) 4726 return false; 4727 if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || 4728 set_arg_maybe_null("yield", 1, off, size, type, prog, info)) 4729 return true; 4730 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 4731 return false; 4732 if (off % size != 0) 4733 return false; 4734 4735 return btf_ctx_access(off, size, type, prog, info); 4736 } 4737 4738 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 4739 const struct bpf_reg_state *reg, int off, 4740 int size) 4741 { 4742 const struct btf_type *t; 4743 4744 t = btf_type_by_id(reg->btf, reg->btf_id); 4745 if (t == task_struct_type) { 4746 if (off >= offsetof(struct task_struct, scx.slice) && 4747 off + size <= offsetofend(struct task_struct, scx.slice)) 4748 return SCALAR_VALUE; 4749 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 4750 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 4751 return SCALAR_VALUE; 4752 if (off >= offsetof(struct task_struct, scx.disallow) && 4753 off + size <= offsetofend(struct task_struct, scx.disallow)) 4754 return SCALAR_VALUE; 4755 } 4756 4757 return -EACCES; 4758 } 4759 4760 static const struct bpf_func_proto * 4761 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 4762 { 4763 switch (func_id) { 4764 case BPF_FUNC_task_storage_get: 4765 return &bpf_task_storage_get_proto; 4766 case BPF_FUNC_task_storage_delete: 4767 return &bpf_task_storage_delete_proto; 4768 default: 4769 return bpf_base_func_proto(func_id, prog); 4770 } 4771 } 4772 4773 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 4774 .get_func_proto = bpf_scx_get_func_proto, 4775 .is_valid_access = bpf_scx_is_valid_access, 4776 .btf_struct_access = bpf_scx_btf_struct_access, 4777 }; 4778 4779 static int bpf_scx_init_member(const struct btf_type *t, 4780 const struct btf_member *member, 4781 void *kdata, const void *udata) 4782 { 4783 const struct sched_ext_ops *uops = udata; 4784 struct sched_ext_ops *ops = kdata; 4785 u32 moff = __btf_member_bit_offset(t, member) / 8; 4786 int ret; 4787 4788 switch (moff) { 4789 case offsetof(struct sched_ext_ops, dispatch_max_batch): 4790 if (*(u32 *)(udata + moff) > INT_MAX) 4791 return -E2BIG; 4792 ops->dispatch_max_batch = *(u32 *)(udata + moff); 4793 return 1; 4794 case offsetof(struct sched_ext_ops, flags): 4795 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 4796 return -EINVAL; 4797 ops->flags = *(u64 *)(udata + moff); 4798 return 1; 4799 case offsetof(struct sched_ext_ops, name): 4800 ret = bpf_obj_name_cpy(ops->name, uops->name, 4801 sizeof(ops->name)); 4802 if (ret < 0) 4803 return ret; 4804 if (ret == 0) 4805 return -EINVAL; 4806 return 1; 4807 case offsetof(struct sched_ext_ops, timeout_ms): 4808 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 4809 SCX_WATCHDOG_MAX_TIMEOUT) 4810 return -E2BIG; 4811 ops->timeout_ms = *(u32 *)(udata + moff); 4812 return 1; 4813 case offsetof(struct sched_ext_ops, exit_dump_len): 4814 ops->exit_dump_len = 4815 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 4816 return 1; 4817 case offsetof(struct sched_ext_ops, hotplug_seq): 4818 ops->hotplug_seq = *(u64 *)(udata + moff); 4819 return 1; 4820 } 4821 4822 return 0; 4823 } 4824 4825 static int bpf_scx_check_member(const struct btf_type *t, 4826 const struct btf_member *member, 4827 const struct bpf_prog *prog) 4828 { 4829 u32 moff = __btf_member_bit_offset(t, member) / 8; 4830 4831 switch (moff) { 4832 case offsetof(struct sched_ext_ops, init_task): 4833 case offsetof(struct sched_ext_ops, cpu_online): 4834 case offsetof(struct sched_ext_ops, cpu_offline): 4835 case offsetof(struct sched_ext_ops, init): 4836 case offsetof(struct sched_ext_ops, exit): 4837 break; 4838 default: 4839 if (prog->sleepable) 4840 return -EINVAL; 4841 } 4842 4843 return 0; 4844 } 4845 4846 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 4847 { 4848 return scx_ops_enable(kdata, link); 4849 } 4850 4851 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 4852 { 4853 scx_ops_disable(SCX_EXIT_UNREG); 4854 kthread_flush_work(&scx_ops_disable_work); 4855 } 4856 4857 static int bpf_scx_init(struct btf *btf) 4858 { 4859 u32 type_id; 4860 4861 type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); 4862 if (type_id < 0) 4863 return -EINVAL; 4864 task_struct_type = btf_type_by_id(btf, type_id); 4865 task_struct_type_id = type_id; 4866 4867 return 0; 4868 } 4869 4870 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 4871 { 4872 /* 4873 * sched_ext does not support updating the actively-loaded BPF 4874 * scheduler, as registering a BPF scheduler can always fail if the 4875 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 4876 * etc. Similarly, we can always race with unregistration happening 4877 * elsewhere, such as with sysrq. 4878 */ 4879 return -EOPNOTSUPP; 4880 } 4881 4882 static int bpf_scx_validate(void *kdata) 4883 { 4884 return 0; 4885 } 4886 4887 static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 4888 static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} 4889 static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} 4890 static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} 4891 static void runnable_stub(struct task_struct *p, u64 enq_flags) {} 4892 static void running_stub(struct task_struct *p) {} 4893 static void stopping_stub(struct task_struct *p, bool runnable) {} 4894 static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} 4895 static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } 4896 static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } 4897 static void set_weight_stub(struct task_struct *p, u32 weight) {} 4898 static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} 4899 static void update_idle_stub(s32 cpu, bool idle) {} 4900 static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} 4901 static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} 4902 static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 4903 static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} 4904 static void enable_stub(struct task_struct *p) {} 4905 static void disable_stub(struct task_struct *p) {} 4906 static void cpu_online_stub(s32 cpu) {} 4907 static void cpu_offline_stub(s32 cpu) {} 4908 static s32 init_stub(void) { return -EINVAL; } 4909 static void exit_stub(struct scx_exit_info *info) {} 4910 4911 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 4912 .select_cpu = select_cpu_stub, 4913 .enqueue = enqueue_stub, 4914 .dequeue = dequeue_stub, 4915 .dispatch = dispatch_stub, 4916 .runnable = runnable_stub, 4917 .running = running_stub, 4918 .stopping = stopping_stub, 4919 .quiescent = quiescent_stub, 4920 .yield = yield_stub, 4921 .core_sched_before = core_sched_before_stub, 4922 .set_weight = set_weight_stub, 4923 .set_cpumask = set_cpumask_stub, 4924 .update_idle = update_idle_stub, 4925 .cpu_acquire = cpu_acquire_stub, 4926 .cpu_release = cpu_release_stub, 4927 .init_task = init_task_stub, 4928 .exit_task = exit_task_stub, 4929 .enable = enable_stub, 4930 .disable = disable_stub, 4931 .cpu_online = cpu_online_stub, 4932 .cpu_offline = cpu_offline_stub, 4933 .init = init_stub, 4934 .exit = exit_stub, 4935 }; 4936 4937 static struct bpf_struct_ops bpf_sched_ext_ops = { 4938 .verifier_ops = &bpf_scx_verifier_ops, 4939 .reg = bpf_scx_reg, 4940 .unreg = bpf_scx_unreg, 4941 .check_member = bpf_scx_check_member, 4942 .init_member = bpf_scx_init_member, 4943 .init = bpf_scx_init, 4944 .update = bpf_scx_update, 4945 .validate = bpf_scx_validate, 4946 .name = "sched_ext_ops", 4947 .owner = THIS_MODULE, 4948 .cfi_stubs = &__bpf_ops_sched_ext_ops 4949 }; 4950 4951 4952 /******************************************************************************** 4953 * System integration and init. 4954 */ 4955 4956 static void sysrq_handle_sched_ext_reset(u8 key) 4957 { 4958 if (scx_ops_helper) 4959 scx_ops_disable(SCX_EXIT_SYSRQ); 4960 else 4961 pr_info("sched_ext: BPF scheduler not yet used\n"); 4962 } 4963 4964 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 4965 .handler = sysrq_handle_sched_ext_reset, 4966 .help_msg = "reset-sched-ext(S)", 4967 .action_msg = "Disable sched_ext and revert all tasks to CFS", 4968 .enable_mask = SYSRQ_ENABLE_RTNICE, 4969 }; 4970 4971 static void sysrq_handle_sched_ext_dump(u8 key) 4972 { 4973 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 4974 4975 if (scx_enabled()) 4976 scx_dump_state(&ei, 0); 4977 } 4978 4979 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 4980 .handler = sysrq_handle_sched_ext_dump, 4981 .help_msg = "dump-sched-ext(D)", 4982 .action_msg = "Trigger sched_ext debug dump", 4983 .enable_mask = SYSRQ_ENABLE_RTNICE, 4984 }; 4985 4986 static bool can_skip_idle_kick(struct rq *rq) 4987 { 4988 lockdep_assert_rq_held(rq); 4989 4990 /* 4991 * We can skip idle kicking if @rq is going to go through at least one 4992 * full SCX scheduling cycle before going idle. Just checking whether 4993 * curr is not idle is insufficient because we could be racing 4994 * balance_one() trying to pull the next task from a remote rq, which 4995 * may fail, and @rq may become idle afterwards. 4996 * 4997 * The race window is small and we don't and can't guarantee that @rq is 4998 * only kicked while idle anyway. Skip only when sure. 4999 */ 5000 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_BALANCING); 5001 } 5002 5003 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5004 { 5005 struct rq *rq = cpu_rq(cpu); 5006 struct scx_rq *this_scx = &this_rq->scx; 5007 bool should_wait = false; 5008 unsigned long flags; 5009 5010 raw_spin_rq_lock_irqsave(rq, flags); 5011 5012 /* 5013 * During CPU hotplug, a CPU may depend on kicking itself to make 5014 * forward progress. Allow kicking self regardless of online state. 5015 */ 5016 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5017 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5018 if (rq->curr->sched_class == &ext_sched_class) 5019 rq->curr->scx.slice = 0; 5020 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5021 } 5022 5023 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5024 pseqs[cpu] = rq->scx.pnt_seq; 5025 should_wait = true; 5026 } 5027 5028 resched_curr(rq); 5029 } else { 5030 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5031 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5032 } 5033 5034 raw_spin_rq_unlock_irqrestore(rq, flags); 5035 5036 return should_wait; 5037 } 5038 5039 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5040 { 5041 struct rq *rq = cpu_rq(cpu); 5042 unsigned long flags; 5043 5044 raw_spin_rq_lock_irqsave(rq, flags); 5045 5046 if (!can_skip_idle_kick(rq) && 5047 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5048 resched_curr(rq); 5049 5050 raw_spin_rq_unlock_irqrestore(rq, flags); 5051 } 5052 5053 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5054 { 5055 struct rq *this_rq = this_rq(); 5056 struct scx_rq *this_scx = &this_rq->scx; 5057 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 5058 bool should_wait = false; 5059 s32 cpu; 5060 5061 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5062 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5063 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5064 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5065 } 5066 5067 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5068 kick_one_cpu_if_idle(cpu, this_rq); 5069 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5070 } 5071 5072 if (!should_wait) 5073 return; 5074 5075 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5076 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5077 5078 if (cpu != cpu_of(this_rq)) { 5079 /* 5080 * Pairs with smp_store_release() issued by this CPU in 5081 * scx_next_task_picked() on the resched path. 5082 * 5083 * We busy-wait here to guarantee that no other task can 5084 * be scheduled on our core before the target CPU has 5085 * entered the resched path. 5086 */ 5087 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5088 cpu_relax(); 5089 } 5090 5091 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5092 } 5093 } 5094 5095 /** 5096 * print_scx_info - print out sched_ext scheduler state 5097 * @log_lvl: the log level to use when printing 5098 * @p: target task 5099 * 5100 * If a sched_ext scheduler is enabled, print the name and state of the 5101 * scheduler. If @p is on sched_ext, print further information about the task. 5102 * 5103 * This function can be safely called on any task as long as the task_struct 5104 * itself is accessible. While safe, this function isn't synchronized and may 5105 * print out mixups or garbages of limited length. 5106 */ 5107 void print_scx_info(const char *log_lvl, struct task_struct *p) 5108 { 5109 enum scx_ops_enable_state state = scx_ops_enable_state(); 5110 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5111 char runnable_at_buf[22] = "?"; 5112 struct sched_class *class; 5113 unsigned long runnable_at; 5114 5115 if (state == SCX_OPS_DISABLED) 5116 return; 5117 5118 /* 5119 * Carefully check if the task was running on sched_ext, and then 5120 * carefully copy the time it's been runnable, and its state. 5121 */ 5122 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5123 class != &ext_sched_class) { 5124 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 5125 scx_ops_enable_state_str[state], all); 5126 return; 5127 } 5128 5129 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5130 sizeof(runnable_at))) 5131 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5132 jiffies_delta_msecs(runnable_at, jiffies)); 5133 5134 /* print everything onto one line to conserve console space */ 5135 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5136 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 5137 runnable_at_buf); 5138 } 5139 5140 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5141 { 5142 /* 5143 * SCX schedulers often have userspace components which are sometimes 5144 * involved in critial scheduling paths. PM operations involve freezing 5145 * userspace which can lead to scheduling misbehaviors including stalls. 5146 * Let's bypass while PM operations are in progress. 5147 */ 5148 switch (event) { 5149 case PM_HIBERNATION_PREPARE: 5150 case PM_SUSPEND_PREPARE: 5151 case PM_RESTORE_PREPARE: 5152 scx_ops_bypass(true); 5153 break; 5154 case PM_POST_HIBERNATION: 5155 case PM_POST_SUSPEND: 5156 case PM_POST_RESTORE: 5157 scx_ops_bypass(false); 5158 break; 5159 } 5160 5161 return NOTIFY_OK; 5162 } 5163 5164 static struct notifier_block scx_pm_notifier = { 5165 .notifier_call = scx_pm_handler, 5166 }; 5167 5168 void __init init_sched_ext_class(void) 5169 { 5170 s32 cpu, v; 5171 5172 /* 5173 * The following is to prevent the compiler from optimizing out the enum 5174 * definitions so that BPF scheduler implementations can use them 5175 * through the generated vmlinux.h. 5176 */ 5177 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT); 5178 5179 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 5180 init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL); 5181 #ifdef CONFIG_SMP 5182 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 5183 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 5184 #endif 5185 scx_kick_cpus_pnt_seqs = 5186 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 5187 __alignof__(scx_kick_cpus_pnt_seqs[0])); 5188 BUG_ON(!scx_kick_cpus_pnt_seqs); 5189 5190 for_each_possible_cpu(cpu) { 5191 struct rq *rq = cpu_rq(cpu); 5192 5193 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5194 INIT_LIST_HEAD(&rq->scx.runnable_list); 5195 5196 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 5197 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 5198 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 5199 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 5200 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 5201 5202 if (cpu_online(cpu)) 5203 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5204 } 5205 5206 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5207 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5208 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5209 } 5210 5211 5212 /******************************************************************************** 5213 * Helpers that can be called from the BPF scheduler. 5214 */ 5215 #include <linux/btf_ids.h> 5216 5217 __bpf_kfunc_start_defs(); 5218 5219 /** 5220 * scx_bpf_create_dsq - Create a custom DSQ 5221 * @dsq_id: DSQ to create 5222 * @node: NUMA node to allocate from 5223 * 5224 * Create a custom DSQ identified by @dsq_id. Can be called from ops.init() and 5225 * ops.init_task(). 5226 */ 5227 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 5228 { 5229 if (!scx_kf_allowed(SCX_KF_SLEEPABLE)) 5230 return -EINVAL; 5231 5232 if (unlikely(node >= (int)nr_node_ids || 5233 (node < 0 && node != NUMA_NO_NODE))) 5234 return -EINVAL; 5235 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 5236 } 5237 5238 __bpf_kfunc_end_defs(); 5239 5240 BTF_KFUNCS_START(scx_kfunc_ids_sleepable) 5241 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 5242 BTF_KFUNCS_END(scx_kfunc_ids_sleepable) 5243 5244 static const struct btf_kfunc_id_set scx_kfunc_set_sleepable = { 5245 .owner = THIS_MODULE, 5246 .set = &scx_kfunc_ids_sleepable, 5247 }; 5248 5249 __bpf_kfunc_start_defs(); 5250 5251 /** 5252 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 5253 * @p: task_struct to select a CPU for 5254 * @prev_cpu: CPU @p was on previously 5255 * @wake_flags: %SCX_WAKE_* flags 5256 * @is_idle: out parameter indicating whether the returned CPU is idle 5257 * 5258 * Can only be called from ops.select_cpu() if the built-in CPU selection is 5259 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 5260 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 5261 * 5262 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 5263 * currently idle and thus a good candidate for direct dispatching. 5264 */ 5265 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 5266 u64 wake_flags, bool *is_idle) 5267 { 5268 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { 5269 *is_idle = false; 5270 return prev_cpu; 5271 } 5272 #ifdef CONFIG_SMP 5273 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 5274 #else 5275 *is_idle = false; 5276 return prev_cpu; 5277 #endif 5278 } 5279 5280 __bpf_kfunc_end_defs(); 5281 5282 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 5283 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 5284 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 5285 5286 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 5287 .owner = THIS_MODULE, 5288 .set = &scx_kfunc_ids_select_cpu, 5289 }; 5290 5291 static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) 5292 { 5293 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5294 return false; 5295 5296 lockdep_assert_irqs_disabled(); 5297 5298 if (unlikely(!p)) { 5299 scx_ops_error("called with NULL task"); 5300 return false; 5301 } 5302 5303 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5304 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 5305 return false; 5306 } 5307 5308 return true; 5309 } 5310 5311 static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) 5312 { 5313 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5314 struct task_struct *ddsp_task; 5315 5316 ddsp_task = __this_cpu_read(direct_dispatch_task); 5317 if (ddsp_task) { 5318 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 5319 return; 5320 } 5321 5322 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5323 scx_ops_error("dispatch buffer overflow"); 5324 return; 5325 } 5326 5327 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5328 .task = p, 5329 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5330 .dsq_id = dsq_id, 5331 .enq_flags = enq_flags, 5332 }; 5333 } 5334 5335 __bpf_kfunc_start_defs(); 5336 5337 /** 5338 * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ 5339 * @p: task_struct to dispatch 5340 * @dsq_id: DSQ to dispatch to 5341 * @slice: duration @p can run for in nsecs 5342 * @enq_flags: SCX_ENQ_* 5343 * 5344 * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe 5345 * to call this function spuriously. Can be called from ops.enqueue(), 5346 * ops.select_cpu(), and ops.dispatch(). 5347 * 5348 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5349 * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be 5350 * used to target the local DSQ of a CPU other than the enqueueing one. Use 5351 * ops.select_cpu() to be on the target CPU in the first place. 5352 * 5353 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5354 * will be directly dispatched to the corresponding dispatch queue after 5355 * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be 5356 * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). 5357 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5358 * task is dispatched. 5359 * 5360 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5361 * and this function can be called upto ops.dispatch_max_batch times to dispatch 5362 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5363 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 5364 * 5365 * This function doesn't have any locking restrictions and may be called under 5366 * BPF locks (in the future when BPF introduces more flexible locking). 5367 * 5368 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5369 * exhaustion. If zero, the current residual slice is maintained. If 5370 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5371 * scx_bpf_kick_cpu() to trigger scheduling. 5372 */ 5373 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 5374 u64 enq_flags) 5375 { 5376 if (!scx_dispatch_preamble(p, enq_flags)) 5377 return; 5378 5379 if (slice) 5380 p->scx.slice = slice; 5381 else 5382 p->scx.slice = p->scx.slice ?: 1; 5383 5384 scx_dispatch_commit(p, dsq_id, enq_flags); 5385 } 5386 5387 /** 5388 * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ 5389 * @p: task_struct to dispatch 5390 * @dsq_id: DSQ to dispatch to 5391 * @slice: duration @p can run for in nsecs 5392 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5393 * @enq_flags: SCX_ENQ_* 5394 * 5395 * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. 5396 * Tasks queued into the priority queue are ordered by @vtime and always 5397 * consumed after the tasks in the FIFO queue. All other aspects are identical 5398 * to scx_bpf_dispatch(). 5399 * 5400 * @vtime ordering is according to time_before64() which considers wrapping. A 5401 * numerically larger vtime may indicate an earlier position in the ordering and 5402 * vice-versa. 5403 */ 5404 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 5405 u64 slice, u64 vtime, u64 enq_flags) 5406 { 5407 if (!scx_dispatch_preamble(p, enq_flags)) 5408 return; 5409 5410 if (slice) 5411 p->scx.slice = slice; 5412 else 5413 p->scx.slice = p->scx.slice ?: 1; 5414 5415 p->scx.dsq_vtime = vtime; 5416 5417 scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5418 } 5419 5420 __bpf_kfunc_end_defs(); 5421 5422 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5423 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 5424 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 5425 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5426 5427 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5428 .owner = THIS_MODULE, 5429 .set = &scx_kfunc_ids_enqueue_dispatch, 5430 }; 5431 5432 __bpf_kfunc_start_defs(); 5433 5434 /** 5435 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5436 * 5437 * Can only be called from ops.dispatch(). 5438 */ 5439 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5440 { 5441 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 5442 return 0; 5443 5444 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 5445 } 5446 5447 /** 5448 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 5449 * 5450 * Cancel the latest dispatch. Can be called multiple times to cancel further 5451 * dispatches. Can only be called from ops.dispatch(). 5452 */ 5453 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 5454 { 5455 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5456 5457 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 5458 return; 5459 5460 if (dspc->cursor > 0) 5461 dspc->cursor--; 5462 else 5463 scx_ops_error("dispatch buffer underflow"); 5464 } 5465 5466 /** 5467 * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ 5468 * @dsq_id: DSQ to consume 5469 * 5470 * Consume a task from the non-local DSQ identified by @dsq_id and transfer it 5471 * to the current CPU's local DSQ for execution. Can only be called from 5472 * ops.dispatch(). 5473 * 5474 * This function flushes the in-flight dispatches from scx_bpf_dispatch() before 5475 * trying to consume the specified DSQ. It may also grab rq locks and thus can't 5476 * be called under any BPF locks. 5477 * 5478 * Returns %true if a task has been consumed, %false if there isn't any task to 5479 * consume. 5480 */ 5481 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 5482 { 5483 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5484 struct scx_dispatch_q *dsq; 5485 5486 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 5487 return false; 5488 5489 flush_dispatch_buf(dspc->rq, dspc->rf); 5490 5491 dsq = find_non_local_dsq(dsq_id); 5492 if (unlikely(!dsq)) { 5493 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 5494 return false; 5495 } 5496 5497 if (consume_dispatch_q(dspc->rq, dspc->rf, dsq)) { 5498 /* 5499 * A successfully consumed task can be dequeued before it starts 5500 * running while the CPU is trying to migrate other dispatched 5501 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 5502 * local DSQ. 5503 */ 5504 dspc->nr_tasks++; 5505 return true; 5506 } else { 5507 return false; 5508 } 5509 } 5510 5511 __bpf_kfunc_end_defs(); 5512 5513 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 5514 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 5515 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 5516 BTF_ID_FLAGS(func, scx_bpf_consume) 5517 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 5518 5519 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 5520 .owner = THIS_MODULE, 5521 .set = &scx_kfunc_ids_dispatch, 5522 }; 5523 5524 __bpf_kfunc_start_defs(); 5525 5526 /** 5527 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 5528 * 5529 * Iterate over all of the tasks currently enqueued on the local DSQ of the 5530 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 5531 * processed tasks. Can only be called from ops.cpu_release(). 5532 */ 5533 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 5534 { 5535 u32 nr_enqueued, i; 5536 struct rq *rq; 5537 5538 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 5539 return 0; 5540 5541 rq = cpu_rq(smp_processor_id()); 5542 lockdep_assert_rq_held(rq); 5543 5544 /* 5545 * Get the number of tasks on the local DSQ before iterating over it to 5546 * pull off tasks. The enqueue callback below can signal that it wants 5547 * the task to stay on the local DSQ, and we want to prevent the BPF 5548 * scheduler from causing us to loop indefinitely. 5549 */ 5550 nr_enqueued = rq->scx.local_dsq.nr; 5551 for (i = 0; i < nr_enqueued; i++) { 5552 struct task_struct *p; 5553 5554 p = first_local_task(rq); 5555 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != 5556 SCX_OPSS_NONE); 5557 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 5558 WARN_ON_ONCE(p->scx.holding_cpu != -1); 5559 dispatch_dequeue(rq, p); 5560 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 5561 } 5562 5563 return nr_enqueued; 5564 } 5565 5566 __bpf_kfunc_end_defs(); 5567 5568 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 5569 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 5570 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 5571 5572 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 5573 .owner = THIS_MODULE, 5574 .set = &scx_kfunc_ids_cpu_release, 5575 }; 5576 5577 __bpf_kfunc_start_defs(); 5578 5579 /** 5580 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 5581 * @cpu: cpu to kick 5582 * @flags: %SCX_KICK_* flags 5583 * 5584 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 5585 * trigger rescheduling on a busy CPU. This can be called from any online 5586 * scx_ops operation and the actual kicking is performed asynchronously through 5587 * an irq work. 5588 */ 5589 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 5590 { 5591 struct rq *this_rq; 5592 unsigned long irq_flags; 5593 5594 if (!ops_cpu_valid(cpu, NULL)) 5595 return; 5596 5597 /* 5598 * While bypassing for PM ops, IRQ handling may not be online which can 5599 * lead to irq_work_queue() malfunction such as infinite busy wait for 5600 * IRQ status update. Suppress kicking. 5601 */ 5602 if (scx_ops_bypassing()) 5603 return; 5604 5605 local_irq_save(irq_flags); 5606 5607 this_rq = this_rq(); 5608 5609 /* 5610 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 5611 * rq locks. We can probably be smarter and avoid bouncing if called 5612 * from ops which don't hold a rq lock. 5613 */ 5614 if (flags & SCX_KICK_IDLE) { 5615 struct rq *target_rq = cpu_rq(cpu); 5616 5617 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 5618 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 5619 5620 if (raw_spin_rq_trylock(target_rq)) { 5621 if (can_skip_idle_kick(target_rq)) { 5622 raw_spin_rq_unlock(target_rq); 5623 goto out; 5624 } 5625 raw_spin_rq_unlock(target_rq); 5626 } 5627 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 5628 } else { 5629 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 5630 5631 if (flags & SCX_KICK_PREEMPT) 5632 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 5633 if (flags & SCX_KICK_WAIT) 5634 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 5635 } 5636 5637 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 5638 out: 5639 local_irq_restore(irq_flags); 5640 } 5641 5642 /** 5643 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 5644 * @dsq_id: id of the DSQ 5645 * 5646 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 5647 * -%ENOENT is returned. 5648 */ 5649 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 5650 { 5651 struct scx_dispatch_q *dsq; 5652 s32 ret; 5653 5654 preempt_disable(); 5655 5656 if (dsq_id == SCX_DSQ_LOCAL) { 5657 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 5658 goto out; 5659 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 5660 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 5661 5662 if (ops_cpu_valid(cpu, NULL)) { 5663 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 5664 goto out; 5665 } 5666 } else { 5667 dsq = find_non_local_dsq(dsq_id); 5668 if (dsq) { 5669 ret = READ_ONCE(dsq->nr); 5670 goto out; 5671 } 5672 } 5673 ret = -ENOENT; 5674 out: 5675 preempt_enable(); 5676 return ret; 5677 } 5678 5679 /** 5680 * scx_bpf_destroy_dsq - Destroy a custom DSQ 5681 * @dsq_id: DSQ to destroy 5682 * 5683 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 5684 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 5685 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 5686 * which doesn't exist. Can be called from any online scx_ops operations. 5687 */ 5688 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 5689 { 5690 destroy_dsq(dsq_id); 5691 } 5692 5693 __bpf_kfunc_end_defs(); 5694 5695 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 5696 char *fmt, unsigned long long *data, u32 data__sz) 5697 { 5698 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 5699 s32 ret; 5700 5701 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 5702 (data__sz && !data)) { 5703 scx_ops_error("invalid data=%p and data__sz=%u", 5704 (void *)data, data__sz); 5705 return -EINVAL; 5706 } 5707 5708 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 5709 if (ret < 0) { 5710 scx_ops_error("failed to read data fields (%d)", ret); 5711 return ret; 5712 } 5713 5714 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 5715 &bprintf_data); 5716 if (ret < 0) { 5717 scx_ops_error("format preparation failed (%d)", ret); 5718 return ret; 5719 } 5720 5721 ret = bstr_printf(line_buf, line_size, fmt, 5722 bprintf_data.bin_args); 5723 bpf_bprintf_cleanup(&bprintf_data); 5724 if (ret < 0) { 5725 scx_ops_error("(\"%s\", %p, %u) failed to format", 5726 fmt, data, data__sz); 5727 return ret; 5728 } 5729 5730 return ret; 5731 } 5732 5733 static s32 bstr_format(struct scx_bstr_buf *buf, 5734 char *fmt, unsigned long long *data, u32 data__sz) 5735 { 5736 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 5737 fmt, data, data__sz); 5738 } 5739 5740 __bpf_kfunc_start_defs(); 5741 5742 /** 5743 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 5744 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 5745 * @fmt: error message format string 5746 * @data: format string parameters packaged using ___bpf_fill() macro 5747 * @data__sz: @data len, must end in '__sz' for the verifier 5748 * 5749 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 5750 * disabling. 5751 */ 5752 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 5753 unsigned long long *data, u32 data__sz) 5754 { 5755 unsigned long flags; 5756 5757 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 5758 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 5759 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 5760 scx_exit_bstr_buf.line); 5761 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 5762 } 5763 5764 /** 5765 * scx_bpf_error_bstr - Indicate fatal error 5766 * @fmt: error message format string 5767 * @data: format string parameters packaged using ___bpf_fill() macro 5768 * @data__sz: @data len, must end in '__sz' for the verifier 5769 * 5770 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 5771 * disabling. 5772 */ 5773 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 5774 u32 data__sz) 5775 { 5776 unsigned long flags; 5777 5778 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 5779 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 5780 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 5781 scx_exit_bstr_buf.line); 5782 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 5783 } 5784 5785 /** 5786 * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler 5787 * @fmt: format string 5788 * @data: format string parameters packaged using ___bpf_fill() macro 5789 * @data__sz: @data len, must end in '__sz' for the verifier 5790 * 5791 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 5792 * dump_task() to generate extra debug dump specific to the BPF scheduler. 5793 * 5794 * The extra dump may be multiple lines. A single line may be split over 5795 * multiple calls. The last line is automatically terminated. 5796 */ 5797 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 5798 u32 data__sz) 5799 { 5800 struct scx_dump_data *dd = &scx_dump_data; 5801 struct scx_bstr_buf *buf = &dd->buf; 5802 s32 ret; 5803 5804 if (raw_smp_processor_id() != dd->cpu) { 5805 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 5806 return; 5807 } 5808 5809 /* append the formatted string to the line buf */ 5810 ret = __bstr_format(buf->data, buf->line + dd->cursor, 5811 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 5812 if (ret < 0) { 5813 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 5814 dd->prefix, fmt, data, data__sz, ret); 5815 return; 5816 } 5817 5818 dd->cursor += ret; 5819 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 5820 5821 if (!dd->cursor) 5822 return; 5823 5824 /* 5825 * If the line buf overflowed or ends in a newline, flush it into the 5826 * dump. This is to allow the caller to generate a single line over 5827 * multiple calls. As ops_dump_flush() can also handle multiple lines in 5828 * the line buf, the only case which can lead to an unexpected 5829 * truncation is when the caller keeps generating newlines in the middle 5830 * instead of the end consecutively. Don't do that. 5831 */ 5832 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 5833 ops_dump_flush(); 5834 } 5835 5836 /** 5837 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 5838 * 5839 * All valid CPU IDs in the system are smaller than the returned value. 5840 */ 5841 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 5842 { 5843 return nr_cpu_ids; 5844 } 5845 5846 /** 5847 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 5848 */ 5849 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 5850 { 5851 return cpu_possible_mask; 5852 } 5853 5854 /** 5855 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 5856 */ 5857 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 5858 { 5859 return cpu_online_mask; 5860 } 5861 5862 /** 5863 * scx_bpf_put_cpumask - Release a possible/online cpumask 5864 * @cpumask: cpumask to release 5865 */ 5866 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 5867 { 5868 /* 5869 * Empty function body because we aren't actually acquiring or releasing 5870 * a reference to a global cpumask, which is read-only in the caller and 5871 * is never released. The acquire / release semantics here are just used 5872 * to make the cpumask is a trusted pointer in the caller. 5873 */ 5874 } 5875 5876 /** 5877 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 5878 * per-CPU cpumask. 5879 * 5880 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 5881 */ 5882 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 5883 { 5884 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5885 scx_ops_error("built-in idle tracking is disabled"); 5886 return cpu_none_mask; 5887 } 5888 5889 #ifdef CONFIG_SMP 5890 return idle_masks.cpu; 5891 #else 5892 return cpu_none_mask; 5893 #endif 5894 } 5895 5896 /** 5897 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 5898 * per-physical-core cpumask. Can be used to determine if an entire physical 5899 * core is free. 5900 * 5901 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 5902 */ 5903 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 5904 { 5905 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5906 scx_ops_error("built-in idle tracking is disabled"); 5907 return cpu_none_mask; 5908 } 5909 5910 #ifdef CONFIG_SMP 5911 if (sched_smt_active()) 5912 return idle_masks.smt; 5913 else 5914 return idle_masks.cpu; 5915 #else 5916 return cpu_none_mask; 5917 #endif 5918 } 5919 5920 /** 5921 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 5922 * either the percpu, or SMT idle-tracking cpumask. 5923 */ 5924 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 5925 { 5926 /* 5927 * Empty function body because we aren't actually acquiring or releasing 5928 * a reference to a global idle cpumask, which is read-only in the 5929 * caller and is never released. The acquire / release semantics here 5930 * are just used to make the cpumask a trusted pointer in the caller. 5931 */ 5932 } 5933 5934 /** 5935 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 5936 * @cpu: cpu to test and clear idle for 5937 * 5938 * Returns %true if @cpu was idle and its idle state was successfully cleared. 5939 * %false otherwise. 5940 * 5941 * Unavailable if ops.update_idle() is implemented and 5942 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 5943 */ 5944 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 5945 { 5946 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5947 scx_ops_error("built-in idle tracking is disabled"); 5948 return false; 5949 } 5950 5951 if (ops_cpu_valid(cpu, NULL)) 5952 return test_and_clear_cpu_idle(cpu); 5953 else 5954 return false; 5955 } 5956 5957 /** 5958 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 5959 * @cpus_allowed: Allowed cpumask 5960 * @flags: %SCX_PICK_IDLE_CPU_* flags 5961 * 5962 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 5963 * number on success. -%EBUSY if no matching cpu was found. 5964 * 5965 * Idle CPU tracking may race against CPU scheduling state transitions. For 5966 * example, this function may return -%EBUSY as CPUs are transitioning into the 5967 * idle state. If the caller then assumes that there will be dispatch events on 5968 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 5969 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 5970 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 5971 * event in the near future. 5972 * 5973 * Unavailable if ops.update_idle() is implemented and 5974 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 5975 */ 5976 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 5977 u64 flags) 5978 { 5979 if (!static_branch_likely(&scx_builtin_idle_enabled)) { 5980 scx_ops_error("built-in idle tracking is disabled"); 5981 return -EBUSY; 5982 } 5983 5984 return scx_pick_idle_cpu(cpus_allowed, flags); 5985 } 5986 5987 /** 5988 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 5989 * @cpus_allowed: Allowed cpumask 5990 * @flags: %SCX_PICK_IDLE_CPU_* flags 5991 * 5992 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 5993 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 5994 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 5995 * empty. 5996 * 5997 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 5998 * set, this function can't tell which CPUs are idle and will always pick any 5999 * CPU. 6000 */ 6001 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 6002 u64 flags) 6003 { 6004 s32 cpu; 6005 6006 if (static_branch_likely(&scx_builtin_idle_enabled)) { 6007 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 6008 if (cpu >= 0) 6009 return cpu; 6010 } 6011 6012 cpu = cpumask_any_distribute(cpus_allowed); 6013 if (cpu < nr_cpu_ids) 6014 return cpu; 6015 else 6016 return -EBUSY; 6017 } 6018 6019 /** 6020 * scx_bpf_task_running - Is task currently running? 6021 * @p: task of interest 6022 */ 6023 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6024 { 6025 return task_rq(p)->curr == p; 6026 } 6027 6028 /** 6029 * scx_bpf_task_cpu - CPU a task is currently associated with 6030 * @p: task of interest 6031 */ 6032 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6033 { 6034 return task_cpu(p); 6035 } 6036 6037 __bpf_kfunc_end_defs(); 6038 6039 BTF_KFUNCS_START(scx_kfunc_ids_any) 6040 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 6041 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 6042 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 6043 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 6044 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 6045 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 6046 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 6047 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 6048 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 6049 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 6050 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 6051 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 6052 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 6053 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 6054 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 6055 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 6056 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 6057 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 6058 BTF_KFUNCS_END(scx_kfunc_ids_any) 6059 6060 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 6061 .owner = THIS_MODULE, 6062 .set = &scx_kfunc_ids_any, 6063 }; 6064 6065 static int __init scx_init(void) 6066 { 6067 int ret; 6068 6069 /* 6070 * kfunc registration can't be done from init_sched_ext_class() as 6071 * register_btf_kfunc_id_set() needs most of the system to be up. 6072 * 6073 * Some kfuncs are context-sensitive and can only be called from 6074 * specific SCX ops. They are grouped into BTF sets accordingly. 6075 * Unfortunately, BPF currently doesn't have a way of enforcing such 6076 * restrictions. Eventually, the verifier should be able to enforce 6077 * them. For now, register them the same and make each kfunc explicitly 6078 * check using scx_kf_allowed(). 6079 */ 6080 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6081 &scx_kfunc_set_sleepable)) || 6082 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6083 &scx_kfunc_set_select_cpu)) || 6084 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6085 &scx_kfunc_set_enqueue_dispatch)) || 6086 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6087 &scx_kfunc_set_dispatch)) || 6088 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6089 &scx_kfunc_set_cpu_release)) || 6090 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 6091 &scx_kfunc_set_any)) || 6092 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 6093 &scx_kfunc_set_any)) || 6094 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 6095 &scx_kfunc_set_any))) { 6096 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 6097 return ret; 6098 } 6099 6100 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 6101 if (ret) { 6102 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 6103 return ret; 6104 } 6105 6106 ret = register_pm_notifier(&scx_pm_notifier); 6107 if (ret) { 6108 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 6109 return ret; 6110 } 6111 6112 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 6113 if (!scx_kset) { 6114 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 6115 return -ENOMEM; 6116 } 6117 6118 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 6119 if (ret < 0) { 6120 pr_err("sched_ext: Failed to add global attributes\n"); 6121 return ret; 6122 } 6123 6124 return 0; 6125 } 6126 __initcall(scx_init); 6127