1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 13 14 enum scx_consts { 15 SCX_DSP_DFL_MAX_BATCH = 32, 16 SCX_DSP_MAX_LOOPS = 32, 17 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 18 19 SCX_EXIT_BT_LEN = 64, 20 SCX_EXIT_MSG_LEN = 1024, 21 SCX_EXIT_DUMP_DFL_LEN = 32768, 22 23 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 24 25 /* 26 * Iterating all tasks may take a while. Periodically drop 27 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 28 */ 29 SCX_TASK_ITER_BATCH = 32, 30 }; 31 32 enum scx_exit_kind { 33 SCX_EXIT_NONE, 34 SCX_EXIT_DONE, 35 36 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 37 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 38 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 39 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 40 41 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 42 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 43 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 44 }; 45 46 /* 47 * An exit code can be specified when exiting with scx_bpf_exit() or scx_exit(), 48 * corresponding to exit_kind UNREG_BPF and UNREG_KERN respectively. The codes 49 * are 64bit of the format: 50 * 51 * Bits: [63 .. 48 47 .. 32 31 .. 0] 52 * [ SYS ACT ] [ SYS RSN ] [ USR ] 53 * 54 * SYS ACT: System-defined exit actions 55 * SYS RSN: System-defined exit reasons 56 * USR : User-defined exit codes and reasons 57 * 58 * Using the above, users may communicate intention and context by ORing system 59 * actions and/or system reasons with a user-defined exit code. 60 */ 61 enum scx_exit_code { 62 /* Reasons */ 63 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 64 65 /* Actions */ 66 SCX_ECODE_ACT_RESTART = 1LLU << 48, 67 }; 68 69 /* 70 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 71 * being disabled. 72 */ 73 struct scx_exit_info { 74 /* %SCX_EXIT_* - broad category of the exit reason */ 75 enum scx_exit_kind kind; 76 77 /* exit code if gracefully exiting */ 78 s64 exit_code; 79 80 /* textual representation of the above */ 81 const char *reason; 82 83 /* backtrace if exiting due to an error */ 84 unsigned long *bt; 85 u32 bt_len; 86 87 /* informational message */ 88 char *msg; 89 90 /* debug dump */ 91 char *dump; 92 }; 93 94 /* sched_ext_ops.flags */ 95 enum scx_ops_flags { 96 /* 97 * Keep built-in idle tracking even if ops.update_idle() is implemented. 98 */ 99 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 100 101 /* 102 * By default, if there are no other task to run on the CPU, ext core 103 * keeps running the current task even after its slice expires. If this 104 * flag is specified, such tasks are passed to ops.enqueue() with 105 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 106 */ 107 SCX_OPS_ENQ_LAST = 1LLU << 1, 108 109 /* 110 * An exiting task may schedule after PF_EXITING is set. In such cases, 111 * bpf_task_from_pid() may not be able to find the task and if the BPF 112 * scheduler depends on pid lookup for dispatching, the task will be 113 * lost leading to various issues including RCU grace period stalls. 114 * 115 * To mask this problem, by default, unhashed tasks are automatically 116 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 117 * depend on pid lookups and wants to handle these tasks directly, the 118 * following flag can be used. 119 */ 120 SCX_OPS_ENQ_EXITING = 1LLU << 2, 121 122 /* 123 * If set, only tasks with policy set to SCHED_EXT are attached to 124 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 125 */ 126 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 127 128 /* 129 * A migration disabled task can only execute on its current CPU. By 130 * default, such tasks are automatically put on the CPU's local DSQ with 131 * the default slice on enqueue. If this ops flag is set, they also go 132 * through ops.enqueue(). 133 * 134 * A migration disabled task never invokes ops.select_cpu() as it can 135 * only select the current CPU. Also, p->cpus_ptr will only contain its 136 * current CPU while p->nr_cpus_allowed keeps tracking p->user_cpus_ptr 137 * and thus may disagree with cpumask_weight(p->cpus_ptr). 138 */ 139 SCX_OPS_ENQ_MIGRATION_DISABLED = 1LLU << 4, 140 141 /* 142 * Queued wakeup (ttwu_queue) is a wakeup optimization that invokes 143 * ops.enqueue() on the ops.select_cpu() selected or the wakee's 144 * previous CPU via IPI (inter-processor interrupt) to reduce cacheline 145 * transfers. When this optimization is enabled, ops.select_cpu() is 146 * skipped in some cases (when racing against the wakee switching out). 147 * As the BPF scheduler may depend on ops.select_cpu() being invoked 148 * during wakeups, queued wakeup is disabled by default. 149 * 150 * If this ops flag is set, queued wakeup optimization is enabled and 151 * the BPF scheduler must be able to handle ops.enqueue() invoked on the 152 * wakee's CPU without preceding ops.select_cpu() even for tasks which 153 * may be executed on multiple CPUs. 154 */ 155 SCX_OPS_ALLOW_QUEUED_WAKEUP = 1LLU << 5, 156 157 /* 158 * If set, enable per-node idle cpumasks. If clear, use a single global 159 * flat idle cpumask. 160 */ 161 SCX_OPS_BUILTIN_IDLE_PER_NODE = 1LLU << 6, 162 163 /* 164 * CPU cgroup support flags 165 */ 166 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* DEPRECATED, will be removed on 6.18 */ 167 168 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 169 SCX_OPS_ENQ_LAST | 170 SCX_OPS_ENQ_EXITING | 171 SCX_OPS_ENQ_MIGRATION_DISABLED | 172 SCX_OPS_ALLOW_QUEUED_WAKEUP | 173 SCX_OPS_SWITCH_PARTIAL | 174 SCX_OPS_BUILTIN_IDLE_PER_NODE | 175 SCX_OPS_HAS_CGROUP_WEIGHT, 176 177 /* high 8 bits are internal, don't include in SCX_OPS_ALL_FLAGS */ 178 __SCX_OPS_INTERNAL_MASK = 0xffLLU << 56, 179 180 SCX_OPS_HAS_CPU_PREEMPT = 1LLU << 56, 181 }; 182 183 /* argument container for ops.init_task() */ 184 struct scx_init_task_args { 185 /* 186 * Set if ops.init_task() is being invoked on the fork path, as opposed 187 * to the scheduler transition path. 188 */ 189 bool fork; 190 #ifdef CONFIG_EXT_GROUP_SCHED 191 /* the cgroup the task is joining */ 192 struct cgroup *cgroup; 193 #endif 194 }; 195 196 /* argument container for ops.exit_task() */ 197 struct scx_exit_task_args { 198 /* Whether the task exited before running on sched_ext. */ 199 bool cancelled; 200 }; 201 202 /* argument container for ops->cgroup_init() */ 203 struct scx_cgroup_init_args { 204 /* the weight of the cgroup [1..10000] */ 205 u32 weight; 206 }; 207 208 enum scx_cpu_preempt_reason { 209 /* next task is being scheduled by &sched_class_rt */ 210 SCX_CPU_PREEMPT_RT, 211 /* next task is being scheduled by &sched_class_dl */ 212 SCX_CPU_PREEMPT_DL, 213 /* next task is being scheduled by &sched_class_stop */ 214 SCX_CPU_PREEMPT_STOP, 215 /* unknown reason for SCX being preempted */ 216 SCX_CPU_PREEMPT_UNKNOWN, 217 }; 218 219 /* 220 * Argument container for ops->cpu_acquire(). Currently empty, but may be 221 * expanded in the future. 222 */ 223 struct scx_cpu_acquire_args {}; 224 225 /* argument container for ops->cpu_release() */ 226 struct scx_cpu_release_args { 227 /* the reason the CPU was preempted */ 228 enum scx_cpu_preempt_reason reason; 229 230 /* the task that's going to be scheduled on the CPU */ 231 struct task_struct *task; 232 }; 233 234 /* 235 * Informational context provided to dump operations. 236 */ 237 struct scx_dump_ctx { 238 enum scx_exit_kind kind; 239 s64 exit_code; 240 const char *reason; 241 u64 at_ns; 242 u64 at_jiffies; 243 }; 244 245 /** 246 * struct sched_ext_ops - Operation table for BPF scheduler implementation 247 * 248 * A BPF scheduler can implement an arbitrary scheduling policy by 249 * implementing and loading operations in this table. Note that a userland 250 * scheduling policy can also be implemented using the BPF scheduler 251 * as a shim layer. 252 */ 253 struct sched_ext_ops { 254 /** 255 * @select_cpu: Pick the target CPU for a task which is being woken up 256 * @p: task being woken up 257 * @prev_cpu: the cpu @p was on before sleeping 258 * @wake_flags: SCX_WAKE_* 259 * 260 * Decision made here isn't final. @p may be moved to any CPU while it 261 * is getting dispatched for execution later. However, as @p is not on 262 * the rq at this point, getting the eventual execution CPU right here 263 * saves a small bit of overhead down the line. 264 * 265 * If an idle CPU is returned, the CPU is kicked and will try to 266 * dispatch. While an explicit custom mechanism can be added, 267 * select_cpu() serves as the default way to wake up idle CPUs. 268 * 269 * @p may be inserted into a DSQ directly by calling 270 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 271 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 272 * of the CPU returned by this operation. 273 * 274 * Note that select_cpu() is never called for tasks that can only run 275 * on a single CPU or tasks with migration disabled, as they don't have 276 * the option to select a different CPU. See select_task_rq() for 277 * details. 278 */ 279 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 280 281 /** 282 * @enqueue: Enqueue a task on the BPF scheduler 283 * @p: task being enqueued 284 * @enq_flags: %SCX_ENQ_* 285 * 286 * @p is ready to run. Insert directly into a DSQ by calling 287 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 288 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 289 * the task will stall. 290 * 291 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 292 * skipped. 293 */ 294 void (*enqueue)(struct task_struct *p, u64 enq_flags); 295 296 /** 297 * @dequeue: Remove a task from the BPF scheduler 298 * @p: task being dequeued 299 * @deq_flags: %SCX_DEQ_* 300 * 301 * Remove @p from the BPF scheduler. This is usually called to isolate 302 * the task while updating its scheduling properties (e.g. priority). 303 * 304 * The ext core keeps track of whether the BPF side owns a given task or 305 * not and can gracefully ignore spurious dispatches from BPF side, 306 * which makes it safe to not implement this method. However, depending 307 * on the scheduling logic, this can lead to confusing behaviors - e.g. 308 * scheduling position not being updated across a priority change. 309 */ 310 void (*dequeue)(struct task_struct *p, u64 deq_flags); 311 312 /** 313 * @dispatch: Dispatch tasks from the BPF scheduler and/or user DSQs 314 * @cpu: CPU to dispatch tasks for 315 * @prev: previous task being switched out 316 * 317 * Called when a CPU's local dsq is empty. The operation should dispatch 318 * one or more tasks from the BPF scheduler into the DSQs using 319 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 320 * using scx_bpf_dsq_move_to_local(). 321 * 322 * The maximum number of times scx_bpf_dsq_insert() can be called 323 * without an intervening scx_bpf_dsq_move_to_local() is specified by 324 * ops.dispatch_max_batch. See the comments on top of the two functions 325 * for more details. 326 * 327 * When not %NULL, @prev is an SCX task with its slice depleted. If 328 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 329 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 330 * ops.dispatch() returns. To keep executing @prev, return without 331 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 332 */ 333 void (*dispatch)(s32 cpu, struct task_struct *prev); 334 335 /** 336 * @tick: Periodic tick 337 * @p: task running currently 338 * 339 * This operation is called every 1/HZ seconds on CPUs which are 340 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 341 * immediate dispatch cycle on the CPU. 342 */ 343 void (*tick)(struct task_struct *p); 344 345 /** 346 * @runnable: A task is becoming runnable on its associated CPU 347 * @p: task becoming runnable 348 * @enq_flags: %SCX_ENQ_* 349 * 350 * This and the following three functions can be used to track a task's 351 * execution state transitions. A task becomes ->runnable() on a CPU, 352 * and then goes through one or more ->running() and ->stopping() pairs 353 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 354 * done running on the CPU. 355 * 356 * @p is becoming runnable on the CPU because it's 357 * 358 * - waking up (%SCX_ENQ_WAKEUP) 359 * - being moved from another CPU 360 * - being restored after temporarily taken off the queue for an 361 * attribute change. 362 * 363 * This and ->enqueue() are related but not coupled. This operation 364 * notifies @p's state transition and may not be followed by ->enqueue() 365 * e.g. when @p is being dispatched to a remote CPU, or when @p is 366 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 367 * task may be ->enqueue()'d without being preceded by this operation 368 * e.g. after exhausting its slice. 369 */ 370 void (*runnable)(struct task_struct *p, u64 enq_flags); 371 372 /** 373 * @running: A task is starting to run on its associated CPU 374 * @p: task starting to run 375 * 376 * Note that this callback may be called from a CPU other than the 377 * one the task is going to run on. This can happen when a task 378 * property is changed (i.e., affinity), since scx_next_task_scx(), 379 * which triggers this callback, may run on a CPU different from 380 * the task's assigned CPU. 381 * 382 * Therefore, always use scx_bpf_task_cpu(@p) to determine the 383 * target CPU the task is going to use. 384 * 385 * See ->runnable() for explanation on the task state notifiers. 386 */ 387 void (*running)(struct task_struct *p); 388 389 /** 390 * @stopping: A task is stopping execution 391 * @p: task stopping to run 392 * @runnable: is task @p still runnable? 393 * 394 * Note that this callback may be called from a CPU other than the 395 * one the task was running on. This can happen when a task 396 * property is changed (i.e., affinity), since dequeue_task_scx(), 397 * which triggers this callback, may run on a CPU different from 398 * the task's assigned CPU. 399 * 400 * Therefore, always use scx_bpf_task_cpu(@p) to retrieve the CPU 401 * the task was running on. 402 * 403 * See ->runnable() for explanation on the task state notifiers. If 404 * !@runnable, ->quiescent() will be invoked after this operation 405 * returns. 406 */ 407 void (*stopping)(struct task_struct *p, bool runnable); 408 409 /** 410 * @quiescent: A task is becoming not runnable on its associated CPU 411 * @p: task becoming not runnable 412 * @deq_flags: %SCX_DEQ_* 413 * 414 * See ->runnable() for explanation on the task state notifiers. 415 * 416 * @p is becoming quiescent on the CPU because it's 417 * 418 * - sleeping (%SCX_DEQ_SLEEP) 419 * - being moved to another CPU 420 * - being temporarily taken off the queue for an attribute change 421 * (%SCX_DEQ_SAVE) 422 * 423 * This and ->dequeue() are related but not coupled. This operation 424 * notifies @p's state transition and may not be preceded by ->dequeue() 425 * e.g. when @p is being dispatched to a remote CPU. 426 */ 427 void (*quiescent)(struct task_struct *p, u64 deq_flags); 428 429 /** 430 * @yield: Yield CPU 431 * @from: yielding task 432 * @to: optional yield target task 433 * 434 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 435 * The BPF scheduler should ensure that other available tasks are 436 * dispatched before the yielding task. Return value is ignored in this 437 * case. 438 * 439 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 440 * scheduler can implement the request, return %true; otherwise, %false. 441 */ 442 bool (*yield)(struct task_struct *from, struct task_struct *to); 443 444 /** 445 * @core_sched_before: Task ordering for core-sched 446 * @a: task A 447 * @b: task B 448 * 449 * Used by core-sched to determine the ordering between two tasks. See 450 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 451 * core-sched. 452 * 453 * Both @a and @b are runnable and may or may not currently be queued on 454 * the BPF scheduler. Should return %true if @a should run before @b. 455 * %false if there's no required ordering or @b should run before @a. 456 * 457 * If not specified, the default is ordering them according to when they 458 * became runnable. 459 */ 460 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 461 462 /** 463 * @set_weight: Set task weight 464 * @p: task to set weight for 465 * @weight: new weight [1..10000] 466 * 467 * Update @p's weight to @weight. 468 */ 469 void (*set_weight)(struct task_struct *p, u32 weight); 470 471 /** 472 * @set_cpumask: Set CPU affinity 473 * @p: task to set CPU affinity for 474 * @cpumask: cpumask of cpus that @p can run on 475 * 476 * Update @p's CPU affinity to @cpumask. 477 */ 478 void (*set_cpumask)(struct task_struct *p, 479 const struct cpumask *cpumask); 480 481 /** 482 * @update_idle: Update the idle state of a CPU 483 * @cpu: CPU to update the idle state for 484 * @idle: whether entering or exiting the idle state 485 * 486 * This operation is called when @rq's CPU goes or leaves the idle 487 * state. By default, implementing this operation disables the built-in 488 * idle CPU tracking and the following helpers become unavailable: 489 * 490 * - scx_bpf_select_cpu_dfl() 491 * - scx_bpf_select_cpu_and() 492 * - scx_bpf_test_and_clear_cpu_idle() 493 * - scx_bpf_pick_idle_cpu() 494 * 495 * The user also must implement ops.select_cpu() as the default 496 * implementation relies on scx_bpf_select_cpu_dfl(). 497 * 498 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 499 * tracking. 500 */ 501 void (*update_idle)(s32 cpu, bool idle); 502 503 /** 504 * @cpu_acquire: A CPU is becoming available to the BPF scheduler 505 * @cpu: The CPU being acquired by the BPF scheduler. 506 * @args: Acquire arguments, see the struct definition. 507 * 508 * A CPU that was previously released from the BPF scheduler is now once 509 * again under its control. 510 */ 511 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 512 513 /** 514 * @cpu_release: A CPU is taken away from the BPF scheduler 515 * @cpu: The CPU being released by the BPF scheduler. 516 * @args: Release arguments, see the struct definition. 517 * 518 * The specified CPU is no longer under the control of the BPF 519 * scheduler. This could be because it was preempted by a higher 520 * priority sched_class, though there may be other reasons as well. The 521 * caller should consult @args->reason to determine the cause. 522 */ 523 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 524 525 /** 526 * @init_task: Initialize a task to run in a BPF scheduler 527 * @p: task to initialize for BPF scheduling 528 * @args: init arguments, see the struct definition 529 * 530 * Either we're loading a BPF scheduler or a new task is being forked. 531 * Initialize @p for BPF scheduling. This operation may block and can 532 * be used for allocations, and is called exactly once for a task. 533 * 534 * Return 0 for success, -errno for failure. An error return while 535 * loading will abort loading of the BPF scheduler. During a fork, it 536 * will abort that specific fork. 537 */ 538 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 539 540 /** 541 * @exit_task: Exit a previously-running task from the system 542 * @p: task to exit 543 * @args: exit arguments, see the struct definition 544 * 545 * @p is exiting or the BPF scheduler is being unloaded. Perform any 546 * necessary cleanup for @p. 547 */ 548 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 549 550 /** 551 * @enable: Enable BPF scheduling for a task 552 * @p: task to enable BPF scheduling for 553 * 554 * Enable @p for BPF scheduling. enable() is called on @p any time it 555 * enters SCX, and is always paired with a matching disable(). 556 */ 557 void (*enable)(struct task_struct *p); 558 559 /** 560 * @disable: Disable BPF scheduling for a task 561 * @p: task to disable BPF scheduling for 562 * 563 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 564 * Disable BPF scheduling for @p. A disable() call is always matched 565 * with a prior enable() call. 566 */ 567 void (*disable)(struct task_struct *p); 568 569 /** 570 * @dump: Dump BPF scheduler state on error 571 * @ctx: debug dump context 572 * 573 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 574 */ 575 void (*dump)(struct scx_dump_ctx *ctx); 576 577 /** 578 * @dump_cpu: Dump BPF scheduler state for a CPU on error 579 * @ctx: debug dump context 580 * @cpu: CPU to generate debug dump for 581 * @idle: @cpu is currently idle without any runnable tasks 582 * 583 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 584 * @cpu. If @idle is %true and this operation doesn't produce any 585 * output, @cpu is skipped for dump. 586 */ 587 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 588 589 /** 590 * @dump_task: Dump BPF scheduler state for a runnable task on error 591 * @ctx: debug dump context 592 * @p: runnable task to generate debug dump for 593 * 594 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 595 * @p. 596 */ 597 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 598 599 #ifdef CONFIG_EXT_GROUP_SCHED 600 /** 601 * @cgroup_init: Initialize a cgroup 602 * @cgrp: cgroup being initialized 603 * @args: init arguments, see the struct definition 604 * 605 * Either the BPF scheduler is being loaded or @cgrp created, initialize 606 * @cgrp for sched_ext. This operation may block. 607 * 608 * Return 0 for success, -errno for failure. An error return while 609 * loading will abort loading of the BPF scheduler. During cgroup 610 * creation, it will abort the specific cgroup creation. 611 */ 612 s32 (*cgroup_init)(struct cgroup *cgrp, 613 struct scx_cgroup_init_args *args); 614 615 /** 616 * @cgroup_exit: Exit a cgroup 617 * @cgrp: cgroup being exited 618 * 619 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 620 * @cgrp for sched_ext. This operation my block. 621 */ 622 void (*cgroup_exit)(struct cgroup *cgrp); 623 624 /** 625 * @cgroup_prep_move: Prepare a task to be moved to a different cgroup 626 * @p: task being moved 627 * @from: cgroup @p is being moved from 628 * @to: cgroup @p is being moved to 629 * 630 * Prepare @p for move from cgroup @from to @to. This operation may 631 * block and can be used for allocations. 632 * 633 * Return 0 for success, -errno for failure. An error return aborts the 634 * migration. 635 */ 636 s32 (*cgroup_prep_move)(struct task_struct *p, 637 struct cgroup *from, struct cgroup *to); 638 639 /** 640 * @cgroup_move: Commit cgroup move 641 * @p: task being moved 642 * @from: cgroup @p is being moved from 643 * @to: cgroup @p is being moved to 644 * 645 * Commit the move. @p is dequeued during this operation. 646 */ 647 void (*cgroup_move)(struct task_struct *p, 648 struct cgroup *from, struct cgroup *to); 649 650 /** 651 * @cgroup_cancel_move: Cancel cgroup move 652 * @p: task whose cgroup move is being canceled 653 * @from: cgroup @p was being moved from 654 * @to: cgroup @p was being moved to 655 * 656 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 657 * Undo the preparation. 658 */ 659 void (*cgroup_cancel_move)(struct task_struct *p, 660 struct cgroup *from, struct cgroup *to); 661 662 /** 663 * @cgroup_set_weight: A cgroup's weight is being changed 664 * @cgrp: cgroup whose weight is being updated 665 * @weight: new weight [1..10000] 666 * 667 * Update @tg's weight to @weight. 668 */ 669 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 670 #endif /* CONFIG_EXT_GROUP_SCHED */ 671 672 /* 673 * All online ops must come before ops.cpu_online(). 674 */ 675 676 /** 677 * @cpu_online: A CPU became online 678 * @cpu: CPU which just came up 679 * 680 * @cpu just came online. @cpu will not call ops.enqueue() or 681 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 682 */ 683 void (*cpu_online)(s32 cpu); 684 685 /** 686 * @cpu_offline: A CPU is going offline 687 * @cpu: CPU which is going offline 688 * 689 * @cpu is going offline. @cpu will not call ops.enqueue() or 690 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 691 */ 692 void (*cpu_offline)(s32 cpu); 693 694 /* 695 * All CPU hotplug ops must come before ops.init(). 696 */ 697 698 /** 699 * @init: Initialize the BPF scheduler 700 */ 701 s32 (*init)(void); 702 703 /** 704 * @exit: Clean up after the BPF scheduler 705 * @info: Exit info 706 * 707 * ops.exit() is also called on ops.init() failure, which is a bit 708 * unusual. This is to allow rich reporting through @info on how 709 * ops.init() failed. 710 */ 711 void (*exit)(struct scx_exit_info *info); 712 713 /** 714 * @dispatch_max_batch: Max nr of tasks that dispatch() can dispatch 715 */ 716 u32 dispatch_max_batch; 717 718 /** 719 * @flags: %SCX_OPS_* flags 720 */ 721 u64 flags; 722 723 /** 724 * @timeout_ms: The maximum amount of time, in milliseconds, that a 725 * runnable task should be able to wait before being scheduled. The 726 * maximum timeout may not exceed the default timeout of 30 seconds. 727 * 728 * Defaults to the maximum allowed timeout value of 30 seconds. 729 */ 730 u32 timeout_ms; 731 732 /** 733 * @exit_dump_len: scx_exit_info.dump buffer length. If 0, the default 734 * value of 32768 is used. 735 */ 736 u32 exit_dump_len; 737 738 /** 739 * @hotplug_seq: A sequence number that may be set by the scheduler to 740 * detect when a hotplug event has occurred during the loading process. 741 * If 0, no detection occurs. Otherwise, the scheduler will fail to 742 * load if the sequence number does not match @scx_hotplug_seq on the 743 * enable path. 744 */ 745 u64 hotplug_seq; 746 747 /** 748 * @name: BPF scheduler's name 749 * 750 * Must be a non-zero valid BPF object name including only isalnum(), 751 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 752 * BPF scheduler is enabled. 753 */ 754 char name[SCX_OPS_NAME_LEN]; 755 756 /* internal use only, must be NULL */ 757 void *priv; 758 }; 759 760 enum scx_opi { 761 SCX_OPI_BEGIN = 0, 762 SCX_OPI_NORMAL_BEGIN = 0, 763 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 764 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 765 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 766 SCX_OPI_END = SCX_OP_IDX(init), 767 }; 768 769 /* 770 * Collection of event counters. Event types are placed in descending order. 771 */ 772 struct scx_event_stats { 773 /* 774 * If ops.select_cpu() returns a CPU which can't be used by the task, 775 * the core scheduler code silently picks a fallback CPU. 776 */ 777 s64 SCX_EV_SELECT_CPU_FALLBACK; 778 779 /* 780 * When dispatching to a local DSQ, the CPU may have gone offline in 781 * the meantime. In this case, the task is bounced to the global DSQ. 782 */ 783 s64 SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE; 784 785 /* 786 * If SCX_OPS_ENQ_LAST is not set, the number of times that a task 787 * continued to run because there were no other tasks on the CPU. 788 */ 789 s64 SCX_EV_DISPATCH_KEEP_LAST; 790 791 /* 792 * If SCX_OPS_ENQ_EXITING is not set, the number of times that a task 793 * is dispatched to a local DSQ when exiting. 794 */ 795 s64 SCX_EV_ENQ_SKIP_EXITING; 796 797 /* 798 * If SCX_OPS_ENQ_MIGRATION_DISABLED is not set, the number of times a 799 * migration disabled task skips ops.enqueue() and is dispatched to its 800 * local DSQ. 801 */ 802 s64 SCX_EV_ENQ_SKIP_MIGRATION_DISABLED; 803 804 /* 805 * Total number of times a task's time slice was refilled with the 806 * default value (SCX_SLICE_DFL). 807 */ 808 s64 SCX_EV_REFILL_SLICE_DFL; 809 810 /* 811 * The total duration of bypass modes in nanoseconds. 812 */ 813 s64 SCX_EV_BYPASS_DURATION; 814 815 /* 816 * The number of tasks dispatched in the bypassing mode. 817 */ 818 s64 SCX_EV_BYPASS_DISPATCH; 819 820 /* 821 * The number of times the bypassing mode has been activated. 822 */ 823 s64 SCX_EV_BYPASS_ACTIVATE; 824 }; 825 826 struct scx_sched { 827 struct sched_ext_ops ops; 828 DECLARE_BITMAP(has_op, SCX_OPI_END); 829 830 /* 831 * Dispatch queues. 832 * 833 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. 834 * This is to avoid live-locking in bypass mode where all tasks are 835 * dispatched to %SCX_DSQ_GLOBAL and all CPUs consume from it. If 836 * per-node split isn't sufficient, it can be further split. 837 */ 838 struct rhashtable dsq_hash; 839 struct scx_dispatch_q **global_dsqs; 840 841 /* 842 * The event counters are in a per-CPU variable to minimize the 843 * accounting overhead. A system-wide view on the event counter is 844 * constructed when requested by scx_bpf_events(). 845 */ 846 struct scx_event_stats __percpu *event_stats_cpu; 847 848 bool warned_zero_slice; 849 850 atomic_t exit_kind; 851 struct scx_exit_info *exit_info; 852 853 struct kobject kobj; 854 855 struct kthread_worker *helper; 856 struct irq_work error_irq_work; 857 struct kthread_work disable_work; 858 struct rcu_work rcu_work; 859 }; 860 861 enum scx_wake_flags { 862 /* expose select WF_* flags as enums */ 863 SCX_WAKE_FORK = WF_FORK, 864 SCX_WAKE_TTWU = WF_TTWU, 865 SCX_WAKE_SYNC = WF_SYNC, 866 }; 867 868 enum scx_enq_flags { 869 /* expose select ENQUEUE_* flags as enums */ 870 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 871 SCX_ENQ_HEAD = ENQUEUE_HEAD, 872 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 873 874 /* high 32bits are SCX specific */ 875 876 /* 877 * Set the following to trigger preemption when calling 878 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 879 * current task is cleared to zero and the CPU is kicked into the 880 * scheduling path. Implies %SCX_ENQ_HEAD. 881 */ 882 SCX_ENQ_PREEMPT = 1LLU << 32, 883 884 /* 885 * The task being enqueued was previously enqueued on the current CPU's 886 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 887 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 888 * invoked in a ->cpu_release() callback, and the task is again 889 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 890 * task will not be scheduled on the CPU until at least the next invocation 891 * of the ->cpu_acquire() callback. 892 */ 893 SCX_ENQ_REENQ = 1LLU << 40, 894 895 /* 896 * The task being enqueued is the only task available for the cpu. By 897 * default, ext core keeps executing such tasks but when 898 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 899 * %SCX_ENQ_LAST flag set. 900 * 901 * The BPF scheduler is responsible for triggering a follow-up 902 * scheduling event. Otherwise, Execution may stall. 903 */ 904 SCX_ENQ_LAST = 1LLU << 41, 905 906 /* high 8 bits are internal */ 907 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 908 909 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 910 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 911 }; 912 913 enum scx_deq_flags { 914 /* expose select DEQUEUE_* flags as enums */ 915 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 916 917 /* high 32bits are SCX specific */ 918 919 /* 920 * The generic core-sched layer decided to execute the task even though 921 * it hasn't been dispatched yet. Dequeue from the BPF side. 922 */ 923 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 924 }; 925 926 enum scx_pick_idle_cpu_flags { 927 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 928 SCX_PICK_IDLE_IN_NODE = 1LLU << 1, /* pick a CPU in the same target NUMA node */ 929 }; 930 931 enum scx_kick_flags { 932 /* 933 * Kick the target CPU if idle. Guarantees that the target CPU goes 934 * through at least one full scheduling cycle before going idle. If the 935 * target CPU can be determined to be currently not idle and going to go 936 * through a scheduling cycle before going idle, noop. 937 */ 938 SCX_KICK_IDLE = 1LLU << 0, 939 940 /* 941 * Preempt the current task and execute the dispatch path. If the 942 * current task of the target CPU is an SCX task, its ->scx.slice is 943 * cleared to zero before the scheduling path is invoked so that the 944 * task expires and the dispatch path is invoked. 945 */ 946 SCX_KICK_PREEMPT = 1LLU << 1, 947 948 /* 949 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 950 * return after the target CPU finishes picking the next task. 951 */ 952 SCX_KICK_WAIT = 1LLU << 2, 953 }; 954 955 enum scx_tg_flags { 956 SCX_TG_ONLINE = 1U << 0, 957 SCX_TG_INITED = 1U << 1, 958 }; 959 960 enum scx_enable_state { 961 SCX_ENABLING, 962 SCX_ENABLED, 963 SCX_DISABLING, 964 SCX_DISABLED, 965 }; 966 967 static const char *scx_enable_state_str[] = { 968 [SCX_ENABLING] = "enabling", 969 [SCX_ENABLED] = "enabled", 970 [SCX_DISABLING] = "disabling", 971 [SCX_DISABLED] = "disabled", 972 }; 973 974 /* 975 * sched_ext_entity->ops_state 976 * 977 * Used to track the task ownership between the SCX core and the BPF scheduler. 978 * State transitions look as follows: 979 * 980 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 981 * ^ | | 982 * | v v 983 * \-------------------------------/ 984 * 985 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 986 * sites for explanations on the conditions being waited upon and why they are 987 * safe. Transitions out of them into NONE or QUEUED must store_release and the 988 * waiters should load_acquire. 989 * 990 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 991 * any given task can be dispatched by the BPF scheduler at all times and thus 992 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 993 * to try to dispatch any task anytime regardless of its state as the SCX core 994 * can safely reject invalid dispatches. 995 */ 996 enum scx_ops_state { 997 SCX_OPSS_NONE, /* owned by the SCX core */ 998 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 999 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 1000 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 1001 1002 /* 1003 * QSEQ brands each QUEUED instance so that, when dispatch races 1004 * dequeue/requeue, the dispatcher can tell whether it still has a claim 1005 * on the task being dispatched. 1006 * 1007 * As some 32bit archs can't do 64bit store_release/load_acquire, 1008 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 1009 * 32bit machines. The dispatch race window QSEQ protects is very narrow 1010 * and runs with IRQ disabled. 30 bits should be sufficient. 1011 */ 1012 SCX_OPSS_QSEQ_SHIFT = 2, 1013 }; 1014 1015 /* Use macros to ensure that the type is unsigned long for the masks */ 1016 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 1017 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 1018 1019 /* 1020 * NOTE: sched_ext is in the process of growing multiple scheduler support and 1021 * scx_root usage is in a transitional state. Naked dereferences are safe if the 1022 * caller is one of the tasks attached to SCX and explicit RCU dereference is 1023 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 1024 * are used as temporary markers to indicate that the dereferences need to be 1025 * updated to point to the associated scheduler instances rather than scx_root. 1026 */ 1027 static struct scx_sched __rcu *scx_root; 1028 1029 /* 1030 * During exit, a task may schedule after losing its PIDs. When disabling the 1031 * BPF scheduler, we need to be able to iterate tasks in every state to 1032 * guarantee system safety. Maintain a dedicated task list which contains every 1033 * task between its fork and eventual free. 1034 */ 1035 static DEFINE_SPINLOCK(scx_tasks_lock); 1036 static LIST_HEAD(scx_tasks); 1037 1038 /* ops enable/disable */ 1039 static DEFINE_MUTEX(scx_enable_mutex); 1040 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 1041 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 1042 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 1043 static unsigned long scx_in_softlockup; 1044 static atomic_t scx_breather_depth = ATOMIC_INIT(0); 1045 static int scx_bypass_depth; 1046 static bool scx_init_task_enabled; 1047 static bool scx_switching_all; 1048 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 1049 1050 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 1051 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 1052 1053 /* 1054 * A monotically increasing sequence number that is incremented every time a 1055 * scheduler is enabled. This can be used by to check if any custom sched_ext 1056 * scheduler has ever been used in the system. 1057 */ 1058 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 1059 1060 /* 1061 * The maximum amount of time in jiffies that a task may be runnable without 1062 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 1063 * scx_error(). 1064 */ 1065 static unsigned long scx_watchdog_timeout; 1066 1067 /* 1068 * The last time the delayed work was run. This delayed work relies on 1069 * ksoftirqd being able to run to service timer interrupts, so it's possible 1070 * that this work itself could get wedged. To account for this, we check that 1071 * it's not stalled in the timer tick, and trigger an error if it is. 1072 */ 1073 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 1074 1075 static struct delayed_work scx_watchdog_work; 1076 1077 /* for %SCX_KICK_WAIT */ 1078 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 1079 1080 /* 1081 * Direct dispatch marker. 1082 * 1083 * Non-NULL values are used for direct dispatch from enqueue path. A valid 1084 * pointer points to the task currently being enqueued. An ERR_PTR value is used 1085 * to indicate that direct dispatch has already happened. 1086 */ 1087 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 1088 1089 static const struct rhashtable_params dsq_hash_params = { 1090 .key_len = sizeof_field(struct scx_dispatch_q, id), 1091 .key_offset = offsetof(struct scx_dispatch_q, id), 1092 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 1093 }; 1094 1095 static LLIST_HEAD(dsqs_to_free); 1096 1097 /* dispatch buf */ 1098 struct scx_dsp_buf_ent { 1099 struct task_struct *task; 1100 unsigned long qseq; 1101 u64 dsq_id; 1102 u64 enq_flags; 1103 }; 1104 1105 static u32 scx_dsp_max_batch; 1106 1107 struct scx_dsp_ctx { 1108 struct rq *rq; 1109 u32 cursor; 1110 u32 nr_tasks; 1111 struct scx_dsp_buf_ent buf[]; 1112 }; 1113 1114 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 1115 1116 /* string formatting from BPF */ 1117 struct scx_bstr_buf { 1118 u64 data[MAX_BPRINTF_VARARGS]; 1119 char line[SCX_EXIT_MSG_LEN]; 1120 }; 1121 1122 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 1123 static struct scx_bstr_buf scx_exit_bstr_buf; 1124 1125 /* ops debug dump */ 1126 struct scx_dump_data { 1127 s32 cpu; 1128 bool first; 1129 s32 cursor; 1130 struct seq_buf *s; 1131 const char *prefix; 1132 struct scx_bstr_buf buf; 1133 }; 1134 1135 static struct scx_dump_data scx_dump_data = { 1136 .cpu = -1, 1137 }; 1138 1139 /* /sys/kernel/sched_ext interface */ 1140 static struct kset *scx_kset; 1141 1142 #define CREATE_TRACE_POINTS 1143 #include <trace/events/sched_ext.h> 1144 1145 static void process_ddsp_deferred_locals(struct rq *rq); 1146 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1147 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 1148 s64 exit_code, const char *fmt, va_list args); 1149 1150 static __printf(4, 5) void scx_exit(struct scx_sched *sch, 1151 enum scx_exit_kind kind, s64 exit_code, 1152 const char *fmt, ...) 1153 { 1154 va_list args; 1155 1156 va_start(args, fmt); 1157 scx_vexit(sch, kind, exit_code, fmt, args); 1158 va_end(args); 1159 } 1160 1161 static __printf(3, 4) void scx_kf_exit(enum scx_exit_kind kind, s64 exit_code, 1162 const char *fmt, ...) 1163 { 1164 struct scx_sched *sch; 1165 va_list args; 1166 1167 rcu_read_lock(); 1168 sch = rcu_dereference(scx_root); 1169 if (sch) { 1170 va_start(args, fmt); 1171 scx_vexit(sch, kind, exit_code, fmt, args); 1172 va_end(args); 1173 } 1174 rcu_read_unlock(); 1175 } 1176 1177 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 1178 #define scx_kf_error(fmt, args...) scx_kf_exit(SCX_EXIT_ERROR, 0, fmt, ##args) 1179 1180 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 1181 1182 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1183 { 1184 if (time_after(at, now)) 1185 return jiffies_to_msecs(at - now); 1186 else 1187 return -(long)jiffies_to_msecs(now - at); 1188 } 1189 1190 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1191 static u32 higher_bits(u32 flags) 1192 { 1193 return ~((1 << fls(flags)) - 1); 1194 } 1195 1196 /* return the mask with only the highest bit set */ 1197 static u32 highest_bit(u32 flags) 1198 { 1199 int bit = fls(flags); 1200 return ((u64)1 << bit) >> 1; 1201 } 1202 1203 static bool u32_before(u32 a, u32 b) 1204 { 1205 return (s32)(a - b) < 0; 1206 } 1207 1208 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1209 { 1210 struct scx_sched *sch = scx_root; 1211 1212 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 1213 } 1214 1215 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 1216 { 1217 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params); 1218 } 1219 1220 /* 1221 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1222 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1223 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1224 * whether it's running from an allowed context. 1225 * 1226 * @mask is constant, always inline to cull the mask calculations. 1227 */ 1228 static __always_inline void scx_kf_allow(u32 mask) 1229 { 1230 /* nesting is allowed only in increasing scx_kf_mask order */ 1231 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1232 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1233 current->scx.kf_mask, mask); 1234 current->scx.kf_mask |= mask; 1235 barrier(); 1236 } 1237 1238 static void scx_kf_disallow(u32 mask) 1239 { 1240 barrier(); 1241 current->scx.kf_mask &= ~mask; 1242 } 1243 1244 /* 1245 * Track the rq currently locked. 1246 * 1247 * This allows kfuncs to safely operate on rq from any scx ops callback, 1248 * knowing which rq is already locked. 1249 */ 1250 static DEFINE_PER_CPU(struct rq *, locked_rq); 1251 1252 static inline void update_locked_rq(struct rq *rq) 1253 { 1254 /* 1255 * Check whether @rq is actually locked. This can help expose bugs 1256 * or incorrect assumptions about the context in which a kfunc or 1257 * callback is executed. 1258 */ 1259 if (rq) 1260 lockdep_assert_rq_held(rq); 1261 __this_cpu_write(locked_rq, rq); 1262 } 1263 1264 /* 1265 * Return the rq currently locked from an scx callback, or NULL if no rq is 1266 * locked. 1267 */ 1268 static inline struct rq *scx_locked_rq(void) 1269 { 1270 return __this_cpu_read(locked_rq); 1271 } 1272 1273 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 1274 do { \ 1275 update_locked_rq(rq); \ 1276 if (mask) { \ 1277 scx_kf_allow(mask); \ 1278 (sch)->ops.op(args); \ 1279 scx_kf_disallow(mask); \ 1280 } else { \ 1281 (sch)->ops.op(args); \ 1282 } \ 1283 update_locked_rq(NULL); \ 1284 } while (0) 1285 1286 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 1287 ({ \ 1288 __typeof__((sch)->ops.op(args)) __ret; \ 1289 \ 1290 update_locked_rq(rq); \ 1291 if (mask) { \ 1292 scx_kf_allow(mask); \ 1293 __ret = (sch)->ops.op(args); \ 1294 scx_kf_disallow(mask); \ 1295 } else { \ 1296 __ret = (sch)->ops.op(args); \ 1297 } \ 1298 update_locked_rq(NULL); \ 1299 __ret; \ 1300 }) 1301 1302 /* 1303 * Some kfuncs are allowed only on the tasks that are subjects of the 1304 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1305 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1306 * invoking scx_ops operations that take task arguments. These can only be used 1307 * for non-nesting operations due to the way the tasks are tracked. 1308 * 1309 * kfuncs which can only operate on such tasks can in turn use 1310 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1311 * the specific task. 1312 */ 1313 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 1314 do { \ 1315 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1316 current->scx.kf_tasks[0] = task; \ 1317 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 1318 current->scx.kf_tasks[0] = NULL; \ 1319 } while (0) 1320 1321 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 1322 ({ \ 1323 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 1324 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1325 current->scx.kf_tasks[0] = task; \ 1326 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 1327 current->scx.kf_tasks[0] = NULL; \ 1328 __ret; \ 1329 }) 1330 1331 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 1332 ({ \ 1333 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 1334 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1335 current->scx.kf_tasks[0] = task0; \ 1336 current->scx.kf_tasks[1] = task1; \ 1337 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 1338 current->scx.kf_tasks[0] = NULL; \ 1339 current->scx.kf_tasks[1] = NULL; \ 1340 __ret; \ 1341 }) 1342 1343 /* @mask is constant, always inline to cull unnecessary branches */ 1344 static __always_inline bool scx_kf_allowed(u32 mask) 1345 { 1346 if (unlikely(!(current->scx.kf_mask & mask))) { 1347 scx_kf_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1348 mask, current->scx.kf_mask); 1349 return false; 1350 } 1351 1352 /* 1353 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1354 * DISPATCH must not be called if we're running DEQUEUE which is nested 1355 * inside ops.dispatch(). We don't need to check boundaries for any 1356 * blocking kfuncs as the verifier ensures they're only called from 1357 * sleepable progs. 1358 */ 1359 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1360 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1361 scx_kf_error("cpu_release kfunc called from a nested operation"); 1362 return false; 1363 } 1364 1365 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1366 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1367 scx_kf_error("dispatch kfunc called from a nested operation"); 1368 return false; 1369 } 1370 1371 return true; 1372 } 1373 1374 /* see SCX_CALL_OP_TASK() */ 1375 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1376 struct task_struct *p) 1377 { 1378 if (!scx_kf_allowed(mask)) 1379 return false; 1380 1381 if (unlikely((p != current->scx.kf_tasks[0] && 1382 p != current->scx.kf_tasks[1]))) { 1383 scx_kf_error("called on a task not being operated on"); 1384 return false; 1385 } 1386 1387 return true; 1388 } 1389 1390 /** 1391 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1392 * @dsq: user dsq being iterated 1393 * @cur: current position, %NULL to start iteration 1394 * @rev: walk backwards 1395 * 1396 * Returns %NULL when iteration is finished. 1397 */ 1398 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1399 struct task_struct *cur, bool rev) 1400 { 1401 struct list_head *list_node; 1402 struct scx_dsq_list_node *dsq_lnode; 1403 1404 lockdep_assert_held(&dsq->lock); 1405 1406 if (cur) 1407 list_node = &cur->scx.dsq_list.node; 1408 else 1409 list_node = &dsq->list; 1410 1411 /* find the next task, need to skip BPF iteration cursors */ 1412 do { 1413 if (rev) 1414 list_node = list_node->prev; 1415 else 1416 list_node = list_node->next; 1417 1418 if (list_node == &dsq->list) 1419 return NULL; 1420 1421 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1422 node); 1423 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1424 1425 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1426 } 1427 1428 #define nldsq_for_each_task(p, dsq) \ 1429 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1430 (p) = nldsq_next_task((dsq), (p), false)) 1431 1432 1433 /* 1434 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1435 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1436 * changes without breaking backward compatibility. Can be used with 1437 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1438 */ 1439 enum scx_dsq_iter_flags { 1440 /* iterate in the reverse dispatch order */ 1441 SCX_DSQ_ITER_REV = 1U << 16, 1442 1443 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1444 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1445 1446 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1447 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1448 __SCX_DSQ_ITER_HAS_SLICE | 1449 __SCX_DSQ_ITER_HAS_VTIME, 1450 }; 1451 1452 struct bpf_iter_scx_dsq_kern { 1453 struct scx_dsq_list_node cursor; 1454 struct scx_dispatch_q *dsq; 1455 u64 slice; 1456 u64 vtime; 1457 } __attribute__((aligned(8))); 1458 1459 struct bpf_iter_scx_dsq { 1460 u64 __opaque[6]; 1461 } __attribute__((aligned(8))); 1462 1463 1464 /* 1465 * SCX task iterator. 1466 */ 1467 struct scx_task_iter { 1468 struct sched_ext_entity cursor; 1469 struct task_struct *locked; 1470 struct rq *rq; 1471 struct rq_flags rf; 1472 u32 cnt; 1473 }; 1474 1475 /** 1476 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1477 * @iter: iterator to init 1478 * 1479 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1480 * must eventually be stopped with scx_task_iter_stop(). 1481 * 1482 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1483 * between this and the first next() call or between any two next() calls. If 1484 * the locks are released between two next() calls, the caller is responsible 1485 * for ensuring that the task being iterated remains accessible either through 1486 * RCU read lock or obtaining a reference count. 1487 * 1488 * All tasks which existed when the iteration started are guaranteed to be 1489 * visited as long as they still exist. 1490 */ 1491 static void scx_task_iter_start(struct scx_task_iter *iter) 1492 { 1493 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1494 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1495 1496 spin_lock_irq(&scx_tasks_lock); 1497 1498 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1499 list_add(&iter->cursor.tasks_node, &scx_tasks); 1500 iter->locked = NULL; 1501 iter->cnt = 0; 1502 } 1503 1504 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1505 { 1506 if (iter->locked) { 1507 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1508 iter->locked = NULL; 1509 } 1510 } 1511 1512 /** 1513 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1514 * @iter: iterator to unlock 1515 * 1516 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1517 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1518 * This function can be safely called anytime during an iteration. 1519 */ 1520 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1521 { 1522 __scx_task_iter_rq_unlock(iter); 1523 spin_unlock_irq(&scx_tasks_lock); 1524 } 1525 1526 /** 1527 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1528 * @iter: iterator to re-lock 1529 * 1530 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1531 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1532 */ 1533 static void scx_task_iter_relock(struct scx_task_iter *iter) 1534 { 1535 spin_lock_irq(&scx_tasks_lock); 1536 } 1537 1538 /** 1539 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1540 * @iter: iterator to exit 1541 * 1542 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1543 * which is released on return. If the iterator holds a task's rq lock, that rq 1544 * lock is also released. See scx_task_iter_start() for details. 1545 */ 1546 static void scx_task_iter_stop(struct scx_task_iter *iter) 1547 { 1548 list_del_init(&iter->cursor.tasks_node); 1549 scx_task_iter_unlock(iter); 1550 } 1551 1552 /** 1553 * scx_task_iter_next - Next task 1554 * @iter: iterator to walk 1555 * 1556 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1557 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 1558 * by holding scx_tasks_lock for too long. 1559 */ 1560 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1561 { 1562 struct list_head *cursor = &iter->cursor.tasks_node; 1563 struct sched_ext_entity *pos; 1564 1565 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 1566 scx_task_iter_unlock(iter); 1567 cond_resched(); 1568 scx_task_iter_relock(iter); 1569 } 1570 1571 list_for_each_entry(pos, cursor, tasks_node) { 1572 if (&pos->tasks_node == &scx_tasks) 1573 return NULL; 1574 if (!(pos->flags & SCX_TASK_CURSOR)) { 1575 list_move(cursor, &pos->tasks_node); 1576 return container_of(pos, struct task_struct, scx); 1577 } 1578 } 1579 1580 /* can't happen, should always terminate at scx_tasks above */ 1581 BUG(); 1582 } 1583 1584 /** 1585 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1586 * @iter: iterator to walk 1587 * 1588 * Visit the non-idle task with its rq lock held. Allows callers to specify 1589 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1590 * for details. 1591 */ 1592 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1593 { 1594 struct task_struct *p; 1595 1596 __scx_task_iter_rq_unlock(iter); 1597 1598 while ((p = scx_task_iter_next(iter))) { 1599 /* 1600 * scx_task_iter is used to prepare and move tasks into SCX 1601 * while loading the BPF scheduler and vice-versa while 1602 * unloading. The init_tasks ("swappers") should be excluded 1603 * from the iteration because: 1604 * 1605 * - It's unsafe to use __setschduler_prio() on an init_task to 1606 * determine the sched_class to use as it won't preserve its 1607 * idle_sched_class. 1608 * 1609 * - ops.init/exit_task() can easily be confused if called with 1610 * init_tasks as they, e.g., share PID 0. 1611 * 1612 * As init_tasks are never scheduled through SCX, they can be 1613 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1614 * doesn't work here: 1615 * 1616 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1617 * yet been onlined. 1618 * 1619 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1620 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1621 * 1622 * Test for idle_sched_class as only init_tasks are on it. 1623 */ 1624 if (p->sched_class != &idle_sched_class) 1625 break; 1626 } 1627 if (!p) 1628 return NULL; 1629 1630 iter->rq = task_rq_lock(p, &iter->rf); 1631 iter->locked = p; 1632 1633 return p; 1634 } 1635 1636 /** 1637 * scx_add_event - Increase an event counter for 'name' by 'cnt' 1638 * @sch: scx_sched to account events for 1639 * @name: an event name defined in struct scx_event_stats 1640 * @cnt: the number of the event occured 1641 * 1642 * This can be used when preemption is not disabled. 1643 */ 1644 #define scx_add_event(sch, name, cnt) do { \ 1645 this_cpu_add((sch)->event_stats_cpu->name, (cnt)); \ 1646 trace_sched_ext_event(#name, (cnt)); \ 1647 } while(0) 1648 1649 /** 1650 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 1651 * @sch: scx_sched to account events for 1652 * @name: an event name defined in struct scx_event_stats 1653 * @cnt: the number of the event occured 1654 * 1655 * This should be used only when preemption is disabled. 1656 */ 1657 #define __scx_add_event(sch, name, cnt) do { \ 1658 __this_cpu_add((sch)->event_stats_cpu->name, (cnt)); \ 1659 trace_sched_ext_event(#name, cnt); \ 1660 } while(0) 1661 1662 /** 1663 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 1664 * @dst_e: destination event stats 1665 * @src_e: source event stats 1666 * @kind: a kind of event to be aggregated 1667 */ 1668 #define scx_agg_event(dst_e, src_e, kind) do { \ 1669 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 1670 } while(0) 1671 1672 /** 1673 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 1674 * @s: output seq_buf 1675 * @events: event stats 1676 * @kind: a kind of event to dump 1677 */ 1678 #define scx_dump_event(s, events, kind) do { \ 1679 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 1680 } while (0) 1681 1682 1683 static void scx_read_events(struct scx_sched *sch, 1684 struct scx_event_stats *events); 1685 1686 static enum scx_enable_state scx_enable_state(void) 1687 { 1688 return atomic_read(&scx_enable_state_var); 1689 } 1690 1691 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 1692 { 1693 return atomic_xchg(&scx_enable_state_var, to); 1694 } 1695 1696 static bool scx_tryset_enable_state(enum scx_enable_state to, 1697 enum scx_enable_state from) 1698 { 1699 int from_v = from; 1700 1701 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 1702 } 1703 1704 static bool scx_rq_bypassing(struct rq *rq) 1705 { 1706 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1707 } 1708 1709 /** 1710 * wait_ops_state - Busy-wait the specified ops state to end 1711 * @p: target task 1712 * @opss: state to wait the end of 1713 * 1714 * Busy-wait for @p to transition out of @opss. This can only be used when the 1715 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1716 * has load_acquire semantics to ensure that the caller can see the updates made 1717 * in the enqueueing and dispatching paths. 1718 */ 1719 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1720 { 1721 do { 1722 cpu_relax(); 1723 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1724 } 1725 1726 static inline bool __cpu_valid(s32 cpu) 1727 { 1728 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 1729 } 1730 1731 /** 1732 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 1733 * @sch: scx_sched to abort on error 1734 * @cpu: cpu number which came from a BPF ops 1735 * @where: extra information reported on error 1736 * 1737 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1738 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1739 * an ops error. 1740 */ 1741 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 1742 { 1743 if (__cpu_valid(cpu)) { 1744 return true; 1745 } else { 1746 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 1747 return false; 1748 } 1749 } 1750 1751 /** 1752 * kf_cpu_valid - Verify a CPU number, to be used on kfunc input args 1753 * @cpu: cpu number which came from a BPF ops 1754 * @where: extra information reported on error 1755 * 1756 * The same as ops_cpu_valid() but @sch is implicit. 1757 */ 1758 static bool kf_cpu_valid(u32 cpu, const char *where) 1759 { 1760 if (__cpu_valid(cpu)) { 1761 return true; 1762 } else { 1763 scx_kf_error("invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 1764 return false; 1765 } 1766 } 1767 1768 /** 1769 * ops_sanitize_err - Sanitize a -errno value 1770 * @sch: scx_sched to error out on error 1771 * @ops_name: operation to blame on failure 1772 * @err: -errno value to sanitize 1773 * 1774 * Verify @err is a valid -errno. If not, trigger scx_error() and return 1775 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1776 * cause misbehaviors. For an example, a large negative return from 1777 * ops.init_task() triggers an oops when passed up the call chain because the 1778 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1779 * handled as a pointer. 1780 */ 1781 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 1782 { 1783 if (err < 0 && err >= -MAX_ERRNO) 1784 return err; 1785 1786 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 1787 return -EPROTO; 1788 } 1789 1790 static void run_deferred(struct rq *rq) 1791 { 1792 process_ddsp_deferred_locals(rq); 1793 } 1794 1795 #ifdef CONFIG_SMP 1796 static void deferred_bal_cb_workfn(struct rq *rq) 1797 { 1798 run_deferred(rq); 1799 } 1800 #endif 1801 1802 static void deferred_irq_workfn(struct irq_work *irq_work) 1803 { 1804 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1805 1806 raw_spin_rq_lock(rq); 1807 run_deferred(rq); 1808 raw_spin_rq_unlock(rq); 1809 } 1810 1811 /** 1812 * schedule_deferred - Schedule execution of deferred actions on an rq 1813 * @rq: target rq 1814 * 1815 * Schedule execution of deferred actions on @rq. Must be called with @rq 1816 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1817 * can unlock @rq to e.g. migrate tasks to other rqs. 1818 */ 1819 static void schedule_deferred(struct rq *rq) 1820 { 1821 lockdep_assert_rq_held(rq); 1822 1823 #ifdef CONFIG_SMP 1824 /* 1825 * If in the middle of waking up a task, task_woken_scx() will be called 1826 * afterwards which will then run the deferred actions, no need to 1827 * schedule anything. 1828 */ 1829 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1830 return; 1831 1832 /* 1833 * If in balance, the balance callbacks will be called before rq lock is 1834 * released. Schedule one. 1835 */ 1836 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1837 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1838 deferred_bal_cb_workfn); 1839 return; 1840 } 1841 #endif 1842 /* 1843 * No scheduler hooks available. Queue an irq work. They are executed on 1844 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1845 * The above WAKEUP and BALANCE paths should cover most of the cases and 1846 * the time to IRQ re-enable shouldn't be long. 1847 */ 1848 irq_work_queue(&rq->scx.deferred_irq_work); 1849 } 1850 1851 /** 1852 * touch_core_sched - Update timestamp used for core-sched task ordering 1853 * @rq: rq to read clock from, must be locked 1854 * @p: task to update the timestamp for 1855 * 1856 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1857 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1858 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1859 * exhaustion). 1860 */ 1861 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1862 { 1863 lockdep_assert_rq_held(rq); 1864 1865 #ifdef CONFIG_SCHED_CORE 1866 /* 1867 * It's okay to update the timestamp spuriously. Use 1868 * sched_core_disabled() which is cheaper than enabled(). 1869 * 1870 * As this is used to determine ordering between tasks of sibling CPUs, 1871 * it may be better to use per-core dispatch sequence instead. 1872 */ 1873 if (!sched_core_disabled()) 1874 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1875 #endif 1876 } 1877 1878 /** 1879 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1880 * @rq: rq to read clock from, must be locked 1881 * @p: task being dispatched 1882 * 1883 * If the BPF scheduler implements custom core-sched ordering via 1884 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1885 * ordering within each local DSQ. This function is called from dispatch paths 1886 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1887 */ 1888 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1889 { 1890 lockdep_assert_rq_held(rq); 1891 1892 #ifdef CONFIG_SCHED_CORE 1893 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 1894 touch_core_sched(rq, p); 1895 #endif 1896 } 1897 1898 static void update_curr_scx(struct rq *rq) 1899 { 1900 struct task_struct *curr = rq->curr; 1901 s64 delta_exec; 1902 1903 delta_exec = update_curr_common(rq); 1904 if (unlikely(delta_exec <= 0)) 1905 return; 1906 1907 if (curr->scx.slice != SCX_SLICE_INF) { 1908 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1909 if (!curr->scx.slice) 1910 touch_core_sched(rq, curr); 1911 } 1912 } 1913 1914 static bool scx_dsq_priq_less(struct rb_node *node_a, 1915 const struct rb_node *node_b) 1916 { 1917 const struct task_struct *a = 1918 container_of(node_a, struct task_struct, scx.dsq_priq); 1919 const struct task_struct *b = 1920 container_of(node_b, struct task_struct, scx.dsq_priq); 1921 1922 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1923 } 1924 1925 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1926 { 1927 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1928 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1929 } 1930 1931 static void refill_task_slice_dfl(struct task_struct *p) 1932 { 1933 p->scx.slice = SCX_SLICE_DFL; 1934 __scx_add_event(scx_root, SCX_EV_REFILL_SLICE_DFL, 1); 1935 } 1936 1937 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 1938 struct task_struct *p, u64 enq_flags) 1939 { 1940 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1941 1942 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1943 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1944 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1945 1946 if (!is_local) { 1947 raw_spin_lock(&dsq->lock); 1948 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1949 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 1950 /* fall back to the global dsq */ 1951 raw_spin_unlock(&dsq->lock); 1952 dsq = find_global_dsq(p); 1953 raw_spin_lock(&dsq->lock); 1954 } 1955 } 1956 1957 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1958 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1959 /* 1960 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1961 * their FIFO queues. To avoid confusion and accidentally 1962 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1963 * disallow any internal DSQ from doing vtime ordering of 1964 * tasks. 1965 */ 1966 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 1967 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1968 } 1969 1970 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1971 struct rb_node *rbp; 1972 1973 /* 1974 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1975 * linked to both the rbtree and list on PRIQs, this can only be 1976 * tested easily when adding the first task. 1977 */ 1978 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1979 nldsq_next_task(dsq, NULL, false))) 1980 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1981 dsq->id); 1982 1983 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1984 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1985 1986 /* 1987 * Find the previous task and insert after it on the list so 1988 * that @dsq->list is vtime ordered. 1989 */ 1990 rbp = rb_prev(&p->scx.dsq_priq); 1991 if (rbp) { 1992 struct task_struct *prev = 1993 container_of(rbp, struct task_struct, 1994 scx.dsq_priq); 1995 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1996 } else { 1997 list_add(&p->scx.dsq_list.node, &dsq->list); 1998 } 1999 } else { 2000 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 2001 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 2002 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 2003 dsq->id); 2004 2005 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2006 list_add(&p->scx.dsq_list.node, &dsq->list); 2007 else 2008 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 2009 } 2010 2011 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 2012 dsq->seq++; 2013 p->scx.dsq_seq = dsq->seq; 2014 2015 dsq_mod_nr(dsq, 1); 2016 p->scx.dsq = dsq; 2017 2018 /* 2019 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 2020 * direct dispatch path, but we clear them here because the direct 2021 * dispatch verdict may be overridden on the enqueue path during e.g. 2022 * bypass. 2023 */ 2024 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 2025 p->scx.ddsp_enq_flags = 0; 2026 2027 /* 2028 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 2029 * match waiters' load_acquire. 2030 */ 2031 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 2032 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2033 2034 if (is_local) { 2035 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 2036 bool preempt = false; 2037 2038 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 2039 rq->curr->sched_class == &ext_sched_class) { 2040 rq->curr->scx.slice = 0; 2041 preempt = true; 2042 } 2043 2044 if (preempt || sched_class_above(&ext_sched_class, 2045 rq->curr->sched_class)) 2046 resched_curr(rq); 2047 } else { 2048 raw_spin_unlock(&dsq->lock); 2049 } 2050 } 2051 2052 static void task_unlink_from_dsq(struct task_struct *p, 2053 struct scx_dispatch_q *dsq) 2054 { 2055 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 2056 2057 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 2058 rb_erase(&p->scx.dsq_priq, &dsq->priq); 2059 RB_CLEAR_NODE(&p->scx.dsq_priq); 2060 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 2061 } 2062 2063 list_del_init(&p->scx.dsq_list.node); 2064 dsq_mod_nr(dsq, -1); 2065 } 2066 2067 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 2068 { 2069 struct scx_dispatch_q *dsq = p->scx.dsq; 2070 bool is_local = dsq == &rq->scx.local_dsq; 2071 2072 if (!dsq) { 2073 /* 2074 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 2075 * Unlinking is all that's needed to cancel. 2076 */ 2077 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 2078 list_del_init(&p->scx.dsq_list.node); 2079 2080 /* 2081 * When dispatching directly from the BPF scheduler to a local 2082 * DSQ, the task isn't associated with any DSQ but 2083 * @p->scx.holding_cpu may be set under the protection of 2084 * %SCX_OPSS_DISPATCHING. 2085 */ 2086 if (p->scx.holding_cpu >= 0) 2087 p->scx.holding_cpu = -1; 2088 2089 return; 2090 } 2091 2092 if (!is_local) 2093 raw_spin_lock(&dsq->lock); 2094 2095 /* 2096 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 2097 * change underneath us. 2098 */ 2099 if (p->scx.holding_cpu < 0) { 2100 /* @p must still be on @dsq, dequeue */ 2101 task_unlink_from_dsq(p, dsq); 2102 } else { 2103 /* 2104 * We're racing against dispatch_to_local_dsq() which already 2105 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 2106 * holding_cpu which tells dispatch_to_local_dsq() that it lost 2107 * the race. 2108 */ 2109 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 2110 p->scx.holding_cpu = -1; 2111 } 2112 p->scx.dsq = NULL; 2113 2114 if (!is_local) 2115 raw_spin_unlock(&dsq->lock); 2116 } 2117 2118 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 2119 struct rq *rq, u64 dsq_id, 2120 struct task_struct *p) 2121 { 2122 struct scx_dispatch_q *dsq; 2123 2124 if (dsq_id == SCX_DSQ_LOCAL) 2125 return &rq->scx.local_dsq; 2126 2127 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 2128 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 2129 2130 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 2131 return find_global_dsq(p); 2132 2133 return &cpu_rq(cpu)->scx.local_dsq; 2134 } 2135 2136 if (dsq_id == SCX_DSQ_GLOBAL) 2137 dsq = find_global_dsq(p); 2138 else 2139 dsq = find_user_dsq(sch, dsq_id); 2140 2141 if (unlikely(!dsq)) { 2142 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 2143 dsq_id, p->comm, p->pid); 2144 return find_global_dsq(p); 2145 } 2146 2147 return dsq; 2148 } 2149 2150 static void mark_direct_dispatch(struct task_struct *ddsp_task, 2151 struct task_struct *p, u64 dsq_id, 2152 u64 enq_flags) 2153 { 2154 /* 2155 * Mark that dispatch already happened from ops.select_cpu() or 2156 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 2157 * which can never match a valid task pointer. 2158 */ 2159 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 2160 2161 /* @p must match the task on the enqueue path */ 2162 if (unlikely(p != ddsp_task)) { 2163 if (IS_ERR(ddsp_task)) 2164 scx_kf_error("%s[%d] already direct-dispatched", 2165 p->comm, p->pid); 2166 else 2167 scx_kf_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 2168 ddsp_task->comm, ddsp_task->pid, 2169 p->comm, p->pid); 2170 return; 2171 } 2172 2173 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 2174 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 2175 2176 p->scx.ddsp_dsq_id = dsq_id; 2177 p->scx.ddsp_enq_flags = enq_flags; 2178 } 2179 2180 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 2181 u64 enq_flags) 2182 { 2183 struct rq *rq = task_rq(p); 2184 struct scx_dispatch_q *dsq = 2185 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2186 2187 touch_core_sched_dispatch(rq, p); 2188 2189 p->scx.ddsp_enq_flags |= enq_flags; 2190 2191 /* 2192 * We are in the enqueue path with @rq locked and pinned, and thus can't 2193 * double lock a remote rq and enqueue to its local DSQ. For 2194 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 2195 * the enqueue so that it's executed when @rq can be unlocked. 2196 */ 2197 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 2198 unsigned long opss; 2199 2200 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 2201 2202 switch (opss & SCX_OPSS_STATE_MASK) { 2203 case SCX_OPSS_NONE: 2204 break; 2205 case SCX_OPSS_QUEUEING: 2206 /* 2207 * As @p was never passed to the BPF side, _release is 2208 * not strictly necessary. Still do it for consistency. 2209 */ 2210 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2211 break; 2212 default: 2213 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 2214 p->comm, p->pid, opss); 2215 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2216 break; 2217 } 2218 2219 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 2220 list_add_tail(&p->scx.dsq_list.node, 2221 &rq->scx.ddsp_deferred_locals); 2222 schedule_deferred(rq); 2223 return; 2224 } 2225 2226 dispatch_enqueue(sch, dsq, p, 2227 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 2228 } 2229 2230 static bool scx_rq_online(struct rq *rq) 2231 { 2232 /* 2233 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 2234 * the online state as seen from the BPF scheduler. cpu_active() test 2235 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 2236 * stay set until the current scheduling operation is complete even if 2237 * we aren't locking @rq. 2238 */ 2239 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 2240 } 2241 2242 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 2243 int sticky_cpu) 2244 { 2245 struct scx_sched *sch = scx_root; 2246 struct task_struct **ddsp_taskp; 2247 unsigned long qseq; 2248 2249 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 2250 2251 /* rq migration */ 2252 if (sticky_cpu == cpu_of(rq)) 2253 goto local_norefill; 2254 2255 /* 2256 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2257 * is offline and are just running the hotplug path. Don't bother the 2258 * BPF scheduler. 2259 */ 2260 if (!scx_rq_online(rq)) 2261 goto local; 2262 2263 if (scx_rq_bypassing(rq)) { 2264 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2265 goto global; 2266 } 2267 2268 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2269 goto direct; 2270 2271 /* see %SCX_OPS_ENQ_EXITING */ 2272 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 2273 unlikely(p->flags & PF_EXITING)) { 2274 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 2275 goto local; 2276 } 2277 2278 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 2279 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 2280 is_migration_disabled(p)) { 2281 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 2282 goto local; 2283 } 2284 2285 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 2286 goto global; 2287 2288 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2289 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2290 2291 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2292 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2293 2294 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2295 WARN_ON_ONCE(*ddsp_taskp); 2296 *ddsp_taskp = p; 2297 2298 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 2299 2300 *ddsp_taskp = NULL; 2301 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2302 goto direct; 2303 2304 /* 2305 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2306 * dequeue may be waiting. The store_release matches their load_acquire. 2307 */ 2308 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2309 return; 2310 2311 direct: 2312 direct_dispatch(sch, p, enq_flags); 2313 return; 2314 2315 local: 2316 /* 2317 * For task-ordering, slice refill must be treated as implying the end 2318 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2319 * higher priority it becomes from scx_prio_less()'s POV. 2320 */ 2321 touch_core_sched(rq, p); 2322 refill_task_slice_dfl(p); 2323 local_norefill: 2324 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 2325 return; 2326 2327 global: 2328 touch_core_sched(rq, p); /* see the comment in local: */ 2329 refill_task_slice_dfl(p); 2330 dispatch_enqueue(sch, find_global_dsq(p), p, enq_flags); 2331 } 2332 2333 static bool task_runnable(const struct task_struct *p) 2334 { 2335 return !list_empty(&p->scx.runnable_node); 2336 } 2337 2338 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2339 { 2340 lockdep_assert_rq_held(rq); 2341 2342 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2343 p->scx.runnable_at = jiffies; 2344 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2345 } 2346 2347 /* 2348 * list_add_tail() must be used. scx_bypass() depends on tasks being 2349 * appended to the runnable_list. 2350 */ 2351 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2352 } 2353 2354 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2355 { 2356 list_del_init(&p->scx.runnable_node); 2357 if (reset_runnable_at) 2358 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2359 } 2360 2361 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2362 { 2363 struct scx_sched *sch = scx_root; 2364 int sticky_cpu = p->scx.sticky_cpu; 2365 2366 if (enq_flags & ENQUEUE_WAKEUP) 2367 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2368 2369 enq_flags |= rq->scx.extra_enq_flags; 2370 2371 if (sticky_cpu >= 0) 2372 p->scx.sticky_cpu = -1; 2373 2374 /* 2375 * Restoring a running task will be immediately followed by 2376 * set_next_task_scx() which expects the task to not be on the BPF 2377 * scheduler as tasks can only start running through local DSQs. Force 2378 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2379 */ 2380 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2381 sticky_cpu = cpu_of(rq); 2382 2383 if (p->scx.flags & SCX_TASK_QUEUED) { 2384 WARN_ON_ONCE(!task_runnable(p)); 2385 goto out; 2386 } 2387 2388 set_task_runnable(rq, p); 2389 p->scx.flags |= SCX_TASK_QUEUED; 2390 rq->scx.nr_running++; 2391 add_nr_running(rq, 1); 2392 2393 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 2394 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 2395 2396 if (enq_flags & SCX_ENQ_WAKEUP) 2397 touch_core_sched(rq, p); 2398 2399 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2400 out: 2401 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2402 2403 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 2404 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 2405 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 2406 } 2407 2408 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 2409 { 2410 struct scx_sched *sch = scx_root; 2411 unsigned long opss; 2412 2413 /* dequeue is always temporary, don't reset runnable_at */ 2414 clr_task_runnable(p, false); 2415 2416 /* acquire ensures that we see the preceding updates on QUEUED */ 2417 opss = atomic_long_read_acquire(&p->scx.ops_state); 2418 2419 switch (opss & SCX_OPSS_STATE_MASK) { 2420 case SCX_OPSS_NONE: 2421 break; 2422 case SCX_OPSS_QUEUEING: 2423 /* 2424 * QUEUEING is started and finished while holding @p's rq lock. 2425 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2426 */ 2427 BUG(); 2428 case SCX_OPSS_QUEUED: 2429 if (SCX_HAS_OP(sch, dequeue)) 2430 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 2431 p, deq_flags); 2432 2433 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2434 SCX_OPSS_NONE)) 2435 break; 2436 fallthrough; 2437 case SCX_OPSS_DISPATCHING: 2438 /* 2439 * If @p is being dispatched from the BPF scheduler to a DSQ, 2440 * wait for the transfer to complete so that @p doesn't get 2441 * added to its DSQ after dequeueing is complete. 2442 * 2443 * As we're waiting on DISPATCHING with the rq locked, the 2444 * dispatching side shouldn't try to lock the rq while 2445 * DISPATCHING is set. See dispatch_to_local_dsq(). 2446 * 2447 * DISPATCHING shouldn't have qseq set and control can reach 2448 * here with NONE @opss from the above QUEUED case block. 2449 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2450 */ 2451 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2452 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2453 break; 2454 } 2455 } 2456 2457 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2458 { 2459 struct scx_sched *sch = scx_root; 2460 2461 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2462 WARN_ON_ONCE(task_runnable(p)); 2463 return true; 2464 } 2465 2466 ops_dequeue(rq, p, deq_flags); 2467 2468 /* 2469 * A currently running task which is going off @rq first gets dequeued 2470 * and then stops running. As we want running <-> stopping transitions 2471 * to be contained within runnable <-> quiescent transitions, trigger 2472 * ->stopping() early here instead of in put_prev_task_scx(). 2473 * 2474 * @p may go through multiple stopping <-> running transitions between 2475 * here and put_prev_task_scx() if task attribute changes occur while 2476 * balance_scx() leaves @rq unlocked. However, they don't contain any 2477 * information meaningful to the BPF scheduler and can be suppressed by 2478 * skipping the callbacks if the task is !QUEUED. 2479 */ 2480 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 2481 update_curr_scx(rq); 2482 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 2483 } 2484 2485 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 2486 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 2487 2488 if (deq_flags & SCX_DEQ_SLEEP) 2489 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2490 else 2491 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2492 2493 p->scx.flags &= ~SCX_TASK_QUEUED; 2494 rq->scx.nr_running--; 2495 sub_nr_running(rq, 1); 2496 2497 dispatch_dequeue(rq, p); 2498 return true; 2499 } 2500 2501 static void yield_task_scx(struct rq *rq) 2502 { 2503 struct scx_sched *sch = scx_root; 2504 struct task_struct *p = rq->curr; 2505 2506 if (SCX_HAS_OP(sch, yield)) 2507 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 2508 else 2509 p->scx.slice = 0; 2510 } 2511 2512 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2513 { 2514 struct scx_sched *sch = scx_root; 2515 struct task_struct *from = rq->curr; 2516 2517 if (SCX_HAS_OP(sch, yield)) 2518 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 2519 from, to); 2520 else 2521 return false; 2522 } 2523 2524 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2525 struct scx_dispatch_q *src_dsq, 2526 struct rq *dst_rq) 2527 { 2528 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2529 2530 /* @dsq is locked and @p is on @dst_rq */ 2531 lockdep_assert_held(&src_dsq->lock); 2532 lockdep_assert_rq_held(dst_rq); 2533 2534 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2535 2536 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2537 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2538 else 2539 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2540 2541 dsq_mod_nr(dst_dsq, 1); 2542 p->scx.dsq = dst_dsq; 2543 } 2544 2545 #ifdef CONFIG_SMP 2546 /** 2547 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2548 * @p: task to move 2549 * @enq_flags: %SCX_ENQ_* 2550 * @src_rq: rq to move the task from, locked on entry, released on return 2551 * @dst_rq: rq to move the task into, locked on return 2552 * 2553 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2554 */ 2555 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2556 struct rq *src_rq, struct rq *dst_rq) 2557 { 2558 lockdep_assert_rq_held(src_rq); 2559 2560 /* the following marks @p MIGRATING which excludes dequeue */ 2561 deactivate_task(src_rq, p, 0); 2562 set_task_cpu(p, cpu_of(dst_rq)); 2563 p->scx.sticky_cpu = cpu_of(dst_rq); 2564 2565 raw_spin_rq_unlock(src_rq); 2566 raw_spin_rq_lock(dst_rq); 2567 2568 /* 2569 * We want to pass scx-specific enq_flags but activate_task() will 2570 * truncate the upper 32 bit. As we own @rq, we can pass them through 2571 * @rq->scx.extra_enq_flags instead. 2572 */ 2573 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2574 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2575 dst_rq->scx.extra_enq_flags = enq_flags; 2576 activate_task(dst_rq, p, 0); 2577 dst_rq->scx.extra_enq_flags = 0; 2578 } 2579 2580 /* 2581 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2582 * differences: 2583 * 2584 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2585 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2586 * this CPU?". 2587 * 2588 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2589 * must be allowed to finish on the CPU that it's currently on regardless of 2590 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2591 * BPF scheduler shouldn't attempt to migrate a task which has migration 2592 * disabled. 2593 * 2594 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2595 * no to the BPF scheduler initiated migrations while offline. 2596 * 2597 * The caller must ensure that @p and @rq are on different CPUs. 2598 */ 2599 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 2600 struct task_struct *p, struct rq *rq, 2601 bool enforce) 2602 { 2603 int cpu = cpu_of(rq); 2604 2605 WARN_ON_ONCE(task_cpu(p) == cpu); 2606 2607 /* 2608 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 2609 * the pinned CPU in migrate_disable_switch() while @p is being switched 2610 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 2611 * updated and thus another CPU may see @p on a DSQ inbetween leading to 2612 * @p passing the below task_allowed_on_cpu() check while migration is 2613 * disabled. 2614 * 2615 * Test the migration disabled state first as the race window is narrow 2616 * and the BPF scheduler failing to check migration disabled state can 2617 * easily be masked if task_allowed_on_cpu() is done first. 2618 */ 2619 if (unlikely(is_migration_disabled(p))) { 2620 if (enforce) 2621 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 2622 p->comm, p->pid, task_cpu(p), cpu); 2623 return false; 2624 } 2625 2626 /* 2627 * We don't require the BPF scheduler to avoid dispatching to offline 2628 * CPUs mostly for convenience but also because CPUs can go offline 2629 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2630 * picked CPU is outside the allowed mask. 2631 */ 2632 if (!task_allowed_on_cpu(p, cpu)) { 2633 if (enforce) 2634 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 2635 cpu, p->comm, p->pid); 2636 return false; 2637 } 2638 2639 if (!scx_rq_online(rq)) { 2640 if (enforce) 2641 __scx_add_event(scx_root, 2642 SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 2643 return false; 2644 } 2645 2646 return true; 2647 } 2648 2649 /** 2650 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2651 * @p: target task 2652 * @dsq: locked DSQ @p is currently on 2653 * @src_rq: rq @p is currently on, stable with @dsq locked 2654 * 2655 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2656 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2657 * required when transferring into a local DSQ. Even when transferring into a 2658 * non-local DSQ, it's better to use the same mechanism to protect against 2659 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2660 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2661 * 2662 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2663 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2664 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2665 * dancing from our side. 2666 * 2667 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2668 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2669 * would be cleared to -1. While other cpus may have updated it to different 2670 * values afterwards, as this operation can't be preempted or recurse, the 2671 * holding_cpu can never become this CPU again before we're done. Thus, we can 2672 * tell whether we lost to dequeue by testing whether the holding_cpu still 2673 * points to this CPU. See dispatch_dequeue() for the counterpart. 2674 * 2675 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2676 * still valid. %false if lost to dequeue. 2677 */ 2678 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2679 struct scx_dispatch_q *dsq, 2680 struct rq *src_rq) 2681 { 2682 s32 cpu = raw_smp_processor_id(); 2683 2684 lockdep_assert_held(&dsq->lock); 2685 2686 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2687 task_unlink_from_dsq(p, dsq); 2688 p->scx.holding_cpu = cpu; 2689 2690 raw_spin_unlock(&dsq->lock); 2691 raw_spin_rq_lock(src_rq); 2692 2693 /* task_rq couldn't have changed if we're still the holding cpu */ 2694 return likely(p->scx.holding_cpu == cpu) && 2695 !WARN_ON_ONCE(src_rq != task_rq(p)); 2696 } 2697 2698 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2699 struct scx_dispatch_q *dsq, struct rq *src_rq) 2700 { 2701 raw_spin_rq_unlock(this_rq); 2702 2703 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2704 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2705 return true; 2706 } else { 2707 raw_spin_rq_unlock(src_rq); 2708 raw_spin_rq_lock(this_rq); 2709 return false; 2710 } 2711 } 2712 #else /* CONFIG_SMP */ 2713 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2714 static inline bool task_can_run_on_remote_rq(struct scx_sched *sch, struct task_struct *p, struct rq *rq, bool enforce) { return false; } 2715 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2716 #endif /* CONFIG_SMP */ 2717 2718 /** 2719 * move_task_between_dsqs() - Move a task from one DSQ to another 2720 * @sch: scx_sched being operated on 2721 * @p: target task 2722 * @enq_flags: %SCX_ENQ_* 2723 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2724 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2725 * 2726 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2727 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2728 * will change. As @p's task_rq is locked, this function doesn't need to use the 2729 * holding_cpu mechanism. 2730 * 2731 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2732 * return value, is locked. 2733 */ 2734 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 2735 struct task_struct *p, u64 enq_flags, 2736 struct scx_dispatch_q *src_dsq, 2737 struct scx_dispatch_q *dst_dsq) 2738 { 2739 struct rq *src_rq = task_rq(p), *dst_rq; 2740 2741 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2742 lockdep_assert_held(&src_dsq->lock); 2743 lockdep_assert_rq_held(src_rq); 2744 2745 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2746 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2747 if (src_rq != dst_rq && 2748 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 2749 dst_dsq = find_global_dsq(p); 2750 dst_rq = src_rq; 2751 } 2752 } else { 2753 /* no need to migrate if destination is a non-local DSQ */ 2754 dst_rq = src_rq; 2755 } 2756 2757 /* 2758 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2759 * CPU, @p will be migrated. 2760 */ 2761 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2762 /* @p is going from a non-local DSQ to a local DSQ */ 2763 if (src_rq == dst_rq) { 2764 task_unlink_from_dsq(p, src_dsq); 2765 move_local_task_to_local_dsq(p, enq_flags, 2766 src_dsq, dst_rq); 2767 raw_spin_unlock(&src_dsq->lock); 2768 } else { 2769 raw_spin_unlock(&src_dsq->lock); 2770 move_remote_task_to_local_dsq(p, enq_flags, 2771 src_rq, dst_rq); 2772 } 2773 } else { 2774 /* 2775 * @p is going from a non-local DSQ to a non-local DSQ. As 2776 * $src_dsq is already locked, do an abbreviated dequeue. 2777 */ 2778 task_unlink_from_dsq(p, src_dsq); 2779 p->scx.dsq = NULL; 2780 raw_spin_unlock(&src_dsq->lock); 2781 2782 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 2783 } 2784 2785 return dst_rq; 2786 } 2787 2788 /* 2789 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2790 * banging on the same DSQ on a large NUMA system to the point where switching 2791 * to the bypass mode can take a long time. Inject artificial delays while the 2792 * bypass mode is switching to guarantee timely completion. 2793 */ 2794 static void scx_breather(struct rq *rq) 2795 { 2796 u64 until; 2797 2798 lockdep_assert_rq_held(rq); 2799 2800 if (likely(!atomic_read(&scx_breather_depth))) 2801 return; 2802 2803 raw_spin_rq_unlock(rq); 2804 2805 until = ktime_get_ns() + NSEC_PER_MSEC; 2806 2807 do { 2808 int cnt = 1024; 2809 while (atomic_read(&scx_breather_depth) && --cnt) 2810 cpu_relax(); 2811 } while (atomic_read(&scx_breather_depth) && 2812 time_before64(ktime_get_ns(), until)); 2813 2814 raw_spin_rq_lock(rq); 2815 } 2816 2817 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 2818 struct scx_dispatch_q *dsq) 2819 { 2820 struct task_struct *p; 2821 retry: 2822 /* 2823 * This retry loop can repeatedly race against scx_bypass() dequeueing 2824 * tasks from @dsq trying to put the system into the bypass mode. On 2825 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock 2826 * the machine into soft lockups. Give a breather. 2827 */ 2828 scx_breather(rq); 2829 2830 /* 2831 * The caller can't expect to successfully consume a task if the task's 2832 * addition to @dsq isn't guaranteed to be visible somehow. Test 2833 * @dsq->list without locking and skip if it seems empty. 2834 */ 2835 if (list_empty(&dsq->list)) 2836 return false; 2837 2838 raw_spin_lock(&dsq->lock); 2839 2840 nldsq_for_each_task(p, dsq) { 2841 struct rq *task_rq = task_rq(p); 2842 2843 if (rq == task_rq) { 2844 task_unlink_from_dsq(p, dsq); 2845 move_local_task_to_local_dsq(p, 0, dsq, rq); 2846 raw_spin_unlock(&dsq->lock); 2847 return true; 2848 } 2849 2850 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 2851 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2852 return true; 2853 goto retry; 2854 } 2855 } 2856 2857 raw_spin_unlock(&dsq->lock); 2858 return false; 2859 } 2860 2861 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 2862 { 2863 int node = cpu_to_node(cpu_of(rq)); 2864 2865 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 2866 } 2867 2868 /** 2869 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2870 * @sch: scx_sched being operated on 2871 * @rq: current rq which is locked 2872 * @dst_dsq: destination DSQ 2873 * @p: task to dispatch 2874 * @enq_flags: %SCX_ENQ_* 2875 * 2876 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2877 * DSQ. This function performs all the synchronization dancing needed because 2878 * local DSQs are protected with rq locks. 2879 * 2880 * The caller must have exclusive ownership of @p (e.g. through 2881 * %SCX_OPSS_DISPATCHING). 2882 */ 2883 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 2884 struct scx_dispatch_q *dst_dsq, 2885 struct task_struct *p, u64 enq_flags) 2886 { 2887 struct rq *src_rq = task_rq(p); 2888 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2889 #ifdef CONFIG_SMP 2890 struct rq *locked_rq = rq; 2891 #endif 2892 2893 /* 2894 * We're synchronized against dequeue through DISPATCHING. As @p can't 2895 * be dequeued, its task_rq and cpus_allowed are stable too. 2896 * 2897 * If dispatching to @rq that @p is already on, no lock dancing needed. 2898 */ 2899 if (rq == src_rq && rq == dst_rq) { 2900 dispatch_enqueue(sch, dst_dsq, p, 2901 enq_flags | SCX_ENQ_CLEAR_OPSS); 2902 return; 2903 } 2904 2905 #ifdef CONFIG_SMP 2906 if (src_rq != dst_rq && 2907 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 2908 dispatch_enqueue(sch, find_global_dsq(p), p, 2909 enq_flags | SCX_ENQ_CLEAR_OPSS); 2910 return; 2911 } 2912 2913 /* 2914 * @p is on a possibly remote @src_rq which we need to lock to move the 2915 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2916 * on DISPATCHING, so we can't grab @src_rq lock while holding 2917 * DISPATCHING. 2918 * 2919 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2920 * we're moving from a DSQ and use the same mechanism - mark the task 2921 * under transfer with holding_cpu, release DISPATCHING and then follow 2922 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2923 */ 2924 p->scx.holding_cpu = raw_smp_processor_id(); 2925 2926 /* store_release ensures that dequeue sees the above */ 2927 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2928 2929 /* switch to @src_rq lock */ 2930 if (locked_rq != src_rq) { 2931 raw_spin_rq_unlock(locked_rq); 2932 locked_rq = src_rq; 2933 raw_spin_rq_lock(src_rq); 2934 } 2935 2936 /* task_rq couldn't have changed if we're still the holding cpu */ 2937 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2938 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2939 /* 2940 * If @p is staying on the same rq, there's no need to go 2941 * through the full deactivate/activate cycle. Optimize by 2942 * abbreviating move_remote_task_to_local_dsq(). 2943 */ 2944 if (src_rq == dst_rq) { 2945 p->scx.holding_cpu = -1; 2946 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 2947 enq_flags); 2948 } else { 2949 move_remote_task_to_local_dsq(p, enq_flags, 2950 src_rq, dst_rq); 2951 /* task has been moved to dst_rq, which is now locked */ 2952 locked_rq = dst_rq; 2953 } 2954 2955 /* if the destination CPU is idle, wake it up */ 2956 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2957 resched_curr(dst_rq); 2958 } 2959 2960 /* switch back to @rq lock */ 2961 if (locked_rq != rq) { 2962 raw_spin_rq_unlock(locked_rq); 2963 raw_spin_rq_lock(rq); 2964 } 2965 #else /* CONFIG_SMP */ 2966 BUG(); /* control can not reach here on UP */ 2967 #endif /* CONFIG_SMP */ 2968 } 2969 2970 /** 2971 * finish_dispatch - Asynchronously finish dispatching a task 2972 * @rq: current rq which is locked 2973 * @p: task to finish dispatching 2974 * @qseq_at_dispatch: qseq when @p started getting dispatched 2975 * @dsq_id: destination DSQ ID 2976 * @enq_flags: %SCX_ENQ_* 2977 * 2978 * Dispatching to local DSQs may need to wait for queueing to complete or 2979 * require rq lock dancing. As we don't wanna do either while inside 2980 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2981 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2982 * task and its qseq. Once ops.dispatch() returns, this function is called to 2983 * finish up. 2984 * 2985 * There is no guarantee that @p is still valid for dispatching or even that it 2986 * was valid in the first place. Make sure that the task is still owned by the 2987 * BPF scheduler and claim the ownership before dispatching. 2988 */ 2989 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 2990 struct task_struct *p, 2991 unsigned long qseq_at_dispatch, 2992 u64 dsq_id, u64 enq_flags) 2993 { 2994 struct scx_dispatch_q *dsq; 2995 unsigned long opss; 2996 2997 touch_core_sched_dispatch(rq, p); 2998 retry: 2999 /* 3000 * No need for _acquire here. @p is accessed only after a successful 3001 * try_cmpxchg to DISPATCHING. 3002 */ 3003 opss = atomic_long_read(&p->scx.ops_state); 3004 3005 switch (opss & SCX_OPSS_STATE_MASK) { 3006 case SCX_OPSS_DISPATCHING: 3007 case SCX_OPSS_NONE: 3008 /* someone else already got to it */ 3009 return; 3010 case SCX_OPSS_QUEUED: 3011 /* 3012 * If qseq doesn't match, @p has gone through at least one 3013 * dispatch/dequeue and re-enqueue cycle between 3014 * scx_bpf_dsq_insert() and here and we have no claim on it. 3015 */ 3016 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 3017 return; 3018 3019 /* 3020 * While we know @p is accessible, we don't yet have a claim on 3021 * it - the BPF scheduler is allowed to dispatch tasks 3022 * spuriously and there can be a racing dequeue attempt. Let's 3023 * claim @p by atomically transitioning it from QUEUED to 3024 * DISPATCHING. 3025 */ 3026 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 3027 SCX_OPSS_DISPATCHING))) 3028 break; 3029 goto retry; 3030 case SCX_OPSS_QUEUEING: 3031 /* 3032 * do_enqueue_task() is in the process of transferring the task 3033 * to the BPF scheduler while holding @p's rq lock. As we aren't 3034 * holding any kernel or BPF resource that the enqueue path may 3035 * depend upon, it's safe to wait. 3036 */ 3037 wait_ops_state(p, opss); 3038 goto retry; 3039 } 3040 3041 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 3042 3043 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 3044 3045 if (dsq->id == SCX_DSQ_LOCAL) 3046 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 3047 else 3048 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 3049 } 3050 3051 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 3052 { 3053 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 3054 u32 u; 3055 3056 for (u = 0; u < dspc->cursor; u++) { 3057 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 3058 3059 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 3060 ent->enq_flags); 3061 } 3062 3063 dspc->nr_tasks += dspc->cursor; 3064 dspc->cursor = 0; 3065 } 3066 3067 static int balance_one(struct rq *rq, struct task_struct *prev) 3068 { 3069 struct scx_sched *sch = scx_root; 3070 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 3071 bool prev_on_scx = prev->sched_class == &ext_sched_class; 3072 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 3073 int nr_loops = SCX_DSP_MAX_LOOPS; 3074 3075 lockdep_assert_rq_held(rq); 3076 rq->scx.flags |= SCX_RQ_IN_BALANCE; 3077 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 3078 3079 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 3080 unlikely(rq->scx.cpu_released)) { 3081 /* 3082 * If the previous sched_class for the current CPU was not SCX, 3083 * notify the BPF scheduler that it again has control of the 3084 * core. This callback complements ->cpu_release(), which is 3085 * emitted in switch_class(). 3086 */ 3087 if (SCX_HAS_OP(sch, cpu_acquire)) 3088 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 3089 cpu_of(rq), NULL); 3090 rq->scx.cpu_released = false; 3091 } 3092 3093 if (prev_on_scx) { 3094 update_curr_scx(rq); 3095 3096 /* 3097 * If @prev is runnable & has slice left, it has priority and 3098 * fetching more just increases latency for the fetched tasks. 3099 * Tell pick_task_scx() to keep running @prev. If the BPF 3100 * scheduler wants to handle this explicitly, it should 3101 * implement ->cpu_release(). 3102 * 3103 * See scx_disable_workfn() for the explanation on the bypassing 3104 * test. 3105 */ 3106 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 3107 rq->scx.flags |= SCX_RQ_BAL_KEEP; 3108 goto has_tasks; 3109 } 3110 } 3111 3112 /* if there already are tasks to run, nothing to do */ 3113 if (rq->scx.local_dsq.nr) 3114 goto has_tasks; 3115 3116 if (consume_global_dsq(sch, rq)) 3117 goto has_tasks; 3118 3119 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || 3120 scx_rq_bypassing(rq) || !scx_rq_online(rq)) 3121 goto no_tasks; 3122 3123 dspc->rq = rq; 3124 3125 /* 3126 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 3127 * the local DSQ might still end up empty after a successful 3128 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 3129 * produced some tasks, retry. The BPF scheduler may depend on this 3130 * looping behavior to simplify its implementation. 3131 */ 3132 do { 3133 dspc->nr_tasks = 0; 3134 3135 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 3136 cpu_of(rq), prev_on_scx ? prev : NULL); 3137 3138 flush_dispatch_buf(sch, rq); 3139 3140 if (prev_on_rq && prev->scx.slice) { 3141 rq->scx.flags |= SCX_RQ_BAL_KEEP; 3142 goto has_tasks; 3143 } 3144 if (rq->scx.local_dsq.nr) 3145 goto has_tasks; 3146 if (consume_global_dsq(sch, rq)) 3147 goto has_tasks; 3148 3149 /* 3150 * ops.dispatch() can trap us in this loop by repeatedly 3151 * dispatching ineligible tasks. Break out once in a while to 3152 * allow the watchdog to run. As IRQ can't be enabled in 3153 * balance(), we want to complete this scheduling cycle and then 3154 * start a new one. IOW, we want to call resched_curr() on the 3155 * next, most likely idle, task, not the current one. Use 3156 * scx_bpf_kick_cpu() for deferred kicking. 3157 */ 3158 if (unlikely(!--nr_loops)) { 3159 scx_bpf_kick_cpu(cpu_of(rq), 0); 3160 break; 3161 } 3162 } while (dspc->nr_tasks); 3163 3164 no_tasks: 3165 /* 3166 * Didn't find another task to run. Keep running @prev unless 3167 * %SCX_OPS_ENQ_LAST is in effect. 3168 */ 3169 if (prev_on_rq && 3170 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 3171 rq->scx.flags |= SCX_RQ_BAL_KEEP; 3172 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 3173 goto has_tasks; 3174 } 3175 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 3176 return false; 3177 3178 has_tasks: 3179 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 3180 return true; 3181 } 3182 3183 static int balance_scx(struct rq *rq, struct task_struct *prev, 3184 struct rq_flags *rf) 3185 { 3186 int ret; 3187 3188 rq_unpin_lock(rq, rf); 3189 3190 ret = balance_one(rq, prev); 3191 3192 #ifdef CONFIG_SCHED_SMT 3193 /* 3194 * When core-sched is enabled, this ops.balance() call will be followed 3195 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 3196 * siblings too. 3197 */ 3198 if (sched_core_enabled(rq)) { 3199 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 3200 int scpu; 3201 3202 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 3203 struct rq *srq = cpu_rq(scpu); 3204 struct task_struct *sprev = srq->curr; 3205 3206 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 3207 update_rq_clock(srq); 3208 balance_one(srq, sprev); 3209 } 3210 } 3211 #endif 3212 rq_repin_lock(rq, rf); 3213 3214 return ret; 3215 } 3216 3217 static void process_ddsp_deferred_locals(struct rq *rq) 3218 { 3219 struct task_struct *p; 3220 3221 lockdep_assert_rq_held(rq); 3222 3223 /* 3224 * Now that @rq can be unlocked, execute the deferred enqueueing of 3225 * tasks directly dispatched to the local DSQs of other CPUs. See 3226 * direct_dispatch(). Keep popping from the head instead of using 3227 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 3228 * temporarily. 3229 */ 3230 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 3231 struct task_struct, scx.dsq_list.node))) { 3232 struct scx_sched *sch = scx_root; 3233 struct scx_dispatch_q *dsq; 3234 3235 list_del_init(&p->scx.dsq_list.node); 3236 3237 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 3238 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 3239 dispatch_to_local_dsq(sch, rq, dsq, p, 3240 p->scx.ddsp_enq_flags); 3241 } 3242 } 3243 3244 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 3245 { 3246 struct scx_sched *sch = scx_root; 3247 3248 if (p->scx.flags & SCX_TASK_QUEUED) { 3249 /* 3250 * Core-sched might decide to execute @p before it is 3251 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 3252 */ 3253 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 3254 dispatch_dequeue(rq, p); 3255 } 3256 3257 p->se.exec_start = rq_clock_task(rq); 3258 3259 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3260 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 3261 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 3262 3263 clr_task_runnable(p, true); 3264 3265 /* 3266 * @p is getting newly scheduled or got kicked after someone updated its 3267 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 3268 */ 3269 if ((p->scx.slice == SCX_SLICE_INF) != 3270 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 3271 if (p->scx.slice == SCX_SLICE_INF) 3272 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 3273 else 3274 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 3275 3276 sched_update_tick_dependency(rq); 3277 3278 /* 3279 * For now, let's refresh the load_avgs just when transitioning 3280 * in and out of nohz. In the future, we might want to add a 3281 * mechanism which calls the following periodically on 3282 * tick-stopped CPUs. 3283 */ 3284 update_other_load_avgs(rq); 3285 } 3286 } 3287 3288 static enum scx_cpu_preempt_reason 3289 preempt_reason_from_class(const struct sched_class *class) 3290 { 3291 #ifdef CONFIG_SMP 3292 if (class == &stop_sched_class) 3293 return SCX_CPU_PREEMPT_STOP; 3294 #endif 3295 if (class == &dl_sched_class) 3296 return SCX_CPU_PREEMPT_DL; 3297 if (class == &rt_sched_class) 3298 return SCX_CPU_PREEMPT_RT; 3299 return SCX_CPU_PREEMPT_UNKNOWN; 3300 } 3301 3302 static void switch_class(struct rq *rq, struct task_struct *next) 3303 { 3304 struct scx_sched *sch = scx_root; 3305 const struct sched_class *next_class = next->sched_class; 3306 3307 #ifdef CONFIG_SMP 3308 /* 3309 * Pairs with the smp_load_acquire() issued by a CPU in 3310 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 3311 * resched. 3312 */ 3313 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 3314 #endif 3315 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 3316 return; 3317 3318 /* 3319 * The callback is conceptually meant to convey that the CPU is no 3320 * longer under the control of SCX. Therefore, don't invoke the callback 3321 * if the next class is below SCX (in which case the BPF scheduler has 3322 * actively decided not to schedule any tasks on the CPU). 3323 */ 3324 if (sched_class_above(&ext_sched_class, next_class)) 3325 return; 3326 3327 /* 3328 * At this point we know that SCX was preempted by a higher priority 3329 * sched_class, so invoke the ->cpu_release() callback if we have not 3330 * done so already. We only send the callback once between SCX being 3331 * preempted, and it regaining control of the CPU. 3332 * 3333 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3334 * next time that balance_scx() is invoked. 3335 */ 3336 if (!rq->scx.cpu_released) { 3337 if (SCX_HAS_OP(sch, cpu_release)) { 3338 struct scx_cpu_release_args args = { 3339 .reason = preempt_reason_from_class(next_class), 3340 .task = next, 3341 }; 3342 3343 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 3344 cpu_of(rq), &args); 3345 } 3346 rq->scx.cpu_released = true; 3347 } 3348 } 3349 3350 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3351 struct task_struct *next) 3352 { 3353 struct scx_sched *sch = scx_root; 3354 update_curr_scx(rq); 3355 3356 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3357 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3358 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 3359 3360 if (p->scx.flags & SCX_TASK_QUEUED) { 3361 set_task_runnable(rq, p); 3362 3363 /* 3364 * If @p has slice left and is being put, @p is getting 3365 * preempted by a higher priority scheduler class or core-sched 3366 * forcing a different task. Leave it at the head of the local 3367 * DSQ. 3368 */ 3369 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3370 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 3371 SCX_ENQ_HEAD); 3372 goto switch_class; 3373 } 3374 3375 /* 3376 * If @p is runnable but we're about to enter a lower 3377 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3378 * ops.enqueue() that @p is the only one available for this cpu, 3379 * which should trigger an explicit follow-up scheduling event. 3380 */ 3381 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3382 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 3383 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3384 } else { 3385 do_enqueue_task(rq, p, 0, -1); 3386 } 3387 } 3388 3389 switch_class: 3390 if (next && next->sched_class != &ext_sched_class) 3391 switch_class(rq, next); 3392 } 3393 3394 static struct task_struct *first_local_task(struct rq *rq) 3395 { 3396 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3397 struct task_struct, scx.dsq_list.node); 3398 } 3399 3400 static struct task_struct *pick_task_scx(struct rq *rq) 3401 { 3402 struct task_struct *prev = rq->curr; 3403 struct task_struct *p; 3404 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 3405 bool kick_idle = false; 3406 3407 /* 3408 * WORKAROUND: 3409 * 3410 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3411 * have gone through balance_scx(). Unfortunately, there currently is a 3412 * bug where fair could say yes on balance() but no on pick_task(), 3413 * which then ends up calling pick_task_scx() without preceding 3414 * balance_scx(). 3415 * 3416 * Keep running @prev if possible and avoid stalling from entering idle 3417 * without balancing. 3418 * 3419 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 3420 * if pick_task_scx() is called without preceding balance_scx(). 3421 */ 3422 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 3423 if (prev->scx.flags & SCX_TASK_QUEUED) { 3424 keep_prev = true; 3425 } else { 3426 keep_prev = false; 3427 kick_idle = true; 3428 } 3429 } else if (unlikely(keep_prev && 3430 prev->sched_class != &ext_sched_class)) { 3431 /* 3432 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is 3433 * conditional on scx_enabled() and may have been skipped. 3434 */ 3435 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 3436 keep_prev = false; 3437 } 3438 3439 /* 3440 * If balance_scx() is telling us to keep running @prev, replenish slice 3441 * if necessary and keep running @prev. Otherwise, pop the first one 3442 * from the local DSQ. 3443 */ 3444 if (keep_prev) { 3445 p = prev; 3446 if (!p->scx.slice) 3447 refill_task_slice_dfl(p); 3448 } else { 3449 p = first_local_task(rq); 3450 if (!p) { 3451 if (kick_idle) 3452 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 3453 return NULL; 3454 } 3455 3456 if (unlikely(!p->scx.slice)) { 3457 struct scx_sched *sch = scx_root; 3458 3459 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 3460 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3461 p->comm, p->pid, __func__); 3462 sch->warned_zero_slice = true; 3463 } 3464 refill_task_slice_dfl(p); 3465 } 3466 } 3467 3468 return p; 3469 } 3470 3471 #ifdef CONFIG_SCHED_CORE 3472 /** 3473 * scx_prio_less - Task ordering for core-sched 3474 * @a: task A 3475 * @b: task B 3476 * @in_fi: in forced idle state 3477 * 3478 * Core-sched is implemented as an additional scheduling layer on top of the 3479 * usual sched_class'es and needs to find out the expected task ordering. For 3480 * SCX, core-sched calls this function to interrogate the task ordering. 3481 * 3482 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3483 * to implement the default task ordering. The older the timestamp, the higher 3484 * priority the task - the global FIFO ordering matching the default scheduling 3485 * behavior. 3486 * 3487 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3488 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3489 */ 3490 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3491 bool in_fi) 3492 { 3493 struct scx_sched *sch = scx_root; 3494 3495 /* 3496 * The const qualifiers are dropped from task_struct pointers when 3497 * calling ops.core_sched_before(). Accesses are controlled by the 3498 * verifier. 3499 */ 3500 if (SCX_HAS_OP(sch, core_sched_before) && 3501 !scx_rq_bypassing(task_rq(a))) 3502 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 3503 NULL, 3504 (struct task_struct *)a, 3505 (struct task_struct *)b); 3506 else 3507 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3508 } 3509 #endif /* CONFIG_SCHED_CORE */ 3510 3511 #ifdef CONFIG_SMP 3512 3513 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3514 { 3515 struct scx_sched *sch = scx_root; 3516 bool rq_bypass; 3517 3518 /* 3519 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3520 * can be a good migration opportunity with low cache and memory 3521 * footprint. Returning a CPU different than @prev_cpu triggers 3522 * immediate rq migration. However, for SCX, as the current rq 3523 * association doesn't dictate where the task is going to run, this 3524 * doesn't fit well. If necessary, we can later add a dedicated method 3525 * which can decide to preempt self to force it through the regular 3526 * scheduling path. 3527 */ 3528 if (unlikely(wake_flags & WF_EXEC)) 3529 return prev_cpu; 3530 3531 rq_bypass = scx_rq_bypassing(task_rq(p)); 3532 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 3533 s32 cpu; 3534 struct task_struct **ddsp_taskp; 3535 3536 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3537 WARN_ON_ONCE(*ddsp_taskp); 3538 *ddsp_taskp = p; 3539 3540 cpu = SCX_CALL_OP_TASK_RET(sch, 3541 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3542 select_cpu, NULL, p, prev_cpu, 3543 wake_flags); 3544 p->scx.selected_cpu = cpu; 3545 *ddsp_taskp = NULL; 3546 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 3547 return cpu; 3548 else 3549 return prev_cpu; 3550 } else { 3551 s32 cpu; 3552 3553 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 3554 if (cpu >= 0) { 3555 refill_task_slice_dfl(p); 3556 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3557 } else { 3558 cpu = prev_cpu; 3559 } 3560 p->scx.selected_cpu = cpu; 3561 3562 if (rq_bypass) 3563 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 3564 return cpu; 3565 } 3566 } 3567 3568 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3569 { 3570 run_deferred(rq); 3571 } 3572 3573 static void set_cpus_allowed_scx(struct task_struct *p, 3574 struct affinity_context *ac) 3575 { 3576 struct scx_sched *sch = scx_root; 3577 3578 set_cpus_allowed_common(p, ac); 3579 3580 /* 3581 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3582 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3583 * scheduler the effective one. 3584 * 3585 * Fine-grained memory write control is enforced by BPF making the const 3586 * designation pointless. Cast it away when calling the operation. 3587 */ 3588 if (SCX_HAS_OP(sch, set_cpumask)) 3589 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 3590 p, (struct cpumask *)p->cpus_ptr); 3591 } 3592 3593 static void handle_hotplug(struct rq *rq, bool online) 3594 { 3595 struct scx_sched *sch = scx_root; 3596 int cpu = cpu_of(rq); 3597 3598 atomic_long_inc(&scx_hotplug_seq); 3599 3600 /* 3601 * scx_root updates are protected by cpus_read_lock() and will stay 3602 * stable here. Note that we can't depend on scx_enabled() test as the 3603 * hotplug ops need to be enabled before __scx_enabled is set. 3604 */ 3605 if (unlikely(!sch)) 3606 return; 3607 3608 if (scx_enabled()) 3609 scx_idle_update_selcpu_topology(&sch->ops); 3610 3611 if (online && SCX_HAS_OP(sch, cpu_online)) 3612 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 3613 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 3614 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 3615 else 3616 scx_exit(sch, SCX_EXIT_UNREG_KERN, 3617 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3618 "cpu %d going %s, exiting scheduler", cpu, 3619 online ? "online" : "offline"); 3620 } 3621 3622 void scx_rq_activate(struct rq *rq) 3623 { 3624 handle_hotplug(rq, true); 3625 } 3626 3627 void scx_rq_deactivate(struct rq *rq) 3628 { 3629 handle_hotplug(rq, false); 3630 } 3631 3632 static void rq_online_scx(struct rq *rq) 3633 { 3634 rq->scx.flags |= SCX_RQ_ONLINE; 3635 } 3636 3637 static void rq_offline_scx(struct rq *rq) 3638 { 3639 rq->scx.flags &= ~SCX_RQ_ONLINE; 3640 } 3641 3642 #endif /* CONFIG_SMP */ 3643 3644 static bool check_rq_for_timeouts(struct rq *rq) 3645 { 3646 struct scx_sched *sch; 3647 struct task_struct *p; 3648 struct rq_flags rf; 3649 bool timed_out = false; 3650 3651 rq_lock_irqsave(rq, &rf); 3652 sch = rcu_dereference_bh(scx_root); 3653 if (unlikely(!sch)) 3654 goto out_unlock; 3655 3656 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3657 unsigned long last_runnable = p->scx.runnable_at; 3658 3659 if (unlikely(time_after(jiffies, 3660 last_runnable + scx_watchdog_timeout))) { 3661 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3662 3663 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 3664 "%s[%d] failed to run for %u.%03us", 3665 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 3666 timed_out = true; 3667 break; 3668 } 3669 } 3670 out_unlock: 3671 rq_unlock_irqrestore(rq, &rf); 3672 return timed_out; 3673 } 3674 3675 static void scx_watchdog_workfn(struct work_struct *work) 3676 { 3677 int cpu; 3678 3679 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3680 3681 for_each_online_cpu(cpu) { 3682 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3683 break; 3684 3685 cond_resched(); 3686 } 3687 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3688 scx_watchdog_timeout / 2); 3689 } 3690 3691 void scx_tick(struct rq *rq) 3692 { 3693 struct scx_sched *sch; 3694 unsigned long last_check; 3695 3696 if (!scx_enabled()) 3697 return; 3698 3699 sch = rcu_dereference_bh(scx_root); 3700 if (unlikely(!sch)) 3701 return; 3702 3703 last_check = READ_ONCE(scx_watchdog_timestamp); 3704 if (unlikely(time_after(jiffies, 3705 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3706 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3707 3708 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 3709 "watchdog failed to check in for %u.%03us", 3710 dur_ms / 1000, dur_ms % 1000); 3711 } 3712 3713 update_other_load_avgs(rq); 3714 } 3715 3716 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3717 { 3718 struct scx_sched *sch = scx_root; 3719 3720 update_curr_scx(rq); 3721 3722 /* 3723 * While disabling, always resched and refresh core-sched timestamp as 3724 * we can't trust the slice management or ops.core_sched_before(). 3725 */ 3726 if (scx_rq_bypassing(rq)) { 3727 curr->scx.slice = 0; 3728 touch_core_sched(rq, curr); 3729 } else if (SCX_HAS_OP(sch, tick)) { 3730 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 3731 } 3732 3733 if (!curr->scx.slice) 3734 resched_curr(rq); 3735 } 3736 3737 #ifdef CONFIG_EXT_GROUP_SCHED 3738 static struct cgroup *tg_cgrp(struct task_group *tg) 3739 { 3740 /* 3741 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3742 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3743 * root cgroup. 3744 */ 3745 if (tg && tg->css.cgroup) 3746 return tg->css.cgroup; 3747 else 3748 return &cgrp_dfl_root.cgrp; 3749 } 3750 3751 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3752 3753 #else /* CONFIG_EXT_GROUP_SCHED */ 3754 3755 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3756 3757 #endif /* CONFIG_EXT_GROUP_SCHED */ 3758 3759 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3760 { 3761 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3762 } 3763 3764 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3765 { 3766 enum scx_task_state prev_state = scx_get_task_state(p); 3767 bool warn = false; 3768 3769 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3770 3771 switch (state) { 3772 case SCX_TASK_NONE: 3773 break; 3774 case SCX_TASK_INIT: 3775 warn = prev_state != SCX_TASK_NONE; 3776 break; 3777 case SCX_TASK_READY: 3778 warn = prev_state == SCX_TASK_NONE; 3779 break; 3780 case SCX_TASK_ENABLED: 3781 warn = prev_state != SCX_TASK_READY; 3782 break; 3783 default: 3784 warn = true; 3785 return; 3786 } 3787 3788 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3789 prev_state, state, p->comm, p->pid); 3790 3791 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3792 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3793 } 3794 3795 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3796 { 3797 struct scx_sched *sch = scx_root; 3798 int ret; 3799 3800 p->scx.disallow = false; 3801 3802 if (SCX_HAS_OP(sch, init_task)) { 3803 struct scx_init_task_args args = { 3804 SCX_INIT_TASK_ARGS_CGROUP(tg) 3805 .fork = fork, 3806 }; 3807 3808 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 3809 p, &args); 3810 if (unlikely(ret)) { 3811 ret = ops_sanitize_err(sch, "init_task", ret); 3812 return ret; 3813 } 3814 } 3815 3816 scx_set_task_state(p, SCX_TASK_INIT); 3817 3818 if (p->scx.disallow) { 3819 if (!fork) { 3820 struct rq *rq; 3821 struct rq_flags rf; 3822 3823 rq = task_rq_lock(p, &rf); 3824 3825 /* 3826 * We're in the load path and @p->policy will be applied 3827 * right after. Reverting @p->policy here and rejecting 3828 * %SCHED_EXT transitions from scx_check_setscheduler() 3829 * guarantees that if ops.init_task() sets @p->disallow, 3830 * @p can never be in SCX. 3831 */ 3832 if (p->policy == SCHED_EXT) { 3833 p->policy = SCHED_NORMAL; 3834 atomic_long_inc(&scx_nr_rejected); 3835 } 3836 3837 task_rq_unlock(rq, p, &rf); 3838 } else if (p->policy == SCHED_EXT) { 3839 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 3840 p->comm, p->pid); 3841 } 3842 } 3843 3844 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3845 return 0; 3846 } 3847 3848 static void scx_enable_task(struct task_struct *p) 3849 { 3850 struct scx_sched *sch = scx_root; 3851 struct rq *rq = task_rq(p); 3852 u32 weight; 3853 3854 lockdep_assert_rq_held(rq); 3855 3856 /* 3857 * Set the weight before calling ops.enable() so that the scheduler 3858 * doesn't see a stale value if they inspect the task struct. 3859 */ 3860 if (task_has_idle_policy(p)) 3861 weight = WEIGHT_IDLEPRIO; 3862 else 3863 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3864 3865 p->scx.weight = sched_weight_to_cgroup(weight); 3866 3867 if (SCX_HAS_OP(sch, enable)) 3868 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 3869 scx_set_task_state(p, SCX_TASK_ENABLED); 3870 3871 if (SCX_HAS_OP(sch, set_weight)) 3872 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 3873 p, p->scx.weight); 3874 } 3875 3876 static void scx_disable_task(struct task_struct *p) 3877 { 3878 struct scx_sched *sch = scx_root; 3879 struct rq *rq = task_rq(p); 3880 3881 lockdep_assert_rq_held(rq); 3882 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3883 3884 if (SCX_HAS_OP(sch, disable)) 3885 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 3886 scx_set_task_state(p, SCX_TASK_READY); 3887 } 3888 3889 static void scx_exit_task(struct task_struct *p) 3890 { 3891 struct scx_sched *sch = scx_root; 3892 struct scx_exit_task_args args = { 3893 .cancelled = false, 3894 }; 3895 3896 lockdep_assert_rq_held(task_rq(p)); 3897 3898 switch (scx_get_task_state(p)) { 3899 case SCX_TASK_NONE: 3900 return; 3901 case SCX_TASK_INIT: 3902 args.cancelled = true; 3903 break; 3904 case SCX_TASK_READY: 3905 break; 3906 case SCX_TASK_ENABLED: 3907 scx_disable_task(p); 3908 break; 3909 default: 3910 WARN_ON_ONCE(true); 3911 return; 3912 } 3913 3914 if (SCX_HAS_OP(sch, exit_task)) 3915 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 3916 p, &args); 3917 scx_set_task_state(p, SCX_TASK_NONE); 3918 } 3919 3920 void init_scx_entity(struct sched_ext_entity *scx) 3921 { 3922 memset(scx, 0, sizeof(*scx)); 3923 INIT_LIST_HEAD(&scx->dsq_list.node); 3924 RB_CLEAR_NODE(&scx->dsq_priq); 3925 scx->sticky_cpu = -1; 3926 scx->holding_cpu = -1; 3927 INIT_LIST_HEAD(&scx->runnable_node); 3928 scx->runnable_at = jiffies; 3929 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3930 scx->slice = SCX_SLICE_DFL; 3931 } 3932 3933 void scx_pre_fork(struct task_struct *p) 3934 { 3935 /* 3936 * BPF scheduler enable/disable paths want to be able to iterate and 3937 * update all tasks which can become complex when racing forks. As 3938 * enable/disable are very cold paths, let's use a percpu_rwsem to 3939 * exclude forks. 3940 */ 3941 percpu_down_read(&scx_fork_rwsem); 3942 } 3943 3944 int scx_fork(struct task_struct *p) 3945 { 3946 percpu_rwsem_assert_held(&scx_fork_rwsem); 3947 3948 if (scx_init_task_enabled) 3949 return scx_init_task(p, task_group(p), true); 3950 else 3951 return 0; 3952 } 3953 3954 void scx_post_fork(struct task_struct *p) 3955 { 3956 if (scx_init_task_enabled) { 3957 scx_set_task_state(p, SCX_TASK_READY); 3958 3959 /* 3960 * Enable the task immediately if it's running on sched_ext. 3961 * Otherwise, it'll be enabled in switching_to_scx() if and 3962 * when it's ever configured to run with a SCHED_EXT policy. 3963 */ 3964 if (p->sched_class == &ext_sched_class) { 3965 struct rq_flags rf; 3966 struct rq *rq; 3967 3968 rq = task_rq_lock(p, &rf); 3969 scx_enable_task(p); 3970 task_rq_unlock(rq, p, &rf); 3971 } 3972 } 3973 3974 spin_lock_irq(&scx_tasks_lock); 3975 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3976 spin_unlock_irq(&scx_tasks_lock); 3977 3978 percpu_up_read(&scx_fork_rwsem); 3979 } 3980 3981 void scx_cancel_fork(struct task_struct *p) 3982 { 3983 if (scx_enabled()) { 3984 struct rq *rq; 3985 struct rq_flags rf; 3986 3987 rq = task_rq_lock(p, &rf); 3988 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3989 scx_exit_task(p); 3990 task_rq_unlock(rq, p, &rf); 3991 } 3992 3993 percpu_up_read(&scx_fork_rwsem); 3994 } 3995 3996 void sched_ext_free(struct task_struct *p) 3997 { 3998 unsigned long flags; 3999 4000 spin_lock_irqsave(&scx_tasks_lock, flags); 4001 list_del_init(&p->scx.tasks_node); 4002 spin_unlock_irqrestore(&scx_tasks_lock, flags); 4003 4004 /* 4005 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 4006 * transitions can't race us. Disable ops for @p. 4007 */ 4008 if (scx_get_task_state(p) != SCX_TASK_NONE) { 4009 struct rq_flags rf; 4010 struct rq *rq; 4011 4012 rq = task_rq_lock(p, &rf); 4013 scx_exit_task(p); 4014 task_rq_unlock(rq, p, &rf); 4015 } 4016 } 4017 4018 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 4019 const struct load_weight *lw) 4020 { 4021 struct scx_sched *sch = scx_root; 4022 4023 lockdep_assert_rq_held(task_rq(p)); 4024 4025 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 4026 if (SCX_HAS_OP(sch, set_weight)) 4027 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 4028 p, p->scx.weight); 4029 } 4030 4031 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 4032 { 4033 } 4034 4035 static void switching_to_scx(struct rq *rq, struct task_struct *p) 4036 { 4037 struct scx_sched *sch = scx_root; 4038 4039 scx_enable_task(p); 4040 4041 /* 4042 * set_cpus_allowed_scx() is not called while @p is associated with a 4043 * different scheduler class. Keep the BPF scheduler up-to-date. 4044 */ 4045 if (SCX_HAS_OP(sch, set_cpumask)) 4046 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 4047 p, (struct cpumask *)p->cpus_ptr); 4048 } 4049 4050 static void switched_from_scx(struct rq *rq, struct task_struct *p) 4051 { 4052 scx_disable_task(p); 4053 } 4054 4055 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 4056 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 4057 4058 int scx_check_setscheduler(struct task_struct *p, int policy) 4059 { 4060 lockdep_assert_rq_held(task_rq(p)); 4061 4062 /* if disallow, reject transitioning into SCX */ 4063 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 4064 p->policy != policy && policy == SCHED_EXT) 4065 return -EACCES; 4066 4067 return 0; 4068 } 4069 4070 #ifdef CONFIG_NO_HZ_FULL 4071 bool scx_can_stop_tick(struct rq *rq) 4072 { 4073 struct task_struct *p = rq->curr; 4074 4075 if (scx_rq_bypassing(rq)) 4076 return false; 4077 4078 if (p->sched_class != &ext_sched_class) 4079 return true; 4080 4081 /* 4082 * @rq can dispatch from different DSQs, so we can't tell whether it 4083 * needs the tick or not by looking at nr_running. Allow stopping ticks 4084 * iff the BPF scheduler indicated so. See set_next_task_scx(). 4085 */ 4086 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 4087 } 4088 #endif 4089 4090 #ifdef CONFIG_EXT_GROUP_SCHED 4091 4092 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 4093 static bool scx_cgroup_enabled; 4094 4095 void scx_tg_init(struct task_group *tg) 4096 { 4097 tg->scx_weight = CGROUP_WEIGHT_DFL; 4098 } 4099 4100 int scx_tg_online(struct task_group *tg) 4101 { 4102 struct scx_sched *sch = scx_root; 4103 int ret = 0; 4104 4105 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 4106 4107 percpu_down_read(&scx_cgroup_rwsem); 4108 4109 if (scx_cgroup_enabled) { 4110 if (SCX_HAS_OP(sch, cgroup_init)) { 4111 struct scx_cgroup_init_args args = 4112 { .weight = tg->scx_weight }; 4113 4114 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 4115 NULL, tg->css.cgroup, &args); 4116 if (ret) 4117 ret = ops_sanitize_err(sch, "cgroup_init", ret); 4118 } 4119 if (ret == 0) 4120 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 4121 } else { 4122 tg->scx_flags |= SCX_TG_ONLINE; 4123 } 4124 4125 percpu_up_read(&scx_cgroup_rwsem); 4126 return ret; 4127 } 4128 4129 void scx_tg_offline(struct task_group *tg) 4130 { 4131 struct scx_sched *sch = scx_root; 4132 4133 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 4134 4135 percpu_down_read(&scx_cgroup_rwsem); 4136 4137 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 4138 (tg->scx_flags & SCX_TG_INITED)) 4139 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 4140 tg->css.cgroup); 4141 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 4142 4143 percpu_up_read(&scx_cgroup_rwsem); 4144 } 4145 4146 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 4147 { 4148 struct scx_sched *sch = scx_root; 4149 struct cgroup_subsys_state *css; 4150 struct task_struct *p; 4151 int ret; 4152 4153 /* released in scx_finish/cancel_attach() */ 4154 percpu_down_read(&scx_cgroup_rwsem); 4155 4156 if (!scx_cgroup_enabled) 4157 return 0; 4158 4159 cgroup_taskset_for_each(p, css, tset) { 4160 struct cgroup *from = tg_cgrp(task_group(p)); 4161 struct cgroup *to = tg_cgrp(css_tg(css)); 4162 4163 WARN_ON_ONCE(p->scx.cgrp_moving_from); 4164 4165 /* 4166 * sched_move_task() omits identity migrations. Let's match the 4167 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 4168 * always match one-to-one. 4169 */ 4170 if (from == to) 4171 continue; 4172 4173 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 4174 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 4175 cgroup_prep_move, NULL, 4176 p, from, css->cgroup); 4177 if (ret) 4178 goto err; 4179 } 4180 4181 p->scx.cgrp_moving_from = from; 4182 } 4183 4184 return 0; 4185 4186 err: 4187 cgroup_taskset_for_each(p, css, tset) { 4188 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 4189 p->scx.cgrp_moving_from) 4190 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 4191 p, p->scx.cgrp_moving_from, css->cgroup); 4192 p->scx.cgrp_moving_from = NULL; 4193 } 4194 4195 percpu_up_read(&scx_cgroup_rwsem); 4196 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 4197 } 4198 4199 void scx_cgroup_move_task(struct task_struct *p) 4200 { 4201 struct scx_sched *sch = scx_root; 4202 4203 if (!scx_cgroup_enabled) 4204 return; 4205 4206 /* 4207 * @p must have ops.cgroup_prep_move() called on it and thus 4208 * cgrp_moving_from set. 4209 */ 4210 if (SCX_HAS_OP(sch, cgroup_move) && 4211 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4212 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 4213 p, p->scx.cgrp_moving_from, 4214 tg_cgrp(task_group(p))); 4215 p->scx.cgrp_moving_from = NULL; 4216 } 4217 4218 void scx_cgroup_finish_attach(void) 4219 { 4220 percpu_up_read(&scx_cgroup_rwsem); 4221 } 4222 4223 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4224 { 4225 struct scx_sched *sch = scx_root; 4226 struct cgroup_subsys_state *css; 4227 struct task_struct *p; 4228 4229 if (!scx_cgroup_enabled) 4230 goto out_unlock; 4231 4232 cgroup_taskset_for_each(p, css, tset) { 4233 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 4234 p->scx.cgrp_moving_from) 4235 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 4236 p, p->scx.cgrp_moving_from, css->cgroup); 4237 p->scx.cgrp_moving_from = NULL; 4238 } 4239 out_unlock: 4240 percpu_up_read(&scx_cgroup_rwsem); 4241 } 4242 4243 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4244 { 4245 struct scx_sched *sch = scx_root; 4246 4247 percpu_down_read(&scx_cgroup_rwsem); 4248 4249 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 4250 tg->scx_weight != weight) 4251 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 4252 tg_cgrp(tg), weight); 4253 4254 tg->scx_weight = weight; 4255 4256 percpu_up_read(&scx_cgroup_rwsem); 4257 } 4258 4259 void scx_group_set_idle(struct task_group *tg, bool idle) 4260 { 4261 /* TODO: Implement ops->cgroup_set_idle() */ 4262 } 4263 4264 static void scx_cgroup_lock(void) 4265 { 4266 percpu_down_write(&scx_cgroup_rwsem); 4267 } 4268 4269 static void scx_cgroup_unlock(void) 4270 { 4271 percpu_up_write(&scx_cgroup_rwsem); 4272 } 4273 4274 #else /* CONFIG_EXT_GROUP_SCHED */ 4275 4276 static inline void scx_cgroup_lock(void) {} 4277 static inline void scx_cgroup_unlock(void) {} 4278 4279 #endif /* CONFIG_EXT_GROUP_SCHED */ 4280 4281 /* 4282 * Omitted operations: 4283 * 4284 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4285 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4286 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4287 * 4288 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4289 * 4290 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4291 * their current sched_class. Call them directly from sched core instead. 4292 */ 4293 DEFINE_SCHED_CLASS(ext) = { 4294 .enqueue_task = enqueue_task_scx, 4295 .dequeue_task = dequeue_task_scx, 4296 .yield_task = yield_task_scx, 4297 .yield_to_task = yield_to_task_scx, 4298 4299 .wakeup_preempt = wakeup_preempt_scx, 4300 4301 .balance = balance_scx, 4302 .pick_task = pick_task_scx, 4303 4304 .put_prev_task = put_prev_task_scx, 4305 .set_next_task = set_next_task_scx, 4306 4307 #ifdef CONFIG_SMP 4308 .select_task_rq = select_task_rq_scx, 4309 .task_woken = task_woken_scx, 4310 .set_cpus_allowed = set_cpus_allowed_scx, 4311 4312 .rq_online = rq_online_scx, 4313 .rq_offline = rq_offline_scx, 4314 #endif 4315 4316 .task_tick = task_tick_scx, 4317 4318 .switching_to = switching_to_scx, 4319 .switched_from = switched_from_scx, 4320 .switched_to = switched_to_scx, 4321 .reweight_task = reweight_task_scx, 4322 .prio_changed = prio_changed_scx, 4323 4324 .update_curr = update_curr_scx, 4325 4326 #ifdef CONFIG_UCLAMP_TASK 4327 .uclamp_enabled = 1, 4328 #endif 4329 }; 4330 4331 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4332 { 4333 memset(dsq, 0, sizeof(*dsq)); 4334 4335 raw_spin_lock_init(&dsq->lock); 4336 INIT_LIST_HEAD(&dsq->list); 4337 dsq->id = dsq_id; 4338 } 4339 4340 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4341 { 4342 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4343 struct scx_dispatch_q *dsq, *tmp_dsq; 4344 4345 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4346 kfree_rcu(dsq, rcu); 4347 } 4348 4349 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4350 4351 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 4352 { 4353 struct scx_dispatch_q *dsq; 4354 unsigned long flags; 4355 4356 rcu_read_lock(); 4357 4358 dsq = find_user_dsq(sch, dsq_id); 4359 if (!dsq) 4360 goto out_unlock_rcu; 4361 4362 raw_spin_lock_irqsave(&dsq->lock, flags); 4363 4364 if (dsq->nr) { 4365 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4366 dsq->id, dsq->nr); 4367 goto out_unlock_dsq; 4368 } 4369 4370 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 4371 dsq_hash_params)) 4372 goto out_unlock_dsq; 4373 4374 /* 4375 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4376 * queueing more tasks. As this function can be called from anywhere, 4377 * freeing is bounced through an irq work to avoid nesting RCU 4378 * operations inside scheduler locks. 4379 */ 4380 dsq->id = SCX_DSQ_INVALID; 4381 llist_add(&dsq->free_node, &dsqs_to_free); 4382 irq_work_queue(&free_dsq_irq_work); 4383 4384 out_unlock_dsq: 4385 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4386 out_unlock_rcu: 4387 rcu_read_unlock(); 4388 } 4389 4390 #ifdef CONFIG_EXT_GROUP_SCHED 4391 static void scx_cgroup_exit(struct scx_sched *sch) 4392 { 4393 struct cgroup_subsys_state *css; 4394 4395 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4396 4397 scx_cgroup_enabled = false; 4398 4399 /* 4400 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4401 * cgroups and exit all the inited ones, all online cgroups are exited. 4402 */ 4403 rcu_read_lock(); 4404 css_for_each_descendant_post(css, &root_task_group.css) { 4405 struct task_group *tg = css_tg(css); 4406 4407 if (!(tg->scx_flags & SCX_TG_INITED)) 4408 continue; 4409 tg->scx_flags &= ~SCX_TG_INITED; 4410 4411 if (!sch->ops.cgroup_exit) 4412 continue; 4413 4414 if (WARN_ON_ONCE(!css_tryget(css))) 4415 continue; 4416 rcu_read_unlock(); 4417 4418 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 4419 css->cgroup); 4420 4421 rcu_read_lock(); 4422 css_put(css); 4423 } 4424 rcu_read_unlock(); 4425 } 4426 4427 static int scx_cgroup_init(struct scx_sched *sch) 4428 { 4429 struct cgroup_subsys_state *css; 4430 int ret; 4431 4432 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4433 4434 /* 4435 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4436 * cgroups and init, all online cgroups are initialized. 4437 */ 4438 rcu_read_lock(); 4439 css_for_each_descendant_pre(css, &root_task_group.css) { 4440 struct task_group *tg = css_tg(css); 4441 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4442 4443 if ((tg->scx_flags & 4444 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4445 continue; 4446 4447 if (!sch->ops.cgroup_init) { 4448 tg->scx_flags |= SCX_TG_INITED; 4449 continue; 4450 } 4451 4452 if (WARN_ON_ONCE(!css_tryget(css))) 4453 continue; 4454 rcu_read_unlock(); 4455 4456 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 4457 css->cgroup, &args); 4458 if (ret) { 4459 css_put(css); 4460 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 4461 return ret; 4462 } 4463 tg->scx_flags |= SCX_TG_INITED; 4464 4465 rcu_read_lock(); 4466 css_put(css); 4467 } 4468 rcu_read_unlock(); 4469 4470 WARN_ON_ONCE(scx_cgroup_enabled); 4471 scx_cgroup_enabled = true; 4472 4473 return 0; 4474 } 4475 4476 #else 4477 static void scx_cgroup_exit(struct scx_sched *sch) {} 4478 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 4479 #endif 4480 4481 4482 /******************************************************************************** 4483 * Sysfs interface and ops enable/disable. 4484 */ 4485 4486 #define SCX_ATTR(_name) \ 4487 static struct kobj_attribute scx_attr_##_name = { \ 4488 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4489 .show = scx_attr_##_name##_show, \ 4490 } 4491 4492 static ssize_t scx_attr_state_show(struct kobject *kobj, 4493 struct kobj_attribute *ka, char *buf) 4494 { 4495 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 4496 } 4497 SCX_ATTR(state); 4498 4499 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4500 struct kobj_attribute *ka, char *buf) 4501 { 4502 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4503 } 4504 SCX_ATTR(switch_all); 4505 4506 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4507 struct kobj_attribute *ka, char *buf) 4508 { 4509 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4510 } 4511 SCX_ATTR(nr_rejected); 4512 4513 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4514 struct kobj_attribute *ka, char *buf) 4515 { 4516 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4517 } 4518 SCX_ATTR(hotplug_seq); 4519 4520 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4521 struct kobj_attribute *ka, char *buf) 4522 { 4523 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4524 } 4525 SCX_ATTR(enable_seq); 4526 4527 static struct attribute *scx_global_attrs[] = { 4528 &scx_attr_state.attr, 4529 &scx_attr_switch_all.attr, 4530 &scx_attr_nr_rejected.attr, 4531 &scx_attr_hotplug_seq.attr, 4532 &scx_attr_enable_seq.attr, 4533 NULL, 4534 }; 4535 4536 static const struct attribute_group scx_global_attr_group = { 4537 .attrs = scx_global_attrs, 4538 }; 4539 4540 static void free_exit_info(struct scx_exit_info *ei); 4541 4542 static void scx_sched_free_rcu_work(struct work_struct *work) 4543 { 4544 struct rcu_work *rcu_work = to_rcu_work(work); 4545 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 4546 struct rhashtable_iter rht_iter; 4547 struct scx_dispatch_q *dsq; 4548 int node; 4549 4550 kthread_stop(sch->helper->task); 4551 free_percpu(sch->event_stats_cpu); 4552 4553 for_each_node_state(node, N_POSSIBLE) 4554 kfree(sch->global_dsqs[node]); 4555 kfree(sch->global_dsqs); 4556 4557 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 4558 do { 4559 rhashtable_walk_start(&rht_iter); 4560 4561 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 4562 destroy_dsq(sch, dsq->id); 4563 4564 rhashtable_walk_stop(&rht_iter); 4565 } while (dsq == ERR_PTR(-EAGAIN)); 4566 rhashtable_walk_exit(&rht_iter); 4567 4568 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4569 free_exit_info(sch->exit_info); 4570 kfree(sch); 4571 } 4572 4573 static void scx_kobj_release(struct kobject *kobj) 4574 { 4575 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 4576 4577 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 4578 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 4579 } 4580 4581 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4582 struct kobj_attribute *ka, char *buf) 4583 { 4584 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 4585 } 4586 SCX_ATTR(ops); 4587 4588 #define scx_attr_event_show(buf, at, events, kind) ({ \ 4589 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 4590 }) 4591 4592 static ssize_t scx_attr_events_show(struct kobject *kobj, 4593 struct kobj_attribute *ka, char *buf) 4594 { 4595 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 4596 struct scx_event_stats events; 4597 int at = 0; 4598 4599 scx_read_events(sch, &events); 4600 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 4601 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4602 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 4603 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 4604 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4605 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 4606 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 4607 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 4608 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 4609 return at; 4610 } 4611 SCX_ATTR(events); 4612 4613 static struct attribute *scx_sched_attrs[] = { 4614 &scx_attr_ops.attr, 4615 &scx_attr_events.attr, 4616 NULL, 4617 }; 4618 ATTRIBUTE_GROUPS(scx_sched); 4619 4620 static const struct kobj_type scx_ktype = { 4621 .release = scx_kobj_release, 4622 .sysfs_ops = &kobj_sysfs_ops, 4623 .default_groups = scx_sched_groups, 4624 }; 4625 4626 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4627 { 4628 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 4629 } 4630 4631 static const struct kset_uevent_ops scx_uevent_ops = { 4632 .uevent = scx_uevent, 4633 }; 4634 4635 /* 4636 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4637 * sched_class. dl/rt are already handled. 4638 */ 4639 bool task_should_scx(int policy) 4640 { 4641 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 4642 return false; 4643 if (READ_ONCE(scx_switching_all)) 4644 return true; 4645 return policy == SCHED_EXT; 4646 } 4647 4648 bool scx_allow_ttwu_queue(const struct task_struct *p) 4649 { 4650 return !scx_enabled() || 4651 (scx_root->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) || 4652 p->sched_class != &ext_sched_class; 4653 } 4654 4655 /** 4656 * scx_softlockup - sched_ext softlockup handler 4657 * @dur_s: number of seconds of CPU stuck due to soft lockup 4658 * 4659 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4660 * live-lock the system by making many CPUs target the same DSQ to the point 4661 * where soft-lockup detection triggers. This function is called from 4662 * soft-lockup watchdog when the triggering point is close and tries to unjam 4663 * the system by enabling the breather and aborting the BPF scheduler. 4664 */ 4665 void scx_softlockup(u32 dur_s) 4666 { 4667 struct scx_sched *sch; 4668 4669 rcu_read_lock(); 4670 4671 sch = rcu_dereference(scx_root); 4672 if (unlikely(!sch)) 4673 goto out_unlock; 4674 4675 switch (scx_enable_state()) { 4676 case SCX_ENABLING: 4677 case SCX_ENABLED: 4678 break; 4679 default: 4680 goto out_unlock; 4681 } 4682 4683 /* allow only one instance, cleared at the end of scx_bypass() */ 4684 if (test_and_set_bit(0, &scx_in_softlockup)) 4685 goto out_unlock; 4686 4687 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4688 smp_processor_id(), dur_s, scx_root->ops.name); 4689 4690 /* 4691 * Some CPUs may be trapped in the dispatch paths. Enable breather 4692 * immediately; otherwise, we might even be able to get to scx_bypass(). 4693 */ 4694 atomic_inc(&scx_breather_depth); 4695 4696 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s); 4697 out_unlock: 4698 rcu_read_unlock(); 4699 } 4700 4701 static void scx_clear_softlockup(void) 4702 { 4703 if (test_and_clear_bit(0, &scx_in_softlockup)) 4704 atomic_dec(&scx_breather_depth); 4705 } 4706 4707 /** 4708 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 4709 * @bypass: true for bypass, false for unbypass 4710 * 4711 * Bypassing guarantees that all runnable tasks make forward progress without 4712 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4713 * be held by tasks that the BPF scheduler is forgetting to run, which 4714 * unfortunately also excludes toggling the static branches. 4715 * 4716 * Let's work around by overriding a couple ops and modifying behaviors based on 4717 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4718 * to force global FIFO scheduling. 4719 * 4720 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4721 * 4722 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4723 * %SCX_OPS_ENQ_LAST is also ignored. 4724 * 4725 * - ops.dispatch() is ignored. 4726 * 4727 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4728 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4729 * the tail of the queue with core_sched_at touched. 4730 * 4731 * - pick_next_task() suppresses zero slice warning. 4732 * 4733 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4734 * operations. 4735 * 4736 * - scx_prio_less() reverts to the default core_sched_at order. 4737 */ 4738 static void scx_bypass(bool bypass) 4739 { 4740 static DEFINE_RAW_SPINLOCK(bypass_lock); 4741 static unsigned long bypass_timestamp; 4742 struct scx_sched *sch; 4743 unsigned long flags; 4744 int cpu; 4745 4746 raw_spin_lock_irqsave(&bypass_lock, flags); 4747 sch = rcu_dereference_bh(scx_root); 4748 4749 if (bypass) { 4750 scx_bypass_depth++; 4751 WARN_ON_ONCE(scx_bypass_depth <= 0); 4752 if (scx_bypass_depth != 1) 4753 goto unlock; 4754 bypass_timestamp = ktime_get_ns(); 4755 if (sch) 4756 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 4757 } else { 4758 scx_bypass_depth--; 4759 WARN_ON_ONCE(scx_bypass_depth < 0); 4760 if (scx_bypass_depth != 0) 4761 goto unlock; 4762 if (sch) 4763 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 4764 ktime_get_ns() - bypass_timestamp); 4765 } 4766 4767 atomic_inc(&scx_breather_depth); 4768 4769 /* 4770 * No task property is changing. We just need to make sure all currently 4771 * queued tasks are re-queued according to the new scx_rq_bypassing() 4772 * state. As an optimization, walk each rq's runnable_list instead of 4773 * the scx_tasks list. 4774 * 4775 * This function can't trust the scheduler and thus can't use 4776 * cpus_read_lock(). Walk all possible CPUs instead of online. 4777 */ 4778 for_each_possible_cpu(cpu) { 4779 struct rq *rq = cpu_rq(cpu); 4780 struct task_struct *p, *n; 4781 4782 raw_spin_rq_lock(rq); 4783 4784 if (bypass) { 4785 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4786 rq->scx.flags |= SCX_RQ_BYPASSING; 4787 } else { 4788 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4789 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4790 } 4791 4792 /* 4793 * We need to guarantee that no tasks are on the BPF scheduler 4794 * while bypassing. Either we see enabled or the enable path 4795 * sees scx_rq_bypassing() before moving tasks to SCX. 4796 */ 4797 if (!scx_enabled()) { 4798 raw_spin_rq_unlock(rq); 4799 continue; 4800 } 4801 4802 /* 4803 * The use of list_for_each_entry_safe_reverse() is required 4804 * because each task is going to be removed from and added back 4805 * to the runnable_list during iteration. Because they're added 4806 * to the tail of the list, safe reverse iteration can still 4807 * visit all nodes. 4808 */ 4809 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4810 scx.runnable_node) { 4811 struct sched_enq_and_set_ctx ctx; 4812 4813 /* cycling deq/enq is enough, see the function comment */ 4814 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4815 sched_enq_and_set_task(&ctx); 4816 } 4817 4818 /* resched to restore ticks and idle state */ 4819 if (cpu_online(cpu) || cpu == smp_processor_id()) 4820 resched_curr(rq); 4821 4822 raw_spin_rq_unlock(rq); 4823 } 4824 4825 atomic_dec(&scx_breather_depth); 4826 unlock: 4827 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4828 scx_clear_softlockup(); 4829 } 4830 4831 static void free_exit_info(struct scx_exit_info *ei) 4832 { 4833 kvfree(ei->dump); 4834 kfree(ei->msg); 4835 kfree(ei->bt); 4836 kfree(ei); 4837 } 4838 4839 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4840 { 4841 struct scx_exit_info *ei; 4842 4843 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4844 if (!ei) 4845 return NULL; 4846 4847 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4848 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4849 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 4850 4851 if (!ei->bt || !ei->msg || !ei->dump) { 4852 free_exit_info(ei); 4853 return NULL; 4854 } 4855 4856 return ei; 4857 } 4858 4859 static const char *scx_exit_reason(enum scx_exit_kind kind) 4860 { 4861 switch (kind) { 4862 case SCX_EXIT_UNREG: 4863 return "unregistered from user space"; 4864 case SCX_EXIT_UNREG_BPF: 4865 return "unregistered from BPF"; 4866 case SCX_EXIT_UNREG_KERN: 4867 return "unregistered from the main kernel"; 4868 case SCX_EXIT_SYSRQ: 4869 return "disabled by sysrq-S"; 4870 case SCX_EXIT_ERROR: 4871 return "runtime error"; 4872 case SCX_EXIT_ERROR_BPF: 4873 return "scx_bpf_error"; 4874 case SCX_EXIT_ERROR_STALL: 4875 return "runnable task stall"; 4876 default: 4877 return "<UNKNOWN>"; 4878 } 4879 } 4880 4881 static void scx_disable_workfn(struct kthread_work *work) 4882 { 4883 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 4884 struct scx_exit_info *ei = sch->exit_info; 4885 struct scx_task_iter sti; 4886 struct task_struct *p; 4887 int kind, cpu; 4888 4889 kind = atomic_read(&sch->exit_kind); 4890 while (true) { 4891 if (kind == SCX_EXIT_DONE) /* already disabled? */ 4892 return; 4893 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 4894 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 4895 break; 4896 } 4897 ei->kind = kind; 4898 ei->reason = scx_exit_reason(ei->kind); 4899 4900 /* guarantee forward progress by bypassing scx_ops */ 4901 scx_bypass(true); 4902 4903 switch (scx_set_enable_state(SCX_DISABLING)) { 4904 case SCX_DISABLING: 4905 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4906 break; 4907 case SCX_DISABLED: 4908 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4909 sch->exit_info->msg); 4910 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4911 goto done; 4912 default: 4913 break; 4914 } 4915 4916 /* 4917 * Here, every runnable task is guaranteed to make forward progress and 4918 * we can safely use blocking synchronization constructs. Actually 4919 * disable ops. 4920 */ 4921 mutex_lock(&scx_enable_mutex); 4922 4923 static_branch_disable(&__scx_switched_all); 4924 WRITE_ONCE(scx_switching_all, false); 4925 4926 /* 4927 * Shut down cgroup support before tasks so that the cgroup attach path 4928 * doesn't race against scx_exit_task(). 4929 */ 4930 scx_cgroup_lock(); 4931 scx_cgroup_exit(sch); 4932 scx_cgroup_unlock(); 4933 4934 /* 4935 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4936 * must be switched out and exited synchronously. 4937 */ 4938 percpu_down_write(&scx_fork_rwsem); 4939 4940 scx_init_task_enabled = false; 4941 4942 scx_task_iter_start(&sti); 4943 while ((p = scx_task_iter_next_locked(&sti))) { 4944 const struct sched_class *old_class = p->sched_class; 4945 const struct sched_class *new_class = 4946 __setscheduler_class(p->policy, p->prio); 4947 struct sched_enq_and_set_ctx ctx; 4948 4949 if (old_class != new_class && p->se.sched_delayed) 4950 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4951 4952 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4953 4954 p->sched_class = new_class; 4955 check_class_changing(task_rq(p), p, old_class); 4956 4957 sched_enq_and_set_task(&ctx); 4958 4959 check_class_changed(task_rq(p), p, old_class, p->prio); 4960 scx_exit_task(p); 4961 } 4962 scx_task_iter_stop(&sti); 4963 percpu_up_write(&scx_fork_rwsem); 4964 4965 /* 4966 * Invalidate all the rq clocks to prevent getting outdated 4967 * rq clocks from a previous scx scheduler. 4968 */ 4969 for_each_possible_cpu(cpu) { 4970 struct rq *rq = cpu_rq(cpu); 4971 scx_rq_clock_invalidate(rq); 4972 } 4973 4974 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4975 static_branch_disable(&__scx_enabled); 4976 bitmap_zero(sch->has_op, SCX_OPI_END); 4977 scx_idle_disable(); 4978 synchronize_rcu(); 4979 4980 if (ei->kind >= SCX_EXIT_ERROR) { 4981 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4982 sch->ops.name, ei->reason); 4983 4984 if (ei->msg[0] != '\0') 4985 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 4986 #ifdef CONFIG_STACKTRACE 4987 stack_trace_print(ei->bt, ei->bt_len, 2); 4988 #endif 4989 } else { 4990 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4991 sch->ops.name, ei->reason); 4992 } 4993 4994 if (sch->ops.exit) 4995 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 4996 4997 cancel_delayed_work_sync(&scx_watchdog_work); 4998 4999 /* 5000 * scx_root clearing must be inside cpus_read_lock(). See 5001 * handle_hotplug(). 5002 */ 5003 cpus_read_lock(); 5004 RCU_INIT_POINTER(scx_root, NULL); 5005 cpus_read_unlock(); 5006 5007 /* 5008 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 5009 * could observe an object of the same name still in the hierarchy when 5010 * the next scheduler is loaded. 5011 */ 5012 kobject_del(&sch->kobj); 5013 5014 free_percpu(scx_dsp_ctx); 5015 scx_dsp_ctx = NULL; 5016 scx_dsp_max_batch = 0; 5017 5018 mutex_unlock(&scx_enable_mutex); 5019 5020 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 5021 done: 5022 scx_bypass(false); 5023 } 5024 5025 static void scx_disable(enum scx_exit_kind kind) 5026 { 5027 int none = SCX_EXIT_NONE; 5028 struct scx_sched *sch; 5029 5030 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 5031 kind = SCX_EXIT_ERROR; 5032 5033 rcu_read_lock(); 5034 sch = rcu_dereference(scx_root); 5035 if (sch) { 5036 atomic_try_cmpxchg(&sch->exit_kind, &none, kind); 5037 kthread_queue_work(sch->helper, &sch->disable_work); 5038 } 5039 rcu_read_unlock(); 5040 } 5041 5042 static void dump_newline(struct seq_buf *s) 5043 { 5044 trace_sched_ext_dump(""); 5045 5046 /* @s may be zero sized and seq_buf triggers WARN if so */ 5047 if (s->size) 5048 seq_buf_putc(s, '\n'); 5049 } 5050 5051 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 5052 { 5053 va_list args; 5054 5055 #ifdef CONFIG_TRACEPOINTS 5056 if (trace_sched_ext_dump_enabled()) { 5057 /* protected by scx_dump_state()::dump_lock */ 5058 static char line_buf[SCX_EXIT_MSG_LEN]; 5059 5060 va_start(args, fmt); 5061 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 5062 va_end(args); 5063 5064 trace_sched_ext_dump(line_buf); 5065 } 5066 #endif 5067 /* @s may be zero sized and seq_buf triggers WARN if so */ 5068 if (s->size) { 5069 va_start(args, fmt); 5070 seq_buf_vprintf(s, fmt, args); 5071 va_end(args); 5072 5073 seq_buf_putc(s, '\n'); 5074 } 5075 } 5076 5077 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 5078 const unsigned long *bt, unsigned int len) 5079 { 5080 unsigned int i; 5081 5082 for (i = 0; i < len; i++) 5083 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 5084 } 5085 5086 static void ops_dump_init(struct seq_buf *s, const char *prefix) 5087 { 5088 struct scx_dump_data *dd = &scx_dump_data; 5089 5090 lockdep_assert_irqs_disabled(); 5091 5092 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 5093 dd->first = true; 5094 dd->cursor = 0; 5095 dd->s = s; 5096 dd->prefix = prefix; 5097 } 5098 5099 static void ops_dump_flush(void) 5100 { 5101 struct scx_dump_data *dd = &scx_dump_data; 5102 char *line = dd->buf.line; 5103 5104 if (!dd->cursor) 5105 return; 5106 5107 /* 5108 * There's something to flush and this is the first line. Insert a blank 5109 * line to distinguish ops dump. 5110 */ 5111 if (dd->first) { 5112 dump_newline(dd->s); 5113 dd->first = false; 5114 } 5115 5116 /* 5117 * There may be multiple lines in $line. Scan and emit each line 5118 * separately. 5119 */ 5120 while (true) { 5121 char *end = line; 5122 char c; 5123 5124 while (*end != '\n' && *end != '\0') 5125 end++; 5126 5127 /* 5128 * If $line overflowed, it may not have newline at the end. 5129 * Always emit with a newline. 5130 */ 5131 c = *end; 5132 *end = '\0'; 5133 dump_line(dd->s, "%s%s", dd->prefix, line); 5134 if (c == '\0') 5135 break; 5136 5137 /* move to the next line */ 5138 end++; 5139 if (*end == '\0') 5140 break; 5141 line = end; 5142 } 5143 5144 dd->cursor = 0; 5145 } 5146 5147 static void ops_dump_exit(void) 5148 { 5149 ops_dump_flush(); 5150 scx_dump_data.cpu = -1; 5151 } 5152 5153 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 5154 struct task_struct *p, char marker) 5155 { 5156 static unsigned long bt[SCX_EXIT_BT_LEN]; 5157 struct scx_sched *sch = scx_root; 5158 char dsq_id_buf[19] = "(n/a)"; 5159 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 5160 unsigned int bt_len = 0; 5161 5162 if (p->scx.dsq) 5163 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 5164 (unsigned long long)p->scx.dsq->id); 5165 5166 dump_newline(s); 5167 dump_line(s, " %c%c %s[%d] %+ldms", 5168 marker, task_state_to_char(p), p->comm, p->pid, 5169 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 5170 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 5171 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 5172 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 5173 ops_state >> SCX_OPSS_QSEQ_SHIFT); 5174 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 5175 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 5176 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 5177 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 5178 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 5179 5180 if (SCX_HAS_OP(sch, dump_task)) { 5181 ops_dump_init(s, " "); 5182 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 5183 ops_dump_exit(); 5184 } 5185 5186 #ifdef CONFIG_STACKTRACE 5187 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 5188 #endif 5189 if (bt_len) { 5190 dump_newline(s); 5191 dump_stack_trace(s, " ", bt, bt_len); 5192 } 5193 } 5194 5195 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5196 { 5197 static DEFINE_SPINLOCK(dump_lock); 5198 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5199 struct scx_sched *sch = scx_root; 5200 struct scx_dump_ctx dctx = { 5201 .kind = ei->kind, 5202 .exit_code = ei->exit_code, 5203 .reason = ei->reason, 5204 .at_ns = ktime_get_ns(), 5205 .at_jiffies = jiffies, 5206 }; 5207 struct seq_buf s; 5208 struct scx_event_stats events; 5209 unsigned long flags; 5210 char *buf; 5211 int cpu; 5212 5213 spin_lock_irqsave(&dump_lock, flags); 5214 5215 seq_buf_init(&s, ei->dump, dump_len); 5216 5217 if (ei->kind == SCX_EXIT_NONE) { 5218 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5219 } else { 5220 dump_line(&s, "%s[%d] triggered exit kind %d:", 5221 current->comm, current->pid, ei->kind); 5222 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5223 dump_newline(&s); 5224 dump_line(&s, "Backtrace:"); 5225 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5226 } 5227 5228 if (SCX_HAS_OP(sch, dump)) { 5229 ops_dump_init(&s, ""); 5230 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 5231 ops_dump_exit(); 5232 } 5233 5234 dump_newline(&s); 5235 dump_line(&s, "CPU states"); 5236 dump_line(&s, "----------"); 5237 5238 for_each_possible_cpu(cpu) { 5239 struct rq *rq = cpu_rq(cpu); 5240 struct rq_flags rf; 5241 struct task_struct *p; 5242 struct seq_buf ns; 5243 size_t avail, used; 5244 bool idle; 5245 5246 rq_lock(rq, &rf); 5247 5248 idle = list_empty(&rq->scx.runnable_list) && 5249 rq->curr->sched_class == &idle_sched_class; 5250 5251 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 5252 goto next; 5253 5254 /* 5255 * We don't yet know whether ops.dump_cpu() will produce output 5256 * and we may want to skip the default CPU dump if it doesn't. 5257 * Use a nested seq_buf to generate the standard dump so that we 5258 * can decide whether to commit later. 5259 */ 5260 avail = seq_buf_get_buf(&s, &buf); 5261 seq_buf_init(&ns, buf, avail); 5262 5263 dump_newline(&ns); 5264 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5265 cpu, rq->scx.nr_running, rq->scx.flags, 5266 rq->scx.cpu_released, rq->scx.ops_qseq, 5267 rq->scx.pnt_seq); 5268 dump_line(&ns, " curr=%s[%d] class=%ps", 5269 rq->curr->comm, rq->curr->pid, 5270 rq->curr->sched_class); 5271 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5272 dump_line(&ns, " cpus_to_kick : %*pb", 5273 cpumask_pr_args(rq->scx.cpus_to_kick)); 5274 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5275 dump_line(&ns, " idle_to_kick : %*pb", 5276 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5277 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5278 dump_line(&ns, " cpus_to_preempt: %*pb", 5279 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5280 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5281 dump_line(&ns, " cpus_to_wait : %*pb", 5282 cpumask_pr_args(rq->scx.cpus_to_wait)); 5283 5284 used = seq_buf_used(&ns); 5285 if (SCX_HAS_OP(sch, dump_cpu)) { 5286 ops_dump_init(&ns, " "); 5287 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 5288 &dctx, cpu, idle); 5289 ops_dump_exit(); 5290 } 5291 5292 /* 5293 * If idle && nothing generated by ops.dump_cpu(), there's 5294 * nothing interesting. Skip. 5295 */ 5296 if (idle && used == seq_buf_used(&ns)) 5297 goto next; 5298 5299 /* 5300 * $s may already have overflowed when $ns was created. If so, 5301 * calling commit on it will trigger BUG. 5302 */ 5303 if (avail) { 5304 seq_buf_commit(&s, seq_buf_used(&ns)); 5305 if (seq_buf_has_overflowed(&ns)) 5306 seq_buf_set_overflow(&s); 5307 } 5308 5309 if (rq->curr->sched_class == &ext_sched_class) 5310 scx_dump_task(&s, &dctx, rq->curr, '*'); 5311 5312 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5313 scx_dump_task(&s, &dctx, p, ' '); 5314 next: 5315 rq_unlock(rq, &rf); 5316 } 5317 5318 dump_newline(&s); 5319 dump_line(&s, "Event counters"); 5320 dump_line(&s, "--------------"); 5321 5322 scx_read_events(sch, &events); 5323 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 5324 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 5325 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 5326 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 5327 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 5328 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 5329 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 5330 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 5331 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 5332 5333 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5334 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5335 trunc_marker, sizeof(trunc_marker)); 5336 5337 spin_unlock_irqrestore(&dump_lock, flags); 5338 } 5339 5340 static void scx_error_irq_workfn(struct irq_work *irq_work) 5341 { 5342 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 5343 struct scx_exit_info *ei = sch->exit_info; 5344 5345 if (ei->kind >= SCX_EXIT_ERROR) 5346 scx_dump_state(ei, sch->ops.exit_dump_len); 5347 5348 kthread_queue_work(sch->helper, &sch->disable_work); 5349 } 5350 5351 static void scx_vexit(struct scx_sched *sch, 5352 enum scx_exit_kind kind, s64 exit_code, 5353 const char *fmt, va_list args) 5354 { 5355 struct scx_exit_info *ei = sch->exit_info; 5356 int none = SCX_EXIT_NONE; 5357 5358 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 5359 return; 5360 5361 ei->exit_code = exit_code; 5362 #ifdef CONFIG_STACKTRACE 5363 if (kind >= SCX_EXIT_ERROR) 5364 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5365 #endif 5366 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5367 5368 /* 5369 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5370 * in scx_disable_workfn(). 5371 */ 5372 ei->kind = kind; 5373 ei->reason = scx_exit_reason(ei->kind); 5374 5375 irq_work_queue(&sch->error_irq_work); 5376 } 5377 5378 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 5379 { 5380 struct scx_sched *sch; 5381 int node, ret; 5382 5383 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 5384 if (!sch) 5385 return ERR_PTR(-ENOMEM); 5386 5387 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 5388 if (!sch->exit_info) { 5389 ret = -ENOMEM; 5390 goto err_free_sch; 5391 } 5392 5393 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 5394 if (ret < 0) 5395 goto err_free_ei; 5396 5397 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 5398 GFP_KERNEL); 5399 if (!sch->global_dsqs) { 5400 ret = -ENOMEM; 5401 goto err_free_hash; 5402 } 5403 5404 for_each_node_state(node, N_POSSIBLE) { 5405 struct scx_dispatch_q *dsq; 5406 5407 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5408 if (!dsq) { 5409 ret = -ENOMEM; 5410 goto err_free_gdsqs; 5411 } 5412 5413 init_dsq(dsq, SCX_DSQ_GLOBAL); 5414 sch->global_dsqs[node] = dsq; 5415 } 5416 5417 sch->event_stats_cpu = alloc_percpu(struct scx_event_stats); 5418 if (!sch->event_stats_cpu) 5419 goto err_free_gdsqs; 5420 5421 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 5422 if (!sch->helper) 5423 goto err_free_event_stats; 5424 sched_set_fifo(sch->helper->task); 5425 5426 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 5427 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 5428 kthread_init_work(&sch->disable_work, scx_disable_workfn); 5429 sch->ops = *ops; 5430 ops->priv = sch; 5431 5432 sch->kobj.kset = scx_kset; 5433 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 5434 if (ret < 0) 5435 goto err_stop_helper; 5436 5437 return sch; 5438 5439 err_stop_helper: 5440 kthread_stop(sch->helper->task); 5441 err_free_event_stats: 5442 free_percpu(sch->event_stats_cpu); 5443 err_free_gdsqs: 5444 for_each_node_state(node, N_POSSIBLE) 5445 kfree(sch->global_dsqs[node]); 5446 kfree(sch->global_dsqs); 5447 err_free_hash: 5448 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 5449 err_free_ei: 5450 free_exit_info(sch->exit_info); 5451 err_free_sch: 5452 kfree(sch); 5453 return ERR_PTR(ret); 5454 } 5455 5456 static void check_hotplug_seq(struct scx_sched *sch, 5457 const struct sched_ext_ops *ops) 5458 { 5459 unsigned long long global_hotplug_seq; 5460 5461 /* 5462 * If a hotplug event has occurred between when a scheduler was 5463 * initialized, and when we were able to attach, exit and notify user 5464 * space about it. 5465 */ 5466 if (ops->hotplug_seq) { 5467 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5468 if (ops->hotplug_seq != global_hotplug_seq) { 5469 scx_exit(sch, SCX_EXIT_UNREG_KERN, 5470 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5471 "expected hotplug seq %llu did not match actual %llu", 5472 ops->hotplug_seq, global_hotplug_seq); 5473 } 5474 } 5475 } 5476 5477 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 5478 { 5479 /* 5480 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5481 * ops.enqueue() callback isn't implemented. 5482 */ 5483 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5484 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5485 return -EINVAL; 5486 } 5487 5488 /* 5489 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 5490 * selection policy to be enabled. 5491 */ 5492 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 5493 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 5494 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 5495 return -EINVAL; 5496 } 5497 5498 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 5499 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 5500 5501 return 0; 5502 } 5503 5504 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5505 { 5506 struct scx_sched *sch; 5507 struct scx_task_iter sti; 5508 struct task_struct *p; 5509 unsigned long timeout; 5510 int i, cpu, ret; 5511 5512 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5513 cpu_possible_mask)) { 5514 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5515 return -EINVAL; 5516 } 5517 5518 mutex_lock(&scx_enable_mutex); 5519 5520 if (scx_enable_state() != SCX_DISABLED) { 5521 ret = -EBUSY; 5522 goto err_unlock; 5523 } 5524 5525 sch = scx_alloc_and_add_sched(ops); 5526 if (IS_ERR(sch)) { 5527 ret = PTR_ERR(sch); 5528 goto err_unlock; 5529 } 5530 5531 /* 5532 * Transition to ENABLING and clear exit info to arm the disable path. 5533 * Failure triggers full disabling from here on. 5534 */ 5535 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 5536 WARN_ON_ONCE(scx_root); 5537 5538 atomic_long_set(&scx_nr_rejected, 0); 5539 5540 for_each_possible_cpu(cpu) 5541 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5542 5543 /* 5544 * Keep CPUs stable during enable so that the BPF scheduler can track 5545 * online CPUs by watching ->on/offline_cpu() after ->init(). 5546 */ 5547 cpus_read_lock(); 5548 5549 /* 5550 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 5551 * See handle_hotplug(). 5552 */ 5553 rcu_assign_pointer(scx_root, sch); 5554 5555 scx_idle_enable(ops); 5556 5557 if (sch->ops.init) { 5558 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 5559 if (ret) { 5560 ret = ops_sanitize_err(sch, "init", ret); 5561 cpus_read_unlock(); 5562 scx_error(sch, "ops.init() failed (%d)", ret); 5563 goto err_disable; 5564 } 5565 } 5566 5567 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5568 if (((void (**)(void))ops)[i]) 5569 set_bit(i, sch->has_op); 5570 5571 check_hotplug_seq(sch, ops); 5572 scx_idle_update_selcpu_topology(ops); 5573 5574 cpus_read_unlock(); 5575 5576 ret = validate_ops(sch, ops); 5577 if (ret) 5578 goto err_disable; 5579 5580 WARN_ON_ONCE(scx_dsp_ctx); 5581 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5582 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5583 scx_dsp_max_batch), 5584 __alignof__(struct scx_dsp_ctx)); 5585 if (!scx_dsp_ctx) { 5586 ret = -ENOMEM; 5587 goto err_disable; 5588 } 5589 5590 if (ops->timeout_ms) 5591 timeout = msecs_to_jiffies(ops->timeout_ms); 5592 else 5593 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5594 5595 WRITE_ONCE(scx_watchdog_timeout, timeout); 5596 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5597 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5598 scx_watchdog_timeout / 2); 5599 5600 /* 5601 * Once __scx_enabled is set, %current can be switched to SCX anytime. 5602 * This can lead to stalls as some BPF schedulers (e.g. userspace 5603 * scheduling) may not function correctly before all tasks are switched. 5604 * Init in bypass mode to guarantee forward progress. 5605 */ 5606 scx_bypass(true); 5607 5608 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5609 if (((void (**)(void))ops)[i]) 5610 set_bit(i, sch->has_op); 5611 5612 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 5613 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 5614 5615 /* 5616 * Lock out forks, cgroup on/offlining and moves before opening the 5617 * floodgate so that they don't wander into the operations prematurely. 5618 */ 5619 percpu_down_write(&scx_fork_rwsem); 5620 5621 WARN_ON_ONCE(scx_init_task_enabled); 5622 scx_init_task_enabled = true; 5623 5624 /* 5625 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5626 * preventing new tasks from being added. No need to exclude tasks 5627 * leaving as sched_ext_free() can handle both prepped and enabled 5628 * tasks. Prep all tasks first and then enable them with preemption 5629 * disabled. 5630 * 5631 * All cgroups should be initialized before scx_init_task() so that the 5632 * BPF scheduler can reliably track each task's cgroup membership from 5633 * scx_init_task(). Lock out cgroup on/offlining and task migrations 5634 * while tasks are being initialized so that scx_cgroup_can_attach() 5635 * never sees uninitialized tasks. 5636 */ 5637 scx_cgroup_lock(); 5638 ret = scx_cgroup_init(sch); 5639 if (ret) 5640 goto err_disable_unlock_all; 5641 5642 scx_task_iter_start(&sti); 5643 while ((p = scx_task_iter_next_locked(&sti))) { 5644 /* 5645 * @p may already be dead, have lost all its usages counts and 5646 * be waiting for RCU grace period before being freed. @p can't 5647 * be initialized for SCX in such cases and should be ignored. 5648 */ 5649 if (!tryget_task_struct(p)) 5650 continue; 5651 5652 scx_task_iter_unlock(&sti); 5653 5654 ret = scx_init_task(p, task_group(p), false); 5655 if (ret) { 5656 put_task_struct(p); 5657 scx_task_iter_relock(&sti); 5658 scx_task_iter_stop(&sti); 5659 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 5660 ret, p->comm, p->pid); 5661 goto err_disable_unlock_all; 5662 } 5663 5664 scx_set_task_state(p, SCX_TASK_READY); 5665 5666 put_task_struct(p); 5667 scx_task_iter_relock(&sti); 5668 } 5669 scx_task_iter_stop(&sti); 5670 scx_cgroup_unlock(); 5671 percpu_up_write(&scx_fork_rwsem); 5672 5673 /* 5674 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5675 * all eligible tasks. 5676 */ 5677 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5678 static_branch_enable(&__scx_enabled); 5679 5680 /* 5681 * We're fully committed and can't fail. The task READY -> ENABLED 5682 * transitions here are synchronized against sched_ext_free() through 5683 * scx_tasks_lock. 5684 */ 5685 percpu_down_write(&scx_fork_rwsem); 5686 scx_task_iter_start(&sti); 5687 while ((p = scx_task_iter_next_locked(&sti))) { 5688 const struct sched_class *old_class = p->sched_class; 5689 const struct sched_class *new_class = 5690 __setscheduler_class(p->policy, p->prio); 5691 struct sched_enq_and_set_ctx ctx; 5692 5693 if (old_class != new_class && p->se.sched_delayed) 5694 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5695 5696 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5697 5698 p->scx.slice = SCX_SLICE_DFL; 5699 p->sched_class = new_class; 5700 check_class_changing(task_rq(p), p, old_class); 5701 5702 sched_enq_and_set_task(&ctx); 5703 5704 check_class_changed(task_rq(p), p, old_class, p->prio); 5705 } 5706 scx_task_iter_stop(&sti); 5707 percpu_up_write(&scx_fork_rwsem); 5708 5709 scx_bypass(false); 5710 5711 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 5712 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 5713 goto err_disable; 5714 } 5715 5716 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5717 static_branch_enable(&__scx_switched_all); 5718 5719 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5720 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 5721 kobject_uevent(&sch->kobj, KOBJ_ADD); 5722 mutex_unlock(&scx_enable_mutex); 5723 5724 atomic_long_inc(&scx_enable_seq); 5725 5726 return 0; 5727 5728 err_unlock: 5729 mutex_unlock(&scx_enable_mutex); 5730 return ret; 5731 5732 err_disable_unlock_all: 5733 scx_cgroup_unlock(); 5734 percpu_up_write(&scx_fork_rwsem); 5735 scx_bypass(false); 5736 err_disable: 5737 mutex_unlock(&scx_enable_mutex); 5738 /* 5739 * Returning an error code here would not pass all the error information 5740 * to userspace. Record errno using scx_error() for cases scx_error() 5741 * wasn't already invoked and exit indicating success so that the error 5742 * is notified through ops.exit() with all the details. 5743 * 5744 * Flush scx_disable_work to ensure that error is reported before init 5745 * completion. sch's base reference will be put by bpf_scx_unreg(). 5746 */ 5747 scx_error(sch, "scx_enable() failed (%d)", ret); 5748 kthread_flush_work(&sch->disable_work); 5749 return 0; 5750 } 5751 5752 5753 /******************************************************************************** 5754 * bpf_struct_ops plumbing. 5755 */ 5756 #include <linux/bpf_verifier.h> 5757 #include <linux/bpf.h> 5758 #include <linux/btf.h> 5759 5760 static const struct btf_type *task_struct_type; 5761 5762 static bool bpf_scx_is_valid_access(int off, int size, 5763 enum bpf_access_type type, 5764 const struct bpf_prog *prog, 5765 struct bpf_insn_access_aux *info) 5766 { 5767 if (type != BPF_READ) 5768 return false; 5769 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5770 return false; 5771 if (off % size != 0) 5772 return false; 5773 5774 return btf_ctx_access(off, size, type, prog, info); 5775 } 5776 5777 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5778 const struct bpf_reg_state *reg, int off, 5779 int size) 5780 { 5781 const struct btf_type *t; 5782 5783 t = btf_type_by_id(reg->btf, reg->btf_id); 5784 if (t == task_struct_type) { 5785 if (off >= offsetof(struct task_struct, scx.slice) && 5786 off + size <= offsetofend(struct task_struct, scx.slice)) 5787 return SCALAR_VALUE; 5788 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5789 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5790 return SCALAR_VALUE; 5791 if (off >= offsetof(struct task_struct, scx.disallow) && 5792 off + size <= offsetofend(struct task_struct, scx.disallow)) 5793 return SCALAR_VALUE; 5794 } 5795 5796 return -EACCES; 5797 } 5798 5799 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5800 .get_func_proto = bpf_base_func_proto, 5801 .is_valid_access = bpf_scx_is_valid_access, 5802 .btf_struct_access = bpf_scx_btf_struct_access, 5803 }; 5804 5805 static int bpf_scx_init_member(const struct btf_type *t, 5806 const struct btf_member *member, 5807 void *kdata, const void *udata) 5808 { 5809 const struct sched_ext_ops *uops = udata; 5810 struct sched_ext_ops *ops = kdata; 5811 u32 moff = __btf_member_bit_offset(t, member) / 8; 5812 int ret; 5813 5814 switch (moff) { 5815 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5816 if (*(u32 *)(udata + moff) > INT_MAX) 5817 return -E2BIG; 5818 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5819 return 1; 5820 case offsetof(struct sched_ext_ops, flags): 5821 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5822 return -EINVAL; 5823 ops->flags = *(u64 *)(udata + moff); 5824 return 1; 5825 case offsetof(struct sched_ext_ops, name): 5826 ret = bpf_obj_name_cpy(ops->name, uops->name, 5827 sizeof(ops->name)); 5828 if (ret < 0) 5829 return ret; 5830 if (ret == 0) 5831 return -EINVAL; 5832 return 1; 5833 case offsetof(struct sched_ext_ops, timeout_ms): 5834 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5835 SCX_WATCHDOG_MAX_TIMEOUT) 5836 return -E2BIG; 5837 ops->timeout_ms = *(u32 *)(udata + moff); 5838 return 1; 5839 case offsetof(struct sched_ext_ops, exit_dump_len): 5840 ops->exit_dump_len = 5841 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5842 return 1; 5843 case offsetof(struct sched_ext_ops, hotplug_seq): 5844 ops->hotplug_seq = *(u64 *)(udata + moff); 5845 return 1; 5846 } 5847 5848 return 0; 5849 } 5850 5851 static int bpf_scx_check_member(const struct btf_type *t, 5852 const struct btf_member *member, 5853 const struct bpf_prog *prog) 5854 { 5855 u32 moff = __btf_member_bit_offset(t, member) / 8; 5856 5857 switch (moff) { 5858 case offsetof(struct sched_ext_ops, init_task): 5859 #ifdef CONFIG_EXT_GROUP_SCHED 5860 case offsetof(struct sched_ext_ops, cgroup_init): 5861 case offsetof(struct sched_ext_ops, cgroup_exit): 5862 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5863 #endif 5864 case offsetof(struct sched_ext_ops, cpu_online): 5865 case offsetof(struct sched_ext_ops, cpu_offline): 5866 case offsetof(struct sched_ext_ops, init): 5867 case offsetof(struct sched_ext_ops, exit): 5868 break; 5869 default: 5870 if (prog->sleepable) 5871 return -EINVAL; 5872 } 5873 5874 return 0; 5875 } 5876 5877 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5878 { 5879 return scx_enable(kdata, link); 5880 } 5881 5882 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5883 { 5884 struct sched_ext_ops *ops = kdata; 5885 struct scx_sched *sch = ops->priv; 5886 5887 scx_disable(SCX_EXIT_UNREG); 5888 kthread_flush_work(&sch->disable_work); 5889 kobject_put(&sch->kobj); 5890 } 5891 5892 static int bpf_scx_init(struct btf *btf) 5893 { 5894 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5895 5896 return 0; 5897 } 5898 5899 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5900 { 5901 /* 5902 * sched_ext does not support updating the actively-loaded BPF 5903 * scheduler, as registering a BPF scheduler can always fail if the 5904 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5905 * etc. Similarly, we can always race with unregistration happening 5906 * elsewhere, such as with sysrq. 5907 */ 5908 return -EOPNOTSUPP; 5909 } 5910 5911 static int bpf_scx_validate(void *kdata) 5912 { 5913 return 0; 5914 } 5915 5916 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5917 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5918 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5919 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5920 static void sched_ext_ops__tick(struct task_struct *p) {} 5921 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5922 static void sched_ext_ops__running(struct task_struct *p) {} 5923 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5924 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5925 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5926 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5927 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5928 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5929 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5930 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5931 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5932 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5933 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5934 static void sched_ext_ops__enable(struct task_struct *p) {} 5935 static void sched_ext_ops__disable(struct task_struct *p) {} 5936 #ifdef CONFIG_EXT_GROUP_SCHED 5937 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5938 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5939 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5940 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5941 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5942 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5943 #endif 5944 static void sched_ext_ops__cpu_online(s32 cpu) {} 5945 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5946 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5947 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5948 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5949 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5950 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5951 5952 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5953 .select_cpu = sched_ext_ops__select_cpu, 5954 .enqueue = sched_ext_ops__enqueue, 5955 .dequeue = sched_ext_ops__dequeue, 5956 .dispatch = sched_ext_ops__dispatch, 5957 .tick = sched_ext_ops__tick, 5958 .runnable = sched_ext_ops__runnable, 5959 .running = sched_ext_ops__running, 5960 .stopping = sched_ext_ops__stopping, 5961 .quiescent = sched_ext_ops__quiescent, 5962 .yield = sched_ext_ops__yield, 5963 .core_sched_before = sched_ext_ops__core_sched_before, 5964 .set_weight = sched_ext_ops__set_weight, 5965 .set_cpumask = sched_ext_ops__set_cpumask, 5966 .update_idle = sched_ext_ops__update_idle, 5967 .cpu_acquire = sched_ext_ops__cpu_acquire, 5968 .cpu_release = sched_ext_ops__cpu_release, 5969 .init_task = sched_ext_ops__init_task, 5970 .exit_task = sched_ext_ops__exit_task, 5971 .enable = sched_ext_ops__enable, 5972 .disable = sched_ext_ops__disable, 5973 #ifdef CONFIG_EXT_GROUP_SCHED 5974 .cgroup_init = sched_ext_ops__cgroup_init, 5975 .cgroup_exit = sched_ext_ops__cgroup_exit, 5976 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5977 .cgroup_move = sched_ext_ops__cgroup_move, 5978 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5979 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5980 #endif 5981 .cpu_online = sched_ext_ops__cpu_online, 5982 .cpu_offline = sched_ext_ops__cpu_offline, 5983 .init = sched_ext_ops__init, 5984 .exit = sched_ext_ops__exit, 5985 .dump = sched_ext_ops__dump, 5986 .dump_cpu = sched_ext_ops__dump_cpu, 5987 .dump_task = sched_ext_ops__dump_task, 5988 }; 5989 5990 static struct bpf_struct_ops bpf_sched_ext_ops = { 5991 .verifier_ops = &bpf_scx_verifier_ops, 5992 .reg = bpf_scx_reg, 5993 .unreg = bpf_scx_unreg, 5994 .check_member = bpf_scx_check_member, 5995 .init_member = bpf_scx_init_member, 5996 .init = bpf_scx_init, 5997 .update = bpf_scx_update, 5998 .validate = bpf_scx_validate, 5999 .name = "sched_ext_ops", 6000 .owner = THIS_MODULE, 6001 .cfi_stubs = &__bpf_ops_sched_ext_ops 6002 }; 6003 6004 6005 /******************************************************************************** 6006 * System integration and init. 6007 */ 6008 6009 static void sysrq_handle_sched_ext_reset(u8 key) 6010 { 6011 scx_disable(SCX_EXIT_SYSRQ); 6012 } 6013 6014 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 6015 .handler = sysrq_handle_sched_ext_reset, 6016 .help_msg = "reset-sched-ext(S)", 6017 .action_msg = "Disable sched_ext and revert all tasks to CFS", 6018 .enable_mask = SYSRQ_ENABLE_RTNICE, 6019 }; 6020 6021 static void sysrq_handle_sched_ext_dump(u8 key) 6022 { 6023 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 6024 6025 if (scx_enabled()) 6026 scx_dump_state(&ei, 0); 6027 } 6028 6029 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 6030 .handler = sysrq_handle_sched_ext_dump, 6031 .help_msg = "dump-sched-ext(D)", 6032 .action_msg = "Trigger sched_ext debug dump", 6033 .enable_mask = SYSRQ_ENABLE_RTNICE, 6034 }; 6035 6036 static bool can_skip_idle_kick(struct rq *rq) 6037 { 6038 lockdep_assert_rq_held(rq); 6039 6040 /* 6041 * We can skip idle kicking if @rq is going to go through at least one 6042 * full SCX scheduling cycle before going idle. Just checking whether 6043 * curr is not idle is insufficient because we could be racing 6044 * balance_one() trying to pull the next task from a remote rq, which 6045 * may fail, and @rq may become idle afterwards. 6046 * 6047 * The race window is small and we don't and can't guarantee that @rq is 6048 * only kicked while idle anyway. Skip only when sure. 6049 */ 6050 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 6051 } 6052 6053 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 6054 { 6055 struct rq *rq = cpu_rq(cpu); 6056 struct scx_rq *this_scx = &this_rq->scx; 6057 bool should_wait = false; 6058 unsigned long flags; 6059 6060 raw_spin_rq_lock_irqsave(rq, flags); 6061 6062 /* 6063 * During CPU hotplug, a CPU may depend on kicking itself to make 6064 * forward progress. Allow kicking self regardless of online state. 6065 */ 6066 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 6067 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 6068 if (rq->curr->sched_class == &ext_sched_class) 6069 rq->curr->scx.slice = 0; 6070 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6071 } 6072 6073 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 6074 pseqs[cpu] = rq->scx.pnt_seq; 6075 should_wait = true; 6076 } 6077 6078 resched_curr(rq); 6079 } else { 6080 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 6081 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6082 } 6083 6084 raw_spin_rq_unlock_irqrestore(rq, flags); 6085 6086 return should_wait; 6087 } 6088 6089 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 6090 { 6091 struct rq *rq = cpu_rq(cpu); 6092 unsigned long flags; 6093 6094 raw_spin_rq_lock_irqsave(rq, flags); 6095 6096 if (!can_skip_idle_kick(rq) && 6097 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 6098 resched_curr(rq); 6099 6100 raw_spin_rq_unlock_irqrestore(rq, flags); 6101 } 6102 6103 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 6104 { 6105 struct rq *this_rq = this_rq(); 6106 struct scx_rq *this_scx = &this_rq->scx; 6107 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 6108 bool should_wait = false; 6109 s32 cpu; 6110 6111 for_each_cpu(cpu, this_scx->cpus_to_kick) { 6112 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 6113 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 6114 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6115 } 6116 6117 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 6118 kick_one_cpu_if_idle(cpu, this_rq); 6119 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 6120 } 6121 6122 if (!should_wait) 6123 return; 6124 6125 for_each_cpu(cpu, this_scx->cpus_to_wait) { 6126 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 6127 6128 if (cpu != cpu_of(this_rq)) { 6129 /* 6130 * Pairs with smp_store_release() issued by this CPU in 6131 * switch_class() on the resched path. 6132 * 6133 * We busy-wait here to guarantee that no other task can 6134 * be scheduled on our core before the target CPU has 6135 * entered the resched path. 6136 */ 6137 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 6138 cpu_relax(); 6139 } 6140 6141 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 6142 } 6143 } 6144 6145 /** 6146 * print_scx_info - print out sched_ext scheduler state 6147 * @log_lvl: the log level to use when printing 6148 * @p: target task 6149 * 6150 * If a sched_ext scheduler is enabled, print the name and state of the 6151 * scheduler. If @p is on sched_ext, print further information about the task. 6152 * 6153 * This function can be safely called on any task as long as the task_struct 6154 * itself is accessible. While safe, this function isn't synchronized and may 6155 * print out mixups or garbages of limited length. 6156 */ 6157 void print_scx_info(const char *log_lvl, struct task_struct *p) 6158 { 6159 struct scx_sched *sch = scx_root; 6160 enum scx_enable_state state = scx_enable_state(); 6161 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 6162 char runnable_at_buf[22] = "?"; 6163 struct sched_class *class; 6164 unsigned long runnable_at; 6165 6166 if (state == SCX_DISABLED) 6167 return; 6168 6169 /* 6170 * Carefully check if the task was running on sched_ext, and then 6171 * carefully copy the time it's been runnable, and its state. 6172 */ 6173 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 6174 class != &ext_sched_class) { 6175 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 6176 scx_enable_state_str[state], all); 6177 return; 6178 } 6179 6180 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 6181 sizeof(runnable_at))) 6182 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6183 jiffies_delta_msecs(runnable_at, jiffies)); 6184 6185 /* print everything onto one line to conserve console space */ 6186 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6187 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 6188 runnable_at_buf); 6189 } 6190 6191 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6192 { 6193 /* 6194 * SCX schedulers often have userspace components which are sometimes 6195 * involved in critial scheduling paths. PM operations involve freezing 6196 * userspace which can lead to scheduling misbehaviors including stalls. 6197 * Let's bypass while PM operations are in progress. 6198 */ 6199 switch (event) { 6200 case PM_HIBERNATION_PREPARE: 6201 case PM_SUSPEND_PREPARE: 6202 case PM_RESTORE_PREPARE: 6203 scx_bypass(true); 6204 break; 6205 case PM_POST_HIBERNATION: 6206 case PM_POST_SUSPEND: 6207 case PM_POST_RESTORE: 6208 scx_bypass(false); 6209 break; 6210 } 6211 6212 return NOTIFY_OK; 6213 } 6214 6215 static struct notifier_block scx_pm_notifier = { 6216 .notifier_call = scx_pm_handler, 6217 }; 6218 6219 void __init init_sched_ext_class(void) 6220 { 6221 s32 cpu, v; 6222 6223 /* 6224 * The following is to prevent the compiler from optimizing out the enum 6225 * definitions so that BPF scheduler implementations can use them 6226 * through the generated vmlinux.h. 6227 */ 6228 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6229 SCX_TG_ONLINE); 6230 6231 scx_idle_init_masks(); 6232 6233 scx_kick_cpus_pnt_seqs = 6234 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6235 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6236 BUG_ON(!scx_kick_cpus_pnt_seqs); 6237 6238 for_each_possible_cpu(cpu) { 6239 struct rq *rq = cpu_rq(cpu); 6240 int n = cpu_to_node(cpu); 6241 6242 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6243 INIT_LIST_HEAD(&rq->scx.runnable_list); 6244 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6245 6246 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 6247 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 6248 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 6249 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 6250 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6251 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6252 6253 if (cpu_online(cpu)) 6254 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6255 } 6256 6257 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6258 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6259 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6260 } 6261 6262 6263 /******************************************************************************** 6264 * Helpers that can be called from the BPF scheduler. 6265 */ 6266 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6267 { 6268 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6269 return false; 6270 6271 lockdep_assert_irqs_disabled(); 6272 6273 if (unlikely(!p)) { 6274 scx_kf_error("called with NULL task"); 6275 return false; 6276 } 6277 6278 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6279 scx_kf_error("invalid enq_flags 0x%llx", enq_flags); 6280 return false; 6281 } 6282 6283 return true; 6284 } 6285 6286 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6287 u64 enq_flags) 6288 { 6289 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6290 struct task_struct *ddsp_task; 6291 6292 ddsp_task = __this_cpu_read(direct_dispatch_task); 6293 if (ddsp_task) { 6294 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6295 return; 6296 } 6297 6298 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6299 scx_kf_error("dispatch buffer overflow"); 6300 return; 6301 } 6302 6303 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6304 .task = p, 6305 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6306 .dsq_id = dsq_id, 6307 .enq_flags = enq_flags, 6308 }; 6309 } 6310 6311 __bpf_kfunc_start_defs(); 6312 6313 /** 6314 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6315 * @p: task_struct to insert 6316 * @dsq_id: DSQ to insert into 6317 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6318 * @enq_flags: SCX_ENQ_* 6319 * 6320 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6321 * call this function spuriously. Can be called from ops.enqueue(), 6322 * ops.select_cpu(), and ops.dispatch(). 6323 * 6324 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6325 * and @p must match the task being enqueued. 6326 * 6327 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6328 * will be directly inserted into the corresponding dispatch queue after 6329 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6330 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6331 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6332 * task is inserted. 6333 * 6334 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6335 * and this function can be called upto ops.dispatch_max_batch times to insert 6336 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6337 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6338 * 6339 * This function doesn't have any locking restrictions and may be called under 6340 * BPF locks (in the future when BPF introduces more flexible locking). 6341 * 6342 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6343 * exhaustion. If zero, the current residual slice is maintained. If 6344 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6345 * scx_bpf_kick_cpu() to trigger scheduling. 6346 */ 6347 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6348 u64 enq_flags) 6349 { 6350 if (!scx_dsq_insert_preamble(p, enq_flags)) 6351 return; 6352 6353 if (slice) 6354 p->scx.slice = slice; 6355 else 6356 p->scx.slice = p->scx.slice ?: 1; 6357 6358 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6359 } 6360 6361 /* for backward compatibility, will be removed in v6.15 */ 6362 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6363 u64 enq_flags) 6364 { 6365 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6366 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6367 } 6368 6369 /** 6370 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6371 * @p: task_struct to insert 6372 * @dsq_id: DSQ to insert into 6373 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6374 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6375 * @enq_flags: SCX_ENQ_* 6376 * 6377 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6378 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6379 * are identical to scx_bpf_dsq_insert(). 6380 * 6381 * @vtime ordering is according to time_before64() which considers wrapping. A 6382 * numerically larger vtime may indicate an earlier position in the ordering and 6383 * vice-versa. 6384 * 6385 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6386 * function must not be called on a DSQ which already has one or more FIFO tasks 6387 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6388 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6389 */ 6390 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6391 u64 slice, u64 vtime, u64 enq_flags) 6392 { 6393 if (!scx_dsq_insert_preamble(p, enq_flags)) 6394 return; 6395 6396 if (slice) 6397 p->scx.slice = slice; 6398 else 6399 p->scx.slice = p->scx.slice ?: 1; 6400 6401 p->scx.dsq_vtime = vtime; 6402 6403 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6404 } 6405 6406 /* for backward compatibility, will be removed in v6.15 */ 6407 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6408 u64 slice, u64 vtime, u64 enq_flags) 6409 { 6410 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6411 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6412 } 6413 6414 __bpf_kfunc_end_defs(); 6415 6416 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6417 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6418 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6419 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6420 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6421 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6422 6423 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6424 .owner = THIS_MODULE, 6425 .set = &scx_kfunc_ids_enqueue_dispatch, 6426 }; 6427 6428 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 6429 struct task_struct *p, u64 dsq_id, u64 enq_flags) 6430 { 6431 struct scx_sched *sch = scx_root; 6432 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6433 struct rq *this_rq, *src_rq, *locked_rq; 6434 bool dispatched = false; 6435 bool in_balance; 6436 unsigned long flags; 6437 6438 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6439 return false; 6440 6441 /* 6442 * Can be called from either ops.dispatch() locking this_rq() or any 6443 * context where no rq lock is held. If latter, lock @p's task_rq which 6444 * we'll likely need anyway. 6445 */ 6446 src_rq = task_rq(p); 6447 6448 local_irq_save(flags); 6449 this_rq = this_rq(); 6450 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6451 6452 if (in_balance) { 6453 if (this_rq != src_rq) { 6454 raw_spin_rq_unlock(this_rq); 6455 raw_spin_rq_lock(src_rq); 6456 } 6457 } else { 6458 raw_spin_rq_lock(src_rq); 6459 } 6460 6461 /* 6462 * If the BPF scheduler keeps calling this function repeatedly, it can 6463 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6464 * breather if necessary. 6465 */ 6466 scx_breather(src_rq); 6467 6468 locked_rq = src_rq; 6469 raw_spin_lock(&src_dsq->lock); 6470 6471 /* 6472 * Did someone else get to it? @p could have already left $src_dsq, got 6473 * re-enqueud, or be in the process of being consumed by someone else. 6474 */ 6475 if (unlikely(p->scx.dsq != src_dsq || 6476 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6477 p->scx.holding_cpu >= 0) || 6478 WARN_ON_ONCE(src_rq != task_rq(p))) { 6479 raw_spin_unlock(&src_dsq->lock); 6480 goto out; 6481 } 6482 6483 /* @p is still on $src_dsq and stable, determine the destination */ 6484 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 6485 6486 /* 6487 * Apply vtime and slice updates before moving so that the new time is 6488 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6489 * this is safe as we're locking it. 6490 */ 6491 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6492 p->scx.dsq_vtime = kit->vtime; 6493 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6494 p->scx.slice = kit->slice; 6495 6496 /* execute move */ 6497 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 6498 dispatched = true; 6499 out: 6500 if (in_balance) { 6501 if (this_rq != locked_rq) { 6502 raw_spin_rq_unlock(locked_rq); 6503 raw_spin_rq_lock(this_rq); 6504 } 6505 } else { 6506 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6507 } 6508 6509 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6510 __SCX_DSQ_ITER_HAS_VTIME); 6511 return dispatched; 6512 } 6513 6514 __bpf_kfunc_start_defs(); 6515 6516 /** 6517 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6518 * 6519 * Can only be called from ops.dispatch(). 6520 */ 6521 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6522 { 6523 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6524 return 0; 6525 6526 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6527 } 6528 6529 /** 6530 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6531 * 6532 * Cancel the latest dispatch. Can be called multiple times to cancel further 6533 * dispatches. Can only be called from ops.dispatch(). 6534 */ 6535 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6536 { 6537 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6538 6539 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6540 return; 6541 6542 if (dspc->cursor > 0) 6543 dspc->cursor--; 6544 else 6545 scx_kf_error("dispatch buffer underflow"); 6546 } 6547 6548 /** 6549 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6550 * @dsq_id: DSQ to move task from 6551 * 6552 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6553 * local DSQ for execution. Can only be called from ops.dispatch(). 6554 * 6555 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6556 * before trying to move from the specified DSQ. It may also grab rq locks and 6557 * thus can't be called under any BPF locks. 6558 * 6559 * Returns %true if a task has been moved, %false if there isn't any task to 6560 * move. 6561 */ 6562 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6563 { 6564 struct scx_sched *sch = scx_root; 6565 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6566 struct scx_dispatch_q *dsq; 6567 6568 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6569 return false; 6570 6571 flush_dispatch_buf(sch, dspc->rq); 6572 6573 dsq = find_user_dsq(sch, dsq_id); 6574 if (unlikely(!dsq)) { 6575 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 6576 return false; 6577 } 6578 6579 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 6580 /* 6581 * A successfully consumed task can be dequeued before it starts 6582 * running while the CPU is trying to migrate other dispatched 6583 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6584 * local DSQ. 6585 */ 6586 dspc->nr_tasks++; 6587 return true; 6588 } else { 6589 return false; 6590 } 6591 } 6592 6593 /* for backward compatibility, will be removed in v6.15 */ 6594 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6595 { 6596 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6597 return scx_bpf_dsq_move_to_local(dsq_id); 6598 } 6599 6600 /** 6601 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6602 * @it__iter: DSQ iterator in progress 6603 * @slice: duration the moved task can run for in nsecs 6604 * 6605 * Override the slice of the next task that will be moved from @it__iter using 6606 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6607 * slice duration is kept. 6608 */ 6609 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6610 u64 slice) 6611 { 6612 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6613 6614 kit->slice = slice; 6615 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6616 } 6617 6618 /* for backward compatibility, will be removed in v6.15 */ 6619 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6620 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6621 { 6622 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()"); 6623 scx_bpf_dsq_move_set_slice(it__iter, slice); 6624 } 6625 6626 /** 6627 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6628 * @it__iter: DSQ iterator in progress 6629 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6630 * 6631 * Override the vtime of the next task that will be moved from @it__iter using 6632 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6633 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6634 * override is ignored and cleared. 6635 */ 6636 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6637 u64 vtime) 6638 { 6639 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6640 6641 kit->vtime = vtime; 6642 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6643 } 6644 6645 /* for backward compatibility, will be removed in v6.15 */ 6646 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6647 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6648 { 6649 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()"); 6650 scx_bpf_dsq_move_set_vtime(it__iter, vtime); 6651 } 6652 6653 /** 6654 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6655 * @it__iter: DSQ iterator in progress 6656 * @p: task to transfer 6657 * @dsq_id: DSQ to move @p to 6658 * @enq_flags: SCX_ENQ_* 6659 * 6660 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6661 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6662 * be the destination. 6663 * 6664 * For the transfer to be successful, @p must still be on the DSQ and have been 6665 * queued before the DSQ iteration started. This function doesn't care whether 6666 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6667 * been queued before the iteration started. 6668 * 6669 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6670 * 6671 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6672 * lock (e.g. BPF timers or SYSCALL programs). 6673 * 6674 * Returns %true if @p has been consumed, %false if @p had already been consumed 6675 * or dequeued. 6676 */ 6677 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6678 struct task_struct *p, u64 dsq_id, 6679 u64 enq_flags) 6680 { 6681 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6682 p, dsq_id, enq_flags); 6683 } 6684 6685 /* for backward compatibility, will be removed in v6.15 */ 6686 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6687 struct task_struct *p, u64 dsq_id, 6688 u64 enq_flags) 6689 { 6690 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()"); 6691 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags); 6692 } 6693 6694 /** 6695 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6696 * @it__iter: DSQ iterator in progress 6697 * @p: task to transfer 6698 * @dsq_id: DSQ to move @p to 6699 * @enq_flags: SCX_ENQ_* 6700 * 6701 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6702 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6703 * user DSQ as only user DSQs support priority queue. 6704 * 6705 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6706 * and scx_bpf_dsq_move_set_vtime() to update. 6707 * 6708 * All other aspects are identical to scx_bpf_dsq_move(). See 6709 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6710 */ 6711 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6712 struct task_struct *p, u64 dsq_id, 6713 u64 enq_flags) 6714 { 6715 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6716 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6717 } 6718 6719 /* for backward compatibility, will be removed in v6.15 */ 6720 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6721 struct task_struct *p, u64 dsq_id, 6722 u64 enq_flags) 6723 { 6724 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()"); 6725 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags); 6726 } 6727 6728 __bpf_kfunc_end_defs(); 6729 6730 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6731 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6732 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6733 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6734 BTF_ID_FLAGS(func, scx_bpf_consume) 6735 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6736 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6737 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6738 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6739 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6740 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6741 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6742 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6743 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6744 6745 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6746 .owner = THIS_MODULE, 6747 .set = &scx_kfunc_ids_dispatch, 6748 }; 6749 6750 __bpf_kfunc_start_defs(); 6751 6752 /** 6753 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6754 * 6755 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6756 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6757 * processed tasks. Can only be called from ops.cpu_release(). 6758 */ 6759 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6760 { 6761 LIST_HEAD(tasks); 6762 u32 nr_enqueued = 0; 6763 struct rq *rq; 6764 struct task_struct *p, *n; 6765 6766 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6767 return 0; 6768 6769 rq = cpu_rq(smp_processor_id()); 6770 lockdep_assert_rq_held(rq); 6771 6772 /* 6773 * The BPF scheduler may choose to dispatch tasks back to 6774 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6775 * first to avoid processing the same tasks repeatedly. 6776 */ 6777 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6778 scx.dsq_list.node) { 6779 /* 6780 * If @p is being migrated, @p's current CPU may not agree with 6781 * its allowed CPUs and the migration_cpu_stop is about to 6782 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6783 * 6784 * While racing sched property changes may also dequeue and 6785 * re-enqueue a migrating task while its current CPU and allowed 6786 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6787 * the current local DSQ for running tasks and thus are not 6788 * visible to the BPF scheduler. 6789 * 6790 * Also skip re-enqueueing tasks that can only run on this 6791 * CPU, as they would just be re-added to the same local 6792 * DSQ without any benefit. 6793 */ 6794 if (p->migration_pending || is_migration_disabled(p) || p->nr_cpus_allowed == 1) 6795 continue; 6796 6797 dispatch_dequeue(rq, p); 6798 list_add_tail(&p->scx.dsq_list.node, &tasks); 6799 } 6800 6801 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6802 list_del_init(&p->scx.dsq_list.node); 6803 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6804 nr_enqueued++; 6805 } 6806 6807 return nr_enqueued; 6808 } 6809 6810 __bpf_kfunc_end_defs(); 6811 6812 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6813 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6814 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6815 6816 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6817 .owner = THIS_MODULE, 6818 .set = &scx_kfunc_ids_cpu_release, 6819 }; 6820 6821 __bpf_kfunc_start_defs(); 6822 6823 /** 6824 * scx_bpf_create_dsq - Create a custom DSQ 6825 * @dsq_id: DSQ to create 6826 * @node: NUMA node to allocate from 6827 * 6828 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6829 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6830 */ 6831 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6832 { 6833 struct scx_dispatch_q *dsq; 6834 struct scx_sched *sch; 6835 s32 ret; 6836 6837 if (unlikely(node >= (int)nr_node_ids || 6838 (node < 0 && node != NUMA_NO_NODE))) 6839 return -EINVAL; 6840 6841 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 6842 return -EINVAL; 6843 6844 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 6845 if (!dsq) 6846 return -ENOMEM; 6847 6848 init_dsq(dsq, dsq_id); 6849 6850 rcu_read_lock(); 6851 6852 sch = rcu_dereference(scx_root); 6853 if (sch) 6854 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 6855 dsq_hash_params); 6856 else 6857 ret = -ENODEV; 6858 6859 rcu_read_unlock(); 6860 if (ret) 6861 kfree(dsq); 6862 return ret; 6863 } 6864 6865 __bpf_kfunc_end_defs(); 6866 6867 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6868 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6869 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6870 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6871 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6872 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6873 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6874 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6875 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6876 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6877 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6878 6879 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6880 .owner = THIS_MODULE, 6881 .set = &scx_kfunc_ids_unlocked, 6882 }; 6883 6884 __bpf_kfunc_start_defs(); 6885 6886 /** 6887 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6888 * @cpu: cpu to kick 6889 * @flags: %SCX_KICK_* flags 6890 * 6891 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6892 * trigger rescheduling on a busy CPU. This can be called from any online 6893 * scx_ops operation and the actual kicking is performed asynchronously through 6894 * an irq work. 6895 */ 6896 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6897 { 6898 struct rq *this_rq; 6899 unsigned long irq_flags; 6900 6901 if (!kf_cpu_valid(cpu, NULL)) 6902 return; 6903 6904 local_irq_save(irq_flags); 6905 6906 this_rq = this_rq(); 6907 6908 /* 6909 * While bypassing for PM ops, IRQ handling may not be online which can 6910 * lead to irq_work_queue() malfunction such as infinite busy wait for 6911 * IRQ status update. Suppress kicking. 6912 */ 6913 if (scx_rq_bypassing(this_rq)) 6914 goto out; 6915 6916 /* 6917 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6918 * rq locks. We can probably be smarter and avoid bouncing if called 6919 * from ops which don't hold a rq lock. 6920 */ 6921 if (flags & SCX_KICK_IDLE) { 6922 struct rq *target_rq = cpu_rq(cpu); 6923 6924 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6925 scx_kf_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6926 6927 if (raw_spin_rq_trylock(target_rq)) { 6928 if (can_skip_idle_kick(target_rq)) { 6929 raw_spin_rq_unlock(target_rq); 6930 goto out; 6931 } 6932 raw_spin_rq_unlock(target_rq); 6933 } 6934 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6935 } else { 6936 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6937 6938 if (flags & SCX_KICK_PREEMPT) 6939 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6940 if (flags & SCX_KICK_WAIT) 6941 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6942 } 6943 6944 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6945 out: 6946 local_irq_restore(irq_flags); 6947 } 6948 6949 /** 6950 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6951 * @dsq_id: id of the DSQ 6952 * 6953 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6954 * -%ENOENT is returned. 6955 */ 6956 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6957 { 6958 struct scx_sched *sch; 6959 struct scx_dispatch_q *dsq; 6960 s32 ret; 6961 6962 preempt_disable(); 6963 6964 sch = rcu_dereference_sched(scx_root); 6965 if (unlikely(!sch)) { 6966 ret = -ENODEV; 6967 goto out; 6968 } 6969 6970 if (dsq_id == SCX_DSQ_LOCAL) { 6971 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6972 goto out; 6973 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6974 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6975 6976 if (ops_cpu_valid(sch, cpu, NULL)) { 6977 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6978 goto out; 6979 } 6980 } else { 6981 dsq = find_user_dsq(sch, dsq_id); 6982 if (dsq) { 6983 ret = READ_ONCE(dsq->nr); 6984 goto out; 6985 } 6986 } 6987 ret = -ENOENT; 6988 out: 6989 preempt_enable(); 6990 return ret; 6991 } 6992 6993 /** 6994 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6995 * @dsq_id: DSQ to destroy 6996 * 6997 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6998 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6999 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 7000 * which doesn't exist. Can be called from any online scx_ops operations. 7001 */ 7002 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 7003 { 7004 struct scx_sched *sch; 7005 7006 rcu_read_lock(); 7007 sch = rcu_dereference(scx_root); 7008 if (sch) 7009 destroy_dsq(sch, dsq_id); 7010 rcu_read_unlock(); 7011 } 7012 7013 /** 7014 * bpf_iter_scx_dsq_new - Create a DSQ iterator 7015 * @it: iterator to initialize 7016 * @dsq_id: DSQ to iterate 7017 * @flags: %SCX_DSQ_ITER_* 7018 * 7019 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 7020 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 7021 * tasks which are already queued when this function is invoked. 7022 */ 7023 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 7024 u64 flags) 7025 { 7026 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7027 struct scx_sched *sch; 7028 7029 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 7030 sizeof(struct bpf_iter_scx_dsq)); 7031 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 7032 __alignof__(struct bpf_iter_scx_dsq)); 7033 7034 /* 7035 * next() and destroy() will be called regardless of the return value. 7036 * Always clear $kit->dsq. 7037 */ 7038 kit->dsq = NULL; 7039 7040 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 7041 if (unlikely(!sch)) 7042 return -ENODEV; 7043 7044 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 7045 return -EINVAL; 7046 7047 kit->dsq = find_user_dsq(sch, dsq_id); 7048 if (!kit->dsq) 7049 return -ENOENT; 7050 7051 INIT_LIST_HEAD(&kit->cursor.node); 7052 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 7053 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 7054 7055 return 0; 7056 } 7057 7058 /** 7059 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 7060 * @it: iterator to progress 7061 * 7062 * Return the next task. See bpf_iter_scx_dsq_new(). 7063 */ 7064 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 7065 { 7066 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7067 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 7068 struct task_struct *p; 7069 unsigned long flags; 7070 7071 if (!kit->dsq) 7072 return NULL; 7073 7074 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7075 7076 if (list_empty(&kit->cursor.node)) 7077 p = NULL; 7078 else 7079 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 7080 7081 /* 7082 * Only tasks which were queued before the iteration started are 7083 * visible. This bounds BPF iterations and guarantees that vtime never 7084 * jumps in the other direction while iterating. 7085 */ 7086 do { 7087 p = nldsq_next_task(kit->dsq, p, rev); 7088 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 7089 7090 if (p) { 7091 if (rev) 7092 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 7093 else 7094 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 7095 } else { 7096 list_del_init(&kit->cursor.node); 7097 } 7098 7099 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7100 7101 return p; 7102 } 7103 7104 /** 7105 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 7106 * @it: iterator to destroy 7107 * 7108 * Undo scx_iter_scx_dsq_new(). 7109 */ 7110 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 7111 { 7112 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 7113 7114 if (!kit->dsq) 7115 return; 7116 7117 if (!list_empty(&kit->cursor.node)) { 7118 unsigned long flags; 7119 7120 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 7121 list_del_init(&kit->cursor.node); 7122 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 7123 } 7124 kit->dsq = NULL; 7125 } 7126 7127 __bpf_kfunc_end_defs(); 7128 7129 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 7130 char *fmt, unsigned long long *data, u32 data__sz) 7131 { 7132 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 7133 s32 ret; 7134 7135 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 7136 (data__sz && !data)) { 7137 scx_kf_error("invalid data=%p and data__sz=%u", (void *)data, data__sz); 7138 return -EINVAL; 7139 } 7140 7141 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 7142 if (ret < 0) { 7143 scx_kf_error("failed to read data fields (%d)", ret); 7144 return ret; 7145 } 7146 7147 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 7148 &bprintf_data); 7149 if (ret < 0) { 7150 scx_kf_error("format preparation failed (%d)", ret); 7151 return ret; 7152 } 7153 7154 ret = bstr_printf(line_buf, line_size, fmt, 7155 bprintf_data.bin_args); 7156 bpf_bprintf_cleanup(&bprintf_data); 7157 if (ret < 0) { 7158 scx_kf_error("(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 7159 return ret; 7160 } 7161 7162 return ret; 7163 } 7164 7165 static s32 bstr_format(struct scx_bstr_buf *buf, 7166 char *fmt, unsigned long long *data, u32 data__sz) 7167 { 7168 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 7169 fmt, data, data__sz); 7170 } 7171 7172 __bpf_kfunc_start_defs(); 7173 7174 /** 7175 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 7176 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 7177 * @fmt: error message format string 7178 * @data: format string parameters packaged using ___bpf_fill() macro 7179 * @data__sz: @data len, must end in '__sz' for the verifier 7180 * 7181 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 7182 * disabling. 7183 */ 7184 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 7185 unsigned long long *data, u32 data__sz) 7186 { 7187 unsigned long flags; 7188 7189 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7190 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7191 scx_kf_exit(SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 7192 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7193 } 7194 7195 /** 7196 * scx_bpf_error_bstr - Indicate fatal error 7197 * @fmt: error message format string 7198 * @data: format string parameters packaged using ___bpf_fill() macro 7199 * @data__sz: @data len, must end in '__sz' for the verifier 7200 * 7201 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 7202 * disabling. 7203 */ 7204 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 7205 u32 data__sz) 7206 { 7207 unsigned long flags; 7208 7209 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 7210 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 7211 scx_kf_exit(SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 7212 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 7213 } 7214 7215 /** 7216 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 7217 * @fmt: format string 7218 * @data: format string parameters packaged using ___bpf_fill() macro 7219 * @data__sz: @data len, must end in '__sz' for the verifier 7220 * 7221 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 7222 * dump_task() to generate extra debug dump specific to the BPF scheduler. 7223 * 7224 * The extra dump may be multiple lines. A single line may be split over 7225 * multiple calls. The last line is automatically terminated. 7226 */ 7227 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 7228 u32 data__sz) 7229 { 7230 struct scx_dump_data *dd = &scx_dump_data; 7231 struct scx_bstr_buf *buf = &dd->buf; 7232 s32 ret; 7233 7234 if (raw_smp_processor_id() != dd->cpu) { 7235 scx_kf_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7236 return; 7237 } 7238 7239 /* append the formatted string to the line buf */ 7240 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7241 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7242 if (ret < 0) { 7243 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7244 dd->prefix, fmt, data, data__sz, ret); 7245 return; 7246 } 7247 7248 dd->cursor += ret; 7249 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7250 7251 if (!dd->cursor) 7252 return; 7253 7254 /* 7255 * If the line buf overflowed or ends in a newline, flush it into the 7256 * dump. This is to allow the caller to generate a single line over 7257 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7258 * the line buf, the only case which can lead to an unexpected 7259 * truncation is when the caller keeps generating newlines in the middle 7260 * instead of the end consecutively. Don't do that. 7261 */ 7262 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7263 ops_dump_flush(); 7264 } 7265 7266 /** 7267 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7268 * @cpu: CPU of interest 7269 * 7270 * Return the maximum relative capacity of @cpu in relation to the most 7271 * performant CPU in the system. The return value is in the range [1, 7272 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7273 */ 7274 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7275 { 7276 if (kf_cpu_valid(cpu, NULL)) 7277 return arch_scale_cpu_capacity(cpu); 7278 else 7279 return SCX_CPUPERF_ONE; 7280 } 7281 7282 /** 7283 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7284 * @cpu: CPU of interest 7285 * 7286 * Return the current relative performance of @cpu in relation to its maximum. 7287 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7288 * 7289 * The current performance level of a CPU in relation to the maximum performance 7290 * available in the system can be calculated as follows: 7291 * 7292 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7293 * 7294 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7295 */ 7296 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7297 { 7298 if (kf_cpu_valid(cpu, NULL)) 7299 return arch_scale_freq_capacity(cpu); 7300 else 7301 return SCX_CPUPERF_ONE; 7302 } 7303 7304 /** 7305 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7306 * @cpu: CPU of interest 7307 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7308 * 7309 * Set the target performance level of @cpu to @perf. @perf is in linear 7310 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7311 * schedutil cpufreq governor chooses the target frequency. 7312 * 7313 * The actual performance level chosen, CPU grouping, and the overhead and 7314 * latency of the operations are dependent on the hardware and cpufreq driver in 7315 * use. Consult hardware and cpufreq documentation for more information. The 7316 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7317 */ 7318 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7319 { 7320 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7321 scx_kf_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7322 return; 7323 } 7324 7325 if (kf_cpu_valid(cpu, NULL)) { 7326 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 7327 struct rq_flags rf; 7328 7329 /* 7330 * When called with an rq lock held, restrict the operation 7331 * to the corresponding CPU to prevent ABBA deadlocks. 7332 */ 7333 if (locked_rq && rq != locked_rq) { 7334 scx_kf_error("Invalid target CPU %d", cpu); 7335 return; 7336 } 7337 7338 /* 7339 * If no rq lock is held, allow to operate on any CPU by 7340 * acquiring the corresponding rq lock. 7341 */ 7342 if (!locked_rq) { 7343 rq_lock_irqsave(rq, &rf); 7344 update_rq_clock(rq); 7345 } 7346 7347 rq->scx.cpuperf_target = perf; 7348 cpufreq_update_util(rq, 0); 7349 7350 if (!locked_rq) 7351 rq_unlock_irqrestore(rq, &rf); 7352 } 7353 } 7354 7355 /** 7356 * scx_bpf_nr_node_ids - Return the number of possible node IDs 7357 * 7358 * All valid node IDs in the system are smaller than the returned value. 7359 */ 7360 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 7361 { 7362 return nr_node_ids; 7363 } 7364 7365 /** 7366 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7367 * 7368 * All valid CPU IDs in the system are smaller than the returned value. 7369 */ 7370 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7371 { 7372 return nr_cpu_ids; 7373 } 7374 7375 /** 7376 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7377 */ 7378 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7379 { 7380 return cpu_possible_mask; 7381 } 7382 7383 /** 7384 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7385 */ 7386 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7387 { 7388 return cpu_online_mask; 7389 } 7390 7391 /** 7392 * scx_bpf_put_cpumask - Release a possible/online cpumask 7393 * @cpumask: cpumask to release 7394 */ 7395 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7396 { 7397 /* 7398 * Empty function body because we aren't actually acquiring or releasing 7399 * a reference to a global cpumask, which is read-only in the caller and 7400 * is never released. The acquire / release semantics here are just used 7401 * to make the cpumask is a trusted pointer in the caller. 7402 */ 7403 } 7404 7405 /** 7406 * scx_bpf_task_running - Is task currently running? 7407 * @p: task of interest 7408 */ 7409 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7410 { 7411 return task_rq(p)->curr == p; 7412 } 7413 7414 /** 7415 * scx_bpf_task_cpu - CPU a task is currently associated with 7416 * @p: task of interest 7417 */ 7418 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7419 { 7420 return task_cpu(p); 7421 } 7422 7423 /** 7424 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7425 * @cpu: CPU of the rq 7426 */ 7427 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7428 { 7429 if (!kf_cpu_valid(cpu, NULL)) 7430 return NULL; 7431 7432 return cpu_rq(cpu); 7433 } 7434 7435 /** 7436 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7437 * @p: task of interest 7438 * 7439 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7440 * from the scheduler's POV. SCX operations should use this function to 7441 * determine @p's current cgroup as, unlike following @p->cgroups, 7442 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7443 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7444 * operations. The restriction guarantees that @p's rq is locked by the caller. 7445 */ 7446 #ifdef CONFIG_CGROUP_SCHED 7447 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7448 { 7449 struct task_group *tg = p->sched_task_group; 7450 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7451 7452 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7453 goto out; 7454 7455 cgrp = tg_cgrp(tg); 7456 7457 out: 7458 cgroup_get(cgrp); 7459 return cgrp; 7460 } 7461 #endif 7462 7463 /** 7464 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7465 * clock for the current CPU. The clock returned is in nanoseconds. 7466 * 7467 * It provides the following properties: 7468 * 7469 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7470 * to account for execution time and track tasks' runtime properties. 7471 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7472 * eventually reads a hardware timestamp counter -- is neither performant nor 7473 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7474 * using the rq clock in the scheduler core whenever possible. 7475 * 7476 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7477 * scheduler use cases, the required clock resolution is lower than the most 7478 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7479 * uses the rq clock in the scheduler core whenever it is valid. It considers 7480 * that the rq clock is valid from the time the rq clock is updated 7481 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7482 * 7483 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7484 * guarantees the clock never goes backward when comparing them in the same 7485 * CPU. On the other hand, when comparing clocks in different CPUs, there 7486 * is no such guarantee -- the clock can go backward. It provides a 7487 * monotonically *non-decreasing* clock so that it would provide the same 7488 * clock values in two different scx_bpf_now() calls in the same CPU 7489 * during the same period of when the rq clock is valid. 7490 */ 7491 __bpf_kfunc u64 scx_bpf_now(void) 7492 { 7493 struct rq *rq; 7494 u64 clock; 7495 7496 preempt_disable(); 7497 7498 rq = this_rq(); 7499 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7500 /* 7501 * If the rq clock is valid, use the cached rq clock. 7502 * 7503 * Note that scx_bpf_now() is re-entrant between a process 7504 * context and an interrupt context (e.g., timer interrupt). 7505 * However, we don't need to consider the race between them 7506 * because such race is not observable from a caller. 7507 */ 7508 clock = READ_ONCE(rq->scx.clock); 7509 } else { 7510 /* 7511 * Otherwise, return a fresh rq clock. 7512 * 7513 * The rq clock is updated outside of the rq lock. 7514 * In this case, keep the updated rq clock invalid so the next 7515 * kfunc call outside the rq lock gets a fresh rq clock. 7516 */ 7517 clock = sched_clock_cpu(cpu_of(rq)); 7518 } 7519 7520 preempt_enable(); 7521 7522 return clock; 7523 } 7524 7525 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 7526 { 7527 struct scx_event_stats *e_cpu; 7528 int cpu; 7529 7530 /* Aggregate per-CPU event counters into @events. */ 7531 memset(events, 0, sizeof(*events)); 7532 for_each_possible_cpu(cpu) { 7533 e_cpu = per_cpu_ptr(sch->event_stats_cpu, cpu); 7534 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 7535 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 7536 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 7537 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 7538 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 7539 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 7540 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 7541 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 7542 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 7543 } 7544 } 7545 7546 /* 7547 * scx_bpf_events - Get a system-wide event counter to 7548 * @events: output buffer from a BPF program 7549 * @events__sz: @events len, must end in '__sz'' for the verifier 7550 */ 7551 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 7552 size_t events__sz) 7553 { 7554 struct scx_sched *sch; 7555 struct scx_event_stats e_sys; 7556 7557 rcu_read_lock(); 7558 sch = rcu_dereference(scx_root); 7559 if (sch) 7560 scx_read_events(sch, &e_sys); 7561 else 7562 memset(&e_sys, 0, sizeof(e_sys)); 7563 rcu_read_unlock(); 7564 7565 /* 7566 * We cannot entirely trust a BPF-provided size since a BPF program 7567 * might be compiled against a different vmlinux.h, of which 7568 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 7569 * (an older vmlinux.h). Hence, we use the smaller size to avoid 7570 * memory corruption. 7571 */ 7572 events__sz = min(events__sz, sizeof(*events)); 7573 memcpy(events, &e_sys, events__sz); 7574 } 7575 7576 __bpf_kfunc_end_defs(); 7577 7578 BTF_KFUNCS_START(scx_kfunc_ids_any) 7579 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7580 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7581 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7582 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7583 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7584 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7585 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7586 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7587 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7588 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7589 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7590 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7591 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 7592 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7593 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7594 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7595 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7596 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7597 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7598 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7599 #ifdef CONFIG_CGROUP_SCHED 7600 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7601 #endif 7602 BTF_ID_FLAGS(func, scx_bpf_now) 7603 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 7604 BTF_KFUNCS_END(scx_kfunc_ids_any) 7605 7606 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7607 .owner = THIS_MODULE, 7608 .set = &scx_kfunc_ids_any, 7609 }; 7610 7611 static int __init scx_init(void) 7612 { 7613 int ret; 7614 7615 /* 7616 * kfunc registration can't be done from init_sched_ext_class() as 7617 * register_btf_kfunc_id_set() needs most of the system to be up. 7618 * 7619 * Some kfuncs are context-sensitive and can only be called from 7620 * specific SCX ops. They are grouped into BTF sets accordingly. 7621 * Unfortunately, BPF currently doesn't have a way of enforcing such 7622 * restrictions. Eventually, the verifier should be able to enforce 7623 * them. For now, register them the same and make each kfunc explicitly 7624 * check using scx_kf_allowed(). 7625 */ 7626 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7627 &scx_kfunc_set_enqueue_dispatch)) || 7628 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7629 &scx_kfunc_set_dispatch)) || 7630 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7631 &scx_kfunc_set_cpu_release)) || 7632 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7633 &scx_kfunc_set_unlocked)) || 7634 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7635 &scx_kfunc_set_unlocked)) || 7636 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7637 &scx_kfunc_set_any)) || 7638 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7639 &scx_kfunc_set_any)) || 7640 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7641 &scx_kfunc_set_any))) { 7642 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7643 return ret; 7644 } 7645 7646 ret = scx_idle_init(); 7647 if (ret) { 7648 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 7649 return ret; 7650 } 7651 7652 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7653 if (ret) { 7654 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7655 return ret; 7656 } 7657 7658 ret = register_pm_notifier(&scx_pm_notifier); 7659 if (ret) { 7660 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7661 return ret; 7662 } 7663 7664 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7665 if (!scx_kset) { 7666 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7667 return -ENOMEM; 7668 } 7669 7670 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7671 if (ret < 0) { 7672 pr_err("sched_ext: Failed to add global attributes\n"); 7673 return ret; 7674 } 7675 7676 return 0; 7677 } 7678 __initcall(scx_init); 7679