xref: /linux/kernel/sched/ext.c (revision 2e3f3090bd8bf61633b36ae3b13d4a6e777f182a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4  *
5  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8  */
9 #define SCX_OP_IDX(op)		(offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
10 
11 enum scx_consts {
12 	SCX_DSP_DFL_MAX_BATCH		= 32,
13 	SCX_DSP_MAX_LOOPS		= 32,
14 	SCX_WATCHDOG_MAX_TIMEOUT	= 30 * HZ,
15 
16 	SCX_EXIT_BT_LEN			= 64,
17 	SCX_EXIT_MSG_LEN		= 1024,
18 	SCX_EXIT_DUMP_DFL_LEN		= 32768,
19 
20 	SCX_CPUPERF_ONE			= SCHED_CAPACITY_SCALE,
21 
22 	/*
23 	 * Iterating all tasks may take a while. Periodically drop
24 	 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls.
25 	 */
26 	SCX_OPS_TASK_ITER_BATCH		= 32,
27 };
28 
29 enum scx_exit_kind {
30 	SCX_EXIT_NONE,
31 	SCX_EXIT_DONE,
32 
33 	SCX_EXIT_UNREG = 64,	/* user-space initiated unregistration */
34 	SCX_EXIT_UNREG_BPF,	/* BPF-initiated unregistration */
35 	SCX_EXIT_UNREG_KERN,	/* kernel-initiated unregistration */
36 	SCX_EXIT_SYSRQ,		/* requested by 'S' sysrq */
37 
38 	SCX_EXIT_ERROR = 1024,	/* runtime error, error msg contains details */
39 	SCX_EXIT_ERROR_BPF,	/* ERROR but triggered through scx_bpf_error() */
40 	SCX_EXIT_ERROR_STALL,	/* watchdog detected stalled runnable tasks */
41 };
42 
43 /*
44  * An exit code can be specified when exiting with scx_bpf_exit() or
45  * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN
46  * respectively. The codes are 64bit of the format:
47  *
48  *   Bits: [63  ..  48 47   ..  32 31 .. 0]
49  *         [ SYS ACT ] [ SYS RSN ] [ USR  ]
50  *
51  *   SYS ACT: System-defined exit actions
52  *   SYS RSN: System-defined exit reasons
53  *   USR    : User-defined exit codes and reasons
54  *
55  * Using the above, users may communicate intention and context by ORing system
56  * actions and/or system reasons with a user-defined exit code.
57  */
58 enum scx_exit_code {
59 	/* Reasons */
60 	SCX_ECODE_RSN_HOTPLUG	= 1LLU << 32,
61 
62 	/* Actions */
63 	SCX_ECODE_ACT_RESTART	= 1LLU << 48,
64 };
65 
66 /*
67  * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
68  * being disabled.
69  */
70 struct scx_exit_info {
71 	/* %SCX_EXIT_* - broad category of the exit reason */
72 	enum scx_exit_kind	kind;
73 
74 	/* exit code if gracefully exiting */
75 	s64			exit_code;
76 
77 	/* textual representation of the above */
78 	const char		*reason;
79 
80 	/* backtrace if exiting due to an error */
81 	unsigned long		*bt;
82 	u32			bt_len;
83 
84 	/* informational message */
85 	char			*msg;
86 
87 	/* debug dump */
88 	char			*dump;
89 };
90 
91 /* sched_ext_ops.flags */
92 enum scx_ops_flags {
93 	/*
94 	 * Keep built-in idle tracking even if ops.update_idle() is implemented.
95 	 */
96 	SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
97 
98 	/*
99 	 * By default, if there are no other task to run on the CPU, ext core
100 	 * keeps running the current task even after its slice expires. If this
101 	 * flag is specified, such tasks are passed to ops.enqueue() with
102 	 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
103 	 */
104 	SCX_OPS_ENQ_LAST	= 1LLU << 1,
105 
106 	/*
107 	 * An exiting task may schedule after PF_EXITING is set. In such cases,
108 	 * bpf_task_from_pid() may not be able to find the task and if the BPF
109 	 * scheduler depends on pid lookup for dispatching, the task will be
110 	 * lost leading to various issues including RCU grace period stalls.
111 	 *
112 	 * To mask this problem, by default, unhashed tasks are automatically
113 	 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
114 	 * depend on pid lookups and wants to handle these tasks directly, the
115 	 * following flag can be used.
116 	 */
117 	SCX_OPS_ENQ_EXITING	= 1LLU << 2,
118 
119 	/*
120 	 * If set, only tasks with policy set to SCHED_EXT are attached to
121 	 * sched_ext. If clear, SCHED_NORMAL tasks are also included.
122 	 */
123 	SCX_OPS_SWITCH_PARTIAL	= 1LLU << 3,
124 
125 	/*
126 	 * CPU cgroup support flags
127 	 */
128 	SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16,	/* cpu.weight */
129 
130 	SCX_OPS_ALL_FLAGS	= SCX_OPS_KEEP_BUILTIN_IDLE |
131 				  SCX_OPS_ENQ_LAST |
132 				  SCX_OPS_ENQ_EXITING |
133 				  SCX_OPS_SWITCH_PARTIAL |
134 				  SCX_OPS_HAS_CGROUP_WEIGHT,
135 };
136 
137 /* argument container for ops.init_task() */
138 struct scx_init_task_args {
139 	/*
140 	 * Set if ops.init_task() is being invoked on the fork path, as opposed
141 	 * to the scheduler transition path.
142 	 */
143 	bool			fork;
144 #ifdef CONFIG_EXT_GROUP_SCHED
145 	/* the cgroup the task is joining */
146 	struct cgroup		*cgroup;
147 #endif
148 };
149 
150 /* argument container for ops.exit_task() */
151 struct scx_exit_task_args {
152 	/* Whether the task exited before running on sched_ext. */
153 	bool cancelled;
154 };
155 
156 /* argument container for ops->cgroup_init() */
157 struct scx_cgroup_init_args {
158 	/* the weight of the cgroup [1..10000] */
159 	u32			weight;
160 };
161 
162 enum scx_cpu_preempt_reason {
163 	/* next task is being scheduled by &sched_class_rt */
164 	SCX_CPU_PREEMPT_RT,
165 	/* next task is being scheduled by &sched_class_dl */
166 	SCX_CPU_PREEMPT_DL,
167 	/* next task is being scheduled by &sched_class_stop */
168 	SCX_CPU_PREEMPT_STOP,
169 	/* unknown reason for SCX being preempted */
170 	SCX_CPU_PREEMPT_UNKNOWN,
171 };
172 
173 /*
174  * Argument container for ops->cpu_acquire(). Currently empty, but may be
175  * expanded in the future.
176  */
177 struct scx_cpu_acquire_args {};
178 
179 /* argument container for ops->cpu_release() */
180 struct scx_cpu_release_args {
181 	/* the reason the CPU was preempted */
182 	enum scx_cpu_preempt_reason reason;
183 
184 	/* the task that's going to be scheduled on the CPU */
185 	struct task_struct	*task;
186 };
187 
188 /*
189  * Informational context provided to dump operations.
190  */
191 struct scx_dump_ctx {
192 	enum scx_exit_kind	kind;
193 	s64			exit_code;
194 	const char		*reason;
195 	u64			at_ns;
196 	u64			at_jiffies;
197 };
198 
199 /**
200  * struct sched_ext_ops - Operation table for BPF scheduler implementation
201  *
202  * A BPF scheduler can implement an arbitrary scheduling policy by
203  * implementing and loading operations in this table. Note that a userland
204  * scheduling policy can also be implemented using the BPF scheduler
205  * as a shim layer.
206  */
207 struct sched_ext_ops {
208 	/**
209 	 * select_cpu - Pick the target CPU for a task which is being woken up
210 	 * @p: task being woken up
211 	 * @prev_cpu: the cpu @p was on before sleeping
212 	 * @wake_flags: SCX_WAKE_*
213 	 *
214 	 * Decision made here isn't final. @p may be moved to any CPU while it
215 	 * is getting dispatched for execution later. However, as @p is not on
216 	 * the rq at this point, getting the eventual execution CPU right here
217 	 * saves a small bit of overhead down the line.
218 	 *
219 	 * If an idle CPU is returned, the CPU is kicked and will try to
220 	 * dispatch. While an explicit custom mechanism can be added,
221 	 * select_cpu() serves as the default way to wake up idle CPUs.
222 	 *
223 	 * @p may be inserted into a DSQ directly by calling
224 	 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped.
225 	 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ
226 	 * of the CPU returned by this operation.
227 	 *
228 	 * Note that select_cpu() is never called for tasks that can only run
229 	 * on a single CPU or tasks with migration disabled, as they don't have
230 	 * the option to select a different CPU. See select_task_rq() for
231 	 * details.
232 	 */
233 	s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
234 
235 	/**
236 	 * enqueue - Enqueue a task on the BPF scheduler
237 	 * @p: task being enqueued
238 	 * @enq_flags: %SCX_ENQ_*
239 	 *
240 	 * @p is ready to run. Insert directly into a DSQ by calling
241 	 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly
242 	 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p,
243 	 * the task will stall.
244 	 *
245 	 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is
246 	 * skipped.
247 	 */
248 	void (*enqueue)(struct task_struct *p, u64 enq_flags);
249 
250 	/**
251 	 * dequeue - Remove a task from the BPF scheduler
252 	 * @p: task being dequeued
253 	 * @deq_flags: %SCX_DEQ_*
254 	 *
255 	 * Remove @p from the BPF scheduler. This is usually called to isolate
256 	 * the task while updating its scheduling properties (e.g. priority).
257 	 *
258 	 * The ext core keeps track of whether the BPF side owns a given task or
259 	 * not and can gracefully ignore spurious dispatches from BPF side,
260 	 * which makes it safe to not implement this method. However, depending
261 	 * on the scheduling logic, this can lead to confusing behaviors - e.g.
262 	 * scheduling position not being updated across a priority change.
263 	 */
264 	void (*dequeue)(struct task_struct *p, u64 deq_flags);
265 
266 	/**
267 	 * dispatch - Dispatch tasks from the BPF scheduler and/or user DSQs
268 	 * @cpu: CPU to dispatch tasks for
269 	 * @prev: previous task being switched out
270 	 *
271 	 * Called when a CPU's local dsq is empty. The operation should dispatch
272 	 * one or more tasks from the BPF scheduler into the DSQs using
273 	 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ
274 	 * using scx_bpf_dsq_move_to_local().
275 	 *
276 	 * The maximum number of times scx_bpf_dsq_insert() can be called
277 	 * without an intervening scx_bpf_dsq_move_to_local() is specified by
278 	 * ops.dispatch_max_batch. See the comments on top of the two functions
279 	 * for more details.
280 	 *
281 	 * When not %NULL, @prev is an SCX task with its slice depleted. If
282 	 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
283 	 * @prev->scx.flags, it is not enqueued yet and will be enqueued after
284 	 * ops.dispatch() returns. To keep executing @prev, return without
285 	 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST.
286 	 */
287 	void (*dispatch)(s32 cpu, struct task_struct *prev);
288 
289 	/**
290 	 * tick - Periodic tick
291 	 * @p: task running currently
292 	 *
293 	 * This operation is called every 1/HZ seconds on CPUs which are
294 	 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
295 	 * immediate dispatch cycle on the CPU.
296 	 */
297 	void (*tick)(struct task_struct *p);
298 
299 	/**
300 	 * runnable - A task is becoming runnable on its associated CPU
301 	 * @p: task becoming runnable
302 	 * @enq_flags: %SCX_ENQ_*
303 	 *
304 	 * This and the following three functions can be used to track a task's
305 	 * execution state transitions. A task becomes ->runnable() on a CPU,
306 	 * and then goes through one or more ->running() and ->stopping() pairs
307 	 * as it runs on the CPU, and eventually becomes ->quiescent() when it's
308 	 * done running on the CPU.
309 	 *
310 	 * @p is becoming runnable on the CPU because it's
311 	 *
312 	 * - waking up (%SCX_ENQ_WAKEUP)
313 	 * - being moved from another CPU
314 	 * - being restored after temporarily taken off the queue for an
315 	 *   attribute change.
316 	 *
317 	 * This and ->enqueue() are related but not coupled. This operation
318 	 * notifies @p's state transition and may not be followed by ->enqueue()
319 	 * e.g. when @p is being dispatched to a remote CPU, or when @p is
320 	 * being enqueued on a CPU experiencing a hotplug event. Likewise, a
321 	 * task may be ->enqueue()'d without being preceded by this operation
322 	 * e.g. after exhausting its slice.
323 	 */
324 	void (*runnable)(struct task_struct *p, u64 enq_flags);
325 
326 	/**
327 	 * running - A task is starting to run on its associated CPU
328 	 * @p: task starting to run
329 	 *
330 	 * See ->runnable() for explanation on the task state notifiers.
331 	 */
332 	void (*running)(struct task_struct *p);
333 
334 	/**
335 	 * stopping - A task is stopping execution
336 	 * @p: task stopping to run
337 	 * @runnable: is task @p still runnable?
338 	 *
339 	 * See ->runnable() for explanation on the task state notifiers. If
340 	 * !@runnable, ->quiescent() will be invoked after this operation
341 	 * returns.
342 	 */
343 	void (*stopping)(struct task_struct *p, bool runnable);
344 
345 	/**
346 	 * quiescent - A task is becoming not runnable on its associated CPU
347 	 * @p: task becoming not runnable
348 	 * @deq_flags: %SCX_DEQ_*
349 	 *
350 	 * See ->runnable() for explanation on the task state notifiers.
351 	 *
352 	 * @p is becoming quiescent on the CPU because it's
353 	 *
354 	 * - sleeping (%SCX_DEQ_SLEEP)
355 	 * - being moved to another CPU
356 	 * - being temporarily taken off the queue for an attribute change
357 	 *   (%SCX_DEQ_SAVE)
358 	 *
359 	 * This and ->dequeue() are related but not coupled. This operation
360 	 * notifies @p's state transition and may not be preceded by ->dequeue()
361 	 * e.g. when @p is being dispatched to a remote CPU.
362 	 */
363 	void (*quiescent)(struct task_struct *p, u64 deq_flags);
364 
365 	/**
366 	 * yield - Yield CPU
367 	 * @from: yielding task
368 	 * @to: optional yield target task
369 	 *
370 	 * If @to is NULL, @from is yielding the CPU to other runnable tasks.
371 	 * The BPF scheduler should ensure that other available tasks are
372 	 * dispatched before the yielding task. Return value is ignored in this
373 	 * case.
374 	 *
375 	 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
376 	 * scheduler can implement the request, return %true; otherwise, %false.
377 	 */
378 	bool (*yield)(struct task_struct *from, struct task_struct *to);
379 
380 	/**
381 	 * core_sched_before - Task ordering for core-sched
382 	 * @a: task A
383 	 * @b: task B
384 	 *
385 	 * Used by core-sched to determine the ordering between two tasks. See
386 	 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on
387 	 * core-sched.
388 	 *
389 	 * Both @a and @b are runnable and may or may not currently be queued on
390 	 * the BPF scheduler. Should return %true if @a should run before @b.
391 	 * %false if there's no required ordering or @b should run before @a.
392 	 *
393 	 * If not specified, the default is ordering them according to when they
394 	 * became runnable.
395 	 */
396 	bool (*core_sched_before)(struct task_struct *a, struct task_struct *b);
397 
398 	/**
399 	 * set_weight - Set task weight
400 	 * @p: task to set weight for
401 	 * @weight: new weight [1..10000]
402 	 *
403 	 * Update @p's weight to @weight.
404 	 */
405 	void (*set_weight)(struct task_struct *p, u32 weight);
406 
407 	/**
408 	 * set_cpumask - Set CPU affinity
409 	 * @p: task to set CPU affinity for
410 	 * @cpumask: cpumask of cpus that @p can run on
411 	 *
412 	 * Update @p's CPU affinity to @cpumask.
413 	 */
414 	void (*set_cpumask)(struct task_struct *p,
415 			    const struct cpumask *cpumask);
416 
417 	/**
418 	 * update_idle - Update the idle state of a CPU
419 	 * @cpu: CPU to udpate the idle state for
420 	 * @idle: whether entering or exiting the idle state
421 	 *
422 	 * This operation is called when @rq's CPU goes or leaves the idle
423 	 * state. By default, implementing this operation disables the built-in
424 	 * idle CPU tracking and the following helpers become unavailable:
425 	 *
426 	 * - scx_bpf_select_cpu_dfl()
427 	 * - scx_bpf_test_and_clear_cpu_idle()
428 	 * - scx_bpf_pick_idle_cpu()
429 	 *
430 	 * The user also must implement ops.select_cpu() as the default
431 	 * implementation relies on scx_bpf_select_cpu_dfl().
432 	 *
433 	 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
434 	 * tracking.
435 	 */
436 	void (*update_idle)(s32 cpu, bool idle);
437 
438 	/**
439 	 * cpu_acquire - A CPU is becoming available to the BPF scheduler
440 	 * @cpu: The CPU being acquired by the BPF scheduler.
441 	 * @args: Acquire arguments, see the struct definition.
442 	 *
443 	 * A CPU that was previously released from the BPF scheduler is now once
444 	 * again under its control.
445 	 */
446 	void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args);
447 
448 	/**
449 	 * cpu_release - A CPU is taken away from the BPF scheduler
450 	 * @cpu: The CPU being released by the BPF scheduler.
451 	 * @args: Release arguments, see the struct definition.
452 	 *
453 	 * The specified CPU is no longer under the control of the BPF
454 	 * scheduler. This could be because it was preempted by a higher
455 	 * priority sched_class, though there may be other reasons as well. The
456 	 * caller should consult @args->reason to determine the cause.
457 	 */
458 	void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args);
459 
460 	/**
461 	 * init_task - Initialize a task to run in a BPF scheduler
462 	 * @p: task to initialize for BPF scheduling
463 	 * @args: init arguments, see the struct definition
464 	 *
465 	 * Either we're loading a BPF scheduler or a new task is being forked.
466 	 * Initialize @p for BPF scheduling. This operation may block and can
467 	 * be used for allocations, and is called exactly once for a task.
468 	 *
469 	 * Return 0 for success, -errno for failure. An error return while
470 	 * loading will abort loading of the BPF scheduler. During a fork, it
471 	 * will abort that specific fork.
472 	 */
473 	s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
474 
475 	/**
476 	 * exit_task - Exit a previously-running task from the system
477 	 * @p: task to exit
478 	 *
479 	 * @p is exiting or the BPF scheduler is being unloaded. Perform any
480 	 * necessary cleanup for @p.
481 	 */
482 	void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
483 
484 	/**
485 	 * enable - Enable BPF scheduling for a task
486 	 * @p: task to enable BPF scheduling for
487 	 *
488 	 * Enable @p for BPF scheduling. enable() is called on @p any time it
489 	 * enters SCX, and is always paired with a matching disable().
490 	 */
491 	void (*enable)(struct task_struct *p);
492 
493 	/**
494 	 * disable - Disable BPF scheduling for a task
495 	 * @p: task to disable BPF scheduling for
496 	 *
497 	 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
498 	 * Disable BPF scheduling for @p. A disable() call is always matched
499 	 * with a prior enable() call.
500 	 */
501 	void (*disable)(struct task_struct *p);
502 
503 	/**
504 	 * dump - Dump BPF scheduler state on error
505 	 * @ctx: debug dump context
506 	 *
507 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump.
508 	 */
509 	void (*dump)(struct scx_dump_ctx *ctx);
510 
511 	/**
512 	 * dump_cpu - Dump BPF scheduler state for a CPU on error
513 	 * @ctx: debug dump context
514 	 * @cpu: CPU to generate debug dump for
515 	 * @idle: @cpu is currently idle without any runnable tasks
516 	 *
517 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
518 	 * @cpu. If @idle is %true and this operation doesn't produce any
519 	 * output, @cpu is skipped for dump.
520 	 */
521 	void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle);
522 
523 	/**
524 	 * dump_task - Dump BPF scheduler state for a runnable task on error
525 	 * @ctx: debug dump context
526 	 * @p: runnable task to generate debug dump for
527 	 *
528 	 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for
529 	 * @p.
530 	 */
531 	void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p);
532 
533 #ifdef CONFIG_EXT_GROUP_SCHED
534 	/**
535 	 * cgroup_init - Initialize a cgroup
536 	 * @cgrp: cgroup being initialized
537 	 * @args: init arguments, see the struct definition
538 	 *
539 	 * Either the BPF scheduler is being loaded or @cgrp created, initialize
540 	 * @cgrp for sched_ext. This operation may block.
541 	 *
542 	 * Return 0 for success, -errno for failure. An error return while
543 	 * loading will abort loading of the BPF scheduler. During cgroup
544 	 * creation, it will abort the specific cgroup creation.
545 	 */
546 	s32 (*cgroup_init)(struct cgroup *cgrp,
547 			   struct scx_cgroup_init_args *args);
548 
549 	/**
550 	 * cgroup_exit - Exit a cgroup
551 	 * @cgrp: cgroup being exited
552 	 *
553 	 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit
554 	 * @cgrp for sched_ext. This operation my block.
555 	 */
556 	void (*cgroup_exit)(struct cgroup *cgrp);
557 
558 	/**
559 	 * cgroup_prep_move - Prepare a task to be moved to a different cgroup
560 	 * @p: task being moved
561 	 * @from: cgroup @p is being moved from
562 	 * @to: cgroup @p is being moved to
563 	 *
564 	 * Prepare @p for move from cgroup @from to @to. This operation may
565 	 * block and can be used for allocations.
566 	 *
567 	 * Return 0 for success, -errno for failure. An error return aborts the
568 	 * migration.
569 	 */
570 	s32 (*cgroup_prep_move)(struct task_struct *p,
571 				struct cgroup *from, struct cgroup *to);
572 
573 	/**
574 	 * cgroup_move - Commit cgroup move
575 	 * @p: task being moved
576 	 * @from: cgroup @p is being moved from
577 	 * @to: cgroup @p is being moved to
578 	 *
579 	 * Commit the move. @p is dequeued during this operation.
580 	 */
581 	void (*cgroup_move)(struct task_struct *p,
582 			    struct cgroup *from, struct cgroup *to);
583 
584 	/**
585 	 * cgroup_cancel_move - Cancel cgroup move
586 	 * @p: task whose cgroup move is being canceled
587 	 * @from: cgroup @p was being moved from
588 	 * @to: cgroup @p was being moved to
589 	 *
590 	 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move().
591 	 * Undo the preparation.
592 	 */
593 	void (*cgroup_cancel_move)(struct task_struct *p,
594 				   struct cgroup *from, struct cgroup *to);
595 
596 	/**
597 	 * cgroup_set_weight - A cgroup's weight is being changed
598 	 * @cgrp: cgroup whose weight is being updated
599 	 * @weight: new weight [1..10000]
600 	 *
601 	 * Update @tg's weight to @weight.
602 	 */
603 	void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight);
604 #endif	/* CONFIG_EXT_GROUP_SCHED */
605 
606 	/*
607 	 * All online ops must come before ops.cpu_online().
608 	 */
609 
610 	/**
611 	 * cpu_online - A CPU became online
612 	 * @cpu: CPU which just came up
613 	 *
614 	 * @cpu just came online. @cpu will not call ops.enqueue() or
615 	 * ops.dispatch(), nor run tasks associated with other CPUs beforehand.
616 	 */
617 	void (*cpu_online)(s32 cpu);
618 
619 	/**
620 	 * cpu_offline - A CPU is going offline
621 	 * @cpu: CPU which is going offline
622 	 *
623 	 * @cpu is going offline. @cpu will not call ops.enqueue() or
624 	 * ops.dispatch(), nor run tasks associated with other CPUs afterwards.
625 	 */
626 	void (*cpu_offline)(s32 cpu);
627 
628 	/*
629 	 * All CPU hotplug ops must come before ops.init().
630 	 */
631 
632 	/**
633 	 * init - Initialize the BPF scheduler
634 	 */
635 	s32 (*init)(void);
636 
637 	/**
638 	 * exit - Clean up after the BPF scheduler
639 	 * @info: Exit info
640 	 *
641 	 * ops.exit() is also called on ops.init() failure, which is a bit
642 	 * unusual. This is to allow rich reporting through @info on how
643 	 * ops.init() failed.
644 	 */
645 	void (*exit)(struct scx_exit_info *info);
646 
647 	/**
648 	 * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
649 	 */
650 	u32 dispatch_max_batch;
651 
652 	/**
653 	 * flags - %SCX_OPS_* flags
654 	 */
655 	u64 flags;
656 
657 	/**
658 	 * timeout_ms - The maximum amount of time, in milliseconds, that a
659 	 * runnable task should be able to wait before being scheduled. The
660 	 * maximum timeout may not exceed the default timeout of 30 seconds.
661 	 *
662 	 * Defaults to the maximum allowed timeout value of 30 seconds.
663 	 */
664 	u32 timeout_ms;
665 
666 	/**
667 	 * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default
668 	 * value of 32768 is used.
669 	 */
670 	u32 exit_dump_len;
671 
672 	/**
673 	 * hotplug_seq - A sequence number that may be set by the scheduler to
674 	 * detect when a hotplug event has occurred during the loading process.
675 	 * If 0, no detection occurs. Otherwise, the scheduler will fail to
676 	 * load if the sequence number does not match @scx_hotplug_seq on the
677 	 * enable path.
678 	 */
679 	u64 hotplug_seq;
680 
681 	/**
682 	 * name - BPF scheduler's name
683 	 *
684 	 * Must be a non-zero valid BPF object name including only isalnum(),
685 	 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
686 	 * BPF scheduler is enabled.
687 	 */
688 	char name[SCX_OPS_NAME_LEN];
689 };
690 
691 enum scx_opi {
692 	SCX_OPI_BEGIN			= 0,
693 	SCX_OPI_NORMAL_BEGIN		= 0,
694 	SCX_OPI_NORMAL_END		= SCX_OP_IDX(cpu_online),
695 	SCX_OPI_CPU_HOTPLUG_BEGIN	= SCX_OP_IDX(cpu_online),
696 	SCX_OPI_CPU_HOTPLUG_END		= SCX_OP_IDX(init),
697 	SCX_OPI_END			= SCX_OP_IDX(init),
698 };
699 
700 enum scx_wake_flags {
701 	/* expose select WF_* flags as enums */
702 	SCX_WAKE_FORK		= WF_FORK,
703 	SCX_WAKE_TTWU		= WF_TTWU,
704 	SCX_WAKE_SYNC		= WF_SYNC,
705 };
706 
707 enum scx_enq_flags {
708 	/* expose select ENQUEUE_* flags as enums */
709 	SCX_ENQ_WAKEUP		= ENQUEUE_WAKEUP,
710 	SCX_ENQ_HEAD		= ENQUEUE_HEAD,
711 	SCX_ENQ_CPU_SELECTED	= ENQUEUE_RQ_SELECTED,
712 
713 	/* high 32bits are SCX specific */
714 
715 	/*
716 	 * Set the following to trigger preemption when calling
717 	 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the
718 	 * current task is cleared to zero and the CPU is kicked into the
719 	 * scheduling path. Implies %SCX_ENQ_HEAD.
720 	 */
721 	SCX_ENQ_PREEMPT		= 1LLU << 32,
722 
723 	/*
724 	 * The task being enqueued was previously enqueued on the current CPU's
725 	 * %SCX_DSQ_LOCAL, but was removed from it in a call to the
726 	 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was
727 	 * invoked in a ->cpu_release() callback, and the task is again
728 	 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the
729 	 * task will not be scheduled on the CPU until at least the next invocation
730 	 * of the ->cpu_acquire() callback.
731 	 */
732 	SCX_ENQ_REENQ		= 1LLU << 40,
733 
734 	/*
735 	 * The task being enqueued is the only task available for the cpu. By
736 	 * default, ext core keeps executing such tasks but when
737 	 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
738 	 * %SCX_ENQ_LAST flag set.
739 	 *
740 	 * The BPF scheduler is responsible for triggering a follow-up
741 	 * scheduling event. Otherwise, Execution may stall.
742 	 */
743 	SCX_ENQ_LAST		= 1LLU << 41,
744 
745 	/* high 8 bits are internal */
746 	__SCX_ENQ_INTERNAL_MASK	= 0xffLLU << 56,
747 
748 	SCX_ENQ_CLEAR_OPSS	= 1LLU << 56,
749 	SCX_ENQ_DSQ_PRIQ	= 1LLU << 57,
750 };
751 
752 enum scx_deq_flags {
753 	/* expose select DEQUEUE_* flags as enums */
754 	SCX_DEQ_SLEEP		= DEQUEUE_SLEEP,
755 
756 	/* high 32bits are SCX specific */
757 
758 	/*
759 	 * The generic core-sched layer decided to execute the task even though
760 	 * it hasn't been dispatched yet. Dequeue from the BPF side.
761 	 */
762 	SCX_DEQ_CORE_SCHED_EXEC	= 1LLU << 32,
763 };
764 
765 enum scx_pick_idle_cpu_flags {
766 	SCX_PICK_IDLE_CORE	= 1LLU << 0,	/* pick a CPU whose SMT siblings are also idle */
767 };
768 
769 enum scx_kick_flags {
770 	/*
771 	 * Kick the target CPU if idle. Guarantees that the target CPU goes
772 	 * through at least one full scheduling cycle before going idle. If the
773 	 * target CPU can be determined to be currently not idle and going to go
774 	 * through a scheduling cycle before going idle, noop.
775 	 */
776 	SCX_KICK_IDLE		= 1LLU << 0,
777 
778 	/*
779 	 * Preempt the current task and execute the dispatch path. If the
780 	 * current task of the target CPU is an SCX task, its ->scx.slice is
781 	 * cleared to zero before the scheduling path is invoked so that the
782 	 * task expires and the dispatch path is invoked.
783 	 */
784 	SCX_KICK_PREEMPT	= 1LLU << 1,
785 
786 	/*
787 	 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will
788 	 * return after the target CPU finishes picking the next task.
789 	 */
790 	SCX_KICK_WAIT		= 1LLU << 2,
791 };
792 
793 enum scx_tg_flags {
794 	SCX_TG_ONLINE		= 1U << 0,
795 	SCX_TG_INITED		= 1U << 1,
796 };
797 
798 enum scx_ops_enable_state {
799 	SCX_OPS_ENABLING,
800 	SCX_OPS_ENABLED,
801 	SCX_OPS_DISABLING,
802 	SCX_OPS_DISABLED,
803 };
804 
805 static const char *scx_ops_enable_state_str[] = {
806 	[SCX_OPS_ENABLING]	= "enabling",
807 	[SCX_OPS_ENABLED]	= "enabled",
808 	[SCX_OPS_DISABLING]	= "disabling",
809 	[SCX_OPS_DISABLED]	= "disabled",
810 };
811 
812 /*
813  * sched_ext_entity->ops_state
814  *
815  * Used to track the task ownership between the SCX core and the BPF scheduler.
816  * State transitions look as follows:
817  *
818  * NONE -> QUEUEING -> QUEUED -> DISPATCHING
819  *   ^              |                 |
820  *   |              v                 v
821  *   \-------------------------------/
822  *
823  * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
824  * sites for explanations on the conditions being waited upon and why they are
825  * safe. Transitions out of them into NONE or QUEUED must store_release and the
826  * waiters should load_acquire.
827  *
828  * Tracking scx_ops_state enables sched_ext core to reliably determine whether
829  * any given task can be dispatched by the BPF scheduler at all times and thus
830  * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
831  * to try to dispatch any task anytime regardless of its state as the SCX core
832  * can safely reject invalid dispatches.
833  */
834 enum scx_ops_state {
835 	SCX_OPSS_NONE,		/* owned by the SCX core */
836 	SCX_OPSS_QUEUEING,	/* in transit to the BPF scheduler */
837 	SCX_OPSS_QUEUED,	/* owned by the BPF scheduler */
838 	SCX_OPSS_DISPATCHING,	/* in transit back to the SCX core */
839 
840 	/*
841 	 * QSEQ brands each QUEUED instance so that, when dispatch races
842 	 * dequeue/requeue, the dispatcher can tell whether it still has a claim
843 	 * on the task being dispatched.
844 	 *
845 	 * As some 32bit archs can't do 64bit store_release/load_acquire,
846 	 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
847 	 * 32bit machines. The dispatch race window QSEQ protects is very narrow
848 	 * and runs with IRQ disabled. 30 bits should be sufficient.
849 	 */
850 	SCX_OPSS_QSEQ_SHIFT	= 2,
851 };
852 
853 /* Use macros to ensure that the type is unsigned long for the masks */
854 #define SCX_OPSS_STATE_MASK	((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
855 #define SCX_OPSS_QSEQ_MASK	(~SCX_OPSS_STATE_MASK)
856 
857 /*
858  * During exit, a task may schedule after losing its PIDs. When disabling the
859  * BPF scheduler, we need to be able to iterate tasks in every state to
860  * guarantee system safety. Maintain a dedicated task list which contains every
861  * task between its fork and eventual free.
862  */
863 static DEFINE_SPINLOCK(scx_tasks_lock);
864 static LIST_HEAD(scx_tasks);
865 
866 /* ops enable/disable */
867 static struct kthread_worker *scx_ops_helper;
868 static DEFINE_MUTEX(scx_ops_enable_mutex);
869 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
870 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
871 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
872 static unsigned long scx_in_softlockup;
873 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0);
874 static int scx_ops_bypass_depth;
875 static bool scx_ops_init_task_enabled;
876 static bool scx_switching_all;
877 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
878 
879 static struct sched_ext_ops scx_ops;
880 static bool scx_warned_zero_slice;
881 
882 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
883 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
884 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt);
885 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
886 
887 #ifdef CONFIG_SMP
888 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
889 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
890 #endif
891 
892 static struct static_key_false scx_has_op[SCX_OPI_END] =
893 	{ [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
894 
895 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
896 static struct scx_exit_info *scx_exit_info;
897 
898 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
899 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
900 
901 /*
902  * A monotically increasing sequence number that is incremented every time a
903  * scheduler is enabled. This can be used by to check if any custom sched_ext
904  * scheduler has ever been used in the system.
905  */
906 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
907 
908 /*
909  * The maximum amount of time in jiffies that a task may be runnable without
910  * being scheduled on a CPU. If this timeout is exceeded, it will trigger
911  * scx_ops_error().
912  */
913 static unsigned long scx_watchdog_timeout;
914 
915 /*
916  * The last time the delayed work was run. This delayed work relies on
917  * ksoftirqd being able to run to service timer interrupts, so it's possible
918  * that this work itself could get wedged. To account for this, we check that
919  * it's not stalled in the timer tick, and trigger an error if it is.
920  */
921 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
922 
923 static struct delayed_work scx_watchdog_work;
924 
925 /* idle tracking */
926 #ifdef CONFIG_SMP
927 #ifdef CONFIG_CPUMASK_OFFSTACK
928 #define CL_ALIGNED_IF_ONSTACK
929 #else
930 #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
931 #endif
932 
933 static struct {
934 	cpumask_var_t cpu;
935 	cpumask_var_t smt;
936 } idle_masks CL_ALIGNED_IF_ONSTACK;
937 
938 #endif	/* CONFIG_SMP */
939 
940 /* for %SCX_KICK_WAIT */
941 static unsigned long __percpu *scx_kick_cpus_pnt_seqs;
942 
943 /*
944  * Direct dispatch marker.
945  *
946  * Non-NULL values are used for direct dispatch from enqueue path. A valid
947  * pointer points to the task currently being enqueued. An ERR_PTR value is used
948  * to indicate that direct dispatch has already happened.
949  */
950 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
951 
952 /*
953  * Dispatch queues.
954  *
955  * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is
956  * to avoid live-locking in bypass mode where all tasks are dispatched to
957  * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't
958  * sufficient, it can be further split.
959  */
960 static struct scx_dispatch_q **global_dsqs;
961 
962 static const struct rhashtable_params dsq_hash_params = {
963 	.key_len		= 8,
964 	.key_offset		= offsetof(struct scx_dispatch_q, id),
965 	.head_offset		= offsetof(struct scx_dispatch_q, hash_node),
966 };
967 
968 static struct rhashtable dsq_hash;
969 static LLIST_HEAD(dsqs_to_free);
970 
971 /* dispatch buf */
972 struct scx_dsp_buf_ent {
973 	struct task_struct	*task;
974 	unsigned long		qseq;
975 	u64			dsq_id;
976 	u64			enq_flags;
977 };
978 
979 static u32 scx_dsp_max_batch;
980 
981 struct scx_dsp_ctx {
982 	struct rq		*rq;
983 	u32			cursor;
984 	u32			nr_tasks;
985 	struct scx_dsp_buf_ent	buf[];
986 };
987 
988 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
989 
990 /* string formatting from BPF */
991 struct scx_bstr_buf {
992 	u64			data[MAX_BPRINTF_VARARGS];
993 	char			line[SCX_EXIT_MSG_LEN];
994 };
995 
996 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
997 static struct scx_bstr_buf scx_exit_bstr_buf;
998 
999 /* ops debug dump */
1000 struct scx_dump_data {
1001 	s32			cpu;
1002 	bool			first;
1003 	s32			cursor;
1004 	struct seq_buf		*s;
1005 	const char		*prefix;
1006 	struct scx_bstr_buf	buf;
1007 };
1008 
1009 static struct scx_dump_data scx_dump_data = {
1010 	.cpu			= -1,
1011 };
1012 
1013 /* /sys/kernel/sched_ext interface */
1014 static struct kset *scx_kset;
1015 static struct kobject *scx_root_kobj;
1016 
1017 #define CREATE_TRACE_POINTS
1018 #include <trace/events/sched_ext.h>
1019 
1020 static void process_ddsp_deferred_locals(struct rq *rq);
1021 static void scx_bpf_kick_cpu(s32 cpu, u64 flags);
1022 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
1023 					     s64 exit_code,
1024 					     const char *fmt, ...);
1025 
1026 #define scx_ops_error_kind(err, fmt, args...)					\
1027 	scx_ops_exit_kind((err), 0, fmt, ##args)
1028 
1029 #define scx_ops_exit(code, fmt, args...)					\
1030 	scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
1031 
1032 #define scx_ops_error(fmt, args...)						\
1033 	scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
1034 
1035 #define SCX_HAS_OP(op)	static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
1036 
1037 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
1038 {
1039 	if (time_after(at, now))
1040 		return jiffies_to_msecs(at - now);
1041 	else
1042 		return -(long)jiffies_to_msecs(now - at);
1043 }
1044 
1045 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
1046 static u32 higher_bits(u32 flags)
1047 {
1048 	return ~((1 << fls(flags)) - 1);
1049 }
1050 
1051 /* return the mask with only the highest bit set */
1052 static u32 highest_bit(u32 flags)
1053 {
1054 	int bit = fls(flags);
1055 	return ((u64)1 << bit) >> 1;
1056 }
1057 
1058 static bool u32_before(u32 a, u32 b)
1059 {
1060 	return (s32)(a - b) < 0;
1061 }
1062 
1063 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p)
1064 {
1065 	return global_dsqs[cpu_to_node(task_cpu(p))];
1066 }
1067 
1068 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
1069 {
1070 	return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
1071 }
1072 
1073 /*
1074  * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
1075  * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
1076  * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
1077  * whether it's running from an allowed context.
1078  *
1079  * @mask is constant, always inline to cull the mask calculations.
1080  */
1081 static __always_inline void scx_kf_allow(u32 mask)
1082 {
1083 	/* nesting is allowed only in increasing scx_kf_mask order */
1084 	WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
1085 		  "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
1086 		  current->scx.kf_mask, mask);
1087 	current->scx.kf_mask |= mask;
1088 	barrier();
1089 }
1090 
1091 static void scx_kf_disallow(u32 mask)
1092 {
1093 	barrier();
1094 	current->scx.kf_mask &= ~mask;
1095 }
1096 
1097 #define SCX_CALL_OP(mask, op, args...)						\
1098 do {										\
1099 	if (mask) {								\
1100 		scx_kf_allow(mask);						\
1101 		scx_ops.op(args);						\
1102 		scx_kf_disallow(mask);						\
1103 	} else {								\
1104 		scx_ops.op(args);						\
1105 	}									\
1106 } while (0)
1107 
1108 #define SCX_CALL_OP_RET(mask, op, args...)					\
1109 ({										\
1110 	__typeof__(scx_ops.op(args)) __ret;					\
1111 	if (mask) {								\
1112 		scx_kf_allow(mask);						\
1113 		__ret = scx_ops.op(args);					\
1114 		scx_kf_disallow(mask);						\
1115 	} else {								\
1116 		__ret = scx_ops.op(args);					\
1117 	}									\
1118 	__ret;									\
1119 })
1120 
1121 /*
1122  * Some kfuncs are allowed only on the tasks that are subjects of the
1123  * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
1124  * restrictions, the following SCX_CALL_OP_*() variants should be used when
1125  * invoking scx_ops operations that take task arguments. These can only be used
1126  * for non-nesting operations due to the way the tasks are tracked.
1127  *
1128  * kfuncs which can only operate on such tasks can in turn use
1129  * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
1130  * the specific task.
1131  */
1132 #define SCX_CALL_OP_TASK(mask, op, task, args...)				\
1133 do {										\
1134 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1135 	current->scx.kf_tasks[0] = task;					\
1136 	SCX_CALL_OP(mask, op, task, ##args);					\
1137 	current->scx.kf_tasks[0] = NULL;					\
1138 } while (0)
1139 
1140 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...)				\
1141 ({										\
1142 	__typeof__(scx_ops.op(task, ##args)) __ret;				\
1143 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1144 	current->scx.kf_tasks[0] = task;					\
1145 	__ret = SCX_CALL_OP_RET(mask, op, task, ##args);			\
1146 	current->scx.kf_tasks[0] = NULL;					\
1147 	__ret;									\
1148 })
1149 
1150 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...)			\
1151 ({										\
1152 	__typeof__(scx_ops.op(task0, task1, ##args)) __ret;			\
1153 	BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL);				\
1154 	current->scx.kf_tasks[0] = task0;					\
1155 	current->scx.kf_tasks[1] = task1;					\
1156 	__ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args);		\
1157 	current->scx.kf_tasks[0] = NULL;					\
1158 	current->scx.kf_tasks[1] = NULL;					\
1159 	__ret;									\
1160 })
1161 
1162 /* @mask is constant, always inline to cull unnecessary branches */
1163 static __always_inline bool scx_kf_allowed(u32 mask)
1164 {
1165 	if (unlikely(!(current->scx.kf_mask & mask))) {
1166 		scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
1167 			      mask, current->scx.kf_mask);
1168 		return false;
1169 	}
1170 
1171 	/*
1172 	 * Enforce nesting boundaries. e.g. A kfunc which can be called from
1173 	 * DISPATCH must not be called if we're running DEQUEUE which is nested
1174 	 * inside ops.dispatch(). We don't need to check boundaries for any
1175 	 * blocking kfuncs as the verifier ensures they're only called from
1176 	 * sleepable progs.
1177 	 */
1178 	if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
1179 		     (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
1180 		scx_ops_error("cpu_release kfunc called from a nested operation");
1181 		return false;
1182 	}
1183 
1184 	if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
1185 		     (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
1186 		scx_ops_error("dispatch kfunc called from a nested operation");
1187 		return false;
1188 	}
1189 
1190 	return true;
1191 }
1192 
1193 /* see SCX_CALL_OP_TASK() */
1194 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask,
1195 							struct task_struct *p)
1196 {
1197 	if (!scx_kf_allowed(mask))
1198 		return false;
1199 
1200 	if (unlikely((p != current->scx.kf_tasks[0] &&
1201 		      p != current->scx.kf_tasks[1]))) {
1202 		scx_ops_error("called on a task not being operated on");
1203 		return false;
1204 	}
1205 
1206 	return true;
1207 }
1208 
1209 static bool scx_kf_allowed_if_unlocked(void)
1210 {
1211 	return !current->scx.kf_mask;
1212 }
1213 
1214 /**
1215  * nldsq_next_task - Iterate to the next task in a non-local DSQ
1216  * @dsq: user dsq being interated
1217  * @cur: current position, %NULL to start iteration
1218  * @rev: walk backwards
1219  *
1220  * Returns %NULL when iteration is finished.
1221  */
1222 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
1223 					   struct task_struct *cur, bool rev)
1224 {
1225 	struct list_head *list_node;
1226 	struct scx_dsq_list_node *dsq_lnode;
1227 
1228 	lockdep_assert_held(&dsq->lock);
1229 
1230 	if (cur)
1231 		list_node = &cur->scx.dsq_list.node;
1232 	else
1233 		list_node = &dsq->list;
1234 
1235 	/* find the next task, need to skip BPF iteration cursors */
1236 	do {
1237 		if (rev)
1238 			list_node = list_node->prev;
1239 		else
1240 			list_node = list_node->next;
1241 
1242 		if (list_node == &dsq->list)
1243 			return NULL;
1244 
1245 		dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
1246 					 node);
1247 	} while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
1248 
1249 	return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
1250 }
1251 
1252 #define nldsq_for_each_task(p, dsq)						\
1253 	for ((p) = nldsq_next_task((dsq), NULL, false); (p);			\
1254 	     (p) = nldsq_next_task((dsq), (p), false))
1255 
1256 
1257 /*
1258  * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
1259  * dispatch order. BPF-visible iterator is opaque and larger to allow future
1260  * changes without breaking backward compatibility. Can be used with
1261  * bpf_for_each(). See bpf_iter_scx_dsq_*().
1262  */
1263 enum scx_dsq_iter_flags {
1264 	/* iterate in the reverse dispatch order */
1265 	SCX_DSQ_ITER_REV		= 1U << 16,
1266 
1267 	__SCX_DSQ_ITER_HAS_SLICE	= 1U << 30,
1268 	__SCX_DSQ_ITER_HAS_VTIME	= 1U << 31,
1269 
1270 	__SCX_DSQ_ITER_USER_FLAGS	= SCX_DSQ_ITER_REV,
1271 	__SCX_DSQ_ITER_ALL_FLAGS	= __SCX_DSQ_ITER_USER_FLAGS |
1272 					  __SCX_DSQ_ITER_HAS_SLICE |
1273 					  __SCX_DSQ_ITER_HAS_VTIME,
1274 };
1275 
1276 struct bpf_iter_scx_dsq_kern {
1277 	struct scx_dsq_list_node	cursor;
1278 	struct scx_dispatch_q		*dsq;
1279 	u64				slice;
1280 	u64				vtime;
1281 } __attribute__((aligned(8)));
1282 
1283 struct bpf_iter_scx_dsq {
1284 	u64				__opaque[6];
1285 } __attribute__((aligned(8)));
1286 
1287 
1288 /*
1289  * SCX task iterator.
1290  */
1291 struct scx_task_iter {
1292 	struct sched_ext_entity		cursor;
1293 	struct task_struct		*locked;
1294 	struct rq			*rq;
1295 	struct rq_flags			rf;
1296 	u32				cnt;
1297 };
1298 
1299 /**
1300  * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
1301  * @iter: iterator to init
1302  *
1303  * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
1304  * must eventually be stopped with scx_task_iter_stop().
1305  *
1306  * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
1307  * between this and the first next() call or between any two next() calls. If
1308  * the locks are released between two next() calls, the caller is responsible
1309  * for ensuring that the task being iterated remains accessible either through
1310  * RCU read lock or obtaining a reference count.
1311  *
1312  * All tasks which existed when the iteration started are guaranteed to be
1313  * visited as long as they still exist.
1314  */
1315 static void scx_task_iter_start(struct scx_task_iter *iter)
1316 {
1317 	BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
1318 		     ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
1319 
1320 	spin_lock_irq(&scx_tasks_lock);
1321 
1322 	iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
1323 	list_add(&iter->cursor.tasks_node, &scx_tasks);
1324 	iter->locked = NULL;
1325 	iter->cnt = 0;
1326 }
1327 
1328 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
1329 {
1330 	if (iter->locked) {
1331 		task_rq_unlock(iter->rq, iter->locked, &iter->rf);
1332 		iter->locked = NULL;
1333 	}
1334 }
1335 
1336 /**
1337  * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
1338  * @iter: iterator to unlock
1339  *
1340  * If @iter is in the middle of a locked iteration, it may be locking the rq of
1341  * the task currently being visited in addition to scx_tasks_lock. Unlock both.
1342  * This function can be safely called anytime during an iteration.
1343  */
1344 static void scx_task_iter_unlock(struct scx_task_iter *iter)
1345 {
1346 	__scx_task_iter_rq_unlock(iter);
1347 	spin_unlock_irq(&scx_tasks_lock);
1348 }
1349 
1350 /**
1351  * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock()
1352  * @iter: iterator to re-lock
1353  *
1354  * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it
1355  * doesn't re-lock the rq lock. Must be called before other iterator operations.
1356  */
1357 static void scx_task_iter_relock(struct scx_task_iter *iter)
1358 {
1359 	spin_lock_irq(&scx_tasks_lock);
1360 }
1361 
1362 /**
1363  * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
1364  * @iter: iterator to exit
1365  *
1366  * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
1367  * which is released on return. If the iterator holds a task's rq lock, that rq
1368  * lock is also released. See scx_task_iter_start() for details.
1369  */
1370 static void scx_task_iter_stop(struct scx_task_iter *iter)
1371 {
1372 	list_del_init(&iter->cursor.tasks_node);
1373 	scx_task_iter_unlock(iter);
1374 }
1375 
1376 /**
1377  * scx_task_iter_next - Next task
1378  * @iter: iterator to walk
1379  *
1380  * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
1381  * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing
1382  * stalls by holding scx_tasks_lock for too long.
1383  */
1384 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
1385 {
1386 	struct list_head *cursor = &iter->cursor.tasks_node;
1387 	struct sched_ext_entity *pos;
1388 
1389 	if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) {
1390 		scx_task_iter_unlock(iter);
1391 		cond_resched();
1392 		scx_task_iter_relock(iter);
1393 	}
1394 
1395 	list_for_each_entry(pos, cursor, tasks_node) {
1396 		if (&pos->tasks_node == &scx_tasks)
1397 			return NULL;
1398 		if (!(pos->flags & SCX_TASK_CURSOR)) {
1399 			list_move(cursor, &pos->tasks_node);
1400 			return container_of(pos, struct task_struct, scx);
1401 		}
1402 	}
1403 
1404 	/* can't happen, should always terminate at scx_tasks above */
1405 	BUG();
1406 }
1407 
1408 /**
1409  * scx_task_iter_next_locked - Next non-idle task with its rq locked
1410  * @iter: iterator to walk
1411  * @include_dead: Whether we should include dead tasks in the iteration
1412  *
1413  * Visit the non-idle task with its rq lock held. Allows callers to specify
1414  * whether they would like to filter out dead tasks. See scx_task_iter_start()
1415  * for details.
1416  */
1417 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
1418 {
1419 	struct task_struct *p;
1420 
1421 	__scx_task_iter_rq_unlock(iter);
1422 
1423 	while ((p = scx_task_iter_next(iter))) {
1424 		/*
1425 		 * scx_task_iter is used to prepare and move tasks into SCX
1426 		 * while loading the BPF scheduler and vice-versa while
1427 		 * unloading. The init_tasks ("swappers") should be excluded
1428 		 * from the iteration because:
1429 		 *
1430 		 * - It's unsafe to use __setschduler_prio() on an init_task to
1431 		 *   determine the sched_class to use as it won't preserve its
1432 		 *   idle_sched_class.
1433 		 *
1434 		 * - ops.init/exit_task() can easily be confused if called with
1435 		 *   init_tasks as they, e.g., share PID 0.
1436 		 *
1437 		 * As init_tasks are never scheduled through SCX, they can be
1438 		 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
1439 		 * doesn't work here:
1440 		 *
1441 		 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
1442 		 *   yet been onlined.
1443 		 *
1444 		 * - %PF_IDLE can be set on tasks that are not init_tasks. See
1445 		 *   play_idle_precise() used by CONFIG_IDLE_INJECT.
1446 		 *
1447 		 * Test for idle_sched_class as only init_tasks are on it.
1448 		 */
1449 		if (p->sched_class != &idle_sched_class)
1450 			break;
1451 	}
1452 	if (!p)
1453 		return NULL;
1454 
1455 	iter->rq = task_rq_lock(p, &iter->rf);
1456 	iter->locked = p;
1457 
1458 	return p;
1459 }
1460 
1461 static enum scx_ops_enable_state scx_ops_enable_state(void)
1462 {
1463 	return atomic_read(&scx_ops_enable_state_var);
1464 }
1465 
1466 static enum scx_ops_enable_state
1467 scx_ops_set_enable_state(enum scx_ops_enable_state to)
1468 {
1469 	return atomic_xchg(&scx_ops_enable_state_var, to);
1470 }
1471 
1472 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
1473 					enum scx_ops_enable_state from)
1474 {
1475 	int from_v = from;
1476 
1477 	return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
1478 }
1479 
1480 static bool scx_rq_bypassing(struct rq *rq)
1481 {
1482 	return unlikely(rq->scx.flags & SCX_RQ_BYPASSING);
1483 }
1484 
1485 /**
1486  * wait_ops_state - Busy-wait the specified ops state to end
1487  * @p: target task
1488  * @opss: state to wait the end of
1489  *
1490  * Busy-wait for @p to transition out of @opss. This can only be used when the
1491  * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
1492  * has load_acquire semantics to ensure that the caller can see the updates made
1493  * in the enqueueing and dispatching paths.
1494  */
1495 static void wait_ops_state(struct task_struct *p, unsigned long opss)
1496 {
1497 	do {
1498 		cpu_relax();
1499 	} while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
1500 }
1501 
1502 /**
1503  * ops_cpu_valid - Verify a cpu number
1504  * @cpu: cpu number which came from a BPF ops
1505  * @where: extra information reported on error
1506  *
1507  * @cpu is a cpu number which came from the BPF scheduler and can be any value.
1508  * Verify that it is in range and one of the possible cpus. If invalid, trigger
1509  * an ops error.
1510  */
1511 static bool ops_cpu_valid(s32 cpu, const char *where)
1512 {
1513 	if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
1514 		return true;
1515 	} else {
1516 		scx_ops_error("invalid CPU %d%s%s", cpu,
1517 			      where ? " " : "", where ?: "");
1518 		return false;
1519 	}
1520 }
1521 
1522 /**
1523  * ops_sanitize_err - Sanitize a -errno value
1524  * @ops_name: operation to blame on failure
1525  * @err: -errno value to sanitize
1526  *
1527  * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
1528  * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
1529  * cause misbehaviors. For an example, a large negative return from
1530  * ops.init_task() triggers an oops when passed up the call chain because the
1531  * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
1532  * handled as a pointer.
1533  */
1534 static int ops_sanitize_err(const char *ops_name, s32 err)
1535 {
1536 	if (err < 0 && err >= -MAX_ERRNO)
1537 		return err;
1538 
1539 	scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
1540 	return -EPROTO;
1541 }
1542 
1543 static void run_deferred(struct rq *rq)
1544 {
1545 	process_ddsp_deferred_locals(rq);
1546 }
1547 
1548 #ifdef CONFIG_SMP
1549 static void deferred_bal_cb_workfn(struct rq *rq)
1550 {
1551 	run_deferred(rq);
1552 }
1553 #endif
1554 
1555 static void deferred_irq_workfn(struct irq_work *irq_work)
1556 {
1557 	struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
1558 
1559 	raw_spin_rq_lock(rq);
1560 	run_deferred(rq);
1561 	raw_spin_rq_unlock(rq);
1562 }
1563 
1564 /**
1565  * schedule_deferred - Schedule execution of deferred actions on an rq
1566  * @rq: target rq
1567  *
1568  * Schedule execution of deferred actions on @rq. Must be called with @rq
1569  * locked. Deferred actions are executed with @rq locked but unpinned, and thus
1570  * can unlock @rq to e.g. migrate tasks to other rqs.
1571  */
1572 static void schedule_deferred(struct rq *rq)
1573 {
1574 	lockdep_assert_rq_held(rq);
1575 
1576 #ifdef CONFIG_SMP
1577 	/*
1578 	 * If in the middle of waking up a task, task_woken_scx() will be called
1579 	 * afterwards which will then run the deferred actions, no need to
1580 	 * schedule anything.
1581 	 */
1582 	if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
1583 		return;
1584 
1585 	/*
1586 	 * If in balance, the balance callbacks will be called before rq lock is
1587 	 * released. Schedule one.
1588 	 */
1589 	if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
1590 		queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
1591 				       deferred_bal_cb_workfn);
1592 		return;
1593 	}
1594 #endif
1595 	/*
1596 	 * No scheduler hooks available. Queue an irq work. They are executed on
1597 	 * IRQ re-enable which may take a bit longer than the scheduler hooks.
1598 	 * The above WAKEUP and BALANCE paths should cover most of the cases and
1599 	 * the time to IRQ re-enable shouldn't be long.
1600 	 */
1601 	irq_work_queue(&rq->scx.deferred_irq_work);
1602 }
1603 
1604 /**
1605  * touch_core_sched - Update timestamp used for core-sched task ordering
1606  * @rq: rq to read clock from, must be locked
1607  * @p: task to update the timestamp for
1608  *
1609  * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
1610  * implement global or local-DSQ FIFO ordering for core-sched. Should be called
1611  * when a task becomes runnable and its turn on the CPU ends (e.g. slice
1612  * exhaustion).
1613  */
1614 static void touch_core_sched(struct rq *rq, struct task_struct *p)
1615 {
1616 	lockdep_assert_rq_held(rq);
1617 
1618 #ifdef CONFIG_SCHED_CORE
1619 	/*
1620 	 * It's okay to update the timestamp spuriously. Use
1621 	 * sched_core_disabled() which is cheaper than enabled().
1622 	 *
1623 	 * As this is used to determine ordering between tasks of sibling CPUs,
1624 	 * it may be better to use per-core dispatch sequence instead.
1625 	 */
1626 	if (!sched_core_disabled())
1627 		p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
1628 #endif
1629 }
1630 
1631 /**
1632  * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
1633  * @rq: rq to read clock from, must be locked
1634  * @p: task being dispatched
1635  *
1636  * If the BPF scheduler implements custom core-sched ordering via
1637  * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
1638  * ordering within each local DSQ. This function is called from dispatch paths
1639  * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
1640  */
1641 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
1642 {
1643 	lockdep_assert_rq_held(rq);
1644 
1645 #ifdef CONFIG_SCHED_CORE
1646 	if (SCX_HAS_OP(core_sched_before))
1647 		touch_core_sched(rq, p);
1648 #endif
1649 }
1650 
1651 static void update_curr_scx(struct rq *rq)
1652 {
1653 	struct task_struct *curr = rq->curr;
1654 	s64 delta_exec;
1655 
1656 	delta_exec = update_curr_common(rq);
1657 	if (unlikely(delta_exec <= 0))
1658 		return;
1659 
1660 	if (curr->scx.slice != SCX_SLICE_INF) {
1661 		curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
1662 		if (!curr->scx.slice)
1663 			touch_core_sched(rq, curr);
1664 	}
1665 }
1666 
1667 static bool scx_dsq_priq_less(struct rb_node *node_a,
1668 			      const struct rb_node *node_b)
1669 {
1670 	const struct task_struct *a =
1671 		container_of(node_a, struct task_struct, scx.dsq_priq);
1672 	const struct task_struct *b =
1673 		container_of(node_b, struct task_struct, scx.dsq_priq);
1674 
1675 	return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
1676 }
1677 
1678 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
1679 {
1680 	/* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
1681 	WRITE_ONCE(dsq->nr, dsq->nr + delta);
1682 }
1683 
1684 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
1685 			     u64 enq_flags)
1686 {
1687 	bool is_local = dsq->id == SCX_DSQ_LOCAL;
1688 
1689 	WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1690 	WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1691 		     !RB_EMPTY_NODE(&p->scx.dsq_priq));
1692 
1693 	if (!is_local) {
1694 		raw_spin_lock(&dsq->lock);
1695 		if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1696 			scx_ops_error("attempting to dispatch to a destroyed dsq");
1697 			/* fall back to the global dsq */
1698 			raw_spin_unlock(&dsq->lock);
1699 			dsq = find_global_dsq(p);
1700 			raw_spin_lock(&dsq->lock);
1701 		}
1702 	}
1703 
1704 	if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1705 		     (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1706 		/*
1707 		 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1708 		 * their FIFO queues. To avoid confusion and accidentally
1709 		 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1710 		 * disallow any internal DSQ from doing vtime ordering of
1711 		 * tasks.
1712 		 */
1713 		scx_ops_error("cannot use vtime ordering for built-in DSQs");
1714 		enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1715 	}
1716 
1717 	if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1718 		struct rb_node *rbp;
1719 
1720 		/*
1721 		 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1722 		 * linked to both the rbtree and list on PRIQs, this can only be
1723 		 * tested easily when adding the first task.
1724 		 */
1725 		if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1726 			     nldsq_next_task(dsq, NULL, false)))
1727 			scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1728 				      dsq->id);
1729 
1730 		p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1731 		rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1732 
1733 		/*
1734 		 * Find the previous task and insert after it on the list so
1735 		 * that @dsq->list is vtime ordered.
1736 		 */
1737 		rbp = rb_prev(&p->scx.dsq_priq);
1738 		if (rbp) {
1739 			struct task_struct *prev =
1740 				container_of(rbp, struct task_struct,
1741 					     scx.dsq_priq);
1742 			list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1743 		} else {
1744 			list_add(&p->scx.dsq_list.node, &dsq->list);
1745 		}
1746 	} else {
1747 		/* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1748 		if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1749 			scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1750 				      dsq->id);
1751 
1752 		if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1753 			list_add(&p->scx.dsq_list.node, &dsq->list);
1754 		else
1755 			list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1756 	}
1757 
1758 	/* seq records the order tasks are queued, used by BPF DSQ iterator */
1759 	dsq->seq++;
1760 	p->scx.dsq_seq = dsq->seq;
1761 
1762 	dsq_mod_nr(dsq, 1);
1763 	p->scx.dsq = dsq;
1764 
1765 	/*
1766 	 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1767 	 * direct dispatch path, but we clear them here because the direct
1768 	 * dispatch verdict may be overridden on the enqueue path during e.g.
1769 	 * bypass.
1770 	 */
1771 	p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1772 	p->scx.ddsp_enq_flags = 0;
1773 
1774 	/*
1775 	 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1776 	 * match waiters' load_acquire.
1777 	 */
1778 	if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1779 		atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1780 
1781 	if (is_local) {
1782 		struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1783 		bool preempt = false;
1784 
1785 		if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1786 		    rq->curr->sched_class == &ext_sched_class) {
1787 			rq->curr->scx.slice = 0;
1788 			preempt = true;
1789 		}
1790 
1791 		if (preempt || sched_class_above(&ext_sched_class,
1792 						 rq->curr->sched_class))
1793 			resched_curr(rq);
1794 	} else {
1795 		raw_spin_unlock(&dsq->lock);
1796 	}
1797 }
1798 
1799 static void task_unlink_from_dsq(struct task_struct *p,
1800 				 struct scx_dispatch_q *dsq)
1801 {
1802 	WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1803 
1804 	if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1805 		rb_erase(&p->scx.dsq_priq, &dsq->priq);
1806 		RB_CLEAR_NODE(&p->scx.dsq_priq);
1807 		p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1808 	}
1809 
1810 	list_del_init(&p->scx.dsq_list.node);
1811 	dsq_mod_nr(dsq, -1);
1812 }
1813 
1814 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1815 {
1816 	struct scx_dispatch_q *dsq = p->scx.dsq;
1817 	bool is_local = dsq == &rq->scx.local_dsq;
1818 
1819 	if (!dsq) {
1820 		/*
1821 		 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1822 		 * Unlinking is all that's needed to cancel.
1823 		 */
1824 		if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1825 			list_del_init(&p->scx.dsq_list.node);
1826 
1827 		/*
1828 		 * When dispatching directly from the BPF scheduler to a local
1829 		 * DSQ, the task isn't associated with any DSQ but
1830 		 * @p->scx.holding_cpu may be set under the protection of
1831 		 * %SCX_OPSS_DISPATCHING.
1832 		 */
1833 		if (p->scx.holding_cpu >= 0)
1834 			p->scx.holding_cpu = -1;
1835 
1836 		return;
1837 	}
1838 
1839 	if (!is_local)
1840 		raw_spin_lock(&dsq->lock);
1841 
1842 	/*
1843 	 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1844 	 * change underneath us.
1845 	*/
1846 	if (p->scx.holding_cpu < 0) {
1847 		/* @p must still be on @dsq, dequeue */
1848 		task_unlink_from_dsq(p, dsq);
1849 	} else {
1850 		/*
1851 		 * We're racing against dispatch_to_local_dsq() which already
1852 		 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1853 		 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1854 		 * the race.
1855 		 */
1856 		WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1857 		p->scx.holding_cpu = -1;
1858 	}
1859 	p->scx.dsq = NULL;
1860 
1861 	if (!is_local)
1862 		raw_spin_unlock(&dsq->lock);
1863 }
1864 
1865 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
1866 						    struct task_struct *p)
1867 {
1868 	struct scx_dispatch_q *dsq;
1869 
1870 	if (dsq_id == SCX_DSQ_LOCAL)
1871 		return &rq->scx.local_dsq;
1872 
1873 	if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1874 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1875 
1876 		if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1877 			return find_global_dsq(p);
1878 
1879 		return &cpu_rq(cpu)->scx.local_dsq;
1880 	}
1881 
1882 	if (dsq_id == SCX_DSQ_GLOBAL)
1883 		dsq = find_global_dsq(p);
1884 	else
1885 		dsq = find_user_dsq(dsq_id);
1886 
1887 	if (unlikely(!dsq)) {
1888 		scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
1889 			      dsq_id, p->comm, p->pid);
1890 		return find_global_dsq(p);
1891 	}
1892 
1893 	return dsq;
1894 }
1895 
1896 static void mark_direct_dispatch(struct task_struct *ddsp_task,
1897 				 struct task_struct *p, u64 dsq_id,
1898 				 u64 enq_flags)
1899 {
1900 	/*
1901 	 * Mark that dispatch already happened from ops.select_cpu() or
1902 	 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1903 	 * which can never match a valid task pointer.
1904 	 */
1905 	__this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1906 
1907 	/* @p must match the task on the enqueue path */
1908 	if (unlikely(p != ddsp_task)) {
1909 		if (IS_ERR(ddsp_task))
1910 			scx_ops_error("%s[%d] already direct-dispatched",
1911 				      p->comm, p->pid);
1912 		else
1913 			scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1914 				      ddsp_task->comm, ddsp_task->pid,
1915 				      p->comm, p->pid);
1916 		return;
1917 	}
1918 
1919 	WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1920 	WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1921 
1922 	p->scx.ddsp_dsq_id = dsq_id;
1923 	p->scx.ddsp_enq_flags = enq_flags;
1924 }
1925 
1926 static void direct_dispatch(struct task_struct *p, u64 enq_flags)
1927 {
1928 	struct rq *rq = task_rq(p);
1929 	struct scx_dispatch_q *dsq =
1930 		find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
1931 
1932 	touch_core_sched_dispatch(rq, p);
1933 
1934 	p->scx.ddsp_enq_flags |= enq_flags;
1935 
1936 	/*
1937 	 * We are in the enqueue path with @rq locked and pinned, and thus can't
1938 	 * double lock a remote rq and enqueue to its local DSQ. For
1939 	 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1940 	 * the enqueue so that it's executed when @rq can be unlocked.
1941 	 */
1942 	if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1943 		unsigned long opss;
1944 
1945 		opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1946 
1947 		switch (opss & SCX_OPSS_STATE_MASK) {
1948 		case SCX_OPSS_NONE:
1949 			break;
1950 		case SCX_OPSS_QUEUEING:
1951 			/*
1952 			 * As @p was never passed to the BPF side, _release is
1953 			 * not strictly necessary. Still do it for consistency.
1954 			 */
1955 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1956 			break;
1957 		default:
1958 			WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1959 				  p->comm, p->pid, opss);
1960 			atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1961 			break;
1962 		}
1963 
1964 		WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1965 		list_add_tail(&p->scx.dsq_list.node,
1966 			      &rq->scx.ddsp_deferred_locals);
1967 		schedule_deferred(rq);
1968 		return;
1969 	}
1970 
1971 	dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1972 }
1973 
1974 static bool scx_rq_online(struct rq *rq)
1975 {
1976 	/*
1977 	 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1978 	 * the online state as seen from the BPF scheduler. cpu_active() test
1979 	 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1980 	 * stay set until the current scheduling operation is complete even if
1981 	 * we aren't locking @rq.
1982 	 */
1983 	return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1984 }
1985 
1986 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1987 			    int sticky_cpu)
1988 {
1989 	struct task_struct **ddsp_taskp;
1990 	unsigned long qseq;
1991 
1992 	WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1993 
1994 	/* rq migration */
1995 	if (sticky_cpu == cpu_of(rq))
1996 		goto local_norefill;
1997 
1998 	/*
1999 	 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
2000 	 * is offline and are just running the hotplug path. Don't bother the
2001 	 * BPF scheduler.
2002 	 */
2003 	if (!scx_rq_online(rq))
2004 		goto local;
2005 
2006 	if (scx_rq_bypassing(rq))
2007 		goto global;
2008 
2009 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2010 		goto direct;
2011 
2012 	/* see %SCX_OPS_ENQ_EXITING */
2013 	if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
2014 	    unlikely(p->flags & PF_EXITING))
2015 		goto local;
2016 
2017 	if (!SCX_HAS_OP(enqueue))
2018 		goto global;
2019 
2020 	/* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
2021 	qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
2022 
2023 	WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2024 	atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
2025 
2026 	ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2027 	WARN_ON_ONCE(*ddsp_taskp);
2028 	*ddsp_taskp = p;
2029 
2030 	SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
2031 
2032 	*ddsp_taskp = NULL;
2033 	if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
2034 		goto direct;
2035 
2036 	/*
2037 	 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
2038 	 * dequeue may be waiting. The store_release matches their load_acquire.
2039 	 */
2040 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
2041 	return;
2042 
2043 direct:
2044 	direct_dispatch(p, enq_flags);
2045 	return;
2046 
2047 local:
2048 	/*
2049 	 * For task-ordering, slice refill must be treated as implying the end
2050 	 * of the current slice. Otherwise, the longer @p stays on the CPU, the
2051 	 * higher priority it becomes from scx_prio_less()'s POV.
2052 	 */
2053 	touch_core_sched(rq, p);
2054 	p->scx.slice = SCX_SLICE_DFL;
2055 local_norefill:
2056 	dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
2057 	return;
2058 
2059 global:
2060 	touch_core_sched(rq, p);	/* see the comment in local: */
2061 	p->scx.slice = SCX_SLICE_DFL;
2062 	dispatch_enqueue(find_global_dsq(p), p, enq_flags);
2063 }
2064 
2065 static bool task_runnable(const struct task_struct *p)
2066 {
2067 	return !list_empty(&p->scx.runnable_node);
2068 }
2069 
2070 static void set_task_runnable(struct rq *rq, struct task_struct *p)
2071 {
2072 	lockdep_assert_rq_held(rq);
2073 
2074 	if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
2075 		p->scx.runnable_at = jiffies;
2076 		p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
2077 	}
2078 
2079 	/*
2080 	 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
2081 	 * appened to the runnable_list.
2082 	 */
2083 	list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
2084 }
2085 
2086 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
2087 {
2088 	list_del_init(&p->scx.runnable_node);
2089 	if (reset_runnable_at)
2090 		p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2091 }
2092 
2093 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
2094 {
2095 	int sticky_cpu = p->scx.sticky_cpu;
2096 
2097 	if (enq_flags & ENQUEUE_WAKEUP)
2098 		rq->scx.flags |= SCX_RQ_IN_WAKEUP;
2099 
2100 	enq_flags |= rq->scx.extra_enq_flags;
2101 
2102 	if (sticky_cpu >= 0)
2103 		p->scx.sticky_cpu = -1;
2104 
2105 	/*
2106 	 * Restoring a running task will be immediately followed by
2107 	 * set_next_task_scx() which expects the task to not be on the BPF
2108 	 * scheduler as tasks can only start running through local DSQs. Force
2109 	 * direct-dispatch into the local DSQ by setting the sticky_cpu.
2110 	 */
2111 	if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
2112 		sticky_cpu = cpu_of(rq);
2113 
2114 	if (p->scx.flags & SCX_TASK_QUEUED) {
2115 		WARN_ON_ONCE(!task_runnable(p));
2116 		goto out;
2117 	}
2118 
2119 	set_task_runnable(rq, p);
2120 	p->scx.flags |= SCX_TASK_QUEUED;
2121 	rq->scx.nr_running++;
2122 	add_nr_running(rq, 1);
2123 
2124 	if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p))
2125 		SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags);
2126 
2127 	if (enq_flags & SCX_ENQ_WAKEUP)
2128 		touch_core_sched(rq, p);
2129 
2130 	do_enqueue_task(rq, p, enq_flags, sticky_cpu);
2131 out:
2132 	rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
2133 }
2134 
2135 static void ops_dequeue(struct task_struct *p, u64 deq_flags)
2136 {
2137 	unsigned long opss;
2138 
2139 	/* dequeue is always temporary, don't reset runnable_at */
2140 	clr_task_runnable(p, false);
2141 
2142 	/* acquire ensures that we see the preceding updates on QUEUED */
2143 	opss = atomic_long_read_acquire(&p->scx.ops_state);
2144 
2145 	switch (opss & SCX_OPSS_STATE_MASK) {
2146 	case SCX_OPSS_NONE:
2147 		break;
2148 	case SCX_OPSS_QUEUEING:
2149 		/*
2150 		 * QUEUEING is started and finished while holding @p's rq lock.
2151 		 * As we're holding the rq lock now, we shouldn't see QUEUEING.
2152 		 */
2153 		BUG();
2154 	case SCX_OPSS_QUEUED:
2155 		if (SCX_HAS_OP(dequeue))
2156 			SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags);
2157 
2158 		if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2159 					    SCX_OPSS_NONE))
2160 			break;
2161 		fallthrough;
2162 	case SCX_OPSS_DISPATCHING:
2163 		/*
2164 		 * If @p is being dispatched from the BPF scheduler to a DSQ,
2165 		 * wait for the transfer to complete so that @p doesn't get
2166 		 * added to its DSQ after dequeueing is complete.
2167 		 *
2168 		 * As we're waiting on DISPATCHING with the rq locked, the
2169 		 * dispatching side shouldn't try to lock the rq while
2170 		 * DISPATCHING is set. See dispatch_to_local_dsq().
2171 		 *
2172 		 * DISPATCHING shouldn't have qseq set and control can reach
2173 		 * here with NONE @opss from the above QUEUED case block.
2174 		 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
2175 		 */
2176 		wait_ops_state(p, SCX_OPSS_DISPATCHING);
2177 		BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
2178 		break;
2179 	}
2180 }
2181 
2182 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
2183 {
2184 	if (!(p->scx.flags & SCX_TASK_QUEUED)) {
2185 		WARN_ON_ONCE(task_runnable(p));
2186 		return true;
2187 	}
2188 
2189 	ops_dequeue(p, deq_flags);
2190 
2191 	/*
2192 	 * A currently running task which is going off @rq first gets dequeued
2193 	 * and then stops running. As we want running <-> stopping transitions
2194 	 * to be contained within runnable <-> quiescent transitions, trigger
2195 	 * ->stopping() early here instead of in put_prev_task_scx().
2196 	 *
2197 	 * @p may go through multiple stopping <-> running transitions between
2198 	 * here and put_prev_task_scx() if task attribute changes occur while
2199 	 * balance_scx() leaves @rq unlocked. However, they don't contain any
2200 	 * information meaningful to the BPF scheduler and can be suppressed by
2201 	 * skipping the callbacks if the task is !QUEUED.
2202 	 */
2203 	if (SCX_HAS_OP(stopping) && task_current(rq, p)) {
2204 		update_curr_scx(rq);
2205 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false);
2206 	}
2207 
2208 	if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p))
2209 		SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags);
2210 
2211 	if (deq_flags & SCX_DEQ_SLEEP)
2212 		p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
2213 	else
2214 		p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
2215 
2216 	p->scx.flags &= ~SCX_TASK_QUEUED;
2217 	rq->scx.nr_running--;
2218 	sub_nr_running(rq, 1);
2219 
2220 	dispatch_dequeue(rq, p);
2221 	return true;
2222 }
2223 
2224 static void yield_task_scx(struct rq *rq)
2225 {
2226 	struct task_struct *p = rq->curr;
2227 
2228 	if (SCX_HAS_OP(yield))
2229 		SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL);
2230 	else
2231 		p->scx.slice = 0;
2232 }
2233 
2234 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
2235 {
2236 	struct task_struct *from = rq->curr;
2237 
2238 	if (SCX_HAS_OP(yield))
2239 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to);
2240 	else
2241 		return false;
2242 }
2243 
2244 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2245 					 struct scx_dispatch_q *src_dsq,
2246 					 struct rq *dst_rq)
2247 {
2248 	struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
2249 
2250 	/* @dsq is locked and @p is on @dst_rq */
2251 	lockdep_assert_held(&src_dsq->lock);
2252 	lockdep_assert_rq_held(dst_rq);
2253 
2254 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2255 
2256 	if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
2257 		list_add(&p->scx.dsq_list.node, &dst_dsq->list);
2258 	else
2259 		list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
2260 
2261 	dsq_mod_nr(dst_dsq, 1);
2262 	p->scx.dsq = dst_dsq;
2263 }
2264 
2265 #ifdef CONFIG_SMP
2266 /**
2267  * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
2268  * @p: task to move
2269  * @enq_flags: %SCX_ENQ_*
2270  * @src_rq: rq to move the task from, locked on entry, released on return
2271  * @dst_rq: rq to move the task into, locked on return
2272  *
2273  * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
2274  */
2275 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
2276 					  struct rq *src_rq, struct rq *dst_rq)
2277 {
2278 	lockdep_assert_rq_held(src_rq);
2279 
2280 	/* the following marks @p MIGRATING which excludes dequeue */
2281 	deactivate_task(src_rq, p, 0);
2282 	set_task_cpu(p, cpu_of(dst_rq));
2283 	p->scx.sticky_cpu = cpu_of(dst_rq);
2284 
2285 	raw_spin_rq_unlock(src_rq);
2286 	raw_spin_rq_lock(dst_rq);
2287 
2288 	/*
2289 	 * We want to pass scx-specific enq_flags but activate_task() will
2290 	 * truncate the upper 32 bit. As we own @rq, we can pass them through
2291 	 * @rq->scx.extra_enq_flags instead.
2292 	 */
2293 	WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
2294 	WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
2295 	dst_rq->scx.extra_enq_flags = enq_flags;
2296 	activate_task(dst_rq, p, 0);
2297 	dst_rq->scx.extra_enq_flags = 0;
2298 }
2299 
2300 /*
2301  * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
2302  * differences:
2303  *
2304  * - is_cpu_allowed() asks "Can this task run on this CPU?" while
2305  *   task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
2306  *   this CPU?".
2307  *
2308  *   While migration is disabled, is_cpu_allowed() has to say "yes" as the task
2309  *   must be allowed to finish on the CPU that it's currently on regardless of
2310  *   the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
2311  *   BPF scheduler shouldn't attempt to migrate a task which has migration
2312  *   disabled.
2313  *
2314  * - The BPF scheduler is bypassed while the rq is offline and we can always say
2315  *   no to the BPF scheduler initiated migrations while offline.
2316  */
2317 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq,
2318 				      bool trigger_error)
2319 {
2320 	int cpu = cpu_of(rq);
2321 
2322 	/*
2323 	 * We don't require the BPF scheduler to avoid dispatching to offline
2324 	 * CPUs mostly for convenience but also because CPUs can go offline
2325 	 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
2326 	 * picked CPU is outside the allowed mask.
2327 	 */
2328 	if (!task_allowed_on_cpu(p, cpu)) {
2329 		if (trigger_error)
2330 			scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
2331 				      cpu_of(rq), p->comm, p->pid);
2332 		return false;
2333 	}
2334 
2335 	if (unlikely(is_migration_disabled(p)))
2336 		return false;
2337 
2338 	if (!scx_rq_online(rq))
2339 		return false;
2340 
2341 	return true;
2342 }
2343 
2344 /**
2345  * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
2346  * @p: target task
2347  * @dsq: locked DSQ @p is currently on
2348  * @src_rq: rq @p is currently on, stable with @dsq locked
2349  *
2350  * Called with @dsq locked but no rq's locked. We want to move @p to a different
2351  * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
2352  * required when transferring into a local DSQ. Even when transferring into a
2353  * non-local DSQ, it's better to use the same mechanism to protect against
2354  * dequeues and maintain the invariant that @p->scx.dsq can only change while
2355  * @src_rq is locked, which e.g. scx_dump_task() depends on.
2356  *
2357  * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
2358  * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
2359  * this may race with dequeue, which can't drop the rq lock or fail, do a little
2360  * dancing from our side.
2361  *
2362  * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
2363  * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
2364  * would be cleared to -1. While other cpus may have updated it to different
2365  * values afterwards, as this operation can't be preempted or recurse, the
2366  * holding_cpu can never become this CPU again before we're done. Thus, we can
2367  * tell whether we lost to dequeue by testing whether the holding_cpu still
2368  * points to this CPU. See dispatch_dequeue() for the counterpart.
2369  *
2370  * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
2371  * still valid. %false if lost to dequeue.
2372  */
2373 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
2374 				       struct scx_dispatch_q *dsq,
2375 				       struct rq *src_rq)
2376 {
2377 	s32 cpu = raw_smp_processor_id();
2378 
2379 	lockdep_assert_held(&dsq->lock);
2380 
2381 	WARN_ON_ONCE(p->scx.holding_cpu >= 0);
2382 	task_unlink_from_dsq(p, dsq);
2383 	p->scx.holding_cpu = cpu;
2384 
2385 	raw_spin_unlock(&dsq->lock);
2386 	raw_spin_rq_lock(src_rq);
2387 
2388 	/* task_rq couldn't have changed if we're still the holding cpu */
2389 	return likely(p->scx.holding_cpu == cpu) &&
2390 		!WARN_ON_ONCE(src_rq != task_rq(p));
2391 }
2392 
2393 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
2394 				struct scx_dispatch_q *dsq, struct rq *src_rq)
2395 {
2396 	raw_spin_rq_unlock(this_rq);
2397 
2398 	if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
2399 		move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
2400 		return true;
2401 	} else {
2402 		raw_spin_rq_unlock(src_rq);
2403 		raw_spin_rq_lock(this_rq);
2404 		return false;
2405 	}
2406 }
2407 #else	/* CONFIG_SMP */
2408 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); }
2409 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; }
2410 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; }
2411 #endif	/* CONFIG_SMP */
2412 
2413 /**
2414  * move_task_between_dsqs() - Move a task from one DSQ to another
2415  * @p: target task
2416  * @enq_flags: %SCX_ENQ_*
2417  * @src_dsq: DSQ @p is currently on, must not be a local DSQ
2418  * @dst_dsq: DSQ @p is being moved to, can be any DSQ
2419  *
2420  * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
2421  * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
2422  * will change. As @p's task_rq is locked, this function doesn't need to use the
2423  * holding_cpu mechanism.
2424  *
2425  * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
2426  * return value, is locked.
2427  */
2428 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags,
2429 					 struct scx_dispatch_q *src_dsq,
2430 					 struct scx_dispatch_q *dst_dsq)
2431 {
2432 	struct rq *src_rq = task_rq(p), *dst_rq;
2433 
2434 	BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
2435 	lockdep_assert_held(&src_dsq->lock);
2436 	lockdep_assert_rq_held(src_rq);
2437 
2438 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
2439 		dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2440 		if (!task_can_run_on_remote_rq(p, dst_rq, true)) {
2441 			dst_dsq = find_global_dsq(p);
2442 			dst_rq = src_rq;
2443 		}
2444 	} else {
2445 		/* no need to migrate if destination is a non-local DSQ */
2446 		dst_rq = src_rq;
2447 	}
2448 
2449 	/*
2450 	 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
2451 	 * CPU, @p will be migrated.
2452 	 */
2453 	if (dst_dsq->id == SCX_DSQ_LOCAL) {
2454 		/* @p is going from a non-local DSQ to a local DSQ */
2455 		if (src_rq == dst_rq) {
2456 			task_unlink_from_dsq(p, src_dsq);
2457 			move_local_task_to_local_dsq(p, enq_flags,
2458 						     src_dsq, dst_rq);
2459 			raw_spin_unlock(&src_dsq->lock);
2460 		} else {
2461 			raw_spin_unlock(&src_dsq->lock);
2462 			move_remote_task_to_local_dsq(p, enq_flags,
2463 						      src_rq, dst_rq);
2464 		}
2465 	} else {
2466 		/*
2467 		 * @p is going from a non-local DSQ to a non-local DSQ. As
2468 		 * $src_dsq is already locked, do an abbreviated dequeue.
2469 		 */
2470 		task_unlink_from_dsq(p, src_dsq);
2471 		p->scx.dsq = NULL;
2472 		raw_spin_unlock(&src_dsq->lock);
2473 
2474 		dispatch_enqueue(dst_dsq, p, enq_flags);
2475 	}
2476 
2477 	return dst_rq;
2478 }
2479 
2480 /*
2481  * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
2482  * banging on the same DSQ on a large NUMA system to the point where switching
2483  * to the bypass mode can take a long time. Inject artifical delays while the
2484  * bypass mode is switching to guarantee timely completion.
2485  */
2486 static void scx_ops_breather(struct rq *rq)
2487 {
2488 	u64 until;
2489 
2490 	lockdep_assert_rq_held(rq);
2491 
2492 	if (likely(!atomic_read(&scx_ops_breather_depth)))
2493 		return;
2494 
2495 	raw_spin_rq_unlock(rq);
2496 
2497 	until = ktime_get_ns() + NSEC_PER_MSEC;
2498 
2499 	do {
2500 		int cnt = 1024;
2501 		while (atomic_read(&scx_ops_breather_depth) && --cnt)
2502 			cpu_relax();
2503 	} while (atomic_read(&scx_ops_breather_depth) &&
2504 		 time_before64(ktime_get_ns(), until));
2505 
2506 	raw_spin_rq_lock(rq);
2507 }
2508 
2509 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq)
2510 {
2511 	struct task_struct *p;
2512 retry:
2513 	/*
2514 	 * This retry loop can repeatedly race against scx_ops_bypass()
2515 	 * dequeueing tasks from @dsq trying to put the system into the bypass
2516 	 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can
2517 	 * live-lock the machine into soft lockups. Give a breather.
2518 	 */
2519 	scx_ops_breather(rq);
2520 
2521 	/*
2522 	 * The caller can't expect to successfully consume a task if the task's
2523 	 * addition to @dsq isn't guaranteed to be visible somehow. Test
2524 	 * @dsq->list without locking and skip if it seems empty.
2525 	 */
2526 	if (list_empty(&dsq->list))
2527 		return false;
2528 
2529 	raw_spin_lock(&dsq->lock);
2530 
2531 	nldsq_for_each_task(p, dsq) {
2532 		struct rq *task_rq = task_rq(p);
2533 
2534 		if (rq == task_rq) {
2535 			task_unlink_from_dsq(p, dsq);
2536 			move_local_task_to_local_dsq(p, 0, dsq, rq);
2537 			raw_spin_unlock(&dsq->lock);
2538 			return true;
2539 		}
2540 
2541 		if (task_can_run_on_remote_rq(p, rq, false)) {
2542 			if (likely(consume_remote_task(rq, p, dsq, task_rq)))
2543 				return true;
2544 			goto retry;
2545 		}
2546 	}
2547 
2548 	raw_spin_unlock(&dsq->lock);
2549 	return false;
2550 }
2551 
2552 static bool consume_global_dsq(struct rq *rq)
2553 {
2554 	int node = cpu_to_node(cpu_of(rq));
2555 
2556 	return consume_dispatch_q(rq, global_dsqs[node]);
2557 }
2558 
2559 /**
2560  * dispatch_to_local_dsq - Dispatch a task to a local dsq
2561  * @rq: current rq which is locked
2562  * @dst_dsq: destination DSQ
2563  * @p: task to dispatch
2564  * @enq_flags: %SCX_ENQ_*
2565  *
2566  * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
2567  * DSQ. This function performs all the synchronization dancing needed because
2568  * local DSQs are protected with rq locks.
2569  *
2570  * The caller must have exclusive ownership of @p (e.g. through
2571  * %SCX_OPSS_DISPATCHING).
2572  */
2573 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq,
2574 				  struct task_struct *p, u64 enq_flags)
2575 {
2576 	struct rq *src_rq = task_rq(p);
2577 	struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
2578 
2579 	/*
2580 	 * We're synchronized against dequeue through DISPATCHING. As @p can't
2581 	 * be dequeued, its task_rq and cpus_allowed are stable too.
2582 	 *
2583 	 * If dispatching to @rq that @p is already on, no lock dancing needed.
2584 	 */
2585 	if (rq == src_rq && rq == dst_rq) {
2586 		dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2587 		return;
2588 	}
2589 
2590 #ifdef CONFIG_SMP
2591 	if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) {
2592 		dispatch_enqueue(find_global_dsq(p), p,
2593 				 enq_flags | SCX_ENQ_CLEAR_OPSS);
2594 		return;
2595 	}
2596 
2597 	/*
2598 	 * @p is on a possibly remote @src_rq which we need to lock to move the
2599 	 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
2600 	 * on DISPATCHING, so we can't grab @src_rq lock while holding
2601 	 * DISPATCHING.
2602 	 *
2603 	 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
2604 	 * we're moving from a DSQ and use the same mechanism - mark the task
2605 	 * under transfer with holding_cpu, release DISPATCHING and then follow
2606 	 * the same protocol. See unlink_dsq_and_lock_src_rq().
2607 	 */
2608 	p->scx.holding_cpu = raw_smp_processor_id();
2609 
2610 	/* store_release ensures that dequeue sees the above */
2611 	atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
2612 
2613 	/* switch to @src_rq lock */
2614 	if (rq != src_rq) {
2615 		raw_spin_rq_unlock(rq);
2616 		raw_spin_rq_lock(src_rq);
2617 	}
2618 
2619 	/* task_rq couldn't have changed if we're still the holding cpu */
2620 	if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2621 	    !WARN_ON_ONCE(src_rq != task_rq(p))) {
2622 		/*
2623 		 * If @p is staying on the same rq, there's no need to go
2624 		 * through the full deactivate/activate cycle. Optimize by
2625 		 * abbreviating move_remote_task_to_local_dsq().
2626 		 */
2627 		if (src_rq == dst_rq) {
2628 			p->scx.holding_cpu = -1;
2629 			dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags);
2630 		} else {
2631 			move_remote_task_to_local_dsq(p, enq_flags,
2632 						      src_rq, dst_rq);
2633 		}
2634 
2635 		/* if the destination CPU is idle, wake it up */
2636 		if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2637 			resched_curr(dst_rq);
2638 	}
2639 
2640 	/* switch back to @rq lock */
2641 	if (rq != dst_rq) {
2642 		raw_spin_rq_unlock(dst_rq);
2643 		raw_spin_rq_lock(rq);
2644 	}
2645 #else	/* CONFIG_SMP */
2646 	BUG();	/* control can not reach here on UP */
2647 #endif	/* CONFIG_SMP */
2648 }
2649 
2650 /**
2651  * finish_dispatch - Asynchronously finish dispatching a task
2652  * @rq: current rq which is locked
2653  * @p: task to finish dispatching
2654  * @qseq_at_dispatch: qseq when @p started getting dispatched
2655  * @dsq_id: destination DSQ ID
2656  * @enq_flags: %SCX_ENQ_*
2657  *
2658  * Dispatching to local DSQs may need to wait for queueing to complete or
2659  * require rq lock dancing. As we don't wanna do either while inside
2660  * ops.dispatch() to avoid locking order inversion, we split dispatching into
2661  * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2662  * task and its qseq. Once ops.dispatch() returns, this function is called to
2663  * finish up.
2664  *
2665  * There is no guarantee that @p is still valid for dispatching or even that it
2666  * was valid in the first place. Make sure that the task is still owned by the
2667  * BPF scheduler and claim the ownership before dispatching.
2668  */
2669 static void finish_dispatch(struct rq *rq, struct task_struct *p,
2670 			    unsigned long qseq_at_dispatch,
2671 			    u64 dsq_id, u64 enq_flags)
2672 {
2673 	struct scx_dispatch_q *dsq;
2674 	unsigned long opss;
2675 
2676 	touch_core_sched_dispatch(rq, p);
2677 retry:
2678 	/*
2679 	 * No need for _acquire here. @p is accessed only after a successful
2680 	 * try_cmpxchg to DISPATCHING.
2681 	 */
2682 	opss = atomic_long_read(&p->scx.ops_state);
2683 
2684 	switch (opss & SCX_OPSS_STATE_MASK) {
2685 	case SCX_OPSS_DISPATCHING:
2686 	case SCX_OPSS_NONE:
2687 		/* someone else already got to it */
2688 		return;
2689 	case SCX_OPSS_QUEUED:
2690 		/*
2691 		 * If qseq doesn't match, @p has gone through at least one
2692 		 * dispatch/dequeue and re-enqueue cycle between
2693 		 * scx_bpf_dsq_insert() and here and we have no claim on it.
2694 		 */
2695 		if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2696 			return;
2697 
2698 		/*
2699 		 * While we know @p is accessible, we don't yet have a claim on
2700 		 * it - the BPF scheduler is allowed to dispatch tasks
2701 		 * spuriously and there can be a racing dequeue attempt. Let's
2702 		 * claim @p by atomically transitioning it from QUEUED to
2703 		 * DISPATCHING.
2704 		 */
2705 		if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2706 						   SCX_OPSS_DISPATCHING)))
2707 			break;
2708 		goto retry;
2709 	case SCX_OPSS_QUEUEING:
2710 		/*
2711 		 * do_enqueue_task() is in the process of transferring the task
2712 		 * to the BPF scheduler while holding @p's rq lock. As we aren't
2713 		 * holding any kernel or BPF resource that the enqueue path may
2714 		 * depend upon, it's safe to wait.
2715 		 */
2716 		wait_ops_state(p, opss);
2717 		goto retry;
2718 	}
2719 
2720 	BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2721 
2722 	dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p);
2723 
2724 	if (dsq->id == SCX_DSQ_LOCAL)
2725 		dispatch_to_local_dsq(rq, dsq, p, enq_flags);
2726 	else
2727 		dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2728 }
2729 
2730 static void flush_dispatch_buf(struct rq *rq)
2731 {
2732 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2733 	u32 u;
2734 
2735 	for (u = 0; u < dspc->cursor; u++) {
2736 		struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2737 
2738 		finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id,
2739 				ent->enq_flags);
2740 	}
2741 
2742 	dspc->nr_tasks += dspc->cursor;
2743 	dspc->cursor = 0;
2744 }
2745 
2746 static int balance_one(struct rq *rq, struct task_struct *prev)
2747 {
2748 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2749 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
2750 	bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
2751 	int nr_loops = SCX_DSP_MAX_LOOPS;
2752 
2753 	lockdep_assert_rq_held(rq);
2754 	rq->scx.flags |= SCX_RQ_IN_BALANCE;
2755 	rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
2756 
2757 	if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
2758 	    unlikely(rq->scx.cpu_released)) {
2759 		/*
2760 		 * If the previous sched_class for the current CPU was not SCX,
2761 		 * notify the BPF scheduler that it again has control of the
2762 		 * core. This callback complements ->cpu_release(), which is
2763 		 * emitted in switch_class().
2764 		 */
2765 		if (SCX_HAS_OP(cpu_acquire))
2766 			SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
2767 		rq->scx.cpu_released = false;
2768 	}
2769 
2770 	if (prev_on_scx) {
2771 		update_curr_scx(rq);
2772 
2773 		/*
2774 		 * If @prev is runnable & has slice left, it has priority and
2775 		 * fetching more just increases latency for the fetched tasks.
2776 		 * Tell pick_task_scx() to keep running @prev. If the BPF
2777 		 * scheduler wants to handle this explicitly, it should
2778 		 * implement ->cpu_release().
2779 		 *
2780 		 * See scx_ops_disable_workfn() for the explanation on the
2781 		 * bypassing test.
2782 		 */
2783 		if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
2784 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2785 			goto has_tasks;
2786 		}
2787 	}
2788 
2789 	/* if there already are tasks to run, nothing to do */
2790 	if (rq->scx.local_dsq.nr)
2791 		goto has_tasks;
2792 
2793 	if (consume_global_dsq(rq))
2794 		goto has_tasks;
2795 
2796 	if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq))
2797 		goto no_tasks;
2798 
2799 	dspc->rq = rq;
2800 
2801 	/*
2802 	 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2803 	 * the local DSQ might still end up empty after a successful
2804 	 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2805 	 * produced some tasks, retry. The BPF scheduler may depend on this
2806 	 * looping behavior to simplify its implementation.
2807 	 */
2808 	do {
2809 		dspc->nr_tasks = 0;
2810 
2811 		SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
2812 			    prev_on_scx ? prev : NULL);
2813 
2814 		flush_dispatch_buf(rq);
2815 
2816 		if (prev_on_rq && prev->scx.slice) {
2817 			rq->scx.flags |= SCX_RQ_BAL_KEEP;
2818 			goto has_tasks;
2819 		}
2820 		if (rq->scx.local_dsq.nr)
2821 			goto has_tasks;
2822 		if (consume_global_dsq(rq))
2823 			goto has_tasks;
2824 
2825 		/*
2826 		 * ops.dispatch() can trap us in this loop by repeatedly
2827 		 * dispatching ineligible tasks. Break out once in a while to
2828 		 * allow the watchdog to run. As IRQ can't be enabled in
2829 		 * balance(), we want to complete this scheduling cycle and then
2830 		 * start a new one. IOW, we want to call resched_curr() on the
2831 		 * next, most likely idle, task, not the current one. Use
2832 		 * scx_bpf_kick_cpu() for deferred kicking.
2833 		 */
2834 		if (unlikely(!--nr_loops)) {
2835 			scx_bpf_kick_cpu(cpu_of(rq), 0);
2836 			break;
2837 		}
2838 	} while (dspc->nr_tasks);
2839 
2840 no_tasks:
2841 	/*
2842 	 * Didn't find another task to run. Keep running @prev unless
2843 	 * %SCX_OPS_ENQ_LAST is in effect.
2844 	 */
2845 	if (prev_on_rq && (!static_branch_unlikely(&scx_ops_enq_last) ||
2846 	     scx_rq_bypassing(rq))) {
2847 		rq->scx.flags |= SCX_RQ_BAL_KEEP;
2848 		goto has_tasks;
2849 	}
2850 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2851 	return false;
2852 
2853 has_tasks:
2854 	rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2855 	return true;
2856 }
2857 
2858 static int balance_scx(struct rq *rq, struct task_struct *prev,
2859 		       struct rq_flags *rf)
2860 {
2861 	int ret;
2862 
2863 	rq_unpin_lock(rq, rf);
2864 
2865 	ret = balance_one(rq, prev);
2866 
2867 #ifdef CONFIG_SCHED_SMT
2868 	/*
2869 	 * When core-sched is enabled, this ops.balance() call will be followed
2870 	 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2871 	 * siblings too.
2872 	 */
2873 	if (sched_core_enabled(rq)) {
2874 		const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2875 		int scpu;
2876 
2877 		for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2878 			struct rq *srq = cpu_rq(scpu);
2879 			struct task_struct *sprev = srq->curr;
2880 
2881 			WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2882 			update_rq_clock(srq);
2883 			balance_one(srq, sprev);
2884 		}
2885 	}
2886 #endif
2887 	rq_repin_lock(rq, rf);
2888 
2889 	return ret;
2890 }
2891 
2892 static void process_ddsp_deferred_locals(struct rq *rq)
2893 {
2894 	struct task_struct *p;
2895 
2896 	lockdep_assert_rq_held(rq);
2897 
2898 	/*
2899 	 * Now that @rq can be unlocked, execute the deferred enqueueing of
2900 	 * tasks directly dispatched to the local DSQs of other CPUs. See
2901 	 * direct_dispatch(). Keep popping from the head instead of using
2902 	 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2903 	 * temporarily.
2904 	 */
2905 	while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2906 				struct task_struct, scx.dsq_list.node))) {
2907 		struct scx_dispatch_q *dsq;
2908 
2909 		list_del_init(&p->scx.dsq_list.node);
2910 
2911 		dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p);
2912 		if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2913 			dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags);
2914 	}
2915 }
2916 
2917 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2918 {
2919 	if (p->scx.flags & SCX_TASK_QUEUED) {
2920 		/*
2921 		 * Core-sched might decide to execute @p before it is
2922 		 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2923 		 */
2924 		ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC);
2925 		dispatch_dequeue(rq, p);
2926 	}
2927 
2928 	p->se.exec_start = rq_clock_task(rq);
2929 
2930 	/* see dequeue_task_scx() on why we skip when !QUEUED */
2931 	if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED))
2932 		SCX_CALL_OP_TASK(SCX_KF_REST, running, p);
2933 
2934 	clr_task_runnable(p, true);
2935 
2936 	/*
2937 	 * @p is getting newly scheduled or got kicked after someone updated its
2938 	 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2939 	 */
2940 	if ((p->scx.slice == SCX_SLICE_INF) !=
2941 	    (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2942 		if (p->scx.slice == SCX_SLICE_INF)
2943 			rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2944 		else
2945 			rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2946 
2947 		sched_update_tick_dependency(rq);
2948 
2949 		/*
2950 		 * For now, let's refresh the load_avgs just when transitioning
2951 		 * in and out of nohz. In the future, we might want to add a
2952 		 * mechanism which calls the following periodically on
2953 		 * tick-stopped CPUs.
2954 		 */
2955 		update_other_load_avgs(rq);
2956 	}
2957 }
2958 
2959 static enum scx_cpu_preempt_reason
2960 preempt_reason_from_class(const struct sched_class *class)
2961 {
2962 #ifdef CONFIG_SMP
2963 	if (class == &stop_sched_class)
2964 		return SCX_CPU_PREEMPT_STOP;
2965 #endif
2966 	if (class == &dl_sched_class)
2967 		return SCX_CPU_PREEMPT_DL;
2968 	if (class == &rt_sched_class)
2969 		return SCX_CPU_PREEMPT_RT;
2970 	return SCX_CPU_PREEMPT_UNKNOWN;
2971 }
2972 
2973 static void switch_class(struct rq *rq, struct task_struct *next)
2974 {
2975 	const struct sched_class *next_class = next->sched_class;
2976 
2977 #ifdef CONFIG_SMP
2978 	/*
2979 	 * Pairs with the smp_load_acquire() issued by a CPU in
2980 	 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2981 	 * resched.
2982 	 */
2983 	smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2984 #endif
2985 	if (!static_branch_unlikely(&scx_ops_cpu_preempt))
2986 		return;
2987 
2988 	/*
2989 	 * The callback is conceptually meant to convey that the CPU is no
2990 	 * longer under the control of SCX. Therefore, don't invoke the callback
2991 	 * if the next class is below SCX (in which case the BPF scheduler has
2992 	 * actively decided not to schedule any tasks on the CPU).
2993 	 */
2994 	if (sched_class_above(&ext_sched_class, next_class))
2995 		return;
2996 
2997 	/*
2998 	 * At this point we know that SCX was preempted by a higher priority
2999 	 * sched_class, so invoke the ->cpu_release() callback if we have not
3000 	 * done so already. We only send the callback once between SCX being
3001 	 * preempted, and it regaining control of the CPU.
3002 	 *
3003 	 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
3004 	 *  next time that balance_scx() is invoked.
3005 	 */
3006 	if (!rq->scx.cpu_released) {
3007 		if (SCX_HAS_OP(cpu_release)) {
3008 			struct scx_cpu_release_args args = {
3009 				.reason = preempt_reason_from_class(next_class),
3010 				.task = next,
3011 			};
3012 
3013 			SCX_CALL_OP(SCX_KF_CPU_RELEASE,
3014 				    cpu_release, cpu_of(rq), &args);
3015 		}
3016 		rq->scx.cpu_released = true;
3017 	}
3018 }
3019 
3020 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
3021 			      struct task_struct *next)
3022 {
3023 	update_curr_scx(rq);
3024 
3025 	/* see dequeue_task_scx() on why we skip when !QUEUED */
3026 	if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED))
3027 		SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true);
3028 
3029 	if (p->scx.flags & SCX_TASK_QUEUED) {
3030 		set_task_runnable(rq, p);
3031 
3032 		/*
3033 		 * If @p has slice left and is being put, @p is getting
3034 		 * preempted by a higher priority scheduler class or core-sched
3035 		 * forcing a different task. Leave it at the head of the local
3036 		 * DSQ.
3037 		 */
3038 		if (p->scx.slice && !scx_rq_bypassing(rq)) {
3039 			dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
3040 			goto switch_class;
3041 		}
3042 
3043 		/*
3044 		 * If @p is runnable but we're about to enter a lower
3045 		 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
3046 		 * ops.enqueue() that @p is the only one available for this cpu,
3047 		 * which should trigger an explicit follow-up scheduling event.
3048 		 */
3049 		if (sched_class_above(&ext_sched_class, next->sched_class)) {
3050 			WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last));
3051 			do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
3052 		} else {
3053 			do_enqueue_task(rq, p, 0, -1);
3054 		}
3055 	}
3056 
3057 switch_class:
3058 	if (next && next->sched_class != &ext_sched_class)
3059 		switch_class(rq, next);
3060 }
3061 
3062 static struct task_struct *first_local_task(struct rq *rq)
3063 {
3064 	return list_first_entry_or_null(&rq->scx.local_dsq.list,
3065 					struct task_struct, scx.dsq_list.node);
3066 }
3067 
3068 static struct task_struct *pick_task_scx(struct rq *rq)
3069 {
3070 	struct task_struct *prev = rq->curr;
3071 	struct task_struct *p;
3072 	bool prev_on_scx = prev->sched_class == &ext_sched_class;
3073 	bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
3074 	bool kick_idle = false;
3075 
3076 	/*
3077 	 * WORKAROUND:
3078 	 *
3079 	 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
3080 	 * have gone through balance_scx(). Unfortunately, there currently is a
3081 	 * bug where fair could say yes on balance() but no on pick_task(),
3082 	 * which then ends up calling pick_task_scx() without preceding
3083 	 * balance_scx().
3084 	 *
3085 	 * Keep running @prev if possible and avoid stalling from entering idle
3086 	 * without balancing.
3087 	 *
3088 	 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
3089 	 * if pick_task_scx() is called without preceding balance_scx().
3090 	 */
3091 	if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
3092 		if (prev_on_scx) {
3093 			keep_prev = true;
3094 		} else {
3095 			keep_prev = false;
3096 			kick_idle = true;
3097 		}
3098 	} else if (unlikely(keep_prev && !prev_on_scx)) {
3099 		/* only allowed during transitions */
3100 		WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED);
3101 		keep_prev = false;
3102 	}
3103 
3104 	/*
3105 	 * If balance_scx() is telling us to keep running @prev, replenish slice
3106 	 * if necessary and keep running @prev. Otherwise, pop the first one
3107 	 * from the local DSQ.
3108 	 */
3109 	if (keep_prev) {
3110 		p = prev;
3111 		if (!p->scx.slice)
3112 			p->scx.slice = SCX_SLICE_DFL;
3113 	} else {
3114 		p = first_local_task(rq);
3115 		if (!p) {
3116 			if (kick_idle)
3117 				scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE);
3118 			return NULL;
3119 		}
3120 
3121 		if (unlikely(!p->scx.slice)) {
3122 			if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
3123 				printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
3124 						p->comm, p->pid, __func__);
3125 				scx_warned_zero_slice = true;
3126 			}
3127 			p->scx.slice = SCX_SLICE_DFL;
3128 		}
3129 	}
3130 
3131 	return p;
3132 }
3133 
3134 #ifdef CONFIG_SCHED_CORE
3135 /**
3136  * scx_prio_less - Task ordering for core-sched
3137  * @a: task A
3138  * @b: task B
3139  *
3140  * Core-sched is implemented as an additional scheduling layer on top of the
3141  * usual sched_class'es and needs to find out the expected task ordering. For
3142  * SCX, core-sched calls this function to interrogate the task ordering.
3143  *
3144  * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
3145  * to implement the default task ordering. The older the timestamp, the higher
3146  * prority the task - the global FIFO ordering matching the default scheduling
3147  * behavior.
3148  *
3149  * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
3150  * implement FIFO ordering within each local DSQ. See pick_task_scx().
3151  */
3152 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
3153 		   bool in_fi)
3154 {
3155 	/*
3156 	 * The const qualifiers are dropped from task_struct pointers when
3157 	 * calling ops.core_sched_before(). Accesses are controlled by the
3158 	 * verifier.
3159 	 */
3160 	if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a)))
3161 		return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before,
3162 					      (struct task_struct *)a,
3163 					      (struct task_struct *)b);
3164 	else
3165 		return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
3166 }
3167 #endif	/* CONFIG_SCHED_CORE */
3168 
3169 #ifdef CONFIG_SMP
3170 
3171 static bool test_and_clear_cpu_idle(int cpu)
3172 {
3173 #ifdef CONFIG_SCHED_SMT
3174 	/*
3175 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
3176 	 * cluster is not wholly idle either way. This also prevents
3177 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
3178 	 */
3179 	if (sched_smt_active()) {
3180 		const struct cpumask *smt = cpu_smt_mask(cpu);
3181 
3182 		/*
3183 		 * If offline, @cpu is not its own sibling and
3184 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
3185 		 * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
3186 		 * is eventually cleared.
3187 		 */
3188 		if (cpumask_intersects(smt, idle_masks.smt))
3189 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3190 		else if (cpumask_test_cpu(cpu, idle_masks.smt))
3191 			__cpumask_clear_cpu(cpu, idle_masks.smt);
3192 	}
3193 #endif
3194 	return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
3195 }
3196 
3197 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
3198 {
3199 	int cpu;
3200 
3201 retry:
3202 	if (sched_smt_active()) {
3203 		cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
3204 		if (cpu < nr_cpu_ids)
3205 			goto found;
3206 
3207 		if (flags & SCX_PICK_IDLE_CORE)
3208 			return -EBUSY;
3209 	}
3210 
3211 	cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
3212 	if (cpu >= nr_cpu_ids)
3213 		return -EBUSY;
3214 
3215 found:
3216 	if (test_and_clear_cpu_idle(cpu))
3217 		return cpu;
3218 	else
3219 		goto retry;
3220 }
3221 
3222 /*
3223  * Return true if the LLC domains do not perfectly overlap with the NUMA
3224  * domains, false otherwise.
3225  */
3226 static bool llc_numa_mismatch(void)
3227 {
3228 	int cpu;
3229 
3230 	/*
3231 	 * We need to scan all online CPUs to verify whether their scheduling
3232 	 * domains overlap.
3233 	 *
3234 	 * While it is rare to encounter architectures with asymmetric NUMA
3235 	 * topologies, CPU hotplugging or virtualized environments can result
3236 	 * in asymmetric configurations.
3237 	 *
3238 	 * For example:
3239 	 *
3240 	 *  NUMA 0:
3241 	 *    - LLC 0: cpu0..cpu7
3242 	 *    - LLC 1: cpu8..cpu15 [offline]
3243 	 *
3244 	 *  NUMA 1:
3245 	 *    - LLC 0: cpu16..cpu23
3246 	 *    - LLC 1: cpu24..cpu31
3247 	 *
3248 	 * In this case, if we only check the first online CPU (cpu0), we might
3249 	 * incorrectly assume that the LLC and NUMA domains are fully
3250 	 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
3251 	 * domains).
3252 	 */
3253 	for_each_online_cpu(cpu) {
3254 		const struct cpumask *numa_cpus;
3255 		struct sched_domain *sd;
3256 
3257 		sd = rcu_dereference(per_cpu(sd_llc, cpu));
3258 		if (!sd)
3259 			return true;
3260 
3261 		numa_cpus = cpumask_of_node(cpu_to_node(cpu));
3262 		if (sd->span_weight != cpumask_weight(numa_cpus))
3263 			return true;
3264 	}
3265 
3266 	return false;
3267 }
3268 
3269 /*
3270  * Initialize topology-aware scheduling.
3271  *
3272  * Detect if the system has multiple LLC or multiple NUMA domains and enable
3273  * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
3274  * selection policy.
3275  *
3276  * Assumption: the kernel's internal topology representation assumes that each
3277  * CPU belongs to a single LLC domain, and that each LLC domain is entirely
3278  * contained within a single NUMA node.
3279  */
3280 static void update_selcpu_topology(void)
3281 {
3282 	bool enable_llc = false, enable_numa = false;
3283 	struct sched_domain *sd;
3284 	const struct cpumask *cpus;
3285 	s32 cpu = cpumask_first(cpu_online_mask);
3286 
3287 	/*
3288 	 * Enable LLC domain optimization only when there are multiple LLC
3289 	 * domains among the online CPUs. If all online CPUs are part of a
3290 	 * single LLC domain, the idle CPU selection logic can choose any
3291 	 * online CPU without bias.
3292 	 *
3293 	 * Note that it is sufficient to check the LLC domain of the first
3294 	 * online CPU to determine whether a single LLC domain includes all
3295 	 * CPUs.
3296 	 */
3297 	rcu_read_lock();
3298 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
3299 	if (sd) {
3300 		if (sd->span_weight < num_online_cpus())
3301 			enable_llc = true;
3302 	}
3303 
3304 	/*
3305 	 * Enable NUMA optimization only when there are multiple NUMA domains
3306 	 * among the online CPUs and the NUMA domains don't perfectly overlaps
3307 	 * with the LLC domains.
3308 	 *
3309 	 * If all CPUs belong to the same NUMA node and the same LLC domain,
3310 	 * enabling both NUMA and LLC optimizations is unnecessary, as checking
3311 	 * for an idle CPU in the same domain twice is redundant.
3312 	 */
3313 	cpus = cpumask_of_node(cpu_to_node(cpu));
3314 	if ((cpumask_weight(cpus) < num_online_cpus()) && llc_numa_mismatch())
3315 		enable_numa = true;
3316 	rcu_read_unlock();
3317 
3318 	pr_debug("sched_ext: LLC idle selection %s\n",
3319 		 enable_llc ? "enabled" : "disabled");
3320 	pr_debug("sched_ext: NUMA idle selection %s\n",
3321 		 enable_numa ? "enabled" : "disabled");
3322 
3323 	if (enable_llc)
3324 		static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
3325 	else
3326 		static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
3327 	if (enable_numa)
3328 		static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
3329 	else
3330 		static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
3331 }
3332 
3333 /*
3334  * Built-in CPU idle selection policy:
3335  *
3336  * 1. Prioritize full-idle cores:
3337  *   - always prioritize CPUs from fully idle cores (both logical CPUs are
3338  *     idle) to avoid interference caused by SMT.
3339  *
3340  * 2. Reuse the same CPU:
3341  *   - prefer the last used CPU to take advantage of cached data (L1, L2) and
3342  *     branch prediction optimizations.
3343  *
3344  * 3. Pick a CPU within the same LLC (Last-Level Cache):
3345  *   - if the above conditions aren't met, pick a CPU that shares the same LLC
3346  *     to maintain cache locality.
3347  *
3348  * 4. Pick a CPU within the same NUMA node, if enabled:
3349  *   - choose a CPU from the same NUMA node to reduce memory access latency.
3350  *
3351  * Step 3 and 4 are performed only if the system has, respectively, multiple
3352  * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
3353  * scx_selcpu_topo_numa).
3354  *
3355  * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
3356  * we never call ops.select_cpu() for them, see select_task_rq().
3357  */
3358 static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
3359 			      u64 wake_flags, bool *found)
3360 {
3361 	const struct cpumask *llc_cpus = NULL;
3362 	const struct cpumask *numa_cpus = NULL;
3363 	s32 cpu;
3364 
3365 	*found = false;
3366 
3367 
3368 	/*
3369 	 * This is necessary to protect llc_cpus.
3370 	 */
3371 	rcu_read_lock();
3372 
3373 	/*
3374 	 * Determine the scheduling domain only if the task is allowed to run
3375 	 * on all CPUs.
3376 	 *
3377 	 * This is done primarily for efficiency, as it avoids the overhead of
3378 	 * updating a cpumask every time we need to select an idle CPU (which
3379 	 * can be costly in large SMP systems), but it also aligns logically:
3380 	 * if a task's scheduling domain is restricted by user-space (through
3381 	 * CPU affinity), the task will simply use the flat scheduling domain
3382 	 * defined by user-space.
3383 	 */
3384 	if (p->nr_cpus_allowed >= num_possible_cpus()) {
3385 		if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
3386 			numa_cpus = cpumask_of_node(cpu_to_node(prev_cpu));
3387 
3388 		if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
3389 			struct sched_domain *sd;
3390 
3391 			sd = rcu_dereference(per_cpu(sd_llc, prev_cpu));
3392 			if (sd)
3393 				llc_cpus = sched_domain_span(sd);
3394 		}
3395 	}
3396 
3397 	/*
3398 	 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
3399 	 */
3400 	if (wake_flags & SCX_WAKE_SYNC) {
3401 		cpu = smp_processor_id();
3402 
3403 		/*
3404 		 * If the waker's CPU is cache affine and prev_cpu is idle,
3405 		 * then avoid a migration.
3406 		 */
3407 		if (cpus_share_cache(cpu, prev_cpu) &&
3408 		    test_and_clear_cpu_idle(prev_cpu)) {
3409 			cpu = prev_cpu;
3410 			goto cpu_found;
3411 		}
3412 
3413 		/*
3414 		 * If the waker's local DSQ is empty, and the system is under
3415 		 * utilized, try to wake up @p to the local DSQ of the waker.
3416 		 *
3417 		 * Checking only for an empty local DSQ is insufficient as it
3418 		 * could give the wakee an unfair advantage when the system is
3419 		 * oversaturated.
3420 		 *
3421 		 * Checking only for the presence of idle CPUs is also
3422 		 * insufficient as the local DSQ of the waker could have tasks
3423 		 * piled up on it even if there is an idle core elsewhere on
3424 		 * the system.
3425 		 */
3426 		if (!cpumask_empty(idle_masks.cpu) &&
3427 		    !(current->flags & PF_EXITING) &&
3428 		    cpu_rq(cpu)->scx.local_dsq.nr == 0) {
3429 			if (cpumask_test_cpu(cpu, p->cpus_ptr))
3430 				goto cpu_found;
3431 		}
3432 	}
3433 
3434 	/*
3435 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
3436 	 * partially idle @prev_cpu.
3437 	 */
3438 	if (sched_smt_active()) {
3439 		/*
3440 		 * Keep using @prev_cpu if it's part of a fully idle core.
3441 		 */
3442 		if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
3443 		    test_and_clear_cpu_idle(prev_cpu)) {
3444 			cpu = prev_cpu;
3445 			goto cpu_found;
3446 		}
3447 
3448 		/*
3449 		 * Search for any fully idle core in the same LLC domain.
3450 		 */
3451 		if (llc_cpus) {
3452 			cpu = scx_pick_idle_cpu(llc_cpus, SCX_PICK_IDLE_CORE);
3453 			if (cpu >= 0)
3454 				goto cpu_found;
3455 		}
3456 
3457 		/*
3458 		 * Search for any fully idle core in the same NUMA node.
3459 		 */
3460 		if (numa_cpus) {
3461 			cpu = scx_pick_idle_cpu(numa_cpus, SCX_PICK_IDLE_CORE);
3462 			if (cpu >= 0)
3463 				goto cpu_found;
3464 		}
3465 
3466 		/*
3467 		 * Search for any full idle core usable by the task.
3468 		 */
3469 		cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
3470 		if (cpu >= 0)
3471 			goto cpu_found;
3472 	}
3473 
3474 	/*
3475 	 * Use @prev_cpu if it's idle.
3476 	 */
3477 	if (test_and_clear_cpu_idle(prev_cpu)) {
3478 		cpu = prev_cpu;
3479 		goto cpu_found;
3480 	}
3481 
3482 	/*
3483 	 * Search for any idle CPU in the same LLC domain.
3484 	 */
3485 	if (llc_cpus) {
3486 		cpu = scx_pick_idle_cpu(llc_cpus, 0);
3487 		if (cpu >= 0)
3488 			goto cpu_found;
3489 	}
3490 
3491 	/*
3492 	 * Search for any idle CPU in the same NUMA node.
3493 	 */
3494 	if (numa_cpus) {
3495 		cpu = scx_pick_idle_cpu(numa_cpus, 0);
3496 		if (cpu >= 0)
3497 			goto cpu_found;
3498 	}
3499 
3500 	/*
3501 	 * Search for any idle CPU usable by the task.
3502 	 */
3503 	cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
3504 	if (cpu >= 0)
3505 		goto cpu_found;
3506 
3507 	rcu_read_unlock();
3508 	return prev_cpu;
3509 
3510 cpu_found:
3511 	rcu_read_unlock();
3512 
3513 	*found = true;
3514 	return cpu;
3515 }
3516 
3517 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
3518 {
3519 	/*
3520 	 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
3521 	 * can be a good migration opportunity with low cache and memory
3522 	 * footprint. Returning a CPU different than @prev_cpu triggers
3523 	 * immediate rq migration. However, for SCX, as the current rq
3524 	 * association doesn't dictate where the task is going to run, this
3525 	 * doesn't fit well. If necessary, we can later add a dedicated method
3526 	 * which can decide to preempt self to force it through the regular
3527 	 * scheduling path.
3528 	 */
3529 	if (unlikely(wake_flags & WF_EXEC))
3530 		return prev_cpu;
3531 
3532 	if (SCX_HAS_OP(select_cpu) && !scx_rq_bypassing(task_rq(p))) {
3533 		s32 cpu;
3534 		struct task_struct **ddsp_taskp;
3535 
3536 		ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
3537 		WARN_ON_ONCE(*ddsp_taskp);
3538 		*ddsp_taskp = p;
3539 
3540 		cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
3541 					   select_cpu, p, prev_cpu, wake_flags);
3542 		*ddsp_taskp = NULL;
3543 		if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
3544 			return cpu;
3545 		else
3546 			return prev_cpu;
3547 	} else {
3548 		bool found;
3549 		s32 cpu;
3550 
3551 		cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
3552 		if (found) {
3553 			p->scx.slice = SCX_SLICE_DFL;
3554 			p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
3555 		}
3556 		return cpu;
3557 	}
3558 }
3559 
3560 static void task_woken_scx(struct rq *rq, struct task_struct *p)
3561 {
3562 	run_deferred(rq);
3563 }
3564 
3565 static void set_cpus_allowed_scx(struct task_struct *p,
3566 				 struct affinity_context *ac)
3567 {
3568 	set_cpus_allowed_common(p, ac);
3569 
3570 	/*
3571 	 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
3572 	 * differ from the configured one in @p->cpus_mask. Always tell the bpf
3573 	 * scheduler the effective one.
3574 	 *
3575 	 * Fine-grained memory write control is enforced by BPF making the const
3576 	 * designation pointless. Cast it away when calling the operation.
3577 	 */
3578 	if (SCX_HAS_OP(set_cpumask))
3579 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
3580 				 (struct cpumask *)p->cpus_ptr);
3581 }
3582 
3583 static void reset_idle_masks(void)
3584 {
3585 	/*
3586 	 * Consider all online cpus idle. Should converge to the actual state
3587 	 * quickly.
3588 	 */
3589 	cpumask_copy(idle_masks.cpu, cpu_online_mask);
3590 	cpumask_copy(idle_masks.smt, cpu_online_mask);
3591 }
3592 
3593 static void update_builtin_idle(int cpu, bool idle)
3594 {
3595 	if (idle)
3596 		cpumask_set_cpu(cpu, idle_masks.cpu);
3597 	else
3598 		cpumask_clear_cpu(cpu, idle_masks.cpu);
3599 
3600 #ifdef CONFIG_SCHED_SMT
3601 	if (sched_smt_active()) {
3602 		const struct cpumask *smt = cpu_smt_mask(cpu);
3603 
3604 		if (idle) {
3605 			/*
3606 			 * idle_masks.smt handling is racy but that's fine as
3607 			 * it's only for optimization and self-correcting.
3608 			 */
3609 			for_each_cpu(cpu, smt) {
3610 				if (!cpumask_test_cpu(cpu, idle_masks.cpu))
3611 					return;
3612 			}
3613 			cpumask_or(idle_masks.smt, idle_masks.smt, smt);
3614 		} else {
3615 			cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
3616 		}
3617 	}
3618 #endif
3619 }
3620 
3621 /*
3622  * Update the idle state of a CPU to @idle.
3623  *
3624  * If @do_notify is true, ops.update_idle() is invoked to notify the scx
3625  * scheduler of an actual idle state transition (idle to busy or vice
3626  * versa). If @do_notify is false, only the idle state in the idle masks is
3627  * refreshed without invoking ops.update_idle().
3628  *
3629  * This distinction is necessary, because an idle CPU can be "reserved" and
3630  * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
3631  * busy even if no tasks are dispatched. In this case, the CPU may return
3632  * to idle without a true state transition. Refreshing the idle masks
3633  * without invoking ops.update_idle() ensures accurate idle state tracking
3634  * while avoiding unnecessary updates and maintaining balanced state
3635  * transitions.
3636  */
3637 void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
3638 {
3639 	int cpu = cpu_of(rq);
3640 
3641 	lockdep_assert_rq_held(rq);
3642 
3643 	/*
3644 	 * Trigger ops.update_idle() only when transitioning from a task to
3645 	 * the idle thread and vice versa.
3646 	 *
3647 	 * Idle transitions are indicated by do_notify being set to true,
3648 	 * managed by put_prev_task_idle()/set_next_task_idle().
3649 	 */
3650 	if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq))
3651 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
3652 
3653 	/*
3654 	 * Update the idle masks:
3655 	 * - for real idle transitions (do_notify == true)
3656 	 * - for idle-to-idle transitions (indicated by the previous task
3657 	 *   being the idle thread, managed by pick_task_idle())
3658 	 *
3659 	 * Skip updating idle masks if the previous task is not the idle
3660 	 * thread, since set_next_task_idle() has already handled it when
3661 	 * transitioning from a task to the idle thread (calling this
3662 	 * function with do_notify == true).
3663 	 *
3664 	 * In this way we can avoid updating the idle masks twice,
3665 	 * unnecessarily.
3666 	 */
3667 	if (static_branch_likely(&scx_builtin_idle_enabled))
3668 		if (do_notify || is_idle_task(rq->curr))
3669 			update_builtin_idle(cpu, idle);
3670 }
3671 
3672 static void handle_hotplug(struct rq *rq, bool online)
3673 {
3674 	int cpu = cpu_of(rq);
3675 
3676 	atomic_long_inc(&scx_hotplug_seq);
3677 
3678 	if (scx_enabled())
3679 		update_selcpu_topology();
3680 
3681 	if (online && SCX_HAS_OP(cpu_online))
3682 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu);
3683 	else if (!online && SCX_HAS_OP(cpu_offline))
3684 		SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu);
3685 	else
3686 		scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
3687 			     "cpu %d going %s, exiting scheduler", cpu,
3688 			     online ? "online" : "offline");
3689 }
3690 
3691 void scx_rq_activate(struct rq *rq)
3692 {
3693 	handle_hotplug(rq, true);
3694 }
3695 
3696 void scx_rq_deactivate(struct rq *rq)
3697 {
3698 	handle_hotplug(rq, false);
3699 }
3700 
3701 static void rq_online_scx(struct rq *rq)
3702 {
3703 	rq->scx.flags |= SCX_RQ_ONLINE;
3704 }
3705 
3706 static void rq_offline_scx(struct rq *rq)
3707 {
3708 	rq->scx.flags &= ~SCX_RQ_ONLINE;
3709 }
3710 
3711 #else	/* CONFIG_SMP */
3712 
3713 static bool test_and_clear_cpu_idle(int cpu) { return false; }
3714 static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
3715 static void reset_idle_masks(void) {}
3716 
3717 #endif	/* CONFIG_SMP */
3718 
3719 static bool check_rq_for_timeouts(struct rq *rq)
3720 {
3721 	struct task_struct *p;
3722 	struct rq_flags rf;
3723 	bool timed_out = false;
3724 
3725 	rq_lock_irqsave(rq, &rf);
3726 	list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
3727 		unsigned long last_runnable = p->scx.runnable_at;
3728 
3729 		if (unlikely(time_after(jiffies,
3730 					last_runnable + scx_watchdog_timeout))) {
3731 			u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
3732 
3733 			scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3734 					   "%s[%d] failed to run for %u.%03us",
3735 					   p->comm, p->pid,
3736 					   dur_ms / 1000, dur_ms % 1000);
3737 			timed_out = true;
3738 			break;
3739 		}
3740 	}
3741 	rq_unlock_irqrestore(rq, &rf);
3742 
3743 	return timed_out;
3744 }
3745 
3746 static void scx_watchdog_workfn(struct work_struct *work)
3747 {
3748 	int cpu;
3749 
3750 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
3751 
3752 	for_each_online_cpu(cpu) {
3753 		if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
3754 			break;
3755 
3756 		cond_resched();
3757 	}
3758 	queue_delayed_work(system_unbound_wq, to_delayed_work(work),
3759 			   scx_watchdog_timeout / 2);
3760 }
3761 
3762 void scx_tick(struct rq *rq)
3763 {
3764 	unsigned long last_check;
3765 
3766 	if (!scx_enabled())
3767 		return;
3768 
3769 	last_check = READ_ONCE(scx_watchdog_timestamp);
3770 	if (unlikely(time_after(jiffies,
3771 				last_check + READ_ONCE(scx_watchdog_timeout)))) {
3772 		u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
3773 
3774 		scx_ops_error_kind(SCX_EXIT_ERROR_STALL,
3775 				   "watchdog failed to check in for %u.%03us",
3776 				   dur_ms / 1000, dur_ms % 1000);
3777 	}
3778 
3779 	update_other_load_avgs(rq);
3780 }
3781 
3782 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
3783 {
3784 	update_curr_scx(rq);
3785 
3786 	/*
3787 	 * While disabling, always resched and refresh core-sched timestamp as
3788 	 * we can't trust the slice management or ops.core_sched_before().
3789 	 */
3790 	if (scx_rq_bypassing(rq)) {
3791 		curr->scx.slice = 0;
3792 		touch_core_sched(rq, curr);
3793 	} else if (SCX_HAS_OP(tick)) {
3794 		SCX_CALL_OP(SCX_KF_REST, tick, curr);
3795 	}
3796 
3797 	if (!curr->scx.slice)
3798 		resched_curr(rq);
3799 }
3800 
3801 #ifdef CONFIG_EXT_GROUP_SCHED
3802 static struct cgroup *tg_cgrp(struct task_group *tg)
3803 {
3804 	/*
3805 	 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
3806 	 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
3807 	 * root cgroup.
3808 	 */
3809 	if (tg && tg->css.cgroup)
3810 		return tg->css.cgroup;
3811 	else
3812 		return &cgrp_dfl_root.cgrp;
3813 }
3814 
3815 #define SCX_INIT_TASK_ARGS_CGROUP(tg)		.cgroup = tg_cgrp(tg),
3816 
3817 #else	/* CONFIG_EXT_GROUP_SCHED */
3818 
3819 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
3820 
3821 #endif	/* CONFIG_EXT_GROUP_SCHED */
3822 
3823 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
3824 {
3825 	return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
3826 }
3827 
3828 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
3829 {
3830 	enum scx_task_state prev_state = scx_get_task_state(p);
3831 	bool warn = false;
3832 
3833 	BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
3834 
3835 	switch (state) {
3836 	case SCX_TASK_NONE:
3837 		break;
3838 	case SCX_TASK_INIT:
3839 		warn = prev_state != SCX_TASK_NONE;
3840 		break;
3841 	case SCX_TASK_READY:
3842 		warn = prev_state == SCX_TASK_NONE;
3843 		break;
3844 	case SCX_TASK_ENABLED:
3845 		warn = prev_state != SCX_TASK_READY;
3846 		break;
3847 	default:
3848 		warn = true;
3849 		return;
3850 	}
3851 
3852 	WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
3853 		  prev_state, state, p->comm, p->pid);
3854 
3855 	p->scx.flags &= ~SCX_TASK_STATE_MASK;
3856 	p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
3857 }
3858 
3859 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
3860 {
3861 	int ret;
3862 
3863 	p->scx.disallow = false;
3864 
3865 	if (SCX_HAS_OP(init_task)) {
3866 		struct scx_init_task_args args = {
3867 			SCX_INIT_TASK_ARGS_CGROUP(tg)
3868 			.fork = fork,
3869 		};
3870 
3871 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args);
3872 		if (unlikely(ret)) {
3873 			ret = ops_sanitize_err("init_task", ret);
3874 			return ret;
3875 		}
3876 	}
3877 
3878 	scx_set_task_state(p, SCX_TASK_INIT);
3879 
3880 	if (p->scx.disallow) {
3881 		if (!fork) {
3882 			struct rq *rq;
3883 			struct rq_flags rf;
3884 
3885 			rq = task_rq_lock(p, &rf);
3886 
3887 			/*
3888 			 * We're in the load path and @p->policy will be applied
3889 			 * right after. Reverting @p->policy here and rejecting
3890 			 * %SCHED_EXT transitions from scx_check_setscheduler()
3891 			 * guarantees that if ops.init_task() sets @p->disallow,
3892 			 * @p can never be in SCX.
3893 			 */
3894 			if (p->policy == SCHED_EXT) {
3895 				p->policy = SCHED_NORMAL;
3896 				atomic_long_inc(&scx_nr_rejected);
3897 			}
3898 
3899 			task_rq_unlock(rq, p, &rf);
3900 		} else if (p->policy == SCHED_EXT) {
3901 			scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork",
3902 				      p->comm, p->pid);
3903 		}
3904 	}
3905 
3906 	p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
3907 	return 0;
3908 }
3909 
3910 static void scx_ops_enable_task(struct task_struct *p)
3911 {
3912 	u32 weight;
3913 
3914 	lockdep_assert_rq_held(task_rq(p));
3915 
3916 	/*
3917 	 * Set the weight before calling ops.enable() so that the scheduler
3918 	 * doesn't see a stale value if they inspect the task struct.
3919 	 */
3920 	if (task_has_idle_policy(p))
3921 		weight = WEIGHT_IDLEPRIO;
3922 	else
3923 		weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
3924 
3925 	p->scx.weight = sched_weight_to_cgroup(weight);
3926 
3927 	if (SCX_HAS_OP(enable))
3928 		SCX_CALL_OP_TASK(SCX_KF_REST, enable, p);
3929 	scx_set_task_state(p, SCX_TASK_ENABLED);
3930 
3931 	if (SCX_HAS_OP(set_weight))
3932 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
3933 }
3934 
3935 static void scx_ops_disable_task(struct task_struct *p)
3936 {
3937 	lockdep_assert_rq_held(task_rq(p));
3938 	WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
3939 
3940 	if (SCX_HAS_OP(disable))
3941 		SCX_CALL_OP(SCX_KF_REST, disable, p);
3942 	scx_set_task_state(p, SCX_TASK_READY);
3943 }
3944 
3945 static void scx_ops_exit_task(struct task_struct *p)
3946 {
3947 	struct scx_exit_task_args args = {
3948 		.cancelled = false,
3949 	};
3950 
3951 	lockdep_assert_rq_held(task_rq(p));
3952 
3953 	switch (scx_get_task_state(p)) {
3954 	case SCX_TASK_NONE:
3955 		return;
3956 	case SCX_TASK_INIT:
3957 		args.cancelled = true;
3958 		break;
3959 	case SCX_TASK_READY:
3960 		break;
3961 	case SCX_TASK_ENABLED:
3962 		scx_ops_disable_task(p);
3963 		break;
3964 	default:
3965 		WARN_ON_ONCE(true);
3966 		return;
3967 	}
3968 
3969 	if (SCX_HAS_OP(exit_task))
3970 		SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
3971 	scx_set_task_state(p, SCX_TASK_NONE);
3972 }
3973 
3974 void init_scx_entity(struct sched_ext_entity *scx)
3975 {
3976 	memset(scx, 0, sizeof(*scx));
3977 	INIT_LIST_HEAD(&scx->dsq_list.node);
3978 	RB_CLEAR_NODE(&scx->dsq_priq);
3979 	scx->sticky_cpu = -1;
3980 	scx->holding_cpu = -1;
3981 	INIT_LIST_HEAD(&scx->runnable_node);
3982 	scx->runnable_at = jiffies;
3983 	scx->ddsp_dsq_id = SCX_DSQ_INVALID;
3984 	scx->slice = SCX_SLICE_DFL;
3985 }
3986 
3987 void scx_pre_fork(struct task_struct *p)
3988 {
3989 	/*
3990 	 * BPF scheduler enable/disable paths want to be able to iterate and
3991 	 * update all tasks which can become complex when racing forks. As
3992 	 * enable/disable are very cold paths, let's use a percpu_rwsem to
3993 	 * exclude forks.
3994 	 */
3995 	percpu_down_read(&scx_fork_rwsem);
3996 }
3997 
3998 int scx_fork(struct task_struct *p)
3999 {
4000 	percpu_rwsem_assert_held(&scx_fork_rwsem);
4001 
4002 	if (scx_ops_init_task_enabled)
4003 		return scx_ops_init_task(p, task_group(p), true);
4004 	else
4005 		return 0;
4006 }
4007 
4008 void scx_post_fork(struct task_struct *p)
4009 {
4010 	if (scx_ops_init_task_enabled) {
4011 		scx_set_task_state(p, SCX_TASK_READY);
4012 
4013 		/*
4014 		 * Enable the task immediately if it's running on sched_ext.
4015 		 * Otherwise, it'll be enabled in switching_to_scx() if and
4016 		 * when it's ever configured to run with a SCHED_EXT policy.
4017 		 */
4018 		if (p->sched_class == &ext_sched_class) {
4019 			struct rq_flags rf;
4020 			struct rq *rq;
4021 
4022 			rq = task_rq_lock(p, &rf);
4023 			scx_ops_enable_task(p);
4024 			task_rq_unlock(rq, p, &rf);
4025 		}
4026 	}
4027 
4028 	spin_lock_irq(&scx_tasks_lock);
4029 	list_add_tail(&p->scx.tasks_node, &scx_tasks);
4030 	spin_unlock_irq(&scx_tasks_lock);
4031 
4032 	percpu_up_read(&scx_fork_rwsem);
4033 }
4034 
4035 void scx_cancel_fork(struct task_struct *p)
4036 {
4037 	if (scx_enabled()) {
4038 		struct rq *rq;
4039 		struct rq_flags rf;
4040 
4041 		rq = task_rq_lock(p, &rf);
4042 		WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
4043 		scx_ops_exit_task(p);
4044 		task_rq_unlock(rq, p, &rf);
4045 	}
4046 
4047 	percpu_up_read(&scx_fork_rwsem);
4048 }
4049 
4050 void sched_ext_free(struct task_struct *p)
4051 {
4052 	unsigned long flags;
4053 
4054 	spin_lock_irqsave(&scx_tasks_lock, flags);
4055 	list_del_init(&p->scx.tasks_node);
4056 	spin_unlock_irqrestore(&scx_tasks_lock, flags);
4057 
4058 	/*
4059 	 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
4060 	 * ENABLED transitions can't race us. Disable ops for @p.
4061 	 */
4062 	if (scx_get_task_state(p) != SCX_TASK_NONE) {
4063 		struct rq_flags rf;
4064 		struct rq *rq;
4065 
4066 		rq = task_rq_lock(p, &rf);
4067 		scx_ops_exit_task(p);
4068 		task_rq_unlock(rq, p, &rf);
4069 	}
4070 }
4071 
4072 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
4073 			      const struct load_weight *lw)
4074 {
4075 	lockdep_assert_rq_held(task_rq(p));
4076 
4077 	p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
4078 	if (SCX_HAS_OP(set_weight))
4079 		SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight);
4080 }
4081 
4082 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
4083 {
4084 }
4085 
4086 static void switching_to_scx(struct rq *rq, struct task_struct *p)
4087 {
4088 	scx_ops_enable_task(p);
4089 
4090 	/*
4091 	 * set_cpus_allowed_scx() is not called while @p is associated with a
4092 	 * different scheduler class. Keep the BPF scheduler up-to-date.
4093 	 */
4094 	if (SCX_HAS_OP(set_cpumask))
4095 		SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p,
4096 				 (struct cpumask *)p->cpus_ptr);
4097 }
4098 
4099 static void switched_from_scx(struct rq *rq, struct task_struct *p)
4100 {
4101 	scx_ops_disable_task(p);
4102 }
4103 
4104 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
4105 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
4106 
4107 int scx_check_setscheduler(struct task_struct *p, int policy)
4108 {
4109 	lockdep_assert_rq_held(task_rq(p));
4110 
4111 	/* if disallow, reject transitioning into SCX */
4112 	if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
4113 	    p->policy != policy && policy == SCHED_EXT)
4114 		return -EACCES;
4115 
4116 	return 0;
4117 }
4118 
4119 #ifdef CONFIG_NO_HZ_FULL
4120 bool scx_can_stop_tick(struct rq *rq)
4121 {
4122 	struct task_struct *p = rq->curr;
4123 
4124 	if (scx_rq_bypassing(rq))
4125 		return false;
4126 
4127 	if (p->sched_class != &ext_sched_class)
4128 		return true;
4129 
4130 	/*
4131 	 * @rq can dispatch from different DSQs, so we can't tell whether it
4132 	 * needs the tick or not by looking at nr_running. Allow stopping ticks
4133 	 * iff the BPF scheduler indicated so. See set_next_task_scx().
4134 	 */
4135 	return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
4136 }
4137 #endif
4138 
4139 #ifdef CONFIG_EXT_GROUP_SCHED
4140 
4141 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem);
4142 static bool scx_cgroup_enabled;
4143 static bool cgroup_warned_missing_weight;
4144 static bool cgroup_warned_missing_idle;
4145 
4146 static void scx_cgroup_warn_missing_weight(struct task_group *tg)
4147 {
4148 	if (scx_ops_enable_state() == SCX_OPS_DISABLED ||
4149 	    cgroup_warned_missing_weight)
4150 		return;
4151 
4152 	if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent)
4153 		return;
4154 
4155 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n",
4156 		scx_ops.name);
4157 	cgroup_warned_missing_weight = true;
4158 }
4159 
4160 static void scx_cgroup_warn_missing_idle(struct task_group *tg)
4161 {
4162 	if (!scx_cgroup_enabled || cgroup_warned_missing_idle)
4163 		return;
4164 
4165 	if (!tg->idle)
4166 		return;
4167 
4168 	pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n",
4169 		scx_ops.name);
4170 	cgroup_warned_missing_idle = true;
4171 }
4172 
4173 int scx_tg_online(struct task_group *tg)
4174 {
4175 	int ret = 0;
4176 
4177 	WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED));
4178 
4179 	percpu_down_read(&scx_cgroup_rwsem);
4180 
4181 	scx_cgroup_warn_missing_weight(tg);
4182 
4183 	if (scx_cgroup_enabled) {
4184 		if (SCX_HAS_OP(cgroup_init)) {
4185 			struct scx_cgroup_init_args args =
4186 				{ .weight = tg->scx_weight };
4187 
4188 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4189 					      tg->css.cgroup, &args);
4190 			if (ret)
4191 				ret = ops_sanitize_err("cgroup_init", ret);
4192 		}
4193 		if (ret == 0)
4194 			tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED;
4195 	} else {
4196 		tg->scx_flags |= SCX_TG_ONLINE;
4197 	}
4198 
4199 	percpu_up_read(&scx_cgroup_rwsem);
4200 	return ret;
4201 }
4202 
4203 void scx_tg_offline(struct task_group *tg)
4204 {
4205 	WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE));
4206 
4207 	percpu_down_read(&scx_cgroup_rwsem);
4208 
4209 	if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED))
4210 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup);
4211 	tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
4212 
4213 	percpu_up_read(&scx_cgroup_rwsem);
4214 }
4215 
4216 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
4217 {
4218 	struct cgroup_subsys_state *css;
4219 	struct task_struct *p;
4220 	int ret;
4221 
4222 	/* released in scx_finish/cancel_attach() */
4223 	percpu_down_read(&scx_cgroup_rwsem);
4224 
4225 	if (!scx_cgroup_enabled)
4226 		return 0;
4227 
4228 	cgroup_taskset_for_each(p, css, tset) {
4229 		struct cgroup *from = tg_cgrp(task_group(p));
4230 		struct cgroup *to = tg_cgrp(css_tg(css));
4231 
4232 		WARN_ON_ONCE(p->scx.cgrp_moving_from);
4233 
4234 		/*
4235 		 * sched_move_task() omits identity migrations. Let's match the
4236 		 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
4237 		 * always match one-to-one.
4238 		 */
4239 		if (from == to)
4240 			continue;
4241 
4242 		if (SCX_HAS_OP(cgroup_prep_move)) {
4243 			ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move,
4244 					      p, from, css->cgroup);
4245 			if (ret)
4246 				goto err;
4247 		}
4248 
4249 		p->scx.cgrp_moving_from = from;
4250 	}
4251 
4252 	return 0;
4253 
4254 err:
4255 	cgroup_taskset_for_each(p, css, tset) {
4256 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4257 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4258 				    p->scx.cgrp_moving_from, css->cgroup);
4259 		p->scx.cgrp_moving_from = NULL;
4260 	}
4261 
4262 	percpu_up_read(&scx_cgroup_rwsem);
4263 	return ops_sanitize_err("cgroup_prep_move", ret);
4264 }
4265 
4266 void scx_move_task(struct task_struct *p)
4267 {
4268 	if (!scx_cgroup_enabled)
4269 		return;
4270 
4271 	/*
4272 	 * We're called from sched_move_task() which handles both cgroup and
4273 	 * autogroup moves. Ignore the latter.
4274 	 *
4275 	 * Also ignore exiting tasks, because in the exit path tasks transition
4276 	 * from the autogroup to the root group, so task_group_is_autogroup()
4277 	 * alone isn't able to catch exiting autogroup tasks. This is safe for
4278 	 * cgroup_move(), because cgroup migrations never happen for PF_EXITING
4279 	 * tasks.
4280 	 */
4281 	if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING))
4282 		return;
4283 
4284 	/*
4285 	 * @p must have ops.cgroup_prep_move() called on it and thus
4286 	 * cgrp_moving_from set.
4287 	 */
4288 	if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
4289 		SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p,
4290 			p->scx.cgrp_moving_from, tg_cgrp(task_group(p)));
4291 	p->scx.cgrp_moving_from = NULL;
4292 }
4293 
4294 void scx_cgroup_finish_attach(void)
4295 {
4296 	percpu_up_read(&scx_cgroup_rwsem);
4297 }
4298 
4299 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
4300 {
4301 	struct cgroup_subsys_state *css;
4302 	struct task_struct *p;
4303 
4304 	if (!scx_cgroup_enabled)
4305 		goto out_unlock;
4306 
4307 	cgroup_taskset_for_each(p, css, tset) {
4308 		if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from)
4309 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p,
4310 				    p->scx.cgrp_moving_from, css->cgroup);
4311 		p->scx.cgrp_moving_from = NULL;
4312 	}
4313 out_unlock:
4314 	percpu_up_read(&scx_cgroup_rwsem);
4315 }
4316 
4317 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
4318 {
4319 	percpu_down_read(&scx_cgroup_rwsem);
4320 
4321 	if (scx_cgroup_enabled && tg->scx_weight != weight) {
4322 		if (SCX_HAS_OP(cgroup_set_weight))
4323 			SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight,
4324 				    tg_cgrp(tg), weight);
4325 		tg->scx_weight = weight;
4326 	}
4327 
4328 	percpu_up_read(&scx_cgroup_rwsem);
4329 }
4330 
4331 void scx_group_set_idle(struct task_group *tg, bool idle)
4332 {
4333 	percpu_down_read(&scx_cgroup_rwsem);
4334 	scx_cgroup_warn_missing_idle(tg);
4335 	percpu_up_read(&scx_cgroup_rwsem);
4336 }
4337 
4338 static void scx_cgroup_lock(void)
4339 {
4340 	percpu_down_write(&scx_cgroup_rwsem);
4341 }
4342 
4343 static void scx_cgroup_unlock(void)
4344 {
4345 	percpu_up_write(&scx_cgroup_rwsem);
4346 }
4347 
4348 #else	/* CONFIG_EXT_GROUP_SCHED */
4349 
4350 static inline void scx_cgroup_lock(void) {}
4351 static inline void scx_cgroup_unlock(void) {}
4352 
4353 #endif	/* CONFIG_EXT_GROUP_SCHED */
4354 
4355 /*
4356  * Omitted operations:
4357  *
4358  * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
4359  *   isn't tied to the CPU at that point. Preemption is implemented by resetting
4360  *   the victim task's slice to 0 and triggering reschedule on the target CPU.
4361  *
4362  * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
4363  *
4364  * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
4365  *   their current sched_class. Call them directly from sched core instead.
4366  */
4367 DEFINE_SCHED_CLASS(ext) = {
4368 	.enqueue_task		= enqueue_task_scx,
4369 	.dequeue_task		= dequeue_task_scx,
4370 	.yield_task		= yield_task_scx,
4371 	.yield_to_task		= yield_to_task_scx,
4372 
4373 	.wakeup_preempt		= wakeup_preempt_scx,
4374 
4375 	.balance		= balance_scx,
4376 	.pick_task		= pick_task_scx,
4377 
4378 	.put_prev_task		= put_prev_task_scx,
4379 	.set_next_task		= set_next_task_scx,
4380 
4381 #ifdef CONFIG_SMP
4382 	.select_task_rq		= select_task_rq_scx,
4383 	.task_woken		= task_woken_scx,
4384 	.set_cpus_allowed	= set_cpus_allowed_scx,
4385 
4386 	.rq_online		= rq_online_scx,
4387 	.rq_offline		= rq_offline_scx,
4388 #endif
4389 
4390 	.task_tick		= task_tick_scx,
4391 
4392 	.switching_to		= switching_to_scx,
4393 	.switched_from		= switched_from_scx,
4394 	.switched_to		= switched_to_scx,
4395 	.reweight_task		= reweight_task_scx,
4396 	.prio_changed		= prio_changed_scx,
4397 
4398 	.update_curr		= update_curr_scx,
4399 
4400 #ifdef CONFIG_UCLAMP_TASK
4401 	.uclamp_enabled		= 1,
4402 #endif
4403 };
4404 
4405 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
4406 {
4407 	memset(dsq, 0, sizeof(*dsq));
4408 
4409 	raw_spin_lock_init(&dsq->lock);
4410 	INIT_LIST_HEAD(&dsq->list);
4411 	dsq->id = dsq_id;
4412 }
4413 
4414 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
4415 {
4416 	struct scx_dispatch_q *dsq;
4417 	int ret;
4418 
4419 	if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
4420 		return ERR_PTR(-EINVAL);
4421 
4422 	dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4423 	if (!dsq)
4424 		return ERR_PTR(-ENOMEM);
4425 
4426 	init_dsq(dsq, dsq_id);
4427 
4428 	ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
4429 				     dsq_hash_params);
4430 	if (ret) {
4431 		kfree(dsq);
4432 		return ERR_PTR(ret);
4433 	}
4434 	return dsq;
4435 }
4436 
4437 static void free_dsq_irq_workfn(struct irq_work *irq_work)
4438 {
4439 	struct llist_node *to_free = llist_del_all(&dsqs_to_free);
4440 	struct scx_dispatch_q *dsq, *tmp_dsq;
4441 
4442 	llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
4443 		kfree_rcu(dsq, rcu);
4444 }
4445 
4446 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
4447 
4448 static void destroy_dsq(u64 dsq_id)
4449 {
4450 	struct scx_dispatch_q *dsq;
4451 	unsigned long flags;
4452 
4453 	rcu_read_lock();
4454 
4455 	dsq = find_user_dsq(dsq_id);
4456 	if (!dsq)
4457 		goto out_unlock_rcu;
4458 
4459 	raw_spin_lock_irqsave(&dsq->lock, flags);
4460 
4461 	if (dsq->nr) {
4462 		scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
4463 			      dsq->id, dsq->nr);
4464 		goto out_unlock_dsq;
4465 	}
4466 
4467 	if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
4468 		goto out_unlock_dsq;
4469 
4470 	/*
4471 	 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
4472 	 * queueing more tasks. As this function can be called from anywhere,
4473 	 * freeing is bounced through an irq work to avoid nesting RCU
4474 	 * operations inside scheduler locks.
4475 	 */
4476 	dsq->id = SCX_DSQ_INVALID;
4477 	llist_add(&dsq->free_node, &dsqs_to_free);
4478 	irq_work_queue(&free_dsq_irq_work);
4479 
4480 out_unlock_dsq:
4481 	raw_spin_unlock_irqrestore(&dsq->lock, flags);
4482 out_unlock_rcu:
4483 	rcu_read_unlock();
4484 }
4485 
4486 #ifdef CONFIG_EXT_GROUP_SCHED
4487 static void scx_cgroup_exit(void)
4488 {
4489 	struct cgroup_subsys_state *css;
4490 
4491 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4492 
4493 	scx_cgroup_enabled = false;
4494 
4495 	/*
4496 	 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk
4497 	 * cgroups and exit all the inited ones, all online cgroups are exited.
4498 	 */
4499 	rcu_read_lock();
4500 	css_for_each_descendant_post(css, &root_task_group.css) {
4501 		struct task_group *tg = css_tg(css);
4502 
4503 		if (!(tg->scx_flags & SCX_TG_INITED))
4504 			continue;
4505 		tg->scx_flags &= ~SCX_TG_INITED;
4506 
4507 		if (!scx_ops.cgroup_exit)
4508 			continue;
4509 
4510 		if (WARN_ON_ONCE(!css_tryget(css)))
4511 			continue;
4512 		rcu_read_unlock();
4513 
4514 		SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup);
4515 
4516 		rcu_read_lock();
4517 		css_put(css);
4518 	}
4519 	rcu_read_unlock();
4520 }
4521 
4522 static int scx_cgroup_init(void)
4523 {
4524 	struct cgroup_subsys_state *css;
4525 	int ret;
4526 
4527 	percpu_rwsem_assert_held(&scx_cgroup_rwsem);
4528 
4529 	cgroup_warned_missing_weight = false;
4530 	cgroup_warned_missing_idle = false;
4531 
4532 	/*
4533 	 * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk
4534 	 * cgroups and init, all online cgroups are initialized.
4535 	 */
4536 	rcu_read_lock();
4537 	css_for_each_descendant_pre(css, &root_task_group.css) {
4538 		struct task_group *tg = css_tg(css);
4539 		struct scx_cgroup_init_args args = { .weight = tg->scx_weight };
4540 
4541 		scx_cgroup_warn_missing_weight(tg);
4542 		scx_cgroup_warn_missing_idle(tg);
4543 
4544 		if ((tg->scx_flags &
4545 		     (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
4546 			continue;
4547 
4548 		if (!scx_ops.cgroup_init) {
4549 			tg->scx_flags |= SCX_TG_INITED;
4550 			continue;
4551 		}
4552 
4553 		if (WARN_ON_ONCE(!css_tryget(css)))
4554 			continue;
4555 		rcu_read_unlock();
4556 
4557 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init,
4558 				      css->cgroup, &args);
4559 		if (ret) {
4560 			css_put(css);
4561 			scx_ops_error("ops.cgroup_init() failed (%d)", ret);
4562 			return ret;
4563 		}
4564 		tg->scx_flags |= SCX_TG_INITED;
4565 
4566 		rcu_read_lock();
4567 		css_put(css);
4568 	}
4569 	rcu_read_unlock();
4570 
4571 	WARN_ON_ONCE(scx_cgroup_enabled);
4572 	scx_cgroup_enabled = true;
4573 
4574 	return 0;
4575 }
4576 
4577 #else
4578 static void scx_cgroup_exit(void) {}
4579 static int scx_cgroup_init(void) { return 0; }
4580 #endif
4581 
4582 
4583 /********************************************************************************
4584  * Sysfs interface and ops enable/disable.
4585  */
4586 
4587 #define SCX_ATTR(_name)								\
4588 	static struct kobj_attribute scx_attr_##_name = {			\
4589 		.attr = { .name = __stringify(_name), .mode = 0444 },		\
4590 		.show = scx_attr_##_name##_show,				\
4591 	}
4592 
4593 static ssize_t scx_attr_state_show(struct kobject *kobj,
4594 				   struct kobj_attribute *ka, char *buf)
4595 {
4596 	return sysfs_emit(buf, "%s\n",
4597 			  scx_ops_enable_state_str[scx_ops_enable_state()]);
4598 }
4599 SCX_ATTR(state);
4600 
4601 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
4602 					struct kobj_attribute *ka, char *buf)
4603 {
4604 	return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
4605 }
4606 SCX_ATTR(switch_all);
4607 
4608 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
4609 					 struct kobj_attribute *ka, char *buf)
4610 {
4611 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
4612 }
4613 SCX_ATTR(nr_rejected);
4614 
4615 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
4616 					 struct kobj_attribute *ka, char *buf)
4617 {
4618 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
4619 }
4620 SCX_ATTR(hotplug_seq);
4621 
4622 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
4623 					struct kobj_attribute *ka, char *buf)
4624 {
4625 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
4626 }
4627 SCX_ATTR(enable_seq);
4628 
4629 static struct attribute *scx_global_attrs[] = {
4630 	&scx_attr_state.attr,
4631 	&scx_attr_switch_all.attr,
4632 	&scx_attr_nr_rejected.attr,
4633 	&scx_attr_hotplug_seq.attr,
4634 	&scx_attr_enable_seq.attr,
4635 	NULL,
4636 };
4637 
4638 static const struct attribute_group scx_global_attr_group = {
4639 	.attrs = scx_global_attrs,
4640 };
4641 
4642 static void scx_kobj_release(struct kobject *kobj)
4643 {
4644 	kfree(kobj);
4645 }
4646 
4647 static ssize_t scx_attr_ops_show(struct kobject *kobj,
4648 				 struct kobj_attribute *ka, char *buf)
4649 {
4650 	return sysfs_emit(buf, "%s\n", scx_ops.name);
4651 }
4652 SCX_ATTR(ops);
4653 
4654 static struct attribute *scx_sched_attrs[] = {
4655 	&scx_attr_ops.attr,
4656 	NULL,
4657 };
4658 ATTRIBUTE_GROUPS(scx_sched);
4659 
4660 static const struct kobj_type scx_ktype = {
4661 	.release = scx_kobj_release,
4662 	.sysfs_ops = &kobj_sysfs_ops,
4663 	.default_groups = scx_sched_groups,
4664 };
4665 
4666 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
4667 {
4668 	return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
4669 }
4670 
4671 static const struct kset_uevent_ops scx_uevent_ops = {
4672 	.uevent = scx_uevent,
4673 };
4674 
4675 /*
4676  * Used by sched_fork() and __setscheduler_prio() to pick the matching
4677  * sched_class. dl/rt are already handled.
4678  */
4679 bool task_should_scx(int policy)
4680 {
4681 	if (!scx_enabled() ||
4682 	    unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
4683 		return false;
4684 	if (READ_ONCE(scx_switching_all))
4685 		return true;
4686 	return policy == SCHED_EXT;
4687 }
4688 
4689 /**
4690  * scx_softlockup - sched_ext softlockup handler
4691  *
4692  * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
4693  * live-lock the system by making many CPUs target the same DSQ to the point
4694  * where soft-lockup detection triggers. This function is called from
4695  * soft-lockup watchdog when the triggering point is close and tries to unjam
4696  * the system by enabling the breather and aborting the BPF scheduler.
4697  */
4698 void scx_softlockup(u32 dur_s)
4699 {
4700 	switch (scx_ops_enable_state()) {
4701 	case SCX_OPS_ENABLING:
4702 	case SCX_OPS_ENABLED:
4703 		break;
4704 	default:
4705 		return;
4706 	}
4707 
4708 	/* allow only one instance, cleared at the end of scx_ops_bypass() */
4709 	if (test_and_set_bit(0, &scx_in_softlockup))
4710 		return;
4711 
4712 	printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
4713 			smp_processor_id(), dur_s, scx_ops.name);
4714 
4715 	/*
4716 	 * Some CPUs may be trapped in the dispatch paths. Enable breather
4717 	 * immediately; otherwise, we might even be able to get to
4718 	 * scx_ops_bypass().
4719 	 */
4720 	atomic_inc(&scx_ops_breather_depth);
4721 
4722 	scx_ops_error("soft lockup - CPU#%d stuck for %us",
4723 		      smp_processor_id(), dur_s);
4724 }
4725 
4726 static void scx_clear_softlockup(void)
4727 {
4728 	if (test_and_clear_bit(0, &scx_in_softlockup))
4729 		atomic_dec(&scx_ops_breather_depth);
4730 }
4731 
4732 /**
4733  * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
4734  *
4735  * Bypassing guarantees that all runnable tasks make forward progress without
4736  * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4737  * be held by tasks that the BPF scheduler is forgetting to run, which
4738  * unfortunately also excludes toggling the static branches.
4739  *
4740  * Let's work around by overriding a couple ops and modifying behaviors based on
4741  * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4742  * to force global FIFO scheduling.
4743  *
4744  * - ops.select_cpu() is ignored and the default select_cpu() is used.
4745  *
4746  * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4747  *   %SCX_OPS_ENQ_LAST is also ignored.
4748  *
4749  * - ops.dispatch() is ignored.
4750  *
4751  * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4752  *   can't be trusted. Whenever a tick triggers, the running task is rotated to
4753  *   the tail of the queue with core_sched_at touched.
4754  *
4755  * - pick_next_task() suppresses zero slice warning.
4756  *
4757  * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM
4758  *   operations.
4759  *
4760  * - scx_prio_less() reverts to the default core_sched_at order.
4761  */
4762 static void scx_ops_bypass(bool bypass)
4763 {
4764 	static DEFINE_RAW_SPINLOCK(bypass_lock);
4765 	int cpu;
4766 	unsigned long flags;
4767 
4768 	raw_spin_lock_irqsave(&bypass_lock, flags);
4769 	if (bypass) {
4770 		scx_ops_bypass_depth++;
4771 		WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
4772 		if (scx_ops_bypass_depth != 1)
4773 			goto unlock;
4774 	} else {
4775 		scx_ops_bypass_depth--;
4776 		WARN_ON_ONCE(scx_ops_bypass_depth < 0);
4777 		if (scx_ops_bypass_depth != 0)
4778 			goto unlock;
4779 	}
4780 
4781 	atomic_inc(&scx_ops_breather_depth);
4782 
4783 	/*
4784 	 * No task property is changing. We just need to make sure all currently
4785 	 * queued tasks are re-queued according to the new scx_rq_bypassing()
4786 	 * state. As an optimization, walk each rq's runnable_list instead of
4787 	 * the scx_tasks list.
4788 	 *
4789 	 * This function can't trust the scheduler and thus can't use
4790 	 * cpus_read_lock(). Walk all possible CPUs instead of online.
4791 	 */
4792 	for_each_possible_cpu(cpu) {
4793 		struct rq *rq = cpu_rq(cpu);
4794 		struct task_struct *p, *n;
4795 
4796 		raw_spin_rq_lock(rq);
4797 
4798 		if (bypass) {
4799 			WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4800 			rq->scx.flags |= SCX_RQ_BYPASSING;
4801 		} else {
4802 			WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4803 			rq->scx.flags &= ~SCX_RQ_BYPASSING;
4804 		}
4805 
4806 		/*
4807 		 * We need to guarantee that no tasks are on the BPF scheduler
4808 		 * while bypassing. Either we see enabled or the enable path
4809 		 * sees scx_rq_bypassing() before moving tasks to SCX.
4810 		 */
4811 		if (!scx_enabled()) {
4812 			raw_spin_rq_unlock(rq);
4813 			continue;
4814 		}
4815 
4816 		/*
4817 		 * The use of list_for_each_entry_safe_reverse() is required
4818 		 * because each task is going to be removed from and added back
4819 		 * to the runnable_list during iteration. Because they're added
4820 		 * to the tail of the list, safe reverse iteration can still
4821 		 * visit all nodes.
4822 		 */
4823 		list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4824 						 scx.runnable_node) {
4825 			struct sched_enq_and_set_ctx ctx;
4826 
4827 			/* cycling deq/enq is enough, see the function comment */
4828 			sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4829 			sched_enq_and_set_task(&ctx);
4830 		}
4831 
4832 		/* resched to restore ticks and idle state */
4833 		if (cpu_online(cpu) || cpu == smp_processor_id())
4834 			resched_curr(rq);
4835 
4836 		raw_spin_rq_unlock(rq);
4837 	}
4838 
4839 	atomic_dec(&scx_ops_breather_depth);
4840 unlock:
4841 	raw_spin_unlock_irqrestore(&bypass_lock, flags);
4842 	scx_clear_softlockup();
4843 }
4844 
4845 static void free_exit_info(struct scx_exit_info *ei)
4846 {
4847 	kfree(ei->dump);
4848 	kfree(ei->msg);
4849 	kfree(ei->bt);
4850 	kfree(ei);
4851 }
4852 
4853 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4854 {
4855 	struct scx_exit_info *ei;
4856 
4857 	ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4858 	if (!ei)
4859 		return NULL;
4860 
4861 	ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4862 	ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4863 	ei->dump = kzalloc(exit_dump_len, GFP_KERNEL);
4864 
4865 	if (!ei->bt || !ei->msg || !ei->dump) {
4866 		free_exit_info(ei);
4867 		return NULL;
4868 	}
4869 
4870 	return ei;
4871 }
4872 
4873 static const char *scx_exit_reason(enum scx_exit_kind kind)
4874 {
4875 	switch (kind) {
4876 	case SCX_EXIT_UNREG:
4877 		return "unregistered from user space";
4878 	case SCX_EXIT_UNREG_BPF:
4879 		return "unregistered from BPF";
4880 	case SCX_EXIT_UNREG_KERN:
4881 		return "unregistered from the main kernel";
4882 	case SCX_EXIT_SYSRQ:
4883 		return "disabled by sysrq-S";
4884 	case SCX_EXIT_ERROR:
4885 		return "runtime error";
4886 	case SCX_EXIT_ERROR_BPF:
4887 		return "scx_bpf_error";
4888 	case SCX_EXIT_ERROR_STALL:
4889 		return "runnable task stall";
4890 	default:
4891 		return "<UNKNOWN>";
4892 	}
4893 }
4894 
4895 static void scx_ops_disable_workfn(struct kthread_work *work)
4896 {
4897 	struct scx_exit_info *ei = scx_exit_info;
4898 	struct scx_task_iter sti;
4899 	struct task_struct *p;
4900 	struct rhashtable_iter rht_iter;
4901 	struct scx_dispatch_q *dsq;
4902 	int i, kind;
4903 
4904 	kind = atomic_read(&scx_exit_kind);
4905 	while (true) {
4906 		/*
4907 		 * NONE indicates that a new scx_ops has been registered since
4908 		 * disable was scheduled - don't kill the new ops. DONE
4909 		 * indicates that the ops has already been disabled.
4910 		 */
4911 		if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
4912 			return;
4913 		if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
4914 			break;
4915 	}
4916 	ei->kind = kind;
4917 	ei->reason = scx_exit_reason(ei->kind);
4918 
4919 	/* guarantee forward progress by bypassing scx_ops */
4920 	scx_ops_bypass(true);
4921 
4922 	switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
4923 	case SCX_OPS_DISABLING:
4924 		WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4925 		break;
4926 	case SCX_OPS_DISABLED:
4927 		pr_warn("sched_ext: ops error detected without ops (%s)\n",
4928 			scx_exit_info->msg);
4929 		WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
4930 			     SCX_OPS_DISABLING);
4931 		goto done;
4932 	default:
4933 		break;
4934 	}
4935 
4936 	/*
4937 	 * Here, every runnable task is guaranteed to make forward progress and
4938 	 * we can safely use blocking synchronization constructs. Actually
4939 	 * disable ops.
4940 	 */
4941 	mutex_lock(&scx_ops_enable_mutex);
4942 
4943 	static_branch_disable(&__scx_switched_all);
4944 	WRITE_ONCE(scx_switching_all, false);
4945 
4946 	/*
4947 	 * Shut down cgroup support before tasks so that the cgroup attach path
4948 	 * doesn't race against scx_ops_exit_task().
4949 	 */
4950 	scx_cgroup_lock();
4951 	scx_cgroup_exit();
4952 	scx_cgroup_unlock();
4953 
4954 	/*
4955 	 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4956 	 * must be switched out and exited synchronously.
4957 	 */
4958 	percpu_down_write(&scx_fork_rwsem);
4959 
4960 	scx_ops_init_task_enabled = false;
4961 
4962 	scx_task_iter_start(&sti);
4963 	while ((p = scx_task_iter_next_locked(&sti))) {
4964 		const struct sched_class *old_class = p->sched_class;
4965 		const struct sched_class *new_class =
4966 			__setscheduler_class(p->policy, p->prio);
4967 		struct sched_enq_and_set_ctx ctx;
4968 
4969 		if (old_class != new_class && p->se.sched_delayed)
4970 			dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4971 
4972 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4973 
4974 		p->sched_class = new_class;
4975 		check_class_changing(task_rq(p), p, old_class);
4976 
4977 		sched_enq_and_set_task(&ctx);
4978 
4979 		check_class_changed(task_rq(p), p, old_class, p->prio);
4980 		scx_ops_exit_task(p);
4981 	}
4982 	scx_task_iter_stop(&sti);
4983 	percpu_up_write(&scx_fork_rwsem);
4984 
4985 	/* no task is on scx, turn off all the switches and flush in-progress calls */
4986 	static_branch_disable(&__scx_ops_enabled);
4987 	for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
4988 		static_branch_disable(&scx_has_op[i]);
4989 	static_branch_disable(&scx_ops_enq_last);
4990 	static_branch_disable(&scx_ops_enq_exiting);
4991 	static_branch_disable(&scx_ops_cpu_preempt);
4992 	static_branch_disable(&scx_builtin_idle_enabled);
4993 	synchronize_rcu();
4994 
4995 	if (ei->kind >= SCX_EXIT_ERROR) {
4996 		pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4997 		       scx_ops.name, ei->reason);
4998 
4999 		if (ei->msg[0] != '\0')
5000 			pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg);
5001 #ifdef CONFIG_STACKTRACE
5002 		stack_trace_print(ei->bt, ei->bt_len, 2);
5003 #endif
5004 	} else {
5005 		pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
5006 			scx_ops.name, ei->reason);
5007 	}
5008 
5009 	if (scx_ops.exit)
5010 		SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
5011 
5012 	cancel_delayed_work_sync(&scx_watchdog_work);
5013 
5014 	/*
5015 	 * Delete the kobject from the hierarchy eagerly in addition to just
5016 	 * dropping a reference. Otherwise, if the object is deleted
5017 	 * asynchronously, sysfs could observe an object of the same name still
5018 	 * in the hierarchy when another scheduler is loaded.
5019 	 */
5020 	kobject_del(scx_root_kobj);
5021 	kobject_put(scx_root_kobj);
5022 	scx_root_kobj = NULL;
5023 
5024 	memset(&scx_ops, 0, sizeof(scx_ops));
5025 
5026 	rhashtable_walk_enter(&dsq_hash, &rht_iter);
5027 	do {
5028 		rhashtable_walk_start(&rht_iter);
5029 
5030 		while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
5031 			destroy_dsq(dsq->id);
5032 
5033 		rhashtable_walk_stop(&rht_iter);
5034 	} while (dsq == ERR_PTR(-EAGAIN));
5035 	rhashtable_walk_exit(&rht_iter);
5036 
5037 	free_percpu(scx_dsp_ctx);
5038 	scx_dsp_ctx = NULL;
5039 	scx_dsp_max_batch = 0;
5040 
5041 	free_exit_info(scx_exit_info);
5042 	scx_exit_info = NULL;
5043 
5044 	mutex_unlock(&scx_ops_enable_mutex);
5045 
5046 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
5047 		     SCX_OPS_DISABLING);
5048 done:
5049 	scx_ops_bypass(false);
5050 }
5051 
5052 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
5053 
5054 static void schedule_scx_ops_disable_work(void)
5055 {
5056 	struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
5057 
5058 	/*
5059 	 * We may be called spuriously before the first bpf_sched_ext_reg(). If
5060 	 * scx_ops_helper isn't set up yet, there's nothing to do.
5061 	 */
5062 	if (helper)
5063 		kthread_queue_work(helper, &scx_ops_disable_work);
5064 }
5065 
5066 static void scx_ops_disable(enum scx_exit_kind kind)
5067 {
5068 	int none = SCX_EXIT_NONE;
5069 
5070 	if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
5071 		kind = SCX_EXIT_ERROR;
5072 
5073 	atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
5074 
5075 	schedule_scx_ops_disable_work();
5076 }
5077 
5078 static void dump_newline(struct seq_buf *s)
5079 {
5080 	trace_sched_ext_dump("");
5081 
5082 	/* @s may be zero sized and seq_buf triggers WARN if so */
5083 	if (s->size)
5084 		seq_buf_putc(s, '\n');
5085 }
5086 
5087 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
5088 {
5089 	va_list args;
5090 
5091 #ifdef CONFIG_TRACEPOINTS
5092 	if (trace_sched_ext_dump_enabled()) {
5093 		/* protected by scx_dump_state()::dump_lock */
5094 		static char line_buf[SCX_EXIT_MSG_LEN];
5095 
5096 		va_start(args, fmt);
5097 		vscnprintf(line_buf, sizeof(line_buf), fmt, args);
5098 		va_end(args);
5099 
5100 		trace_sched_ext_dump(line_buf);
5101 	}
5102 #endif
5103 	/* @s may be zero sized and seq_buf triggers WARN if so */
5104 	if (s->size) {
5105 		va_start(args, fmt);
5106 		seq_buf_vprintf(s, fmt, args);
5107 		va_end(args);
5108 
5109 		seq_buf_putc(s, '\n');
5110 	}
5111 }
5112 
5113 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
5114 			     const unsigned long *bt, unsigned int len)
5115 {
5116 	unsigned int i;
5117 
5118 	for (i = 0; i < len; i++)
5119 		dump_line(s, "%s%pS", prefix, (void *)bt[i]);
5120 }
5121 
5122 static void ops_dump_init(struct seq_buf *s, const char *prefix)
5123 {
5124 	struct scx_dump_data *dd = &scx_dump_data;
5125 
5126 	lockdep_assert_irqs_disabled();
5127 
5128 	dd->cpu = smp_processor_id();		/* allow scx_bpf_dump() */
5129 	dd->first = true;
5130 	dd->cursor = 0;
5131 	dd->s = s;
5132 	dd->prefix = prefix;
5133 }
5134 
5135 static void ops_dump_flush(void)
5136 {
5137 	struct scx_dump_data *dd = &scx_dump_data;
5138 	char *line = dd->buf.line;
5139 
5140 	if (!dd->cursor)
5141 		return;
5142 
5143 	/*
5144 	 * There's something to flush and this is the first line. Insert a blank
5145 	 * line to distinguish ops dump.
5146 	 */
5147 	if (dd->first) {
5148 		dump_newline(dd->s);
5149 		dd->first = false;
5150 	}
5151 
5152 	/*
5153 	 * There may be multiple lines in $line. Scan and emit each line
5154 	 * separately.
5155 	 */
5156 	while (true) {
5157 		char *end = line;
5158 		char c;
5159 
5160 		while (*end != '\n' && *end != '\0')
5161 			end++;
5162 
5163 		/*
5164 		 * If $line overflowed, it may not have newline at the end.
5165 		 * Always emit with a newline.
5166 		 */
5167 		c = *end;
5168 		*end = '\0';
5169 		dump_line(dd->s, "%s%s", dd->prefix, line);
5170 		if (c == '\0')
5171 			break;
5172 
5173 		/* move to the next line */
5174 		end++;
5175 		if (*end == '\0')
5176 			break;
5177 		line = end;
5178 	}
5179 
5180 	dd->cursor = 0;
5181 }
5182 
5183 static void ops_dump_exit(void)
5184 {
5185 	ops_dump_flush();
5186 	scx_dump_data.cpu = -1;
5187 }
5188 
5189 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
5190 			  struct task_struct *p, char marker)
5191 {
5192 	static unsigned long bt[SCX_EXIT_BT_LEN];
5193 	char dsq_id_buf[19] = "(n/a)";
5194 	unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
5195 	unsigned int bt_len = 0;
5196 
5197 	if (p->scx.dsq)
5198 		scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
5199 			  (unsigned long long)p->scx.dsq->id);
5200 
5201 	dump_newline(s);
5202 	dump_line(s, " %c%c %s[%d] %+ldms",
5203 		  marker, task_state_to_char(p), p->comm, p->pid,
5204 		  jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
5205 	dump_line(s, "      scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
5206 		  scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
5207 		  p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
5208 		  ops_state >> SCX_OPSS_QSEQ_SHIFT);
5209 	dump_line(s, "      sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu",
5210 		  p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf,
5211 		  p->scx.dsq_vtime);
5212 	dump_line(s, "      cpus=%*pb", cpumask_pr_args(p->cpus_ptr));
5213 
5214 	if (SCX_HAS_OP(dump_task)) {
5215 		ops_dump_init(s, "    ");
5216 		SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p);
5217 		ops_dump_exit();
5218 	}
5219 
5220 #ifdef CONFIG_STACKTRACE
5221 	bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
5222 #endif
5223 	if (bt_len) {
5224 		dump_newline(s);
5225 		dump_stack_trace(s, "    ", bt, bt_len);
5226 	}
5227 }
5228 
5229 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
5230 {
5231 	static DEFINE_SPINLOCK(dump_lock);
5232 	static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
5233 	struct scx_dump_ctx dctx = {
5234 		.kind = ei->kind,
5235 		.exit_code = ei->exit_code,
5236 		.reason = ei->reason,
5237 		.at_ns = ktime_get_ns(),
5238 		.at_jiffies = jiffies,
5239 	};
5240 	struct seq_buf s;
5241 	unsigned long flags;
5242 	char *buf;
5243 	int cpu;
5244 
5245 	spin_lock_irqsave(&dump_lock, flags);
5246 
5247 	seq_buf_init(&s, ei->dump, dump_len);
5248 
5249 	if (ei->kind == SCX_EXIT_NONE) {
5250 		dump_line(&s, "Debug dump triggered by %s", ei->reason);
5251 	} else {
5252 		dump_line(&s, "%s[%d] triggered exit kind %d:",
5253 			  current->comm, current->pid, ei->kind);
5254 		dump_line(&s, "  %s (%s)", ei->reason, ei->msg);
5255 		dump_newline(&s);
5256 		dump_line(&s, "Backtrace:");
5257 		dump_stack_trace(&s, "  ", ei->bt, ei->bt_len);
5258 	}
5259 
5260 	if (SCX_HAS_OP(dump)) {
5261 		ops_dump_init(&s, "");
5262 		SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx);
5263 		ops_dump_exit();
5264 	}
5265 
5266 	dump_newline(&s);
5267 	dump_line(&s, "CPU states");
5268 	dump_line(&s, "----------");
5269 
5270 	for_each_possible_cpu(cpu) {
5271 		struct rq *rq = cpu_rq(cpu);
5272 		struct rq_flags rf;
5273 		struct task_struct *p;
5274 		struct seq_buf ns;
5275 		size_t avail, used;
5276 		bool idle;
5277 
5278 		rq_lock(rq, &rf);
5279 
5280 		idle = list_empty(&rq->scx.runnable_list) &&
5281 			rq->curr->sched_class == &idle_sched_class;
5282 
5283 		if (idle && !SCX_HAS_OP(dump_cpu))
5284 			goto next;
5285 
5286 		/*
5287 		 * We don't yet know whether ops.dump_cpu() will produce output
5288 		 * and we may want to skip the default CPU dump if it doesn't.
5289 		 * Use a nested seq_buf to generate the standard dump so that we
5290 		 * can decide whether to commit later.
5291 		 */
5292 		avail = seq_buf_get_buf(&s, &buf);
5293 		seq_buf_init(&ns, buf, avail);
5294 
5295 		dump_newline(&ns);
5296 		dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
5297 			  cpu, rq->scx.nr_running, rq->scx.flags,
5298 			  rq->scx.cpu_released, rq->scx.ops_qseq,
5299 			  rq->scx.pnt_seq);
5300 		dump_line(&ns, "          curr=%s[%d] class=%ps",
5301 			  rq->curr->comm, rq->curr->pid,
5302 			  rq->curr->sched_class);
5303 		if (!cpumask_empty(rq->scx.cpus_to_kick))
5304 			dump_line(&ns, "  cpus_to_kick   : %*pb",
5305 				  cpumask_pr_args(rq->scx.cpus_to_kick));
5306 		if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
5307 			dump_line(&ns, "  idle_to_kick   : %*pb",
5308 				  cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
5309 		if (!cpumask_empty(rq->scx.cpus_to_preempt))
5310 			dump_line(&ns, "  cpus_to_preempt: %*pb",
5311 				  cpumask_pr_args(rq->scx.cpus_to_preempt));
5312 		if (!cpumask_empty(rq->scx.cpus_to_wait))
5313 			dump_line(&ns, "  cpus_to_wait   : %*pb",
5314 				  cpumask_pr_args(rq->scx.cpus_to_wait));
5315 
5316 		used = seq_buf_used(&ns);
5317 		if (SCX_HAS_OP(dump_cpu)) {
5318 			ops_dump_init(&ns, "  ");
5319 			SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle);
5320 			ops_dump_exit();
5321 		}
5322 
5323 		/*
5324 		 * If idle && nothing generated by ops.dump_cpu(), there's
5325 		 * nothing interesting. Skip.
5326 		 */
5327 		if (idle && used == seq_buf_used(&ns))
5328 			goto next;
5329 
5330 		/*
5331 		 * $s may already have overflowed when $ns was created. If so,
5332 		 * calling commit on it will trigger BUG.
5333 		 */
5334 		if (avail) {
5335 			seq_buf_commit(&s, seq_buf_used(&ns));
5336 			if (seq_buf_has_overflowed(&ns))
5337 				seq_buf_set_overflow(&s);
5338 		}
5339 
5340 		if (rq->curr->sched_class == &ext_sched_class)
5341 			scx_dump_task(&s, &dctx, rq->curr, '*');
5342 
5343 		list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
5344 			scx_dump_task(&s, &dctx, p, ' ');
5345 	next:
5346 		rq_unlock(rq, &rf);
5347 	}
5348 
5349 	if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
5350 		memcpy(ei->dump + dump_len - sizeof(trunc_marker),
5351 		       trunc_marker, sizeof(trunc_marker));
5352 
5353 	spin_unlock_irqrestore(&dump_lock, flags);
5354 }
5355 
5356 static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
5357 {
5358 	struct scx_exit_info *ei = scx_exit_info;
5359 
5360 	if (ei->kind >= SCX_EXIT_ERROR)
5361 		scx_dump_state(ei, scx_ops.exit_dump_len);
5362 
5363 	schedule_scx_ops_disable_work();
5364 }
5365 
5366 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
5367 
5368 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
5369 					     s64 exit_code,
5370 					     const char *fmt, ...)
5371 {
5372 	struct scx_exit_info *ei = scx_exit_info;
5373 	int none = SCX_EXIT_NONE;
5374 	va_list args;
5375 
5376 	if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
5377 		return;
5378 
5379 	ei->exit_code = exit_code;
5380 #ifdef CONFIG_STACKTRACE
5381 	if (kind >= SCX_EXIT_ERROR)
5382 		ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
5383 #endif
5384 	va_start(args, fmt);
5385 	vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
5386 	va_end(args);
5387 
5388 	/*
5389 	 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
5390 	 * in scx_ops_disable_workfn().
5391 	 */
5392 	ei->kind = kind;
5393 	ei->reason = scx_exit_reason(ei->kind);
5394 
5395 	irq_work_queue(&scx_ops_error_irq_work);
5396 }
5397 
5398 static struct kthread_worker *scx_create_rt_helper(const char *name)
5399 {
5400 	struct kthread_worker *helper;
5401 
5402 	helper = kthread_create_worker(0, name);
5403 	if (helper)
5404 		sched_set_fifo(helper->task);
5405 	return helper;
5406 }
5407 
5408 static void check_hotplug_seq(const struct sched_ext_ops *ops)
5409 {
5410 	unsigned long long global_hotplug_seq;
5411 
5412 	/*
5413 	 * If a hotplug event has occurred between when a scheduler was
5414 	 * initialized, and when we were able to attach, exit and notify user
5415 	 * space about it.
5416 	 */
5417 	if (ops->hotplug_seq) {
5418 		global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
5419 		if (ops->hotplug_seq != global_hotplug_seq) {
5420 			scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
5421 				     "expected hotplug seq %llu did not match actual %llu",
5422 				     ops->hotplug_seq, global_hotplug_seq);
5423 		}
5424 	}
5425 }
5426 
5427 static int validate_ops(const struct sched_ext_ops *ops)
5428 {
5429 	/*
5430 	 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
5431 	 * ops.enqueue() callback isn't implemented.
5432 	 */
5433 	if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
5434 		scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
5435 		return -EINVAL;
5436 	}
5437 
5438 	return 0;
5439 }
5440 
5441 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
5442 {
5443 	struct scx_task_iter sti;
5444 	struct task_struct *p;
5445 	unsigned long timeout;
5446 	int i, cpu, node, ret;
5447 
5448 	if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
5449 			   cpu_possible_mask)) {
5450 		pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
5451 		return -EINVAL;
5452 	}
5453 
5454 	mutex_lock(&scx_ops_enable_mutex);
5455 
5456 	if (!scx_ops_helper) {
5457 		WRITE_ONCE(scx_ops_helper,
5458 			   scx_create_rt_helper("sched_ext_ops_helper"));
5459 		if (!scx_ops_helper) {
5460 			ret = -ENOMEM;
5461 			goto err_unlock;
5462 		}
5463 	}
5464 
5465 	if (!global_dsqs) {
5466 		struct scx_dispatch_q **dsqs;
5467 
5468 		dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL);
5469 		if (!dsqs) {
5470 			ret = -ENOMEM;
5471 			goto err_unlock;
5472 		}
5473 
5474 		for_each_node_state(node, N_POSSIBLE) {
5475 			struct scx_dispatch_q *dsq;
5476 
5477 			dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5478 			if (!dsq) {
5479 				for_each_node_state(node, N_POSSIBLE)
5480 					kfree(dsqs[node]);
5481 				kfree(dsqs);
5482 				ret = -ENOMEM;
5483 				goto err_unlock;
5484 			}
5485 
5486 			init_dsq(dsq, SCX_DSQ_GLOBAL);
5487 			dsqs[node] = dsq;
5488 		}
5489 
5490 		global_dsqs = dsqs;
5491 	}
5492 
5493 	if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
5494 		ret = -EBUSY;
5495 		goto err_unlock;
5496 	}
5497 
5498 	scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
5499 	if (!scx_root_kobj) {
5500 		ret = -ENOMEM;
5501 		goto err_unlock;
5502 	}
5503 
5504 	scx_root_kobj->kset = scx_kset;
5505 	ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
5506 	if (ret < 0)
5507 		goto err;
5508 
5509 	scx_exit_info = alloc_exit_info(ops->exit_dump_len);
5510 	if (!scx_exit_info) {
5511 		ret = -ENOMEM;
5512 		goto err_del;
5513 	}
5514 
5515 	/*
5516 	 * Set scx_ops, transition to ENABLING and clear exit info to arm the
5517 	 * disable path. Failure triggers full disabling from here on.
5518 	 */
5519 	scx_ops = *ops;
5520 
5521 	WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) !=
5522 		     SCX_OPS_DISABLED);
5523 
5524 	atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
5525 	scx_warned_zero_slice = false;
5526 
5527 	atomic_long_set(&scx_nr_rejected, 0);
5528 
5529 	for_each_possible_cpu(cpu)
5530 		cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
5531 
5532 	/*
5533 	 * Keep CPUs stable during enable so that the BPF scheduler can track
5534 	 * online CPUs by watching ->on/offline_cpu() after ->init().
5535 	 */
5536 	cpus_read_lock();
5537 
5538 	if (scx_ops.init) {
5539 		ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init);
5540 		if (ret) {
5541 			ret = ops_sanitize_err("init", ret);
5542 			cpus_read_unlock();
5543 			scx_ops_error("ops.init() failed (%d)", ret);
5544 			goto err_disable;
5545 		}
5546 	}
5547 
5548 	for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
5549 		if (((void (**)(void))ops)[i])
5550 			static_branch_enable_cpuslocked(&scx_has_op[i]);
5551 
5552 	check_hotplug_seq(ops);
5553 #ifdef CONFIG_SMP
5554 	update_selcpu_topology();
5555 #endif
5556 	cpus_read_unlock();
5557 
5558 	ret = validate_ops(ops);
5559 	if (ret)
5560 		goto err_disable;
5561 
5562 	WARN_ON_ONCE(scx_dsp_ctx);
5563 	scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
5564 	scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
5565 						   scx_dsp_max_batch),
5566 				     __alignof__(struct scx_dsp_ctx));
5567 	if (!scx_dsp_ctx) {
5568 		ret = -ENOMEM;
5569 		goto err_disable;
5570 	}
5571 
5572 	if (ops->timeout_ms)
5573 		timeout = msecs_to_jiffies(ops->timeout_ms);
5574 	else
5575 		timeout = SCX_WATCHDOG_MAX_TIMEOUT;
5576 
5577 	WRITE_ONCE(scx_watchdog_timeout, timeout);
5578 	WRITE_ONCE(scx_watchdog_timestamp, jiffies);
5579 	queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
5580 			   scx_watchdog_timeout / 2);
5581 
5582 	/*
5583 	 * Once __scx_ops_enabled is set, %current can be switched to SCX
5584 	 * anytime. This can lead to stalls as some BPF schedulers (e.g.
5585 	 * userspace scheduling) may not function correctly before all tasks are
5586 	 * switched. Init in bypass mode to guarantee forward progress.
5587 	 */
5588 	scx_ops_bypass(true);
5589 
5590 	for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
5591 		if (((void (**)(void))ops)[i])
5592 			static_branch_enable(&scx_has_op[i]);
5593 
5594 	if (ops->flags & SCX_OPS_ENQ_LAST)
5595 		static_branch_enable(&scx_ops_enq_last);
5596 
5597 	if (ops->flags & SCX_OPS_ENQ_EXITING)
5598 		static_branch_enable(&scx_ops_enq_exiting);
5599 	if (scx_ops.cpu_acquire || scx_ops.cpu_release)
5600 		static_branch_enable(&scx_ops_cpu_preempt);
5601 
5602 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
5603 		reset_idle_masks();
5604 		static_branch_enable(&scx_builtin_idle_enabled);
5605 	} else {
5606 		static_branch_disable(&scx_builtin_idle_enabled);
5607 	}
5608 
5609 	/*
5610 	 * Lock out forks, cgroup on/offlining and moves before opening the
5611 	 * floodgate so that they don't wander into the operations prematurely.
5612 	 */
5613 	percpu_down_write(&scx_fork_rwsem);
5614 
5615 	WARN_ON_ONCE(scx_ops_init_task_enabled);
5616 	scx_ops_init_task_enabled = true;
5617 
5618 	/*
5619 	 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5620 	 * preventing new tasks from being added. No need to exclude tasks
5621 	 * leaving as sched_ext_free() can handle both prepped and enabled
5622 	 * tasks. Prep all tasks first and then enable them with preemption
5623 	 * disabled.
5624 	 *
5625 	 * All cgroups should be initialized before scx_ops_init_task() so that
5626 	 * the BPF scheduler can reliably track each task's cgroup membership
5627 	 * from scx_ops_init_task(). Lock out cgroup on/offlining and task
5628 	 * migrations while tasks are being initialized so that
5629 	 * scx_cgroup_can_attach() never sees uninitialized tasks.
5630 	 */
5631 	scx_cgroup_lock();
5632 	ret = scx_cgroup_init();
5633 	if (ret)
5634 		goto err_disable_unlock_all;
5635 
5636 	scx_task_iter_start(&sti);
5637 	while ((p = scx_task_iter_next_locked(&sti))) {
5638 		/*
5639 		 * @p may already be dead, have lost all its usages counts and
5640 		 * be waiting for RCU grace period before being freed. @p can't
5641 		 * be initialized for SCX in such cases and should be ignored.
5642 		 */
5643 		if (!tryget_task_struct(p))
5644 			continue;
5645 
5646 		scx_task_iter_unlock(&sti);
5647 
5648 		ret = scx_ops_init_task(p, task_group(p), false);
5649 		if (ret) {
5650 			put_task_struct(p);
5651 			scx_task_iter_relock(&sti);
5652 			scx_task_iter_stop(&sti);
5653 			scx_ops_error("ops.init_task() failed (%d) for %s[%d]",
5654 				      ret, p->comm, p->pid);
5655 			goto err_disable_unlock_all;
5656 		}
5657 
5658 		scx_set_task_state(p, SCX_TASK_READY);
5659 
5660 		put_task_struct(p);
5661 		scx_task_iter_relock(&sti);
5662 	}
5663 	scx_task_iter_stop(&sti);
5664 	scx_cgroup_unlock();
5665 	percpu_up_write(&scx_fork_rwsem);
5666 
5667 	/*
5668 	 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5669 	 * all eligible tasks.
5670 	 */
5671 	WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5672 	static_branch_enable(&__scx_ops_enabled);
5673 
5674 	/*
5675 	 * We're fully committed and can't fail. The task READY -> ENABLED
5676 	 * transitions here are synchronized against sched_ext_free() through
5677 	 * scx_tasks_lock.
5678 	 */
5679 	percpu_down_write(&scx_fork_rwsem);
5680 	scx_task_iter_start(&sti);
5681 	while ((p = scx_task_iter_next_locked(&sti))) {
5682 		const struct sched_class *old_class = p->sched_class;
5683 		const struct sched_class *new_class =
5684 			__setscheduler_class(p->policy, p->prio);
5685 		struct sched_enq_and_set_ctx ctx;
5686 
5687 		if (old_class != new_class && p->se.sched_delayed)
5688 			dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5689 
5690 		sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
5691 
5692 		p->scx.slice = SCX_SLICE_DFL;
5693 		p->sched_class = new_class;
5694 		check_class_changing(task_rq(p), p, old_class);
5695 
5696 		sched_enq_and_set_task(&ctx);
5697 
5698 		check_class_changed(task_rq(p), p, old_class, p->prio);
5699 	}
5700 	scx_task_iter_stop(&sti);
5701 	percpu_up_write(&scx_fork_rwsem);
5702 
5703 	scx_ops_bypass(false);
5704 
5705 	if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
5706 		WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
5707 		goto err_disable;
5708 	}
5709 
5710 	if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5711 		static_branch_enable(&__scx_switched_all);
5712 
5713 	pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5714 		scx_ops.name, scx_switched_all() ? "" : " (partial)");
5715 	kobject_uevent(scx_root_kobj, KOBJ_ADD);
5716 	mutex_unlock(&scx_ops_enable_mutex);
5717 
5718 	atomic_long_inc(&scx_enable_seq);
5719 
5720 	return 0;
5721 
5722 err_del:
5723 	kobject_del(scx_root_kobj);
5724 err:
5725 	kobject_put(scx_root_kobj);
5726 	scx_root_kobj = NULL;
5727 	if (scx_exit_info) {
5728 		free_exit_info(scx_exit_info);
5729 		scx_exit_info = NULL;
5730 	}
5731 err_unlock:
5732 	mutex_unlock(&scx_ops_enable_mutex);
5733 	return ret;
5734 
5735 err_disable_unlock_all:
5736 	scx_cgroup_unlock();
5737 	percpu_up_write(&scx_fork_rwsem);
5738 	scx_ops_bypass(false);
5739 err_disable:
5740 	mutex_unlock(&scx_ops_enable_mutex);
5741 	/*
5742 	 * Returning an error code here would not pass all the error information
5743 	 * to userspace. Record errno using scx_ops_error() for cases
5744 	 * scx_ops_error() wasn't already invoked and exit indicating success so
5745 	 * that the error is notified through ops.exit() with all the details.
5746 	 *
5747 	 * Flush scx_ops_disable_work to ensure that error is reported before
5748 	 * init completion.
5749 	 */
5750 	scx_ops_error("scx_ops_enable() failed (%d)", ret);
5751 	kthread_flush_work(&scx_ops_disable_work);
5752 	return 0;
5753 }
5754 
5755 
5756 /********************************************************************************
5757  * bpf_struct_ops plumbing.
5758  */
5759 #include <linux/bpf_verifier.h>
5760 #include <linux/bpf.h>
5761 #include <linux/btf.h>
5762 
5763 static const struct btf_type *task_struct_type;
5764 
5765 static bool bpf_scx_is_valid_access(int off, int size,
5766 				    enum bpf_access_type type,
5767 				    const struct bpf_prog *prog,
5768 				    struct bpf_insn_access_aux *info)
5769 {
5770 	if (type != BPF_READ)
5771 		return false;
5772 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5773 		return false;
5774 	if (off % size != 0)
5775 		return false;
5776 
5777 	return btf_ctx_access(off, size, type, prog, info);
5778 }
5779 
5780 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5781 				     const struct bpf_reg_state *reg, int off,
5782 				     int size)
5783 {
5784 	const struct btf_type *t;
5785 
5786 	t = btf_type_by_id(reg->btf, reg->btf_id);
5787 	if (t == task_struct_type) {
5788 		if (off >= offsetof(struct task_struct, scx.slice) &&
5789 		    off + size <= offsetofend(struct task_struct, scx.slice))
5790 			return SCALAR_VALUE;
5791 		if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5792 		    off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5793 			return SCALAR_VALUE;
5794 		if (off >= offsetof(struct task_struct, scx.disallow) &&
5795 		    off + size <= offsetofend(struct task_struct, scx.disallow))
5796 			return SCALAR_VALUE;
5797 	}
5798 
5799 	return -EACCES;
5800 }
5801 
5802 static const struct bpf_func_proto *
5803 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5804 {
5805 	switch (func_id) {
5806 	case BPF_FUNC_task_storage_get:
5807 		return &bpf_task_storage_get_proto;
5808 	case BPF_FUNC_task_storage_delete:
5809 		return &bpf_task_storage_delete_proto;
5810 	default:
5811 		return bpf_base_func_proto(func_id, prog);
5812 	}
5813 }
5814 
5815 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5816 	.get_func_proto = bpf_scx_get_func_proto,
5817 	.is_valid_access = bpf_scx_is_valid_access,
5818 	.btf_struct_access = bpf_scx_btf_struct_access,
5819 };
5820 
5821 static int bpf_scx_init_member(const struct btf_type *t,
5822 			       const struct btf_member *member,
5823 			       void *kdata, const void *udata)
5824 {
5825 	const struct sched_ext_ops *uops = udata;
5826 	struct sched_ext_ops *ops = kdata;
5827 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5828 	int ret;
5829 
5830 	switch (moff) {
5831 	case offsetof(struct sched_ext_ops, dispatch_max_batch):
5832 		if (*(u32 *)(udata + moff) > INT_MAX)
5833 			return -E2BIG;
5834 		ops->dispatch_max_batch = *(u32 *)(udata + moff);
5835 		return 1;
5836 	case offsetof(struct sched_ext_ops, flags):
5837 		if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5838 			return -EINVAL;
5839 		ops->flags = *(u64 *)(udata + moff);
5840 		return 1;
5841 	case offsetof(struct sched_ext_ops, name):
5842 		ret = bpf_obj_name_cpy(ops->name, uops->name,
5843 				       sizeof(ops->name));
5844 		if (ret < 0)
5845 			return ret;
5846 		if (ret == 0)
5847 			return -EINVAL;
5848 		return 1;
5849 	case offsetof(struct sched_ext_ops, timeout_ms):
5850 		if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5851 		    SCX_WATCHDOG_MAX_TIMEOUT)
5852 			return -E2BIG;
5853 		ops->timeout_ms = *(u32 *)(udata + moff);
5854 		return 1;
5855 	case offsetof(struct sched_ext_ops, exit_dump_len):
5856 		ops->exit_dump_len =
5857 			*(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5858 		return 1;
5859 	case offsetof(struct sched_ext_ops, hotplug_seq):
5860 		ops->hotplug_seq = *(u64 *)(udata + moff);
5861 		return 1;
5862 	}
5863 
5864 	return 0;
5865 }
5866 
5867 static int bpf_scx_check_member(const struct btf_type *t,
5868 				const struct btf_member *member,
5869 				const struct bpf_prog *prog)
5870 {
5871 	u32 moff = __btf_member_bit_offset(t, member) / 8;
5872 
5873 	switch (moff) {
5874 	case offsetof(struct sched_ext_ops, init_task):
5875 #ifdef CONFIG_EXT_GROUP_SCHED
5876 	case offsetof(struct sched_ext_ops, cgroup_init):
5877 	case offsetof(struct sched_ext_ops, cgroup_exit):
5878 	case offsetof(struct sched_ext_ops, cgroup_prep_move):
5879 #endif
5880 	case offsetof(struct sched_ext_ops, cpu_online):
5881 	case offsetof(struct sched_ext_ops, cpu_offline):
5882 	case offsetof(struct sched_ext_ops, init):
5883 	case offsetof(struct sched_ext_ops, exit):
5884 		break;
5885 	default:
5886 		if (prog->sleepable)
5887 			return -EINVAL;
5888 	}
5889 
5890 	return 0;
5891 }
5892 
5893 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5894 {
5895 	return scx_ops_enable(kdata, link);
5896 }
5897 
5898 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5899 {
5900 	scx_ops_disable(SCX_EXIT_UNREG);
5901 	kthread_flush_work(&scx_ops_disable_work);
5902 }
5903 
5904 static int bpf_scx_init(struct btf *btf)
5905 {
5906 	task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5907 
5908 	return 0;
5909 }
5910 
5911 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5912 {
5913 	/*
5914 	 * sched_ext does not support updating the actively-loaded BPF
5915 	 * scheduler, as registering a BPF scheduler can always fail if the
5916 	 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5917 	 * etc. Similarly, we can always race with unregistration happening
5918 	 * elsewhere, such as with sysrq.
5919 	 */
5920 	return -EOPNOTSUPP;
5921 }
5922 
5923 static int bpf_scx_validate(void *kdata)
5924 {
5925 	return 0;
5926 }
5927 
5928 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
5929 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
5930 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
5931 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
5932 static void sched_ext_ops__tick(struct task_struct *p) {}
5933 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
5934 static void sched_ext_ops__running(struct task_struct *p) {}
5935 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
5936 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
5937 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
5938 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
5939 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
5940 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
5941 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
5942 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
5943 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
5944 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
5945 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
5946 static void sched_ext_ops__enable(struct task_struct *p) {}
5947 static void sched_ext_ops__disable(struct task_struct *p) {}
5948 #ifdef CONFIG_EXT_GROUP_SCHED
5949 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
5950 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
5951 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
5952 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5953 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
5954 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
5955 #endif
5956 static void sched_ext_ops__cpu_online(s32 cpu) {}
5957 static void sched_ext_ops__cpu_offline(s32 cpu) {}
5958 static s32 sched_ext_ops__init(void) { return -EINVAL; }
5959 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
5960 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
5961 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
5962 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5963 
5964 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5965 	.select_cpu		= sched_ext_ops__select_cpu,
5966 	.enqueue		= sched_ext_ops__enqueue,
5967 	.dequeue		= sched_ext_ops__dequeue,
5968 	.dispatch		= sched_ext_ops__dispatch,
5969 	.tick			= sched_ext_ops__tick,
5970 	.runnable		= sched_ext_ops__runnable,
5971 	.running		= sched_ext_ops__running,
5972 	.stopping		= sched_ext_ops__stopping,
5973 	.quiescent		= sched_ext_ops__quiescent,
5974 	.yield			= sched_ext_ops__yield,
5975 	.core_sched_before	= sched_ext_ops__core_sched_before,
5976 	.set_weight		= sched_ext_ops__set_weight,
5977 	.set_cpumask		= sched_ext_ops__set_cpumask,
5978 	.update_idle		= sched_ext_ops__update_idle,
5979 	.cpu_acquire		= sched_ext_ops__cpu_acquire,
5980 	.cpu_release		= sched_ext_ops__cpu_release,
5981 	.init_task		= sched_ext_ops__init_task,
5982 	.exit_task		= sched_ext_ops__exit_task,
5983 	.enable			= sched_ext_ops__enable,
5984 	.disable		= sched_ext_ops__disable,
5985 #ifdef CONFIG_EXT_GROUP_SCHED
5986 	.cgroup_init		= sched_ext_ops__cgroup_init,
5987 	.cgroup_exit		= sched_ext_ops__cgroup_exit,
5988 	.cgroup_prep_move	= sched_ext_ops__cgroup_prep_move,
5989 	.cgroup_move		= sched_ext_ops__cgroup_move,
5990 	.cgroup_cancel_move	= sched_ext_ops__cgroup_cancel_move,
5991 	.cgroup_set_weight	= sched_ext_ops__cgroup_set_weight,
5992 #endif
5993 	.cpu_online		= sched_ext_ops__cpu_online,
5994 	.cpu_offline		= sched_ext_ops__cpu_offline,
5995 	.init			= sched_ext_ops__init,
5996 	.exit			= sched_ext_ops__exit,
5997 	.dump			= sched_ext_ops__dump,
5998 	.dump_cpu		= sched_ext_ops__dump_cpu,
5999 	.dump_task		= sched_ext_ops__dump_task,
6000 };
6001 
6002 static struct bpf_struct_ops bpf_sched_ext_ops = {
6003 	.verifier_ops = &bpf_scx_verifier_ops,
6004 	.reg = bpf_scx_reg,
6005 	.unreg = bpf_scx_unreg,
6006 	.check_member = bpf_scx_check_member,
6007 	.init_member = bpf_scx_init_member,
6008 	.init = bpf_scx_init,
6009 	.update = bpf_scx_update,
6010 	.validate = bpf_scx_validate,
6011 	.name = "sched_ext_ops",
6012 	.owner = THIS_MODULE,
6013 	.cfi_stubs = &__bpf_ops_sched_ext_ops
6014 };
6015 
6016 
6017 /********************************************************************************
6018  * System integration and init.
6019  */
6020 
6021 static void sysrq_handle_sched_ext_reset(u8 key)
6022 {
6023 	if (scx_ops_helper)
6024 		scx_ops_disable(SCX_EXIT_SYSRQ);
6025 	else
6026 		pr_info("sched_ext: BPF scheduler not yet used\n");
6027 }
6028 
6029 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
6030 	.handler	= sysrq_handle_sched_ext_reset,
6031 	.help_msg	= "reset-sched-ext(S)",
6032 	.action_msg	= "Disable sched_ext and revert all tasks to CFS",
6033 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
6034 };
6035 
6036 static void sysrq_handle_sched_ext_dump(u8 key)
6037 {
6038 	struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
6039 
6040 	if (scx_enabled())
6041 		scx_dump_state(&ei, 0);
6042 }
6043 
6044 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
6045 	.handler	= sysrq_handle_sched_ext_dump,
6046 	.help_msg	= "dump-sched-ext(D)",
6047 	.action_msg	= "Trigger sched_ext debug dump",
6048 	.enable_mask	= SYSRQ_ENABLE_RTNICE,
6049 };
6050 
6051 static bool can_skip_idle_kick(struct rq *rq)
6052 {
6053 	lockdep_assert_rq_held(rq);
6054 
6055 	/*
6056 	 * We can skip idle kicking if @rq is going to go through at least one
6057 	 * full SCX scheduling cycle before going idle. Just checking whether
6058 	 * curr is not idle is insufficient because we could be racing
6059 	 * balance_one() trying to pull the next task from a remote rq, which
6060 	 * may fail, and @rq may become idle afterwards.
6061 	 *
6062 	 * The race window is small and we don't and can't guarantee that @rq is
6063 	 * only kicked while idle anyway. Skip only when sure.
6064 	 */
6065 	return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
6066 }
6067 
6068 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
6069 {
6070 	struct rq *rq = cpu_rq(cpu);
6071 	struct scx_rq *this_scx = &this_rq->scx;
6072 	bool should_wait = false;
6073 	unsigned long flags;
6074 
6075 	raw_spin_rq_lock_irqsave(rq, flags);
6076 
6077 	/*
6078 	 * During CPU hotplug, a CPU may depend on kicking itself to make
6079 	 * forward progress. Allow kicking self regardless of online state.
6080 	 */
6081 	if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
6082 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
6083 			if (rq->curr->sched_class == &ext_sched_class)
6084 				rq->curr->scx.slice = 0;
6085 			cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6086 		}
6087 
6088 		if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
6089 			pseqs[cpu] = rq->scx.pnt_seq;
6090 			should_wait = true;
6091 		}
6092 
6093 		resched_curr(rq);
6094 	} else {
6095 		cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
6096 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6097 	}
6098 
6099 	raw_spin_rq_unlock_irqrestore(rq, flags);
6100 
6101 	return should_wait;
6102 }
6103 
6104 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
6105 {
6106 	struct rq *rq = cpu_rq(cpu);
6107 	unsigned long flags;
6108 
6109 	raw_spin_rq_lock_irqsave(rq, flags);
6110 
6111 	if (!can_skip_idle_kick(rq) &&
6112 	    (cpu_online(cpu) || cpu == cpu_of(this_rq)))
6113 		resched_curr(rq);
6114 
6115 	raw_spin_rq_unlock_irqrestore(rq, flags);
6116 }
6117 
6118 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
6119 {
6120 	struct rq *this_rq = this_rq();
6121 	struct scx_rq *this_scx = &this_rq->scx;
6122 	unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs);
6123 	bool should_wait = false;
6124 	s32 cpu;
6125 
6126 	for_each_cpu(cpu, this_scx->cpus_to_kick) {
6127 		should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
6128 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
6129 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6130 	}
6131 
6132 	for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
6133 		kick_one_cpu_if_idle(cpu, this_rq);
6134 		cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
6135 	}
6136 
6137 	if (!should_wait)
6138 		return;
6139 
6140 	for_each_cpu(cpu, this_scx->cpus_to_wait) {
6141 		unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
6142 
6143 		if (cpu != cpu_of(this_rq)) {
6144 			/*
6145 			 * Pairs with smp_store_release() issued by this CPU in
6146 			 * switch_class() on the resched path.
6147 			 *
6148 			 * We busy-wait here to guarantee that no other task can
6149 			 * be scheduled on our core before the target CPU has
6150 			 * entered the resched path.
6151 			 */
6152 			while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
6153 				cpu_relax();
6154 		}
6155 
6156 		cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
6157 	}
6158 }
6159 
6160 /**
6161  * print_scx_info - print out sched_ext scheduler state
6162  * @log_lvl: the log level to use when printing
6163  * @p: target task
6164  *
6165  * If a sched_ext scheduler is enabled, print the name and state of the
6166  * scheduler. If @p is on sched_ext, print further information about the task.
6167  *
6168  * This function can be safely called on any task as long as the task_struct
6169  * itself is accessible. While safe, this function isn't synchronized and may
6170  * print out mixups or garbages of limited length.
6171  */
6172 void print_scx_info(const char *log_lvl, struct task_struct *p)
6173 {
6174 	enum scx_ops_enable_state state = scx_ops_enable_state();
6175 	const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
6176 	char runnable_at_buf[22] = "?";
6177 	struct sched_class *class;
6178 	unsigned long runnable_at;
6179 
6180 	if (state == SCX_OPS_DISABLED)
6181 		return;
6182 
6183 	/*
6184 	 * Carefully check if the task was running on sched_ext, and then
6185 	 * carefully copy the time it's been runnable, and its state.
6186 	 */
6187 	if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
6188 	    class != &ext_sched_class) {
6189 		printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name,
6190 		       scx_ops_enable_state_str[state], all);
6191 		return;
6192 	}
6193 
6194 	if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
6195 				      sizeof(runnable_at)))
6196 		scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
6197 			  jiffies_delta_msecs(runnable_at, jiffies));
6198 
6199 	/* print everything onto one line to conserve console space */
6200 	printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
6201 	       log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all,
6202 	       runnable_at_buf);
6203 }
6204 
6205 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
6206 {
6207 	/*
6208 	 * SCX schedulers often have userspace components which are sometimes
6209 	 * involved in critial scheduling paths. PM operations involve freezing
6210 	 * userspace which can lead to scheduling misbehaviors including stalls.
6211 	 * Let's bypass while PM operations are in progress.
6212 	 */
6213 	switch (event) {
6214 	case PM_HIBERNATION_PREPARE:
6215 	case PM_SUSPEND_PREPARE:
6216 	case PM_RESTORE_PREPARE:
6217 		scx_ops_bypass(true);
6218 		break;
6219 	case PM_POST_HIBERNATION:
6220 	case PM_POST_SUSPEND:
6221 	case PM_POST_RESTORE:
6222 		scx_ops_bypass(false);
6223 		break;
6224 	}
6225 
6226 	return NOTIFY_OK;
6227 }
6228 
6229 static struct notifier_block scx_pm_notifier = {
6230 	.notifier_call = scx_pm_handler,
6231 };
6232 
6233 void __init init_sched_ext_class(void)
6234 {
6235 	s32 cpu, v;
6236 
6237 	/*
6238 	 * The following is to prevent the compiler from optimizing out the enum
6239 	 * definitions so that BPF scheduler implementations can use them
6240 	 * through the generated vmlinux.h.
6241 	 */
6242 	WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
6243 		   SCX_TG_ONLINE);
6244 
6245 	BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
6246 #ifdef CONFIG_SMP
6247 	BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
6248 	BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
6249 #endif
6250 	scx_kick_cpus_pnt_seqs =
6251 		__alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids,
6252 			       __alignof__(scx_kick_cpus_pnt_seqs[0]));
6253 	BUG_ON(!scx_kick_cpus_pnt_seqs);
6254 
6255 	for_each_possible_cpu(cpu) {
6256 		struct rq *rq = cpu_rq(cpu);
6257 
6258 		init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
6259 		INIT_LIST_HEAD(&rq->scx.runnable_list);
6260 		INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
6261 
6262 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL));
6263 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL));
6264 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL));
6265 		BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL));
6266 		init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
6267 		init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
6268 
6269 		if (cpu_online(cpu))
6270 			cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
6271 	}
6272 
6273 	register_sysrq_key('S', &sysrq_sched_ext_reset_op);
6274 	register_sysrq_key('D', &sysrq_sched_ext_dump_op);
6275 	INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
6276 }
6277 
6278 
6279 /********************************************************************************
6280  * Helpers that can be called from the BPF scheduler.
6281  */
6282 #include <linux/btf_ids.h>
6283 
6284 __bpf_kfunc_start_defs();
6285 
6286 /**
6287  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
6288  * @p: task_struct to select a CPU for
6289  * @prev_cpu: CPU @p was on previously
6290  * @wake_flags: %SCX_WAKE_* flags
6291  * @is_idle: out parameter indicating whether the returned CPU is idle
6292  *
6293  * Can only be called from ops.select_cpu() if the built-in CPU selection is
6294  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
6295  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
6296  *
6297  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
6298  * currently idle and thus a good candidate for direct dispatching.
6299  */
6300 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
6301 				       u64 wake_flags, bool *is_idle)
6302 {
6303 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
6304 		scx_ops_error("built-in idle tracking is disabled");
6305 		goto prev_cpu;
6306 	}
6307 
6308 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
6309 		goto prev_cpu;
6310 
6311 #ifdef CONFIG_SMP
6312 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
6313 #endif
6314 
6315 prev_cpu:
6316 	*is_idle = false;
6317 	return prev_cpu;
6318 }
6319 
6320 __bpf_kfunc_end_defs();
6321 
6322 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
6323 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
6324 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
6325 
6326 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
6327 	.owner			= THIS_MODULE,
6328 	.set			= &scx_kfunc_ids_select_cpu,
6329 };
6330 
6331 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags)
6332 {
6333 	if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
6334 		return false;
6335 
6336 	lockdep_assert_irqs_disabled();
6337 
6338 	if (unlikely(!p)) {
6339 		scx_ops_error("called with NULL task");
6340 		return false;
6341 	}
6342 
6343 	if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
6344 		scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
6345 		return false;
6346 	}
6347 
6348 	return true;
6349 }
6350 
6351 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id,
6352 				  u64 enq_flags)
6353 {
6354 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6355 	struct task_struct *ddsp_task;
6356 
6357 	ddsp_task = __this_cpu_read(direct_dispatch_task);
6358 	if (ddsp_task) {
6359 		mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
6360 		return;
6361 	}
6362 
6363 	if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
6364 		scx_ops_error("dispatch buffer overflow");
6365 		return;
6366 	}
6367 
6368 	dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
6369 		.task = p,
6370 		.qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
6371 		.dsq_id = dsq_id,
6372 		.enq_flags = enq_flags,
6373 	};
6374 }
6375 
6376 __bpf_kfunc_start_defs();
6377 
6378 /**
6379  * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
6380  * @p: task_struct to insert
6381  * @dsq_id: DSQ to insert into
6382  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6383  * @enq_flags: SCX_ENQ_*
6384  *
6385  * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
6386  * call this function spuriously. Can be called from ops.enqueue(),
6387  * ops.select_cpu(), and ops.dispatch().
6388  *
6389  * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
6390  * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
6391  * used to target the local DSQ of a CPU other than the enqueueing one. Use
6392  * ops.select_cpu() to be on the target CPU in the first place.
6393  *
6394  * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
6395  * will be directly inserted into the corresponding dispatch queue after
6396  * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
6397  * inserted into the local DSQ of the CPU returned by ops.select_cpu().
6398  * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
6399  * task is inserted.
6400  *
6401  * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
6402  * and this function can be called upto ops.dispatch_max_batch times to insert
6403  * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
6404  * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
6405  *
6406  * This function doesn't have any locking restrictions and may be called under
6407  * BPF locks (in the future when BPF introduces more flexible locking).
6408  *
6409  * @p is allowed to run for @slice. The scheduling path is triggered on slice
6410  * exhaustion. If zero, the current residual slice is maintained. If
6411  * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
6412  * scx_bpf_kick_cpu() to trigger scheduling.
6413  */
6414 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
6415 				    u64 enq_flags)
6416 {
6417 	if (!scx_dsq_insert_preamble(p, enq_flags))
6418 		return;
6419 
6420 	if (slice)
6421 		p->scx.slice = slice;
6422 	else
6423 		p->scx.slice = p->scx.slice ?: 1;
6424 
6425 	scx_dsq_insert_commit(p, dsq_id, enq_flags);
6426 }
6427 
6428 /* for backward compatibility, will be removed in v6.15 */
6429 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
6430 				  u64 enq_flags)
6431 {
6432 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()");
6433 	scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags);
6434 }
6435 
6436 /**
6437  * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
6438  * @p: task_struct to insert
6439  * @dsq_id: DSQ to insert into
6440  * @slice: duration @p can run for in nsecs, 0 to keep the current value
6441  * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
6442  * @enq_flags: SCX_ENQ_*
6443  *
6444  * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
6445  * Tasks queued into the priority queue are ordered by @vtime. All other aspects
6446  * are identical to scx_bpf_dsq_insert().
6447  *
6448  * @vtime ordering is according to time_before64() which considers wrapping. A
6449  * numerically larger vtime may indicate an earlier position in the ordering and
6450  * vice-versa.
6451  *
6452  * A DSQ can only be used as a FIFO or priority queue at any given time and this
6453  * function must not be called on a DSQ which already has one or more FIFO tasks
6454  * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
6455  * SCX_DSQ_GLOBAL) cannot be used as priority queues.
6456  */
6457 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
6458 					  u64 slice, u64 vtime, u64 enq_flags)
6459 {
6460 	if (!scx_dsq_insert_preamble(p, enq_flags))
6461 		return;
6462 
6463 	if (slice)
6464 		p->scx.slice = slice;
6465 	else
6466 		p->scx.slice = p->scx.slice ?: 1;
6467 
6468 	p->scx.dsq_vtime = vtime;
6469 
6470 	scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6471 }
6472 
6473 /* for backward compatibility, will be removed in v6.15 */
6474 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id,
6475 					u64 slice, u64 vtime, u64 enq_flags)
6476 {
6477 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()");
6478 	scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags);
6479 }
6480 
6481 __bpf_kfunc_end_defs();
6482 
6483 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
6484 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
6485 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
6486 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
6487 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU)
6488 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
6489 
6490 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
6491 	.owner			= THIS_MODULE,
6492 	.set			= &scx_kfunc_ids_enqueue_dispatch,
6493 };
6494 
6495 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
6496 			 struct task_struct *p, u64 dsq_id, u64 enq_flags)
6497 {
6498 	struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
6499 	struct rq *this_rq, *src_rq, *locked_rq;
6500 	bool dispatched = false;
6501 	bool in_balance;
6502 	unsigned long flags;
6503 
6504 	if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH))
6505 		return false;
6506 
6507 	/*
6508 	 * Can be called from either ops.dispatch() locking this_rq() or any
6509 	 * context where no rq lock is held. If latter, lock @p's task_rq which
6510 	 * we'll likely need anyway.
6511 	 */
6512 	src_rq = task_rq(p);
6513 
6514 	local_irq_save(flags);
6515 	this_rq = this_rq();
6516 	in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
6517 
6518 	if (in_balance) {
6519 		if (this_rq != src_rq) {
6520 			raw_spin_rq_unlock(this_rq);
6521 			raw_spin_rq_lock(src_rq);
6522 		}
6523 	} else {
6524 		raw_spin_rq_lock(src_rq);
6525 	}
6526 
6527 	/*
6528 	 * If the BPF scheduler keeps calling this function repeatedly, it can
6529 	 * cause similar live-lock conditions as consume_dispatch_q(). Insert a
6530 	 * breather if necessary.
6531 	 */
6532 	scx_ops_breather(src_rq);
6533 
6534 	locked_rq = src_rq;
6535 	raw_spin_lock(&src_dsq->lock);
6536 
6537 	/*
6538 	 * Did someone else get to it? @p could have already left $src_dsq, got
6539 	 * re-enqueud, or be in the process of being consumed by someone else.
6540 	 */
6541 	if (unlikely(p->scx.dsq != src_dsq ||
6542 		     u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
6543 		     p->scx.holding_cpu >= 0) ||
6544 	    WARN_ON_ONCE(src_rq != task_rq(p))) {
6545 		raw_spin_unlock(&src_dsq->lock);
6546 		goto out;
6547 	}
6548 
6549 	/* @p is still on $src_dsq and stable, determine the destination */
6550 	dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p);
6551 
6552 	/*
6553 	 * Apply vtime and slice updates before moving so that the new time is
6554 	 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
6555 	 * this is safe as we're locking it.
6556 	 */
6557 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
6558 		p->scx.dsq_vtime = kit->vtime;
6559 	if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
6560 		p->scx.slice = kit->slice;
6561 
6562 	/* execute move */
6563 	locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq);
6564 	dispatched = true;
6565 out:
6566 	if (in_balance) {
6567 		if (this_rq != locked_rq) {
6568 			raw_spin_rq_unlock(locked_rq);
6569 			raw_spin_rq_lock(this_rq);
6570 		}
6571 	} else {
6572 		raw_spin_rq_unlock_irqrestore(locked_rq, flags);
6573 	}
6574 
6575 	kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
6576 			       __SCX_DSQ_ITER_HAS_VTIME);
6577 	return dispatched;
6578 }
6579 
6580 __bpf_kfunc_start_defs();
6581 
6582 /**
6583  * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
6584  *
6585  * Can only be called from ops.dispatch().
6586  */
6587 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
6588 {
6589 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6590 		return 0;
6591 
6592 	return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
6593 }
6594 
6595 /**
6596  * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6597  *
6598  * Cancel the latest dispatch. Can be called multiple times to cancel further
6599  * dispatches. Can only be called from ops.dispatch().
6600  */
6601 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6602 {
6603 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6604 
6605 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6606 		return;
6607 
6608 	if (dspc->cursor > 0)
6609 		dspc->cursor--;
6610 	else
6611 		scx_ops_error("dispatch buffer underflow");
6612 }
6613 
6614 /**
6615  * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6616  * @dsq_id: DSQ to move task from
6617  *
6618  * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6619  * local DSQ for execution. Can only be called from ops.dispatch().
6620  *
6621  * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6622  * before trying to move from the specified DSQ. It may also grab rq locks and
6623  * thus can't be called under any BPF locks.
6624  *
6625  * Returns %true if a task has been moved, %false if there isn't any task to
6626  * move.
6627  */
6628 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6629 {
6630 	struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6631 	struct scx_dispatch_q *dsq;
6632 
6633 	if (!scx_kf_allowed(SCX_KF_DISPATCH))
6634 		return false;
6635 
6636 	flush_dispatch_buf(dspc->rq);
6637 
6638 	dsq = find_user_dsq(dsq_id);
6639 	if (unlikely(!dsq)) {
6640 		scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
6641 		return false;
6642 	}
6643 
6644 	if (consume_dispatch_q(dspc->rq, dsq)) {
6645 		/*
6646 		 * A successfully consumed task can be dequeued before it starts
6647 		 * running while the CPU is trying to migrate other dispatched
6648 		 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
6649 		 * local DSQ.
6650 		 */
6651 		dspc->nr_tasks++;
6652 		return true;
6653 	} else {
6654 		return false;
6655 	}
6656 }
6657 
6658 /* for backward compatibility, will be removed in v6.15 */
6659 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
6660 {
6661 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()");
6662 	return scx_bpf_dsq_move_to_local(dsq_id);
6663 }
6664 
6665 /**
6666  * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6667  * @it__iter: DSQ iterator in progress
6668  * @slice: duration the moved task can run for in nsecs
6669  *
6670  * Override the slice of the next task that will be moved from @it__iter using
6671  * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6672  * slice duration is kept.
6673  */
6674 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
6675 					    u64 slice)
6676 {
6677 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6678 
6679 	kit->slice = slice;
6680 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6681 }
6682 
6683 /* for backward compatibility, will be removed in v6.15 */
6684 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice(
6685 			struct bpf_iter_scx_dsq *it__iter, u64 slice)
6686 {
6687 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()");
6688 	scx_bpf_dsq_move_set_slice(it__iter, slice);
6689 }
6690 
6691 /**
6692  * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6693  * @it__iter: DSQ iterator in progress
6694  * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6695  *
6696  * Override the vtime of the next task that will be moved from @it__iter using
6697  * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6698  * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6699  * override is ignored and cleared.
6700  */
6701 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
6702 					    u64 vtime)
6703 {
6704 	struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6705 
6706 	kit->vtime = vtime;
6707 	kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6708 }
6709 
6710 /* for backward compatibility, will be removed in v6.15 */
6711 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime(
6712 			struct bpf_iter_scx_dsq *it__iter, u64 vtime)
6713 {
6714 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()");
6715 	scx_bpf_dsq_move_set_vtime(it__iter, vtime);
6716 }
6717 
6718 /**
6719  * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6720  * @it__iter: DSQ iterator in progress
6721  * @p: task to transfer
6722  * @dsq_id: DSQ to move @p to
6723  * @enq_flags: SCX_ENQ_*
6724  *
6725  * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6726  * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6727  * be the destination.
6728  *
6729  * For the transfer to be successful, @p must still be on the DSQ and have been
6730  * queued before the DSQ iteration started. This function doesn't care whether
6731  * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6732  * been queued before the iteration started.
6733  *
6734  * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6735  *
6736  * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6737  * lock (e.g. BPF timers or SYSCALL programs).
6738  *
6739  * Returns %true if @p has been consumed, %false if @p had already been consumed
6740  * or dequeued.
6741  */
6742 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
6743 				  struct task_struct *p, u64 dsq_id,
6744 				  u64 enq_flags)
6745 {
6746 	return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6747 			    p, dsq_id, enq_flags);
6748 }
6749 
6750 /* for backward compatibility, will be removed in v6.15 */
6751 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6752 					   struct task_struct *p, u64 dsq_id,
6753 					   u64 enq_flags)
6754 {
6755 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()");
6756 	return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags);
6757 }
6758 
6759 /**
6760  * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6761  * @it__iter: DSQ iterator in progress
6762  * @p: task to transfer
6763  * @dsq_id: DSQ to move @p to
6764  * @enq_flags: SCX_ENQ_*
6765  *
6766  * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6767  * priority queue of the DSQ specified by @dsq_id. The destination must be a
6768  * user DSQ as only user DSQs support priority queue.
6769  *
6770  * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6771  * and scx_bpf_dsq_move_set_vtime() to update.
6772  *
6773  * All other aspects are identical to scx_bpf_dsq_move(). See
6774  * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6775  */
6776 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
6777 					struct task_struct *p, u64 dsq_id,
6778 					u64 enq_flags)
6779 {
6780 	return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6781 			    p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6782 }
6783 
6784 /* for backward compatibility, will be removed in v6.15 */
6785 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter,
6786 						 struct task_struct *p, u64 dsq_id,
6787 						 u64 enq_flags)
6788 {
6789 	printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()");
6790 	return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags);
6791 }
6792 
6793 __bpf_kfunc_end_defs();
6794 
6795 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6796 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6797 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6798 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6799 BTF_ID_FLAGS(func, scx_bpf_consume)
6800 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
6801 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
6802 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6803 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6804 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6805 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6806 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6807 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6808 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6809 
6810 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6811 	.owner			= THIS_MODULE,
6812 	.set			= &scx_kfunc_ids_dispatch,
6813 };
6814 
6815 __bpf_kfunc_start_defs();
6816 
6817 /**
6818  * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6819  *
6820  * Iterate over all of the tasks currently enqueued on the local DSQ of the
6821  * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6822  * processed tasks. Can only be called from ops.cpu_release().
6823  */
6824 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6825 {
6826 	LIST_HEAD(tasks);
6827 	u32 nr_enqueued = 0;
6828 	struct rq *rq;
6829 	struct task_struct *p, *n;
6830 
6831 	if (!scx_kf_allowed(SCX_KF_CPU_RELEASE))
6832 		return 0;
6833 
6834 	rq = cpu_rq(smp_processor_id());
6835 	lockdep_assert_rq_held(rq);
6836 
6837 	/*
6838 	 * The BPF scheduler may choose to dispatch tasks back to
6839 	 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6840 	 * first to avoid processing the same tasks repeatedly.
6841 	 */
6842 	list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6843 				 scx.dsq_list.node) {
6844 		/*
6845 		 * If @p is being migrated, @p's current CPU may not agree with
6846 		 * its allowed CPUs and the migration_cpu_stop is about to
6847 		 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6848 		 *
6849 		 * While racing sched property changes may also dequeue and
6850 		 * re-enqueue a migrating task while its current CPU and allowed
6851 		 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6852 		 * the current local DSQ for running tasks and thus are not
6853 		 * visible to the BPF scheduler.
6854 		 */
6855 		if (p->migration_pending)
6856 			continue;
6857 
6858 		dispatch_dequeue(rq, p);
6859 		list_add_tail(&p->scx.dsq_list.node, &tasks);
6860 	}
6861 
6862 	list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6863 		list_del_init(&p->scx.dsq_list.node);
6864 		do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6865 		nr_enqueued++;
6866 	}
6867 
6868 	return nr_enqueued;
6869 }
6870 
6871 __bpf_kfunc_end_defs();
6872 
6873 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6874 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6875 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6876 
6877 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6878 	.owner			= THIS_MODULE,
6879 	.set			= &scx_kfunc_ids_cpu_release,
6880 };
6881 
6882 __bpf_kfunc_start_defs();
6883 
6884 /**
6885  * scx_bpf_create_dsq - Create a custom DSQ
6886  * @dsq_id: DSQ to create
6887  * @node: NUMA node to allocate from
6888  *
6889  * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6890  * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6891  */
6892 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6893 {
6894 	if (unlikely(node >= (int)nr_node_ids ||
6895 		     (node < 0 && node != NUMA_NO_NODE)))
6896 		return -EINVAL;
6897 	return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
6898 }
6899 
6900 __bpf_kfunc_end_defs();
6901 
6902 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6903 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6904 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice)
6905 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime)
6906 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6907 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6908 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice)
6909 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime)
6910 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU)
6911 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU)
6912 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6913 
6914 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6915 	.owner			= THIS_MODULE,
6916 	.set			= &scx_kfunc_ids_unlocked,
6917 };
6918 
6919 __bpf_kfunc_start_defs();
6920 
6921 /**
6922  * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6923  * @cpu: cpu to kick
6924  * @flags: %SCX_KICK_* flags
6925  *
6926  * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6927  * trigger rescheduling on a busy CPU. This can be called from any online
6928  * scx_ops operation and the actual kicking is performed asynchronously through
6929  * an irq work.
6930  */
6931 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6932 {
6933 	struct rq *this_rq;
6934 	unsigned long irq_flags;
6935 
6936 	if (!ops_cpu_valid(cpu, NULL))
6937 		return;
6938 
6939 	local_irq_save(irq_flags);
6940 
6941 	this_rq = this_rq();
6942 
6943 	/*
6944 	 * While bypassing for PM ops, IRQ handling may not be online which can
6945 	 * lead to irq_work_queue() malfunction such as infinite busy wait for
6946 	 * IRQ status update. Suppress kicking.
6947 	 */
6948 	if (scx_rq_bypassing(this_rq))
6949 		goto out;
6950 
6951 	/*
6952 	 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6953 	 * rq locks. We can probably be smarter and avoid bouncing if called
6954 	 * from ops which don't hold a rq lock.
6955 	 */
6956 	if (flags & SCX_KICK_IDLE) {
6957 		struct rq *target_rq = cpu_rq(cpu);
6958 
6959 		if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6960 			scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6961 
6962 		if (raw_spin_rq_trylock(target_rq)) {
6963 			if (can_skip_idle_kick(target_rq)) {
6964 				raw_spin_rq_unlock(target_rq);
6965 				goto out;
6966 			}
6967 			raw_spin_rq_unlock(target_rq);
6968 		}
6969 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6970 	} else {
6971 		cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6972 
6973 		if (flags & SCX_KICK_PREEMPT)
6974 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6975 		if (flags & SCX_KICK_WAIT)
6976 			cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6977 	}
6978 
6979 	irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6980 out:
6981 	local_irq_restore(irq_flags);
6982 }
6983 
6984 /**
6985  * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6986  * @dsq_id: id of the DSQ
6987  *
6988  * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6989  * -%ENOENT is returned.
6990  */
6991 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6992 {
6993 	struct scx_dispatch_q *dsq;
6994 	s32 ret;
6995 
6996 	preempt_disable();
6997 
6998 	if (dsq_id == SCX_DSQ_LOCAL) {
6999 		ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
7000 		goto out;
7001 	} else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
7002 		s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
7003 
7004 		if (ops_cpu_valid(cpu, NULL)) {
7005 			ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
7006 			goto out;
7007 		}
7008 	} else {
7009 		dsq = find_user_dsq(dsq_id);
7010 		if (dsq) {
7011 			ret = READ_ONCE(dsq->nr);
7012 			goto out;
7013 		}
7014 	}
7015 	ret = -ENOENT;
7016 out:
7017 	preempt_enable();
7018 	return ret;
7019 }
7020 
7021 /**
7022  * scx_bpf_destroy_dsq - Destroy a custom DSQ
7023  * @dsq_id: DSQ to destroy
7024  *
7025  * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
7026  * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
7027  * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
7028  * which doesn't exist. Can be called from any online scx_ops operations.
7029  */
7030 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
7031 {
7032 	destroy_dsq(dsq_id);
7033 }
7034 
7035 /**
7036  * bpf_iter_scx_dsq_new - Create a DSQ iterator
7037  * @it: iterator to initialize
7038  * @dsq_id: DSQ to iterate
7039  * @flags: %SCX_DSQ_ITER_*
7040  *
7041  * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
7042  * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
7043  * tasks which are already queued when this function is invoked.
7044  */
7045 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
7046 				     u64 flags)
7047 {
7048 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7049 
7050 	BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
7051 		     sizeof(struct bpf_iter_scx_dsq));
7052 	BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
7053 		     __alignof__(struct bpf_iter_scx_dsq));
7054 
7055 	if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
7056 		return -EINVAL;
7057 
7058 	kit->dsq = find_user_dsq(dsq_id);
7059 	if (!kit->dsq)
7060 		return -ENOENT;
7061 
7062 	INIT_LIST_HEAD(&kit->cursor.node);
7063 	kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags;
7064 	kit->cursor.priv = READ_ONCE(kit->dsq->seq);
7065 
7066 	return 0;
7067 }
7068 
7069 /**
7070  * bpf_iter_scx_dsq_next - Progress a DSQ iterator
7071  * @it: iterator to progress
7072  *
7073  * Return the next task. See bpf_iter_scx_dsq_new().
7074  */
7075 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
7076 {
7077 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7078 	bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
7079 	struct task_struct *p;
7080 	unsigned long flags;
7081 
7082 	if (!kit->dsq)
7083 		return NULL;
7084 
7085 	raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7086 
7087 	if (list_empty(&kit->cursor.node))
7088 		p = NULL;
7089 	else
7090 		p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
7091 
7092 	/*
7093 	 * Only tasks which were queued before the iteration started are
7094 	 * visible. This bounds BPF iterations and guarantees that vtime never
7095 	 * jumps in the other direction while iterating.
7096 	 */
7097 	do {
7098 		p = nldsq_next_task(kit->dsq, p, rev);
7099 	} while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
7100 
7101 	if (p) {
7102 		if (rev)
7103 			list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
7104 		else
7105 			list_move(&kit->cursor.node, &p->scx.dsq_list.node);
7106 	} else {
7107 		list_del_init(&kit->cursor.node);
7108 	}
7109 
7110 	raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7111 
7112 	return p;
7113 }
7114 
7115 /**
7116  * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
7117  * @it: iterator to destroy
7118  *
7119  * Undo scx_iter_scx_dsq_new().
7120  */
7121 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
7122 {
7123 	struct bpf_iter_scx_dsq_kern *kit = (void *)it;
7124 
7125 	if (!kit->dsq)
7126 		return;
7127 
7128 	if (!list_empty(&kit->cursor.node)) {
7129 		unsigned long flags;
7130 
7131 		raw_spin_lock_irqsave(&kit->dsq->lock, flags);
7132 		list_del_init(&kit->cursor.node);
7133 		raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
7134 	}
7135 	kit->dsq = NULL;
7136 }
7137 
7138 __bpf_kfunc_end_defs();
7139 
7140 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size,
7141 			 char *fmt, unsigned long long *data, u32 data__sz)
7142 {
7143 	struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
7144 	s32 ret;
7145 
7146 	if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
7147 	    (data__sz && !data)) {
7148 		scx_ops_error("invalid data=%p and data__sz=%u",
7149 			      (void *)data, data__sz);
7150 		return -EINVAL;
7151 	}
7152 
7153 	ret = copy_from_kernel_nofault(data_buf, data, data__sz);
7154 	if (ret < 0) {
7155 		scx_ops_error("failed to read data fields (%d)", ret);
7156 		return ret;
7157 	}
7158 
7159 	ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
7160 				  &bprintf_data);
7161 	if (ret < 0) {
7162 		scx_ops_error("format preparation failed (%d)", ret);
7163 		return ret;
7164 	}
7165 
7166 	ret = bstr_printf(line_buf, line_size, fmt,
7167 			  bprintf_data.bin_args);
7168 	bpf_bprintf_cleanup(&bprintf_data);
7169 	if (ret < 0) {
7170 		scx_ops_error("(\"%s\", %p, %u) failed to format",
7171 			      fmt, data, data__sz);
7172 		return ret;
7173 	}
7174 
7175 	return ret;
7176 }
7177 
7178 static s32 bstr_format(struct scx_bstr_buf *buf,
7179 		       char *fmt, unsigned long long *data, u32 data__sz)
7180 {
7181 	return __bstr_format(buf->data, buf->line, sizeof(buf->line),
7182 			     fmt, data, data__sz);
7183 }
7184 
7185 __bpf_kfunc_start_defs();
7186 
7187 /**
7188  * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
7189  * @exit_code: Exit value to pass to user space via struct scx_exit_info.
7190  * @fmt: error message format string
7191  * @data: format string parameters packaged using ___bpf_fill() macro
7192  * @data__sz: @data len, must end in '__sz' for the verifier
7193  *
7194  * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
7195  * disabling.
7196  */
7197 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
7198 				   unsigned long long *data, u32 data__sz)
7199 {
7200 	unsigned long flags;
7201 
7202 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7203 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7204 		scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s",
7205 				  scx_exit_bstr_buf.line);
7206 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7207 }
7208 
7209 /**
7210  * scx_bpf_error_bstr - Indicate fatal error
7211  * @fmt: error message format string
7212  * @data: format string parameters packaged using ___bpf_fill() macro
7213  * @data__sz: @data len, must end in '__sz' for the verifier
7214  *
7215  * Indicate that the BPF scheduler encountered a fatal error and initiate ops
7216  * disabling.
7217  */
7218 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
7219 				    u32 data__sz)
7220 {
7221 	unsigned long flags;
7222 
7223 	raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
7224 	if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
7225 		scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s",
7226 				  scx_exit_bstr_buf.line);
7227 	raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
7228 }
7229 
7230 /**
7231  * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler
7232  * @fmt: format string
7233  * @data: format string parameters packaged using ___bpf_fill() macro
7234  * @data__sz: @data len, must end in '__sz' for the verifier
7235  *
7236  * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
7237  * dump_task() to generate extra debug dump specific to the BPF scheduler.
7238  *
7239  * The extra dump may be multiple lines. A single line may be split over
7240  * multiple calls. The last line is automatically terminated.
7241  */
7242 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
7243 				   u32 data__sz)
7244 {
7245 	struct scx_dump_data *dd = &scx_dump_data;
7246 	struct scx_bstr_buf *buf = &dd->buf;
7247 	s32 ret;
7248 
7249 	if (raw_smp_processor_id() != dd->cpu) {
7250 		scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends");
7251 		return;
7252 	}
7253 
7254 	/* append the formatted string to the line buf */
7255 	ret = __bstr_format(buf->data, buf->line + dd->cursor,
7256 			    sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
7257 	if (ret < 0) {
7258 		dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
7259 			  dd->prefix, fmt, data, data__sz, ret);
7260 		return;
7261 	}
7262 
7263 	dd->cursor += ret;
7264 	dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
7265 
7266 	if (!dd->cursor)
7267 		return;
7268 
7269 	/*
7270 	 * If the line buf overflowed or ends in a newline, flush it into the
7271 	 * dump. This is to allow the caller to generate a single line over
7272 	 * multiple calls. As ops_dump_flush() can also handle multiple lines in
7273 	 * the line buf, the only case which can lead to an unexpected
7274 	 * truncation is when the caller keeps generating newlines in the middle
7275 	 * instead of the end consecutively. Don't do that.
7276 	 */
7277 	if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
7278 		ops_dump_flush();
7279 }
7280 
7281 /**
7282  * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
7283  * @cpu: CPU of interest
7284  *
7285  * Return the maximum relative capacity of @cpu in relation to the most
7286  * performant CPU in the system. The return value is in the range [1,
7287  * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
7288  */
7289 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
7290 {
7291 	if (ops_cpu_valid(cpu, NULL))
7292 		return arch_scale_cpu_capacity(cpu);
7293 	else
7294 		return SCX_CPUPERF_ONE;
7295 }
7296 
7297 /**
7298  * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
7299  * @cpu: CPU of interest
7300  *
7301  * Return the current relative performance of @cpu in relation to its maximum.
7302  * The return value is in the range [1, %SCX_CPUPERF_ONE].
7303  *
7304  * The current performance level of a CPU in relation to the maximum performance
7305  * available in the system can be calculated as follows:
7306  *
7307  *   scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
7308  *
7309  * The result is in the range [1, %SCX_CPUPERF_ONE].
7310  */
7311 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
7312 {
7313 	if (ops_cpu_valid(cpu, NULL))
7314 		return arch_scale_freq_capacity(cpu);
7315 	else
7316 		return SCX_CPUPERF_ONE;
7317 }
7318 
7319 /**
7320  * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
7321  * @cpu: CPU of interest
7322  * @perf: target performance level [0, %SCX_CPUPERF_ONE]
7323  * @flags: %SCX_CPUPERF_* flags
7324  *
7325  * Set the target performance level of @cpu to @perf. @perf is in linear
7326  * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
7327  * schedutil cpufreq governor chooses the target frequency.
7328  *
7329  * The actual performance level chosen, CPU grouping, and the overhead and
7330  * latency of the operations are dependent on the hardware and cpufreq driver in
7331  * use. Consult hardware and cpufreq documentation for more information. The
7332  * current performance level can be monitored using scx_bpf_cpuperf_cur().
7333  */
7334 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
7335 {
7336 	if (unlikely(perf > SCX_CPUPERF_ONE)) {
7337 		scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu);
7338 		return;
7339 	}
7340 
7341 	if (ops_cpu_valid(cpu, NULL)) {
7342 		struct rq *rq = cpu_rq(cpu);
7343 
7344 		rq->scx.cpuperf_target = perf;
7345 
7346 		rcu_read_lock_sched_notrace();
7347 		cpufreq_update_util(cpu_rq(cpu), 0);
7348 		rcu_read_unlock_sched_notrace();
7349 	}
7350 }
7351 
7352 /**
7353  * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
7354  *
7355  * All valid CPU IDs in the system are smaller than the returned value.
7356  */
7357 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
7358 {
7359 	return nr_cpu_ids;
7360 }
7361 
7362 /**
7363  * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
7364  */
7365 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
7366 {
7367 	return cpu_possible_mask;
7368 }
7369 
7370 /**
7371  * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
7372  */
7373 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
7374 {
7375 	return cpu_online_mask;
7376 }
7377 
7378 /**
7379  * scx_bpf_put_cpumask - Release a possible/online cpumask
7380  * @cpumask: cpumask to release
7381  */
7382 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
7383 {
7384 	/*
7385 	 * Empty function body because we aren't actually acquiring or releasing
7386 	 * a reference to a global cpumask, which is read-only in the caller and
7387 	 * is never released. The acquire / release semantics here are just used
7388 	 * to make the cpumask is a trusted pointer in the caller.
7389 	 */
7390 }
7391 
7392 /**
7393  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
7394  * per-CPU cpumask.
7395  *
7396  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7397  */
7398 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
7399 {
7400 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7401 		scx_ops_error("built-in idle tracking is disabled");
7402 		return cpu_none_mask;
7403 	}
7404 
7405 #ifdef CONFIG_SMP
7406 	return idle_masks.cpu;
7407 #else
7408 	return cpu_none_mask;
7409 #endif
7410 }
7411 
7412 /**
7413  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
7414  * per-physical-core cpumask. Can be used to determine if an entire physical
7415  * core is free.
7416  *
7417  * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
7418  */
7419 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
7420 {
7421 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7422 		scx_ops_error("built-in idle tracking is disabled");
7423 		return cpu_none_mask;
7424 	}
7425 
7426 #ifdef CONFIG_SMP
7427 	if (sched_smt_active())
7428 		return idle_masks.smt;
7429 	else
7430 		return idle_masks.cpu;
7431 #else
7432 	return cpu_none_mask;
7433 #endif
7434 }
7435 
7436 /**
7437  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
7438  * either the percpu, or SMT idle-tracking cpumask.
7439  */
7440 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
7441 {
7442 	/*
7443 	 * Empty function body because we aren't actually acquiring or releasing
7444 	 * a reference to a global idle cpumask, which is read-only in the
7445 	 * caller and is never released. The acquire / release semantics here
7446 	 * are just used to make the cpumask a trusted pointer in the caller.
7447 	 */
7448 }
7449 
7450 /**
7451  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
7452  * @cpu: cpu to test and clear idle for
7453  *
7454  * Returns %true if @cpu was idle and its idle state was successfully cleared.
7455  * %false otherwise.
7456  *
7457  * Unavailable if ops.update_idle() is implemented and
7458  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7459  */
7460 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
7461 {
7462 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7463 		scx_ops_error("built-in idle tracking is disabled");
7464 		return false;
7465 	}
7466 
7467 	if (ops_cpu_valid(cpu, NULL))
7468 		return test_and_clear_cpu_idle(cpu);
7469 	else
7470 		return false;
7471 }
7472 
7473 /**
7474  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
7475  * @cpus_allowed: Allowed cpumask
7476  * @flags: %SCX_PICK_IDLE_CPU_* flags
7477  *
7478  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
7479  * number on success. -%EBUSY if no matching cpu was found.
7480  *
7481  * Idle CPU tracking may race against CPU scheduling state transitions. For
7482  * example, this function may return -%EBUSY as CPUs are transitioning into the
7483  * idle state. If the caller then assumes that there will be dispatch events on
7484  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
7485  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
7486  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
7487  * event in the near future.
7488  *
7489  * Unavailable if ops.update_idle() is implemented and
7490  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
7491  */
7492 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
7493 				      u64 flags)
7494 {
7495 	if (!static_branch_likely(&scx_builtin_idle_enabled)) {
7496 		scx_ops_error("built-in idle tracking is disabled");
7497 		return -EBUSY;
7498 	}
7499 
7500 	return scx_pick_idle_cpu(cpus_allowed, flags);
7501 }
7502 
7503 /**
7504  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
7505  * @cpus_allowed: Allowed cpumask
7506  * @flags: %SCX_PICK_IDLE_CPU_* flags
7507  *
7508  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
7509  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
7510  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
7511  * empty.
7512  *
7513  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
7514  * set, this function can't tell which CPUs are idle and will always pick any
7515  * CPU.
7516  */
7517 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
7518 				     u64 flags)
7519 {
7520 	s32 cpu;
7521 
7522 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
7523 		cpu = scx_pick_idle_cpu(cpus_allowed, flags);
7524 		if (cpu >= 0)
7525 			return cpu;
7526 	}
7527 
7528 	cpu = cpumask_any_distribute(cpus_allowed);
7529 	if (cpu < nr_cpu_ids)
7530 		return cpu;
7531 	else
7532 		return -EBUSY;
7533 }
7534 
7535 /**
7536  * scx_bpf_task_running - Is task currently running?
7537  * @p: task of interest
7538  */
7539 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
7540 {
7541 	return task_rq(p)->curr == p;
7542 }
7543 
7544 /**
7545  * scx_bpf_task_cpu - CPU a task is currently associated with
7546  * @p: task of interest
7547  */
7548 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
7549 {
7550 	return task_cpu(p);
7551 }
7552 
7553 /**
7554  * scx_bpf_cpu_rq - Fetch the rq of a CPU
7555  * @cpu: CPU of the rq
7556  */
7557 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
7558 {
7559 	if (!ops_cpu_valid(cpu, NULL))
7560 		return NULL;
7561 
7562 	return cpu_rq(cpu);
7563 }
7564 
7565 /**
7566  * scx_bpf_task_cgroup - Return the sched cgroup of a task
7567  * @p: task of interest
7568  *
7569  * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7570  * from the scheduler's POV. SCX operations should use this function to
7571  * determine @p's current cgroup as, unlike following @p->cgroups,
7572  * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7573  * rq-locked operations. Can be called on the parameter tasks of rq-locked
7574  * operations. The restriction guarantees that @p's rq is locked by the caller.
7575  */
7576 #ifdef CONFIG_CGROUP_SCHED
7577 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7578 {
7579 	struct task_group *tg = p->sched_task_group;
7580 	struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7581 
7582 	if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p))
7583 		goto out;
7584 
7585 	cgrp = tg_cgrp(tg);
7586 
7587 out:
7588 	cgroup_get(cgrp);
7589 	return cgrp;
7590 }
7591 #endif
7592 
7593 __bpf_kfunc_end_defs();
7594 
7595 BTF_KFUNCS_START(scx_kfunc_ids_any)
7596 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7597 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7598 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7599 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7600 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7601 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7602 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7603 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7604 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7605 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7606 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7607 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7608 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7609 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7610 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7611 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7612 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
7613 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
7614 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
7615 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
7616 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
7617 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
7618 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7619 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7620 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7621 #ifdef CONFIG_CGROUP_SCHED
7622 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7623 #endif
7624 BTF_KFUNCS_END(scx_kfunc_ids_any)
7625 
7626 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7627 	.owner			= THIS_MODULE,
7628 	.set			= &scx_kfunc_ids_any,
7629 };
7630 
7631 static int __init scx_init(void)
7632 {
7633 	int ret;
7634 
7635 	/*
7636 	 * kfunc registration can't be done from init_sched_ext_class() as
7637 	 * register_btf_kfunc_id_set() needs most of the system to be up.
7638 	 *
7639 	 * Some kfuncs are context-sensitive and can only be called from
7640 	 * specific SCX ops. They are grouped into BTF sets accordingly.
7641 	 * Unfortunately, BPF currently doesn't have a way of enforcing such
7642 	 * restrictions. Eventually, the verifier should be able to enforce
7643 	 * them. For now, register them the same and make each kfunc explicitly
7644 	 * check using scx_kf_allowed().
7645 	 */
7646 	if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7647 					     &scx_kfunc_set_select_cpu)) ||
7648 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7649 					     &scx_kfunc_set_enqueue_dispatch)) ||
7650 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7651 					     &scx_kfunc_set_dispatch)) ||
7652 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7653 					     &scx_kfunc_set_cpu_release)) ||
7654 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7655 					     &scx_kfunc_set_unlocked)) ||
7656 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7657 					     &scx_kfunc_set_unlocked)) ||
7658 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7659 					     &scx_kfunc_set_any)) ||
7660 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7661 					     &scx_kfunc_set_any)) ||
7662 	    (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7663 					     &scx_kfunc_set_any))) {
7664 		pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7665 		return ret;
7666 	}
7667 
7668 	ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7669 	if (ret) {
7670 		pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7671 		return ret;
7672 	}
7673 
7674 	ret = register_pm_notifier(&scx_pm_notifier);
7675 	if (ret) {
7676 		pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7677 		return ret;
7678 	}
7679 
7680 	scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7681 	if (!scx_kset) {
7682 		pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7683 		return -ENOMEM;
7684 	}
7685 
7686 	ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7687 	if (ret < 0) {
7688 		pr_err("sched_ext: Failed to add global attributes\n");
7689 		return ret;
7690 	}
7691 
7692 	return 0;
7693 }
7694 __initcall(scx_init);
7695