1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 10 11 enum scx_consts { 12 SCX_DSP_DFL_MAX_BATCH = 32, 13 SCX_DSP_MAX_LOOPS = 32, 14 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 15 16 SCX_EXIT_BT_LEN = 64, 17 SCX_EXIT_MSG_LEN = 1024, 18 SCX_EXIT_DUMP_DFL_LEN = 32768, 19 20 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 21 22 /* 23 * Iterating all tasks may take a while. Periodically drop 24 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 25 */ 26 SCX_OPS_TASK_ITER_BATCH = 32, 27 }; 28 29 enum scx_exit_kind { 30 SCX_EXIT_NONE, 31 SCX_EXIT_DONE, 32 33 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 34 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 35 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 36 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 37 38 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 39 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 40 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 41 }; 42 43 /* 44 * An exit code can be specified when exiting with scx_bpf_exit() or 45 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 46 * respectively. The codes are 64bit of the format: 47 * 48 * Bits: [63 .. 48 47 .. 32 31 .. 0] 49 * [ SYS ACT ] [ SYS RSN ] [ USR ] 50 * 51 * SYS ACT: System-defined exit actions 52 * SYS RSN: System-defined exit reasons 53 * USR : User-defined exit codes and reasons 54 * 55 * Using the above, users may communicate intention and context by ORing system 56 * actions and/or system reasons with a user-defined exit code. 57 */ 58 enum scx_exit_code { 59 /* Reasons */ 60 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 61 62 /* Actions */ 63 SCX_ECODE_ACT_RESTART = 1LLU << 48, 64 }; 65 66 /* 67 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 68 * being disabled. 69 */ 70 struct scx_exit_info { 71 /* %SCX_EXIT_* - broad category of the exit reason */ 72 enum scx_exit_kind kind; 73 74 /* exit code if gracefully exiting */ 75 s64 exit_code; 76 77 /* textual representation of the above */ 78 const char *reason; 79 80 /* backtrace if exiting due to an error */ 81 unsigned long *bt; 82 u32 bt_len; 83 84 /* informational message */ 85 char *msg; 86 87 /* debug dump */ 88 char *dump; 89 }; 90 91 /* sched_ext_ops.flags */ 92 enum scx_ops_flags { 93 /* 94 * Keep built-in idle tracking even if ops.update_idle() is implemented. 95 */ 96 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 97 98 /* 99 * By default, if there are no other task to run on the CPU, ext core 100 * keeps running the current task even after its slice expires. If this 101 * flag is specified, such tasks are passed to ops.enqueue() with 102 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 103 */ 104 SCX_OPS_ENQ_LAST = 1LLU << 1, 105 106 /* 107 * An exiting task may schedule after PF_EXITING is set. In such cases, 108 * bpf_task_from_pid() may not be able to find the task and if the BPF 109 * scheduler depends on pid lookup for dispatching, the task will be 110 * lost leading to various issues including RCU grace period stalls. 111 * 112 * To mask this problem, by default, unhashed tasks are automatically 113 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 114 * depend on pid lookups and wants to handle these tasks directly, the 115 * following flag can be used. 116 */ 117 SCX_OPS_ENQ_EXITING = 1LLU << 2, 118 119 /* 120 * If set, only tasks with policy set to SCHED_EXT are attached to 121 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 122 */ 123 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 124 125 /* 126 * A migration disabled task can only execute on its current CPU. By 127 * default, such tasks are automatically put on the CPU's local DSQ with 128 * the default slice on enqueue. If this ops flag is set, they also go 129 * through ops.enqueue(). 130 * 131 * A migration disabled task never invokes ops.select_cpu() as it can 132 * only select the current CPU. Also, p->cpus_ptr will only contain its 133 * current CPU while p->nr_cpus_allowed keeps tracking p->user_cpus_ptr 134 * and thus may disagree with cpumask_weight(p->cpus_ptr). 135 */ 136 SCX_OPS_ENQ_MIGRATION_DISABLED = 1LLU << 4, 137 138 /* 139 * CPU cgroup support flags 140 */ 141 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 142 143 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 144 SCX_OPS_ENQ_LAST | 145 SCX_OPS_ENQ_EXITING | 146 SCX_OPS_ENQ_MIGRATION_DISABLED | 147 SCX_OPS_SWITCH_PARTIAL | 148 SCX_OPS_HAS_CGROUP_WEIGHT, 149 }; 150 151 /* argument container for ops.init_task() */ 152 struct scx_init_task_args { 153 /* 154 * Set if ops.init_task() is being invoked on the fork path, as opposed 155 * to the scheduler transition path. 156 */ 157 bool fork; 158 #ifdef CONFIG_EXT_GROUP_SCHED 159 /* the cgroup the task is joining */ 160 struct cgroup *cgroup; 161 #endif 162 }; 163 164 /* argument container for ops.exit_task() */ 165 struct scx_exit_task_args { 166 /* Whether the task exited before running on sched_ext. */ 167 bool cancelled; 168 }; 169 170 /* argument container for ops->cgroup_init() */ 171 struct scx_cgroup_init_args { 172 /* the weight of the cgroup [1..10000] */ 173 u32 weight; 174 }; 175 176 enum scx_cpu_preempt_reason { 177 /* next task is being scheduled by &sched_class_rt */ 178 SCX_CPU_PREEMPT_RT, 179 /* next task is being scheduled by &sched_class_dl */ 180 SCX_CPU_PREEMPT_DL, 181 /* next task is being scheduled by &sched_class_stop */ 182 SCX_CPU_PREEMPT_STOP, 183 /* unknown reason for SCX being preempted */ 184 SCX_CPU_PREEMPT_UNKNOWN, 185 }; 186 187 /* 188 * Argument container for ops->cpu_acquire(). Currently empty, but may be 189 * expanded in the future. 190 */ 191 struct scx_cpu_acquire_args {}; 192 193 /* argument container for ops->cpu_release() */ 194 struct scx_cpu_release_args { 195 /* the reason the CPU was preempted */ 196 enum scx_cpu_preempt_reason reason; 197 198 /* the task that's going to be scheduled on the CPU */ 199 struct task_struct *task; 200 }; 201 202 /* 203 * Informational context provided to dump operations. 204 */ 205 struct scx_dump_ctx { 206 enum scx_exit_kind kind; 207 s64 exit_code; 208 const char *reason; 209 u64 at_ns; 210 u64 at_jiffies; 211 }; 212 213 /** 214 * struct sched_ext_ops - Operation table for BPF scheduler implementation 215 * 216 * A BPF scheduler can implement an arbitrary scheduling policy by 217 * implementing and loading operations in this table. Note that a userland 218 * scheduling policy can also be implemented using the BPF scheduler 219 * as a shim layer. 220 */ 221 struct sched_ext_ops { 222 /** 223 * @select_cpu: Pick the target CPU for a task which is being woken up 224 * @p: task being woken up 225 * @prev_cpu: the cpu @p was on before sleeping 226 * @wake_flags: SCX_WAKE_* 227 * 228 * Decision made here isn't final. @p may be moved to any CPU while it 229 * is getting dispatched for execution later. However, as @p is not on 230 * the rq at this point, getting the eventual execution CPU right here 231 * saves a small bit of overhead down the line. 232 * 233 * If an idle CPU is returned, the CPU is kicked and will try to 234 * dispatch. While an explicit custom mechanism can be added, 235 * select_cpu() serves as the default way to wake up idle CPUs. 236 * 237 * @p may be inserted into a DSQ directly by calling 238 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 239 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 240 * of the CPU returned by this operation. 241 * 242 * Note that select_cpu() is never called for tasks that can only run 243 * on a single CPU or tasks with migration disabled, as they don't have 244 * the option to select a different CPU. See select_task_rq() for 245 * details. 246 */ 247 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 248 249 /** 250 * @enqueue: Enqueue a task on the BPF scheduler 251 * @p: task being enqueued 252 * @enq_flags: %SCX_ENQ_* 253 * 254 * @p is ready to run. Insert directly into a DSQ by calling 255 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 256 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 257 * the task will stall. 258 * 259 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 260 * skipped. 261 */ 262 void (*enqueue)(struct task_struct *p, u64 enq_flags); 263 264 /** 265 * @dequeue: Remove a task from the BPF scheduler 266 * @p: task being dequeued 267 * @deq_flags: %SCX_DEQ_* 268 * 269 * Remove @p from the BPF scheduler. This is usually called to isolate 270 * the task while updating its scheduling properties (e.g. priority). 271 * 272 * The ext core keeps track of whether the BPF side owns a given task or 273 * not and can gracefully ignore spurious dispatches from BPF side, 274 * which makes it safe to not implement this method. However, depending 275 * on the scheduling logic, this can lead to confusing behaviors - e.g. 276 * scheduling position not being updated across a priority change. 277 */ 278 void (*dequeue)(struct task_struct *p, u64 deq_flags); 279 280 /** 281 * @dispatch: Dispatch tasks from the BPF scheduler and/or user DSQs 282 * @cpu: CPU to dispatch tasks for 283 * @prev: previous task being switched out 284 * 285 * Called when a CPU's local dsq is empty. The operation should dispatch 286 * one or more tasks from the BPF scheduler into the DSQs using 287 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 288 * using scx_bpf_dsq_move_to_local(). 289 * 290 * The maximum number of times scx_bpf_dsq_insert() can be called 291 * without an intervening scx_bpf_dsq_move_to_local() is specified by 292 * ops.dispatch_max_batch. See the comments on top of the two functions 293 * for more details. 294 * 295 * When not %NULL, @prev is an SCX task with its slice depleted. If 296 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 297 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 298 * ops.dispatch() returns. To keep executing @prev, return without 299 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 300 */ 301 void (*dispatch)(s32 cpu, struct task_struct *prev); 302 303 /** 304 * @tick: Periodic tick 305 * @p: task running currently 306 * 307 * This operation is called every 1/HZ seconds on CPUs which are 308 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 309 * immediate dispatch cycle on the CPU. 310 */ 311 void (*tick)(struct task_struct *p); 312 313 /** 314 * @runnable: A task is becoming runnable on its associated CPU 315 * @p: task becoming runnable 316 * @enq_flags: %SCX_ENQ_* 317 * 318 * This and the following three functions can be used to track a task's 319 * execution state transitions. A task becomes ->runnable() on a CPU, 320 * and then goes through one or more ->running() and ->stopping() pairs 321 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 322 * done running on the CPU. 323 * 324 * @p is becoming runnable on the CPU because it's 325 * 326 * - waking up (%SCX_ENQ_WAKEUP) 327 * - being moved from another CPU 328 * - being restored after temporarily taken off the queue for an 329 * attribute change. 330 * 331 * This and ->enqueue() are related but not coupled. This operation 332 * notifies @p's state transition and may not be followed by ->enqueue() 333 * e.g. when @p is being dispatched to a remote CPU, or when @p is 334 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 335 * task may be ->enqueue()'d without being preceded by this operation 336 * e.g. after exhausting its slice. 337 */ 338 void (*runnable)(struct task_struct *p, u64 enq_flags); 339 340 /** 341 * @running: A task is starting to run on its associated CPU 342 * @p: task starting to run 343 * 344 * See ->runnable() for explanation on the task state notifiers. 345 */ 346 void (*running)(struct task_struct *p); 347 348 /** 349 * @stopping: A task is stopping execution 350 * @p: task stopping to run 351 * @runnable: is task @p still runnable? 352 * 353 * See ->runnable() for explanation on the task state notifiers. If 354 * !@runnable, ->quiescent() will be invoked after this operation 355 * returns. 356 */ 357 void (*stopping)(struct task_struct *p, bool runnable); 358 359 /** 360 * @quiescent: A task is becoming not runnable on its associated CPU 361 * @p: task becoming not runnable 362 * @deq_flags: %SCX_DEQ_* 363 * 364 * See ->runnable() for explanation on the task state notifiers. 365 * 366 * @p is becoming quiescent on the CPU because it's 367 * 368 * - sleeping (%SCX_DEQ_SLEEP) 369 * - being moved to another CPU 370 * - being temporarily taken off the queue for an attribute change 371 * (%SCX_DEQ_SAVE) 372 * 373 * This and ->dequeue() are related but not coupled. This operation 374 * notifies @p's state transition and may not be preceded by ->dequeue() 375 * e.g. when @p is being dispatched to a remote CPU. 376 */ 377 void (*quiescent)(struct task_struct *p, u64 deq_flags); 378 379 /** 380 * @yield: Yield CPU 381 * @from: yielding task 382 * @to: optional yield target task 383 * 384 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 385 * The BPF scheduler should ensure that other available tasks are 386 * dispatched before the yielding task. Return value is ignored in this 387 * case. 388 * 389 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 390 * scheduler can implement the request, return %true; otherwise, %false. 391 */ 392 bool (*yield)(struct task_struct *from, struct task_struct *to); 393 394 /** 395 * @core_sched_before: Task ordering for core-sched 396 * @a: task A 397 * @b: task B 398 * 399 * Used by core-sched to determine the ordering between two tasks. See 400 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 401 * core-sched. 402 * 403 * Both @a and @b are runnable and may or may not currently be queued on 404 * the BPF scheduler. Should return %true if @a should run before @b. 405 * %false if there's no required ordering or @b should run before @a. 406 * 407 * If not specified, the default is ordering them according to when they 408 * became runnable. 409 */ 410 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 411 412 /** 413 * @set_weight: Set task weight 414 * @p: task to set weight for 415 * @weight: new weight [1..10000] 416 * 417 * Update @p's weight to @weight. 418 */ 419 void (*set_weight)(struct task_struct *p, u32 weight); 420 421 /** 422 * @set_cpumask: Set CPU affinity 423 * @p: task to set CPU affinity for 424 * @cpumask: cpumask of cpus that @p can run on 425 * 426 * Update @p's CPU affinity to @cpumask. 427 */ 428 void (*set_cpumask)(struct task_struct *p, 429 const struct cpumask *cpumask); 430 431 /** 432 * @update_idle: Update the idle state of a CPU 433 * @cpu: CPU to update the idle state for 434 * @idle: whether entering or exiting the idle state 435 * 436 * This operation is called when @rq's CPU goes or leaves the idle 437 * state. By default, implementing this operation disables the built-in 438 * idle CPU tracking and the following helpers become unavailable: 439 * 440 * - scx_bpf_select_cpu_dfl() 441 * - scx_bpf_test_and_clear_cpu_idle() 442 * - scx_bpf_pick_idle_cpu() 443 * 444 * The user also must implement ops.select_cpu() as the default 445 * implementation relies on scx_bpf_select_cpu_dfl(). 446 * 447 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 448 * tracking. 449 */ 450 void (*update_idle)(s32 cpu, bool idle); 451 452 /** 453 * @cpu_acquire: A CPU is becoming available to the BPF scheduler 454 * @cpu: The CPU being acquired by the BPF scheduler. 455 * @args: Acquire arguments, see the struct definition. 456 * 457 * A CPU that was previously released from the BPF scheduler is now once 458 * again under its control. 459 */ 460 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 461 462 /** 463 * @cpu_release: A CPU is taken away from the BPF scheduler 464 * @cpu: The CPU being released by the BPF scheduler. 465 * @args: Release arguments, see the struct definition. 466 * 467 * The specified CPU is no longer under the control of the BPF 468 * scheduler. This could be because it was preempted by a higher 469 * priority sched_class, though there may be other reasons as well. The 470 * caller should consult @args->reason to determine the cause. 471 */ 472 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 473 474 /** 475 * @init_task: Initialize a task to run in a BPF scheduler 476 * @p: task to initialize for BPF scheduling 477 * @args: init arguments, see the struct definition 478 * 479 * Either we're loading a BPF scheduler or a new task is being forked. 480 * Initialize @p for BPF scheduling. This operation may block and can 481 * be used for allocations, and is called exactly once for a task. 482 * 483 * Return 0 for success, -errno for failure. An error return while 484 * loading will abort loading of the BPF scheduler. During a fork, it 485 * will abort that specific fork. 486 */ 487 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 488 489 /** 490 * @exit_task: Exit a previously-running task from the system 491 * @p: task to exit 492 * @args: exit arguments, see the struct definition 493 * 494 * @p is exiting or the BPF scheduler is being unloaded. Perform any 495 * necessary cleanup for @p. 496 */ 497 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 498 499 /** 500 * @enable: Enable BPF scheduling for a task 501 * @p: task to enable BPF scheduling for 502 * 503 * Enable @p for BPF scheduling. enable() is called on @p any time it 504 * enters SCX, and is always paired with a matching disable(). 505 */ 506 void (*enable)(struct task_struct *p); 507 508 /** 509 * @disable: Disable BPF scheduling for a task 510 * @p: task to disable BPF scheduling for 511 * 512 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 513 * Disable BPF scheduling for @p. A disable() call is always matched 514 * with a prior enable() call. 515 */ 516 void (*disable)(struct task_struct *p); 517 518 /** 519 * @dump: Dump BPF scheduler state on error 520 * @ctx: debug dump context 521 * 522 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 523 */ 524 void (*dump)(struct scx_dump_ctx *ctx); 525 526 /** 527 * @dump_cpu: Dump BPF scheduler state for a CPU on error 528 * @ctx: debug dump context 529 * @cpu: CPU to generate debug dump for 530 * @idle: @cpu is currently idle without any runnable tasks 531 * 532 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 533 * @cpu. If @idle is %true and this operation doesn't produce any 534 * output, @cpu is skipped for dump. 535 */ 536 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 537 538 /** 539 * @dump_task: Dump BPF scheduler state for a runnable task on error 540 * @ctx: debug dump context 541 * @p: runnable task to generate debug dump for 542 * 543 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 544 * @p. 545 */ 546 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 547 548 #ifdef CONFIG_EXT_GROUP_SCHED 549 /** 550 * @cgroup_init: Initialize a cgroup 551 * @cgrp: cgroup being initialized 552 * @args: init arguments, see the struct definition 553 * 554 * Either the BPF scheduler is being loaded or @cgrp created, initialize 555 * @cgrp for sched_ext. This operation may block. 556 * 557 * Return 0 for success, -errno for failure. An error return while 558 * loading will abort loading of the BPF scheduler. During cgroup 559 * creation, it will abort the specific cgroup creation. 560 */ 561 s32 (*cgroup_init)(struct cgroup *cgrp, 562 struct scx_cgroup_init_args *args); 563 564 /** 565 * @cgroup_exit: Exit a cgroup 566 * @cgrp: cgroup being exited 567 * 568 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 569 * @cgrp for sched_ext. This operation my block. 570 */ 571 void (*cgroup_exit)(struct cgroup *cgrp); 572 573 /** 574 * @cgroup_prep_move: Prepare a task to be moved to a different cgroup 575 * @p: task being moved 576 * @from: cgroup @p is being moved from 577 * @to: cgroup @p is being moved to 578 * 579 * Prepare @p for move from cgroup @from to @to. This operation may 580 * block and can be used for allocations. 581 * 582 * Return 0 for success, -errno for failure. An error return aborts the 583 * migration. 584 */ 585 s32 (*cgroup_prep_move)(struct task_struct *p, 586 struct cgroup *from, struct cgroup *to); 587 588 /** 589 * @cgroup_move: Commit cgroup move 590 * @p: task being moved 591 * @from: cgroup @p is being moved from 592 * @to: cgroup @p is being moved to 593 * 594 * Commit the move. @p is dequeued during this operation. 595 */ 596 void (*cgroup_move)(struct task_struct *p, 597 struct cgroup *from, struct cgroup *to); 598 599 /** 600 * @cgroup_cancel_move: Cancel cgroup move 601 * @p: task whose cgroup move is being canceled 602 * @from: cgroup @p was being moved from 603 * @to: cgroup @p was being moved to 604 * 605 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 606 * Undo the preparation. 607 */ 608 void (*cgroup_cancel_move)(struct task_struct *p, 609 struct cgroup *from, struct cgroup *to); 610 611 /** 612 * @cgroup_set_weight: A cgroup's weight is being changed 613 * @cgrp: cgroup whose weight is being updated 614 * @weight: new weight [1..10000] 615 * 616 * Update @tg's weight to @weight. 617 */ 618 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 619 #endif /* CONFIG_EXT_GROUP_SCHED */ 620 621 /* 622 * All online ops must come before ops.cpu_online(). 623 */ 624 625 /** 626 * @cpu_online: A CPU became online 627 * @cpu: CPU which just came up 628 * 629 * @cpu just came online. @cpu will not call ops.enqueue() or 630 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 631 */ 632 void (*cpu_online)(s32 cpu); 633 634 /** 635 * @cpu_offline: A CPU is going offline 636 * @cpu: CPU which is going offline 637 * 638 * @cpu is going offline. @cpu will not call ops.enqueue() or 639 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 640 */ 641 void (*cpu_offline)(s32 cpu); 642 643 /* 644 * All CPU hotplug ops must come before ops.init(). 645 */ 646 647 /** 648 * @init: Initialize the BPF scheduler 649 */ 650 s32 (*init)(void); 651 652 /** 653 * @exit: Clean up after the BPF scheduler 654 * @info: Exit info 655 * 656 * ops.exit() is also called on ops.init() failure, which is a bit 657 * unusual. This is to allow rich reporting through @info on how 658 * ops.init() failed. 659 */ 660 void (*exit)(struct scx_exit_info *info); 661 662 /** 663 * @dispatch_max_batch: Max nr of tasks that dispatch() can dispatch 664 */ 665 u32 dispatch_max_batch; 666 667 /** 668 * @flags: %SCX_OPS_* flags 669 */ 670 u64 flags; 671 672 /** 673 * @timeout_ms: The maximum amount of time, in milliseconds, that a 674 * runnable task should be able to wait before being scheduled. The 675 * maximum timeout may not exceed the default timeout of 30 seconds. 676 * 677 * Defaults to the maximum allowed timeout value of 30 seconds. 678 */ 679 u32 timeout_ms; 680 681 /** 682 * @exit_dump_len: scx_exit_info.dump buffer length. If 0, the default 683 * value of 32768 is used. 684 */ 685 u32 exit_dump_len; 686 687 /** 688 * @hotplug_seq: A sequence number that may be set by the scheduler to 689 * detect when a hotplug event has occurred during the loading process. 690 * If 0, no detection occurs. Otherwise, the scheduler will fail to 691 * load if the sequence number does not match @scx_hotplug_seq on the 692 * enable path. 693 */ 694 u64 hotplug_seq; 695 696 /** 697 * @name: BPF scheduler's name 698 * 699 * Must be a non-zero valid BPF object name including only isalnum(), 700 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 701 * BPF scheduler is enabled. 702 */ 703 char name[SCX_OPS_NAME_LEN]; 704 }; 705 706 enum scx_opi { 707 SCX_OPI_BEGIN = 0, 708 SCX_OPI_NORMAL_BEGIN = 0, 709 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 710 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 711 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 712 SCX_OPI_END = SCX_OP_IDX(init), 713 }; 714 715 enum scx_wake_flags { 716 /* expose select WF_* flags as enums */ 717 SCX_WAKE_FORK = WF_FORK, 718 SCX_WAKE_TTWU = WF_TTWU, 719 SCX_WAKE_SYNC = WF_SYNC, 720 }; 721 722 enum scx_enq_flags { 723 /* expose select ENQUEUE_* flags as enums */ 724 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 725 SCX_ENQ_HEAD = ENQUEUE_HEAD, 726 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 727 728 /* high 32bits are SCX specific */ 729 730 /* 731 * Set the following to trigger preemption when calling 732 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 733 * current task is cleared to zero and the CPU is kicked into the 734 * scheduling path. Implies %SCX_ENQ_HEAD. 735 */ 736 SCX_ENQ_PREEMPT = 1LLU << 32, 737 738 /* 739 * The task being enqueued was previously enqueued on the current CPU's 740 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 741 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 742 * invoked in a ->cpu_release() callback, and the task is again 743 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 744 * task will not be scheduled on the CPU until at least the next invocation 745 * of the ->cpu_acquire() callback. 746 */ 747 SCX_ENQ_REENQ = 1LLU << 40, 748 749 /* 750 * The task being enqueued is the only task available for the cpu. By 751 * default, ext core keeps executing such tasks but when 752 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 753 * %SCX_ENQ_LAST flag set. 754 * 755 * The BPF scheduler is responsible for triggering a follow-up 756 * scheduling event. Otherwise, Execution may stall. 757 */ 758 SCX_ENQ_LAST = 1LLU << 41, 759 760 /* high 8 bits are internal */ 761 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 762 763 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 764 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 765 }; 766 767 enum scx_deq_flags { 768 /* expose select DEQUEUE_* flags as enums */ 769 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 770 771 /* high 32bits are SCX specific */ 772 773 /* 774 * The generic core-sched layer decided to execute the task even though 775 * it hasn't been dispatched yet. Dequeue from the BPF side. 776 */ 777 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 778 }; 779 780 enum scx_pick_idle_cpu_flags { 781 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 782 }; 783 784 enum scx_kick_flags { 785 /* 786 * Kick the target CPU if idle. Guarantees that the target CPU goes 787 * through at least one full scheduling cycle before going idle. If the 788 * target CPU can be determined to be currently not idle and going to go 789 * through a scheduling cycle before going idle, noop. 790 */ 791 SCX_KICK_IDLE = 1LLU << 0, 792 793 /* 794 * Preempt the current task and execute the dispatch path. If the 795 * current task of the target CPU is an SCX task, its ->scx.slice is 796 * cleared to zero before the scheduling path is invoked so that the 797 * task expires and the dispatch path is invoked. 798 */ 799 SCX_KICK_PREEMPT = 1LLU << 1, 800 801 /* 802 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 803 * return after the target CPU finishes picking the next task. 804 */ 805 SCX_KICK_WAIT = 1LLU << 2, 806 }; 807 808 enum scx_tg_flags { 809 SCX_TG_ONLINE = 1U << 0, 810 SCX_TG_INITED = 1U << 1, 811 }; 812 813 enum scx_ops_enable_state { 814 SCX_OPS_ENABLING, 815 SCX_OPS_ENABLED, 816 SCX_OPS_DISABLING, 817 SCX_OPS_DISABLED, 818 }; 819 820 static const char *scx_ops_enable_state_str[] = { 821 [SCX_OPS_ENABLING] = "enabling", 822 [SCX_OPS_ENABLED] = "enabled", 823 [SCX_OPS_DISABLING] = "disabling", 824 [SCX_OPS_DISABLED] = "disabled", 825 }; 826 827 /* 828 * sched_ext_entity->ops_state 829 * 830 * Used to track the task ownership between the SCX core and the BPF scheduler. 831 * State transitions look as follows: 832 * 833 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 834 * ^ | | 835 * | v v 836 * \-------------------------------/ 837 * 838 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 839 * sites for explanations on the conditions being waited upon and why they are 840 * safe. Transitions out of them into NONE or QUEUED must store_release and the 841 * waiters should load_acquire. 842 * 843 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 844 * any given task can be dispatched by the BPF scheduler at all times and thus 845 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 846 * to try to dispatch any task anytime regardless of its state as the SCX core 847 * can safely reject invalid dispatches. 848 */ 849 enum scx_ops_state { 850 SCX_OPSS_NONE, /* owned by the SCX core */ 851 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 852 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 853 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 854 855 /* 856 * QSEQ brands each QUEUED instance so that, when dispatch races 857 * dequeue/requeue, the dispatcher can tell whether it still has a claim 858 * on the task being dispatched. 859 * 860 * As some 32bit archs can't do 64bit store_release/load_acquire, 861 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 862 * 32bit machines. The dispatch race window QSEQ protects is very narrow 863 * and runs with IRQ disabled. 30 bits should be sufficient. 864 */ 865 SCX_OPSS_QSEQ_SHIFT = 2, 866 }; 867 868 /* Use macros to ensure that the type is unsigned long for the masks */ 869 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 870 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 871 872 /* 873 * During exit, a task may schedule after losing its PIDs. When disabling the 874 * BPF scheduler, we need to be able to iterate tasks in every state to 875 * guarantee system safety. Maintain a dedicated task list which contains every 876 * task between its fork and eventual free. 877 */ 878 static DEFINE_SPINLOCK(scx_tasks_lock); 879 static LIST_HEAD(scx_tasks); 880 881 /* ops enable/disable */ 882 static struct kthread_worker *scx_ops_helper; 883 static DEFINE_MUTEX(scx_ops_enable_mutex); 884 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 885 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 886 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 887 static unsigned long scx_in_softlockup; 888 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0); 889 static int scx_ops_bypass_depth; 890 static bool scx_ops_init_task_enabled; 891 static bool scx_switching_all; 892 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 893 894 static struct sched_ext_ops scx_ops; 895 static bool scx_warned_zero_slice; 896 897 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 898 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 899 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_migration_disabled); 900 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 901 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); 902 903 #ifdef CONFIG_SMP 904 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc); 905 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa); 906 #endif 907 908 static struct static_key_false scx_has_op[SCX_OPI_END] = 909 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 910 911 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 912 static struct scx_exit_info *scx_exit_info; 913 914 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 915 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 916 917 /* 918 * A monotically increasing sequence number that is incremented every time a 919 * scheduler is enabled. This can be used by to check if any custom sched_ext 920 * scheduler has ever been used in the system. 921 */ 922 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 923 924 /* 925 * The maximum amount of time in jiffies that a task may be runnable without 926 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 927 * scx_ops_error(). 928 */ 929 static unsigned long scx_watchdog_timeout; 930 931 /* 932 * The last time the delayed work was run. This delayed work relies on 933 * ksoftirqd being able to run to service timer interrupts, so it's possible 934 * that this work itself could get wedged. To account for this, we check that 935 * it's not stalled in the timer tick, and trigger an error if it is. 936 */ 937 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 938 939 static struct delayed_work scx_watchdog_work; 940 941 /* idle tracking */ 942 #ifdef CONFIG_SMP 943 #ifdef CONFIG_CPUMASK_OFFSTACK 944 #define CL_ALIGNED_IF_ONSTACK 945 #else 946 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp 947 #endif 948 949 static struct { 950 cpumask_var_t cpu; 951 cpumask_var_t smt; 952 } idle_masks CL_ALIGNED_IF_ONSTACK; 953 954 #endif /* CONFIG_SMP */ 955 956 /* for %SCX_KICK_WAIT */ 957 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 958 959 /* 960 * Direct dispatch marker. 961 * 962 * Non-NULL values are used for direct dispatch from enqueue path. A valid 963 * pointer points to the task currently being enqueued. An ERR_PTR value is used 964 * to indicate that direct dispatch has already happened. 965 */ 966 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 967 968 /* 969 * Dispatch queues. 970 * 971 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 972 * to avoid live-locking in bypass mode where all tasks are dispatched to 973 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 974 * sufficient, it can be further split. 975 */ 976 static struct scx_dispatch_q **global_dsqs; 977 978 static const struct rhashtable_params dsq_hash_params = { 979 .key_len = sizeof_field(struct scx_dispatch_q, id), 980 .key_offset = offsetof(struct scx_dispatch_q, id), 981 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 982 }; 983 984 static struct rhashtable dsq_hash; 985 static LLIST_HEAD(dsqs_to_free); 986 987 /* dispatch buf */ 988 struct scx_dsp_buf_ent { 989 struct task_struct *task; 990 unsigned long qseq; 991 u64 dsq_id; 992 u64 enq_flags; 993 }; 994 995 static u32 scx_dsp_max_batch; 996 997 struct scx_dsp_ctx { 998 struct rq *rq; 999 u32 cursor; 1000 u32 nr_tasks; 1001 struct scx_dsp_buf_ent buf[]; 1002 }; 1003 1004 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 1005 1006 /* string formatting from BPF */ 1007 struct scx_bstr_buf { 1008 u64 data[MAX_BPRINTF_VARARGS]; 1009 char line[SCX_EXIT_MSG_LEN]; 1010 }; 1011 1012 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 1013 static struct scx_bstr_buf scx_exit_bstr_buf; 1014 1015 /* ops debug dump */ 1016 struct scx_dump_data { 1017 s32 cpu; 1018 bool first; 1019 s32 cursor; 1020 struct seq_buf *s; 1021 const char *prefix; 1022 struct scx_bstr_buf buf; 1023 }; 1024 1025 static struct scx_dump_data scx_dump_data = { 1026 .cpu = -1, 1027 }; 1028 1029 /* /sys/kernel/sched_ext interface */ 1030 static struct kset *scx_kset; 1031 static struct kobject *scx_root_kobj; 1032 1033 #define CREATE_TRACE_POINTS 1034 #include <trace/events/sched_ext.h> 1035 1036 static void process_ddsp_deferred_locals(struct rq *rq); 1037 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1038 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1039 s64 exit_code, 1040 const char *fmt, ...); 1041 1042 #define scx_ops_error_kind(err, fmt, args...) \ 1043 scx_ops_exit_kind((err), 0, fmt, ##args) 1044 1045 #define scx_ops_exit(code, fmt, args...) \ 1046 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1047 1048 #define scx_ops_error(fmt, args...) \ 1049 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1050 1051 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1052 1053 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1054 { 1055 if (time_after(at, now)) 1056 return jiffies_to_msecs(at - now); 1057 else 1058 return -(long)jiffies_to_msecs(now - at); 1059 } 1060 1061 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1062 static u32 higher_bits(u32 flags) 1063 { 1064 return ~((1 << fls(flags)) - 1); 1065 } 1066 1067 /* return the mask with only the highest bit set */ 1068 static u32 highest_bit(u32 flags) 1069 { 1070 int bit = fls(flags); 1071 return ((u64)1 << bit) >> 1; 1072 } 1073 1074 static bool u32_before(u32 a, u32 b) 1075 { 1076 return (s32)(a - b) < 0; 1077 } 1078 1079 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1080 { 1081 return global_dsqs[cpu_to_node(task_cpu(p))]; 1082 } 1083 1084 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1085 { 1086 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1087 } 1088 1089 /* 1090 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1091 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1092 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1093 * whether it's running from an allowed context. 1094 * 1095 * @mask is constant, always inline to cull the mask calculations. 1096 */ 1097 static __always_inline void scx_kf_allow(u32 mask) 1098 { 1099 /* nesting is allowed only in increasing scx_kf_mask order */ 1100 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1101 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1102 current->scx.kf_mask, mask); 1103 current->scx.kf_mask |= mask; 1104 barrier(); 1105 } 1106 1107 static void scx_kf_disallow(u32 mask) 1108 { 1109 barrier(); 1110 current->scx.kf_mask &= ~mask; 1111 } 1112 1113 #define SCX_CALL_OP(mask, op, args...) \ 1114 do { \ 1115 if (mask) { \ 1116 scx_kf_allow(mask); \ 1117 scx_ops.op(args); \ 1118 scx_kf_disallow(mask); \ 1119 } else { \ 1120 scx_ops.op(args); \ 1121 } \ 1122 } while (0) 1123 1124 #define SCX_CALL_OP_RET(mask, op, args...) \ 1125 ({ \ 1126 __typeof__(scx_ops.op(args)) __ret; \ 1127 if (mask) { \ 1128 scx_kf_allow(mask); \ 1129 __ret = scx_ops.op(args); \ 1130 scx_kf_disallow(mask); \ 1131 } else { \ 1132 __ret = scx_ops.op(args); \ 1133 } \ 1134 __ret; \ 1135 }) 1136 1137 /* 1138 * Some kfuncs are allowed only on the tasks that are subjects of the 1139 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1140 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1141 * invoking scx_ops operations that take task arguments. These can only be used 1142 * for non-nesting operations due to the way the tasks are tracked. 1143 * 1144 * kfuncs which can only operate on such tasks can in turn use 1145 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1146 * the specific task. 1147 */ 1148 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1149 do { \ 1150 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1151 current->scx.kf_tasks[0] = task; \ 1152 SCX_CALL_OP(mask, op, task, ##args); \ 1153 current->scx.kf_tasks[0] = NULL; \ 1154 } while (0) 1155 1156 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1157 ({ \ 1158 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1159 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1160 current->scx.kf_tasks[0] = task; \ 1161 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1162 current->scx.kf_tasks[0] = NULL; \ 1163 __ret; \ 1164 }) 1165 1166 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1167 ({ \ 1168 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1169 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1170 current->scx.kf_tasks[0] = task0; \ 1171 current->scx.kf_tasks[1] = task1; \ 1172 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1173 current->scx.kf_tasks[0] = NULL; \ 1174 current->scx.kf_tasks[1] = NULL; \ 1175 __ret; \ 1176 }) 1177 1178 /* @mask is constant, always inline to cull unnecessary branches */ 1179 static __always_inline bool scx_kf_allowed(u32 mask) 1180 { 1181 if (unlikely(!(current->scx.kf_mask & mask))) { 1182 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1183 mask, current->scx.kf_mask); 1184 return false; 1185 } 1186 1187 /* 1188 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1189 * DISPATCH must not be called if we're running DEQUEUE which is nested 1190 * inside ops.dispatch(). We don't need to check boundaries for any 1191 * blocking kfuncs as the verifier ensures they're only called from 1192 * sleepable progs. 1193 */ 1194 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1195 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1196 scx_ops_error("cpu_release kfunc called from a nested operation"); 1197 return false; 1198 } 1199 1200 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1201 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1202 scx_ops_error("dispatch kfunc called from a nested operation"); 1203 return false; 1204 } 1205 1206 return true; 1207 } 1208 1209 /* see SCX_CALL_OP_TASK() */ 1210 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1211 struct task_struct *p) 1212 { 1213 if (!scx_kf_allowed(mask)) 1214 return false; 1215 1216 if (unlikely((p != current->scx.kf_tasks[0] && 1217 p != current->scx.kf_tasks[1]))) { 1218 scx_ops_error("called on a task not being operated on"); 1219 return false; 1220 } 1221 1222 return true; 1223 } 1224 1225 static bool scx_kf_allowed_if_unlocked(void) 1226 { 1227 return !current->scx.kf_mask; 1228 } 1229 1230 /** 1231 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1232 * @dsq: user dsq being iterated 1233 * @cur: current position, %NULL to start iteration 1234 * @rev: walk backwards 1235 * 1236 * Returns %NULL when iteration is finished. 1237 */ 1238 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1239 struct task_struct *cur, bool rev) 1240 { 1241 struct list_head *list_node; 1242 struct scx_dsq_list_node *dsq_lnode; 1243 1244 lockdep_assert_held(&dsq->lock); 1245 1246 if (cur) 1247 list_node = &cur->scx.dsq_list.node; 1248 else 1249 list_node = &dsq->list; 1250 1251 /* find the next task, need to skip BPF iteration cursors */ 1252 do { 1253 if (rev) 1254 list_node = list_node->prev; 1255 else 1256 list_node = list_node->next; 1257 1258 if (list_node == &dsq->list) 1259 return NULL; 1260 1261 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1262 node); 1263 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1264 1265 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1266 } 1267 1268 #define nldsq_for_each_task(p, dsq) \ 1269 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1270 (p) = nldsq_next_task((dsq), (p), false)) 1271 1272 1273 /* 1274 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1275 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1276 * changes without breaking backward compatibility. Can be used with 1277 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1278 */ 1279 enum scx_dsq_iter_flags { 1280 /* iterate in the reverse dispatch order */ 1281 SCX_DSQ_ITER_REV = 1U << 16, 1282 1283 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1284 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1285 1286 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1287 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1288 __SCX_DSQ_ITER_HAS_SLICE | 1289 __SCX_DSQ_ITER_HAS_VTIME, 1290 }; 1291 1292 struct bpf_iter_scx_dsq_kern { 1293 struct scx_dsq_list_node cursor; 1294 struct scx_dispatch_q *dsq; 1295 u64 slice; 1296 u64 vtime; 1297 } __attribute__((aligned(8))); 1298 1299 struct bpf_iter_scx_dsq { 1300 u64 __opaque[6]; 1301 } __attribute__((aligned(8))); 1302 1303 1304 /* 1305 * SCX task iterator. 1306 */ 1307 struct scx_task_iter { 1308 struct sched_ext_entity cursor; 1309 struct task_struct *locked; 1310 struct rq *rq; 1311 struct rq_flags rf; 1312 u32 cnt; 1313 }; 1314 1315 /** 1316 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1317 * @iter: iterator to init 1318 * 1319 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1320 * must eventually be stopped with scx_task_iter_stop(). 1321 * 1322 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1323 * between this and the first next() call or between any two next() calls. If 1324 * the locks are released between two next() calls, the caller is responsible 1325 * for ensuring that the task being iterated remains accessible either through 1326 * RCU read lock or obtaining a reference count. 1327 * 1328 * All tasks which existed when the iteration started are guaranteed to be 1329 * visited as long as they still exist. 1330 */ 1331 static void scx_task_iter_start(struct scx_task_iter *iter) 1332 { 1333 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1334 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1335 1336 spin_lock_irq(&scx_tasks_lock); 1337 1338 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1339 list_add(&iter->cursor.tasks_node, &scx_tasks); 1340 iter->locked = NULL; 1341 iter->cnt = 0; 1342 } 1343 1344 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1345 { 1346 if (iter->locked) { 1347 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1348 iter->locked = NULL; 1349 } 1350 } 1351 1352 /** 1353 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1354 * @iter: iterator to unlock 1355 * 1356 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1357 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1358 * This function can be safely called anytime during an iteration. 1359 */ 1360 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1361 { 1362 __scx_task_iter_rq_unlock(iter); 1363 spin_unlock_irq(&scx_tasks_lock); 1364 } 1365 1366 /** 1367 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1368 * @iter: iterator to re-lock 1369 * 1370 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1371 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1372 */ 1373 static void scx_task_iter_relock(struct scx_task_iter *iter) 1374 { 1375 spin_lock_irq(&scx_tasks_lock); 1376 } 1377 1378 /** 1379 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1380 * @iter: iterator to exit 1381 * 1382 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1383 * which is released on return. If the iterator holds a task's rq lock, that rq 1384 * lock is also released. See scx_task_iter_start() for details. 1385 */ 1386 static void scx_task_iter_stop(struct scx_task_iter *iter) 1387 { 1388 list_del_init(&iter->cursor.tasks_node); 1389 scx_task_iter_unlock(iter); 1390 } 1391 1392 /** 1393 * scx_task_iter_next - Next task 1394 * @iter: iterator to walk 1395 * 1396 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1397 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing 1398 * stalls by holding scx_tasks_lock for too long. 1399 */ 1400 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1401 { 1402 struct list_head *cursor = &iter->cursor.tasks_node; 1403 struct sched_ext_entity *pos; 1404 1405 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) { 1406 scx_task_iter_unlock(iter); 1407 cond_resched(); 1408 scx_task_iter_relock(iter); 1409 } 1410 1411 list_for_each_entry(pos, cursor, tasks_node) { 1412 if (&pos->tasks_node == &scx_tasks) 1413 return NULL; 1414 if (!(pos->flags & SCX_TASK_CURSOR)) { 1415 list_move(cursor, &pos->tasks_node); 1416 return container_of(pos, struct task_struct, scx); 1417 } 1418 } 1419 1420 /* can't happen, should always terminate at scx_tasks above */ 1421 BUG(); 1422 } 1423 1424 /** 1425 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1426 * @iter: iterator to walk 1427 * 1428 * Visit the non-idle task with its rq lock held. Allows callers to specify 1429 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1430 * for details. 1431 */ 1432 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1433 { 1434 struct task_struct *p; 1435 1436 __scx_task_iter_rq_unlock(iter); 1437 1438 while ((p = scx_task_iter_next(iter))) { 1439 /* 1440 * scx_task_iter is used to prepare and move tasks into SCX 1441 * while loading the BPF scheduler and vice-versa while 1442 * unloading. The init_tasks ("swappers") should be excluded 1443 * from the iteration because: 1444 * 1445 * - It's unsafe to use __setschduler_prio() on an init_task to 1446 * determine the sched_class to use as it won't preserve its 1447 * idle_sched_class. 1448 * 1449 * - ops.init/exit_task() can easily be confused if called with 1450 * init_tasks as they, e.g., share PID 0. 1451 * 1452 * As init_tasks are never scheduled through SCX, they can be 1453 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1454 * doesn't work here: 1455 * 1456 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1457 * yet been onlined. 1458 * 1459 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1460 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1461 * 1462 * Test for idle_sched_class as only init_tasks are on it. 1463 */ 1464 if (p->sched_class != &idle_sched_class) 1465 break; 1466 } 1467 if (!p) 1468 return NULL; 1469 1470 iter->rq = task_rq_lock(p, &iter->rf); 1471 iter->locked = p; 1472 1473 return p; 1474 } 1475 1476 static enum scx_ops_enable_state scx_ops_enable_state(void) 1477 { 1478 return atomic_read(&scx_ops_enable_state_var); 1479 } 1480 1481 static enum scx_ops_enable_state 1482 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1483 { 1484 return atomic_xchg(&scx_ops_enable_state_var, to); 1485 } 1486 1487 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1488 enum scx_ops_enable_state from) 1489 { 1490 int from_v = from; 1491 1492 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1493 } 1494 1495 static bool scx_rq_bypassing(struct rq *rq) 1496 { 1497 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1498 } 1499 1500 /** 1501 * wait_ops_state - Busy-wait the specified ops state to end 1502 * @p: target task 1503 * @opss: state to wait the end of 1504 * 1505 * Busy-wait for @p to transition out of @opss. This can only be used when the 1506 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1507 * has load_acquire semantics to ensure that the caller can see the updates made 1508 * in the enqueueing and dispatching paths. 1509 */ 1510 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1511 { 1512 do { 1513 cpu_relax(); 1514 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1515 } 1516 1517 /** 1518 * ops_cpu_valid - Verify a cpu number 1519 * @cpu: cpu number which came from a BPF ops 1520 * @where: extra information reported on error 1521 * 1522 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1523 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1524 * an ops error. 1525 */ 1526 static bool ops_cpu_valid(s32 cpu, const char *where) 1527 { 1528 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1529 return true; 1530 } else { 1531 scx_ops_error("invalid CPU %d%s%s", cpu, 1532 where ? " " : "", where ?: ""); 1533 return false; 1534 } 1535 } 1536 1537 /** 1538 * ops_sanitize_err - Sanitize a -errno value 1539 * @ops_name: operation to blame on failure 1540 * @err: -errno value to sanitize 1541 * 1542 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1543 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1544 * cause misbehaviors. For an example, a large negative return from 1545 * ops.init_task() triggers an oops when passed up the call chain because the 1546 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1547 * handled as a pointer. 1548 */ 1549 static int ops_sanitize_err(const char *ops_name, s32 err) 1550 { 1551 if (err < 0 && err >= -MAX_ERRNO) 1552 return err; 1553 1554 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1555 return -EPROTO; 1556 } 1557 1558 static void run_deferred(struct rq *rq) 1559 { 1560 process_ddsp_deferred_locals(rq); 1561 } 1562 1563 #ifdef CONFIG_SMP 1564 static void deferred_bal_cb_workfn(struct rq *rq) 1565 { 1566 run_deferred(rq); 1567 } 1568 #endif 1569 1570 static void deferred_irq_workfn(struct irq_work *irq_work) 1571 { 1572 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1573 1574 raw_spin_rq_lock(rq); 1575 run_deferred(rq); 1576 raw_spin_rq_unlock(rq); 1577 } 1578 1579 /** 1580 * schedule_deferred - Schedule execution of deferred actions on an rq 1581 * @rq: target rq 1582 * 1583 * Schedule execution of deferred actions on @rq. Must be called with @rq 1584 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1585 * can unlock @rq to e.g. migrate tasks to other rqs. 1586 */ 1587 static void schedule_deferred(struct rq *rq) 1588 { 1589 lockdep_assert_rq_held(rq); 1590 1591 #ifdef CONFIG_SMP 1592 /* 1593 * If in the middle of waking up a task, task_woken_scx() will be called 1594 * afterwards which will then run the deferred actions, no need to 1595 * schedule anything. 1596 */ 1597 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1598 return; 1599 1600 /* 1601 * If in balance, the balance callbacks will be called before rq lock is 1602 * released. Schedule one. 1603 */ 1604 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1605 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1606 deferred_bal_cb_workfn); 1607 return; 1608 } 1609 #endif 1610 /* 1611 * No scheduler hooks available. Queue an irq work. They are executed on 1612 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1613 * The above WAKEUP and BALANCE paths should cover most of the cases and 1614 * the time to IRQ re-enable shouldn't be long. 1615 */ 1616 irq_work_queue(&rq->scx.deferred_irq_work); 1617 } 1618 1619 /** 1620 * touch_core_sched - Update timestamp used for core-sched task ordering 1621 * @rq: rq to read clock from, must be locked 1622 * @p: task to update the timestamp for 1623 * 1624 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1625 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1626 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1627 * exhaustion). 1628 */ 1629 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1630 { 1631 lockdep_assert_rq_held(rq); 1632 1633 #ifdef CONFIG_SCHED_CORE 1634 /* 1635 * It's okay to update the timestamp spuriously. Use 1636 * sched_core_disabled() which is cheaper than enabled(). 1637 * 1638 * As this is used to determine ordering between tasks of sibling CPUs, 1639 * it may be better to use per-core dispatch sequence instead. 1640 */ 1641 if (!sched_core_disabled()) 1642 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1643 #endif 1644 } 1645 1646 /** 1647 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1648 * @rq: rq to read clock from, must be locked 1649 * @p: task being dispatched 1650 * 1651 * If the BPF scheduler implements custom core-sched ordering via 1652 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1653 * ordering within each local DSQ. This function is called from dispatch paths 1654 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1655 */ 1656 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1657 { 1658 lockdep_assert_rq_held(rq); 1659 1660 #ifdef CONFIG_SCHED_CORE 1661 if (SCX_HAS_OP(core_sched_before)) 1662 touch_core_sched(rq, p); 1663 #endif 1664 } 1665 1666 static void update_curr_scx(struct rq *rq) 1667 { 1668 struct task_struct *curr = rq->curr; 1669 s64 delta_exec; 1670 1671 delta_exec = update_curr_common(rq); 1672 if (unlikely(delta_exec <= 0)) 1673 return; 1674 1675 if (curr->scx.slice != SCX_SLICE_INF) { 1676 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1677 if (!curr->scx.slice) 1678 touch_core_sched(rq, curr); 1679 } 1680 } 1681 1682 static bool scx_dsq_priq_less(struct rb_node *node_a, 1683 const struct rb_node *node_b) 1684 { 1685 const struct task_struct *a = 1686 container_of(node_a, struct task_struct, scx.dsq_priq); 1687 const struct task_struct *b = 1688 container_of(node_b, struct task_struct, scx.dsq_priq); 1689 1690 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1691 } 1692 1693 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1694 { 1695 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1696 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1697 } 1698 1699 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1700 u64 enq_flags) 1701 { 1702 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1703 1704 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1705 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1706 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1707 1708 if (!is_local) { 1709 raw_spin_lock(&dsq->lock); 1710 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1711 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1712 /* fall back to the global dsq */ 1713 raw_spin_unlock(&dsq->lock); 1714 dsq = find_global_dsq(p); 1715 raw_spin_lock(&dsq->lock); 1716 } 1717 } 1718 1719 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1720 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1721 /* 1722 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1723 * their FIFO queues. To avoid confusion and accidentally 1724 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1725 * disallow any internal DSQ from doing vtime ordering of 1726 * tasks. 1727 */ 1728 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1729 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1730 } 1731 1732 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1733 struct rb_node *rbp; 1734 1735 /* 1736 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1737 * linked to both the rbtree and list on PRIQs, this can only be 1738 * tested easily when adding the first task. 1739 */ 1740 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1741 nldsq_next_task(dsq, NULL, false))) 1742 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1743 dsq->id); 1744 1745 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1746 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1747 1748 /* 1749 * Find the previous task and insert after it on the list so 1750 * that @dsq->list is vtime ordered. 1751 */ 1752 rbp = rb_prev(&p->scx.dsq_priq); 1753 if (rbp) { 1754 struct task_struct *prev = 1755 container_of(rbp, struct task_struct, 1756 scx.dsq_priq); 1757 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1758 } else { 1759 list_add(&p->scx.dsq_list.node, &dsq->list); 1760 } 1761 } else { 1762 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1763 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1764 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1765 dsq->id); 1766 1767 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1768 list_add(&p->scx.dsq_list.node, &dsq->list); 1769 else 1770 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1771 } 1772 1773 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1774 dsq->seq++; 1775 p->scx.dsq_seq = dsq->seq; 1776 1777 dsq_mod_nr(dsq, 1); 1778 p->scx.dsq = dsq; 1779 1780 /* 1781 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1782 * direct dispatch path, but we clear them here because the direct 1783 * dispatch verdict may be overridden on the enqueue path during e.g. 1784 * bypass. 1785 */ 1786 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1787 p->scx.ddsp_enq_flags = 0; 1788 1789 /* 1790 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1791 * match waiters' load_acquire. 1792 */ 1793 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1794 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1795 1796 if (is_local) { 1797 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1798 bool preempt = false; 1799 1800 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1801 rq->curr->sched_class == &ext_sched_class) { 1802 rq->curr->scx.slice = 0; 1803 preempt = true; 1804 } 1805 1806 if (preempt || sched_class_above(&ext_sched_class, 1807 rq->curr->sched_class)) 1808 resched_curr(rq); 1809 } else { 1810 raw_spin_unlock(&dsq->lock); 1811 } 1812 } 1813 1814 static void task_unlink_from_dsq(struct task_struct *p, 1815 struct scx_dispatch_q *dsq) 1816 { 1817 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1818 1819 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1820 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1821 RB_CLEAR_NODE(&p->scx.dsq_priq); 1822 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1823 } 1824 1825 list_del_init(&p->scx.dsq_list.node); 1826 dsq_mod_nr(dsq, -1); 1827 } 1828 1829 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1830 { 1831 struct scx_dispatch_q *dsq = p->scx.dsq; 1832 bool is_local = dsq == &rq->scx.local_dsq; 1833 1834 if (!dsq) { 1835 /* 1836 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1837 * Unlinking is all that's needed to cancel. 1838 */ 1839 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1840 list_del_init(&p->scx.dsq_list.node); 1841 1842 /* 1843 * When dispatching directly from the BPF scheduler to a local 1844 * DSQ, the task isn't associated with any DSQ but 1845 * @p->scx.holding_cpu may be set under the protection of 1846 * %SCX_OPSS_DISPATCHING. 1847 */ 1848 if (p->scx.holding_cpu >= 0) 1849 p->scx.holding_cpu = -1; 1850 1851 return; 1852 } 1853 1854 if (!is_local) 1855 raw_spin_lock(&dsq->lock); 1856 1857 /* 1858 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1859 * change underneath us. 1860 */ 1861 if (p->scx.holding_cpu < 0) { 1862 /* @p must still be on @dsq, dequeue */ 1863 task_unlink_from_dsq(p, dsq); 1864 } else { 1865 /* 1866 * We're racing against dispatch_to_local_dsq() which already 1867 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1868 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1869 * the race. 1870 */ 1871 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1872 p->scx.holding_cpu = -1; 1873 } 1874 p->scx.dsq = NULL; 1875 1876 if (!is_local) 1877 raw_spin_unlock(&dsq->lock); 1878 } 1879 1880 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1881 struct task_struct *p) 1882 { 1883 struct scx_dispatch_q *dsq; 1884 1885 if (dsq_id == SCX_DSQ_LOCAL) 1886 return &rq->scx.local_dsq; 1887 1888 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1889 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1890 1891 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1892 return find_global_dsq(p); 1893 1894 return &cpu_rq(cpu)->scx.local_dsq; 1895 } 1896 1897 if (dsq_id == SCX_DSQ_GLOBAL) 1898 dsq = find_global_dsq(p); 1899 else 1900 dsq = find_user_dsq(dsq_id); 1901 1902 if (unlikely(!dsq)) { 1903 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 1904 dsq_id, p->comm, p->pid); 1905 return find_global_dsq(p); 1906 } 1907 1908 return dsq; 1909 } 1910 1911 static void mark_direct_dispatch(struct task_struct *ddsp_task, 1912 struct task_struct *p, u64 dsq_id, 1913 u64 enq_flags) 1914 { 1915 /* 1916 * Mark that dispatch already happened from ops.select_cpu() or 1917 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1918 * which can never match a valid task pointer. 1919 */ 1920 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1921 1922 /* @p must match the task on the enqueue path */ 1923 if (unlikely(p != ddsp_task)) { 1924 if (IS_ERR(ddsp_task)) 1925 scx_ops_error("%s[%d] already direct-dispatched", 1926 p->comm, p->pid); 1927 else 1928 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1929 ddsp_task->comm, ddsp_task->pid, 1930 p->comm, p->pid); 1931 return; 1932 } 1933 1934 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1935 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1936 1937 p->scx.ddsp_dsq_id = dsq_id; 1938 p->scx.ddsp_enq_flags = enq_flags; 1939 } 1940 1941 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 1942 { 1943 struct rq *rq = task_rq(p); 1944 struct scx_dispatch_q *dsq = 1945 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 1946 1947 touch_core_sched_dispatch(rq, p); 1948 1949 p->scx.ddsp_enq_flags |= enq_flags; 1950 1951 /* 1952 * We are in the enqueue path with @rq locked and pinned, and thus can't 1953 * double lock a remote rq and enqueue to its local DSQ. For 1954 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1955 * the enqueue so that it's executed when @rq can be unlocked. 1956 */ 1957 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1958 unsigned long opss; 1959 1960 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1961 1962 switch (opss & SCX_OPSS_STATE_MASK) { 1963 case SCX_OPSS_NONE: 1964 break; 1965 case SCX_OPSS_QUEUEING: 1966 /* 1967 * As @p was never passed to the BPF side, _release is 1968 * not strictly necessary. Still do it for consistency. 1969 */ 1970 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1971 break; 1972 default: 1973 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1974 p->comm, p->pid, opss); 1975 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1976 break; 1977 } 1978 1979 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1980 list_add_tail(&p->scx.dsq_list.node, 1981 &rq->scx.ddsp_deferred_locals); 1982 schedule_deferred(rq); 1983 return; 1984 } 1985 1986 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1987 } 1988 1989 static bool scx_rq_online(struct rq *rq) 1990 { 1991 /* 1992 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1993 * the online state as seen from the BPF scheduler. cpu_active() test 1994 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1995 * stay set until the current scheduling operation is complete even if 1996 * we aren't locking @rq. 1997 */ 1998 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1999 } 2000 2001 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 2002 int sticky_cpu) 2003 { 2004 struct task_struct **ddsp_taskp; 2005 unsigned long qseq; 2006 2007 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 2008 2009 /* rq migration */ 2010 if (sticky_cpu == cpu_of(rq)) 2011 goto local_norefill; 2012 2013 /* 2014 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2015 * is offline and are just running the hotplug path. Don't bother the 2016 * BPF scheduler. 2017 */ 2018 if (!scx_rq_online(rq)) 2019 goto local; 2020 2021 if (scx_rq_bypassing(rq)) 2022 goto global; 2023 2024 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2025 goto direct; 2026 2027 /* see %SCX_OPS_ENQ_EXITING */ 2028 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 2029 unlikely(p->flags & PF_EXITING)) 2030 goto local; 2031 2032 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 2033 if (!static_branch_unlikely(&scx_ops_enq_migration_disabled) && 2034 is_migration_disabled(p)) 2035 goto local; 2036 2037 if (!SCX_HAS_OP(enqueue)) 2038 goto global; 2039 2040 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2041 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2042 2043 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2044 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2045 2046 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2047 WARN_ON_ONCE(*ddsp_taskp); 2048 *ddsp_taskp = p; 2049 2050 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 2051 2052 *ddsp_taskp = NULL; 2053 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2054 goto direct; 2055 2056 /* 2057 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2058 * dequeue may be waiting. The store_release matches their load_acquire. 2059 */ 2060 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2061 return; 2062 2063 direct: 2064 direct_dispatch(p, enq_flags); 2065 return; 2066 2067 local: 2068 /* 2069 * For task-ordering, slice refill must be treated as implying the end 2070 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2071 * higher priority it becomes from scx_prio_less()'s POV. 2072 */ 2073 touch_core_sched(rq, p); 2074 p->scx.slice = SCX_SLICE_DFL; 2075 local_norefill: 2076 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2077 return; 2078 2079 global: 2080 touch_core_sched(rq, p); /* see the comment in local: */ 2081 p->scx.slice = SCX_SLICE_DFL; 2082 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2083 } 2084 2085 static bool task_runnable(const struct task_struct *p) 2086 { 2087 return !list_empty(&p->scx.runnable_node); 2088 } 2089 2090 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2091 { 2092 lockdep_assert_rq_held(rq); 2093 2094 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2095 p->scx.runnable_at = jiffies; 2096 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2097 } 2098 2099 /* 2100 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2101 * appended to the runnable_list. 2102 */ 2103 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2104 } 2105 2106 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2107 { 2108 list_del_init(&p->scx.runnable_node); 2109 if (reset_runnable_at) 2110 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2111 } 2112 2113 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2114 { 2115 int sticky_cpu = p->scx.sticky_cpu; 2116 2117 if (enq_flags & ENQUEUE_WAKEUP) 2118 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2119 2120 enq_flags |= rq->scx.extra_enq_flags; 2121 2122 if (sticky_cpu >= 0) 2123 p->scx.sticky_cpu = -1; 2124 2125 /* 2126 * Restoring a running task will be immediately followed by 2127 * set_next_task_scx() which expects the task to not be on the BPF 2128 * scheduler as tasks can only start running through local DSQs. Force 2129 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2130 */ 2131 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2132 sticky_cpu = cpu_of(rq); 2133 2134 if (p->scx.flags & SCX_TASK_QUEUED) { 2135 WARN_ON_ONCE(!task_runnable(p)); 2136 goto out; 2137 } 2138 2139 set_task_runnable(rq, p); 2140 p->scx.flags |= SCX_TASK_QUEUED; 2141 rq->scx.nr_running++; 2142 add_nr_running(rq, 1); 2143 2144 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2145 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2146 2147 if (enq_flags & SCX_ENQ_WAKEUP) 2148 touch_core_sched(rq, p); 2149 2150 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2151 out: 2152 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2153 } 2154 2155 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2156 { 2157 unsigned long opss; 2158 2159 /* dequeue is always temporary, don't reset runnable_at */ 2160 clr_task_runnable(p, false); 2161 2162 /* acquire ensures that we see the preceding updates on QUEUED */ 2163 opss = atomic_long_read_acquire(&p->scx.ops_state); 2164 2165 switch (opss & SCX_OPSS_STATE_MASK) { 2166 case SCX_OPSS_NONE: 2167 break; 2168 case SCX_OPSS_QUEUEING: 2169 /* 2170 * QUEUEING is started and finished while holding @p's rq lock. 2171 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2172 */ 2173 BUG(); 2174 case SCX_OPSS_QUEUED: 2175 if (SCX_HAS_OP(dequeue)) 2176 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2177 2178 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2179 SCX_OPSS_NONE)) 2180 break; 2181 fallthrough; 2182 case SCX_OPSS_DISPATCHING: 2183 /* 2184 * If @p is being dispatched from the BPF scheduler to a DSQ, 2185 * wait for the transfer to complete so that @p doesn't get 2186 * added to its DSQ after dequeueing is complete. 2187 * 2188 * As we're waiting on DISPATCHING with the rq locked, the 2189 * dispatching side shouldn't try to lock the rq while 2190 * DISPATCHING is set. See dispatch_to_local_dsq(). 2191 * 2192 * DISPATCHING shouldn't have qseq set and control can reach 2193 * here with NONE @opss from the above QUEUED case block. 2194 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2195 */ 2196 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2197 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2198 break; 2199 } 2200 } 2201 2202 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2203 { 2204 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2205 WARN_ON_ONCE(task_runnable(p)); 2206 return true; 2207 } 2208 2209 ops_dequeue(p, deq_flags); 2210 2211 /* 2212 * A currently running task which is going off @rq first gets dequeued 2213 * and then stops running. As we want running <-> stopping transitions 2214 * to be contained within runnable <-> quiescent transitions, trigger 2215 * ->stopping() early here instead of in put_prev_task_scx(). 2216 * 2217 * @p may go through multiple stopping <-> running transitions between 2218 * here and put_prev_task_scx() if task attribute changes occur while 2219 * balance_scx() leaves @rq unlocked. However, they don't contain any 2220 * information meaningful to the BPF scheduler and can be suppressed by 2221 * skipping the callbacks if the task is !QUEUED. 2222 */ 2223 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2224 update_curr_scx(rq); 2225 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2226 } 2227 2228 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2229 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2230 2231 if (deq_flags & SCX_DEQ_SLEEP) 2232 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2233 else 2234 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2235 2236 p->scx.flags &= ~SCX_TASK_QUEUED; 2237 rq->scx.nr_running--; 2238 sub_nr_running(rq, 1); 2239 2240 dispatch_dequeue(rq, p); 2241 return true; 2242 } 2243 2244 static void yield_task_scx(struct rq *rq) 2245 { 2246 struct task_struct *p = rq->curr; 2247 2248 if (SCX_HAS_OP(yield)) 2249 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2250 else 2251 p->scx.slice = 0; 2252 } 2253 2254 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2255 { 2256 struct task_struct *from = rq->curr; 2257 2258 if (SCX_HAS_OP(yield)) 2259 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2260 else 2261 return false; 2262 } 2263 2264 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2265 struct scx_dispatch_q *src_dsq, 2266 struct rq *dst_rq) 2267 { 2268 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2269 2270 /* @dsq is locked and @p is on @dst_rq */ 2271 lockdep_assert_held(&src_dsq->lock); 2272 lockdep_assert_rq_held(dst_rq); 2273 2274 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2275 2276 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2277 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2278 else 2279 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2280 2281 dsq_mod_nr(dst_dsq, 1); 2282 p->scx.dsq = dst_dsq; 2283 } 2284 2285 #ifdef CONFIG_SMP 2286 /** 2287 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2288 * @p: task to move 2289 * @enq_flags: %SCX_ENQ_* 2290 * @src_rq: rq to move the task from, locked on entry, released on return 2291 * @dst_rq: rq to move the task into, locked on return 2292 * 2293 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2294 */ 2295 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2296 struct rq *src_rq, struct rq *dst_rq) 2297 { 2298 lockdep_assert_rq_held(src_rq); 2299 2300 /* the following marks @p MIGRATING which excludes dequeue */ 2301 deactivate_task(src_rq, p, 0); 2302 set_task_cpu(p, cpu_of(dst_rq)); 2303 p->scx.sticky_cpu = cpu_of(dst_rq); 2304 2305 raw_spin_rq_unlock(src_rq); 2306 raw_spin_rq_lock(dst_rq); 2307 2308 /* 2309 * We want to pass scx-specific enq_flags but activate_task() will 2310 * truncate the upper 32 bit. As we own @rq, we can pass them through 2311 * @rq->scx.extra_enq_flags instead. 2312 */ 2313 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2314 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2315 dst_rq->scx.extra_enq_flags = enq_flags; 2316 activate_task(dst_rq, p, 0); 2317 dst_rq->scx.extra_enq_flags = 0; 2318 } 2319 2320 /* 2321 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2322 * differences: 2323 * 2324 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2325 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2326 * this CPU?". 2327 * 2328 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2329 * must be allowed to finish on the CPU that it's currently on regardless of 2330 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2331 * BPF scheduler shouldn't attempt to migrate a task which has migration 2332 * disabled. 2333 * 2334 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2335 * no to the BPF scheduler initiated migrations while offline. 2336 * 2337 * The caller must ensure that @p and @rq are on different CPUs. 2338 */ 2339 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2340 bool trigger_error) 2341 { 2342 int cpu = cpu_of(rq); 2343 2344 SCHED_WARN_ON(task_cpu(p) == cpu); 2345 2346 /* 2347 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 2348 * the pinned CPU in migrate_disable_switch() while @p is being switched 2349 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 2350 * updated and thus another CPU may see @p on a DSQ inbetween leading to 2351 * @p passing the below task_allowed_on_cpu() check while migration is 2352 * disabled. 2353 * 2354 * Test the migration disabled state first as the race window is narrow 2355 * and the BPF scheduler failing to check migration disabled state can 2356 * easily be masked if task_allowed_on_cpu() is done first. 2357 */ 2358 if (unlikely(is_migration_disabled(p))) { 2359 if (trigger_error) 2360 scx_ops_error("SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 2361 p->comm, p->pid, task_cpu(p), cpu); 2362 return false; 2363 } 2364 2365 /* 2366 * We don't require the BPF scheduler to avoid dispatching to offline 2367 * CPUs mostly for convenience but also because CPUs can go offline 2368 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2369 * picked CPU is outside the allowed mask. 2370 */ 2371 if (!task_allowed_on_cpu(p, cpu)) { 2372 if (trigger_error) 2373 scx_ops_error("SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 2374 cpu, p->comm, p->pid); 2375 return false; 2376 } 2377 2378 if (!scx_rq_online(rq)) 2379 return false; 2380 2381 return true; 2382 } 2383 2384 /** 2385 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2386 * @p: target task 2387 * @dsq: locked DSQ @p is currently on 2388 * @src_rq: rq @p is currently on, stable with @dsq locked 2389 * 2390 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2391 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2392 * required when transferring into a local DSQ. Even when transferring into a 2393 * non-local DSQ, it's better to use the same mechanism to protect against 2394 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2395 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2396 * 2397 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2398 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2399 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2400 * dancing from our side. 2401 * 2402 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2403 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2404 * would be cleared to -1. While other cpus may have updated it to different 2405 * values afterwards, as this operation can't be preempted or recurse, the 2406 * holding_cpu can never become this CPU again before we're done. Thus, we can 2407 * tell whether we lost to dequeue by testing whether the holding_cpu still 2408 * points to this CPU. See dispatch_dequeue() for the counterpart. 2409 * 2410 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2411 * still valid. %false if lost to dequeue. 2412 */ 2413 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2414 struct scx_dispatch_q *dsq, 2415 struct rq *src_rq) 2416 { 2417 s32 cpu = raw_smp_processor_id(); 2418 2419 lockdep_assert_held(&dsq->lock); 2420 2421 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2422 task_unlink_from_dsq(p, dsq); 2423 p->scx.holding_cpu = cpu; 2424 2425 raw_spin_unlock(&dsq->lock); 2426 raw_spin_rq_lock(src_rq); 2427 2428 /* task_rq couldn't have changed if we're still the holding cpu */ 2429 return likely(p->scx.holding_cpu == cpu) && 2430 !WARN_ON_ONCE(src_rq != task_rq(p)); 2431 } 2432 2433 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2434 struct scx_dispatch_q *dsq, struct rq *src_rq) 2435 { 2436 raw_spin_rq_unlock(this_rq); 2437 2438 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2439 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2440 return true; 2441 } else { 2442 raw_spin_rq_unlock(src_rq); 2443 raw_spin_rq_lock(this_rq); 2444 return false; 2445 } 2446 } 2447 #else /* CONFIG_SMP */ 2448 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2449 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } 2450 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2451 #endif /* CONFIG_SMP */ 2452 2453 /** 2454 * move_task_between_dsqs() - Move a task from one DSQ to another 2455 * @p: target task 2456 * @enq_flags: %SCX_ENQ_* 2457 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2458 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2459 * 2460 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2461 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2462 * will change. As @p's task_rq is locked, this function doesn't need to use the 2463 * holding_cpu mechanism. 2464 * 2465 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2466 * return value, is locked. 2467 */ 2468 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags, 2469 struct scx_dispatch_q *src_dsq, 2470 struct scx_dispatch_q *dst_dsq) 2471 { 2472 struct rq *src_rq = task_rq(p), *dst_rq; 2473 2474 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2475 lockdep_assert_held(&src_dsq->lock); 2476 lockdep_assert_rq_held(src_rq); 2477 2478 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2479 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2480 if (src_rq != dst_rq && 2481 unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2482 dst_dsq = find_global_dsq(p); 2483 dst_rq = src_rq; 2484 } 2485 } else { 2486 /* no need to migrate if destination is a non-local DSQ */ 2487 dst_rq = src_rq; 2488 } 2489 2490 /* 2491 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2492 * CPU, @p will be migrated. 2493 */ 2494 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2495 /* @p is going from a non-local DSQ to a local DSQ */ 2496 if (src_rq == dst_rq) { 2497 task_unlink_from_dsq(p, src_dsq); 2498 move_local_task_to_local_dsq(p, enq_flags, 2499 src_dsq, dst_rq); 2500 raw_spin_unlock(&src_dsq->lock); 2501 } else { 2502 raw_spin_unlock(&src_dsq->lock); 2503 move_remote_task_to_local_dsq(p, enq_flags, 2504 src_rq, dst_rq); 2505 } 2506 } else { 2507 /* 2508 * @p is going from a non-local DSQ to a non-local DSQ. As 2509 * $src_dsq is already locked, do an abbreviated dequeue. 2510 */ 2511 task_unlink_from_dsq(p, src_dsq); 2512 p->scx.dsq = NULL; 2513 raw_spin_unlock(&src_dsq->lock); 2514 2515 dispatch_enqueue(dst_dsq, p, enq_flags); 2516 } 2517 2518 return dst_rq; 2519 } 2520 2521 /* 2522 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2523 * banging on the same DSQ on a large NUMA system to the point where switching 2524 * to the bypass mode can take a long time. Inject artificial delays while the 2525 * bypass mode is switching to guarantee timely completion. 2526 */ 2527 static void scx_ops_breather(struct rq *rq) 2528 { 2529 u64 until; 2530 2531 lockdep_assert_rq_held(rq); 2532 2533 if (likely(!atomic_read(&scx_ops_breather_depth))) 2534 return; 2535 2536 raw_spin_rq_unlock(rq); 2537 2538 until = ktime_get_ns() + NSEC_PER_MSEC; 2539 2540 do { 2541 int cnt = 1024; 2542 while (atomic_read(&scx_ops_breather_depth) && --cnt) 2543 cpu_relax(); 2544 } while (atomic_read(&scx_ops_breather_depth) && 2545 time_before64(ktime_get_ns(), until)); 2546 2547 raw_spin_rq_lock(rq); 2548 } 2549 2550 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2551 { 2552 struct task_struct *p; 2553 retry: 2554 /* 2555 * This retry loop can repeatedly race against scx_ops_bypass() 2556 * dequeueing tasks from @dsq trying to put the system into the bypass 2557 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can 2558 * live-lock the machine into soft lockups. Give a breather. 2559 */ 2560 scx_ops_breather(rq); 2561 2562 /* 2563 * The caller can't expect to successfully consume a task if the task's 2564 * addition to @dsq isn't guaranteed to be visible somehow. Test 2565 * @dsq->list without locking and skip if it seems empty. 2566 */ 2567 if (list_empty(&dsq->list)) 2568 return false; 2569 2570 raw_spin_lock(&dsq->lock); 2571 2572 nldsq_for_each_task(p, dsq) { 2573 struct rq *task_rq = task_rq(p); 2574 2575 if (rq == task_rq) { 2576 task_unlink_from_dsq(p, dsq); 2577 move_local_task_to_local_dsq(p, 0, dsq, rq); 2578 raw_spin_unlock(&dsq->lock); 2579 return true; 2580 } 2581 2582 if (task_can_run_on_remote_rq(p, rq, false)) { 2583 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2584 return true; 2585 goto retry; 2586 } 2587 } 2588 2589 raw_spin_unlock(&dsq->lock); 2590 return false; 2591 } 2592 2593 static bool consume_global_dsq(struct rq *rq) 2594 { 2595 int node = cpu_to_node(cpu_of(rq)); 2596 2597 return consume_dispatch_q(rq, global_dsqs[node]); 2598 } 2599 2600 /** 2601 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2602 * @rq: current rq which is locked 2603 * @dst_dsq: destination DSQ 2604 * @p: task to dispatch 2605 * @enq_flags: %SCX_ENQ_* 2606 * 2607 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2608 * DSQ. This function performs all the synchronization dancing needed because 2609 * local DSQs are protected with rq locks. 2610 * 2611 * The caller must have exclusive ownership of @p (e.g. through 2612 * %SCX_OPSS_DISPATCHING). 2613 */ 2614 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2615 struct task_struct *p, u64 enq_flags) 2616 { 2617 struct rq *src_rq = task_rq(p); 2618 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2619 #ifdef CONFIG_SMP 2620 struct rq *locked_rq = rq; 2621 #endif 2622 2623 /* 2624 * We're synchronized against dequeue through DISPATCHING. As @p can't 2625 * be dequeued, its task_rq and cpus_allowed are stable too. 2626 * 2627 * If dispatching to @rq that @p is already on, no lock dancing needed. 2628 */ 2629 if (rq == src_rq && rq == dst_rq) { 2630 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2631 return; 2632 } 2633 2634 #ifdef CONFIG_SMP 2635 if (src_rq != dst_rq && 2636 unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2637 dispatch_enqueue(find_global_dsq(p), p, 2638 enq_flags | SCX_ENQ_CLEAR_OPSS); 2639 return; 2640 } 2641 2642 /* 2643 * @p is on a possibly remote @src_rq which we need to lock to move the 2644 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2645 * on DISPATCHING, so we can't grab @src_rq lock while holding 2646 * DISPATCHING. 2647 * 2648 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2649 * we're moving from a DSQ and use the same mechanism - mark the task 2650 * under transfer with holding_cpu, release DISPATCHING and then follow 2651 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2652 */ 2653 p->scx.holding_cpu = raw_smp_processor_id(); 2654 2655 /* store_release ensures that dequeue sees the above */ 2656 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2657 2658 /* switch to @src_rq lock */ 2659 if (locked_rq != src_rq) { 2660 raw_spin_rq_unlock(locked_rq); 2661 locked_rq = src_rq; 2662 raw_spin_rq_lock(src_rq); 2663 } 2664 2665 /* task_rq couldn't have changed if we're still the holding cpu */ 2666 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2667 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2668 /* 2669 * If @p is staying on the same rq, there's no need to go 2670 * through the full deactivate/activate cycle. Optimize by 2671 * abbreviating move_remote_task_to_local_dsq(). 2672 */ 2673 if (src_rq == dst_rq) { 2674 p->scx.holding_cpu = -1; 2675 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2676 } else { 2677 move_remote_task_to_local_dsq(p, enq_flags, 2678 src_rq, dst_rq); 2679 /* task has been moved to dst_rq, which is now locked */ 2680 locked_rq = dst_rq; 2681 } 2682 2683 /* if the destination CPU is idle, wake it up */ 2684 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2685 resched_curr(dst_rq); 2686 } 2687 2688 /* switch back to @rq lock */ 2689 if (locked_rq != rq) { 2690 raw_spin_rq_unlock(locked_rq); 2691 raw_spin_rq_lock(rq); 2692 } 2693 #else /* CONFIG_SMP */ 2694 BUG(); /* control can not reach here on UP */ 2695 #endif /* CONFIG_SMP */ 2696 } 2697 2698 /** 2699 * finish_dispatch - Asynchronously finish dispatching a task 2700 * @rq: current rq which is locked 2701 * @p: task to finish dispatching 2702 * @qseq_at_dispatch: qseq when @p started getting dispatched 2703 * @dsq_id: destination DSQ ID 2704 * @enq_flags: %SCX_ENQ_* 2705 * 2706 * Dispatching to local DSQs may need to wait for queueing to complete or 2707 * require rq lock dancing. As we don't wanna do either while inside 2708 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2709 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2710 * task and its qseq. Once ops.dispatch() returns, this function is called to 2711 * finish up. 2712 * 2713 * There is no guarantee that @p is still valid for dispatching or even that it 2714 * was valid in the first place. Make sure that the task is still owned by the 2715 * BPF scheduler and claim the ownership before dispatching. 2716 */ 2717 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2718 unsigned long qseq_at_dispatch, 2719 u64 dsq_id, u64 enq_flags) 2720 { 2721 struct scx_dispatch_q *dsq; 2722 unsigned long opss; 2723 2724 touch_core_sched_dispatch(rq, p); 2725 retry: 2726 /* 2727 * No need for _acquire here. @p is accessed only after a successful 2728 * try_cmpxchg to DISPATCHING. 2729 */ 2730 opss = atomic_long_read(&p->scx.ops_state); 2731 2732 switch (opss & SCX_OPSS_STATE_MASK) { 2733 case SCX_OPSS_DISPATCHING: 2734 case SCX_OPSS_NONE: 2735 /* someone else already got to it */ 2736 return; 2737 case SCX_OPSS_QUEUED: 2738 /* 2739 * If qseq doesn't match, @p has gone through at least one 2740 * dispatch/dequeue and re-enqueue cycle between 2741 * scx_bpf_dsq_insert() and here and we have no claim on it. 2742 */ 2743 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2744 return; 2745 2746 /* 2747 * While we know @p is accessible, we don't yet have a claim on 2748 * it - the BPF scheduler is allowed to dispatch tasks 2749 * spuriously and there can be a racing dequeue attempt. Let's 2750 * claim @p by atomically transitioning it from QUEUED to 2751 * DISPATCHING. 2752 */ 2753 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2754 SCX_OPSS_DISPATCHING))) 2755 break; 2756 goto retry; 2757 case SCX_OPSS_QUEUEING: 2758 /* 2759 * do_enqueue_task() is in the process of transferring the task 2760 * to the BPF scheduler while holding @p's rq lock. As we aren't 2761 * holding any kernel or BPF resource that the enqueue path may 2762 * depend upon, it's safe to wait. 2763 */ 2764 wait_ops_state(p, opss); 2765 goto retry; 2766 } 2767 2768 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2769 2770 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2771 2772 if (dsq->id == SCX_DSQ_LOCAL) 2773 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2774 else 2775 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2776 } 2777 2778 static void flush_dispatch_buf(struct rq *rq) 2779 { 2780 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2781 u32 u; 2782 2783 for (u = 0; u < dspc->cursor; u++) { 2784 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2785 2786 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2787 ent->enq_flags); 2788 } 2789 2790 dspc->nr_tasks += dspc->cursor; 2791 dspc->cursor = 0; 2792 } 2793 2794 static int balance_one(struct rq *rq, struct task_struct *prev) 2795 { 2796 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2797 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2798 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2799 int nr_loops = SCX_DSP_MAX_LOOPS; 2800 2801 lockdep_assert_rq_held(rq); 2802 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2803 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2804 2805 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2806 unlikely(rq->scx.cpu_released)) { 2807 /* 2808 * If the previous sched_class for the current CPU was not SCX, 2809 * notify the BPF scheduler that it again has control of the 2810 * core. This callback complements ->cpu_release(), which is 2811 * emitted in switch_class(). 2812 */ 2813 if (SCX_HAS_OP(cpu_acquire)) 2814 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL); 2815 rq->scx.cpu_released = false; 2816 } 2817 2818 if (prev_on_scx) { 2819 update_curr_scx(rq); 2820 2821 /* 2822 * If @prev is runnable & has slice left, it has priority and 2823 * fetching more just increases latency for the fetched tasks. 2824 * Tell pick_task_scx() to keep running @prev. If the BPF 2825 * scheduler wants to handle this explicitly, it should 2826 * implement ->cpu_release(). 2827 * 2828 * See scx_ops_disable_workfn() for the explanation on the 2829 * bypassing test. 2830 */ 2831 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2832 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2833 goto has_tasks; 2834 } 2835 } 2836 2837 /* if there already are tasks to run, nothing to do */ 2838 if (rq->scx.local_dsq.nr) 2839 goto has_tasks; 2840 2841 if (consume_global_dsq(rq)) 2842 goto has_tasks; 2843 2844 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2845 goto no_tasks; 2846 2847 dspc->rq = rq; 2848 2849 /* 2850 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2851 * the local DSQ might still end up empty after a successful 2852 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2853 * produced some tasks, retry. The BPF scheduler may depend on this 2854 * looping behavior to simplify its implementation. 2855 */ 2856 do { 2857 dspc->nr_tasks = 0; 2858 2859 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2860 prev_on_scx ? prev : NULL); 2861 2862 flush_dispatch_buf(rq); 2863 2864 if (prev_on_rq && prev->scx.slice) { 2865 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2866 goto has_tasks; 2867 } 2868 if (rq->scx.local_dsq.nr) 2869 goto has_tasks; 2870 if (consume_global_dsq(rq)) 2871 goto has_tasks; 2872 2873 /* 2874 * ops.dispatch() can trap us in this loop by repeatedly 2875 * dispatching ineligible tasks. Break out once in a while to 2876 * allow the watchdog to run. As IRQ can't be enabled in 2877 * balance(), we want to complete this scheduling cycle and then 2878 * start a new one. IOW, we want to call resched_curr() on the 2879 * next, most likely idle, task, not the current one. Use 2880 * scx_bpf_kick_cpu() for deferred kicking. 2881 */ 2882 if (unlikely(!--nr_loops)) { 2883 scx_bpf_kick_cpu(cpu_of(rq), 0); 2884 break; 2885 } 2886 } while (dspc->nr_tasks); 2887 2888 no_tasks: 2889 /* 2890 * Didn't find another task to run. Keep running @prev unless 2891 * %SCX_OPS_ENQ_LAST is in effect. 2892 */ 2893 if (prev_on_rq && (!static_branch_unlikely(&scx_ops_enq_last) || 2894 scx_rq_bypassing(rq))) { 2895 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2896 goto has_tasks; 2897 } 2898 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2899 return false; 2900 2901 has_tasks: 2902 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2903 return true; 2904 } 2905 2906 static int balance_scx(struct rq *rq, struct task_struct *prev, 2907 struct rq_flags *rf) 2908 { 2909 int ret; 2910 2911 rq_unpin_lock(rq, rf); 2912 2913 ret = balance_one(rq, prev); 2914 2915 #ifdef CONFIG_SCHED_SMT 2916 /* 2917 * When core-sched is enabled, this ops.balance() call will be followed 2918 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 2919 * siblings too. 2920 */ 2921 if (sched_core_enabled(rq)) { 2922 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 2923 int scpu; 2924 2925 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 2926 struct rq *srq = cpu_rq(scpu); 2927 struct task_struct *sprev = srq->curr; 2928 2929 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 2930 update_rq_clock(srq); 2931 balance_one(srq, sprev); 2932 } 2933 } 2934 #endif 2935 rq_repin_lock(rq, rf); 2936 2937 return ret; 2938 } 2939 2940 static void process_ddsp_deferred_locals(struct rq *rq) 2941 { 2942 struct task_struct *p; 2943 2944 lockdep_assert_rq_held(rq); 2945 2946 /* 2947 * Now that @rq can be unlocked, execute the deferred enqueueing of 2948 * tasks directly dispatched to the local DSQs of other CPUs. See 2949 * direct_dispatch(). Keep popping from the head instead of using 2950 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2951 * temporarily. 2952 */ 2953 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2954 struct task_struct, scx.dsq_list.node))) { 2955 struct scx_dispatch_q *dsq; 2956 2957 list_del_init(&p->scx.dsq_list.node); 2958 2959 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2960 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2961 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 2962 } 2963 } 2964 2965 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2966 { 2967 if (p->scx.flags & SCX_TASK_QUEUED) { 2968 /* 2969 * Core-sched might decide to execute @p before it is 2970 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2971 */ 2972 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 2973 dispatch_dequeue(rq, p); 2974 } 2975 2976 p->se.exec_start = rq_clock_task(rq); 2977 2978 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2979 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 2980 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 2981 2982 clr_task_runnable(p, true); 2983 2984 /* 2985 * @p is getting newly scheduled or got kicked after someone updated its 2986 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2987 */ 2988 if ((p->scx.slice == SCX_SLICE_INF) != 2989 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2990 if (p->scx.slice == SCX_SLICE_INF) 2991 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2992 else 2993 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2994 2995 sched_update_tick_dependency(rq); 2996 2997 /* 2998 * For now, let's refresh the load_avgs just when transitioning 2999 * in and out of nohz. In the future, we might want to add a 3000 * mechanism which calls the following periodically on 3001 * tick-stopped CPUs. 3002 */ 3003 update_other_load_avgs(rq); 3004 } 3005 } 3006 3007 static enum scx_cpu_preempt_reason 3008 preempt_reason_from_class(const struct sched_class *class) 3009 { 3010 #ifdef CONFIG_SMP 3011 if (class == &stop_sched_class) 3012 return SCX_CPU_PREEMPT_STOP; 3013 #endif 3014 if (class == &dl_sched_class) 3015 return SCX_CPU_PREEMPT_DL; 3016 if (class == &rt_sched_class) 3017 return SCX_CPU_PREEMPT_RT; 3018 return SCX_CPU_PREEMPT_UNKNOWN; 3019 } 3020 3021 static void switch_class(struct rq *rq, struct task_struct *next) 3022 { 3023 const struct sched_class *next_class = next->sched_class; 3024 3025 #ifdef CONFIG_SMP 3026 /* 3027 * Pairs with the smp_load_acquire() issued by a CPU in 3028 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 3029 * resched. 3030 */ 3031 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 3032 #endif 3033 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 3034 return; 3035 3036 /* 3037 * The callback is conceptually meant to convey that the CPU is no 3038 * longer under the control of SCX. Therefore, don't invoke the callback 3039 * if the next class is below SCX (in which case the BPF scheduler has 3040 * actively decided not to schedule any tasks on the CPU). 3041 */ 3042 if (sched_class_above(&ext_sched_class, next_class)) 3043 return; 3044 3045 /* 3046 * At this point we know that SCX was preempted by a higher priority 3047 * sched_class, so invoke the ->cpu_release() callback if we have not 3048 * done so already. We only send the callback once between SCX being 3049 * preempted, and it regaining control of the CPU. 3050 * 3051 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3052 * next time that balance_scx() is invoked. 3053 */ 3054 if (!rq->scx.cpu_released) { 3055 if (SCX_HAS_OP(cpu_release)) { 3056 struct scx_cpu_release_args args = { 3057 .reason = preempt_reason_from_class(next_class), 3058 .task = next, 3059 }; 3060 3061 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 3062 cpu_release, cpu_of(rq), &args); 3063 } 3064 rq->scx.cpu_released = true; 3065 } 3066 } 3067 3068 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3069 struct task_struct *next) 3070 { 3071 update_curr_scx(rq); 3072 3073 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3074 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3075 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 3076 3077 if (p->scx.flags & SCX_TASK_QUEUED) { 3078 set_task_runnable(rq, p); 3079 3080 /* 3081 * If @p has slice left and is being put, @p is getting 3082 * preempted by a higher priority scheduler class or core-sched 3083 * forcing a different task. Leave it at the head of the local 3084 * DSQ. 3085 */ 3086 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3087 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 3088 goto switch_class; 3089 } 3090 3091 /* 3092 * If @p is runnable but we're about to enter a lower 3093 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3094 * ops.enqueue() that @p is the only one available for this cpu, 3095 * which should trigger an explicit follow-up scheduling event. 3096 */ 3097 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3098 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 3099 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3100 } else { 3101 do_enqueue_task(rq, p, 0, -1); 3102 } 3103 } 3104 3105 switch_class: 3106 if (next && next->sched_class != &ext_sched_class) 3107 switch_class(rq, next); 3108 } 3109 3110 static struct task_struct *first_local_task(struct rq *rq) 3111 { 3112 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3113 struct task_struct, scx.dsq_list.node); 3114 } 3115 3116 static struct task_struct *pick_task_scx(struct rq *rq) 3117 { 3118 struct task_struct *prev = rq->curr; 3119 struct task_struct *p; 3120 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 3121 bool kick_idle = false; 3122 3123 /* 3124 * WORKAROUND: 3125 * 3126 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3127 * have gone through balance_scx(). Unfortunately, there currently is a 3128 * bug where fair could say yes on balance() but no on pick_task(), 3129 * which then ends up calling pick_task_scx() without preceding 3130 * balance_scx(). 3131 * 3132 * Keep running @prev if possible and avoid stalling from entering idle 3133 * without balancing. 3134 * 3135 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 3136 * if pick_task_scx() is called without preceding balance_scx(). 3137 */ 3138 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 3139 if (prev->scx.flags & SCX_TASK_QUEUED) { 3140 keep_prev = true; 3141 } else { 3142 keep_prev = false; 3143 kick_idle = true; 3144 } 3145 } else if (unlikely(keep_prev && 3146 prev->sched_class != &ext_sched_class)) { 3147 /* 3148 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is 3149 * conditional on scx_enabled() and may have been skipped. 3150 */ 3151 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED); 3152 keep_prev = false; 3153 } 3154 3155 /* 3156 * If balance_scx() is telling us to keep running @prev, replenish slice 3157 * if necessary and keep running @prev. Otherwise, pop the first one 3158 * from the local DSQ. 3159 */ 3160 if (keep_prev) { 3161 p = prev; 3162 if (!p->scx.slice) 3163 p->scx.slice = SCX_SLICE_DFL; 3164 } else { 3165 p = first_local_task(rq); 3166 if (!p) { 3167 if (kick_idle) 3168 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 3169 return NULL; 3170 } 3171 3172 if (unlikely(!p->scx.slice)) { 3173 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 3174 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3175 p->comm, p->pid, __func__); 3176 scx_warned_zero_slice = true; 3177 } 3178 p->scx.slice = SCX_SLICE_DFL; 3179 } 3180 } 3181 3182 return p; 3183 } 3184 3185 #ifdef CONFIG_SCHED_CORE 3186 /** 3187 * scx_prio_less - Task ordering for core-sched 3188 * @a: task A 3189 * @b: task B 3190 * @in_fi: in forced idle state 3191 * 3192 * Core-sched is implemented as an additional scheduling layer on top of the 3193 * usual sched_class'es and needs to find out the expected task ordering. For 3194 * SCX, core-sched calls this function to interrogate the task ordering. 3195 * 3196 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3197 * to implement the default task ordering. The older the timestamp, the higher 3198 * priority the task - the global FIFO ordering matching the default scheduling 3199 * behavior. 3200 * 3201 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3202 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3203 */ 3204 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3205 bool in_fi) 3206 { 3207 /* 3208 * The const qualifiers are dropped from task_struct pointers when 3209 * calling ops.core_sched_before(). Accesses are controlled by the 3210 * verifier. 3211 */ 3212 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 3213 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3214 (struct task_struct *)a, 3215 (struct task_struct *)b); 3216 else 3217 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3218 } 3219 #endif /* CONFIG_SCHED_CORE */ 3220 3221 #ifdef CONFIG_SMP 3222 3223 static bool test_and_clear_cpu_idle(int cpu) 3224 { 3225 #ifdef CONFIG_SCHED_SMT 3226 /* 3227 * SMT mask should be cleared whether we can claim @cpu or not. The SMT 3228 * cluster is not wholly idle either way. This also prevents 3229 * scx_pick_idle_cpu() from getting caught in an infinite loop. 3230 */ 3231 if (sched_smt_active()) { 3232 const struct cpumask *smt = cpu_smt_mask(cpu); 3233 3234 /* 3235 * If offline, @cpu is not its own sibling and 3236 * scx_pick_idle_cpu() can get caught in an infinite loop as 3237 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu 3238 * is eventually cleared. 3239 * 3240 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to 3241 * reduce memory writes, which may help alleviate cache 3242 * coherence pressure. 3243 */ 3244 if (cpumask_intersects(smt, idle_masks.smt)) 3245 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3246 else if (cpumask_test_cpu(cpu, idle_masks.smt)) 3247 __cpumask_clear_cpu(cpu, idle_masks.smt); 3248 } 3249 #endif 3250 return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); 3251 } 3252 3253 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) 3254 { 3255 int cpu; 3256 3257 retry: 3258 if (sched_smt_active()) { 3259 cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); 3260 if (cpu < nr_cpu_ids) 3261 goto found; 3262 3263 if (flags & SCX_PICK_IDLE_CORE) 3264 return -EBUSY; 3265 } 3266 3267 cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); 3268 if (cpu >= nr_cpu_ids) 3269 return -EBUSY; 3270 3271 found: 3272 if (test_and_clear_cpu_idle(cpu)) 3273 return cpu; 3274 else 3275 goto retry; 3276 } 3277 3278 /* 3279 * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC 3280 * domain is not defined). 3281 */ 3282 static unsigned int llc_weight(s32 cpu) 3283 { 3284 struct sched_domain *sd; 3285 3286 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3287 if (!sd) 3288 return 0; 3289 3290 return sd->span_weight; 3291 } 3292 3293 /* 3294 * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC 3295 * domain is not defined). 3296 */ 3297 static struct cpumask *llc_span(s32 cpu) 3298 { 3299 struct sched_domain *sd; 3300 3301 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 3302 if (!sd) 3303 return 0; 3304 3305 return sched_domain_span(sd); 3306 } 3307 3308 /* 3309 * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the 3310 * NUMA domain is not defined). 3311 */ 3312 static unsigned int numa_weight(s32 cpu) 3313 { 3314 struct sched_domain *sd; 3315 struct sched_group *sg; 3316 3317 sd = rcu_dereference(per_cpu(sd_numa, cpu)); 3318 if (!sd) 3319 return 0; 3320 sg = sd->groups; 3321 if (!sg) 3322 return 0; 3323 3324 return sg->group_weight; 3325 } 3326 3327 /* 3328 * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA 3329 * domain is not defined). 3330 */ 3331 static struct cpumask *numa_span(s32 cpu) 3332 { 3333 struct sched_domain *sd; 3334 struct sched_group *sg; 3335 3336 sd = rcu_dereference(per_cpu(sd_numa, cpu)); 3337 if (!sd) 3338 return NULL; 3339 sg = sd->groups; 3340 if (!sg) 3341 return NULL; 3342 3343 return sched_group_span(sg); 3344 } 3345 3346 /* 3347 * Return true if the LLC domains do not perfectly overlap with the NUMA 3348 * domains, false otherwise. 3349 */ 3350 static bool llc_numa_mismatch(void) 3351 { 3352 int cpu; 3353 3354 /* 3355 * We need to scan all online CPUs to verify whether their scheduling 3356 * domains overlap. 3357 * 3358 * While it is rare to encounter architectures with asymmetric NUMA 3359 * topologies, CPU hotplugging or virtualized environments can result 3360 * in asymmetric configurations. 3361 * 3362 * For example: 3363 * 3364 * NUMA 0: 3365 * - LLC 0: cpu0..cpu7 3366 * - LLC 1: cpu8..cpu15 [offline] 3367 * 3368 * NUMA 1: 3369 * - LLC 0: cpu16..cpu23 3370 * - LLC 1: cpu24..cpu31 3371 * 3372 * In this case, if we only check the first online CPU (cpu0), we might 3373 * incorrectly assume that the LLC and NUMA domains are fully 3374 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC 3375 * domains). 3376 */ 3377 for_each_online_cpu(cpu) 3378 if (llc_weight(cpu) != numa_weight(cpu)) 3379 return true; 3380 3381 return false; 3382 } 3383 3384 /* 3385 * Initialize topology-aware scheduling. 3386 * 3387 * Detect if the system has multiple LLC or multiple NUMA domains and enable 3388 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle 3389 * selection policy. 3390 * 3391 * Assumption: the kernel's internal topology representation assumes that each 3392 * CPU belongs to a single LLC domain, and that each LLC domain is entirely 3393 * contained within a single NUMA node. 3394 */ 3395 static void update_selcpu_topology(void) 3396 { 3397 bool enable_llc = false, enable_numa = false; 3398 unsigned int nr_cpus; 3399 s32 cpu = cpumask_first(cpu_online_mask); 3400 3401 /* 3402 * Enable LLC domain optimization only when there are multiple LLC 3403 * domains among the online CPUs. If all online CPUs are part of a 3404 * single LLC domain, the idle CPU selection logic can choose any 3405 * online CPU without bias. 3406 * 3407 * Note that it is sufficient to check the LLC domain of the first 3408 * online CPU to determine whether a single LLC domain includes all 3409 * CPUs. 3410 */ 3411 rcu_read_lock(); 3412 nr_cpus = llc_weight(cpu); 3413 if (nr_cpus > 0) { 3414 if (nr_cpus < num_online_cpus()) 3415 enable_llc = true; 3416 pr_debug("sched_ext: LLC=%*pb weight=%u\n", 3417 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu)); 3418 } 3419 3420 /* 3421 * Enable NUMA optimization only when there are multiple NUMA domains 3422 * among the online CPUs and the NUMA domains don't perfectly overlaps 3423 * with the LLC domains. 3424 * 3425 * If all CPUs belong to the same NUMA node and the same LLC domain, 3426 * enabling both NUMA and LLC optimizations is unnecessary, as checking 3427 * for an idle CPU in the same domain twice is redundant. 3428 */ 3429 nr_cpus = numa_weight(cpu); 3430 if (nr_cpus > 0) { 3431 if (nr_cpus < num_online_cpus() && llc_numa_mismatch()) 3432 enable_numa = true; 3433 pr_debug("sched_ext: NUMA=%*pb weight=%u\n", 3434 cpumask_pr_args(numa_span(cpu)), numa_weight(cpu)); 3435 } 3436 rcu_read_unlock(); 3437 3438 pr_debug("sched_ext: LLC idle selection %s\n", 3439 str_enabled_disabled(enable_llc)); 3440 pr_debug("sched_ext: NUMA idle selection %s\n", 3441 str_enabled_disabled(enable_numa)); 3442 3443 if (enable_llc) 3444 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc); 3445 else 3446 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc); 3447 if (enable_numa) 3448 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa); 3449 else 3450 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa); 3451 } 3452 3453 /* 3454 * Built-in CPU idle selection policy: 3455 * 3456 * 1. Prioritize full-idle cores: 3457 * - always prioritize CPUs from fully idle cores (both logical CPUs are 3458 * idle) to avoid interference caused by SMT. 3459 * 3460 * 2. Reuse the same CPU: 3461 * - prefer the last used CPU to take advantage of cached data (L1, L2) and 3462 * branch prediction optimizations. 3463 * 3464 * 3. Pick a CPU within the same LLC (Last-Level Cache): 3465 * - if the above conditions aren't met, pick a CPU that shares the same LLC 3466 * to maintain cache locality. 3467 * 3468 * 4. Pick a CPU within the same NUMA node, if enabled: 3469 * - choose a CPU from the same NUMA node to reduce memory access latency. 3470 * 3471 * 5. Pick any idle CPU usable by the task. 3472 * 3473 * Step 3 and 4 are performed only if the system has, respectively, multiple 3474 * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and 3475 * scx_selcpu_topo_numa). 3476 * 3477 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because 3478 * we never call ops.select_cpu() for them, see select_task_rq(). 3479 */ 3480 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 3481 u64 wake_flags, bool *found) 3482 { 3483 const struct cpumask *llc_cpus = NULL; 3484 const struct cpumask *numa_cpus = NULL; 3485 s32 cpu; 3486 3487 *found = false; 3488 3489 /* 3490 * This is necessary to protect llc_cpus. 3491 */ 3492 rcu_read_lock(); 3493 3494 /* 3495 * Determine the scheduling domain only if the task is allowed to run 3496 * on all CPUs. 3497 * 3498 * This is done primarily for efficiency, as it avoids the overhead of 3499 * updating a cpumask every time we need to select an idle CPU (which 3500 * can be costly in large SMP systems), but it also aligns logically: 3501 * if a task's scheduling domain is restricted by user-space (through 3502 * CPU affinity), the task will simply use the flat scheduling domain 3503 * defined by user-space. 3504 */ 3505 if (p->nr_cpus_allowed >= num_possible_cpus()) { 3506 if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) 3507 numa_cpus = numa_span(prev_cpu); 3508 3509 if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) 3510 llc_cpus = llc_span(prev_cpu); 3511 } 3512 3513 /* 3514 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU. 3515 */ 3516 if (wake_flags & SCX_WAKE_SYNC) { 3517 cpu = smp_processor_id(); 3518 3519 /* 3520 * If the waker's CPU is cache affine and prev_cpu is idle, 3521 * then avoid a migration. 3522 */ 3523 if (cpus_share_cache(cpu, prev_cpu) && 3524 test_and_clear_cpu_idle(prev_cpu)) { 3525 cpu = prev_cpu; 3526 goto cpu_found; 3527 } 3528 3529 /* 3530 * If the waker's local DSQ is empty, and the system is under 3531 * utilized, try to wake up @p to the local DSQ of the waker. 3532 * 3533 * Checking only for an empty local DSQ is insufficient as it 3534 * could give the wakee an unfair advantage when the system is 3535 * oversaturated. 3536 * 3537 * Checking only for the presence of idle CPUs is also 3538 * insufficient as the local DSQ of the waker could have tasks 3539 * piled up on it even if there is an idle core elsewhere on 3540 * the system. 3541 */ 3542 if (!cpumask_empty(idle_masks.cpu) && 3543 !(current->flags & PF_EXITING) && 3544 cpu_rq(cpu)->scx.local_dsq.nr == 0) { 3545 if (cpumask_test_cpu(cpu, p->cpus_ptr)) 3546 goto cpu_found; 3547 } 3548 } 3549 3550 /* 3551 * If CPU has SMT, any wholly idle CPU is likely a better pick than 3552 * partially idle @prev_cpu. 3553 */ 3554 if (sched_smt_active()) { 3555 /* 3556 * Keep using @prev_cpu if it's part of a fully idle core. 3557 */ 3558 if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && 3559 test_and_clear_cpu_idle(prev_cpu)) { 3560 cpu = prev_cpu; 3561 goto cpu_found; 3562 } 3563 3564 /* 3565 * Search for any fully idle core in the same LLC domain. 3566 */ 3567 if (llc_cpus) { 3568 cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE); 3569 if (cpu >= 0) 3570 goto cpu_found; 3571 } 3572 3573 /* 3574 * Search for any fully idle core in the same NUMA node. 3575 */ 3576 if (numa_cpus) { 3577 cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE); 3578 if (cpu >= 0) 3579 goto cpu_found; 3580 } 3581 3582 /* 3583 * Search for any full idle core usable by the task. 3584 */ 3585 cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); 3586 if (cpu >= 0) 3587 goto cpu_found; 3588 } 3589 3590 /* 3591 * Use @prev_cpu if it's idle. 3592 */ 3593 if (test_and_clear_cpu_idle(prev_cpu)) { 3594 cpu = prev_cpu; 3595 goto cpu_found; 3596 } 3597 3598 /* 3599 * Search for any idle CPU in the same LLC domain. 3600 */ 3601 if (llc_cpus) { 3602 cpu = scx_pick_idle_cpu(llc_cpus, 0); 3603 if (cpu >= 0) 3604 goto cpu_found; 3605 } 3606 3607 /* 3608 * Search for any idle CPU in the same NUMA node. 3609 */ 3610 if (numa_cpus) { 3611 cpu = scx_pick_idle_cpu(numa_cpus, 0); 3612 if (cpu >= 0) 3613 goto cpu_found; 3614 } 3615 3616 /* 3617 * Search for any idle CPU usable by the task. 3618 */ 3619 cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); 3620 if (cpu >= 0) 3621 goto cpu_found; 3622 3623 rcu_read_unlock(); 3624 return prev_cpu; 3625 3626 cpu_found: 3627 rcu_read_unlock(); 3628 3629 *found = true; 3630 return cpu; 3631 } 3632 3633 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3634 { 3635 /* 3636 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3637 * can be a good migration opportunity with low cache and memory 3638 * footprint. Returning a CPU different than @prev_cpu triggers 3639 * immediate rq migration. However, for SCX, as the current rq 3640 * association doesn't dictate where the task is going to run, this 3641 * doesn't fit well. If necessary, we can later add a dedicated method 3642 * which can decide to preempt self to force it through the regular 3643 * scheduling path. 3644 */ 3645 if (unlikely(wake_flags & WF_EXEC)) 3646 return prev_cpu; 3647 3648 if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) { 3649 s32 cpu; 3650 struct task_struct **ddsp_taskp; 3651 3652 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3653 WARN_ON_ONCE(*ddsp_taskp); 3654 *ddsp_taskp = p; 3655 3656 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3657 select_cpu, p, prev_cpu, wake_flags); 3658 *ddsp_taskp = NULL; 3659 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3660 return cpu; 3661 else 3662 return prev_cpu; 3663 } else { 3664 bool found; 3665 s32 cpu; 3666 3667 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3668 if (found) { 3669 p->scx.slice = SCX_SLICE_DFL; 3670 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3671 } 3672 return cpu; 3673 } 3674 } 3675 3676 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3677 { 3678 run_deferred(rq); 3679 } 3680 3681 static void set_cpus_allowed_scx(struct task_struct *p, 3682 struct affinity_context *ac) 3683 { 3684 set_cpus_allowed_common(p, ac); 3685 3686 /* 3687 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3688 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3689 * scheduler the effective one. 3690 * 3691 * Fine-grained memory write control is enforced by BPF making the const 3692 * designation pointless. Cast it away when calling the operation. 3693 */ 3694 if (SCX_HAS_OP(set_cpumask)) 3695 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3696 (struct cpumask *)p->cpus_ptr); 3697 } 3698 3699 static void reset_idle_masks(void) 3700 { 3701 /* 3702 * Consider all online cpus idle. Should converge to the actual state 3703 * quickly. 3704 */ 3705 cpumask_copy(idle_masks.cpu, cpu_online_mask); 3706 cpumask_copy(idle_masks.smt, cpu_online_mask); 3707 } 3708 3709 static void update_builtin_idle(int cpu, bool idle) 3710 { 3711 assign_cpu(cpu, idle_masks.cpu, idle); 3712 3713 #ifdef CONFIG_SCHED_SMT 3714 if (sched_smt_active()) { 3715 const struct cpumask *smt = cpu_smt_mask(cpu); 3716 3717 if (idle) { 3718 /* 3719 * idle_masks.smt handling is racy but that's fine as 3720 * it's only for optimization and self-correcting. 3721 */ 3722 if (!cpumask_subset(smt, idle_masks.cpu)) 3723 return; 3724 cpumask_or(idle_masks.smt, idle_masks.smt, smt); 3725 } else { 3726 cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); 3727 } 3728 } 3729 #endif 3730 } 3731 3732 /* 3733 * Update the idle state of a CPU to @idle. 3734 * 3735 * If @do_notify is true, ops.update_idle() is invoked to notify the scx 3736 * scheduler of an actual idle state transition (idle to busy or vice 3737 * versa). If @do_notify is false, only the idle state in the idle masks is 3738 * refreshed without invoking ops.update_idle(). 3739 * 3740 * This distinction is necessary, because an idle CPU can be "reserved" and 3741 * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as 3742 * busy even if no tasks are dispatched. In this case, the CPU may return 3743 * to idle without a true state transition. Refreshing the idle masks 3744 * without invoking ops.update_idle() ensures accurate idle state tracking 3745 * while avoiding unnecessary updates and maintaining balanced state 3746 * transitions. 3747 */ 3748 void __scx_update_idle(struct rq *rq, bool idle, bool do_notify) 3749 { 3750 int cpu = cpu_of(rq); 3751 3752 lockdep_assert_rq_held(rq); 3753 3754 /* 3755 * Trigger ops.update_idle() only when transitioning from a task to 3756 * the idle thread and vice versa. 3757 * 3758 * Idle transitions are indicated by do_notify being set to true, 3759 * managed by put_prev_task_idle()/set_next_task_idle(). 3760 */ 3761 if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq)) 3762 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); 3763 3764 /* 3765 * Update the idle masks: 3766 * - for real idle transitions (do_notify == true) 3767 * - for idle-to-idle transitions (indicated by the previous task 3768 * being the idle thread, managed by pick_task_idle()) 3769 * 3770 * Skip updating idle masks if the previous task is not the idle 3771 * thread, since set_next_task_idle() has already handled it when 3772 * transitioning from a task to the idle thread (calling this 3773 * function with do_notify == true). 3774 * 3775 * In this way we can avoid updating the idle masks twice, 3776 * unnecessarily. 3777 */ 3778 if (static_branch_likely(&scx_builtin_idle_enabled)) 3779 if (do_notify || is_idle_task(rq->curr)) 3780 update_builtin_idle(cpu, idle); 3781 } 3782 3783 static void handle_hotplug(struct rq *rq, bool online) 3784 { 3785 int cpu = cpu_of(rq); 3786 3787 atomic_long_inc(&scx_hotplug_seq); 3788 3789 if (scx_enabled()) 3790 update_selcpu_topology(); 3791 3792 if (online && SCX_HAS_OP(cpu_online)) 3793 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3794 else if (!online && SCX_HAS_OP(cpu_offline)) 3795 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3796 else 3797 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3798 "cpu %d going %s, exiting scheduler", cpu, 3799 online ? "online" : "offline"); 3800 } 3801 3802 void scx_rq_activate(struct rq *rq) 3803 { 3804 handle_hotplug(rq, true); 3805 } 3806 3807 void scx_rq_deactivate(struct rq *rq) 3808 { 3809 handle_hotplug(rq, false); 3810 } 3811 3812 static void rq_online_scx(struct rq *rq) 3813 { 3814 rq->scx.flags |= SCX_RQ_ONLINE; 3815 } 3816 3817 static void rq_offline_scx(struct rq *rq) 3818 { 3819 rq->scx.flags &= ~SCX_RQ_ONLINE; 3820 } 3821 3822 #else /* CONFIG_SMP */ 3823 3824 static bool test_and_clear_cpu_idle(int cpu) { return false; } 3825 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } 3826 static void reset_idle_masks(void) {} 3827 3828 #endif /* CONFIG_SMP */ 3829 3830 static bool check_rq_for_timeouts(struct rq *rq) 3831 { 3832 struct task_struct *p; 3833 struct rq_flags rf; 3834 bool timed_out = false; 3835 3836 rq_lock_irqsave(rq, &rf); 3837 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3838 unsigned long last_runnable = p->scx.runnable_at; 3839 3840 if (unlikely(time_after(jiffies, 3841 last_runnable + scx_watchdog_timeout))) { 3842 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3843 3844 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3845 "%s[%d] failed to run for %u.%03us", 3846 p->comm, p->pid, 3847 dur_ms / 1000, dur_ms % 1000); 3848 timed_out = true; 3849 break; 3850 } 3851 } 3852 rq_unlock_irqrestore(rq, &rf); 3853 3854 return timed_out; 3855 } 3856 3857 static void scx_watchdog_workfn(struct work_struct *work) 3858 { 3859 int cpu; 3860 3861 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3862 3863 for_each_online_cpu(cpu) { 3864 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3865 break; 3866 3867 cond_resched(); 3868 } 3869 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3870 scx_watchdog_timeout / 2); 3871 } 3872 3873 void scx_tick(struct rq *rq) 3874 { 3875 unsigned long last_check; 3876 3877 if (!scx_enabled()) 3878 return; 3879 3880 last_check = READ_ONCE(scx_watchdog_timestamp); 3881 if (unlikely(time_after(jiffies, 3882 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3883 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3884 3885 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3886 "watchdog failed to check in for %u.%03us", 3887 dur_ms / 1000, dur_ms % 1000); 3888 } 3889 3890 update_other_load_avgs(rq); 3891 } 3892 3893 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3894 { 3895 update_curr_scx(rq); 3896 3897 /* 3898 * While disabling, always resched and refresh core-sched timestamp as 3899 * we can't trust the slice management or ops.core_sched_before(). 3900 */ 3901 if (scx_rq_bypassing(rq)) { 3902 curr->scx.slice = 0; 3903 touch_core_sched(rq, curr); 3904 } else if (SCX_HAS_OP(tick)) { 3905 SCX_CALL_OP_TASK(SCX_KF_REST, tick, curr); 3906 } 3907 3908 if (!curr->scx.slice) 3909 resched_curr(rq); 3910 } 3911 3912 #ifdef CONFIG_EXT_GROUP_SCHED 3913 static struct cgroup *tg_cgrp(struct task_group *tg) 3914 { 3915 /* 3916 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3917 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3918 * root cgroup. 3919 */ 3920 if (tg && tg->css.cgroup) 3921 return tg->css.cgroup; 3922 else 3923 return &cgrp_dfl_root.cgrp; 3924 } 3925 3926 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3927 3928 #else /* CONFIG_EXT_GROUP_SCHED */ 3929 3930 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3931 3932 #endif /* CONFIG_EXT_GROUP_SCHED */ 3933 3934 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3935 { 3936 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3937 } 3938 3939 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3940 { 3941 enum scx_task_state prev_state = scx_get_task_state(p); 3942 bool warn = false; 3943 3944 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3945 3946 switch (state) { 3947 case SCX_TASK_NONE: 3948 break; 3949 case SCX_TASK_INIT: 3950 warn = prev_state != SCX_TASK_NONE; 3951 break; 3952 case SCX_TASK_READY: 3953 warn = prev_state == SCX_TASK_NONE; 3954 break; 3955 case SCX_TASK_ENABLED: 3956 warn = prev_state != SCX_TASK_READY; 3957 break; 3958 default: 3959 warn = true; 3960 return; 3961 } 3962 3963 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3964 prev_state, state, p->comm, p->pid); 3965 3966 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3967 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3968 } 3969 3970 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3971 { 3972 int ret; 3973 3974 p->scx.disallow = false; 3975 3976 if (SCX_HAS_OP(init_task)) { 3977 struct scx_init_task_args args = { 3978 SCX_INIT_TASK_ARGS_CGROUP(tg) 3979 .fork = fork, 3980 }; 3981 3982 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3983 if (unlikely(ret)) { 3984 ret = ops_sanitize_err("init_task", ret); 3985 return ret; 3986 } 3987 } 3988 3989 scx_set_task_state(p, SCX_TASK_INIT); 3990 3991 if (p->scx.disallow) { 3992 if (!fork) { 3993 struct rq *rq; 3994 struct rq_flags rf; 3995 3996 rq = task_rq_lock(p, &rf); 3997 3998 /* 3999 * We're in the load path and @p->policy will be applied 4000 * right after. Reverting @p->policy here and rejecting 4001 * %SCHED_EXT transitions from scx_check_setscheduler() 4002 * guarantees that if ops.init_task() sets @p->disallow, 4003 * @p can never be in SCX. 4004 */ 4005 if (p->policy == SCHED_EXT) { 4006 p->policy = SCHED_NORMAL; 4007 atomic_long_inc(&scx_nr_rejected); 4008 } 4009 4010 task_rq_unlock(rq, p, &rf); 4011 } else if (p->policy == SCHED_EXT) { 4012 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 4013 p->comm, p->pid); 4014 } 4015 } 4016 4017 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 4018 return 0; 4019 } 4020 4021 static void scx_ops_enable_task(struct task_struct *p) 4022 { 4023 u32 weight; 4024 4025 lockdep_assert_rq_held(task_rq(p)); 4026 4027 /* 4028 * Set the weight before calling ops.enable() so that the scheduler 4029 * doesn't see a stale value if they inspect the task struct. 4030 */ 4031 if (task_has_idle_policy(p)) 4032 weight = WEIGHT_IDLEPRIO; 4033 else 4034 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 4035 4036 p->scx.weight = sched_weight_to_cgroup(weight); 4037 4038 if (SCX_HAS_OP(enable)) 4039 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 4040 scx_set_task_state(p, SCX_TASK_ENABLED); 4041 4042 if (SCX_HAS_OP(set_weight)) 4043 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 4044 } 4045 4046 static void scx_ops_disable_task(struct task_struct *p) 4047 { 4048 lockdep_assert_rq_held(task_rq(p)); 4049 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 4050 4051 if (SCX_HAS_OP(disable)) 4052 SCX_CALL_OP_TASK(SCX_KF_REST, disable, p); 4053 scx_set_task_state(p, SCX_TASK_READY); 4054 } 4055 4056 static void scx_ops_exit_task(struct task_struct *p) 4057 { 4058 struct scx_exit_task_args args = { 4059 .cancelled = false, 4060 }; 4061 4062 lockdep_assert_rq_held(task_rq(p)); 4063 4064 switch (scx_get_task_state(p)) { 4065 case SCX_TASK_NONE: 4066 return; 4067 case SCX_TASK_INIT: 4068 args.cancelled = true; 4069 break; 4070 case SCX_TASK_READY: 4071 break; 4072 case SCX_TASK_ENABLED: 4073 scx_ops_disable_task(p); 4074 break; 4075 default: 4076 WARN_ON_ONCE(true); 4077 return; 4078 } 4079 4080 if (SCX_HAS_OP(exit_task)) 4081 SCX_CALL_OP_TASK(SCX_KF_REST, exit_task, p, &args); 4082 scx_set_task_state(p, SCX_TASK_NONE); 4083 } 4084 4085 void init_scx_entity(struct sched_ext_entity *scx) 4086 { 4087 memset(scx, 0, sizeof(*scx)); 4088 INIT_LIST_HEAD(&scx->dsq_list.node); 4089 RB_CLEAR_NODE(&scx->dsq_priq); 4090 scx->sticky_cpu = -1; 4091 scx->holding_cpu = -1; 4092 INIT_LIST_HEAD(&scx->runnable_node); 4093 scx->runnable_at = jiffies; 4094 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 4095 scx->slice = SCX_SLICE_DFL; 4096 } 4097 4098 void scx_pre_fork(struct task_struct *p) 4099 { 4100 /* 4101 * BPF scheduler enable/disable paths want to be able to iterate and 4102 * update all tasks which can become complex when racing forks. As 4103 * enable/disable are very cold paths, let's use a percpu_rwsem to 4104 * exclude forks. 4105 */ 4106 percpu_down_read(&scx_fork_rwsem); 4107 } 4108 4109 int scx_fork(struct task_struct *p) 4110 { 4111 percpu_rwsem_assert_held(&scx_fork_rwsem); 4112 4113 if (scx_ops_init_task_enabled) 4114 return scx_ops_init_task(p, task_group(p), true); 4115 else 4116 return 0; 4117 } 4118 4119 void scx_post_fork(struct task_struct *p) 4120 { 4121 if (scx_ops_init_task_enabled) { 4122 scx_set_task_state(p, SCX_TASK_READY); 4123 4124 /* 4125 * Enable the task immediately if it's running on sched_ext. 4126 * Otherwise, it'll be enabled in switching_to_scx() if and 4127 * when it's ever configured to run with a SCHED_EXT policy. 4128 */ 4129 if (p->sched_class == &ext_sched_class) { 4130 struct rq_flags rf; 4131 struct rq *rq; 4132 4133 rq = task_rq_lock(p, &rf); 4134 scx_ops_enable_task(p); 4135 task_rq_unlock(rq, p, &rf); 4136 } 4137 } 4138 4139 spin_lock_irq(&scx_tasks_lock); 4140 list_add_tail(&p->scx.tasks_node, &scx_tasks); 4141 spin_unlock_irq(&scx_tasks_lock); 4142 4143 percpu_up_read(&scx_fork_rwsem); 4144 } 4145 4146 void scx_cancel_fork(struct task_struct *p) 4147 { 4148 if (scx_enabled()) { 4149 struct rq *rq; 4150 struct rq_flags rf; 4151 4152 rq = task_rq_lock(p, &rf); 4153 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 4154 scx_ops_exit_task(p); 4155 task_rq_unlock(rq, p, &rf); 4156 } 4157 4158 percpu_up_read(&scx_fork_rwsem); 4159 } 4160 4161 void sched_ext_free(struct task_struct *p) 4162 { 4163 unsigned long flags; 4164 4165 spin_lock_irqsave(&scx_tasks_lock, flags); 4166 list_del_init(&p->scx.tasks_node); 4167 spin_unlock_irqrestore(&scx_tasks_lock, flags); 4168 4169 /* 4170 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 4171 * ENABLED transitions can't race us. Disable ops for @p. 4172 */ 4173 if (scx_get_task_state(p) != SCX_TASK_NONE) { 4174 struct rq_flags rf; 4175 struct rq *rq; 4176 4177 rq = task_rq_lock(p, &rf); 4178 scx_ops_exit_task(p); 4179 task_rq_unlock(rq, p, &rf); 4180 } 4181 } 4182 4183 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 4184 const struct load_weight *lw) 4185 { 4186 lockdep_assert_rq_held(task_rq(p)); 4187 4188 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 4189 if (SCX_HAS_OP(set_weight)) 4190 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 4191 } 4192 4193 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 4194 { 4195 } 4196 4197 static void switching_to_scx(struct rq *rq, struct task_struct *p) 4198 { 4199 scx_ops_enable_task(p); 4200 4201 /* 4202 * set_cpus_allowed_scx() is not called while @p is associated with a 4203 * different scheduler class. Keep the BPF scheduler up-to-date. 4204 */ 4205 if (SCX_HAS_OP(set_cpumask)) 4206 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 4207 (struct cpumask *)p->cpus_ptr); 4208 } 4209 4210 static void switched_from_scx(struct rq *rq, struct task_struct *p) 4211 { 4212 scx_ops_disable_task(p); 4213 } 4214 4215 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 4216 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 4217 4218 int scx_check_setscheduler(struct task_struct *p, int policy) 4219 { 4220 lockdep_assert_rq_held(task_rq(p)); 4221 4222 /* if disallow, reject transitioning into SCX */ 4223 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 4224 p->policy != policy && policy == SCHED_EXT) 4225 return -EACCES; 4226 4227 return 0; 4228 } 4229 4230 #ifdef CONFIG_NO_HZ_FULL 4231 bool scx_can_stop_tick(struct rq *rq) 4232 { 4233 struct task_struct *p = rq->curr; 4234 4235 if (scx_rq_bypassing(rq)) 4236 return false; 4237 4238 if (p->sched_class != &ext_sched_class) 4239 return true; 4240 4241 /* 4242 * @rq can dispatch from different DSQs, so we can't tell whether it 4243 * needs the tick or not by looking at nr_running. Allow stopping ticks 4244 * iff the BPF scheduler indicated so. See set_next_task_scx(). 4245 */ 4246 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 4247 } 4248 #endif 4249 4250 #ifdef CONFIG_EXT_GROUP_SCHED 4251 4252 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 4253 static bool scx_cgroup_enabled; 4254 static bool cgroup_warned_missing_weight; 4255 static bool cgroup_warned_missing_idle; 4256 4257 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 4258 { 4259 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 4260 cgroup_warned_missing_weight) 4261 return; 4262 4263 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 4264 return; 4265 4266 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 4267 scx_ops.name); 4268 cgroup_warned_missing_weight = true; 4269 } 4270 4271 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 4272 { 4273 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 4274 return; 4275 4276 if (!tg->idle) 4277 return; 4278 4279 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 4280 scx_ops.name); 4281 cgroup_warned_missing_idle = true; 4282 } 4283 4284 int scx_tg_online(struct task_group *tg) 4285 { 4286 int ret = 0; 4287 4288 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 4289 4290 percpu_down_read(&scx_cgroup_rwsem); 4291 4292 scx_cgroup_warn_missing_weight(tg); 4293 4294 if (scx_cgroup_enabled) { 4295 if (SCX_HAS_OP(cgroup_init)) { 4296 struct scx_cgroup_init_args args = 4297 { .weight = tg->scx_weight }; 4298 4299 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4300 tg->css.cgroup, &args); 4301 if (ret) 4302 ret = ops_sanitize_err("cgroup_init", ret); 4303 } 4304 if (ret == 0) 4305 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 4306 } else { 4307 tg->scx_flags |= SCX_TG_ONLINE; 4308 } 4309 4310 percpu_up_read(&scx_cgroup_rwsem); 4311 return ret; 4312 } 4313 4314 void scx_tg_offline(struct task_group *tg) 4315 { 4316 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 4317 4318 percpu_down_read(&scx_cgroup_rwsem); 4319 4320 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 4321 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 4322 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 4323 4324 percpu_up_read(&scx_cgroup_rwsem); 4325 } 4326 4327 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 4328 { 4329 struct cgroup_subsys_state *css; 4330 struct task_struct *p; 4331 int ret; 4332 4333 /* released in scx_finish/cancel_attach() */ 4334 percpu_down_read(&scx_cgroup_rwsem); 4335 4336 if (!scx_cgroup_enabled) 4337 return 0; 4338 4339 cgroup_taskset_for_each(p, css, tset) { 4340 struct cgroup *from = tg_cgrp(task_group(p)); 4341 struct cgroup *to = tg_cgrp(css_tg(css)); 4342 4343 WARN_ON_ONCE(p->scx.cgrp_moving_from); 4344 4345 /* 4346 * sched_move_task() omits identity migrations. Let's match the 4347 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 4348 * always match one-to-one. 4349 */ 4350 if (from == to) 4351 continue; 4352 4353 if (SCX_HAS_OP(cgroup_prep_move)) { 4354 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 4355 p, from, css->cgroup); 4356 if (ret) 4357 goto err; 4358 } 4359 4360 p->scx.cgrp_moving_from = from; 4361 } 4362 4363 return 0; 4364 4365 err: 4366 cgroup_taskset_for_each(p, css, tset) { 4367 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4368 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4369 p->scx.cgrp_moving_from, css->cgroup); 4370 p->scx.cgrp_moving_from = NULL; 4371 } 4372 4373 percpu_up_read(&scx_cgroup_rwsem); 4374 return ops_sanitize_err("cgroup_prep_move", ret); 4375 } 4376 4377 void scx_cgroup_move_task(struct task_struct *p) 4378 { 4379 if (!scx_cgroup_enabled) 4380 return; 4381 4382 /* 4383 * @p must have ops.cgroup_prep_move() called on it and thus 4384 * cgrp_moving_from set. 4385 */ 4386 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4387 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 4388 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 4389 p->scx.cgrp_moving_from = NULL; 4390 } 4391 4392 void scx_cgroup_finish_attach(void) 4393 { 4394 percpu_up_read(&scx_cgroup_rwsem); 4395 } 4396 4397 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4398 { 4399 struct cgroup_subsys_state *css; 4400 struct task_struct *p; 4401 4402 if (!scx_cgroup_enabled) 4403 goto out_unlock; 4404 4405 cgroup_taskset_for_each(p, css, tset) { 4406 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4407 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4408 p->scx.cgrp_moving_from, css->cgroup); 4409 p->scx.cgrp_moving_from = NULL; 4410 } 4411 out_unlock: 4412 percpu_up_read(&scx_cgroup_rwsem); 4413 } 4414 4415 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4416 { 4417 percpu_down_read(&scx_cgroup_rwsem); 4418 4419 if (scx_cgroup_enabled && tg->scx_weight != weight) { 4420 if (SCX_HAS_OP(cgroup_set_weight)) 4421 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 4422 tg_cgrp(tg), weight); 4423 tg->scx_weight = weight; 4424 } 4425 4426 percpu_up_read(&scx_cgroup_rwsem); 4427 } 4428 4429 void scx_group_set_idle(struct task_group *tg, bool idle) 4430 { 4431 percpu_down_read(&scx_cgroup_rwsem); 4432 scx_cgroup_warn_missing_idle(tg); 4433 percpu_up_read(&scx_cgroup_rwsem); 4434 } 4435 4436 static void scx_cgroup_lock(void) 4437 { 4438 percpu_down_write(&scx_cgroup_rwsem); 4439 } 4440 4441 static void scx_cgroup_unlock(void) 4442 { 4443 percpu_up_write(&scx_cgroup_rwsem); 4444 } 4445 4446 #else /* CONFIG_EXT_GROUP_SCHED */ 4447 4448 static inline void scx_cgroup_lock(void) {} 4449 static inline void scx_cgroup_unlock(void) {} 4450 4451 #endif /* CONFIG_EXT_GROUP_SCHED */ 4452 4453 /* 4454 * Omitted operations: 4455 * 4456 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4457 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4458 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4459 * 4460 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4461 * 4462 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4463 * their current sched_class. Call them directly from sched core instead. 4464 */ 4465 DEFINE_SCHED_CLASS(ext) = { 4466 .enqueue_task = enqueue_task_scx, 4467 .dequeue_task = dequeue_task_scx, 4468 .yield_task = yield_task_scx, 4469 .yield_to_task = yield_to_task_scx, 4470 4471 .wakeup_preempt = wakeup_preempt_scx, 4472 4473 .balance = balance_scx, 4474 .pick_task = pick_task_scx, 4475 4476 .put_prev_task = put_prev_task_scx, 4477 .set_next_task = set_next_task_scx, 4478 4479 #ifdef CONFIG_SMP 4480 .select_task_rq = select_task_rq_scx, 4481 .task_woken = task_woken_scx, 4482 .set_cpus_allowed = set_cpus_allowed_scx, 4483 4484 .rq_online = rq_online_scx, 4485 .rq_offline = rq_offline_scx, 4486 #endif 4487 4488 .task_tick = task_tick_scx, 4489 4490 .switching_to = switching_to_scx, 4491 .switched_from = switched_from_scx, 4492 .switched_to = switched_to_scx, 4493 .reweight_task = reweight_task_scx, 4494 .prio_changed = prio_changed_scx, 4495 4496 .update_curr = update_curr_scx, 4497 4498 #ifdef CONFIG_UCLAMP_TASK 4499 .uclamp_enabled = 1, 4500 #endif 4501 }; 4502 4503 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4504 { 4505 memset(dsq, 0, sizeof(*dsq)); 4506 4507 raw_spin_lock_init(&dsq->lock); 4508 INIT_LIST_HEAD(&dsq->list); 4509 dsq->id = dsq_id; 4510 } 4511 4512 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 4513 { 4514 struct scx_dispatch_q *dsq; 4515 int ret; 4516 4517 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 4518 return ERR_PTR(-EINVAL); 4519 4520 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4521 if (!dsq) 4522 return ERR_PTR(-ENOMEM); 4523 4524 init_dsq(dsq, dsq_id); 4525 4526 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 4527 dsq_hash_params); 4528 if (ret) { 4529 kfree(dsq); 4530 return ERR_PTR(ret); 4531 } 4532 return dsq; 4533 } 4534 4535 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4536 { 4537 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4538 struct scx_dispatch_q *dsq, *tmp_dsq; 4539 4540 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4541 kfree_rcu(dsq, rcu); 4542 } 4543 4544 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4545 4546 static void destroy_dsq(u64 dsq_id) 4547 { 4548 struct scx_dispatch_q *dsq; 4549 unsigned long flags; 4550 4551 rcu_read_lock(); 4552 4553 dsq = find_user_dsq(dsq_id); 4554 if (!dsq) 4555 goto out_unlock_rcu; 4556 4557 raw_spin_lock_irqsave(&dsq->lock, flags); 4558 4559 if (dsq->nr) { 4560 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4561 dsq->id, dsq->nr); 4562 goto out_unlock_dsq; 4563 } 4564 4565 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4566 goto out_unlock_dsq; 4567 4568 /* 4569 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4570 * queueing more tasks. As this function can be called from anywhere, 4571 * freeing is bounced through an irq work to avoid nesting RCU 4572 * operations inside scheduler locks. 4573 */ 4574 dsq->id = SCX_DSQ_INVALID; 4575 llist_add(&dsq->free_node, &dsqs_to_free); 4576 irq_work_queue(&free_dsq_irq_work); 4577 4578 out_unlock_dsq: 4579 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4580 out_unlock_rcu: 4581 rcu_read_unlock(); 4582 } 4583 4584 #ifdef CONFIG_EXT_GROUP_SCHED 4585 static void scx_cgroup_exit(void) 4586 { 4587 struct cgroup_subsys_state *css; 4588 4589 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4590 4591 scx_cgroup_enabled = false; 4592 4593 /* 4594 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4595 * cgroups and exit all the inited ones, all online cgroups are exited. 4596 */ 4597 rcu_read_lock(); 4598 css_for_each_descendant_post(css, &root_task_group.css) { 4599 struct task_group *tg = css_tg(css); 4600 4601 if (!(tg->scx_flags & SCX_TG_INITED)) 4602 continue; 4603 tg->scx_flags &= ~SCX_TG_INITED; 4604 4605 if (!scx_ops.cgroup_exit) 4606 continue; 4607 4608 if (WARN_ON_ONCE(!css_tryget(css))) 4609 continue; 4610 rcu_read_unlock(); 4611 4612 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4613 4614 rcu_read_lock(); 4615 css_put(css); 4616 } 4617 rcu_read_unlock(); 4618 } 4619 4620 static int scx_cgroup_init(void) 4621 { 4622 struct cgroup_subsys_state *css; 4623 int ret; 4624 4625 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4626 4627 cgroup_warned_missing_weight = false; 4628 cgroup_warned_missing_idle = false; 4629 4630 /* 4631 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4632 * cgroups and init, all online cgroups are initialized. 4633 */ 4634 rcu_read_lock(); 4635 css_for_each_descendant_pre(css, &root_task_group.css) { 4636 struct task_group *tg = css_tg(css); 4637 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4638 4639 scx_cgroup_warn_missing_weight(tg); 4640 scx_cgroup_warn_missing_idle(tg); 4641 4642 if ((tg->scx_flags & 4643 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4644 continue; 4645 4646 if (!scx_ops.cgroup_init) { 4647 tg->scx_flags |= SCX_TG_INITED; 4648 continue; 4649 } 4650 4651 if (WARN_ON_ONCE(!css_tryget(css))) 4652 continue; 4653 rcu_read_unlock(); 4654 4655 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4656 css->cgroup, &args); 4657 if (ret) { 4658 css_put(css); 4659 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4660 return ret; 4661 } 4662 tg->scx_flags |= SCX_TG_INITED; 4663 4664 rcu_read_lock(); 4665 css_put(css); 4666 } 4667 rcu_read_unlock(); 4668 4669 WARN_ON_ONCE(scx_cgroup_enabled); 4670 scx_cgroup_enabled = true; 4671 4672 return 0; 4673 } 4674 4675 #else 4676 static void scx_cgroup_exit(void) {} 4677 static int scx_cgroup_init(void) { return 0; } 4678 #endif 4679 4680 4681 /******************************************************************************** 4682 * Sysfs interface and ops enable/disable. 4683 */ 4684 4685 #define SCX_ATTR(_name) \ 4686 static struct kobj_attribute scx_attr_##_name = { \ 4687 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4688 .show = scx_attr_##_name##_show, \ 4689 } 4690 4691 static ssize_t scx_attr_state_show(struct kobject *kobj, 4692 struct kobj_attribute *ka, char *buf) 4693 { 4694 return sysfs_emit(buf, "%s\n", 4695 scx_ops_enable_state_str[scx_ops_enable_state()]); 4696 } 4697 SCX_ATTR(state); 4698 4699 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4700 struct kobj_attribute *ka, char *buf) 4701 { 4702 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4703 } 4704 SCX_ATTR(switch_all); 4705 4706 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4707 struct kobj_attribute *ka, char *buf) 4708 { 4709 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4710 } 4711 SCX_ATTR(nr_rejected); 4712 4713 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4714 struct kobj_attribute *ka, char *buf) 4715 { 4716 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4717 } 4718 SCX_ATTR(hotplug_seq); 4719 4720 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4721 struct kobj_attribute *ka, char *buf) 4722 { 4723 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4724 } 4725 SCX_ATTR(enable_seq); 4726 4727 static struct attribute *scx_global_attrs[] = { 4728 &scx_attr_state.attr, 4729 &scx_attr_switch_all.attr, 4730 &scx_attr_nr_rejected.attr, 4731 &scx_attr_hotplug_seq.attr, 4732 &scx_attr_enable_seq.attr, 4733 NULL, 4734 }; 4735 4736 static const struct attribute_group scx_global_attr_group = { 4737 .attrs = scx_global_attrs, 4738 }; 4739 4740 static void scx_kobj_release(struct kobject *kobj) 4741 { 4742 kfree(kobj); 4743 } 4744 4745 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4746 struct kobj_attribute *ka, char *buf) 4747 { 4748 return sysfs_emit(buf, "%s\n", scx_ops.name); 4749 } 4750 SCX_ATTR(ops); 4751 4752 static struct attribute *scx_sched_attrs[] = { 4753 &scx_attr_ops.attr, 4754 NULL, 4755 }; 4756 ATTRIBUTE_GROUPS(scx_sched); 4757 4758 static const struct kobj_type scx_ktype = { 4759 .release = scx_kobj_release, 4760 .sysfs_ops = &kobj_sysfs_ops, 4761 .default_groups = scx_sched_groups, 4762 }; 4763 4764 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4765 { 4766 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4767 } 4768 4769 static const struct kset_uevent_ops scx_uevent_ops = { 4770 .uevent = scx_uevent, 4771 }; 4772 4773 /* 4774 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4775 * sched_class. dl/rt are already handled. 4776 */ 4777 bool task_should_scx(int policy) 4778 { 4779 if (!scx_enabled() || 4780 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4781 return false; 4782 if (READ_ONCE(scx_switching_all)) 4783 return true; 4784 return policy == SCHED_EXT; 4785 } 4786 4787 /** 4788 * scx_softlockup - sched_ext softlockup handler 4789 * @dur_s: number of seconds of CPU stuck due to soft lockup 4790 * 4791 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4792 * live-lock the system by making many CPUs target the same DSQ to the point 4793 * where soft-lockup detection triggers. This function is called from 4794 * soft-lockup watchdog when the triggering point is close and tries to unjam 4795 * the system by enabling the breather and aborting the BPF scheduler. 4796 */ 4797 void scx_softlockup(u32 dur_s) 4798 { 4799 switch (scx_ops_enable_state()) { 4800 case SCX_OPS_ENABLING: 4801 case SCX_OPS_ENABLED: 4802 break; 4803 default: 4804 return; 4805 } 4806 4807 /* allow only one instance, cleared at the end of scx_ops_bypass() */ 4808 if (test_and_set_bit(0, &scx_in_softlockup)) 4809 return; 4810 4811 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4812 smp_processor_id(), dur_s, scx_ops.name); 4813 4814 /* 4815 * Some CPUs may be trapped in the dispatch paths. Enable breather 4816 * immediately; otherwise, we might even be able to get to 4817 * scx_ops_bypass(). 4818 */ 4819 atomic_inc(&scx_ops_breather_depth); 4820 4821 scx_ops_error("soft lockup - CPU#%d stuck for %us", 4822 smp_processor_id(), dur_s); 4823 } 4824 4825 static void scx_clear_softlockup(void) 4826 { 4827 if (test_and_clear_bit(0, &scx_in_softlockup)) 4828 atomic_dec(&scx_ops_breather_depth); 4829 } 4830 4831 /** 4832 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4833 * @bypass: true for bypass, false for unbypass 4834 * 4835 * Bypassing guarantees that all runnable tasks make forward progress without 4836 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4837 * be held by tasks that the BPF scheduler is forgetting to run, which 4838 * unfortunately also excludes toggling the static branches. 4839 * 4840 * Let's work around by overriding a couple ops and modifying behaviors based on 4841 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4842 * to force global FIFO scheduling. 4843 * 4844 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4845 * 4846 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4847 * %SCX_OPS_ENQ_LAST is also ignored. 4848 * 4849 * - ops.dispatch() is ignored. 4850 * 4851 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4852 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4853 * the tail of the queue with core_sched_at touched. 4854 * 4855 * - pick_next_task() suppresses zero slice warning. 4856 * 4857 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4858 * operations. 4859 * 4860 * - scx_prio_less() reverts to the default core_sched_at order. 4861 */ 4862 static void scx_ops_bypass(bool bypass) 4863 { 4864 static DEFINE_RAW_SPINLOCK(bypass_lock); 4865 int cpu; 4866 unsigned long flags; 4867 4868 raw_spin_lock_irqsave(&bypass_lock, flags); 4869 if (bypass) { 4870 scx_ops_bypass_depth++; 4871 WARN_ON_ONCE(scx_ops_bypass_depth <= 0); 4872 if (scx_ops_bypass_depth != 1) 4873 goto unlock; 4874 } else { 4875 scx_ops_bypass_depth--; 4876 WARN_ON_ONCE(scx_ops_bypass_depth < 0); 4877 if (scx_ops_bypass_depth != 0) 4878 goto unlock; 4879 } 4880 4881 atomic_inc(&scx_ops_breather_depth); 4882 4883 /* 4884 * No task property is changing. We just need to make sure all currently 4885 * queued tasks are re-queued according to the new scx_rq_bypassing() 4886 * state. As an optimization, walk each rq's runnable_list instead of 4887 * the scx_tasks list. 4888 * 4889 * This function can't trust the scheduler and thus can't use 4890 * cpus_read_lock(). Walk all possible CPUs instead of online. 4891 */ 4892 for_each_possible_cpu(cpu) { 4893 struct rq *rq = cpu_rq(cpu); 4894 struct task_struct *p, *n; 4895 4896 raw_spin_rq_lock(rq); 4897 4898 if (bypass) { 4899 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4900 rq->scx.flags |= SCX_RQ_BYPASSING; 4901 } else { 4902 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4903 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4904 } 4905 4906 /* 4907 * We need to guarantee that no tasks are on the BPF scheduler 4908 * while bypassing. Either we see enabled or the enable path 4909 * sees scx_rq_bypassing() before moving tasks to SCX. 4910 */ 4911 if (!scx_enabled()) { 4912 raw_spin_rq_unlock(rq); 4913 continue; 4914 } 4915 4916 /* 4917 * The use of list_for_each_entry_safe_reverse() is required 4918 * because each task is going to be removed from and added back 4919 * to the runnable_list during iteration. Because they're added 4920 * to the tail of the list, safe reverse iteration can still 4921 * visit all nodes. 4922 */ 4923 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4924 scx.runnable_node) { 4925 struct sched_enq_and_set_ctx ctx; 4926 4927 /* cycling deq/enq is enough, see the function comment */ 4928 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4929 sched_enq_and_set_task(&ctx); 4930 } 4931 4932 /* resched to restore ticks and idle state */ 4933 if (cpu_online(cpu) || cpu == smp_processor_id()) 4934 resched_curr(rq); 4935 4936 raw_spin_rq_unlock(rq); 4937 } 4938 4939 atomic_dec(&scx_ops_breather_depth); 4940 unlock: 4941 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4942 scx_clear_softlockup(); 4943 } 4944 4945 static void free_exit_info(struct scx_exit_info *ei) 4946 { 4947 kfree(ei->dump); 4948 kfree(ei->msg); 4949 kfree(ei->bt); 4950 kfree(ei); 4951 } 4952 4953 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4954 { 4955 struct scx_exit_info *ei; 4956 4957 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4958 if (!ei) 4959 return NULL; 4960 4961 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4962 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4963 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4964 4965 if (!ei->bt || !ei->msg || !ei->dump) { 4966 free_exit_info(ei); 4967 return NULL; 4968 } 4969 4970 return ei; 4971 } 4972 4973 static const char *scx_exit_reason(enum scx_exit_kind kind) 4974 { 4975 switch (kind) { 4976 case SCX_EXIT_UNREG: 4977 return "unregistered from user space"; 4978 case SCX_EXIT_UNREG_BPF: 4979 return "unregistered from BPF"; 4980 case SCX_EXIT_UNREG_KERN: 4981 return "unregistered from the main kernel"; 4982 case SCX_EXIT_SYSRQ: 4983 return "disabled by sysrq-S"; 4984 case SCX_EXIT_ERROR: 4985 return "runtime error"; 4986 case SCX_EXIT_ERROR_BPF: 4987 return "scx_bpf_error"; 4988 case SCX_EXIT_ERROR_STALL: 4989 return "runnable task stall"; 4990 default: 4991 return "<UNKNOWN>"; 4992 } 4993 } 4994 4995 static void scx_ops_disable_workfn(struct kthread_work *work) 4996 { 4997 struct scx_exit_info *ei = scx_exit_info; 4998 struct scx_task_iter sti; 4999 struct task_struct *p; 5000 struct rhashtable_iter rht_iter; 5001 struct scx_dispatch_q *dsq; 5002 int i, kind, cpu; 5003 5004 kind = atomic_read(&scx_exit_kind); 5005 while (true) { 5006 /* 5007 * NONE indicates that a new scx_ops has been registered since 5008 * disable was scheduled - don't kill the new ops. DONE 5009 * indicates that the ops has already been disabled. 5010 */ 5011 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 5012 return; 5013 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 5014 break; 5015 } 5016 ei->kind = kind; 5017 ei->reason = scx_exit_reason(ei->kind); 5018 5019 /* guarantee forward progress by bypassing scx_ops */ 5020 scx_ops_bypass(true); 5021 5022 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 5023 case SCX_OPS_DISABLING: 5024 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 5025 break; 5026 case SCX_OPS_DISABLED: 5027 pr_warn("sched_ext: ops error detected without ops (%s)\n", 5028 scx_exit_info->msg); 5029 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 5030 SCX_OPS_DISABLING); 5031 goto done; 5032 default: 5033 break; 5034 } 5035 5036 /* 5037 * Here, every runnable task is guaranteed to make forward progress and 5038 * we can safely use blocking synchronization constructs. Actually 5039 * disable ops. 5040 */ 5041 mutex_lock(&scx_ops_enable_mutex); 5042 5043 static_branch_disable(&__scx_switched_all); 5044 WRITE_ONCE(scx_switching_all, false); 5045 5046 /* 5047 * Shut down cgroup support before tasks so that the cgroup attach path 5048 * doesn't race against scx_ops_exit_task(). 5049 */ 5050 scx_cgroup_lock(); 5051 scx_cgroup_exit(); 5052 scx_cgroup_unlock(); 5053 5054 /* 5055 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 5056 * must be switched out and exited synchronously. 5057 */ 5058 percpu_down_write(&scx_fork_rwsem); 5059 5060 scx_ops_init_task_enabled = false; 5061 5062 scx_task_iter_start(&sti); 5063 while ((p = scx_task_iter_next_locked(&sti))) { 5064 const struct sched_class *old_class = p->sched_class; 5065 const struct sched_class *new_class = 5066 __setscheduler_class(p->policy, p->prio); 5067 struct sched_enq_and_set_ctx ctx; 5068 5069 if (old_class != new_class && p->se.sched_delayed) 5070 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5071 5072 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5073 5074 p->sched_class = new_class; 5075 check_class_changing(task_rq(p), p, old_class); 5076 5077 sched_enq_and_set_task(&ctx); 5078 5079 check_class_changed(task_rq(p), p, old_class, p->prio); 5080 scx_ops_exit_task(p); 5081 } 5082 scx_task_iter_stop(&sti); 5083 percpu_up_write(&scx_fork_rwsem); 5084 5085 /* 5086 * Invalidate all the rq clocks to prevent getting outdated 5087 * rq clocks from a previous scx scheduler. 5088 */ 5089 for_each_possible_cpu(cpu) { 5090 struct rq *rq = cpu_rq(cpu); 5091 scx_rq_clock_invalidate(rq); 5092 } 5093 5094 /* no task is on scx, turn off all the switches and flush in-progress calls */ 5095 static_branch_disable(&__scx_ops_enabled); 5096 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 5097 static_branch_disable(&scx_has_op[i]); 5098 static_branch_disable(&scx_ops_enq_last); 5099 static_branch_disable(&scx_ops_enq_exiting); 5100 static_branch_disable(&scx_ops_enq_migration_disabled); 5101 static_branch_disable(&scx_ops_cpu_preempt); 5102 static_branch_disable(&scx_builtin_idle_enabled); 5103 synchronize_rcu(); 5104 5105 if (ei->kind >= SCX_EXIT_ERROR) { 5106 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5107 scx_ops.name, ei->reason); 5108 5109 if (ei->msg[0] != '\0') 5110 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 5111 #ifdef CONFIG_STACKTRACE 5112 stack_trace_print(ei->bt, ei->bt_len, 2); 5113 #endif 5114 } else { 5115 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 5116 scx_ops.name, ei->reason); 5117 } 5118 5119 if (scx_ops.exit) 5120 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 5121 5122 cancel_delayed_work_sync(&scx_watchdog_work); 5123 5124 /* 5125 * Delete the kobject from the hierarchy eagerly in addition to just 5126 * dropping a reference. Otherwise, if the object is deleted 5127 * asynchronously, sysfs could observe an object of the same name still 5128 * in the hierarchy when another scheduler is loaded. 5129 */ 5130 kobject_del(scx_root_kobj); 5131 kobject_put(scx_root_kobj); 5132 scx_root_kobj = NULL; 5133 5134 memset(&scx_ops, 0, sizeof(scx_ops)); 5135 5136 rhashtable_walk_enter(&dsq_hash, &rht_iter); 5137 do { 5138 rhashtable_walk_start(&rht_iter); 5139 5140 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 5141 destroy_dsq(dsq->id); 5142 5143 rhashtable_walk_stop(&rht_iter); 5144 } while (dsq == ERR_PTR(-EAGAIN)); 5145 rhashtable_walk_exit(&rht_iter); 5146 5147 free_percpu(scx_dsp_ctx); 5148 scx_dsp_ctx = NULL; 5149 scx_dsp_max_batch = 0; 5150 5151 free_exit_info(scx_exit_info); 5152 scx_exit_info = NULL; 5153 5154 mutex_unlock(&scx_ops_enable_mutex); 5155 5156 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 5157 SCX_OPS_DISABLING); 5158 done: 5159 scx_ops_bypass(false); 5160 } 5161 5162 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 5163 5164 static void schedule_scx_ops_disable_work(void) 5165 { 5166 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 5167 5168 /* 5169 * We may be called spuriously before the first bpf_sched_ext_reg(). If 5170 * scx_ops_helper isn't set up yet, there's nothing to do. 5171 */ 5172 if (helper) 5173 kthread_queue_work(helper, &scx_ops_disable_work); 5174 } 5175 5176 static void scx_ops_disable(enum scx_exit_kind kind) 5177 { 5178 int none = SCX_EXIT_NONE; 5179 5180 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 5181 kind = SCX_EXIT_ERROR; 5182 5183 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 5184 5185 schedule_scx_ops_disable_work(); 5186 } 5187 5188 static void dump_newline(struct seq_buf *s) 5189 { 5190 trace_sched_ext_dump(""); 5191 5192 /* @s may be zero sized and seq_buf triggers WARN if so */ 5193 if (s->size) 5194 seq_buf_putc(s, '\n'); 5195 } 5196 5197 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 5198 { 5199 va_list args; 5200 5201 #ifdef CONFIG_TRACEPOINTS 5202 if (trace_sched_ext_dump_enabled()) { 5203 /* protected by scx_dump_state()::dump_lock */ 5204 static char line_buf[SCX_EXIT_MSG_LEN]; 5205 5206 va_start(args, fmt); 5207 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 5208 va_end(args); 5209 5210 trace_sched_ext_dump(line_buf); 5211 } 5212 #endif 5213 /* @s may be zero sized and seq_buf triggers WARN if so */ 5214 if (s->size) { 5215 va_start(args, fmt); 5216 seq_buf_vprintf(s, fmt, args); 5217 va_end(args); 5218 5219 seq_buf_putc(s, '\n'); 5220 } 5221 } 5222 5223 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 5224 const unsigned long *bt, unsigned int len) 5225 { 5226 unsigned int i; 5227 5228 for (i = 0; i < len; i++) 5229 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 5230 } 5231 5232 static void ops_dump_init(struct seq_buf *s, const char *prefix) 5233 { 5234 struct scx_dump_data *dd = &scx_dump_data; 5235 5236 lockdep_assert_irqs_disabled(); 5237 5238 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 5239 dd->first = true; 5240 dd->cursor = 0; 5241 dd->s = s; 5242 dd->prefix = prefix; 5243 } 5244 5245 static void ops_dump_flush(void) 5246 { 5247 struct scx_dump_data *dd = &scx_dump_data; 5248 char *line = dd->buf.line; 5249 5250 if (!dd->cursor) 5251 return; 5252 5253 /* 5254 * There's something to flush and this is the first line. Insert a blank 5255 * line to distinguish ops dump. 5256 */ 5257 if (dd->first) { 5258 dump_newline(dd->s); 5259 dd->first = false; 5260 } 5261 5262 /* 5263 * There may be multiple lines in $line. Scan and emit each line 5264 * separately. 5265 */ 5266 while (true) { 5267 char *end = line; 5268 char c; 5269 5270 while (*end != '\n' && *end != '\0') 5271 end++; 5272 5273 /* 5274 * If $line overflowed, it may not have newline at the end. 5275 * Always emit with a newline. 5276 */ 5277 c = *end; 5278 *end = '\0'; 5279 dump_line(dd->s, "%s%s", dd->prefix, line); 5280 if (c == '\0') 5281 break; 5282 5283 /* move to the next line */ 5284 end++; 5285 if (*end == '\0') 5286 break; 5287 line = end; 5288 } 5289 5290 dd->cursor = 0; 5291 } 5292 5293 static void ops_dump_exit(void) 5294 { 5295 ops_dump_flush(); 5296 scx_dump_data.cpu = -1; 5297 } 5298 5299 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 5300 struct task_struct *p, char marker) 5301 { 5302 static unsigned long bt[SCX_EXIT_BT_LEN]; 5303 char dsq_id_buf[19] = "(n/a)"; 5304 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 5305 unsigned int bt_len = 0; 5306 5307 if (p->scx.dsq) 5308 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 5309 (unsigned long long)p->scx.dsq->id); 5310 5311 dump_newline(s); 5312 dump_line(s, " %c%c %s[%d] %+ldms", 5313 marker, task_state_to_char(p), p->comm, p->pid, 5314 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 5315 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 5316 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 5317 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 5318 ops_state >> SCX_OPSS_QSEQ_SHIFT); 5319 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 5320 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 5321 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 5322 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 5323 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 5324 5325 if (SCX_HAS_OP(dump_task)) { 5326 ops_dump_init(s, " "); 5327 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 5328 ops_dump_exit(); 5329 } 5330 5331 #ifdef CONFIG_STACKTRACE 5332 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 5333 #endif 5334 if (bt_len) { 5335 dump_newline(s); 5336 dump_stack_trace(s, " ", bt, bt_len); 5337 } 5338 } 5339 5340 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5341 { 5342 static DEFINE_SPINLOCK(dump_lock); 5343 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5344 struct scx_dump_ctx dctx = { 5345 .kind = ei->kind, 5346 .exit_code = ei->exit_code, 5347 .reason = ei->reason, 5348 .at_ns = ktime_get_ns(), 5349 .at_jiffies = jiffies, 5350 }; 5351 struct seq_buf s; 5352 unsigned long flags; 5353 char *buf; 5354 int cpu; 5355 5356 spin_lock_irqsave(&dump_lock, flags); 5357 5358 seq_buf_init(&s, ei->dump, dump_len); 5359 5360 if (ei->kind == SCX_EXIT_NONE) { 5361 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5362 } else { 5363 dump_line(&s, "%s[%d] triggered exit kind %d:", 5364 current->comm, current->pid, ei->kind); 5365 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5366 dump_newline(&s); 5367 dump_line(&s, "Backtrace:"); 5368 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5369 } 5370 5371 if (SCX_HAS_OP(dump)) { 5372 ops_dump_init(&s, ""); 5373 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 5374 ops_dump_exit(); 5375 } 5376 5377 dump_newline(&s); 5378 dump_line(&s, "CPU states"); 5379 dump_line(&s, "----------"); 5380 5381 for_each_possible_cpu(cpu) { 5382 struct rq *rq = cpu_rq(cpu); 5383 struct rq_flags rf; 5384 struct task_struct *p; 5385 struct seq_buf ns; 5386 size_t avail, used; 5387 bool idle; 5388 5389 rq_lock(rq, &rf); 5390 5391 idle = list_empty(&rq->scx.runnable_list) && 5392 rq->curr->sched_class == &idle_sched_class; 5393 5394 if (idle && !SCX_HAS_OP(dump_cpu)) 5395 goto next; 5396 5397 /* 5398 * We don't yet know whether ops.dump_cpu() will produce output 5399 * and we may want to skip the default CPU dump if it doesn't. 5400 * Use a nested seq_buf to generate the standard dump so that we 5401 * can decide whether to commit later. 5402 */ 5403 avail = seq_buf_get_buf(&s, &buf); 5404 seq_buf_init(&ns, buf, avail); 5405 5406 dump_newline(&ns); 5407 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5408 cpu, rq->scx.nr_running, rq->scx.flags, 5409 rq->scx.cpu_released, rq->scx.ops_qseq, 5410 rq->scx.pnt_seq); 5411 dump_line(&ns, " curr=%s[%d] class=%ps", 5412 rq->curr->comm, rq->curr->pid, 5413 rq->curr->sched_class); 5414 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5415 dump_line(&ns, " cpus_to_kick : %*pb", 5416 cpumask_pr_args(rq->scx.cpus_to_kick)); 5417 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5418 dump_line(&ns, " idle_to_kick : %*pb", 5419 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5420 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5421 dump_line(&ns, " cpus_to_preempt: %*pb", 5422 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5423 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5424 dump_line(&ns, " cpus_to_wait : %*pb", 5425 cpumask_pr_args(rq->scx.cpus_to_wait)); 5426 5427 used = seq_buf_used(&ns); 5428 if (SCX_HAS_OP(dump_cpu)) { 5429 ops_dump_init(&ns, " "); 5430 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 5431 ops_dump_exit(); 5432 } 5433 5434 /* 5435 * If idle && nothing generated by ops.dump_cpu(), there's 5436 * nothing interesting. Skip. 5437 */ 5438 if (idle && used == seq_buf_used(&ns)) 5439 goto next; 5440 5441 /* 5442 * $s may already have overflowed when $ns was created. If so, 5443 * calling commit on it will trigger BUG. 5444 */ 5445 if (avail) { 5446 seq_buf_commit(&s, seq_buf_used(&ns)); 5447 if (seq_buf_has_overflowed(&ns)) 5448 seq_buf_set_overflow(&s); 5449 } 5450 5451 if (rq->curr->sched_class == &ext_sched_class) 5452 scx_dump_task(&s, &dctx, rq->curr, '*'); 5453 5454 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5455 scx_dump_task(&s, &dctx, p, ' '); 5456 next: 5457 rq_unlock(rq, &rf); 5458 } 5459 5460 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5461 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5462 trunc_marker, sizeof(trunc_marker)); 5463 5464 spin_unlock_irqrestore(&dump_lock, flags); 5465 } 5466 5467 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 5468 { 5469 struct scx_exit_info *ei = scx_exit_info; 5470 5471 if (ei->kind >= SCX_EXIT_ERROR) 5472 scx_dump_state(ei, scx_ops.exit_dump_len); 5473 5474 schedule_scx_ops_disable_work(); 5475 } 5476 5477 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 5478 5479 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 5480 s64 exit_code, 5481 const char *fmt, ...) 5482 { 5483 struct scx_exit_info *ei = scx_exit_info; 5484 int none = SCX_EXIT_NONE; 5485 va_list args; 5486 5487 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 5488 return; 5489 5490 ei->exit_code = exit_code; 5491 #ifdef CONFIG_STACKTRACE 5492 if (kind >= SCX_EXIT_ERROR) 5493 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5494 #endif 5495 va_start(args, fmt); 5496 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5497 va_end(args); 5498 5499 /* 5500 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5501 * in scx_ops_disable_workfn(). 5502 */ 5503 ei->kind = kind; 5504 ei->reason = scx_exit_reason(ei->kind); 5505 5506 irq_work_queue(&scx_ops_error_irq_work); 5507 } 5508 5509 static struct kthread_worker *scx_create_rt_helper(const char *name) 5510 { 5511 struct kthread_worker *helper; 5512 5513 helper = kthread_run_worker(0, name); 5514 if (helper) 5515 sched_set_fifo(helper->task); 5516 return helper; 5517 } 5518 5519 static void check_hotplug_seq(const struct sched_ext_ops *ops) 5520 { 5521 unsigned long long global_hotplug_seq; 5522 5523 /* 5524 * If a hotplug event has occurred between when a scheduler was 5525 * initialized, and when we were able to attach, exit and notify user 5526 * space about it. 5527 */ 5528 if (ops->hotplug_seq) { 5529 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5530 if (ops->hotplug_seq != global_hotplug_seq) { 5531 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5532 "expected hotplug seq %llu did not match actual %llu", 5533 ops->hotplug_seq, global_hotplug_seq); 5534 } 5535 } 5536 } 5537 5538 static int validate_ops(const struct sched_ext_ops *ops) 5539 { 5540 /* 5541 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5542 * ops.enqueue() callback isn't implemented. 5543 */ 5544 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5545 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5546 return -EINVAL; 5547 } 5548 5549 return 0; 5550 } 5551 5552 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5553 { 5554 struct scx_task_iter sti; 5555 struct task_struct *p; 5556 unsigned long timeout; 5557 int i, cpu, node, ret; 5558 5559 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5560 cpu_possible_mask)) { 5561 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5562 return -EINVAL; 5563 } 5564 5565 mutex_lock(&scx_ops_enable_mutex); 5566 5567 if (!scx_ops_helper) { 5568 WRITE_ONCE(scx_ops_helper, 5569 scx_create_rt_helper("sched_ext_ops_helper")); 5570 if (!scx_ops_helper) { 5571 ret = -ENOMEM; 5572 goto err_unlock; 5573 } 5574 } 5575 5576 if (!global_dsqs) { 5577 struct scx_dispatch_q **dsqs; 5578 5579 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 5580 if (!dsqs) { 5581 ret = -ENOMEM; 5582 goto err_unlock; 5583 } 5584 5585 for_each_node_state(node, N_POSSIBLE) { 5586 struct scx_dispatch_q *dsq; 5587 5588 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5589 if (!dsq) { 5590 for_each_node_state(node, N_POSSIBLE) 5591 kfree(dsqs[node]); 5592 kfree(dsqs); 5593 ret = -ENOMEM; 5594 goto err_unlock; 5595 } 5596 5597 init_dsq(dsq, SCX_DSQ_GLOBAL); 5598 dsqs[node] = dsq; 5599 } 5600 5601 global_dsqs = dsqs; 5602 } 5603 5604 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5605 ret = -EBUSY; 5606 goto err_unlock; 5607 } 5608 5609 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5610 if (!scx_root_kobj) { 5611 ret = -ENOMEM; 5612 goto err_unlock; 5613 } 5614 5615 scx_root_kobj->kset = scx_kset; 5616 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5617 if (ret < 0) 5618 goto err; 5619 5620 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5621 if (!scx_exit_info) { 5622 ret = -ENOMEM; 5623 goto err_del; 5624 } 5625 5626 /* 5627 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5628 * disable path. Failure triggers full disabling from here on. 5629 */ 5630 scx_ops = *ops; 5631 5632 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5633 SCX_OPS_DISABLED); 5634 5635 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5636 scx_warned_zero_slice = false; 5637 5638 atomic_long_set(&scx_nr_rejected, 0); 5639 5640 for_each_possible_cpu(cpu) 5641 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5642 5643 /* 5644 * Keep CPUs stable during enable so that the BPF scheduler can track 5645 * online CPUs by watching ->on/offline_cpu() after ->init(). 5646 */ 5647 cpus_read_lock(); 5648 5649 if (scx_ops.init) { 5650 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5651 if (ret) { 5652 ret = ops_sanitize_err("init", ret); 5653 cpus_read_unlock(); 5654 scx_ops_error("ops.init() failed (%d)", ret); 5655 goto err_disable; 5656 } 5657 } 5658 5659 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5660 if (((void (**)(void))ops)[i]) 5661 static_branch_enable_cpuslocked(&scx_has_op[i]); 5662 5663 check_hotplug_seq(ops); 5664 #ifdef CONFIG_SMP 5665 update_selcpu_topology(); 5666 #endif 5667 cpus_read_unlock(); 5668 5669 ret = validate_ops(ops); 5670 if (ret) 5671 goto err_disable; 5672 5673 WARN_ON_ONCE(scx_dsp_ctx); 5674 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5675 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5676 scx_dsp_max_batch), 5677 __alignof__(struct scx_dsp_ctx)); 5678 if (!scx_dsp_ctx) { 5679 ret = -ENOMEM; 5680 goto err_disable; 5681 } 5682 5683 if (ops->timeout_ms) 5684 timeout = msecs_to_jiffies(ops->timeout_ms); 5685 else 5686 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5687 5688 WRITE_ONCE(scx_watchdog_timeout, timeout); 5689 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5690 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5691 scx_watchdog_timeout / 2); 5692 5693 /* 5694 * Once __scx_ops_enabled is set, %current can be switched to SCX 5695 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5696 * userspace scheduling) may not function correctly before all tasks are 5697 * switched. Init in bypass mode to guarantee forward progress. 5698 */ 5699 scx_ops_bypass(true); 5700 5701 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5702 if (((void (**)(void))ops)[i]) 5703 static_branch_enable(&scx_has_op[i]); 5704 5705 if (ops->flags & SCX_OPS_ENQ_LAST) 5706 static_branch_enable(&scx_ops_enq_last); 5707 5708 if (ops->flags & SCX_OPS_ENQ_EXITING) 5709 static_branch_enable(&scx_ops_enq_exiting); 5710 if (ops->flags & SCX_OPS_ENQ_MIGRATION_DISABLED) 5711 static_branch_enable(&scx_ops_enq_migration_disabled); 5712 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5713 static_branch_enable(&scx_ops_cpu_preempt); 5714 5715 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5716 reset_idle_masks(); 5717 static_branch_enable(&scx_builtin_idle_enabled); 5718 } else { 5719 static_branch_disable(&scx_builtin_idle_enabled); 5720 } 5721 5722 /* 5723 * Lock out forks, cgroup on/offlining and moves before opening the 5724 * floodgate so that they don't wander into the operations prematurely. 5725 */ 5726 percpu_down_write(&scx_fork_rwsem); 5727 5728 WARN_ON_ONCE(scx_ops_init_task_enabled); 5729 scx_ops_init_task_enabled = true; 5730 5731 /* 5732 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5733 * preventing new tasks from being added. No need to exclude tasks 5734 * leaving as sched_ext_free() can handle both prepped and enabled 5735 * tasks. Prep all tasks first and then enable them with preemption 5736 * disabled. 5737 * 5738 * All cgroups should be initialized before scx_ops_init_task() so that 5739 * the BPF scheduler can reliably track each task's cgroup membership 5740 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5741 * migrations while tasks are being initialized so that 5742 * scx_cgroup_can_attach() never sees uninitialized tasks. 5743 */ 5744 scx_cgroup_lock(); 5745 ret = scx_cgroup_init(); 5746 if (ret) 5747 goto err_disable_unlock_all; 5748 5749 scx_task_iter_start(&sti); 5750 while ((p = scx_task_iter_next_locked(&sti))) { 5751 /* 5752 * @p may already be dead, have lost all its usages counts and 5753 * be waiting for RCU grace period before being freed. @p can't 5754 * be initialized for SCX in such cases and should be ignored. 5755 */ 5756 if (!tryget_task_struct(p)) 5757 continue; 5758 5759 scx_task_iter_unlock(&sti); 5760 5761 ret = scx_ops_init_task(p, task_group(p), false); 5762 if (ret) { 5763 put_task_struct(p); 5764 scx_task_iter_relock(&sti); 5765 scx_task_iter_stop(&sti); 5766 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5767 ret, p->comm, p->pid); 5768 goto err_disable_unlock_all; 5769 } 5770 5771 scx_set_task_state(p, SCX_TASK_READY); 5772 5773 put_task_struct(p); 5774 scx_task_iter_relock(&sti); 5775 } 5776 scx_task_iter_stop(&sti); 5777 scx_cgroup_unlock(); 5778 percpu_up_write(&scx_fork_rwsem); 5779 5780 /* 5781 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5782 * all eligible tasks. 5783 */ 5784 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5785 static_branch_enable(&__scx_ops_enabled); 5786 5787 /* 5788 * We're fully committed and can't fail. The task READY -> ENABLED 5789 * transitions here are synchronized against sched_ext_free() through 5790 * scx_tasks_lock. 5791 */ 5792 percpu_down_write(&scx_fork_rwsem); 5793 scx_task_iter_start(&sti); 5794 while ((p = scx_task_iter_next_locked(&sti))) { 5795 const struct sched_class *old_class = p->sched_class; 5796 const struct sched_class *new_class = 5797 __setscheduler_class(p->policy, p->prio); 5798 struct sched_enq_and_set_ctx ctx; 5799 5800 if (old_class != new_class && p->se.sched_delayed) 5801 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5802 5803 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5804 5805 p->scx.slice = SCX_SLICE_DFL; 5806 p->sched_class = new_class; 5807 check_class_changing(task_rq(p), p, old_class); 5808 5809 sched_enq_and_set_task(&ctx); 5810 5811 check_class_changed(task_rq(p), p, old_class, p->prio); 5812 } 5813 scx_task_iter_stop(&sti); 5814 percpu_up_write(&scx_fork_rwsem); 5815 5816 scx_ops_bypass(false); 5817 5818 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5819 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5820 goto err_disable; 5821 } 5822 5823 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5824 static_branch_enable(&__scx_switched_all); 5825 5826 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5827 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5828 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5829 mutex_unlock(&scx_ops_enable_mutex); 5830 5831 atomic_long_inc(&scx_enable_seq); 5832 5833 return 0; 5834 5835 err_del: 5836 kobject_del(scx_root_kobj); 5837 err: 5838 kobject_put(scx_root_kobj); 5839 scx_root_kobj = NULL; 5840 if (scx_exit_info) { 5841 free_exit_info(scx_exit_info); 5842 scx_exit_info = NULL; 5843 } 5844 err_unlock: 5845 mutex_unlock(&scx_ops_enable_mutex); 5846 return ret; 5847 5848 err_disable_unlock_all: 5849 scx_cgroup_unlock(); 5850 percpu_up_write(&scx_fork_rwsem); 5851 scx_ops_bypass(false); 5852 err_disable: 5853 mutex_unlock(&scx_ops_enable_mutex); 5854 /* 5855 * Returning an error code here would not pass all the error information 5856 * to userspace. Record errno using scx_ops_error() for cases 5857 * scx_ops_error() wasn't already invoked and exit indicating success so 5858 * that the error is notified through ops.exit() with all the details. 5859 * 5860 * Flush scx_ops_disable_work to ensure that error is reported before 5861 * init completion. 5862 */ 5863 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5864 kthread_flush_work(&scx_ops_disable_work); 5865 return 0; 5866 } 5867 5868 5869 /******************************************************************************** 5870 * bpf_struct_ops plumbing. 5871 */ 5872 #include <linux/bpf_verifier.h> 5873 #include <linux/bpf.h> 5874 #include <linux/btf.h> 5875 5876 static const struct btf_type *task_struct_type; 5877 5878 static bool bpf_scx_is_valid_access(int off, int size, 5879 enum bpf_access_type type, 5880 const struct bpf_prog *prog, 5881 struct bpf_insn_access_aux *info) 5882 { 5883 if (type != BPF_READ) 5884 return false; 5885 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5886 return false; 5887 if (off % size != 0) 5888 return false; 5889 5890 return btf_ctx_access(off, size, type, prog, info); 5891 } 5892 5893 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5894 const struct bpf_reg_state *reg, int off, 5895 int size) 5896 { 5897 const struct btf_type *t; 5898 5899 t = btf_type_by_id(reg->btf, reg->btf_id); 5900 if (t == task_struct_type) { 5901 if (off >= offsetof(struct task_struct, scx.slice) && 5902 off + size <= offsetofend(struct task_struct, scx.slice)) 5903 return SCALAR_VALUE; 5904 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5905 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5906 return SCALAR_VALUE; 5907 if (off >= offsetof(struct task_struct, scx.disallow) && 5908 off + size <= offsetofend(struct task_struct, scx.disallow)) 5909 return SCALAR_VALUE; 5910 } 5911 5912 return -EACCES; 5913 } 5914 5915 static const struct bpf_func_proto * 5916 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5917 { 5918 switch (func_id) { 5919 case BPF_FUNC_task_storage_get: 5920 return &bpf_task_storage_get_proto; 5921 case BPF_FUNC_task_storage_delete: 5922 return &bpf_task_storage_delete_proto; 5923 default: 5924 return bpf_base_func_proto(func_id, prog); 5925 } 5926 } 5927 5928 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5929 .get_func_proto = bpf_scx_get_func_proto, 5930 .is_valid_access = bpf_scx_is_valid_access, 5931 .btf_struct_access = bpf_scx_btf_struct_access, 5932 }; 5933 5934 static int bpf_scx_init_member(const struct btf_type *t, 5935 const struct btf_member *member, 5936 void *kdata, const void *udata) 5937 { 5938 const struct sched_ext_ops *uops = udata; 5939 struct sched_ext_ops *ops = kdata; 5940 u32 moff = __btf_member_bit_offset(t, member) / 8; 5941 int ret; 5942 5943 switch (moff) { 5944 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5945 if (*(u32 *)(udata + moff) > INT_MAX) 5946 return -E2BIG; 5947 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5948 return 1; 5949 case offsetof(struct sched_ext_ops, flags): 5950 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5951 return -EINVAL; 5952 ops->flags = *(u64 *)(udata + moff); 5953 return 1; 5954 case offsetof(struct sched_ext_ops, name): 5955 ret = bpf_obj_name_cpy(ops->name, uops->name, 5956 sizeof(ops->name)); 5957 if (ret < 0) 5958 return ret; 5959 if (ret == 0) 5960 return -EINVAL; 5961 return 1; 5962 case offsetof(struct sched_ext_ops, timeout_ms): 5963 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5964 SCX_WATCHDOG_MAX_TIMEOUT) 5965 return -E2BIG; 5966 ops->timeout_ms = *(u32 *)(udata + moff); 5967 return 1; 5968 case offsetof(struct sched_ext_ops, exit_dump_len): 5969 ops->exit_dump_len = 5970 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5971 return 1; 5972 case offsetof(struct sched_ext_ops, hotplug_seq): 5973 ops->hotplug_seq = *(u64 *)(udata + moff); 5974 return 1; 5975 } 5976 5977 return 0; 5978 } 5979 5980 static int bpf_scx_check_member(const struct btf_type *t, 5981 const struct btf_member *member, 5982 const struct bpf_prog *prog) 5983 { 5984 u32 moff = __btf_member_bit_offset(t, member) / 8; 5985 5986 switch (moff) { 5987 case offsetof(struct sched_ext_ops, init_task): 5988 #ifdef CONFIG_EXT_GROUP_SCHED 5989 case offsetof(struct sched_ext_ops, cgroup_init): 5990 case offsetof(struct sched_ext_ops, cgroup_exit): 5991 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5992 #endif 5993 case offsetof(struct sched_ext_ops, cpu_online): 5994 case offsetof(struct sched_ext_ops, cpu_offline): 5995 case offsetof(struct sched_ext_ops, init): 5996 case offsetof(struct sched_ext_ops, exit): 5997 break; 5998 default: 5999 if (prog->sleepable) 6000 return -EINVAL; 6001 } 6002 6003 return 0; 6004 } 6005 6006 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 6007 { 6008 return scx_ops_enable(kdata, link); 6009 } 6010 6011 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 6012 { 6013 scx_ops_disable(SCX_EXIT_UNREG); 6014 kthread_flush_work(&scx_ops_disable_work); 6015 } 6016 6017 static int bpf_scx_init(struct btf *btf) 6018 { 6019 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 6020 6021 return 0; 6022 } 6023 6024 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 6025 { 6026 /* 6027 * sched_ext does not support updating the actively-loaded BPF 6028 * scheduler, as registering a BPF scheduler can always fail if the 6029 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 6030 * etc. Similarly, we can always race with unregistration happening 6031 * elsewhere, such as with sysrq. 6032 */ 6033 return -EOPNOTSUPP; 6034 } 6035 6036 static int bpf_scx_validate(void *kdata) 6037 { 6038 return 0; 6039 } 6040 6041 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 6042 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 6043 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 6044 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 6045 static void sched_ext_ops__tick(struct task_struct *p) {} 6046 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 6047 static void sched_ext_ops__running(struct task_struct *p) {} 6048 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 6049 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 6050 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 6051 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 6052 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 6053 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 6054 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 6055 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 6056 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 6057 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 6058 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 6059 static void sched_ext_ops__enable(struct task_struct *p) {} 6060 static void sched_ext_ops__disable(struct task_struct *p) {} 6061 #ifdef CONFIG_EXT_GROUP_SCHED 6062 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 6063 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 6064 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 6065 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 6066 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 6067 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 6068 #endif 6069 static void sched_ext_ops__cpu_online(s32 cpu) {} 6070 static void sched_ext_ops__cpu_offline(s32 cpu) {} 6071 static s32 sched_ext_ops__init(void) { return -EINVAL; } 6072 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 6073 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 6074 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 6075 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 6076 6077 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 6078 .select_cpu = sched_ext_ops__select_cpu, 6079 .enqueue = sched_ext_ops__enqueue, 6080 .dequeue = sched_ext_ops__dequeue, 6081 .dispatch = sched_ext_ops__dispatch, 6082 .tick = sched_ext_ops__tick, 6083 .runnable = sched_ext_ops__runnable, 6084 .running = sched_ext_ops__running, 6085 .stopping = sched_ext_ops__stopping, 6086 .quiescent = sched_ext_ops__quiescent, 6087 .yield = sched_ext_ops__yield, 6088 .core_sched_before = sched_ext_ops__core_sched_before, 6089 .set_weight = sched_ext_ops__set_weight, 6090 .set_cpumask = sched_ext_ops__set_cpumask, 6091 .update_idle = sched_ext_ops__update_idle, 6092 .cpu_acquire = sched_ext_ops__cpu_acquire, 6093 .cpu_release = sched_ext_ops__cpu_release, 6094 .init_task = sched_ext_ops__init_task, 6095 .exit_task = sched_ext_ops__exit_task, 6096 .enable = sched_ext_ops__enable, 6097 .disable = sched_ext_ops__disable, 6098 #ifdef CONFIG_EXT_GROUP_SCHED 6099 .cgroup_init = sched_ext_ops__cgroup_init, 6100 .cgroup_exit = sched_ext_ops__cgroup_exit, 6101 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 6102 .cgroup_move = sched_ext_ops__cgroup_move, 6103 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 6104 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 6105 #endif 6106 .cpu_online = sched_ext_ops__cpu_online, 6107 .cpu_offline = sched_ext_ops__cpu_offline, 6108 .init = sched_ext_ops__init, 6109 .exit = sched_ext_ops__exit, 6110 .dump = sched_ext_ops__dump, 6111 .dump_cpu = sched_ext_ops__dump_cpu, 6112 .dump_task = sched_ext_ops__dump_task, 6113 }; 6114 6115 static struct bpf_struct_ops bpf_sched_ext_ops = { 6116 .verifier_ops = &bpf_scx_verifier_ops, 6117 .reg = bpf_scx_reg, 6118 .unreg = bpf_scx_unreg, 6119 .check_member = bpf_scx_check_member, 6120 .init_member = bpf_scx_init_member, 6121 .init = bpf_scx_init, 6122 .update = bpf_scx_update, 6123 .validate = bpf_scx_validate, 6124 .name = "sched_ext_ops", 6125 .owner = THIS_MODULE, 6126 .cfi_stubs = &__bpf_ops_sched_ext_ops 6127 }; 6128 6129 6130 /******************************************************************************** 6131 * System integration and init. 6132 */ 6133 6134 static void sysrq_handle_sched_ext_reset(u8 key) 6135 { 6136 if (scx_ops_helper) 6137 scx_ops_disable(SCX_EXIT_SYSRQ); 6138 else 6139 pr_info("sched_ext: BPF scheduler not yet used\n"); 6140 } 6141 6142 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 6143 .handler = sysrq_handle_sched_ext_reset, 6144 .help_msg = "reset-sched-ext(S)", 6145 .action_msg = "Disable sched_ext and revert all tasks to CFS", 6146 .enable_mask = SYSRQ_ENABLE_RTNICE, 6147 }; 6148 6149 static void sysrq_handle_sched_ext_dump(u8 key) 6150 { 6151 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 6152 6153 if (scx_enabled()) 6154 scx_dump_state(&ei, 0); 6155 } 6156 6157 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 6158 .handler = sysrq_handle_sched_ext_dump, 6159 .help_msg = "dump-sched-ext(D)", 6160 .action_msg = "Trigger sched_ext debug dump", 6161 .enable_mask = SYSRQ_ENABLE_RTNICE, 6162 }; 6163 6164 static bool can_skip_idle_kick(struct rq *rq) 6165 { 6166 lockdep_assert_rq_held(rq); 6167 6168 /* 6169 * We can skip idle kicking if @rq is going to go through at least one 6170 * full SCX scheduling cycle before going idle. Just checking whether 6171 * curr is not idle is insufficient because we could be racing 6172 * balance_one() trying to pull the next task from a remote rq, which 6173 * may fail, and @rq may become idle afterwards. 6174 * 6175 * The race window is small and we don't and can't guarantee that @rq is 6176 * only kicked while idle anyway. Skip only when sure. 6177 */ 6178 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 6179 } 6180 6181 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 6182 { 6183 struct rq *rq = cpu_rq(cpu); 6184 struct scx_rq *this_scx = &this_rq->scx; 6185 bool should_wait = false; 6186 unsigned long flags; 6187 6188 raw_spin_rq_lock_irqsave(rq, flags); 6189 6190 /* 6191 * During CPU hotplug, a CPU may depend on kicking itself to make 6192 * forward progress. Allow kicking self regardless of online state. 6193 */ 6194 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 6195 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 6196 if (rq->curr->sched_class == &ext_sched_class) 6197 rq->curr->scx.slice = 0; 6198 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6199 } 6200 6201 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 6202 pseqs[cpu] = rq->scx.pnt_seq; 6203 should_wait = true; 6204 } 6205 6206 resched_curr(rq); 6207 } else { 6208 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6209 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6210 } 6211 6212 raw_spin_rq_unlock_irqrestore(rq, flags); 6213 6214 return should_wait; 6215 } 6216 6217 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 6218 { 6219 struct rq *rq = cpu_rq(cpu); 6220 unsigned long flags; 6221 6222 raw_spin_rq_lock_irqsave(rq, flags); 6223 6224 if (!can_skip_idle_kick(rq) && 6225 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 6226 resched_curr(rq); 6227 6228 raw_spin_rq_unlock_irqrestore(rq, flags); 6229 } 6230 6231 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 6232 { 6233 struct rq *this_rq = this_rq(); 6234 struct scx_rq *this_scx = &this_rq->scx; 6235 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 6236 bool should_wait = false; 6237 s32 cpu; 6238 6239 for_each_cpu(cpu, this_scx->cpus_to_kick) { 6240 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 6241 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 6242 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6243 } 6244 6245 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 6246 kick_one_cpu_if_idle(cpu, this_rq); 6247 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6248 } 6249 6250 if (!should_wait) 6251 return; 6252 6253 for_each_cpu(cpu, this_scx->cpus_to_wait) { 6254 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 6255 6256 if (cpu != cpu_of(this_rq)) { 6257 /* 6258 * Pairs with smp_store_release() issued by this CPU in 6259 * switch_class() on the resched path. 6260 * 6261 * We busy-wait here to guarantee that no other task can 6262 * be scheduled on our core before the target CPU has 6263 * entered the resched path. 6264 */ 6265 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 6266 cpu_relax(); 6267 } 6268 6269 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6270 } 6271 } 6272 6273 /** 6274 * print_scx_info - print out sched_ext scheduler state 6275 * @log_lvl: the log level to use when printing 6276 * @p: target task 6277 * 6278 * If a sched_ext scheduler is enabled, print the name and state of the 6279 * scheduler. If @p is on sched_ext, print further information about the task. 6280 * 6281 * This function can be safely called on any task as long as the task_struct 6282 * itself is accessible. While safe, this function isn't synchronized and may 6283 * print out mixups or garbages of limited length. 6284 */ 6285 void print_scx_info(const char *log_lvl, struct task_struct *p) 6286 { 6287 enum scx_ops_enable_state state = scx_ops_enable_state(); 6288 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 6289 char runnable_at_buf[22] = "?"; 6290 struct sched_class *class; 6291 unsigned long runnable_at; 6292 6293 if (state == SCX_OPS_DISABLED) 6294 return; 6295 6296 /* 6297 * Carefully check if the task was running on sched_ext, and then 6298 * carefully copy the time it's been runnable, and its state. 6299 */ 6300 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 6301 class != &ext_sched_class) { 6302 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 6303 scx_ops_enable_state_str[state], all); 6304 return; 6305 } 6306 6307 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 6308 sizeof(runnable_at))) 6309 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6310 jiffies_delta_msecs(runnable_at, jiffies)); 6311 6312 /* print everything onto one line to conserve console space */ 6313 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6314 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 6315 runnable_at_buf); 6316 } 6317 6318 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6319 { 6320 /* 6321 * SCX schedulers often have userspace components which are sometimes 6322 * involved in critial scheduling paths. PM operations involve freezing 6323 * userspace which can lead to scheduling misbehaviors including stalls. 6324 * Let's bypass while PM operations are in progress. 6325 */ 6326 switch (event) { 6327 case PM_HIBERNATION_PREPARE: 6328 case PM_SUSPEND_PREPARE: 6329 case PM_RESTORE_PREPARE: 6330 scx_ops_bypass(true); 6331 break; 6332 case PM_POST_HIBERNATION: 6333 case PM_POST_SUSPEND: 6334 case PM_POST_RESTORE: 6335 scx_ops_bypass(false); 6336 break; 6337 } 6338 6339 return NOTIFY_OK; 6340 } 6341 6342 static struct notifier_block scx_pm_notifier = { 6343 .notifier_call = scx_pm_handler, 6344 }; 6345 6346 void __init init_sched_ext_class(void) 6347 { 6348 s32 cpu, v; 6349 6350 /* 6351 * The following is to prevent the compiler from optimizing out the enum 6352 * definitions so that BPF scheduler implementations can use them 6353 * through the generated vmlinux.h. 6354 */ 6355 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6356 SCX_TG_ONLINE); 6357 6358 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 6359 #ifdef CONFIG_SMP 6360 BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); 6361 BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); 6362 #endif 6363 scx_kick_cpus_pnt_seqs = 6364 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6365 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6366 BUG_ON(!scx_kick_cpus_pnt_seqs); 6367 6368 for_each_possible_cpu(cpu) { 6369 struct rq *rq = cpu_rq(cpu); 6370 6371 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6372 INIT_LIST_HEAD(&rq->scx.runnable_list); 6373 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6374 6375 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); 6376 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); 6377 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); 6378 BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); 6379 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6380 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6381 6382 if (cpu_online(cpu)) 6383 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6384 } 6385 6386 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6387 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6388 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6389 } 6390 6391 6392 /******************************************************************************** 6393 * Helpers that can be called from the BPF scheduler. 6394 */ 6395 #include <linux/btf_ids.h> 6396 6397 __bpf_kfunc_start_defs(); 6398 6399 static bool check_builtin_idle_enabled(void) 6400 { 6401 if (static_branch_likely(&scx_builtin_idle_enabled)) 6402 return true; 6403 6404 scx_ops_error("built-in idle tracking is disabled"); 6405 return false; 6406 } 6407 6408 /** 6409 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() 6410 * @p: task_struct to select a CPU for 6411 * @prev_cpu: CPU @p was on previously 6412 * @wake_flags: %SCX_WAKE_* flags 6413 * @is_idle: out parameter indicating whether the returned CPU is idle 6414 * 6415 * Can only be called from ops.select_cpu() if the built-in CPU selection is 6416 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. 6417 * @p, @prev_cpu and @wake_flags match ops.select_cpu(). 6418 * 6419 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is 6420 * currently idle and thus a good candidate for direct dispatching. 6421 */ 6422 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, 6423 u64 wake_flags, bool *is_idle) 6424 { 6425 if (!ops_cpu_valid(prev_cpu, NULL)) 6426 goto prev_cpu; 6427 6428 if (!check_builtin_idle_enabled()) 6429 goto prev_cpu; 6430 6431 if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) 6432 goto prev_cpu; 6433 6434 #ifdef CONFIG_SMP 6435 return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); 6436 #endif 6437 6438 prev_cpu: 6439 *is_idle = false; 6440 return prev_cpu; 6441 } 6442 6443 __bpf_kfunc_end_defs(); 6444 6445 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) 6446 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) 6447 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) 6448 6449 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { 6450 .owner = THIS_MODULE, 6451 .set = &scx_kfunc_ids_select_cpu, 6452 }; 6453 6454 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6455 { 6456 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6457 return false; 6458 6459 lockdep_assert_irqs_disabled(); 6460 6461 if (unlikely(!p)) { 6462 scx_ops_error("called with NULL task"); 6463 return false; 6464 } 6465 6466 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6467 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 6468 return false; 6469 } 6470 6471 return true; 6472 } 6473 6474 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6475 u64 enq_flags) 6476 { 6477 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6478 struct task_struct *ddsp_task; 6479 6480 ddsp_task = __this_cpu_read(direct_dispatch_task); 6481 if (ddsp_task) { 6482 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6483 return; 6484 } 6485 6486 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6487 scx_ops_error("dispatch buffer overflow"); 6488 return; 6489 } 6490 6491 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6492 .task = p, 6493 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6494 .dsq_id = dsq_id, 6495 .enq_flags = enq_flags, 6496 }; 6497 } 6498 6499 __bpf_kfunc_start_defs(); 6500 6501 /** 6502 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6503 * @p: task_struct to insert 6504 * @dsq_id: DSQ to insert into 6505 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6506 * @enq_flags: SCX_ENQ_* 6507 * 6508 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6509 * call this function spuriously. Can be called from ops.enqueue(), 6510 * ops.select_cpu(), and ops.dispatch(). 6511 * 6512 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6513 * and @p must match the task being enqueued. 6514 * 6515 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6516 * will be directly inserted into the corresponding dispatch queue after 6517 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6518 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6519 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6520 * task is inserted. 6521 * 6522 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6523 * and this function can be called upto ops.dispatch_max_batch times to insert 6524 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6525 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6526 * 6527 * This function doesn't have any locking restrictions and may be called under 6528 * BPF locks (in the future when BPF introduces more flexible locking). 6529 * 6530 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6531 * exhaustion. If zero, the current residual slice is maintained. If 6532 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6533 * scx_bpf_kick_cpu() to trigger scheduling. 6534 */ 6535 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6536 u64 enq_flags) 6537 { 6538 if (!scx_dsq_insert_preamble(p, enq_flags)) 6539 return; 6540 6541 if (slice) 6542 p->scx.slice = slice; 6543 else 6544 p->scx.slice = p->scx.slice ?: 1; 6545 6546 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6547 } 6548 6549 /* for backward compatibility, will be removed in v6.15 */ 6550 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6551 u64 enq_flags) 6552 { 6553 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6554 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6555 } 6556 6557 /** 6558 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6559 * @p: task_struct to insert 6560 * @dsq_id: DSQ to insert into 6561 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6562 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6563 * @enq_flags: SCX_ENQ_* 6564 * 6565 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6566 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6567 * are identical to scx_bpf_dsq_insert(). 6568 * 6569 * @vtime ordering is according to time_before64() which considers wrapping. A 6570 * numerically larger vtime may indicate an earlier position in the ordering and 6571 * vice-versa. 6572 * 6573 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6574 * function must not be called on a DSQ which already has one or more FIFO tasks 6575 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6576 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6577 */ 6578 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6579 u64 slice, u64 vtime, u64 enq_flags) 6580 { 6581 if (!scx_dsq_insert_preamble(p, enq_flags)) 6582 return; 6583 6584 if (slice) 6585 p->scx.slice = slice; 6586 else 6587 p->scx.slice = p->scx.slice ?: 1; 6588 6589 p->scx.dsq_vtime = vtime; 6590 6591 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6592 } 6593 6594 /* for backward compatibility, will be removed in v6.15 */ 6595 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6596 u64 slice, u64 vtime, u64 enq_flags) 6597 { 6598 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6599 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6600 } 6601 6602 __bpf_kfunc_end_defs(); 6603 6604 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6605 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6606 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6607 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6608 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6609 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6610 6611 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6612 .owner = THIS_MODULE, 6613 .set = &scx_kfunc_ids_enqueue_dispatch, 6614 }; 6615 6616 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 6617 struct task_struct *p, u64 dsq_id, u64 enq_flags) 6618 { 6619 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6620 struct rq *this_rq, *src_rq, *locked_rq; 6621 bool dispatched = false; 6622 bool in_balance; 6623 unsigned long flags; 6624 6625 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6626 return false; 6627 6628 /* 6629 * Can be called from either ops.dispatch() locking this_rq() or any 6630 * context where no rq lock is held. If latter, lock @p's task_rq which 6631 * we'll likely need anyway. 6632 */ 6633 src_rq = task_rq(p); 6634 6635 local_irq_save(flags); 6636 this_rq = this_rq(); 6637 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6638 6639 if (in_balance) { 6640 if (this_rq != src_rq) { 6641 raw_spin_rq_unlock(this_rq); 6642 raw_spin_rq_lock(src_rq); 6643 } 6644 } else { 6645 raw_spin_rq_lock(src_rq); 6646 } 6647 6648 /* 6649 * If the BPF scheduler keeps calling this function repeatedly, it can 6650 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6651 * breather if necessary. 6652 */ 6653 scx_ops_breather(src_rq); 6654 6655 locked_rq = src_rq; 6656 raw_spin_lock(&src_dsq->lock); 6657 6658 /* 6659 * Did someone else get to it? @p could have already left $src_dsq, got 6660 * re-enqueud, or be in the process of being consumed by someone else. 6661 */ 6662 if (unlikely(p->scx.dsq != src_dsq || 6663 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6664 p->scx.holding_cpu >= 0) || 6665 WARN_ON_ONCE(src_rq != task_rq(p))) { 6666 raw_spin_unlock(&src_dsq->lock); 6667 goto out; 6668 } 6669 6670 /* @p is still on $src_dsq and stable, determine the destination */ 6671 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6672 6673 /* 6674 * Apply vtime and slice updates before moving so that the new time is 6675 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6676 * this is safe as we're locking it. 6677 */ 6678 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6679 p->scx.dsq_vtime = kit->vtime; 6680 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6681 p->scx.slice = kit->slice; 6682 6683 /* execute move */ 6684 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq); 6685 dispatched = true; 6686 out: 6687 if (in_balance) { 6688 if (this_rq != locked_rq) { 6689 raw_spin_rq_unlock(locked_rq); 6690 raw_spin_rq_lock(this_rq); 6691 } 6692 } else { 6693 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6694 } 6695 6696 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6697 __SCX_DSQ_ITER_HAS_VTIME); 6698 return dispatched; 6699 } 6700 6701 __bpf_kfunc_start_defs(); 6702 6703 /** 6704 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6705 * 6706 * Can only be called from ops.dispatch(). 6707 */ 6708 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6709 { 6710 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6711 return 0; 6712 6713 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6714 } 6715 6716 /** 6717 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6718 * 6719 * Cancel the latest dispatch. Can be called multiple times to cancel further 6720 * dispatches. Can only be called from ops.dispatch(). 6721 */ 6722 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6723 { 6724 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6725 6726 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6727 return; 6728 6729 if (dspc->cursor > 0) 6730 dspc->cursor--; 6731 else 6732 scx_ops_error("dispatch buffer underflow"); 6733 } 6734 6735 /** 6736 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6737 * @dsq_id: DSQ to move task from 6738 * 6739 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6740 * local DSQ for execution. Can only be called from ops.dispatch(). 6741 * 6742 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6743 * before trying to move from the specified DSQ. It may also grab rq locks and 6744 * thus can't be called under any BPF locks. 6745 * 6746 * Returns %true if a task has been moved, %false if there isn't any task to 6747 * move. 6748 */ 6749 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6750 { 6751 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6752 struct scx_dispatch_q *dsq; 6753 6754 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6755 return false; 6756 6757 flush_dispatch_buf(dspc->rq); 6758 6759 dsq = find_user_dsq(dsq_id); 6760 if (unlikely(!dsq)) { 6761 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6762 return false; 6763 } 6764 6765 if (consume_dispatch_q(dspc->rq, dsq)) { 6766 /* 6767 * A successfully consumed task can be dequeued before it starts 6768 * running while the CPU is trying to migrate other dispatched 6769 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6770 * local DSQ. 6771 */ 6772 dspc->nr_tasks++; 6773 return true; 6774 } else { 6775 return false; 6776 } 6777 } 6778 6779 /* for backward compatibility, will be removed in v6.15 */ 6780 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6781 { 6782 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6783 return scx_bpf_dsq_move_to_local(dsq_id); 6784 } 6785 6786 /** 6787 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6788 * @it__iter: DSQ iterator in progress 6789 * @slice: duration the moved task can run for in nsecs 6790 * 6791 * Override the slice of the next task that will be moved from @it__iter using 6792 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6793 * slice duration is kept. 6794 */ 6795 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6796 u64 slice) 6797 { 6798 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6799 6800 kit->slice = slice; 6801 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6802 } 6803 6804 /* for backward compatibility, will be removed in v6.15 */ 6805 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6806 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6807 { 6808 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()"); 6809 scx_bpf_dsq_move_set_slice(it__iter, slice); 6810 } 6811 6812 /** 6813 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6814 * @it__iter: DSQ iterator in progress 6815 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6816 * 6817 * Override the vtime of the next task that will be moved from @it__iter using 6818 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6819 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6820 * override is ignored and cleared. 6821 */ 6822 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6823 u64 vtime) 6824 { 6825 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6826 6827 kit->vtime = vtime; 6828 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6829 } 6830 6831 /* for backward compatibility, will be removed in v6.15 */ 6832 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6833 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6834 { 6835 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()"); 6836 scx_bpf_dsq_move_set_vtime(it__iter, vtime); 6837 } 6838 6839 /** 6840 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6841 * @it__iter: DSQ iterator in progress 6842 * @p: task to transfer 6843 * @dsq_id: DSQ to move @p to 6844 * @enq_flags: SCX_ENQ_* 6845 * 6846 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6847 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6848 * be the destination. 6849 * 6850 * For the transfer to be successful, @p must still be on the DSQ and have been 6851 * queued before the DSQ iteration started. This function doesn't care whether 6852 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6853 * been queued before the iteration started. 6854 * 6855 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6856 * 6857 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6858 * lock (e.g. BPF timers or SYSCALL programs). 6859 * 6860 * Returns %true if @p has been consumed, %false if @p had already been consumed 6861 * or dequeued. 6862 */ 6863 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6864 struct task_struct *p, u64 dsq_id, 6865 u64 enq_flags) 6866 { 6867 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6868 p, dsq_id, enq_flags); 6869 } 6870 6871 /* for backward compatibility, will be removed in v6.15 */ 6872 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6873 struct task_struct *p, u64 dsq_id, 6874 u64 enq_flags) 6875 { 6876 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()"); 6877 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags); 6878 } 6879 6880 /** 6881 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6882 * @it__iter: DSQ iterator in progress 6883 * @p: task to transfer 6884 * @dsq_id: DSQ to move @p to 6885 * @enq_flags: SCX_ENQ_* 6886 * 6887 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6888 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6889 * user DSQ as only user DSQs support priority queue. 6890 * 6891 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6892 * and scx_bpf_dsq_move_set_vtime() to update. 6893 * 6894 * All other aspects are identical to scx_bpf_dsq_move(). See 6895 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6896 */ 6897 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6898 struct task_struct *p, u64 dsq_id, 6899 u64 enq_flags) 6900 { 6901 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6902 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6903 } 6904 6905 /* for backward compatibility, will be removed in v6.15 */ 6906 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6907 struct task_struct *p, u64 dsq_id, 6908 u64 enq_flags) 6909 { 6910 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()"); 6911 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags); 6912 } 6913 6914 __bpf_kfunc_end_defs(); 6915 6916 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6917 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6918 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6919 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6920 BTF_ID_FLAGS(func, scx_bpf_consume) 6921 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6922 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6923 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6924 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6925 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6926 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6927 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6928 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6929 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6930 6931 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6932 .owner = THIS_MODULE, 6933 .set = &scx_kfunc_ids_dispatch, 6934 }; 6935 6936 __bpf_kfunc_start_defs(); 6937 6938 /** 6939 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6940 * 6941 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6942 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6943 * processed tasks. Can only be called from ops.cpu_release(). 6944 */ 6945 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6946 { 6947 LIST_HEAD(tasks); 6948 u32 nr_enqueued = 0; 6949 struct rq *rq; 6950 struct task_struct *p, *n; 6951 6952 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6953 return 0; 6954 6955 rq = cpu_rq(smp_processor_id()); 6956 lockdep_assert_rq_held(rq); 6957 6958 /* 6959 * The BPF scheduler may choose to dispatch tasks back to 6960 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6961 * first to avoid processing the same tasks repeatedly. 6962 */ 6963 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6964 scx.dsq_list.node) { 6965 /* 6966 * If @p is being migrated, @p's current CPU may not agree with 6967 * its allowed CPUs and the migration_cpu_stop is about to 6968 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6969 * 6970 * While racing sched property changes may also dequeue and 6971 * re-enqueue a migrating task while its current CPU and allowed 6972 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6973 * the current local DSQ for running tasks and thus are not 6974 * visible to the BPF scheduler. 6975 */ 6976 if (p->migration_pending) 6977 continue; 6978 6979 dispatch_dequeue(rq, p); 6980 list_add_tail(&p->scx.dsq_list.node, &tasks); 6981 } 6982 6983 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6984 list_del_init(&p->scx.dsq_list.node); 6985 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6986 nr_enqueued++; 6987 } 6988 6989 return nr_enqueued; 6990 } 6991 6992 __bpf_kfunc_end_defs(); 6993 6994 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6995 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6996 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6997 6998 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6999 .owner = THIS_MODULE, 7000 .set = &scx_kfunc_ids_cpu_release, 7001 }; 7002 7003 __bpf_kfunc_start_defs(); 7004 7005 /** 7006 * scx_bpf_create_dsq - Create a custom DSQ 7007 * @dsq_id: DSQ to create 7008 * @node: NUMA node to allocate from 7009 * 7010 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 7011 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 7012 */ 7013 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 7014 { 7015 if (unlikely(node >= (int)nr_node_ids || 7016 (node < 0 && node != NUMA_NO_NODE))) 7017 return -EINVAL; 7018 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 7019 } 7020 7021 __bpf_kfunc_end_defs(); 7022 7023 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 7024 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 7025 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 7026 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 7027 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 7028 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 7029 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 7030 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 7031 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 7032 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 7033 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 7034 7035 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 7036 .owner = THIS_MODULE, 7037 .set = &scx_kfunc_ids_unlocked, 7038 }; 7039 7040 __bpf_kfunc_start_defs(); 7041 7042 /** 7043 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 7044 * @cpu: cpu to kick 7045 * @flags: %SCX_KICK_* flags 7046 * 7047 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 7048 * trigger rescheduling on a busy CPU. This can be called from any online 7049 * scx_ops operation and the actual kicking is performed asynchronously through 7050 * an irq work. 7051 */ 7052 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 7053 { 7054 struct rq *this_rq; 7055 unsigned long irq_flags; 7056 7057 if (!ops_cpu_valid(cpu, NULL)) 7058 return; 7059 7060 local_irq_save(irq_flags); 7061 7062 this_rq = this_rq(); 7063 7064 /* 7065 * While bypassing for PM ops, IRQ handling may not be online which can 7066 * lead to irq_work_queue() malfunction such as infinite busy wait for 7067 * IRQ status update. Suppress kicking. 7068 */ 7069 if (scx_rq_bypassing(this_rq)) 7070 goto out; 7071 7072 /* 7073 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 7074 * rq locks. We can probably be smarter and avoid bouncing if called 7075 * from ops which don't hold a rq lock. 7076 */ 7077 if (flags & SCX_KICK_IDLE) { 7078 struct rq *target_rq = cpu_rq(cpu); 7079 7080 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 7081 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 7082 7083 if (raw_spin_rq_trylock(target_rq)) { 7084 if (can_skip_idle_kick(target_rq)) { 7085 raw_spin_rq_unlock(target_rq); 7086 goto out; 7087 } 7088 raw_spin_rq_unlock(target_rq); 7089 } 7090 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 7091 } else { 7092 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 7093 7094 if (flags & SCX_KICK_PREEMPT) 7095 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 7096 if (flags & SCX_KICK_WAIT) 7097 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 7098 } 7099 7100 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 7101 out: 7102 local_irq_restore(irq_flags); 7103 } 7104 7105 /** 7106 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 7107 * @dsq_id: id of the DSQ 7108 * 7109 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 7110 * -%ENOENT is returned. 7111 */ 7112 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 7113 { 7114 struct scx_dispatch_q *dsq; 7115 s32 ret; 7116 7117 preempt_disable(); 7118 7119 if (dsq_id == SCX_DSQ_LOCAL) { 7120 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 7121 goto out; 7122 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 7123 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 7124 7125 if (ops_cpu_valid(cpu, NULL)) { 7126 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 7127 goto out; 7128 } 7129 } else { 7130 dsq = find_user_dsq(dsq_id); 7131 if (dsq) { 7132 ret = READ_ONCE(dsq->nr); 7133 goto out; 7134 } 7135 } 7136 ret = -ENOENT; 7137 out: 7138 preempt_enable(); 7139 return ret; 7140 } 7141 7142 /** 7143 * scx_bpf_destroy_dsq - Destroy a custom DSQ 7144 * @dsq_id: DSQ to destroy 7145 * 7146 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 7147 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 7148 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 7149 * which doesn't exist. Can be called from any online scx_ops operations. 7150 */ 7151 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 7152 { 7153 destroy_dsq(dsq_id); 7154 } 7155 7156 /** 7157 * bpf_iter_scx_dsq_new - Create a DSQ iterator 7158 * @it: iterator to initialize 7159 * @dsq_id: DSQ to iterate 7160 * @flags: %SCX_DSQ_ITER_* 7161 * 7162 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 7163 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 7164 * tasks which are already queued when this function is invoked. 7165 */ 7166 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 7167 u64 flags) 7168 { 7169 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7170 7171 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 7172 sizeof(struct bpf_iter_scx_dsq)); 7173 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 7174 __alignof__(struct bpf_iter_scx_dsq)); 7175 7176 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 7177 return -EINVAL; 7178 7179 kit->dsq = find_user_dsq(dsq_id); 7180 if (!kit->dsq) 7181 return -ENOENT; 7182 7183 INIT_LIST_HEAD(&kit->cursor.node); 7184 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 7185 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 7186 7187 return 0; 7188 } 7189 7190 /** 7191 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 7192 * @it: iterator to progress 7193 * 7194 * Return the next task. See bpf_iter_scx_dsq_new(). 7195 */ 7196 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 7197 { 7198 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7199 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 7200 struct task_struct *p; 7201 unsigned long flags; 7202 7203 if (!kit->dsq) 7204 return NULL; 7205 7206 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7207 7208 if (list_empty(&kit->cursor.node)) 7209 p = NULL; 7210 else 7211 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 7212 7213 /* 7214 * Only tasks which were queued before the iteration started are 7215 * visible. This bounds BPF iterations and guarantees that vtime never 7216 * jumps in the other direction while iterating. 7217 */ 7218 do { 7219 p = nldsq_next_task(kit->dsq, p, rev); 7220 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 7221 7222 if (p) { 7223 if (rev) 7224 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 7225 else 7226 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 7227 } else { 7228 list_del_init(&kit->cursor.node); 7229 } 7230 7231 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7232 7233 return p; 7234 } 7235 7236 /** 7237 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 7238 * @it: iterator to destroy 7239 * 7240 * Undo scx_iter_scx_dsq_new(). 7241 */ 7242 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 7243 { 7244 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7245 7246 if (!kit->dsq) 7247 return; 7248 7249 if (!list_empty(&kit->cursor.node)) { 7250 unsigned long flags; 7251 7252 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7253 list_del_init(&kit->cursor.node); 7254 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7255 } 7256 kit->dsq = NULL; 7257 } 7258 7259 __bpf_kfunc_end_defs(); 7260 7261 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 7262 char *fmt, unsigned long long *data, u32 data__sz) 7263 { 7264 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 7265 s32 ret; 7266 7267 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 7268 (data__sz && !data)) { 7269 scx_ops_error("invalid data=%p and data__sz=%u", 7270 (void *)data, data__sz); 7271 return -EINVAL; 7272 } 7273 7274 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 7275 if (ret < 0) { 7276 scx_ops_error("failed to read data fields (%d)", ret); 7277 return ret; 7278 } 7279 7280 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 7281 &bprintf_data); 7282 if (ret < 0) { 7283 scx_ops_error("format preparation failed (%d)", ret); 7284 return ret; 7285 } 7286 7287 ret = bstr_printf(line_buf, line_size, fmt, 7288 bprintf_data.bin_args); 7289 bpf_bprintf_cleanup(&bprintf_data); 7290 if (ret < 0) { 7291 scx_ops_error("(\"%s\", %p, %u) failed to format", 7292 fmt, data, data__sz); 7293 return ret; 7294 } 7295 7296 return ret; 7297 } 7298 7299 static s32 bstr_format(struct scx_bstr_buf *buf, 7300 char *fmt, unsigned long long *data, u32 data__sz) 7301 { 7302 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 7303 fmt, data, data__sz); 7304 } 7305 7306 __bpf_kfunc_start_defs(); 7307 7308 /** 7309 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 7310 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 7311 * @fmt: error message format string 7312 * @data: format string parameters packaged using ___bpf_fill() macro 7313 * @data__sz: @data len, must end in '__sz' for the verifier 7314 * 7315 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 7316 * disabling. 7317 */ 7318 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 7319 unsigned long long *data, u32 data__sz) 7320 { 7321 unsigned long flags; 7322 7323 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7324 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7325 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 7326 scx_exit_bstr_buf.line); 7327 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7328 } 7329 7330 /** 7331 * scx_bpf_error_bstr - Indicate fatal error 7332 * @fmt: error message format string 7333 * @data: format string parameters packaged using ___bpf_fill() macro 7334 * @data__sz: @data len, must end in '__sz' for the verifier 7335 * 7336 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 7337 * disabling. 7338 */ 7339 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 7340 u32 data__sz) 7341 { 7342 unsigned long flags; 7343 7344 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7345 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7346 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 7347 scx_exit_bstr_buf.line); 7348 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7349 } 7350 7351 /** 7352 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 7353 * @fmt: format string 7354 * @data: format string parameters packaged using ___bpf_fill() macro 7355 * @data__sz: @data len, must end in '__sz' for the verifier 7356 * 7357 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 7358 * dump_task() to generate extra debug dump specific to the BPF scheduler. 7359 * 7360 * The extra dump may be multiple lines. A single line may be split over 7361 * multiple calls. The last line is automatically terminated. 7362 */ 7363 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 7364 u32 data__sz) 7365 { 7366 struct scx_dump_data *dd = &scx_dump_data; 7367 struct scx_bstr_buf *buf = &dd->buf; 7368 s32 ret; 7369 7370 if (raw_smp_processor_id() != dd->cpu) { 7371 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7372 return; 7373 } 7374 7375 /* append the formatted string to the line buf */ 7376 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7377 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7378 if (ret < 0) { 7379 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7380 dd->prefix, fmt, data, data__sz, ret); 7381 return; 7382 } 7383 7384 dd->cursor += ret; 7385 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7386 7387 if (!dd->cursor) 7388 return; 7389 7390 /* 7391 * If the line buf overflowed or ends in a newline, flush it into the 7392 * dump. This is to allow the caller to generate a single line over 7393 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7394 * the line buf, the only case which can lead to an unexpected 7395 * truncation is when the caller keeps generating newlines in the middle 7396 * instead of the end consecutively. Don't do that. 7397 */ 7398 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7399 ops_dump_flush(); 7400 } 7401 7402 /** 7403 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7404 * @cpu: CPU of interest 7405 * 7406 * Return the maximum relative capacity of @cpu in relation to the most 7407 * performant CPU in the system. The return value is in the range [1, 7408 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7409 */ 7410 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7411 { 7412 if (ops_cpu_valid(cpu, NULL)) 7413 return arch_scale_cpu_capacity(cpu); 7414 else 7415 return SCX_CPUPERF_ONE; 7416 } 7417 7418 /** 7419 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7420 * @cpu: CPU of interest 7421 * 7422 * Return the current relative performance of @cpu in relation to its maximum. 7423 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7424 * 7425 * The current performance level of a CPU in relation to the maximum performance 7426 * available in the system can be calculated as follows: 7427 * 7428 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7429 * 7430 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7431 */ 7432 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7433 { 7434 if (ops_cpu_valid(cpu, NULL)) 7435 return arch_scale_freq_capacity(cpu); 7436 else 7437 return SCX_CPUPERF_ONE; 7438 } 7439 7440 /** 7441 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7442 * @cpu: CPU of interest 7443 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7444 * 7445 * Set the target performance level of @cpu to @perf. @perf is in linear 7446 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7447 * schedutil cpufreq governor chooses the target frequency. 7448 * 7449 * The actual performance level chosen, CPU grouping, and the overhead and 7450 * latency of the operations are dependent on the hardware and cpufreq driver in 7451 * use. Consult hardware and cpufreq documentation for more information. The 7452 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7453 */ 7454 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7455 { 7456 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7457 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7458 return; 7459 } 7460 7461 if (ops_cpu_valid(cpu, NULL)) { 7462 struct rq *rq = cpu_rq(cpu); 7463 7464 rq->scx.cpuperf_target = perf; 7465 7466 rcu_read_lock_sched_notrace(); 7467 cpufreq_update_util(cpu_rq(cpu), 0); 7468 rcu_read_unlock_sched_notrace(); 7469 } 7470 } 7471 7472 /** 7473 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7474 * 7475 * All valid CPU IDs in the system are smaller than the returned value. 7476 */ 7477 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7478 { 7479 return nr_cpu_ids; 7480 } 7481 7482 /** 7483 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7484 */ 7485 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7486 { 7487 return cpu_possible_mask; 7488 } 7489 7490 /** 7491 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7492 */ 7493 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7494 { 7495 return cpu_online_mask; 7496 } 7497 7498 /** 7499 * scx_bpf_put_cpumask - Release a possible/online cpumask 7500 * @cpumask: cpumask to release 7501 */ 7502 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7503 { 7504 /* 7505 * Empty function body because we aren't actually acquiring or releasing 7506 * a reference to a global cpumask, which is read-only in the caller and 7507 * is never released. The acquire / release semantics here are just used 7508 * to make the cpumask is a trusted pointer in the caller. 7509 */ 7510 } 7511 7512 /** 7513 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking 7514 * per-CPU cpumask. 7515 * 7516 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7517 */ 7518 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) 7519 { 7520 if (!check_builtin_idle_enabled()) 7521 return cpu_none_mask; 7522 7523 #ifdef CONFIG_SMP 7524 return idle_masks.cpu; 7525 #else 7526 return cpu_none_mask; 7527 #endif 7528 } 7529 7530 /** 7531 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, 7532 * per-physical-core cpumask. Can be used to determine if an entire physical 7533 * core is free. 7534 * 7535 * Returns NULL if idle tracking is not enabled, or running on a UP kernel. 7536 */ 7537 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) 7538 { 7539 if (!check_builtin_idle_enabled()) 7540 return cpu_none_mask; 7541 7542 #ifdef CONFIG_SMP 7543 if (sched_smt_active()) 7544 return idle_masks.smt; 7545 else 7546 return idle_masks.cpu; 7547 #else 7548 return cpu_none_mask; 7549 #endif 7550 } 7551 7552 /** 7553 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to 7554 * either the percpu, or SMT idle-tracking cpumask. 7555 * @idle_mask: &cpumask to use 7556 */ 7557 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) 7558 { 7559 /* 7560 * Empty function body because we aren't actually acquiring or releasing 7561 * a reference to a global idle cpumask, which is read-only in the 7562 * caller and is never released. The acquire / release semantics here 7563 * are just used to make the cpumask a trusted pointer in the caller. 7564 */ 7565 } 7566 7567 /** 7568 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state 7569 * @cpu: cpu to test and clear idle for 7570 * 7571 * Returns %true if @cpu was idle and its idle state was successfully cleared. 7572 * %false otherwise. 7573 * 7574 * Unavailable if ops.update_idle() is implemented and 7575 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7576 */ 7577 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) 7578 { 7579 if (!check_builtin_idle_enabled()) 7580 return false; 7581 7582 if (ops_cpu_valid(cpu, NULL)) 7583 return test_and_clear_cpu_idle(cpu); 7584 else 7585 return false; 7586 } 7587 7588 /** 7589 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu 7590 * @cpus_allowed: Allowed cpumask 7591 * @flags: %SCX_PICK_IDLE_CPU_* flags 7592 * 7593 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu 7594 * number on success. -%EBUSY if no matching cpu was found. 7595 * 7596 * Idle CPU tracking may race against CPU scheduling state transitions. For 7597 * example, this function may return -%EBUSY as CPUs are transitioning into the 7598 * idle state. If the caller then assumes that there will be dispatch events on 7599 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs 7600 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and 7601 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch 7602 * event in the near future. 7603 * 7604 * Unavailable if ops.update_idle() is implemented and 7605 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. 7606 */ 7607 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, 7608 u64 flags) 7609 { 7610 if (!check_builtin_idle_enabled()) 7611 return -EBUSY; 7612 7613 return scx_pick_idle_cpu(cpus_allowed, flags); 7614 } 7615 7616 /** 7617 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU 7618 * @cpus_allowed: Allowed cpumask 7619 * @flags: %SCX_PICK_IDLE_CPU_* flags 7620 * 7621 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any 7622 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu 7623 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is 7624 * empty. 7625 * 7626 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not 7627 * set, this function can't tell which CPUs are idle and will always pick any 7628 * CPU. 7629 */ 7630 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, 7631 u64 flags) 7632 { 7633 s32 cpu; 7634 7635 if (static_branch_likely(&scx_builtin_idle_enabled)) { 7636 cpu = scx_pick_idle_cpu(cpus_allowed, flags); 7637 if (cpu >= 0) 7638 return cpu; 7639 } 7640 7641 cpu = cpumask_any_distribute(cpus_allowed); 7642 if (cpu < nr_cpu_ids) 7643 return cpu; 7644 else 7645 return -EBUSY; 7646 } 7647 7648 /** 7649 * scx_bpf_task_running - Is task currently running? 7650 * @p: task of interest 7651 */ 7652 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7653 { 7654 return task_rq(p)->curr == p; 7655 } 7656 7657 /** 7658 * scx_bpf_task_cpu - CPU a task is currently associated with 7659 * @p: task of interest 7660 */ 7661 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7662 { 7663 return task_cpu(p); 7664 } 7665 7666 /** 7667 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7668 * @cpu: CPU of the rq 7669 */ 7670 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7671 { 7672 if (!ops_cpu_valid(cpu, NULL)) 7673 return NULL; 7674 7675 return cpu_rq(cpu); 7676 } 7677 7678 /** 7679 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7680 * @p: task of interest 7681 * 7682 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7683 * from the scheduler's POV. SCX operations should use this function to 7684 * determine @p's current cgroup as, unlike following @p->cgroups, 7685 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7686 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7687 * operations. The restriction guarantees that @p's rq is locked by the caller. 7688 */ 7689 #ifdef CONFIG_CGROUP_SCHED 7690 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7691 { 7692 struct task_group *tg = p->sched_task_group; 7693 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7694 7695 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7696 goto out; 7697 7698 cgrp = tg_cgrp(tg); 7699 7700 out: 7701 cgroup_get(cgrp); 7702 return cgrp; 7703 } 7704 #endif 7705 7706 /** 7707 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7708 * clock for the current CPU. The clock returned is in nanoseconds. 7709 * 7710 * It provides the following properties: 7711 * 7712 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7713 * to account for execution time and track tasks' runtime properties. 7714 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7715 * eventually reads a hardware timestamp counter -- is neither performant nor 7716 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7717 * using the rq clock in the scheduler core whenever possible. 7718 * 7719 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7720 * scheduler use cases, the required clock resolution is lower than the most 7721 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7722 * uses the rq clock in the scheduler core whenever it is valid. It considers 7723 * that the rq clock is valid from the time the rq clock is updated 7724 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7725 * 7726 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7727 * guarantees the clock never goes backward when comparing them in the same 7728 * CPU. On the other hand, when comparing clocks in different CPUs, there 7729 * is no such guarantee -- the clock can go backward. It provides a 7730 * monotonically *non-decreasing* clock so that it would provide the same 7731 * clock values in two different scx_bpf_now() calls in the same CPU 7732 * during the same period of when the rq clock is valid. 7733 */ 7734 __bpf_kfunc u64 scx_bpf_now(void) 7735 { 7736 struct rq *rq; 7737 u64 clock; 7738 7739 preempt_disable(); 7740 7741 rq = this_rq(); 7742 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7743 /* 7744 * If the rq clock is valid, use the cached rq clock. 7745 * 7746 * Note that scx_bpf_now() is re-entrant between a process 7747 * context and an interrupt context (e.g., timer interrupt). 7748 * However, we don't need to consider the race between them 7749 * because such race is not observable from a caller. 7750 */ 7751 clock = READ_ONCE(rq->scx.clock); 7752 } else { 7753 /* 7754 * Otherwise, return a fresh rq clock. 7755 * 7756 * The rq clock is updated outside of the rq lock. 7757 * In this case, keep the updated rq clock invalid so the next 7758 * kfunc call outside the rq lock gets a fresh rq clock. 7759 */ 7760 clock = sched_clock_cpu(cpu_of(rq)); 7761 } 7762 7763 preempt_enable(); 7764 7765 return clock; 7766 } 7767 7768 __bpf_kfunc_end_defs(); 7769 7770 BTF_KFUNCS_START(scx_kfunc_ids_any) 7771 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7772 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7773 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7774 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7775 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7776 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7777 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7778 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7779 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7780 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7781 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7782 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7783 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7784 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7785 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7786 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7787 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7788 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7789 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7790 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7791 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7792 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7793 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7794 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7795 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7796 #ifdef CONFIG_CGROUP_SCHED 7797 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7798 #endif 7799 BTF_ID_FLAGS(func, scx_bpf_now) 7800 BTF_KFUNCS_END(scx_kfunc_ids_any) 7801 7802 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7803 .owner = THIS_MODULE, 7804 .set = &scx_kfunc_ids_any, 7805 }; 7806 7807 static int __init scx_init(void) 7808 { 7809 int ret; 7810 7811 /* 7812 * kfunc registration can't be done from init_sched_ext_class() as 7813 * register_btf_kfunc_id_set() needs most of the system to be up. 7814 * 7815 * Some kfuncs are context-sensitive and can only be called from 7816 * specific SCX ops. They are grouped into BTF sets accordingly. 7817 * Unfortunately, BPF currently doesn't have a way of enforcing such 7818 * restrictions. Eventually, the verifier should be able to enforce 7819 * them. For now, register them the same and make each kfunc explicitly 7820 * check using scx_kf_allowed(). 7821 */ 7822 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7823 &scx_kfunc_set_select_cpu)) || 7824 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7825 &scx_kfunc_set_enqueue_dispatch)) || 7826 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7827 &scx_kfunc_set_dispatch)) || 7828 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7829 &scx_kfunc_set_cpu_release)) || 7830 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7831 &scx_kfunc_set_unlocked)) || 7832 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7833 &scx_kfunc_set_unlocked)) || 7834 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7835 &scx_kfunc_set_any)) || 7836 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7837 &scx_kfunc_set_any)) || 7838 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7839 &scx_kfunc_set_any))) { 7840 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7841 return ret; 7842 } 7843 7844 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7845 if (ret) { 7846 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7847 return ret; 7848 } 7849 7850 ret = register_pm_notifier(&scx_pm_notifier); 7851 if (ret) { 7852 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7853 return ret; 7854 } 7855 7856 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7857 if (!scx_kset) { 7858 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7859 return -ENOMEM; 7860 } 7861 7862 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7863 if (ret < 0) { 7864 pr_err("sched_ext: Failed to add global attributes\n"); 7865 return ret; 7866 } 7867 7868 return 0; 7869 } 7870 __initcall(scx_init); 7871