1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #include <linux/btf_ids.h>
10 #include "ext_idle.h"
11
12 /*
13 * NOTE: sched_ext is in the process of growing multiple scheduler support and
14 * scx_root usage is in a transitional state. Naked dereferences are safe if the
15 * caller is one of the tasks attached to SCX and explicit RCU dereference is
16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but
17 * are used as temporary markers to indicate that the dereferences need to be
18 * updated to point to the associated scheduler instances rather than scx_root.
19 */
20 static struct scx_sched __rcu *scx_root;
21
22 /*
23 * During exit, a task may schedule after losing its PIDs. When disabling the
24 * BPF scheduler, we need to be able to iterate tasks in every state to
25 * guarantee system safety. Maintain a dedicated task list which contains every
26 * task between its fork and eventual free.
27 */
28 static DEFINE_SPINLOCK(scx_tasks_lock);
29 static LIST_HEAD(scx_tasks);
30
31 /* ops enable/disable */
32 static DEFINE_MUTEX(scx_enable_mutex);
33 DEFINE_STATIC_KEY_FALSE(__scx_enabled);
34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED);
36 static unsigned long scx_in_softlockup;
37 static atomic_t scx_breather_depth = ATOMIC_INIT(0);
38 static int scx_bypass_depth;
39 static bool scx_init_task_enabled;
40 static bool scx_switching_all;
41 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
42
43 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
44 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
45
46 /*
47 * A monotically increasing sequence number that is incremented every time a
48 * scheduler is enabled. This can be used by to check if any custom sched_ext
49 * scheduler has ever been used in the system.
50 */
51 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
52
53 /*
54 * The maximum amount of time in jiffies that a task may be runnable without
55 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
56 * scx_error().
57 */
58 static unsigned long scx_watchdog_timeout;
59
60 /*
61 * The last time the delayed work was run. This delayed work relies on
62 * ksoftirqd being able to run to service timer interrupts, so it's possible
63 * that this work itself could get wedged. To account for this, we check that
64 * it's not stalled in the timer tick, and trigger an error if it is.
65 */
66 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
67
68 static struct delayed_work scx_watchdog_work;
69
70 /*
71 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of pick_task sequence
72 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu
73 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated
74 * lazily when enabling and freed when disabling to avoid waste when sched_ext
75 * isn't active.
76 */
77 struct scx_kick_pseqs {
78 struct rcu_head rcu;
79 unsigned long seqs[];
80 };
81
82 static DEFINE_PER_CPU(struct scx_kick_pseqs __rcu *, scx_kick_pseqs);
83
84 /*
85 * Direct dispatch marker.
86 *
87 * Non-NULL values are used for direct dispatch from enqueue path. A valid
88 * pointer points to the task currently being enqueued. An ERR_PTR value is used
89 * to indicate that direct dispatch has already happened.
90 */
91 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
92
93 static const struct rhashtable_params dsq_hash_params = {
94 .key_len = sizeof_field(struct scx_dispatch_q, id),
95 .key_offset = offsetof(struct scx_dispatch_q, id),
96 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
97 };
98
99 static LLIST_HEAD(dsqs_to_free);
100
101 /* dispatch buf */
102 struct scx_dsp_buf_ent {
103 struct task_struct *task;
104 unsigned long qseq;
105 u64 dsq_id;
106 u64 enq_flags;
107 };
108
109 static u32 scx_dsp_max_batch;
110
111 struct scx_dsp_ctx {
112 struct rq *rq;
113 u32 cursor;
114 u32 nr_tasks;
115 struct scx_dsp_buf_ent buf[];
116 };
117
118 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
119
120 /* string formatting from BPF */
121 struct scx_bstr_buf {
122 u64 data[MAX_BPRINTF_VARARGS];
123 char line[SCX_EXIT_MSG_LEN];
124 };
125
126 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
127 static struct scx_bstr_buf scx_exit_bstr_buf;
128
129 /* ops debug dump */
130 struct scx_dump_data {
131 s32 cpu;
132 bool first;
133 s32 cursor;
134 struct seq_buf *s;
135 const char *prefix;
136 struct scx_bstr_buf buf;
137 };
138
139 static struct scx_dump_data scx_dump_data = {
140 .cpu = -1,
141 };
142
143 /* /sys/kernel/sched_ext interface */
144 static struct kset *scx_kset;
145
146 #define CREATE_TRACE_POINTS
147 #include <trace/events/sched_ext.h>
148
149 static void process_ddsp_deferred_locals(struct rq *rq);
150 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags);
151 static void scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind,
152 s64 exit_code, const char *fmt, va_list args);
153
scx_exit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)154 static __printf(4, 5) void scx_exit(struct scx_sched *sch,
155 enum scx_exit_kind kind, s64 exit_code,
156 const char *fmt, ...)
157 {
158 va_list args;
159
160 va_start(args, fmt);
161 scx_vexit(sch, kind, exit_code, fmt, args);
162 va_end(args);
163 }
164
165 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args)
166
167 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op)
168
jiffies_delta_msecs(unsigned long at,unsigned long now)169 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
170 {
171 if (time_after(at, now))
172 return jiffies_to_msecs(at - now);
173 else
174 return -(long)jiffies_to_msecs(now - at);
175 }
176
177 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)178 static u32 higher_bits(u32 flags)
179 {
180 return ~((1 << fls(flags)) - 1);
181 }
182
183 /* return the mask with only the highest bit set */
highest_bit(u32 flags)184 static u32 highest_bit(u32 flags)
185 {
186 int bit = fls(flags);
187 return ((u64)1 << bit) >> 1;
188 }
189
u32_before(u32 a,u32 b)190 static bool u32_before(u32 a, u32 b)
191 {
192 return (s32)(a - b) < 0;
193 }
194
find_global_dsq(struct scx_sched * sch,struct task_struct * p)195 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch,
196 struct task_struct *p)
197 {
198 return sch->global_dsqs[cpu_to_node(task_cpu(p))];
199 }
200
find_user_dsq(struct scx_sched * sch,u64 dsq_id)201 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id)
202 {
203 return rhashtable_lookup_fast(&sch->dsq_hash, &dsq_id, dsq_hash_params);
204 }
205
206 /*
207 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
208 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
209 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
210 * whether it's running from an allowed context.
211 *
212 * @mask is constant, always inline to cull the mask calculations.
213 */
scx_kf_allow(u32 mask)214 static __always_inline void scx_kf_allow(u32 mask)
215 {
216 /* nesting is allowed only in increasing scx_kf_mask order */
217 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
218 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
219 current->scx.kf_mask, mask);
220 current->scx.kf_mask |= mask;
221 barrier();
222 }
223
scx_kf_disallow(u32 mask)224 static void scx_kf_disallow(u32 mask)
225 {
226 barrier();
227 current->scx.kf_mask &= ~mask;
228 }
229
230 /*
231 * Track the rq currently locked.
232 *
233 * This allows kfuncs to safely operate on rq from any scx ops callback,
234 * knowing which rq is already locked.
235 */
236 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state);
237
update_locked_rq(struct rq * rq)238 static inline void update_locked_rq(struct rq *rq)
239 {
240 /*
241 * Check whether @rq is actually locked. This can help expose bugs
242 * or incorrect assumptions about the context in which a kfunc or
243 * callback is executed.
244 */
245 if (rq)
246 lockdep_assert_rq_held(rq);
247 __this_cpu_write(scx_locked_rq_state, rq);
248 }
249
250 #define SCX_CALL_OP(sch, mask, op, rq, args...) \
251 do { \
252 if (rq) \
253 update_locked_rq(rq); \
254 if (mask) { \
255 scx_kf_allow(mask); \
256 (sch)->ops.op(args); \
257 scx_kf_disallow(mask); \
258 } else { \
259 (sch)->ops.op(args); \
260 } \
261 if (rq) \
262 update_locked_rq(NULL); \
263 } while (0)
264
265 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \
266 ({ \
267 __typeof__((sch)->ops.op(args)) __ret; \
268 \
269 if (rq) \
270 update_locked_rq(rq); \
271 if (mask) { \
272 scx_kf_allow(mask); \
273 __ret = (sch)->ops.op(args); \
274 scx_kf_disallow(mask); \
275 } else { \
276 __ret = (sch)->ops.op(args); \
277 } \
278 if (rq) \
279 update_locked_rq(NULL); \
280 __ret; \
281 })
282
283 /*
284 * Some kfuncs are allowed only on the tasks that are subjects of the
285 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
286 * restrictions, the following SCX_CALL_OP_*() variants should be used when
287 * invoking scx_ops operations that take task arguments. These can only be used
288 * for non-nesting operations due to the way the tasks are tracked.
289 *
290 * kfuncs which can only operate on such tasks can in turn use
291 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
292 * the specific task.
293 */
294 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \
295 do { \
296 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
297 current->scx.kf_tasks[0] = task; \
298 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \
299 current->scx.kf_tasks[0] = NULL; \
300 } while (0)
301
302 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \
303 ({ \
304 __typeof__((sch)->ops.op(task, ##args)) __ret; \
305 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
306 current->scx.kf_tasks[0] = task; \
307 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \
308 current->scx.kf_tasks[0] = NULL; \
309 __ret; \
310 })
311
312 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \
313 ({ \
314 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \
315 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
316 current->scx.kf_tasks[0] = task0; \
317 current->scx.kf_tasks[1] = task1; \
318 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \
319 current->scx.kf_tasks[0] = NULL; \
320 current->scx.kf_tasks[1] = NULL; \
321 __ret; \
322 })
323
324 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(struct scx_sched * sch,u32 mask)325 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask)
326 {
327 if (unlikely(!(current->scx.kf_mask & mask))) {
328 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x",
329 mask, current->scx.kf_mask);
330 return false;
331 }
332
333 /*
334 * Enforce nesting boundaries. e.g. A kfunc which can be called from
335 * DISPATCH must not be called if we're running DEQUEUE which is nested
336 * inside ops.dispatch(). We don't need to check boundaries for any
337 * blocking kfuncs as the verifier ensures they're only called from
338 * sleepable progs.
339 */
340 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
341 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
342 scx_error(sch, "cpu_release kfunc called from a nested operation");
343 return false;
344 }
345
346 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
347 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
348 scx_error(sch, "dispatch kfunc called from a nested operation");
349 return false;
350 }
351
352 return true;
353 }
354
355 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(struct scx_sched * sch,u32 mask,struct task_struct * p)356 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch,
357 u32 mask,
358 struct task_struct *p)
359 {
360 if (!scx_kf_allowed(sch, mask))
361 return false;
362
363 if (unlikely((p != current->scx.kf_tasks[0] &&
364 p != current->scx.kf_tasks[1]))) {
365 scx_error(sch, "called on a task not being operated on");
366 return false;
367 }
368
369 return true;
370 }
371
372 /**
373 * nldsq_next_task - Iterate to the next task in a non-local DSQ
374 * @dsq: user dsq being iterated
375 * @cur: current position, %NULL to start iteration
376 * @rev: walk backwards
377 *
378 * Returns %NULL when iteration is finished.
379 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)380 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
381 struct task_struct *cur, bool rev)
382 {
383 struct list_head *list_node;
384 struct scx_dsq_list_node *dsq_lnode;
385
386 lockdep_assert_held(&dsq->lock);
387
388 if (cur)
389 list_node = &cur->scx.dsq_list.node;
390 else
391 list_node = &dsq->list;
392
393 /* find the next task, need to skip BPF iteration cursors */
394 do {
395 if (rev)
396 list_node = list_node->prev;
397 else
398 list_node = list_node->next;
399
400 if (list_node == &dsq->list)
401 return NULL;
402
403 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
404 node);
405 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
406
407 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
408 }
409
410 #define nldsq_for_each_task(p, dsq) \
411 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
412 (p) = nldsq_next_task((dsq), (p), false))
413
414
415 /*
416 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
417 * dispatch order. BPF-visible iterator is opaque and larger to allow future
418 * changes without breaking backward compatibility. Can be used with
419 * bpf_for_each(). See bpf_iter_scx_dsq_*().
420 */
421 enum scx_dsq_iter_flags {
422 /* iterate in the reverse dispatch order */
423 SCX_DSQ_ITER_REV = 1U << 16,
424
425 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
426 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
427
428 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
429 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
430 __SCX_DSQ_ITER_HAS_SLICE |
431 __SCX_DSQ_ITER_HAS_VTIME,
432 };
433
434 struct bpf_iter_scx_dsq_kern {
435 struct scx_dsq_list_node cursor;
436 struct scx_dispatch_q *dsq;
437 u64 slice;
438 u64 vtime;
439 } __attribute__((aligned(8)));
440
441 struct bpf_iter_scx_dsq {
442 u64 __opaque[6];
443 } __attribute__((aligned(8)));
444
445
446 /*
447 * SCX task iterator.
448 */
449 struct scx_task_iter {
450 struct sched_ext_entity cursor;
451 struct task_struct *locked_task;
452 struct rq *rq;
453 struct rq_flags rf;
454 u32 cnt;
455 bool list_locked;
456 };
457
458 /**
459 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
460 * @iter: iterator to init
461 *
462 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
463 * must eventually be stopped with scx_task_iter_stop().
464 *
465 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
466 * between this and the first next() call or between any two next() calls. If
467 * the locks are released between two next() calls, the caller is responsible
468 * for ensuring that the task being iterated remains accessible either through
469 * RCU read lock or obtaining a reference count.
470 *
471 * All tasks which existed when the iteration started are guaranteed to be
472 * visited as long as they still exist.
473 */
scx_task_iter_start(struct scx_task_iter * iter)474 static void scx_task_iter_start(struct scx_task_iter *iter)
475 {
476 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
477 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
478
479 spin_lock_irq(&scx_tasks_lock);
480
481 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
482 list_add(&iter->cursor.tasks_node, &scx_tasks);
483 iter->locked_task = NULL;
484 iter->cnt = 0;
485 iter->list_locked = true;
486 }
487
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)488 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
489 {
490 if (iter->locked_task) {
491 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf);
492 iter->locked_task = NULL;
493 }
494 }
495
496 /**
497 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
498 * @iter: iterator to unlock
499 *
500 * If @iter is in the middle of a locked iteration, it may be locking the rq of
501 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
502 * This function can be safely called anytime during an iteration. The next
503 * iterator operation will automatically restore the necessary locking.
504 */
scx_task_iter_unlock(struct scx_task_iter * iter)505 static void scx_task_iter_unlock(struct scx_task_iter *iter)
506 {
507 __scx_task_iter_rq_unlock(iter);
508 if (iter->list_locked) {
509 iter->list_locked = false;
510 spin_unlock_irq(&scx_tasks_lock);
511 }
512 }
513
__scx_task_iter_maybe_relock(struct scx_task_iter * iter)514 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter)
515 {
516 if (!iter->list_locked) {
517 spin_lock_irq(&scx_tasks_lock);
518 iter->list_locked = true;
519 }
520 }
521
522 /**
523 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
524 * @iter: iterator to exit
525 *
526 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
527 * which is released on return. If the iterator holds a task's rq lock, that rq
528 * lock is also released. See scx_task_iter_start() for details.
529 */
scx_task_iter_stop(struct scx_task_iter * iter)530 static void scx_task_iter_stop(struct scx_task_iter *iter)
531 {
532 __scx_task_iter_maybe_relock(iter);
533 list_del_init(&iter->cursor.tasks_node);
534 scx_task_iter_unlock(iter);
535 }
536
537 /**
538 * scx_task_iter_next - Next task
539 * @iter: iterator to walk
540 *
541 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
542 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls
543 * by holding scx_tasks_lock for too long.
544 */
scx_task_iter_next(struct scx_task_iter * iter)545 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
546 {
547 struct list_head *cursor = &iter->cursor.tasks_node;
548 struct sched_ext_entity *pos;
549
550 __scx_task_iter_maybe_relock(iter);
551
552 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) {
553 scx_task_iter_unlock(iter);
554 cond_resched();
555 __scx_task_iter_maybe_relock(iter);
556 }
557
558 list_for_each_entry(pos, cursor, tasks_node) {
559 if (&pos->tasks_node == &scx_tasks)
560 return NULL;
561 if (!(pos->flags & SCX_TASK_CURSOR)) {
562 list_move(cursor, &pos->tasks_node);
563 return container_of(pos, struct task_struct, scx);
564 }
565 }
566
567 /* can't happen, should always terminate at scx_tasks above */
568 BUG();
569 }
570
571 /**
572 * scx_task_iter_next_locked - Next non-idle task with its rq locked
573 * @iter: iterator to walk
574 *
575 * Visit the non-idle task with its rq lock held. Allows callers to specify
576 * whether they would like to filter out dead tasks. See scx_task_iter_start()
577 * for details.
578 */
scx_task_iter_next_locked(struct scx_task_iter * iter)579 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
580 {
581 struct task_struct *p;
582
583 __scx_task_iter_rq_unlock(iter);
584
585 while ((p = scx_task_iter_next(iter))) {
586 /*
587 * scx_task_iter is used to prepare and move tasks into SCX
588 * while loading the BPF scheduler and vice-versa while
589 * unloading. The init_tasks ("swappers") should be excluded
590 * from the iteration because:
591 *
592 * - It's unsafe to use __setschduler_prio() on an init_task to
593 * determine the sched_class to use as it won't preserve its
594 * idle_sched_class.
595 *
596 * - ops.init/exit_task() can easily be confused if called with
597 * init_tasks as they, e.g., share PID 0.
598 *
599 * As init_tasks are never scheduled through SCX, they can be
600 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
601 * doesn't work here:
602 *
603 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
604 * yet been onlined.
605 *
606 * - %PF_IDLE can be set on tasks that are not init_tasks. See
607 * play_idle_precise() used by CONFIG_IDLE_INJECT.
608 *
609 * Test for idle_sched_class as only init_tasks are on it.
610 */
611 if (p->sched_class != &idle_sched_class)
612 break;
613 }
614 if (!p)
615 return NULL;
616
617 iter->rq = task_rq_lock(p, &iter->rf);
618 iter->locked_task = p;
619
620 return p;
621 }
622
623 /**
624 * scx_add_event - Increase an event counter for 'name' by 'cnt'
625 * @sch: scx_sched to account events for
626 * @name: an event name defined in struct scx_event_stats
627 * @cnt: the number of the event occurred
628 *
629 * This can be used when preemption is not disabled.
630 */
631 #define scx_add_event(sch, name, cnt) do { \
632 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
633 trace_sched_ext_event(#name, (cnt)); \
634 } while(0)
635
636 /**
637 * __scx_add_event - Increase an event counter for 'name' by 'cnt'
638 * @sch: scx_sched to account events for
639 * @name: an event name defined in struct scx_event_stats
640 * @cnt: the number of the event occurred
641 *
642 * This should be used only when preemption is disabled.
643 */
644 #define __scx_add_event(sch, name, cnt) do { \
645 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
646 trace_sched_ext_event(#name, cnt); \
647 } while(0)
648
649 /**
650 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e'
651 * @dst_e: destination event stats
652 * @src_e: source event stats
653 * @kind: a kind of event to be aggregated
654 */
655 #define scx_agg_event(dst_e, src_e, kind) do { \
656 (dst_e)->kind += READ_ONCE((src_e)->kind); \
657 } while(0)
658
659 /**
660 * scx_dump_event - Dump an event 'kind' in 'events' to 's'
661 * @s: output seq_buf
662 * @events: event stats
663 * @kind: a kind of event to dump
664 */
665 #define scx_dump_event(s, events, kind) do { \
666 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \
667 } while (0)
668
669
670 static void scx_read_events(struct scx_sched *sch,
671 struct scx_event_stats *events);
672
scx_enable_state(void)673 static enum scx_enable_state scx_enable_state(void)
674 {
675 return atomic_read(&scx_enable_state_var);
676 }
677
scx_set_enable_state(enum scx_enable_state to)678 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to)
679 {
680 return atomic_xchg(&scx_enable_state_var, to);
681 }
682
scx_tryset_enable_state(enum scx_enable_state to,enum scx_enable_state from)683 static bool scx_tryset_enable_state(enum scx_enable_state to,
684 enum scx_enable_state from)
685 {
686 int from_v = from;
687
688 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to);
689 }
690
691 /**
692 * wait_ops_state - Busy-wait the specified ops state to end
693 * @p: target task
694 * @opss: state to wait the end of
695 *
696 * Busy-wait for @p to transition out of @opss. This can only be used when the
697 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
698 * has load_acquire semantics to ensure that the caller can see the updates made
699 * in the enqueueing and dispatching paths.
700 */
wait_ops_state(struct task_struct * p,unsigned long opss)701 static void wait_ops_state(struct task_struct *p, unsigned long opss)
702 {
703 do {
704 cpu_relax();
705 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
706 }
707
__cpu_valid(s32 cpu)708 static inline bool __cpu_valid(s32 cpu)
709 {
710 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu));
711 }
712
713 /**
714 * ops_cpu_valid - Verify a cpu number, to be used on ops input args
715 * @sch: scx_sched to abort on error
716 * @cpu: cpu number which came from a BPF ops
717 * @where: extra information reported on error
718 *
719 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
720 * Verify that it is in range and one of the possible cpus. If invalid, trigger
721 * an ops error.
722 */
ops_cpu_valid(struct scx_sched * sch,s32 cpu,const char * where)723 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where)
724 {
725 if (__cpu_valid(cpu)) {
726 return true;
727 } else {
728 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: "");
729 return false;
730 }
731 }
732
733 /**
734 * ops_sanitize_err - Sanitize a -errno value
735 * @sch: scx_sched to error out on error
736 * @ops_name: operation to blame on failure
737 * @err: -errno value to sanitize
738 *
739 * Verify @err is a valid -errno. If not, trigger scx_error() and return
740 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
741 * cause misbehaviors. For an example, a large negative return from
742 * ops.init_task() triggers an oops when passed up the call chain because the
743 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
744 * handled as a pointer.
745 */
ops_sanitize_err(struct scx_sched * sch,const char * ops_name,s32 err)746 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err)
747 {
748 if (err < 0 && err >= -MAX_ERRNO)
749 return err;
750
751 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err);
752 return -EPROTO;
753 }
754
run_deferred(struct rq * rq)755 static void run_deferred(struct rq *rq)
756 {
757 process_ddsp_deferred_locals(rq);
758 }
759
deferred_bal_cb_workfn(struct rq * rq)760 static void deferred_bal_cb_workfn(struct rq *rq)
761 {
762 run_deferred(rq);
763 }
764
deferred_irq_workfn(struct irq_work * irq_work)765 static void deferred_irq_workfn(struct irq_work *irq_work)
766 {
767 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
768
769 raw_spin_rq_lock(rq);
770 run_deferred(rq);
771 raw_spin_rq_unlock(rq);
772 }
773
774 /**
775 * schedule_deferred - Schedule execution of deferred actions on an rq
776 * @rq: target rq
777 *
778 * Schedule execution of deferred actions on @rq. Must be called with @rq
779 * locked. Deferred actions are executed with @rq locked but unpinned, and thus
780 * can unlock @rq to e.g. migrate tasks to other rqs.
781 */
schedule_deferred(struct rq * rq)782 static void schedule_deferred(struct rq *rq)
783 {
784 lockdep_assert_rq_held(rq);
785
786 /*
787 * If in the middle of waking up a task, task_woken_scx() will be called
788 * afterwards which will then run the deferred actions, no need to
789 * schedule anything.
790 */
791 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
792 return;
793
794 /* Don't do anything if there already is a deferred operation. */
795 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING)
796 return;
797
798 /*
799 * If in balance, the balance callbacks will be called before rq lock is
800 * released. Schedule one.
801 *
802 *
803 * We can't directly insert the callback into the
804 * rq's list: The call can drop its lock and make the pending balance
805 * callback visible to unrelated code paths that call rq_pin_lock().
806 *
807 * Just let balance_one() know that it must do it itself.
808 */
809 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
810 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING;
811 return;
812 }
813
814 /*
815 * No scheduler hooks available. Queue an irq work. They are executed on
816 * IRQ re-enable which may take a bit longer than the scheduler hooks.
817 * The above WAKEUP and BALANCE paths should cover most of the cases and
818 * the time to IRQ re-enable shouldn't be long.
819 */
820 irq_work_queue(&rq->scx.deferred_irq_work);
821 }
822
823 /**
824 * touch_core_sched - Update timestamp used for core-sched task ordering
825 * @rq: rq to read clock from, must be locked
826 * @p: task to update the timestamp for
827 *
828 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
829 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
830 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
831 * exhaustion).
832 */
touch_core_sched(struct rq * rq,struct task_struct * p)833 static void touch_core_sched(struct rq *rq, struct task_struct *p)
834 {
835 lockdep_assert_rq_held(rq);
836
837 #ifdef CONFIG_SCHED_CORE
838 /*
839 * It's okay to update the timestamp spuriously. Use
840 * sched_core_disabled() which is cheaper than enabled().
841 *
842 * As this is used to determine ordering between tasks of sibling CPUs,
843 * it may be better to use per-core dispatch sequence instead.
844 */
845 if (!sched_core_disabled())
846 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
847 #endif
848 }
849
850 /**
851 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
852 * @rq: rq to read clock from, must be locked
853 * @p: task being dispatched
854 *
855 * If the BPF scheduler implements custom core-sched ordering via
856 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
857 * ordering within each local DSQ. This function is called from dispatch paths
858 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
859 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)860 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
861 {
862 lockdep_assert_rq_held(rq);
863
864 #ifdef CONFIG_SCHED_CORE
865 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before)))
866 touch_core_sched(rq, p);
867 #endif
868 }
869
update_curr_scx(struct rq * rq)870 static void update_curr_scx(struct rq *rq)
871 {
872 struct task_struct *curr = rq->curr;
873 s64 delta_exec;
874
875 delta_exec = update_curr_common(rq);
876 if (unlikely(delta_exec <= 0))
877 return;
878
879 if (curr->scx.slice != SCX_SLICE_INF) {
880 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
881 if (!curr->scx.slice)
882 touch_core_sched(rq, curr);
883 }
884 }
885
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)886 static bool scx_dsq_priq_less(struct rb_node *node_a,
887 const struct rb_node *node_b)
888 {
889 const struct task_struct *a =
890 container_of(node_a, struct task_struct, scx.dsq_priq);
891 const struct task_struct *b =
892 container_of(node_b, struct task_struct, scx.dsq_priq);
893
894 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
895 }
896
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)897 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
898 {
899 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
900 WRITE_ONCE(dsq->nr, dsq->nr + delta);
901 }
902
refill_task_slice_dfl(struct scx_sched * sch,struct task_struct * p)903 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p)
904 {
905 p->scx.slice = SCX_SLICE_DFL;
906 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1);
907 }
908
dispatch_enqueue(struct scx_sched * sch,struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)909 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq,
910 struct task_struct *p, u64 enq_flags)
911 {
912 bool is_local = dsq->id == SCX_DSQ_LOCAL;
913
914 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
915 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
916 !RB_EMPTY_NODE(&p->scx.dsq_priq));
917
918 if (!is_local) {
919 raw_spin_lock(&dsq->lock);
920 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
921 scx_error(sch, "attempting to dispatch to a destroyed dsq");
922 /* fall back to the global dsq */
923 raw_spin_unlock(&dsq->lock);
924 dsq = find_global_dsq(sch, p);
925 raw_spin_lock(&dsq->lock);
926 }
927 }
928
929 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
930 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
931 /*
932 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
933 * their FIFO queues. To avoid confusion and accidentally
934 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
935 * disallow any internal DSQ from doing vtime ordering of
936 * tasks.
937 */
938 scx_error(sch, "cannot use vtime ordering for built-in DSQs");
939 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
940 }
941
942 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
943 struct rb_node *rbp;
944
945 /*
946 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
947 * linked to both the rbtree and list on PRIQs, this can only be
948 * tested easily when adding the first task.
949 */
950 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
951 nldsq_next_task(dsq, NULL, false)))
952 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks",
953 dsq->id);
954
955 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
956 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
957
958 /*
959 * Find the previous task and insert after it on the list so
960 * that @dsq->list is vtime ordered.
961 */
962 rbp = rb_prev(&p->scx.dsq_priq);
963 if (rbp) {
964 struct task_struct *prev =
965 container_of(rbp, struct task_struct,
966 scx.dsq_priq);
967 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
968 } else {
969 list_add(&p->scx.dsq_list.node, &dsq->list);
970 }
971 } else {
972 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
973 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
974 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
975 dsq->id);
976
977 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
978 list_add(&p->scx.dsq_list.node, &dsq->list);
979 else
980 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
981 }
982
983 /* seq records the order tasks are queued, used by BPF DSQ iterator */
984 dsq->seq++;
985 p->scx.dsq_seq = dsq->seq;
986
987 dsq_mod_nr(dsq, 1);
988 p->scx.dsq = dsq;
989
990 /*
991 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
992 * direct dispatch path, but we clear them here because the direct
993 * dispatch verdict may be overridden on the enqueue path during e.g.
994 * bypass.
995 */
996 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
997 p->scx.ddsp_enq_flags = 0;
998
999 /*
1000 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1001 * match waiters' load_acquire.
1002 */
1003 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1004 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1005
1006 if (is_local) {
1007 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
1008 bool preempt = false;
1009
1010 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1011 rq->curr->sched_class == &ext_sched_class) {
1012 rq->curr->scx.slice = 0;
1013 preempt = true;
1014 }
1015
1016 if (preempt || sched_class_above(&ext_sched_class,
1017 rq->curr->sched_class))
1018 resched_curr(rq);
1019 } else {
1020 raw_spin_unlock(&dsq->lock);
1021 }
1022 }
1023
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1024 static void task_unlink_from_dsq(struct task_struct *p,
1025 struct scx_dispatch_q *dsq)
1026 {
1027 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1028
1029 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1030 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1031 RB_CLEAR_NODE(&p->scx.dsq_priq);
1032 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1033 }
1034
1035 list_del_init(&p->scx.dsq_list.node);
1036 dsq_mod_nr(dsq, -1);
1037 }
1038
dispatch_dequeue(struct rq * rq,struct task_struct * p)1039 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1040 {
1041 struct scx_dispatch_q *dsq = p->scx.dsq;
1042 bool is_local = dsq == &rq->scx.local_dsq;
1043
1044 if (!dsq) {
1045 /*
1046 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1047 * Unlinking is all that's needed to cancel.
1048 */
1049 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1050 list_del_init(&p->scx.dsq_list.node);
1051
1052 /*
1053 * When dispatching directly from the BPF scheduler to a local
1054 * DSQ, the task isn't associated with any DSQ but
1055 * @p->scx.holding_cpu may be set under the protection of
1056 * %SCX_OPSS_DISPATCHING.
1057 */
1058 if (p->scx.holding_cpu >= 0)
1059 p->scx.holding_cpu = -1;
1060
1061 return;
1062 }
1063
1064 if (!is_local)
1065 raw_spin_lock(&dsq->lock);
1066
1067 /*
1068 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1069 * change underneath us.
1070 */
1071 if (p->scx.holding_cpu < 0) {
1072 /* @p must still be on @dsq, dequeue */
1073 task_unlink_from_dsq(p, dsq);
1074 } else {
1075 /*
1076 * We're racing against dispatch_to_local_dsq() which already
1077 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1078 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1079 * the race.
1080 */
1081 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1082 p->scx.holding_cpu = -1;
1083 }
1084 p->scx.dsq = NULL;
1085
1086 if (!is_local)
1087 raw_spin_unlock(&dsq->lock);
1088 }
1089
find_dsq_for_dispatch(struct scx_sched * sch,struct rq * rq,u64 dsq_id,struct task_struct * p)1090 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch,
1091 struct rq *rq, u64 dsq_id,
1092 struct task_struct *p)
1093 {
1094 struct scx_dispatch_q *dsq;
1095
1096 if (dsq_id == SCX_DSQ_LOCAL)
1097 return &rq->scx.local_dsq;
1098
1099 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1100 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1101
1102 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1103 return find_global_dsq(sch, p);
1104
1105 return &cpu_rq(cpu)->scx.local_dsq;
1106 }
1107
1108 if (dsq_id == SCX_DSQ_GLOBAL)
1109 dsq = find_global_dsq(sch, p);
1110 else
1111 dsq = find_user_dsq(sch, dsq_id);
1112
1113 if (unlikely(!dsq)) {
1114 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]",
1115 dsq_id, p->comm, p->pid);
1116 return find_global_dsq(sch, p);
1117 }
1118
1119 return dsq;
1120 }
1121
mark_direct_dispatch(struct scx_sched * sch,struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1122 static void mark_direct_dispatch(struct scx_sched *sch,
1123 struct task_struct *ddsp_task,
1124 struct task_struct *p, u64 dsq_id,
1125 u64 enq_flags)
1126 {
1127 /*
1128 * Mark that dispatch already happened from ops.select_cpu() or
1129 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1130 * which can never match a valid task pointer.
1131 */
1132 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1133
1134 /* @p must match the task on the enqueue path */
1135 if (unlikely(p != ddsp_task)) {
1136 if (IS_ERR(ddsp_task))
1137 scx_error(sch, "%s[%d] already direct-dispatched",
1138 p->comm, p->pid);
1139 else
1140 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1141 ddsp_task->comm, ddsp_task->pid,
1142 p->comm, p->pid);
1143 return;
1144 }
1145
1146 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1147 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1148
1149 p->scx.ddsp_dsq_id = dsq_id;
1150 p->scx.ddsp_enq_flags = enq_flags;
1151 }
1152
direct_dispatch(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)1153 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p,
1154 u64 enq_flags)
1155 {
1156 struct rq *rq = task_rq(p);
1157 struct scx_dispatch_q *dsq =
1158 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
1159
1160 touch_core_sched_dispatch(rq, p);
1161
1162 p->scx.ddsp_enq_flags |= enq_flags;
1163
1164 /*
1165 * We are in the enqueue path with @rq locked and pinned, and thus can't
1166 * double lock a remote rq and enqueue to its local DSQ. For
1167 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1168 * the enqueue so that it's executed when @rq can be unlocked.
1169 */
1170 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1171 unsigned long opss;
1172
1173 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1174
1175 switch (opss & SCX_OPSS_STATE_MASK) {
1176 case SCX_OPSS_NONE:
1177 break;
1178 case SCX_OPSS_QUEUEING:
1179 /*
1180 * As @p was never passed to the BPF side, _release is
1181 * not strictly necessary. Still do it for consistency.
1182 */
1183 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1184 break;
1185 default:
1186 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1187 p->comm, p->pid, opss);
1188 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1189 break;
1190 }
1191
1192 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1193 list_add_tail(&p->scx.dsq_list.node,
1194 &rq->scx.ddsp_deferred_locals);
1195 schedule_deferred(rq);
1196 return;
1197 }
1198
1199 dispatch_enqueue(sch, dsq, p,
1200 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1201 }
1202
scx_rq_online(struct rq * rq)1203 static bool scx_rq_online(struct rq *rq)
1204 {
1205 /*
1206 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1207 * the online state as seen from the BPF scheduler. cpu_active() test
1208 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1209 * stay set until the current scheduling operation is complete even if
1210 * we aren't locking @rq.
1211 */
1212 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1213 }
1214
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1215 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1216 int sticky_cpu)
1217 {
1218 struct scx_sched *sch = scx_root;
1219 struct task_struct **ddsp_taskp;
1220 unsigned long qseq;
1221
1222 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1223
1224 /* rq migration */
1225 if (sticky_cpu == cpu_of(rq))
1226 goto local_norefill;
1227
1228 /*
1229 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1230 * is offline and are just running the hotplug path. Don't bother the
1231 * BPF scheduler.
1232 */
1233 if (!scx_rq_online(rq))
1234 goto local;
1235
1236 if (scx_rq_bypassing(rq)) {
1237 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
1238 goto global;
1239 }
1240
1241 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1242 goto direct;
1243
1244 /* see %SCX_OPS_ENQ_EXITING */
1245 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) &&
1246 unlikely(p->flags & PF_EXITING)) {
1247 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1);
1248 goto local;
1249 }
1250
1251 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */
1252 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) &&
1253 is_migration_disabled(p)) {
1254 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1);
1255 goto local;
1256 }
1257
1258 if (unlikely(!SCX_HAS_OP(sch, enqueue)))
1259 goto global;
1260
1261 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
1262 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
1263
1264 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1265 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
1266
1267 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
1268 WARN_ON_ONCE(*ddsp_taskp);
1269 *ddsp_taskp = p;
1270
1271 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags);
1272
1273 *ddsp_taskp = NULL;
1274 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1275 goto direct;
1276
1277 /*
1278 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
1279 * dequeue may be waiting. The store_release matches their load_acquire.
1280 */
1281 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
1282 return;
1283
1284 direct:
1285 direct_dispatch(sch, p, enq_flags);
1286 return;
1287
1288 local:
1289 /*
1290 * For task-ordering, slice refill must be treated as implying the end
1291 * of the current slice. Otherwise, the longer @p stays on the CPU, the
1292 * higher priority it becomes from scx_prio_less()'s POV.
1293 */
1294 touch_core_sched(rq, p);
1295 refill_task_slice_dfl(sch, p);
1296 local_norefill:
1297 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags);
1298 return;
1299
1300 global:
1301 touch_core_sched(rq, p); /* see the comment in local: */
1302 refill_task_slice_dfl(sch, p);
1303 dispatch_enqueue(sch, find_global_dsq(sch, p), p, enq_flags);
1304 }
1305
task_runnable(const struct task_struct * p)1306 static bool task_runnable(const struct task_struct *p)
1307 {
1308 return !list_empty(&p->scx.runnable_node);
1309 }
1310
set_task_runnable(struct rq * rq,struct task_struct * p)1311 static void set_task_runnable(struct rq *rq, struct task_struct *p)
1312 {
1313 lockdep_assert_rq_held(rq);
1314
1315 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
1316 p->scx.runnable_at = jiffies;
1317 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
1318 }
1319
1320 /*
1321 * list_add_tail() must be used. scx_bypass() depends on tasks being
1322 * appended to the runnable_list.
1323 */
1324 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
1325 }
1326
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)1327 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
1328 {
1329 list_del_init(&p->scx.runnable_node);
1330 if (reset_runnable_at)
1331 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
1332 }
1333
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)1334 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
1335 {
1336 struct scx_sched *sch = scx_root;
1337 int sticky_cpu = p->scx.sticky_cpu;
1338
1339 if (enq_flags & ENQUEUE_WAKEUP)
1340 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
1341
1342 enq_flags |= rq->scx.extra_enq_flags;
1343
1344 if (sticky_cpu >= 0)
1345 p->scx.sticky_cpu = -1;
1346
1347 /*
1348 * Restoring a running task will be immediately followed by
1349 * set_next_task_scx() which expects the task to not be on the BPF
1350 * scheduler as tasks can only start running through local DSQs. Force
1351 * direct-dispatch into the local DSQ by setting the sticky_cpu.
1352 */
1353 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
1354 sticky_cpu = cpu_of(rq);
1355
1356 if (p->scx.flags & SCX_TASK_QUEUED) {
1357 WARN_ON_ONCE(!task_runnable(p));
1358 goto out;
1359 }
1360
1361 set_task_runnable(rq, p);
1362 p->scx.flags |= SCX_TASK_QUEUED;
1363 rq->scx.nr_running++;
1364 add_nr_running(rq, 1);
1365
1366 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p))
1367 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags);
1368
1369 if (enq_flags & SCX_ENQ_WAKEUP)
1370 touch_core_sched(rq, p);
1371
1372 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
1373 out:
1374 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
1375
1376 if ((enq_flags & SCX_ENQ_CPU_SELECTED) &&
1377 unlikely(cpu_of(rq) != p->scx.selected_cpu))
1378 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1);
1379 }
1380
ops_dequeue(struct rq * rq,struct task_struct * p,u64 deq_flags)1381 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags)
1382 {
1383 struct scx_sched *sch = scx_root;
1384 unsigned long opss;
1385
1386 /* dequeue is always temporary, don't reset runnable_at */
1387 clr_task_runnable(p, false);
1388
1389 /* acquire ensures that we see the preceding updates on QUEUED */
1390 opss = atomic_long_read_acquire(&p->scx.ops_state);
1391
1392 switch (opss & SCX_OPSS_STATE_MASK) {
1393 case SCX_OPSS_NONE:
1394 break;
1395 case SCX_OPSS_QUEUEING:
1396 /*
1397 * QUEUEING is started and finished while holding @p's rq lock.
1398 * As we're holding the rq lock now, we shouldn't see QUEUEING.
1399 */
1400 BUG();
1401 case SCX_OPSS_QUEUED:
1402 if (SCX_HAS_OP(sch, dequeue))
1403 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq,
1404 p, deq_flags);
1405
1406 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
1407 SCX_OPSS_NONE))
1408 break;
1409 fallthrough;
1410 case SCX_OPSS_DISPATCHING:
1411 /*
1412 * If @p is being dispatched from the BPF scheduler to a DSQ,
1413 * wait for the transfer to complete so that @p doesn't get
1414 * added to its DSQ after dequeueing is complete.
1415 *
1416 * As we're waiting on DISPATCHING with the rq locked, the
1417 * dispatching side shouldn't try to lock the rq while
1418 * DISPATCHING is set. See dispatch_to_local_dsq().
1419 *
1420 * DISPATCHING shouldn't have qseq set and control can reach
1421 * here with NONE @opss from the above QUEUED case block.
1422 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
1423 */
1424 wait_ops_state(p, SCX_OPSS_DISPATCHING);
1425 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1426 break;
1427 }
1428 }
1429
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)1430 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
1431 {
1432 struct scx_sched *sch = scx_root;
1433
1434 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
1435 WARN_ON_ONCE(task_runnable(p));
1436 return true;
1437 }
1438
1439 ops_dequeue(rq, p, deq_flags);
1440
1441 /*
1442 * A currently running task which is going off @rq first gets dequeued
1443 * and then stops running. As we want running <-> stopping transitions
1444 * to be contained within runnable <-> quiescent transitions, trigger
1445 * ->stopping() early here instead of in put_prev_task_scx().
1446 *
1447 * @p may go through multiple stopping <-> running transitions between
1448 * here and put_prev_task_scx() if task attribute changes occur while
1449 * balance_scx() leaves @rq unlocked. However, they don't contain any
1450 * information meaningful to the BPF scheduler and can be suppressed by
1451 * skipping the callbacks if the task is !QUEUED.
1452 */
1453 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) {
1454 update_curr_scx(rq);
1455 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false);
1456 }
1457
1458 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p))
1459 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags);
1460
1461 if (deq_flags & SCX_DEQ_SLEEP)
1462 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
1463 else
1464 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
1465
1466 p->scx.flags &= ~SCX_TASK_QUEUED;
1467 rq->scx.nr_running--;
1468 sub_nr_running(rq, 1);
1469
1470 dispatch_dequeue(rq, p);
1471 return true;
1472 }
1473
yield_task_scx(struct rq * rq)1474 static void yield_task_scx(struct rq *rq)
1475 {
1476 struct scx_sched *sch = scx_root;
1477 struct task_struct *p = rq->curr;
1478
1479 if (SCX_HAS_OP(sch, yield))
1480 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL);
1481 else
1482 p->scx.slice = 0;
1483 }
1484
yield_to_task_scx(struct rq * rq,struct task_struct * to)1485 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
1486 {
1487 struct scx_sched *sch = scx_root;
1488 struct task_struct *from = rq->curr;
1489
1490 if (SCX_HAS_OP(sch, yield))
1491 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq,
1492 from, to);
1493 else
1494 return false;
1495 }
1496
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)1497 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1498 struct scx_dispatch_q *src_dsq,
1499 struct rq *dst_rq)
1500 {
1501 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
1502
1503 /* @dsq is locked and @p is on @dst_rq */
1504 lockdep_assert_held(&src_dsq->lock);
1505 lockdep_assert_rq_held(dst_rq);
1506
1507 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1508
1509 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1510 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
1511 else
1512 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
1513
1514 dsq_mod_nr(dst_dsq, 1);
1515 p->scx.dsq = dst_dsq;
1516 }
1517
1518 /**
1519 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
1520 * @p: task to move
1521 * @enq_flags: %SCX_ENQ_*
1522 * @src_rq: rq to move the task from, locked on entry, released on return
1523 * @dst_rq: rq to move the task into, locked on return
1524 *
1525 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
1526 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)1527 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1528 struct rq *src_rq, struct rq *dst_rq)
1529 {
1530 lockdep_assert_rq_held(src_rq);
1531
1532 /* the following marks @p MIGRATING which excludes dequeue */
1533 deactivate_task(src_rq, p, 0);
1534 set_task_cpu(p, cpu_of(dst_rq));
1535 p->scx.sticky_cpu = cpu_of(dst_rq);
1536
1537 raw_spin_rq_unlock(src_rq);
1538 raw_spin_rq_lock(dst_rq);
1539
1540 /*
1541 * We want to pass scx-specific enq_flags but activate_task() will
1542 * truncate the upper 32 bit. As we own @rq, we can pass them through
1543 * @rq->scx.extra_enq_flags instead.
1544 */
1545 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
1546 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
1547 dst_rq->scx.extra_enq_flags = enq_flags;
1548 activate_task(dst_rq, p, 0);
1549 dst_rq->scx.extra_enq_flags = 0;
1550 }
1551
1552 /*
1553 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
1554 * differences:
1555 *
1556 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
1557 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
1558 * this CPU?".
1559 *
1560 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
1561 * must be allowed to finish on the CPU that it's currently on regardless of
1562 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
1563 * BPF scheduler shouldn't attempt to migrate a task which has migration
1564 * disabled.
1565 *
1566 * - The BPF scheduler is bypassed while the rq is offline and we can always say
1567 * no to the BPF scheduler initiated migrations while offline.
1568 *
1569 * The caller must ensure that @p and @rq are on different CPUs.
1570 */
task_can_run_on_remote_rq(struct scx_sched * sch,struct task_struct * p,struct rq * rq,bool enforce)1571 static bool task_can_run_on_remote_rq(struct scx_sched *sch,
1572 struct task_struct *p, struct rq *rq,
1573 bool enforce)
1574 {
1575 int cpu = cpu_of(rq);
1576
1577 WARN_ON_ONCE(task_cpu(p) == cpu);
1578
1579 /*
1580 * If @p has migration disabled, @p->cpus_ptr is updated to contain only
1581 * the pinned CPU in migrate_disable_switch() while @p is being switched
1582 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is
1583 * updated and thus another CPU may see @p on a DSQ inbetween leading to
1584 * @p passing the below task_allowed_on_cpu() check while migration is
1585 * disabled.
1586 *
1587 * Test the migration disabled state first as the race window is narrow
1588 * and the BPF scheduler failing to check migration disabled state can
1589 * easily be masked if task_allowed_on_cpu() is done first.
1590 */
1591 if (unlikely(is_migration_disabled(p))) {
1592 if (enforce)
1593 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d",
1594 p->comm, p->pid, task_cpu(p), cpu);
1595 return false;
1596 }
1597
1598 /*
1599 * We don't require the BPF scheduler to avoid dispatching to offline
1600 * CPUs mostly for convenience but also because CPUs can go offline
1601 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
1602 * picked CPU is outside the allowed mask.
1603 */
1604 if (!task_allowed_on_cpu(p, cpu)) {
1605 if (enforce)
1606 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]",
1607 cpu, p->comm, p->pid);
1608 return false;
1609 }
1610
1611 if (!scx_rq_online(rq)) {
1612 if (enforce)
1613 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1);
1614 return false;
1615 }
1616
1617 return true;
1618 }
1619
1620 /**
1621 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
1622 * @p: target task
1623 * @dsq: locked DSQ @p is currently on
1624 * @src_rq: rq @p is currently on, stable with @dsq locked
1625 *
1626 * Called with @dsq locked but no rq's locked. We want to move @p to a different
1627 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
1628 * required when transferring into a local DSQ. Even when transferring into a
1629 * non-local DSQ, it's better to use the same mechanism to protect against
1630 * dequeues and maintain the invariant that @p->scx.dsq can only change while
1631 * @src_rq is locked, which e.g. scx_dump_task() depends on.
1632 *
1633 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
1634 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
1635 * this may race with dequeue, which can't drop the rq lock or fail, do a little
1636 * dancing from our side.
1637 *
1638 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
1639 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
1640 * would be cleared to -1. While other cpus may have updated it to different
1641 * values afterwards, as this operation can't be preempted or recurse, the
1642 * holding_cpu can never become this CPU again before we're done. Thus, we can
1643 * tell whether we lost to dequeue by testing whether the holding_cpu still
1644 * points to this CPU. See dispatch_dequeue() for the counterpart.
1645 *
1646 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
1647 * still valid. %false if lost to dequeue.
1648 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1649 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
1650 struct scx_dispatch_q *dsq,
1651 struct rq *src_rq)
1652 {
1653 s32 cpu = raw_smp_processor_id();
1654
1655 lockdep_assert_held(&dsq->lock);
1656
1657 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1658 task_unlink_from_dsq(p, dsq);
1659 p->scx.holding_cpu = cpu;
1660
1661 raw_spin_unlock(&dsq->lock);
1662 raw_spin_rq_lock(src_rq);
1663
1664 /* task_rq couldn't have changed if we're still the holding cpu */
1665 return likely(p->scx.holding_cpu == cpu) &&
1666 !WARN_ON_ONCE(src_rq != task_rq(p));
1667 }
1668
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1669 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
1670 struct scx_dispatch_q *dsq, struct rq *src_rq)
1671 {
1672 raw_spin_rq_unlock(this_rq);
1673
1674 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
1675 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
1676 return true;
1677 } else {
1678 raw_spin_rq_unlock(src_rq);
1679 raw_spin_rq_lock(this_rq);
1680 return false;
1681 }
1682 }
1683
1684 /**
1685 * move_task_between_dsqs() - Move a task from one DSQ to another
1686 * @sch: scx_sched being operated on
1687 * @p: target task
1688 * @enq_flags: %SCX_ENQ_*
1689 * @src_dsq: DSQ @p is currently on, must not be a local DSQ
1690 * @dst_dsq: DSQ @p is being moved to, can be any DSQ
1691 *
1692 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
1693 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
1694 * will change. As @p's task_rq is locked, this function doesn't need to use the
1695 * holding_cpu mechanism.
1696 *
1697 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
1698 * return value, is locked.
1699 */
move_task_between_dsqs(struct scx_sched * sch,struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct scx_dispatch_q * dst_dsq)1700 static struct rq *move_task_between_dsqs(struct scx_sched *sch,
1701 struct task_struct *p, u64 enq_flags,
1702 struct scx_dispatch_q *src_dsq,
1703 struct scx_dispatch_q *dst_dsq)
1704 {
1705 struct rq *src_rq = task_rq(p), *dst_rq;
1706
1707 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
1708 lockdep_assert_held(&src_dsq->lock);
1709 lockdep_assert_rq_held(src_rq);
1710
1711 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1712 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1713 if (src_rq != dst_rq &&
1714 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1715 dst_dsq = find_global_dsq(sch, p);
1716 dst_rq = src_rq;
1717 }
1718 } else {
1719 /* no need to migrate if destination is a non-local DSQ */
1720 dst_rq = src_rq;
1721 }
1722
1723 /*
1724 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
1725 * CPU, @p will be migrated.
1726 */
1727 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1728 /* @p is going from a non-local DSQ to a local DSQ */
1729 if (src_rq == dst_rq) {
1730 task_unlink_from_dsq(p, src_dsq);
1731 move_local_task_to_local_dsq(p, enq_flags,
1732 src_dsq, dst_rq);
1733 raw_spin_unlock(&src_dsq->lock);
1734 } else {
1735 raw_spin_unlock(&src_dsq->lock);
1736 move_remote_task_to_local_dsq(p, enq_flags,
1737 src_rq, dst_rq);
1738 }
1739 } else {
1740 /*
1741 * @p is going from a non-local DSQ to a non-local DSQ. As
1742 * $src_dsq is already locked, do an abbreviated dequeue.
1743 */
1744 task_unlink_from_dsq(p, src_dsq);
1745 p->scx.dsq = NULL;
1746 raw_spin_unlock(&src_dsq->lock);
1747
1748 dispatch_enqueue(sch, dst_dsq, p, enq_flags);
1749 }
1750
1751 return dst_rq;
1752 }
1753
1754 /*
1755 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
1756 * banging on the same DSQ on a large NUMA system to the point where switching
1757 * to the bypass mode can take a long time. Inject artificial delays while the
1758 * bypass mode is switching to guarantee timely completion.
1759 */
scx_breather(struct rq * rq)1760 static void scx_breather(struct rq *rq)
1761 {
1762 u64 until;
1763
1764 lockdep_assert_rq_held(rq);
1765
1766 if (likely(!atomic_read(&scx_breather_depth)))
1767 return;
1768
1769 raw_spin_rq_unlock(rq);
1770
1771 until = ktime_get_ns() + NSEC_PER_MSEC;
1772
1773 do {
1774 int cnt = 1024;
1775 while (atomic_read(&scx_breather_depth) && --cnt)
1776 cpu_relax();
1777 } while (atomic_read(&scx_breather_depth) &&
1778 time_before64(ktime_get_ns(), until));
1779
1780 raw_spin_rq_lock(rq);
1781 }
1782
consume_dispatch_q(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dsq)1783 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq,
1784 struct scx_dispatch_q *dsq)
1785 {
1786 struct task_struct *p;
1787 retry:
1788 /*
1789 * This retry loop can repeatedly race against scx_bypass() dequeueing
1790 * tasks from @dsq trying to put the system into the bypass mode. On
1791 * some multi-socket machines (e.g. 2x Intel 8480c), this can live-lock
1792 * the machine into soft lockups. Give a breather.
1793 */
1794 scx_breather(rq);
1795
1796 /*
1797 * The caller can't expect to successfully consume a task if the task's
1798 * addition to @dsq isn't guaranteed to be visible somehow. Test
1799 * @dsq->list without locking and skip if it seems empty.
1800 */
1801 if (list_empty(&dsq->list))
1802 return false;
1803
1804 raw_spin_lock(&dsq->lock);
1805
1806 nldsq_for_each_task(p, dsq) {
1807 struct rq *task_rq = task_rq(p);
1808
1809 if (rq == task_rq) {
1810 task_unlink_from_dsq(p, dsq);
1811 move_local_task_to_local_dsq(p, 0, dsq, rq);
1812 raw_spin_unlock(&dsq->lock);
1813 return true;
1814 }
1815
1816 if (task_can_run_on_remote_rq(sch, p, rq, false)) {
1817 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
1818 return true;
1819 goto retry;
1820 }
1821 }
1822
1823 raw_spin_unlock(&dsq->lock);
1824 return false;
1825 }
1826
consume_global_dsq(struct scx_sched * sch,struct rq * rq)1827 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq)
1828 {
1829 int node = cpu_to_node(cpu_of(rq));
1830
1831 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]);
1832 }
1833
1834 /**
1835 * dispatch_to_local_dsq - Dispatch a task to a local dsq
1836 * @sch: scx_sched being operated on
1837 * @rq: current rq which is locked
1838 * @dst_dsq: destination DSQ
1839 * @p: task to dispatch
1840 * @enq_flags: %SCX_ENQ_*
1841 *
1842 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
1843 * DSQ. This function performs all the synchronization dancing needed because
1844 * local DSQs are protected with rq locks.
1845 *
1846 * The caller must have exclusive ownership of @p (e.g. through
1847 * %SCX_OPSS_DISPATCHING).
1848 */
dispatch_to_local_dsq(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)1849 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq,
1850 struct scx_dispatch_q *dst_dsq,
1851 struct task_struct *p, u64 enq_flags)
1852 {
1853 struct rq *src_rq = task_rq(p);
1854 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1855 struct rq *locked_rq = rq;
1856
1857 /*
1858 * We're synchronized against dequeue through DISPATCHING. As @p can't
1859 * be dequeued, its task_rq and cpus_allowed are stable too.
1860 *
1861 * If dispatching to @rq that @p is already on, no lock dancing needed.
1862 */
1863 if (rq == src_rq && rq == dst_rq) {
1864 dispatch_enqueue(sch, dst_dsq, p,
1865 enq_flags | SCX_ENQ_CLEAR_OPSS);
1866 return;
1867 }
1868
1869 if (src_rq != dst_rq &&
1870 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1871 dispatch_enqueue(sch, find_global_dsq(sch, p), p,
1872 enq_flags | SCX_ENQ_CLEAR_OPSS);
1873 return;
1874 }
1875
1876 /*
1877 * @p is on a possibly remote @src_rq which we need to lock to move the
1878 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
1879 * on DISPATCHING, so we can't grab @src_rq lock while holding
1880 * DISPATCHING.
1881 *
1882 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
1883 * we're moving from a DSQ and use the same mechanism - mark the task
1884 * under transfer with holding_cpu, release DISPATCHING and then follow
1885 * the same protocol. See unlink_dsq_and_lock_src_rq().
1886 */
1887 p->scx.holding_cpu = raw_smp_processor_id();
1888
1889 /* store_release ensures that dequeue sees the above */
1890 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1891
1892 /* switch to @src_rq lock */
1893 if (locked_rq != src_rq) {
1894 raw_spin_rq_unlock(locked_rq);
1895 locked_rq = src_rq;
1896 raw_spin_rq_lock(src_rq);
1897 }
1898
1899 /* task_rq couldn't have changed if we're still the holding cpu */
1900 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
1901 !WARN_ON_ONCE(src_rq != task_rq(p))) {
1902 /*
1903 * If @p is staying on the same rq, there's no need to go
1904 * through the full deactivate/activate cycle. Optimize by
1905 * abbreviating move_remote_task_to_local_dsq().
1906 */
1907 if (src_rq == dst_rq) {
1908 p->scx.holding_cpu = -1;
1909 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p,
1910 enq_flags);
1911 } else {
1912 move_remote_task_to_local_dsq(p, enq_flags,
1913 src_rq, dst_rq);
1914 /* task has been moved to dst_rq, which is now locked */
1915 locked_rq = dst_rq;
1916 }
1917
1918 /* if the destination CPU is idle, wake it up */
1919 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
1920 resched_curr(dst_rq);
1921 }
1922
1923 /* switch back to @rq lock */
1924 if (locked_rq != rq) {
1925 raw_spin_rq_unlock(locked_rq);
1926 raw_spin_rq_lock(rq);
1927 }
1928 }
1929
1930 /**
1931 * finish_dispatch - Asynchronously finish dispatching a task
1932 * @rq: current rq which is locked
1933 * @p: task to finish dispatching
1934 * @qseq_at_dispatch: qseq when @p started getting dispatched
1935 * @dsq_id: destination DSQ ID
1936 * @enq_flags: %SCX_ENQ_*
1937 *
1938 * Dispatching to local DSQs may need to wait for queueing to complete or
1939 * require rq lock dancing. As we don't wanna do either while inside
1940 * ops.dispatch() to avoid locking order inversion, we split dispatching into
1941 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
1942 * task and its qseq. Once ops.dispatch() returns, this function is called to
1943 * finish up.
1944 *
1945 * There is no guarantee that @p is still valid for dispatching or even that it
1946 * was valid in the first place. Make sure that the task is still owned by the
1947 * BPF scheduler and claim the ownership before dispatching.
1948 */
finish_dispatch(struct scx_sched * sch,struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)1949 static void finish_dispatch(struct scx_sched *sch, struct rq *rq,
1950 struct task_struct *p,
1951 unsigned long qseq_at_dispatch,
1952 u64 dsq_id, u64 enq_flags)
1953 {
1954 struct scx_dispatch_q *dsq;
1955 unsigned long opss;
1956
1957 touch_core_sched_dispatch(rq, p);
1958 retry:
1959 /*
1960 * No need for _acquire here. @p is accessed only after a successful
1961 * try_cmpxchg to DISPATCHING.
1962 */
1963 opss = atomic_long_read(&p->scx.ops_state);
1964
1965 switch (opss & SCX_OPSS_STATE_MASK) {
1966 case SCX_OPSS_DISPATCHING:
1967 case SCX_OPSS_NONE:
1968 /* someone else already got to it */
1969 return;
1970 case SCX_OPSS_QUEUED:
1971 /*
1972 * If qseq doesn't match, @p has gone through at least one
1973 * dispatch/dequeue and re-enqueue cycle between
1974 * scx_bpf_dsq_insert() and here and we have no claim on it.
1975 */
1976 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
1977 return;
1978
1979 /*
1980 * While we know @p is accessible, we don't yet have a claim on
1981 * it - the BPF scheduler is allowed to dispatch tasks
1982 * spuriously and there can be a racing dequeue attempt. Let's
1983 * claim @p by atomically transitioning it from QUEUED to
1984 * DISPATCHING.
1985 */
1986 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
1987 SCX_OPSS_DISPATCHING)))
1988 break;
1989 goto retry;
1990 case SCX_OPSS_QUEUEING:
1991 /*
1992 * do_enqueue_task() is in the process of transferring the task
1993 * to the BPF scheduler while holding @p's rq lock. As we aren't
1994 * holding any kernel or BPF resource that the enqueue path may
1995 * depend upon, it's safe to wait.
1996 */
1997 wait_ops_state(p, opss);
1998 goto retry;
1999 }
2000
2001 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2002
2003 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p);
2004
2005 if (dsq->id == SCX_DSQ_LOCAL)
2006 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags);
2007 else
2008 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2009 }
2010
flush_dispatch_buf(struct scx_sched * sch,struct rq * rq)2011 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq)
2012 {
2013 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2014 u32 u;
2015
2016 for (u = 0; u < dspc->cursor; u++) {
2017 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2018
2019 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id,
2020 ent->enq_flags);
2021 }
2022
2023 dspc->nr_tasks += dspc->cursor;
2024 dspc->cursor = 0;
2025 }
2026
maybe_queue_balance_callback(struct rq * rq)2027 static inline void maybe_queue_balance_callback(struct rq *rq)
2028 {
2029 lockdep_assert_rq_held(rq);
2030
2031 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING))
2032 return;
2033
2034 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
2035 deferred_bal_cb_workfn);
2036
2037 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING;
2038 }
2039
balance_one(struct rq * rq,struct task_struct * prev)2040 static int balance_one(struct rq *rq, struct task_struct *prev)
2041 {
2042 struct scx_sched *sch = scx_root;
2043 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2044 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2045 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
2046 int nr_loops = SCX_DSP_MAX_LOOPS;
2047
2048 lockdep_assert_rq_held(rq);
2049 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2050 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
2051
2052 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) &&
2053 unlikely(rq->scx.cpu_released)) {
2054 /*
2055 * If the previous sched_class for the current CPU was not SCX,
2056 * notify the BPF scheduler that it again has control of the
2057 * core. This callback complements ->cpu_release(), which is
2058 * emitted in switch_class().
2059 */
2060 if (SCX_HAS_OP(sch, cpu_acquire))
2061 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq,
2062 cpu_of(rq), NULL);
2063 rq->scx.cpu_released = false;
2064 }
2065
2066 if (prev_on_scx) {
2067 update_curr_scx(rq);
2068
2069 /*
2070 * If @prev is runnable & has slice left, it has priority and
2071 * fetching more just increases latency for the fetched tasks.
2072 * Tell pick_task_scx() to keep running @prev. If the BPF
2073 * scheduler wants to handle this explicitly, it should
2074 * implement ->cpu_release().
2075 *
2076 * See scx_disable_workfn() for the explanation on the bypassing
2077 * test.
2078 */
2079 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
2080 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2081 goto has_tasks;
2082 }
2083 }
2084
2085 /* if there already are tasks to run, nothing to do */
2086 if (rq->scx.local_dsq.nr)
2087 goto has_tasks;
2088
2089 if (consume_global_dsq(sch, rq))
2090 goto has_tasks;
2091
2092 if (unlikely(!SCX_HAS_OP(sch, dispatch)) ||
2093 scx_rq_bypassing(rq) || !scx_rq_online(rq))
2094 goto no_tasks;
2095
2096 dspc->rq = rq;
2097
2098 /*
2099 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2100 * the local DSQ might still end up empty after a successful
2101 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2102 * produced some tasks, retry. The BPF scheduler may depend on this
2103 * looping behavior to simplify its implementation.
2104 */
2105 do {
2106 dspc->nr_tasks = 0;
2107
2108 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq,
2109 cpu_of(rq), prev_on_scx ? prev : NULL);
2110
2111 flush_dispatch_buf(sch, rq);
2112
2113 if (prev_on_rq && prev->scx.slice) {
2114 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2115 goto has_tasks;
2116 }
2117 if (rq->scx.local_dsq.nr)
2118 goto has_tasks;
2119 if (consume_global_dsq(sch, rq))
2120 goto has_tasks;
2121
2122 /*
2123 * ops.dispatch() can trap us in this loop by repeatedly
2124 * dispatching ineligible tasks. Break out once in a while to
2125 * allow the watchdog to run. As IRQ can't be enabled in
2126 * balance(), we want to complete this scheduling cycle and then
2127 * start a new one. IOW, we want to call resched_curr() on the
2128 * next, most likely idle, task, not the current one. Use
2129 * scx_kick_cpu() for deferred kicking.
2130 */
2131 if (unlikely(!--nr_loops)) {
2132 scx_kick_cpu(sch, cpu_of(rq), 0);
2133 break;
2134 }
2135 } while (dspc->nr_tasks);
2136
2137 no_tasks:
2138 /*
2139 * Didn't find another task to run. Keep running @prev unless
2140 * %SCX_OPS_ENQ_LAST is in effect.
2141 */
2142 if (prev_on_rq &&
2143 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) {
2144 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2145 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1);
2146 goto has_tasks;
2147 }
2148 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2149 return false;
2150
2151 has_tasks:
2152 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2153 return true;
2154 }
2155
balance_scx(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)2156 static int balance_scx(struct rq *rq, struct task_struct *prev,
2157 struct rq_flags *rf)
2158 {
2159 int ret;
2160
2161 rq_unpin_lock(rq, rf);
2162
2163 ret = balance_one(rq, prev);
2164
2165 #ifdef CONFIG_SCHED_SMT
2166 /*
2167 * When core-sched is enabled, this ops.balance() call will be followed
2168 * by pick_task_scx() on this CPU and the SMT siblings. Balance the
2169 * siblings too.
2170 */
2171 if (sched_core_enabled(rq)) {
2172 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
2173 int scpu;
2174
2175 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) {
2176 struct rq *srq = cpu_rq(scpu);
2177 struct task_struct *sprev = srq->curr;
2178
2179 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq));
2180 update_rq_clock(srq);
2181 balance_one(srq, sprev);
2182 }
2183 }
2184 #endif
2185 rq_repin_lock(rq, rf);
2186
2187 maybe_queue_balance_callback(rq);
2188
2189 return ret;
2190 }
2191
process_ddsp_deferred_locals(struct rq * rq)2192 static void process_ddsp_deferred_locals(struct rq *rq)
2193 {
2194 struct task_struct *p;
2195
2196 lockdep_assert_rq_held(rq);
2197
2198 /*
2199 * Now that @rq can be unlocked, execute the deferred enqueueing of
2200 * tasks directly dispatched to the local DSQs of other CPUs. See
2201 * direct_dispatch(). Keep popping from the head instead of using
2202 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2203 * temporarily.
2204 */
2205 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2206 struct task_struct, scx.dsq_list.node))) {
2207 struct scx_sched *sch = scx_root;
2208 struct scx_dispatch_q *dsq;
2209
2210 list_del_init(&p->scx.dsq_list.node);
2211
2212 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
2213 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2214 dispatch_to_local_dsq(sch, rq, dsq, p,
2215 p->scx.ddsp_enq_flags);
2216 }
2217 }
2218
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2219 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2220 {
2221 struct scx_sched *sch = scx_root;
2222
2223 if (p->scx.flags & SCX_TASK_QUEUED) {
2224 /*
2225 * Core-sched might decide to execute @p before it is
2226 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2227 */
2228 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC);
2229 dispatch_dequeue(rq, p);
2230 }
2231
2232 p->se.exec_start = rq_clock_task(rq);
2233
2234 /* see dequeue_task_scx() on why we skip when !QUEUED */
2235 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED))
2236 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p);
2237
2238 clr_task_runnable(p, true);
2239
2240 /*
2241 * @p is getting newly scheduled or got kicked after someone updated its
2242 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2243 */
2244 if ((p->scx.slice == SCX_SLICE_INF) !=
2245 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2246 if (p->scx.slice == SCX_SLICE_INF)
2247 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2248 else
2249 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2250
2251 sched_update_tick_dependency(rq);
2252
2253 /*
2254 * For now, let's refresh the load_avgs just when transitioning
2255 * in and out of nohz. In the future, we might want to add a
2256 * mechanism which calls the following periodically on
2257 * tick-stopped CPUs.
2258 */
2259 update_other_load_avgs(rq);
2260 }
2261 }
2262
2263 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2264 preempt_reason_from_class(const struct sched_class *class)
2265 {
2266 if (class == &stop_sched_class)
2267 return SCX_CPU_PREEMPT_STOP;
2268 if (class == &dl_sched_class)
2269 return SCX_CPU_PREEMPT_DL;
2270 if (class == &rt_sched_class)
2271 return SCX_CPU_PREEMPT_RT;
2272 return SCX_CPU_PREEMPT_UNKNOWN;
2273 }
2274
switch_class(struct rq * rq,struct task_struct * next)2275 static void switch_class(struct rq *rq, struct task_struct *next)
2276 {
2277 struct scx_sched *sch = scx_root;
2278 const struct sched_class *next_class = next->sched_class;
2279
2280 /*
2281 * Pairs with the smp_load_acquire() issued by a CPU in
2282 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a
2283 * resched.
2284 */
2285 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1);
2286 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT))
2287 return;
2288
2289 /*
2290 * The callback is conceptually meant to convey that the CPU is no
2291 * longer under the control of SCX. Therefore, don't invoke the callback
2292 * if the next class is below SCX (in which case the BPF scheduler has
2293 * actively decided not to schedule any tasks on the CPU).
2294 */
2295 if (sched_class_above(&ext_sched_class, next_class))
2296 return;
2297
2298 /*
2299 * At this point we know that SCX was preempted by a higher priority
2300 * sched_class, so invoke the ->cpu_release() callback if we have not
2301 * done so already. We only send the callback once between SCX being
2302 * preempted, and it regaining control of the CPU.
2303 *
2304 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2305 * next time that balance_scx() is invoked.
2306 */
2307 if (!rq->scx.cpu_released) {
2308 if (SCX_HAS_OP(sch, cpu_release)) {
2309 struct scx_cpu_release_args args = {
2310 .reason = preempt_reason_from_class(next_class),
2311 .task = next,
2312 };
2313
2314 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq,
2315 cpu_of(rq), &args);
2316 }
2317 rq->scx.cpu_released = true;
2318 }
2319 }
2320
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)2321 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2322 struct task_struct *next)
2323 {
2324 struct scx_sched *sch = scx_root;
2325 update_curr_scx(rq);
2326
2327 /* see dequeue_task_scx() on why we skip when !QUEUED */
2328 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2329 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true);
2330
2331 if (p->scx.flags & SCX_TASK_QUEUED) {
2332 set_task_runnable(rq, p);
2333
2334 /*
2335 * If @p has slice left and is being put, @p is getting
2336 * preempted by a higher priority scheduler class or core-sched
2337 * forcing a different task. Leave it at the head of the local
2338 * DSQ.
2339 */
2340 if (p->scx.slice && !scx_rq_bypassing(rq)) {
2341 dispatch_enqueue(sch, &rq->scx.local_dsq, p,
2342 SCX_ENQ_HEAD);
2343 goto switch_class;
2344 }
2345
2346 /*
2347 * If @p is runnable but we're about to enter a lower
2348 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2349 * ops.enqueue() that @p is the only one available for this cpu,
2350 * which should trigger an explicit follow-up scheduling event.
2351 */
2352 if (sched_class_above(&ext_sched_class, next->sched_class)) {
2353 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST));
2354 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2355 } else {
2356 do_enqueue_task(rq, p, 0, -1);
2357 }
2358 }
2359
2360 switch_class:
2361 if (next && next->sched_class != &ext_sched_class)
2362 switch_class(rq, next);
2363 }
2364
first_local_task(struct rq * rq)2365 static struct task_struct *first_local_task(struct rq *rq)
2366 {
2367 return list_first_entry_or_null(&rq->scx.local_dsq.list,
2368 struct task_struct, scx.dsq_list.node);
2369 }
2370
pick_task_scx(struct rq * rq)2371 static struct task_struct *pick_task_scx(struct rq *rq)
2372 {
2373 struct task_struct *prev = rq->curr;
2374 struct task_struct *p;
2375 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
2376 bool kick_idle = false;
2377
2378 /*
2379 * WORKAROUND:
2380 *
2381 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
2382 * have gone through balance_scx(). Unfortunately, there currently is a
2383 * bug where fair could say yes on balance() but no on pick_task(),
2384 * which then ends up calling pick_task_scx() without preceding
2385 * balance_scx().
2386 *
2387 * Keep running @prev if possible and avoid stalling from entering idle
2388 * without balancing.
2389 *
2390 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
2391 * if pick_task_scx() is called without preceding balance_scx().
2392 */
2393 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
2394 if (prev->scx.flags & SCX_TASK_QUEUED) {
2395 keep_prev = true;
2396 } else {
2397 keep_prev = false;
2398 kick_idle = true;
2399 }
2400 } else if (unlikely(keep_prev &&
2401 prev->sched_class != &ext_sched_class)) {
2402 /*
2403 * Can happen while enabling as SCX_RQ_BAL_PENDING assertion is
2404 * conditional on scx_enabled() and may have been skipped.
2405 */
2406 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED);
2407 keep_prev = false;
2408 }
2409
2410 /*
2411 * If balance_scx() is telling us to keep running @prev, replenish slice
2412 * if necessary and keep running @prev. Otherwise, pop the first one
2413 * from the local DSQ.
2414 */
2415 if (keep_prev) {
2416 p = prev;
2417 if (!p->scx.slice)
2418 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p);
2419 } else {
2420 p = first_local_task(rq);
2421 if (!p) {
2422 if (kick_idle)
2423 scx_kick_cpu(rcu_dereference_sched(scx_root),
2424 cpu_of(rq), SCX_KICK_IDLE);
2425 return NULL;
2426 }
2427
2428 if (unlikely(!p->scx.slice)) {
2429 struct scx_sched *sch = rcu_dereference_sched(scx_root);
2430
2431 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) {
2432 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
2433 p->comm, p->pid, __func__);
2434 sch->warned_zero_slice = true;
2435 }
2436 refill_task_slice_dfl(sch, p);
2437 }
2438 }
2439
2440 return p;
2441 }
2442
2443 #ifdef CONFIG_SCHED_CORE
2444 /**
2445 * scx_prio_less - Task ordering for core-sched
2446 * @a: task A
2447 * @b: task B
2448 * @in_fi: in forced idle state
2449 *
2450 * Core-sched is implemented as an additional scheduling layer on top of the
2451 * usual sched_class'es and needs to find out the expected task ordering. For
2452 * SCX, core-sched calls this function to interrogate the task ordering.
2453 *
2454 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
2455 * to implement the default task ordering. The older the timestamp, the higher
2456 * priority the task - the global FIFO ordering matching the default scheduling
2457 * behavior.
2458 *
2459 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
2460 * implement FIFO ordering within each local DSQ. See pick_task_scx().
2461 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)2462 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
2463 bool in_fi)
2464 {
2465 struct scx_sched *sch = scx_root;
2466
2467 /*
2468 * The const qualifiers are dropped from task_struct pointers when
2469 * calling ops.core_sched_before(). Accesses are controlled by the
2470 * verifier.
2471 */
2472 if (SCX_HAS_OP(sch, core_sched_before) &&
2473 !scx_rq_bypassing(task_rq(a)))
2474 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before,
2475 NULL,
2476 (struct task_struct *)a,
2477 (struct task_struct *)b);
2478 else
2479 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
2480 }
2481 #endif /* CONFIG_SCHED_CORE */
2482
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)2483 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
2484 {
2485 struct scx_sched *sch = scx_root;
2486 bool rq_bypass;
2487
2488 /*
2489 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
2490 * can be a good migration opportunity with low cache and memory
2491 * footprint. Returning a CPU different than @prev_cpu triggers
2492 * immediate rq migration. However, for SCX, as the current rq
2493 * association doesn't dictate where the task is going to run, this
2494 * doesn't fit well. If necessary, we can later add a dedicated method
2495 * which can decide to preempt self to force it through the regular
2496 * scheduling path.
2497 */
2498 if (unlikely(wake_flags & WF_EXEC))
2499 return prev_cpu;
2500
2501 rq_bypass = scx_rq_bypassing(task_rq(p));
2502 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) {
2503 s32 cpu;
2504 struct task_struct **ddsp_taskp;
2505
2506 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2507 WARN_ON_ONCE(*ddsp_taskp);
2508 *ddsp_taskp = p;
2509
2510 cpu = SCX_CALL_OP_TASK_RET(sch,
2511 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
2512 select_cpu, NULL, p, prev_cpu,
2513 wake_flags);
2514 p->scx.selected_cpu = cpu;
2515 *ddsp_taskp = NULL;
2516 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()"))
2517 return cpu;
2518 else
2519 return prev_cpu;
2520 } else {
2521 s32 cpu;
2522
2523 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0);
2524 if (cpu >= 0) {
2525 refill_task_slice_dfl(sch, p);
2526 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
2527 } else {
2528 cpu = prev_cpu;
2529 }
2530 p->scx.selected_cpu = cpu;
2531
2532 if (rq_bypass)
2533 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
2534 return cpu;
2535 }
2536 }
2537
task_woken_scx(struct rq * rq,struct task_struct * p)2538 static void task_woken_scx(struct rq *rq, struct task_struct *p)
2539 {
2540 run_deferred(rq);
2541 }
2542
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)2543 static void set_cpus_allowed_scx(struct task_struct *p,
2544 struct affinity_context *ac)
2545 {
2546 struct scx_sched *sch = scx_root;
2547
2548 set_cpus_allowed_common(p, ac);
2549
2550 /*
2551 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
2552 * differ from the configured one in @p->cpus_mask. Always tell the bpf
2553 * scheduler the effective one.
2554 *
2555 * Fine-grained memory write control is enforced by BPF making the const
2556 * designation pointless. Cast it away when calling the operation.
2557 */
2558 if (SCX_HAS_OP(sch, set_cpumask))
2559 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL,
2560 p, (struct cpumask *)p->cpus_ptr);
2561 }
2562
handle_hotplug(struct rq * rq,bool online)2563 static void handle_hotplug(struct rq *rq, bool online)
2564 {
2565 struct scx_sched *sch = scx_root;
2566 int cpu = cpu_of(rq);
2567
2568 atomic_long_inc(&scx_hotplug_seq);
2569
2570 /*
2571 * scx_root updates are protected by cpus_read_lock() and will stay
2572 * stable here. Note that we can't depend on scx_enabled() test as the
2573 * hotplug ops need to be enabled before __scx_enabled is set.
2574 */
2575 if (unlikely(!sch))
2576 return;
2577
2578 if (scx_enabled())
2579 scx_idle_update_selcpu_topology(&sch->ops);
2580
2581 if (online && SCX_HAS_OP(sch, cpu_online))
2582 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu);
2583 else if (!online && SCX_HAS_OP(sch, cpu_offline))
2584 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu);
2585 else
2586 scx_exit(sch, SCX_EXIT_UNREG_KERN,
2587 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
2588 "cpu %d going %s, exiting scheduler", cpu,
2589 online ? "online" : "offline");
2590 }
2591
scx_rq_activate(struct rq * rq)2592 void scx_rq_activate(struct rq *rq)
2593 {
2594 handle_hotplug(rq, true);
2595 }
2596
scx_rq_deactivate(struct rq * rq)2597 void scx_rq_deactivate(struct rq *rq)
2598 {
2599 handle_hotplug(rq, false);
2600 }
2601
rq_online_scx(struct rq * rq)2602 static void rq_online_scx(struct rq *rq)
2603 {
2604 rq->scx.flags |= SCX_RQ_ONLINE;
2605 }
2606
rq_offline_scx(struct rq * rq)2607 static void rq_offline_scx(struct rq *rq)
2608 {
2609 rq->scx.flags &= ~SCX_RQ_ONLINE;
2610 }
2611
2612
check_rq_for_timeouts(struct rq * rq)2613 static bool check_rq_for_timeouts(struct rq *rq)
2614 {
2615 struct scx_sched *sch;
2616 struct task_struct *p;
2617 struct rq_flags rf;
2618 bool timed_out = false;
2619
2620 rq_lock_irqsave(rq, &rf);
2621 sch = rcu_dereference_bh(scx_root);
2622 if (unlikely(!sch))
2623 goto out_unlock;
2624
2625 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
2626 unsigned long last_runnable = p->scx.runnable_at;
2627
2628 if (unlikely(time_after(jiffies,
2629 last_runnable + scx_watchdog_timeout))) {
2630 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
2631
2632 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2633 "%s[%d] failed to run for %u.%03us",
2634 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000);
2635 timed_out = true;
2636 break;
2637 }
2638 }
2639 out_unlock:
2640 rq_unlock_irqrestore(rq, &rf);
2641 return timed_out;
2642 }
2643
scx_watchdog_workfn(struct work_struct * work)2644 static void scx_watchdog_workfn(struct work_struct *work)
2645 {
2646 int cpu;
2647
2648 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
2649
2650 for_each_online_cpu(cpu) {
2651 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
2652 break;
2653
2654 cond_resched();
2655 }
2656 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
2657 scx_watchdog_timeout / 2);
2658 }
2659
scx_tick(struct rq * rq)2660 void scx_tick(struct rq *rq)
2661 {
2662 struct scx_sched *sch;
2663 unsigned long last_check;
2664
2665 if (!scx_enabled())
2666 return;
2667
2668 sch = rcu_dereference_bh(scx_root);
2669 if (unlikely(!sch))
2670 return;
2671
2672 last_check = READ_ONCE(scx_watchdog_timestamp);
2673 if (unlikely(time_after(jiffies,
2674 last_check + READ_ONCE(scx_watchdog_timeout)))) {
2675 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
2676
2677 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2678 "watchdog failed to check in for %u.%03us",
2679 dur_ms / 1000, dur_ms % 1000);
2680 }
2681
2682 update_other_load_avgs(rq);
2683 }
2684
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)2685 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
2686 {
2687 struct scx_sched *sch = scx_root;
2688
2689 update_curr_scx(rq);
2690
2691 /*
2692 * While disabling, always resched and refresh core-sched timestamp as
2693 * we can't trust the slice management or ops.core_sched_before().
2694 */
2695 if (scx_rq_bypassing(rq)) {
2696 curr->scx.slice = 0;
2697 touch_core_sched(rq, curr);
2698 } else if (SCX_HAS_OP(sch, tick)) {
2699 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr);
2700 }
2701
2702 if (!curr->scx.slice)
2703 resched_curr(rq);
2704 }
2705
2706 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)2707 static struct cgroup *tg_cgrp(struct task_group *tg)
2708 {
2709 /*
2710 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
2711 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
2712 * root cgroup.
2713 */
2714 if (tg && tg->css.cgroup)
2715 return tg->css.cgroup;
2716 else
2717 return &cgrp_dfl_root.cgrp;
2718 }
2719
2720 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
2721
2722 #else /* CONFIG_EXT_GROUP_SCHED */
2723
2724 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
2725
2726 #endif /* CONFIG_EXT_GROUP_SCHED */
2727
scx_get_task_state(const struct task_struct * p)2728 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
2729 {
2730 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
2731 }
2732
scx_set_task_state(struct task_struct * p,enum scx_task_state state)2733 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
2734 {
2735 enum scx_task_state prev_state = scx_get_task_state(p);
2736 bool warn = false;
2737
2738 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
2739
2740 switch (state) {
2741 case SCX_TASK_NONE:
2742 break;
2743 case SCX_TASK_INIT:
2744 warn = prev_state != SCX_TASK_NONE;
2745 break;
2746 case SCX_TASK_READY:
2747 warn = prev_state == SCX_TASK_NONE;
2748 break;
2749 case SCX_TASK_ENABLED:
2750 warn = prev_state != SCX_TASK_READY;
2751 break;
2752 default:
2753 warn = true;
2754 return;
2755 }
2756
2757 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
2758 prev_state, state, p->comm, p->pid);
2759
2760 p->scx.flags &= ~SCX_TASK_STATE_MASK;
2761 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
2762 }
2763
scx_init_task(struct task_struct * p,struct task_group * tg,bool fork)2764 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork)
2765 {
2766 struct scx_sched *sch = scx_root;
2767 int ret;
2768
2769 p->scx.disallow = false;
2770
2771 if (SCX_HAS_OP(sch, init_task)) {
2772 struct scx_init_task_args args = {
2773 SCX_INIT_TASK_ARGS_CGROUP(tg)
2774 .fork = fork,
2775 };
2776
2777 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL,
2778 p, &args);
2779 if (unlikely(ret)) {
2780 ret = ops_sanitize_err(sch, "init_task", ret);
2781 return ret;
2782 }
2783 }
2784
2785 scx_set_task_state(p, SCX_TASK_INIT);
2786
2787 if (p->scx.disallow) {
2788 if (!fork) {
2789 struct rq *rq;
2790 struct rq_flags rf;
2791
2792 rq = task_rq_lock(p, &rf);
2793
2794 /*
2795 * We're in the load path and @p->policy will be applied
2796 * right after. Reverting @p->policy here and rejecting
2797 * %SCHED_EXT transitions from scx_check_setscheduler()
2798 * guarantees that if ops.init_task() sets @p->disallow,
2799 * @p can never be in SCX.
2800 */
2801 if (p->policy == SCHED_EXT) {
2802 p->policy = SCHED_NORMAL;
2803 atomic_long_inc(&scx_nr_rejected);
2804 }
2805
2806 task_rq_unlock(rq, p, &rf);
2807 } else if (p->policy == SCHED_EXT) {
2808 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork",
2809 p->comm, p->pid);
2810 }
2811 }
2812
2813 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2814 return 0;
2815 }
2816
scx_enable_task(struct task_struct * p)2817 static void scx_enable_task(struct task_struct *p)
2818 {
2819 struct scx_sched *sch = scx_root;
2820 struct rq *rq = task_rq(p);
2821 u32 weight;
2822
2823 lockdep_assert_rq_held(rq);
2824
2825 /*
2826 * Set the weight before calling ops.enable() so that the scheduler
2827 * doesn't see a stale value if they inspect the task struct.
2828 */
2829 if (task_has_idle_policy(p))
2830 weight = WEIGHT_IDLEPRIO;
2831 else
2832 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
2833
2834 p->scx.weight = sched_weight_to_cgroup(weight);
2835
2836 if (SCX_HAS_OP(sch, enable))
2837 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p);
2838 scx_set_task_state(p, SCX_TASK_ENABLED);
2839
2840 if (SCX_HAS_OP(sch, set_weight))
2841 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
2842 p, p->scx.weight);
2843 }
2844
scx_disable_task(struct task_struct * p)2845 static void scx_disable_task(struct task_struct *p)
2846 {
2847 struct scx_sched *sch = scx_root;
2848 struct rq *rq = task_rq(p);
2849
2850 lockdep_assert_rq_held(rq);
2851 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
2852
2853 if (SCX_HAS_OP(sch, disable))
2854 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p);
2855 scx_set_task_state(p, SCX_TASK_READY);
2856 }
2857
scx_exit_task(struct task_struct * p)2858 static void scx_exit_task(struct task_struct *p)
2859 {
2860 struct scx_sched *sch = scx_root;
2861 struct scx_exit_task_args args = {
2862 .cancelled = false,
2863 };
2864
2865 lockdep_assert_rq_held(task_rq(p));
2866
2867 switch (scx_get_task_state(p)) {
2868 case SCX_TASK_NONE:
2869 return;
2870 case SCX_TASK_INIT:
2871 args.cancelled = true;
2872 break;
2873 case SCX_TASK_READY:
2874 break;
2875 case SCX_TASK_ENABLED:
2876 scx_disable_task(p);
2877 break;
2878 default:
2879 WARN_ON_ONCE(true);
2880 return;
2881 }
2882
2883 if (SCX_HAS_OP(sch, exit_task))
2884 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p),
2885 p, &args);
2886 scx_set_task_state(p, SCX_TASK_NONE);
2887 }
2888
init_scx_entity(struct sched_ext_entity * scx)2889 void init_scx_entity(struct sched_ext_entity *scx)
2890 {
2891 memset(scx, 0, sizeof(*scx));
2892 INIT_LIST_HEAD(&scx->dsq_list.node);
2893 RB_CLEAR_NODE(&scx->dsq_priq);
2894 scx->sticky_cpu = -1;
2895 scx->holding_cpu = -1;
2896 INIT_LIST_HEAD(&scx->runnable_node);
2897 scx->runnable_at = jiffies;
2898 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
2899 scx->slice = SCX_SLICE_DFL;
2900 }
2901
scx_pre_fork(struct task_struct * p)2902 void scx_pre_fork(struct task_struct *p)
2903 {
2904 /*
2905 * BPF scheduler enable/disable paths want to be able to iterate and
2906 * update all tasks which can become complex when racing forks. As
2907 * enable/disable are very cold paths, let's use a percpu_rwsem to
2908 * exclude forks.
2909 */
2910 percpu_down_read(&scx_fork_rwsem);
2911 }
2912
scx_fork(struct task_struct * p)2913 int scx_fork(struct task_struct *p)
2914 {
2915 percpu_rwsem_assert_held(&scx_fork_rwsem);
2916
2917 if (scx_init_task_enabled)
2918 return scx_init_task(p, task_group(p), true);
2919 else
2920 return 0;
2921 }
2922
scx_post_fork(struct task_struct * p)2923 void scx_post_fork(struct task_struct *p)
2924 {
2925 if (scx_init_task_enabled) {
2926 scx_set_task_state(p, SCX_TASK_READY);
2927
2928 /*
2929 * Enable the task immediately if it's running on sched_ext.
2930 * Otherwise, it'll be enabled in switching_to_scx() if and
2931 * when it's ever configured to run with a SCHED_EXT policy.
2932 */
2933 if (p->sched_class == &ext_sched_class) {
2934 struct rq_flags rf;
2935 struct rq *rq;
2936
2937 rq = task_rq_lock(p, &rf);
2938 scx_enable_task(p);
2939 task_rq_unlock(rq, p, &rf);
2940 }
2941 }
2942
2943 spin_lock_irq(&scx_tasks_lock);
2944 list_add_tail(&p->scx.tasks_node, &scx_tasks);
2945 spin_unlock_irq(&scx_tasks_lock);
2946
2947 percpu_up_read(&scx_fork_rwsem);
2948 }
2949
scx_cancel_fork(struct task_struct * p)2950 void scx_cancel_fork(struct task_struct *p)
2951 {
2952 if (scx_enabled()) {
2953 struct rq *rq;
2954 struct rq_flags rf;
2955
2956 rq = task_rq_lock(p, &rf);
2957 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
2958 scx_exit_task(p);
2959 task_rq_unlock(rq, p, &rf);
2960 }
2961
2962 percpu_up_read(&scx_fork_rwsem);
2963 }
2964
sched_ext_free(struct task_struct * p)2965 void sched_ext_free(struct task_struct *p)
2966 {
2967 unsigned long flags;
2968
2969 spin_lock_irqsave(&scx_tasks_lock, flags);
2970 list_del_init(&p->scx.tasks_node);
2971 spin_unlock_irqrestore(&scx_tasks_lock, flags);
2972
2973 /*
2974 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED
2975 * transitions can't race us. Disable ops for @p.
2976 */
2977 if (scx_get_task_state(p) != SCX_TASK_NONE) {
2978 struct rq_flags rf;
2979 struct rq *rq;
2980
2981 rq = task_rq_lock(p, &rf);
2982 scx_exit_task(p);
2983 task_rq_unlock(rq, p, &rf);
2984 }
2985 }
2986
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)2987 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
2988 const struct load_weight *lw)
2989 {
2990 struct scx_sched *sch = scx_root;
2991
2992 lockdep_assert_rq_held(task_rq(p));
2993
2994 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
2995 if (SCX_HAS_OP(sch, set_weight))
2996 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
2997 p, p->scx.weight);
2998 }
2999
prio_changed_scx(struct rq * rq,struct task_struct * p,int oldprio)3000 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
3001 {
3002 }
3003
switching_to_scx(struct rq * rq,struct task_struct * p)3004 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3005 {
3006 struct scx_sched *sch = scx_root;
3007
3008 scx_enable_task(p);
3009
3010 /*
3011 * set_cpus_allowed_scx() is not called while @p is associated with a
3012 * different scheduler class. Keep the BPF scheduler up-to-date.
3013 */
3014 if (SCX_HAS_OP(sch, set_cpumask))
3015 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq,
3016 p, (struct cpumask *)p->cpus_ptr);
3017 }
3018
switched_from_scx(struct rq * rq,struct task_struct * p)3019 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3020 {
3021 scx_disable_task(p);
3022 }
3023
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)3024 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)3025 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3026
scx_check_setscheduler(struct task_struct * p,int policy)3027 int scx_check_setscheduler(struct task_struct *p, int policy)
3028 {
3029 lockdep_assert_rq_held(task_rq(p));
3030
3031 /* if disallow, reject transitioning into SCX */
3032 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3033 p->policy != policy && policy == SCHED_EXT)
3034 return -EACCES;
3035
3036 return 0;
3037 }
3038
3039 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)3040 bool scx_can_stop_tick(struct rq *rq)
3041 {
3042 struct task_struct *p = rq->curr;
3043
3044 if (scx_rq_bypassing(rq))
3045 return false;
3046
3047 if (p->sched_class != &ext_sched_class)
3048 return true;
3049
3050 /*
3051 * @rq can dispatch from different DSQs, so we can't tell whether it
3052 * needs the tick or not by looking at nr_running. Allow stopping ticks
3053 * iff the BPF scheduler indicated so. See set_next_task_scx().
3054 */
3055 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3056 }
3057 #endif
3058
3059 #ifdef CONFIG_EXT_GROUP_SCHED
3060
3061 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem);
3062 static bool scx_cgroup_enabled;
3063
scx_tg_init(struct task_group * tg)3064 void scx_tg_init(struct task_group *tg)
3065 {
3066 tg->scx.weight = CGROUP_WEIGHT_DFL;
3067 tg->scx.bw_period_us = default_bw_period_us();
3068 tg->scx.bw_quota_us = RUNTIME_INF;
3069 }
3070
scx_tg_online(struct task_group * tg)3071 int scx_tg_online(struct task_group *tg)
3072 {
3073 struct scx_sched *sch = scx_root;
3074 int ret = 0;
3075
3076 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3077
3078 if (scx_cgroup_enabled) {
3079 if (SCX_HAS_OP(sch, cgroup_init)) {
3080 struct scx_cgroup_init_args args =
3081 { .weight = tg->scx.weight,
3082 .bw_period_us = tg->scx.bw_period_us,
3083 .bw_quota_us = tg->scx.bw_quota_us,
3084 .bw_burst_us = tg->scx.bw_burst_us };
3085
3086 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init,
3087 NULL, tg->css.cgroup, &args);
3088 if (ret)
3089 ret = ops_sanitize_err(sch, "cgroup_init", ret);
3090 }
3091 if (ret == 0)
3092 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3093 } else {
3094 tg->scx.flags |= SCX_TG_ONLINE;
3095 }
3096
3097 return ret;
3098 }
3099
scx_tg_offline(struct task_group * tg)3100 void scx_tg_offline(struct task_group *tg)
3101 {
3102 struct scx_sched *sch = scx_root;
3103
3104 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE));
3105
3106 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) &&
3107 (tg->scx.flags & SCX_TG_INITED))
3108 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3109 tg->css.cgroup);
3110 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3111 }
3112
scx_cgroup_can_attach(struct cgroup_taskset * tset)3113 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3114 {
3115 struct scx_sched *sch = scx_root;
3116 struct cgroup_subsys_state *css;
3117 struct task_struct *p;
3118 int ret;
3119
3120 if (!scx_cgroup_enabled)
3121 return 0;
3122
3123 cgroup_taskset_for_each(p, css, tset) {
3124 struct cgroup *from = tg_cgrp(task_group(p));
3125 struct cgroup *to = tg_cgrp(css_tg(css));
3126
3127 WARN_ON_ONCE(p->scx.cgrp_moving_from);
3128
3129 /*
3130 * sched_move_task() omits identity migrations. Let's match the
3131 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3132 * always match one-to-one.
3133 */
3134 if (from == to)
3135 continue;
3136
3137 if (SCX_HAS_OP(sch, cgroup_prep_move)) {
3138 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED,
3139 cgroup_prep_move, NULL,
3140 p, from, css->cgroup);
3141 if (ret)
3142 goto err;
3143 }
3144
3145 p->scx.cgrp_moving_from = from;
3146 }
3147
3148 return 0;
3149
3150 err:
3151 cgroup_taskset_for_each(p, css, tset) {
3152 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3153 p->scx.cgrp_moving_from)
3154 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3155 p, p->scx.cgrp_moving_from, css->cgroup);
3156 p->scx.cgrp_moving_from = NULL;
3157 }
3158
3159 return ops_sanitize_err(sch, "cgroup_prep_move", ret);
3160 }
3161
scx_cgroup_move_task(struct task_struct * p)3162 void scx_cgroup_move_task(struct task_struct *p)
3163 {
3164 struct scx_sched *sch = scx_root;
3165
3166 if (!scx_cgroup_enabled)
3167 return;
3168
3169 /*
3170 * @p must have ops.cgroup_prep_move() called on it and thus
3171 * cgrp_moving_from set.
3172 */
3173 if (SCX_HAS_OP(sch, cgroup_move) &&
3174 !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3175 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL,
3176 p, p->scx.cgrp_moving_from,
3177 tg_cgrp(task_group(p)));
3178 p->scx.cgrp_moving_from = NULL;
3179 }
3180
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)3181 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3182 {
3183 struct scx_sched *sch = scx_root;
3184 struct cgroup_subsys_state *css;
3185 struct task_struct *p;
3186
3187 if (!scx_cgroup_enabled)
3188 return;
3189
3190 cgroup_taskset_for_each(p, css, tset) {
3191 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3192 p->scx.cgrp_moving_from)
3193 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3194 p, p->scx.cgrp_moving_from, css->cgroup);
3195 p->scx.cgrp_moving_from = NULL;
3196 }
3197 }
3198
scx_group_set_weight(struct task_group * tg,unsigned long weight)3199 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3200 {
3201 struct scx_sched *sch = scx_root;
3202
3203 percpu_down_read(&scx_cgroup_ops_rwsem);
3204
3205 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) &&
3206 tg->scx.weight != weight)
3207 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL,
3208 tg_cgrp(tg), weight);
3209
3210 tg->scx.weight = weight;
3211
3212 percpu_up_read(&scx_cgroup_ops_rwsem);
3213 }
3214
scx_group_set_idle(struct task_group * tg,bool idle)3215 void scx_group_set_idle(struct task_group *tg, bool idle)
3216 {
3217 /* TODO: Implement ops->cgroup_set_idle() */
3218 }
3219
scx_group_set_bandwidth(struct task_group * tg,u64 period_us,u64 quota_us,u64 burst_us)3220 void scx_group_set_bandwidth(struct task_group *tg,
3221 u64 period_us, u64 quota_us, u64 burst_us)
3222 {
3223 struct scx_sched *sch = scx_root;
3224
3225 percpu_down_read(&scx_cgroup_ops_rwsem);
3226
3227 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) &&
3228 (tg->scx.bw_period_us != period_us ||
3229 tg->scx.bw_quota_us != quota_us ||
3230 tg->scx.bw_burst_us != burst_us))
3231 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL,
3232 tg_cgrp(tg), period_us, quota_us, burst_us);
3233
3234 tg->scx.bw_period_us = period_us;
3235 tg->scx.bw_quota_us = quota_us;
3236 tg->scx.bw_burst_us = burst_us;
3237
3238 percpu_up_read(&scx_cgroup_ops_rwsem);
3239 }
3240
scx_cgroup_lock(void)3241 static void scx_cgroup_lock(void)
3242 {
3243 percpu_down_write(&scx_cgroup_ops_rwsem);
3244 cgroup_lock();
3245 }
3246
scx_cgroup_unlock(void)3247 static void scx_cgroup_unlock(void)
3248 {
3249 cgroup_unlock();
3250 percpu_up_write(&scx_cgroup_ops_rwsem);
3251 }
3252
3253 #else /* CONFIG_EXT_GROUP_SCHED */
3254
scx_cgroup_lock(void)3255 static void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)3256 static void scx_cgroup_unlock(void) {}
3257
3258 #endif /* CONFIG_EXT_GROUP_SCHED */
3259
3260 /*
3261 * Omitted operations:
3262 *
3263 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3264 * isn't tied to the CPU at that point. Preemption is implemented by resetting
3265 * the victim task's slice to 0 and triggering reschedule on the target CPU.
3266 *
3267 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3268 *
3269 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3270 * their current sched_class. Call them directly from sched core instead.
3271 */
3272 DEFINE_SCHED_CLASS(ext) = {
3273 .enqueue_task = enqueue_task_scx,
3274 .dequeue_task = dequeue_task_scx,
3275 .yield_task = yield_task_scx,
3276 .yield_to_task = yield_to_task_scx,
3277
3278 .wakeup_preempt = wakeup_preempt_scx,
3279
3280 .balance = balance_scx,
3281 .pick_task = pick_task_scx,
3282
3283 .put_prev_task = put_prev_task_scx,
3284 .set_next_task = set_next_task_scx,
3285
3286 .select_task_rq = select_task_rq_scx,
3287 .task_woken = task_woken_scx,
3288 .set_cpus_allowed = set_cpus_allowed_scx,
3289
3290 .rq_online = rq_online_scx,
3291 .rq_offline = rq_offline_scx,
3292
3293 .task_tick = task_tick_scx,
3294
3295 .switching_to = switching_to_scx,
3296 .switched_from = switched_from_scx,
3297 .switched_to = switched_to_scx,
3298 .reweight_task = reweight_task_scx,
3299 .prio_changed = prio_changed_scx,
3300
3301 .update_curr = update_curr_scx,
3302
3303 #ifdef CONFIG_UCLAMP_TASK
3304 .uclamp_enabled = 1,
3305 #endif
3306 };
3307
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)3308 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3309 {
3310 memset(dsq, 0, sizeof(*dsq));
3311
3312 raw_spin_lock_init(&dsq->lock);
3313 INIT_LIST_HEAD(&dsq->list);
3314 dsq->id = dsq_id;
3315 }
3316
free_dsq_irq_workfn(struct irq_work * irq_work)3317 static void free_dsq_irq_workfn(struct irq_work *irq_work)
3318 {
3319 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
3320 struct scx_dispatch_q *dsq, *tmp_dsq;
3321
3322 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
3323 kfree_rcu(dsq, rcu);
3324 }
3325
3326 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
3327
destroy_dsq(struct scx_sched * sch,u64 dsq_id)3328 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id)
3329 {
3330 struct scx_dispatch_q *dsq;
3331 unsigned long flags;
3332
3333 rcu_read_lock();
3334
3335 dsq = find_user_dsq(sch, dsq_id);
3336 if (!dsq)
3337 goto out_unlock_rcu;
3338
3339 raw_spin_lock_irqsave(&dsq->lock, flags);
3340
3341 if (dsq->nr) {
3342 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)",
3343 dsq->id, dsq->nr);
3344 goto out_unlock_dsq;
3345 }
3346
3347 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node,
3348 dsq_hash_params))
3349 goto out_unlock_dsq;
3350
3351 /*
3352 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
3353 * queueing more tasks. As this function can be called from anywhere,
3354 * freeing is bounced through an irq work to avoid nesting RCU
3355 * operations inside scheduler locks.
3356 */
3357 dsq->id = SCX_DSQ_INVALID;
3358 llist_add(&dsq->free_node, &dsqs_to_free);
3359 irq_work_queue(&free_dsq_irq_work);
3360
3361 out_unlock_dsq:
3362 raw_spin_unlock_irqrestore(&dsq->lock, flags);
3363 out_unlock_rcu:
3364 rcu_read_unlock();
3365 }
3366
3367 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(struct scx_sched * sch)3368 static void scx_cgroup_exit(struct scx_sched *sch)
3369 {
3370 struct cgroup_subsys_state *css;
3371
3372 scx_cgroup_enabled = false;
3373
3374 /*
3375 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3376 * cgroups and exit all the inited ones, all online cgroups are exited.
3377 */
3378 css_for_each_descendant_post(css, &root_task_group.css) {
3379 struct task_group *tg = css_tg(css);
3380
3381 if (!(tg->scx.flags & SCX_TG_INITED))
3382 continue;
3383 tg->scx.flags &= ~SCX_TG_INITED;
3384
3385 if (!sch->ops.cgroup_exit)
3386 continue;
3387
3388 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3389 css->cgroup);
3390 }
3391 }
3392
scx_cgroup_init(struct scx_sched * sch)3393 static int scx_cgroup_init(struct scx_sched *sch)
3394 {
3395 struct cgroup_subsys_state *css;
3396 int ret;
3397
3398 /*
3399 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3400 * cgroups and init, all online cgroups are initialized.
3401 */
3402 css_for_each_descendant_pre(css, &root_task_group.css) {
3403 struct task_group *tg = css_tg(css);
3404 struct scx_cgroup_init_args args = {
3405 .weight = tg->scx.weight,
3406 .bw_period_us = tg->scx.bw_period_us,
3407 .bw_quota_us = tg->scx.bw_quota_us,
3408 .bw_burst_us = tg->scx.bw_burst_us,
3409 };
3410
3411 if ((tg->scx.flags &
3412 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
3413 continue;
3414
3415 if (!sch->ops.cgroup_init) {
3416 tg->scx.flags |= SCX_TG_INITED;
3417 continue;
3418 }
3419
3420 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL,
3421 css->cgroup, &args);
3422 if (ret) {
3423 css_put(css);
3424 scx_error(sch, "ops.cgroup_init() failed (%d)", ret);
3425 return ret;
3426 }
3427 tg->scx.flags |= SCX_TG_INITED;
3428 }
3429
3430 WARN_ON_ONCE(scx_cgroup_enabled);
3431 scx_cgroup_enabled = true;
3432
3433 return 0;
3434 }
3435
3436 #else
scx_cgroup_exit(struct scx_sched * sch)3437 static void scx_cgroup_exit(struct scx_sched *sch) {}
scx_cgroup_init(struct scx_sched * sch)3438 static int scx_cgroup_init(struct scx_sched *sch) { return 0; }
3439 #endif
3440
3441
3442 /********************************************************************************
3443 * Sysfs interface and ops enable/disable.
3444 */
3445
3446 #define SCX_ATTR(_name) \
3447 static struct kobj_attribute scx_attr_##_name = { \
3448 .attr = { .name = __stringify(_name), .mode = 0444 }, \
3449 .show = scx_attr_##_name##_show, \
3450 }
3451
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3452 static ssize_t scx_attr_state_show(struct kobject *kobj,
3453 struct kobj_attribute *ka, char *buf)
3454 {
3455 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]);
3456 }
3457 SCX_ATTR(state);
3458
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3459 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
3460 struct kobj_attribute *ka, char *buf)
3461 {
3462 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
3463 }
3464 SCX_ATTR(switch_all);
3465
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3466 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
3467 struct kobj_attribute *ka, char *buf)
3468 {
3469 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
3470 }
3471 SCX_ATTR(nr_rejected);
3472
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3473 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
3474 struct kobj_attribute *ka, char *buf)
3475 {
3476 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
3477 }
3478 SCX_ATTR(hotplug_seq);
3479
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3480 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
3481 struct kobj_attribute *ka, char *buf)
3482 {
3483 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
3484 }
3485 SCX_ATTR(enable_seq);
3486
3487 static struct attribute *scx_global_attrs[] = {
3488 &scx_attr_state.attr,
3489 &scx_attr_switch_all.attr,
3490 &scx_attr_nr_rejected.attr,
3491 &scx_attr_hotplug_seq.attr,
3492 &scx_attr_enable_seq.attr,
3493 NULL,
3494 };
3495
3496 static const struct attribute_group scx_global_attr_group = {
3497 .attrs = scx_global_attrs,
3498 };
3499
3500 static void free_exit_info(struct scx_exit_info *ei);
3501
scx_sched_free_rcu_work(struct work_struct * work)3502 static void scx_sched_free_rcu_work(struct work_struct *work)
3503 {
3504 struct rcu_work *rcu_work = to_rcu_work(work);
3505 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work);
3506 struct rhashtable_iter rht_iter;
3507 struct scx_dispatch_q *dsq;
3508 int node;
3509
3510 irq_work_sync(&sch->error_irq_work);
3511 kthread_stop(sch->helper->task);
3512
3513 free_percpu(sch->pcpu);
3514
3515 for_each_node_state(node, N_POSSIBLE)
3516 kfree(sch->global_dsqs[node]);
3517 kfree(sch->global_dsqs);
3518
3519 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter);
3520 do {
3521 rhashtable_walk_start(&rht_iter);
3522
3523 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
3524 destroy_dsq(sch, dsq->id);
3525
3526 rhashtable_walk_stop(&rht_iter);
3527 } while (dsq == ERR_PTR(-EAGAIN));
3528 rhashtable_walk_exit(&rht_iter);
3529
3530 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
3531 free_exit_info(sch->exit_info);
3532 kfree(sch);
3533 }
3534
scx_kobj_release(struct kobject * kobj)3535 static void scx_kobj_release(struct kobject *kobj)
3536 {
3537 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3538
3539 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work);
3540 queue_rcu_work(system_unbound_wq, &sch->rcu_work);
3541 }
3542
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3543 static ssize_t scx_attr_ops_show(struct kobject *kobj,
3544 struct kobj_attribute *ka, char *buf)
3545 {
3546 return sysfs_emit(buf, "%s\n", scx_root->ops.name);
3547 }
3548 SCX_ATTR(ops);
3549
3550 #define scx_attr_event_show(buf, at, events, kind) ({ \
3551 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \
3552 })
3553
scx_attr_events_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3554 static ssize_t scx_attr_events_show(struct kobject *kobj,
3555 struct kobj_attribute *ka, char *buf)
3556 {
3557 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3558 struct scx_event_stats events;
3559 int at = 0;
3560
3561 scx_read_events(sch, &events);
3562 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK);
3563 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
3564 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST);
3565 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING);
3566 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
3567 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL);
3568 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION);
3569 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH);
3570 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE);
3571 return at;
3572 }
3573 SCX_ATTR(events);
3574
3575 static struct attribute *scx_sched_attrs[] = {
3576 &scx_attr_ops.attr,
3577 &scx_attr_events.attr,
3578 NULL,
3579 };
3580 ATTRIBUTE_GROUPS(scx_sched);
3581
3582 static const struct kobj_type scx_ktype = {
3583 .release = scx_kobj_release,
3584 .sysfs_ops = &kobj_sysfs_ops,
3585 .default_groups = scx_sched_groups,
3586 };
3587
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)3588 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
3589 {
3590 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name);
3591 }
3592
3593 static const struct kset_uevent_ops scx_uevent_ops = {
3594 .uevent = scx_uevent,
3595 };
3596
3597 /*
3598 * Used by sched_fork() and __setscheduler_prio() to pick the matching
3599 * sched_class. dl/rt are already handled.
3600 */
task_should_scx(int policy)3601 bool task_should_scx(int policy)
3602 {
3603 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING))
3604 return false;
3605 if (READ_ONCE(scx_switching_all))
3606 return true;
3607 return policy == SCHED_EXT;
3608 }
3609
scx_allow_ttwu_queue(const struct task_struct * p)3610 bool scx_allow_ttwu_queue(const struct task_struct *p)
3611 {
3612 struct scx_sched *sch;
3613
3614 if (!scx_enabled())
3615 return true;
3616
3617 sch = rcu_dereference_sched(scx_root);
3618 if (unlikely(!sch))
3619 return true;
3620
3621 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP)
3622 return true;
3623
3624 if (unlikely(p->sched_class != &ext_sched_class))
3625 return true;
3626
3627 return false;
3628 }
3629
3630 /**
3631 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler
3632 *
3633 * While there are various reasons why RCU CPU stalls can occur on a system
3634 * that may not be caused by the current BPF scheduler, try kicking out the
3635 * current scheduler in an attempt to recover the system to a good state before
3636 * issuing panics.
3637 */
scx_rcu_cpu_stall(void)3638 bool scx_rcu_cpu_stall(void)
3639 {
3640 struct scx_sched *sch;
3641
3642 rcu_read_lock();
3643
3644 sch = rcu_dereference(scx_root);
3645 if (unlikely(!sch)) {
3646 rcu_read_unlock();
3647 return false;
3648 }
3649
3650 switch (scx_enable_state()) {
3651 case SCX_ENABLING:
3652 case SCX_ENABLED:
3653 break;
3654 default:
3655 rcu_read_unlock();
3656 return false;
3657 }
3658
3659 scx_error(sch, "RCU CPU stall detected!");
3660 rcu_read_unlock();
3661
3662 return true;
3663 }
3664
3665 /**
3666 * scx_softlockup - sched_ext softlockup handler
3667 * @dur_s: number of seconds of CPU stuck due to soft lockup
3668 *
3669 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
3670 * live-lock the system by making many CPUs target the same DSQ to the point
3671 * where soft-lockup detection triggers. This function is called from
3672 * soft-lockup watchdog when the triggering point is close and tries to unjam
3673 * the system by enabling the breather and aborting the BPF scheduler.
3674 */
scx_softlockup(u32 dur_s)3675 void scx_softlockup(u32 dur_s)
3676 {
3677 struct scx_sched *sch;
3678
3679 rcu_read_lock();
3680
3681 sch = rcu_dereference(scx_root);
3682 if (unlikely(!sch))
3683 goto out_unlock;
3684
3685 switch (scx_enable_state()) {
3686 case SCX_ENABLING:
3687 case SCX_ENABLED:
3688 break;
3689 default:
3690 goto out_unlock;
3691 }
3692
3693 /* allow only one instance, cleared at the end of scx_bypass() */
3694 if (test_and_set_bit(0, &scx_in_softlockup))
3695 goto out_unlock;
3696
3697 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n",
3698 smp_processor_id(), dur_s, scx_root->ops.name);
3699
3700 /*
3701 * Some CPUs may be trapped in the dispatch paths. Enable breather
3702 * immediately; otherwise, we might even be able to get to scx_bypass().
3703 */
3704 atomic_inc(&scx_breather_depth);
3705
3706 scx_error(sch, "soft lockup - CPU#%d stuck for %us", smp_processor_id(), dur_s);
3707 out_unlock:
3708 rcu_read_unlock();
3709 }
3710
scx_clear_softlockup(void)3711 static void scx_clear_softlockup(void)
3712 {
3713 if (test_and_clear_bit(0, &scx_in_softlockup))
3714 atomic_dec(&scx_breather_depth);
3715 }
3716
3717 /**
3718 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress
3719 * @bypass: true for bypass, false for unbypass
3720 *
3721 * Bypassing guarantees that all runnable tasks make forward progress without
3722 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
3723 * be held by tasks that the BPF scheduler is forgetting to run, which
3724 * unfortunately also excludes toggling the static branches.
3725 *
3726 * Let's work around by overriding a couple ops and modifying behaviors based on
3727 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
3728 * to force global FIFO scheduling.
3729 *
3730 * - ops.select_cpu() is ignored and the default select_cpu() is used.
3731 *
3732 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
3733 * %SCX_OPS_ENQ_LAST is also ignored.
3734 *
3735 * - ops.dispatch() is ignored.
3736 *
3737 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
3738 * can't be trusted. Whenever a tick triggers, the running task is rotated to
3739 * the tail of the queue with core_sched_at touched.
3740 *
3741 * - pick_next_task() suppresses zero slice warning.
3742 *
3743 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM
3744 * operations.
3745 *
3746 * - scx_prio_less() reverts to the default core_sched_at order.
3747 */
scx_bypass(bool bypass)3748 static void scx_bypass(bool bypass)
3749 {
3750 static DEFINE_RAW_SPINLOCK(bypass_lock);
3751 static unsigned long bypass_timestamp;
3752 struct scx_sched *sch;
3753 unsigned long flags;
3754 int cpu;
3755
3756 raw_spin_lock_irqsave(&bypass_lock, flags);
3757 sch = rcu_dereference_bh(scx_root);
3758
3759 if (bypass) {
3760 scx_bypass_depth++;
3761 WARN_ON_ONCE(scx_bypass_depth <= 0);
3762 if (scx_bypass_depth != 1)
3763 goto unlock;
3764 bypass_timestamp = ktime_get_ns();
3765 if (sch)
3766 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1);
3767 } else {
3768 scx_bypass_depth--;
3769 WARN_ON_ONCE(scx_bypass_depth < 0);
3770 if (scx_bypass_depth != 0)
3771 goto unlock;
3772 if (sch)
3773 scx_add_event(sch, SCX_EV_BYPASS_DURATION,
3774 ktime_get_ns() - bypass_timestamp);
3775 }
3776
3777 atomic_inc(&scx_breather_depth);
3778
3779 /*
3780 * No task property is changing. We just need to make sure all currently
3781 * queued tasks are re-queued according to the new scx_rq_bypassing()
3782 * state. As an optimization, walk each rq's runnable_list instead of
3783 * the scx_tasks list.
3784 *
3785 * This function can't trust the scheduler and thus can't use
3786 * cpus_read_lock(). Walk all possible CPUs instead of online.
3787 */
3788 for_each_possible_cpu(cpu) {
3789 struct rq *rq = cpu_rq(cpu);
3790 struct task_struct *p, *n;
3791
3792 raw_spin_rq_lock(rq);
3793
3794 if (bypass) {
3795 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
3796 rq->scx.flags |= SCX_RQ_BYPASSING;
3797 } else {
3798 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
3799 rq->scx.flags &= ~SCX_RQ_BYPASSING;
3800 }
3801
3802 /*
3803 * We need to guarantee that no tasks are on the BPF scheduler
3804 * while bypassing. Either we see enabled or the enable path
3805 * sees scx_rq_bypassing() before moving tasks to SCX.
3806 */
3807 if (!scx_enabled()) {
3808 raw_spin_rq_unlock(rq);
3809 continue;
3810 }
3811
3812 /*
3813 * The use of list_for_each_entry_safe_reverse() is required
3814 * because each task is going to be removed from and added back
3815 * to the runnable_list during iteration. Because they're added
3816 * to the tail of the list, safe reverse iteration can still
3817 * visit all nodes.
3818 */
3819 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
3820 scx.runnable_node) {
3821 struct sched_enq_and_set_ctx ctx;
3822
3823 /* cycling deq/enq is enough, see the function comment */
3824 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
3825 sched_enq_and_set_task(&ctx);
3826 }
3827
3828 /* resched to restore ticks and idle state */
3829 if (cpu_online(cpu) || cpu == smp_processor_id())
3830 resched_curr(rq);
3831
3832 raw_spin_rq_unlock(rq);
3833 }
3834
3835 atomic_dec(&scx_breather_depth);
3836 unlock:
3837 raw_spin_unlock_irqrestore(&bypass_lock, flags);
3838 scx_clear_softlockup();
3839 }
3840
free_exit_info(struct scx_exit_info * ei)3841 static void free_exit_info(struct scx_exit_info *ei)
3842 {
3843 kvfree(ei->dump);
3844 kfree(ei->msg);
3845 kfree(ei->bt);
3846 kfree(ei);
3847 }
3848
alloc_exit_info(size_t exit_dump_len)3849 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
3850 {
3851 struct scx_exit_info *ei;
3852
3853 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
3854 if (!ei)
3855 return NULL;
3856
3857 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
3858 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
3859 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL);
3860
3861 if (!ei->bt || !ei->msg || !ei->dump) {
3862 free_exit_info(ei);
3863 return NULL;
3864 }
3865
3866 return ei;
3867 }
3868
scx_exit_reason(enum scx_exit_kind kind)3869 static const char *scx_exit_reason(enum scx_exit_kind kind)
3870 {
3871 switch (kind) {
3872 case SCX_EXIT_UNREG:
3873 return "unregistered from user space";
3874 case SCX_EXIT_UNREG_BPF:
3875 return "unregistered from BPF";
3876 case SCX_EXIT_UNREG_KERN:
3877 return "unregistered from the main kernel";
3878 case SCX_EXIT_SYSRQ:
3879 return "disabled by sysrq-S";
3880 case SCX_EXIT_ERROR:
3881 return "runtime error";
3882 case SCX_EXIT_ERROR_BPF:
3883 return "scx_bpf_error";
3884 case SCX_EXIT_ERROR_STALL:
3885 return "runnable task stall";
3886 default:
3887 return "<UNKNOWN>";
3888 }
3889 }
3890
free_kick_pseqs_rcu(struct rcu_head * rcu)3891 static void free_kick_pseqs_rcu(struct rcu_head *rcu)
3892 {
3893 struct scx_kick_pseqs *pseqs = container_of(rcu, struct scx_kick_pseqs, rcu);
3894
3895 kvfree(pseqs);
3896 }
3897
free_kick_pseqs(void)3898 static void free_kick_pseqs(void)
3899 {
3900 int cpu;
3901
3902 for_each_possible_cpu(cpu) {
3903 struct scx_kick_pseqs **pseqs = per_cpu_ptr(&scx_kick_pseqs, cpu);
3904 struct scx_kick_pseqs *to_free;
3905
3906 to_free = rcu_replace_pointer(*pseqs, NULL, true);
3907 if (to_free)
3908 call_rcu(&to_free->rcu, free_kick_pseqs_rcu);
3909 }
3910 }
3911
scx_disable_workfn(struct kthread_work * work)3912 static void scx_disable_workfn(struct kthread_work *work)
3913 {
3914 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work);
3915 struct scx_exit_info *ei = sch->exit_info;
3916 struct scx_task_iter sti;
3917 struct task_struct *p;
3918 int kind, cpu;
3919
3920 kind = atomic_read(&sch->exit_kind);
3921 while (true) {
3922 if (kind == SCX_EXIT_DONE) /* already disabled? */
3923 return;
3924 WARN_ON_ONCE(kind == SCX_EXIT_NONE);
3925 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE))
3926 break;
3927 }
3928 ei->kind = kind;
3929 ei->reason = scx_exit_reason(ei->kind);
3930
3931 /* guarantee forward progress by bypassing scx_ops */
3932 scx_bypass(true);
3933
3934 switch (scx_set_enable_state(SCX_DISABLING)) {
3935 case SCX_DISABLING:
3936 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
3937 break;
3938 case SCX_DISABLED:
3939 pr_warn("sched_ext: ops error detected without ops (%s)\n",
3940 sch->exit_info->msg);
3941 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
3942 goto done;
3943 default:
3944 break;
3945 }
3946
3947 /*
3948 * Here, every runnable task is guaranteed to make forward progress and
3949 * we can safely use blocking synchronization constructs. Actually
3950 * disable ops.
3951 */
3952 mutex_lock(&scx_enable_mutex);
3953
3954 static_branch_disable(&__scx_switched_all);
3955 WRITE_ONCE(scx_switching_all, false);
3956
3957 /*
3958 * Shut down cgroup support before tasks so that the cgroup attach path
3959 * doesn't race against scx_exit_task().
3960 */
3961 scx_cgroup_lock();
3962 scx_cgroup_exit(sch);
3963 scx_cgroup_unlock();
3964
3965 /*
3966 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
3967 * must be switched out and exited synchronously.
3968 */
3969 percpu_down_write(&scx_fork_rwsem);
3970
3971 scx_init_task_enabled = false;
3972
3973 scx_task_iter_start(&sti);
3974 while ((p = scx_task_iter_next_locked(&sti))) {
3975 const struct sched_class *old_class = p->sched_class;
3976 const struct sched_class *new_class =
3977 __setscheduler_class(p->policy, p->prio);
3978 struct sched_enq_and_set_ctx ctx;
3979
3980 if (old_class != new_class && p->se.sched_delayed)
3981 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
3982
3983 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
3984
3985 p->sched_class = new_class;
3986 check_class_changing(task_rq(p), p, old_class);
3987
3988 sched_enq_and_set_task(&ctx);
3989
3990 check_class_changed(task_rq(p), p, old_class, p->prio);
3991 scx_exit_task(p);
3992 }
3993 scx_task_iter_stop(&sti);
3994 percpu_up_write(&scx_fork_rwsem);
3995
3996 /*
3997 * Invalidate all the rq clocks to prevent getting outdated
3998 * rq clocks from a previous scx scheduler.
3999 */
4000 for_each_possible_cpu(cpu) {
4001 struct rq *rq = cpu_rq(cpu);
4002 scx_rq_clock_invalidate(rq);
4003 }
4004
4005 /* no task is on scx, turn off all the switches and flush in-progress calls */
4006 static_branch_disable(&__scx_enabled);
4007 bitmap_zero(sch->has_op, SCX_OPI_END);
4008 scx_idle_disable();
4009 synchronize_rcu();
4010
4011 if (ei->kind >= SCX_EXIT_ERROR) {
4012 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4013 sch->ops.name, ei->reason);
4014
4015 if (ei->msg[0] != '\0')
4016 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg);
4017 #ifdef CONFIG_STACKTRACE
4018 stack_trace_print(ei->bt, ei->bt_len, 2);
4019 #endif
4020 } else {
4021 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4022 sch->ops.name, ei->reason);
4023 }
4024
4025 if (sch->ops.exit)
4026 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei);
4027
4028 cancel_delayed_work_sync(&scx_watchdog_work);
4029
4030 /*
4031 * scx_root clearing must be inside cpus_read_lock(). See
4032 * handle_hotplug().
4033 */
4034 cpus_read_lock();
4035 RCU_INIT_POINTER(scx_root, NULL);
4036 cpus_read_unlock();
4037
4038 /*
4039 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs
4040 * could observe an object of the same name still in the hierarchy when
4041 * the next scheduler is loaded.
4042 */
4043 kobject_del(&sch->kobj);
4044
4045 free_percpu(scx_dsp_ctx);
4046 scx_dsp_ctx = NULL;
4047 scx_dsp_max_batch = 0;
4048 free_kick_pseqs();
4049
4050 mutex_unlock(&scx_enable_mutex);
4051
4052 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4053 done:
4054 scx_bypass(false);
4055 }
4056
scx_disable(enum scx_exit_kind kind)4057 static void scx_disable(enum scx_exit_kind kind)
4058 {
4059 int none = SCX_EXIT_NONE;
4060 struct scx_sched *sch;
4061
4062 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4063 kind = SCX_EXIT_ERROR;
4064
4065 rcu_read_lock();
4066 sch = rcu_dereference(scx_root);
4067 if (sch) {
4068 atomic_try_cmpxchg(&sch->exit_kind, &none, kind);
4069 kthread_queue_work(sch->helper, &sch->disable_work);
4070 }
4071 rcu_read_unlock();
4072 }
4073
dump_newline(struct seq_buf * s)4074 static void dump_newline(struct seq_buf *s)
4075 {
4076 trace_sched_ext_dump("");
4077
4078 /* @s may be zero sized and seq_buf triggers WARN if so */
4079 if (s->size)
4080 seq_buf_putc(s, '\n');
4081 }
4082
dump_line(struct seq_buf * s,const char * fmt,...)4083 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4084 {
4085 va_list args;
4086
4087 #ifdef CONFIG_TRACEPOINTS
4088 if (trace_sched_ext_dump_enabled()) {
4089 /* protected by scx_dump_state()::dump_lock */
4090 static char line_buf[SCX_EXIT_MSG_LEN];
4091
4092 va_start(args, fmt);
4093 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4094 va_end(args);
4095
4096 trace_sched_ext_dump(line_buf);
4097 }
4098 #endif
4099 /* @s may be zero sized and seq_buf triggers WARN if so */
4100 if (s->size) {
4101 va_start(args, fmt);
4102 seq_buf_vprintf(s, fmt, args);
4103 va_end(args);
4104
4105 seq_buf_putc(s, '\n');
4106 }
4107 }
4108
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)4109 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4110 const unsigned long *bt, unsigned int len)
4111 {
4112 unsigned int i;
4113
4114 for (i = 0; i < len; i++)
4115 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4116 }
4117
ops_dump_init(struct seq_buf * s,const char * prefix)4118 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4119 {
4120 struct scx_dump_data *dd = &scx_dump_data;
4121
4122 lockdep_assert_irqs_disabled();
4123
4124 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
4125 dd->first = true;
4126 dd->cursor = 0;
4127 dd->s = s;
4128 dd->prefix = prefix;
4129 }
4130
ops_dump_flush(void)4131 static void ops_dump_flush(void)
4132 {
4133 struct scx_dump_data *dd = &scx_dump_data;
4134 char *line = dd->buf.line;
4135
4136 if (!dd->cursor)
4137 return;
4138
4139 /*
4140 * There's something to flush and this is the first line. Insert a blank
4141 * line to distinguish ops dump.
4142 */
4143 if (dd->first) {
4144 dump_newline(dd->s);
4145 dd->first = false;
4146 }
4147
4148 /*
4149 * There may be multiple lines in $line. Scan and emit each line
4150 * separately.
4151 */
4152 while (true) {
4153 char *end = line;
4154 char c;
4155
4156 while (*end != '\n' && *end != '\0')
4157 end++;
4158
4159 /*
4160 * If $line overflowed, it may not have newline at the end.
4161 * Always emit with a newline.
4162 */
4163 c = *end;
4164 *end = '\0';
4165 dump_line(dd->s, "%s%s", dd->prefix, line);
4166 if (c == '\0')
4167 break;
4168
4169 /* move to the next line */
4170 end++;
4171 if (*end == '\0')
4172 break;
4173 line = end;
4174 }
4175
4176 dd->cursor = 0;
4177 }
4178
ops_dump_exit(void)4179 static void ops_dump_exit(void)
4180 {
4181 ops_dump_flush();
4182 scx_dump_data.cpu = -1;
4183 }
4184
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)4185 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4186 struct task_struct *p, char marker)
4187 {
4188 static unsigned long bt[SCX_EXIT_BT_LEN];
4189 struct scx_sched *sch = scx_root;
4190 char dsq_id_buf[19] = "(n/a)";
4191 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4192 unsigned int bt_len = 0;
4193
4194 if (p->scx.dsq)
4195 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4196 (unsigned long long)p->scx.dsq->id);
4197
4198 dump_newline(s);
4199 dump_line(s, " %c%c %s[%d] %+ldms",
4200 marker, task_state_to_char(p), p->comm, p->pid,
4201 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4202 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4203 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4204 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4205 ops_state >> SCX_OPSS_QSEQ_SHIFT);
4206 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s",
4207 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf);
4208 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u",
4209 p->scx.dsq_vtime, p->scx.slice, p->scx.weight);
4210 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr),
4211 p->migration_disabled);
4212
4213 if (SCX_HAS_OP(sch, dump_task)) {
4214 ops_dump_init(s, " ");
4215 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p);
4216 ops_dump_exit();
4217 }
4218
4219 #ifdef CONFIG_STACKTRACE
4220 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4221 #endif
4222 if (bt_len) {
4223 dump_newline(s);
4224 dump_stack_trace(s, " ", bt, bt_len);
4225 }
4226 }
4227
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)4228 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4229 {
4230 static DEFINE_SPINLOCK(dump_lock);
4231 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4232 struct scx_sched *sch = scx_root;
4233 struct scx_dump_ctx dctx = {
4234 .kind = ei->kind,
4235 .exit_code = ei->exit_code,
4236 .reason = ei->reason,
4237 .at_ns = ktime_get_ns(),
4238 .at_jiffies = jiffies,
4239 };
4240 struct seq_buf s;
4241 struct scx_event_stats events;
4242 unsigned long flags;
4243 char *buf;
4244 int cpu;
4245
4246 spin_lock_irqsave(&dump_lock, flags);
4247
4248 seq_buf_init(&s, ei->dump, dump_len);
4249
4250 if (ei->kind == SCX_EXIT_NONE) {
4251 dump_line(&s, "Debug dump triggered by %s", ei->reason);
4252 } else {
4253 dump_line(&s, "%s[%d] triggered exit kind %d:",
4254 current->comm, current->pid, ei->kind);
4255 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
4256 dump_newline(&s);
4257 dump_line(&s, "Backtrace:");
4258 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
4259 }
4260
4261 if (SCX_HAS_OP(sch, dump)) {
4262 ops_dump_init(&s, "");
4263 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx);
4264 ops_dump_exit();
4265 }
4266
4267 dump_newline(&s);
4268 dump_line(&s, "CPU states");
4269 dump_line(&s, "----------");
4270
4271 for_each_possible_cpu(cpu) {
4272 struct rq *rq = cpu_rq(cpu);
4273 struct rq_flags rf;
4274 struct task_struct *p;
4275 struct seq_buf ns;
4276 size_t avail, used;
4277 bool idle;
4278
4279 rq_lock(rq, &rf);
4280
4281 idle = list_empty(&rq->scx.runnable_list) &&
4282 rq->curr->sched_class == &idle_sched_class;
4283
4284 if (idle && !SCX_HAS_OP(sch, dump_cpu))
4285 goto next;
4286
4287 /*
4288 * We don't yet know whether ops.dump_cpu() will produce output
4289 * and we may want to skip the default CPU dump if it doesn't.
4290 * Use a nested seq_buf to generate the standard dump so that we
4291 * can decide whether to commit later.
4292 */
4293 avail = seq_buf_get_buf(&s, &buf);
4294 seq_buf_init(&ns, buf, avail);
4295
4296 dump_newline(&ns);
4297 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu",
4298 cpu, rq->scx.nr_running, rq->scx.flags,
4299 rq->scx.cpu_released, rq->scx.ops_qseq,
4300 rq->scx.pnt_seq);
4301 dump_line(&ns, " curr=%s[%d] class=%ps",
4302 rq->curr->comm, rq->curr->pid,
4303 rq->curr->sched_class);
4304 if (!cpumask_empty(rq->scx.cpus_to_kick))
4305 dump_line(&ns, " cpus_to_kick : %*pb",
4306 cpumask_pr_args(rq->scx.cpus_to_kick));
4307 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4308 dump_line(&ns, " idle_to_kick : %*pb",
4309 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4310 if (!cpumask_empty(rq->scx.cpus_to_preempt))
4311 dump_line(&ns, " cpus_to_preempt: %*pb",
4312 cpumask_pr_args(rq->scx.cpus_to_preempt));
4313 if (!cpumask_empty(rq->scx.cpus_to_wait))
4314 dump_line(&ns, " cpus_to_wait : %*pb",
4315 cpumask_pr_args(rq->scx.cpus_to_wait));
4316
4317 used = seq_buf_used(&ns);
4318 if (SCX_HAS_OP(sch, dump_cpu)) {
4319 ops_dump_init(&ns, " ");
4320 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL,
4321 &dctx, cpu, idle);
4322 ops_dump_exit();
4323 }
4324
4325 /*
4326 * If idle && nothing generated by ops.dump_cpu(), there's
4327 * nothing interesting. Skip.
4328 */
4329 if (idle && used == seq_buf_used(&ns))
4330 goto next;
4331
4332 /*
4333 * $s may already have overflowed when $ns was created. If so,
4334 * calling commit on it will trigger BUG.
4335 */
4336 if (avail) {
4337 seq_buf_commit(&s, seq_buf_used(&ns));
4338 if (seq_buf_has_overflowed(&ns))
4339 seq_buf_set_overflow(&s);
4340 }
4341
4342 if (rq->curr->sched_class == &ext_sched_class)
4343 scx_dump_task(&s, &dctx, rq->curr, '*');
4344
4345 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4346 scx_dump_task(&s, &dctx, p, ' ');
4347 next:
4348 rq_unlock(rq, &rf);
4349 }
4350
4351 dump_newline(&s);
4352 dump_line(&s, "Event counters");
4353 dump_line(&s, "--------------");
4354
4355 scx_read_events(sch, &events);
4356 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK);
4357 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
4358 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST);
4359 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING);
4360 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
4361 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL);
4362 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION);
4363 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH);
4364 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE);
4365
4366 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4367 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4368 trunc_marker, sizeof(trunc_marker));
4369
4370 spin_unlock_irqrestore(&dump_lock, flags);
4371 }
4372
scx_error_irq_workfn(struct irq_work * irq_work)4373 static void scx_error_irq_workfn(struct irq_work *irq_work)
4374 {
4375 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work);
4376 struct scx_exit_info *ei = sch->exit_info;
4377
4378 if (ei->kind >= SCX_EXIT_ERROR)
4379 scx_dump_state(ei, sch->ops.exit_dump_len);
4380
4381 kthread_queue_work(sch->helper, &sch->disable_work);
4382 }
4383
scx_vexit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,va_list args)4384 static void scx_vexit(struct scx_sched *sch,
4385 enum scx_exit_kind kind, s64 exit_code,
4386 const char *fmt, va_list args)
4387 {
4388 struct scx_exit_info *ei = sch->exit_info;
4389 int none = SCX_EXIT_NONE;
4390
4391 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind))
4392 return;
4393
4394 ei->exit_code = exit_code;
4395 #ifdef CONFIG_STACKTRACE
4396 if (kind >= SCX_EXIT_ERROR)
4397 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4398 #endif
4399 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4400
4401 /*
4402 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4403 * in scx_disable_workfn().
4404 */
4405 ei->kind = kind;
4406 ei->reason = scx_exit_reason(ei->kind);
4407
4408 irq_work_queue(&sch->error_irq_work);
4409 }
4410
alloc_kick_pseqs(void)4411 static int alloc_kick_pseqs(void)
4412 {
4413 int cpu;
4414
4415 /*
4416 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size
4417 * can exceed percpu allocator limits on large machines.
4418 */
4419 for_each_possible_cpu(cpu) {
4420 struct scx_kick_pseqs **pseqs = per_cpu_ptr(&scx_kick_pseqs, cpu);
4421 struct scx_kick_pseqs *new_pseqs;
4422
4423 WARN_ON_ONCE(rcu_access_pointer(*pseqs));
4424
4425 new_pseqs = kvzalloc_node(struct_size(new_pseqs, seqs, nr_cpu_ids),
4426 GFP_KERNEL, cpu_to_node(cpu));
4427 if (!new_pseqs) {
4428 free_kick_pseqs();
4429 return -ENOMEM;
4430 }
4431
4432 rcu_assign_pointer(*pseqs, new_pseqs);
4433 }
4434
4435 return 0;
4436 }
4437
scx_alloc_and_add_sched(struct sched_ext_ops * ops)4438 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops)
4439 {
4440 struct scx_sched *sch;
4441 int node, ret;
4442
4443 sch = kzalloc(sizeof(*sch), GFP_KERNEL);
4444 if (!sch)
4445 return ERR_PTR(-ENOMEM);
4446
4447 sch->exit_info = alloc_exit_info(ops->exit_dump_len);
4448 if (!sch->exit_info) {
4449 ret = -ENOMEM;
4450 goto err_free_sch;
4451 }
4452
4453 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params);
4454 if (ret < 0)
4455 goto err_free_ei;
4456
4457 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]),
4458 GFP_KERNEL);
4459 if (!sch->global_dsqs) {
4460 ret = -ENOMEM;
4461 goto err_free_hash;
4462 }
4463
4464 for_each_node_state(node, N_POSSIBLE) {
4465 struct scx_dispatch_q *dsq;
4466
4467 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4468 if (!dsq) {
4469 ret = -ENOMEM;
4470 goto err_free_gdsqs;
4471 }
4472
4473 init_dsq(dsq, SCX_DSQ_GLOBAL);
4474 sch->global_dsqs[node] = dsq;
4475 }
4476
4477 sch->pcpu = alloc_percpu(struct scx_sched_pcpu);
4478 if (!sch->pcpu)
4479 goto err_free_gdsqs;
4480
4481 sch->helper = kthread_run_worker(0, "sched_ext_helper");
4482 if (!sch->helper)
4483 goto err_free_pcpu;
4484 sched_set_fifo(sch->helper->task);
4485
4486 atomic_set(&sch->exit_kind, SCX_EXIT_NONE);
4487 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn);
4488 kthread_init_work(&sch->disable_work, scx_disable_workfn);
4489 sch->ops = *ops;
4490 ops->priv = sch;
4491
4492 sch->kobj.kset = scx_kset;
4493 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root");
4494 if (ret < 0)
4495 goto err_stop_helper;
4496
4497 return sch;
4498
4499 err_stop_helper:
4500 kthread_stop(sch->helper->task);
4501 err_free_pcpu:
4502 free_percpu(sch->pcpu);
4503 err_free_gdsqs:
4504 for_each_node_state(node, N_POSSIBLE)
4505 kfree(sch->global_dsqs[node]);
4506 kfree(sch->global_dsqs);
4507 err_free_hash:
4508 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
4509 err_free_ei:
4510 free_exit_info(sch->exit_info);
4511 err_free_sch:
4512 kfree(sch);
4513 return ERR_PTR(ret);
4514 }
4515
check_hotplug_seq(struct scx_sched * sch,const struct sched_ext_ops * ops)4516 static void check_hotplug_seq(struct scx_sched *sch,
4517 const struct sched_ext_ops *ops)
4518 {
4519 unsigned long long global_hotplug_seq;
4520
4521 /*
4522 * If a hotplug event has occurred between when a scheduler was
4523 * initialized, and when we were able to attach, exit and notify user
4524 * space about it.
4525 */
4526 if (ops->hotplug_seq) {
4527 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4528 if (ops->hotplug_seq != global_hotplug_seq) {
4529 scx_exit(sch, SCX_EXIT_UNREG_KERN,
4530 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4531 "expected hotplug seq %llu did not match actual %llu",
4532 ops->hotplug_seq, global_hotplug_seq);
4533 }
4534 }
4535 }
4536
validate_ops(struct scx_sched * sch,const struct sched_ext_ops * ops)4537 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops)
4538 {
4539 /*
4540 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4541 * ops.enqueue() callback isn't implemented.
4542 */
4543 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4544 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4545 return -EINVAL;
4546 }
4547
4548 /*
4549 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle
4550 * selection policy to be enabled.
4551 */
4552 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) &&
4553 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) {
4554 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled");
4555 return -EINVAL;
4556 }
4557
4558 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT)
4559 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n");
4560
4561 return 0;
4562 }
4563
scx_enable(struct sched_ext_ops * ops,struct bpf_link * link)4564 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4565 {
4566 struct scx_sched *sch;
4567 struct scx_task_iter sti;
4568 struct task_struct *p;
4569 unsigned long timeout;
4570 int i, cpu, ret;
4571
4572 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4573 cpu_possible_mask)) {
4574 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
4575 return -EINVAL;
4576 }
4577
4578 mutex_lock(&scx_enable_mutex);
4579
4580 if (scx_enable_state() != SCX_DISABLED) {
4581 ret = -EBUSY;
4582 goto err_unlock;
4583 }
4584
4585 ret = alloc_kick_pseqs();
4586 if (ret)
4587 goto err_unlock;
4588
4589 sch = scx_alloc_and_add_sched(ops);
4590 if (IS_ERR(sch)) {
4591 ret = PTR_ERR(sch);
4592 goto err_free_pseqs;
4593 }
4594
4595 /*
4596 * Transition to ENABLING and clear exit info to arm the disable path.
4597 * Failure triggers full disabling from here on.
4598 */
4599 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED);
4600 WARN_ON_ONCE(scx_root);
4601
4602 atomic_long_set(&scx_nr_rejected, 0);
4603
4604 for_each_possible_cpu(cpu)
4605 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
4606
4607 /*
4608 * Keep CPUs stable during enable so that the BPF scheduler can track
4609 * online CPUs by watching ->on/offline_cpu() after ->init().
4610 */
4611 cpus_read_lock();
4612
4613 /*
4614 * Make the scheduler instance visible. Must be inside cpus_read_lock().
4615 * See handle_hotplug().
4616 */
4617 rcu_assign_pointer(scx_root, sch);
4618
4619 scx_idle_enable(ops);
4620
4621 if (sch->ops.init) {
4622 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL);
4623 if (ret) {
4624 ret = ops_sanitize_err(sch, "init", ret);
4625 cpus_read_unlock();
4626 scx_error(sch, "ops.init() failed (%d)", ret);
4627 goto err_disable;
4628 }
4629 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED;
4630 }
4631
4632 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
4633 if (((void (**)(void))ops)[i])
4634 set_bit(i, sch->has_op);
4635
4636 check_hotplug_seq(sch, ops);
4637 scx_idle_update_selcpu_topology(ops);
4638
4639 cpus_read_unlock();
4640
4641 ret = validate_ops(sch, ops);
4642 if (ret)
4643 goto err_disable;
4644
4645 WARN_ON_ONCE(scx_dsp_ctx);
4646 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
4647 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
4648 scx_dsp_max_batch),
4649 __alignof__(struct scx_dsp_ctx));
4650 if (!scx_dsp_ctx) {
4651 ret = -ENOMEM;
4652 goto err_disable;
4653 }
4654
4655 if (ops->timeout_ms)
4656 timeout = msecs_to_jiffies(ops->timeout_ms);
4657 else
4658 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
4659
4660 WRITE_ONCE(scx_watchdog_timeout, timeout);
4661 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
4662 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
4663 scx_watchdog_timeout / 2);
4664
4665 /*
4666 * Once __scx_enabled is set, %current can be switched to SCX anytime.
4667 * This can lead to stalls as some BPF schedulers (e.g. userspace
4668 * scheduling) may not function correctly before all tasks are switched.
4669 * Init in bypass mode to guarantee forward progress.
4670 */
4671 scx_bypass(true);
4672
4673 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
4674 if (((void (**)(void))ops)[i])
4675 set_bit(i, sch->has_op);
4676
4677 if (sch->ops.cpu_acquire || sch->ops.cpu_release)
4678 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT;
4679
4680 /*
4681 * Lock out forks, cgroup on/offlining and moves before opening the
4682 * floodgate so that they don't wander into the operations prematurely.
4683 */
4684 percpu_down_write(&scx_fork_rwsem);
4685
4686 WARN_ON_ONCE(scx_init_task_enabled);
4687 scx_init_task_enabled = true;
4688
4689 /*
4690 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
4691 * preventing new tasks from being added. No need to exclude tasks
4692 * leaving as sched_ext_free() can handle both prepped and enabled
4693 * tasks. Prep all tasks first and then enable them with preemption
4694 * disabled.
4695 *
4696 * All cgroups should be initialized before scx_init_task() so that the
4697 * BPF scheduler can reliably track each task's cgroup membership from
4698 * scx_init_task(). Lock out cgroup on/offlining and task migrations
4699 * while tasks are being initialized so that scx_cgroup_can_attach()
4700 * never sees uninitialized tasks.
4701 */
4702 scx_cgroup_lock();
4703 ret = scx_cgroup_init(sch);
4704 if (ret)
4705 goto err_disable_unlock_all;
4706
4707 scx_task_iter_start(&sti);
4708 while ((p = scx_task_iter_next_locked(&sti))) {
4709 /*
4710 * @p may already be dead, have lost all its usages counts and
4711 * be waiting for RCU grace period before being freed. @p can't
4712 * be initialized for SCX in such cases and should be ignored.
4713 */
4714 if (!tryget_task_struct(p))
4715 continue;
4716
4717 scx_task_iter_unlock(&sti);
4718
4719 ret = scx_init_task(p, task_group(p), false);
4720 if (ret) {
4721 put_task_struct(p);
4722 scx_task_iter_stop(&sti);
4723 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]",
4724 ret, p->comm, p->pid);
4725 goto err_disable_unlock_all;
4726 }
4727
4728 scx_set_task_state(p, SCX_TASK_READY);
4729
4730 put_task_struct(p);
4731 }
4732 scx_task_iter_stop(&sti);
4733 scx_cgroup_unlock();
4734 percpu_up_write(&scx_fork_rwsem);
4735
4736 /*
4737 * All tasks are READY. It's safe to turn on scx_enabled() and switch
4738 * all eligible tasks.
4739 */
4740 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
4741 static_branch_enable(&__scx_enabled);
4742
4743 /*
4744 * We're fully committed and can't fail. The task READY -> ENABLED
4745 * transitions here are synchronized against sched_ext_free() through
4746 * scx_tasks_lock.
4747 */
4748 percpu_down_write(&scx_fork_rwsem);
4749 scx_task_iter_start(&sti);
4750 while ((p = scx_task_iter_next_locked(&sti))) {
4751 const struct sched_class *old_class = p->sched_class;
4752 const struct sched_class *new_class =
4753 __setscheduler_class(p->policy, p->prio);
4754 struct sched_enq_and_set_ctx ctx;
4755
4756 if (!tryget_task_struct(p))
4757 continue;
4758
4759 if (old_class != new_class && p->se.sched_delayed)
4760 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
4761
4762 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
4763
4764 p->scx.slice = SCX_SLICE_DFL;
4765 p->sched_class = new_class;
4766 check_class_changing(task_rq(p), p, old_class);
4767
4768 sched_enq_and_set_task(&ctx);
4769
4770 check_class_changed(task_rq(p), p, old_class, p->prio);
4771 put_task_struct(p);
4772 }
4773 scx_task_iter_stop(&sti);
4774 percpu_up_write(&scx_fork_rwsem);
4775
4776 scx_bypass(false);
4777
4778 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) {
4779 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE);
4780 goto err_disable;
4781 }
4782
4783 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
4784 static_branch_enable(&__scx_switched_all);
4785
4786 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
4787 sch->ops.name, scx_switched_all() ? "" : " (partial)");
4788 kobject_uevent(&sch->kobj, KOBJ_ADD);
4789 mutex_unlock(&scx_enable_mutex);
4790
4791 atomic_long_inc(&scx_enable_seq);
4792
4793 return 0;
4794
4795 err_free_pseqs:
4796 free_kick_pseqs();
4797 err_unlock:
4798 mutex_unlock(&scx_enable_mutex);
4799 return ret;
4800
4801 err_disable_unlock_all:
4802 scx_cgroup_unlock();
4803 percpu_up_write(&scx_fork_rwsem);
4804 /* we'll soon enter disable path, keep bypass on */
4805 err_disable:
4806 mutex_unlock(&scx_enable_mutex);
4807 /*
4808 * Returning an error code here would not pass all the error information
4809 * to userspace. Record errno using scx_error() for cases scx_error()
4810 * wasn't already invoked and exit indicating success so that the error
4811 * is notified through ops.exit() with all the details.
4812 *
4813 * Flush scx_disable_work to ensure that error is reported before init
4814 * completion. sch's base reference will be put by bpf_scx_unreg().
4815 */
4816 scx_error(sch, "scx_enable() failed (%d)", ret);
4817 kthread_flush_work(&sch->disable_work);
4818 return 0;
4819 }
4820
4821
4822 /********************************************************************************
4823 * bpf_struct_ops plumbing.
4824 */
4825 #include <linux/bpf_verifier.h>
4826 #include <linux/bpf.h>
4827 #include <linux/btf.h>
4828
4829 static const struct btf_type *task_struct_type;
4830
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)4831 static bool bpf_scx_is_valid_access(int off, int size,
4832 enum bpf_access_type type,
4833 const struct bpf_prog *prog,
4834 struct bpf_insn_access_aux *info)
4835 {
4836 if (type != BPF_READ)
4837 return false;
4838 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
4839 return false;
4840 if (off % size != 0)
4841 return false;
4842
4843 return btf_ctx_access(off, size, type, prog, info);
4844 }
4845
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)4846 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
4847 const struct bpf_reg_state *reg, int off,
4848 int size)
4849 {
4850 const struct btf_type *t;
4851
4852 t = btf_type_by_id(reg->btf, reg->btf_id);
4853 if (t == task_struct_type) {
4854 if (off >= offsetof(struct task_struct, scx.slice) &&
4855 off + size <= offsetofend(struct task_struct, scx.slice))
4856 return SCALAR_VALUE;
4857 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
4858 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
4859 return SCALAR_VALUE;
4860 if (off >= offsetof(struct task_struct, scx.disallow) &&
4861 off + size <= offsetofend(struct task_struct, scx.disallow))
4862 return SCALAR_VALUE;
4863 }
4864
4865 return -EACCES;
4866 }
4867
4868 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
4869 .get_func_proto = bpf_base_func_proto,
4870 .is_valid_access = bpf_scx_is_valid_access,
4871 .btf_struct_access = bpf_scx_btf_struct_access,
4872 };
4873
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)4874 static int bpf_scx_init_member(const struct btf_type *t,
4875 const struct btf_member *member,
4876 void *kdata, const void *udata)
4877 {
4878 const struct sched_ext_ops *uops = udata;
4879 struct sched_ext_ops *ops = kdata;
4880 u32 moff = __btf_member_bit_offset(t, member) / 8;
4881 int ret;
4882
4883 switch (moff) {
4884 case offsetof(struct sched_ext_ops, dispatch_max_batch):
4885 if (*(u32 *)(udata + moff) > INT_MAX)
4886 return -E2BIG;
4887 ops->dispatch_max_batch = *(u32 *)(udata + moff);
4888 return 1;
4889 case offsetof(struct sched_ext_ops, flags):
4890 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
4891 return -EINVAL;
4892 ops->flags = *(u64 *)(udata + moff);
4893 return 1;
4894 case offsetof(struct sched_ext_ops, name):
4895 ret = bpf_obj_name_cpy(ops->name, uops->name,
4896 sizeof(ops->name));
4897 if (ret < 0)
4898 return ret;
4899 if (ret == 0)
4900 return -EINVAL;
4901 return 1;
4902 case offsetof(struct sched_ext_ops, timeout_ms):
4903 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
4904 SCX_WATCHDOG_MAX_TIMEOUT)
4905 return -E2BIG;
4906 ops->timeout_ms = *(u32 *)(udata + moff);
4907 return 1;
4908 case offsetof(struct sched_ext_ops, exit_dump_len):
4909 ops->exit_dump_len =
4910 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
4911 return 1;
4912 case offsetof(struct sched_ext_ops, hotplug_seq):
4913 ops->hotplug_seq = *(u64 *)(udata + moff);
4914 return 1;
4915 }
4916
4917 return 0;
4918 }
4919
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)4920 static int bpf_scx_check_member(const struct btf_type *t,
4921 const struct btf_member *member,
4922 const struct bpf_prog *prog)
4923 {
4924 u32 moff = __btf_member_bit_offset(t, member) / 8;
4925
4926 switch (moff) {
4927 case offsetof(struct sched_ext_ops, init_task):
4928 #ifdef CONFIG_EXT_GROUP_SCHED
4929 case offsetof(struct sched_ext_ops, cgroup_init):
4930 case offsetof(struct sched_ext_ops, cgroup_exit):
4931 case offsetof(struct sched_ext_ops, cgroup_prep_move):
4932 #endif
4933 case offsetof(struct sched_ext_ops, cpu_online):
4934 case offsetof(struct sched_ext_ops, cpu_offline):
4935 case offsetof(struct sched_ext_ops, init):
4936 case offsetof(struct sched_ext_ops, exit):
4937 break;
4938 default:
4939 if (prog->sleepable)
4940 return -EINVAL;
4941 }
4942
4943 return 0;
4944 }
4945
bpf_scx_reg(void * kdata,struct bpf_link * link)4946 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
4947 {
4948 return scx_enable(kdata, link);
4949 }
4950
bpf_scx_unreg(void * kdata,struct bpf_link * link)4951 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
4952 {
4953 struct sched_ext_ops *ops = kdata;
4954 struct scx_sched *sch = ops->priv;
4955
4956 scx_disable(SCX_EXIT_UNREG);
4957 kthread_flush_work(&sch->disable_work);
4958 kobject_put(&sch->kobj);
4959 }
4960
bpf_scx_init(struct btf * btf)4961 static int bpf_scx_init(struct btf *btf)
4962 {
4963 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
4964
4965 return 0;
4966 }
4967
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)4968 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
4969 {
4970 /*
4971 * sched_ext does not support updating the actively-loaded BPF
4972 * scheduler, as registering a BPF scheduler can always fail if the
4973 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
4974 * etc. Similarly, we can always race with unregistration happening
4975 * elsewhere, such as with sysrq.
4976 */
4977 return -EOPNOTSUPP;
4978 }
4979
bpf_scx_validate(void * kdata)4980 static int bpf_scx_validate(void *kdata)
4981 {
4982 return 0;
4983 }
4984
sched_ext_ops__select_cpu(struct task_struct * p,s32 prev_cpu,u64 wake_flags)4985 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
sched_ext_ops__enqueue(struct task_struct * p,u64 enq_flags)4986 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dequeue(struct task_struct * p,u64 enq_flags)4987 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dispatch(s32 prev_cpu,struct task_struct * prev__nullable)4988 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
sched_ext_ops__tick(struct task_struct * p)4989 static void sched_ext_ops__tick(struct task_struct *p) {}
sched_ext_ops__runnable(struct task_struct * p,u64 enq_flags)4990 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__running(struct task_struct * p)4991 static void sched_ext_ops__running(struct task_struct *p) {}
sched_ext_ops__stopping(struct task_struct * p,bool runnable)4992 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
sched_ext_ops__quiescent(struct task_struct * p,u64 deq_flags)4993 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
sched_ext_ops__yield(struct task_struct * from,struct task_struct * to__nullable)4994 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
sched_ext_ops__core_sched_before(struct task_struct * a,struct task_struct * b)4995 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
sched_ext_ops__set_weight(struct task_struct * p,u32 weight)4996 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
sched_ext_ops__set_cpumask(struct task_struct * p,const struct cpumask * mask)4997 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
sched_ext_ops__update_idle(s32 cpu,bool idle)4998 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
sched_ext_ops__cpu_acquire(s32 cpu,struct scx_cpu_acquire_args * args)4999 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
sched_ext_ops__cpu_release(s32 cpu,struct scx_cpu_release_args * args)5000 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
sched_ext_ops__init_task(struct task_struct * p,struct scx_init_task_args * args)5001 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
sched_ext_ops__exit_task(struct task_struct * p,struct scx_exit_task_args * args)5002 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
sched_ext_ops__enable(struct task_struct * p)5003 static void sched_ext_ops__enable(struct task_struct *p) {}
sched_ext_ops__disable(struct task_struct * p)5004 static void sched_ext_ops__disable(struct task_struct *p) {}
5005 #ifdef CONFIG_EXT_GROUP_SCHED
sched_ext_ops__cgroup_init(struct cgroup * cgrp,struct scx_cgroup_init_args * args)5006 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
sched_ext_ops__cgroup_exit(struct cgroup * cgrp)5007 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
sched_ext_ops__cgroup_prep_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5008 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
sched_ext_ops__cgroup_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5009 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_cancel_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5010 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_set_weight(struct cgroup * cgrp,u32 weight)5011 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
sched_ext_ops__cgroup_set_bandwidth(struct cgroup * cgrp,u64 period_us,u64 quota_us,u64 burst_us)5012 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {}
5013 #endif
sched_ext_ops__cpu_online(s32 cpu)5014 static void sched_ext_ops__cpu_online(s32 cpu) {}
sched_ext_ops__cpu_offline(s32 cpu)5015 static void sched_ext_ops__cpu_offline(s32 cpu) {}
sched_ext_ops__init(void)5016 static s32 sched_ext_ops__init(void) { return -EINVAL; }
sched_ext_ops__exit(struct scx_exit_info * info)5017 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
sched_ext_ops__dump(struct scx_dump_ctx * ctx)5018 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
sched_ext_ops__dump_cpu(struct scx_dump_ctx * ctx,s32 cpu,bool idle)5019 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
sched_ext_ops__dump_task(struct scx_dump_ctx * ctx,struct task_struct * p)5020 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5021
5022 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5023 .select_cpu = sched_ext_ops__select_cpu,
5024 .enqueue = sched_ext_ops__enqueue,
5025 .dequeue = sched_ext_ops__dequeue,
5026 .dispatch = sched_ext_ops__dispatch,
5027 .tick = sched_ext_ops__tick,
5028 .runnable = sched_ext_ops__runnable,
5029 .running = sched_ext_ops__running,
5030 .stopping = sched_ext_ops__stopping,
5031 .quiescent = sched_ext_ops__quiescent,
5032 .yield = sched_ext_ops__yield,
5033 .core_sched_before = sched_ext_ops__core_sched_before,
5034 .set_weight = sched_ext_ops__set_weight,
5035 .set_cpumask = sched_ext_ops__set_cpumask,
5036 .update_idle = sched_ext_ops__update_idle,
5037 .cpu_acquire = sched_ext_ops__cpu_acquire,
5038 .cpu_release = sched_ext_ops__cpu_release,
5039 .init_task = sched_ext_ops__init_task,
5040 .exit_task = sched_ext_ops__exit_task,
5041 .enable = sched_ext_ops__enable,
5042 .disable = sched_ext_ops__disable,
5043 #ifdef CONFIG_EXT_GROUP_SCHED
5044 .cgroup_init = sched_ext_ops__cgroup_init,
5045 .cgroup_exit = sched_ext_ops__cgroup_exit,
5046 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move,
5047 .cgroup_move = sched_ext_ops__cgroup_move,
5048 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move,
5049 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight,
5050 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth,
5051 #endif
5052 .cpu_online = sched_ext_ops__cpu_online,
5053 .cpu_offline = sched_ext_ops__cpu_offline,
5054 .init = sched_ext_ops__init,
5055 .exit = sched_ext_ops__exit,
5056 .dump = sched_ext_ops__dump,
5057 .dump_cpu = sched_ext_ops__dump_cpu,
5058 .dump_task = sched_ext_ops__dump_task,
5059 };
5060
5061 static struct bpf_struct_ops bpf_sched_ext_ops = {
5062 .verifier_ops = &bpf_scx_verifier_ops,
5063 .reg = bpf_scx_reg,
5064 .unreg = bpf_scx_unreg,
5065 .check_member = bpf_scx_check_member,
5066 .init_member = bpf_scx_init_member,
5067 .init = bpf_scx_init,
5068 .update = bpf_scx_update,
5069 .validate = bpf_scx_validate,
5070 .name = "sched_ext_ops",
5071 .owner = THIS_MODULE,
5072 .cfi_stubs = &__bpf_ops_sched_ext_ops
5073 };
5074
5075
5076 /********************************************************************************
5077 * System integration and init.
5078 */
5079
sysrq_handle_sched_ext_reset(u8 key)5080 static void sysrq_handle_sched_ext_reset(u8 key)
5081 {
5082 scx_disable(SCX_EXIT_SYSRQ);
5083 }
5084
5085 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5086 .handler = sysrq_handle_sched_ext_reset,
5087 .help_msg = "reset-sched-ext(S)",
5088 .action_msg = "Disable sched_ext and revert all tasks to CFS",
5089 .enable_mask = SYSRQ_ENABLE_RTNICE,
5090 };
5091
sysrq_handle_sched_ext_dump(u8 key)5092 static void sysrq_handle_sched_ext_dump(u8 key)
5093 {
5094 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5095
5096 if (scx_enabled())
5097 scx_dump_state(&ei, 0);
5098 }
5099
5100 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5101 .handler = sysrq_handle_sched_ext_dump,
5102 .help_msg = "dump-sched-ext(D)",
5103 .action_msg = "Trigger sched_ext debug dump",
5104 .enable_mask = SYSRQ_ENABLE_RTNICE,
5105 };
5106
can_skip_idle_kick(struct rq * rq)5107 static bool can_skip_idle_kick(struct rq *rq)
5108 {
5109 lockdep_assert_rq_held(rq);
5110
5111 /*
5112 * We can skip idle kicking if @rq is going to go through at least one
5113 * full SCX scheduling cycle before going idle. Just checking whether
5114 * curr is not idle is insufficient because we could be racing
5115 * balance_one() trying to pull the next task from a remote rq, which
5116 * may fail, and @rq may become idle afterwards.
5117 *
5118 * The race window is small and we don't and can't guarantee that @rq is
5119 * only kicked while idle anyway. Skip only when sure.
5120 */
5121 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5122 }
5123
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * pseqs)5124 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs)
5125 {
5126 struct rq *rq = cpu_rq(cpu);
5127 struct scx_rq *this_scx = &this_rq->scx;
5128 bool should_wait = false;
5129 unsigned long flags;
5130
5131 raw_spin_rq_lock_irqsave(rq, flags);
5132
5133 /*
5134 * During CPU hotplug, a CPU may depend on kicking itself to make
5135 * forward progress. Allow kicking self regardless of online state.
5136 */
5137 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) {
5138 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5139 if (rq->curr->sched_class == &ext_sched_class)
5140 rq->curr->scx.slice = 0;
5141 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5142 }
5143
5144 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5145 pseqs[cpu] = rq->scx.pnt_seq;
5146 should_wait = true;
5147 }
5148
5149 resched_curr(rq);
5150 } else {
5151 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5152 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5153 }
5154
5155 raw_spin_rq_unlock_irqrestore(rq, flags);
5156
5157 return should_wait;
5158 }
5159
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)5160 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5161 {
5162 struct rq *rq = cpu_rq(cpu);
5163 unsigned long flags;
5164
5165 raw_spin_rq_lock_irqsave(rq, flags);
5166
5167 if (!can_skip_idle_kick(rq) &&
5168 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5169 resched_curr(rq);
5170
5171 raw_spin_rq_unlock_irqrestore(rq, flags);
5172 }
5173
kick_cpus_irq_workfn(struct irq_work * irq_work)5174 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5175 {
5176 struct rq *this_rq = this_rq();
5177 struct scx_rq *this_scx = &this_rq->scx;
5178 struct scx_kick_pseqs __rcu *pseqs_pcpu = __this_cpu_read(scx_kick_pseqs);
5179 bool should_wait = false;
5180 unsigned long *pseqs;
5181 s32 cpu;
5182
5183 if (unlikely(!pseqs_pcpu)) {
5184 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_pseqs");
5185 return;
5186 }
5187
5188 pseqs = rcu_dereference_bh(pseqs_pcpu)->seqs;
5189
5190 for_each_cpu(cpu, this_scx->cpus_to_kick) {
5191 should_wait |= kick_one_cpu(cpu, this_rq, pseqs);
5192 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5193 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5194 }
5195
5196 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5197 kick_one_cpu_if_idle(cpu, this_rq);
5198 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5199 }
5200
5201 if (!should_wait)
5202 return;
5203
5204 for_each_cpu(cpu, this_scx->cpus_to_wait) {
5205 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq;
5206
5207 if (cpu != cpu_of(this_rq)) {
5208 /*
5209 * Pairs with smp_store_release() issued by this CPU in
5210 * switch_class() on the resched path.
5211 *
5212 * We busy-wait here to guarantee that no other task can
5213 * be scheduled on our core before the target CPU has
5214 * entered the resched path.
5215 */
5216 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu])
5217 cpu_relax();
5218 }
5219
5220 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5221 }
5222 }
5223
5224 /**
5225 * print_scx_info - print out sched_ext scheduler state
5226 * @log_lvl: the log level to use when printing
5227 * @p: target task
5228 *
5229 * If a sched_ext scheduler is enabled, print the name and state of the
5230 * scheduler. If @p is on sched_ext, print further information about the task.
5231 *
5232 * This function can be safely called on any task as long as the task_struct
5233 * itself is accessible. While safe, this function isn't synchronized and may
5234 * print out mixups or garbages of limited length.
5235 */
print_scx_info(const char * log_lvl,struct task_struct * p)5236 void print_scx_info(const char *log_lvl, struct task_struct *p)
5237 {
5238 struct scx_sched *sch = scx_root;
5239 enum scx_enable_state state = scx_enable_state();
5240 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5241 char runnable_at_buf[22] = "?";
5242 struct sched_class *class;
5243 unsigned long runnable_at;
5244
5245 if (state == SCX_DISABLED)
5246 return;
5247
5248 /*
5249 * Carefully check if the task was running on sched_ext, and then
5250 * carefully copy the time it's been runnable, and its state.
5251 */
5252 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5253 class != &ext_sched_class) {
5254 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name,
5255 scx_enable_state_str[state], all);
5256 return;
5257 }
5258
5259 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5260 sizeof(runnable_at)))
5261 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5262 jiffies_delta_msecs(runnable_at, jiffies));
5263
5264 /* print everything onto one line to conserve console space */
5265 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5266 log_lvl, sch->ops.name, scx_enable_state_str[state], all,
5267 runnable_at_buf);
5268 }
5269
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)5270 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5271 {
5272 /*
5273 * SCX schedulers often have userspace components which are sometimes
5274 * involved in critial scheduling paths. PM operations involve freezing
5275 * userspace which can lead to scheduling misbehaviors including stalls.
5276 * Let's bypass while PM operations are in progress.
5277 */
5278 switch (event) {
5279 case PM_HIBERNATION_PREPARE:
5280 case PM_SUSPEND_PREPARE:
5281 case PM_RESTORE_PREPARE:
5282 scx_bypass(true);
5283 break;
5284 case PM_POST_HIBERNATION:
5285 case PM_POST_SUSPEND:
5286 case PM_POST_RESTORE:
5287 scx_bypass(false);
5288 break;
5289 }
5290
5291 return NOTIFY_OK;
5292 }
5293
5294 static struct notifier_block scx_pm_notifier = {
5295 .notifier_call = scx_pm_handler,
5296 };
5297
init_sched_ext_class(void)5298 void __init init_sched_ext_class(void)
5299 {
5300 s32 cpu, v;
5301
5302 /*
5303 * The following is to prevent the compiler from optimizing out the enum
5304 * definitions so that BPF scheduler implementations can use them
5305 * through the generated vmlinux.h.
5306 */
5307 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5308 SCX_TG_ONLINE);
5309
5310 scx_idle_init_masks();
5311
5312 for_each_possible_cpu(cpu) {
5313 struct rq *rq = cpu_rq(cpu);
5314 int n = cpu_to_node(cpu);
5315
5316 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5317 INIT_LIST_HEAD(&rq->scx.runnable_list);
5318 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5319
5320 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n));
5321 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n));
5322 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n));
5323 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n));
5324 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn);
5325 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn);
5326
5327 if (cpu_online(cpu))
5328 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5329 }
5330
5331 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5332 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5333 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5334 }
5335
5336
5337 /********************************************************************************
5338 * Helpers that can be called from the BPF scheduler.
5339 */
scx_dsq_insert_preamble(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)5340 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p,
5341 u64 enq_flags)
5342 {
5343 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5344 return false;
5345
5346 lockdep_assert_irqs_disabled();
5347
5348 if (unlikely(!p)) {
5349 scx_error(sch, "called with NULL task");
5350 return false;
5351 }
5352
5353 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5354 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags);
5355 return false;
5356 }
5357
5358 return true;
5359 }
5360
scx_dsq_insert_commit(struct scx_sched * sch,struct task_struct * p,u64 dsq_id,u64 enq_flags)5361 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p,
5362 u64 dsq_id, u64 enq_flags)
5363 {
5364 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5365 struct task_struct *ddsp_task;
5366
5367 ddsp_task = __this_cpu_read(direct_dispatch_task);
5368 if (ddsp_task) {
5369 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags);
5370 return;
5371 }
5372
5373 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5374 scx_error(sch, "dispatch buffer overflow");
5375 return;
5376 }
5377
5378 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5379 .task = p,
5380 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5381 .dsq_id = dsq_id,
5382 .enq_flags = enq_flags,
5383 };
5384 }
5385
5386 __bpf_kfunc_start_defs();
5387
5388 /**
5389 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
5390 * @p: task_struct to insert
5391 * @dsq_id: DSQ to insert into
5392 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5393 * @enq_flags: SCX_ENQ_*
5394 *
5395 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
5396 * call this function spuriously. Can be called from ops.enqueue(),
5397 * ops.select_cpu(), and ops.dispatch().
5398 *
5399 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5400 * and @p must match the task being enqueued.
5401 *
5402 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5403 * will be directly inserted into the corresponding dispatch queue after
5404 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
5405 * inserted into the local DSQ of the CPU returned by ops.select_cpu().
5406 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5407 * task is inserted.
5408 *
5409 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5410 * and this function can be called upto ops.dispatch_max_batch times to insert
5411 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5412 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the
5413 * counter.
5414 *
5415 * This function doesn't have any locking restrictions and may be called under
5416 * BPF locks (in the future when BPF introduces more flexible locking).
5417 *
5418 * @p is allowed to run for @slice. The scheduling path is triggered on slice
5419 * exhaustion. If zero, the current residual slice is maintained. If
5420 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5421 * scx_bpf_kick_cpu() to trigger scheduling.
5422 */
scx_bpf_dsq_insert(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)5423 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice,
5424 u64 enq_flags)
5425 {
5426 struct scx_sched *sch;
5427
5428 guard(rcu)();
5429 sch = rcu_dereference(scx_root);
5430 if (unlikely(!sch))
5431 return;
5432
5433 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5434 return;
5435
5436 if (slice)
5437 p->scx.slice = slice;
5438 else
5439 p->scx.slice = p->scx.slice ?: 1;
5440
5441 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags);
5442 }
5443
5444 /**
5445 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ
5446 * @p: task_struct to insert
5447 * @dsq_id: DSQ to insert into
5448 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5449 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
5450 * @enq_flags: SCX_ENQ_*
5451 *
5452 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id.
5453 * Tasks queued into the priority queue are ordered by @vtime. All other aspects
5454 * are identical to scx_bpf_dsq_insert().
5455 *
5456 * @vtime ordering is according to time_before64() which considers wrapping. A
5457 * numerically larger vtime may indicate an earlier position in the ordering and
5458 * vice-versa.
5459 *
5460 * A DSQ can only be used as a FIFO or priority queue at any given time and this
5461 * function must not be called on a DSQ which already has one or more FIFO tasks
5462 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
5463 * SCX_DSQ_GLOBAL) cannot be used as priority queues.
5464 */
scx_bpf_dsq_insert_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)5465 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
5466 u64 slice, u64 vtime, u64 enq_flags)
5467 {
5468 struct scx_sched *sch;
5469
5470 guard(rcu)();
5471 sch = rcu_dereference(scx_root);
5472 if (unlikely(!sch))
5473 return;
5474
5475 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5476 return;
5477
5478 if (slice)
5479 p->scx.slice = slice;
5480 else
5481 p->scx.slice = p->scx.slice ?: 1;
5482
5483 p->scx.dsq_vtime = vtime;
5484
5485 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5486 }
5487
5488 __bpf_kfunc_end_defs();
5489
5490 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
5491 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
5492 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
5493 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
5494
5495 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
5496 .owner = THIS_MODULE,
5497 .set = &scx_kfunc_ids_enqueue_dispatch,
5498 };
5499
scx_dsq_move(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)5500 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
5501 struct task_struct *p, u64 dsq_id, u64 enq_flags)
5502 {
5503 struct scx_sched *sch = scx_root;
5504 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
5505 struct rq *this_rq, *src_rq, *locked_rq;
5506 bool dispatched = false;
5507 bool in_balance;
5508 unsigned long flags;
5509
5510 if (!scx_kf_allowed_if_unlocked() &&
5511 !scx_kf_allowed(sch, SCX_KF_DISPATCH))
5512 return false;
5513
5514 /*
5515 * Can be called from either ops.dispatch() locking this_rq() or any
5516 * context where no rq lock is held. If latter, lock @p's task_rq which
5517 * we'll likely need anyway.
5518 */
5519 src_rq = task_rq(p);
5520
5521 local_irq_save(flags);
5522 this_rq = this_rq();
5523 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
5524
5525 if (in_balance) {
5526 if (this_rq != src_rq) {
5527 raw_spin_rq_unlock(this_rq);
5528 raw_spin_rq_lock(src_rq);
5529 }
5530 } else {
5531 raw_spin_rq_lock(src_rq);
5532 }
5533
5534 /*
5535 * If the BPF scheduler keeps calling this function repeatedly, it can
5536 * cause similar live-lock conditions as consume_dispatch_q(). Insert a
5537 * breather if necessary.
5538 */
5539 scx_breather(src_rq);
5540
5541 locked_rq = src_rq;
5542 raw_spin_lock(&src_dsq->lock);
5543
5544 /*
5545 * Did someone else get to it? @p could have already left $src_dsq, got
5546 * re-enqueud, or be in the process of being consumed by someone else.
5547 */
5548 if (unlikely(p->scx.dsq != src_dsq ||
5549 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
5550 p->scx.holding_cpu >= 0) ||
5551 WARN_ON_ONCE(src_rq != task_rq(p))) {
5552 raw_spin_unlock(&src_dsq->lock);
5553 goto out;
5554 }
5555
5556 /* @p is still on $src_dsq and stable, determine the destination */
5557 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p);
5558
5559 /*
5560 * Apply vtime and slice updates before moving so that the new time is
5561 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
5562 * this is safe as we're locking it.
5563 */
5564 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
5565 p->scx.dsq_vtime = kit->vtime;
5566 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
5567 p->scx.slice = kit->slice;
5568
5569 /* execute move */
5570 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq);
5571 dispatched = true;
5572 out:
5573 if (in_balance) {
5574 if (this_rq != locked_rq) {
5575 raw_spin_rq_unlock(locked_rq);
5576 raw_spin_rq_lock(this_rq);
5577 }
5578 } else {
5579 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
5580 }
5581
5582 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
5583 __SCX_DSQ_ITER_HAS_VTIME);
5584 return dispatched;
5585 }
5586
5587 __bpf_kfunc_start_defs();
5588
5589 /**
5590 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
5591 *
5592 * Can only be called from ops.dispatch().
5593 */
scx_bpf_dispatch_nr_slots(void)5594 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
5595 {
5596 struct scx_sched *sch;
5597
5598 guard(rcu)();
5599
5600 sch = rcu_dereference(scx_root);
5601 if (unlikely(!sch))
5602 return 0;
5603
5604 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5605 return 0;
5606
5607 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
5608 }
5609
5610 /**
5611 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
5612 *
5613 * Cancel the latest dispatch. Can be called multiple times to cancel further
5614 * dispatches. Can only be called from ops.dispatch().
5615 */
scx_bpf_dispatch_cancel(void)5616 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
5617 {
5618 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5619 struct scx_sched *sch;
5620
5621 guard(rcu)();
5622
5623 sch = rcu_dereference(scx_root);
5624 if (unlikely(!sch))
5625 return;
5626
5627 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5628 return;
5629
5630 if (dspc->cursor > 0)
5631 dspc->cursor--;
5632 else
5633 scx_error(sch, "dispatch buffer underflow");
5634 }
5635
5636 /**
5637 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
5638 * @dsq_id: DSQ to move task from
5639 *
5640 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
5641 * local DSQ for execution. Can only be called from ops.dispatch().
5642 *
5643 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
5644 * before trying to move from the specified DSQ. It may also grab rq locks and
5645 * thus can't be called under any BPF locks.
5646 *
5647 * Returns %true if a task has been moved, %false if there isn't any task to
5648 * move.
5649 */
scx_bpf_dsq_move_to_local(u64 dsq_id)5650 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
5651 {
5652 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5653 struct scx_dispatch_q *dsq;
5654 struct scx_sched *sch;
5655
5656 guard(rcu)();
5657
5658 sch = rcu_dereference(scx_root);
5659 if (unlikely(!sch))
5660 return false;
5661
5662 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5663 return false;
5664
5665 flush_dispatch_buf(sch, dspc->rq);
5666
5667 dsq = find_user_dsq(sch, dsq_id);
5668 if (unlikely(!dsq)) {
5669 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id);
5670 return false;
5671 }
5672
5673 if (consume_dispatch_q(sch, dspc->rq, dsq)) {
5674 /*
5675 * A successfully consumed task can be dequeued before it starts
5676 * running while the CPU is trying to migrate other dispatched
5677 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
5678 * local DSQ.
5679 */
5680 dspc->nr_tasks++;
5681 return true;
5682 } else {
5683 return false;
5684 }
5685 }
5686
5687 /**
5688 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
5689 * @it__iter: DSQ iterator in progress
5690 * @slice: duration the moved task can run for in nsecs
5691 *
5692 * Override the slice of the next task that will be moved from @it__iter using
5693 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
5694 * slice duration is kept.
5695 */
scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)5696 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
5697 u64 slice)
5698 {
5699 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
5700
5701 kit->slice = slice;
5702 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
5703 }
5704
5705 /**
5706 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
5707 * @it__iter: DSQ iterator in progress
5708 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
5709 *
5710 * Override the vtime of the next task that will be moved from @it__iter using
5711 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
5712 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
5713 * override is ignored and cleared.
5714 */
scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)5715 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
5716 u64 vtime)
5717 {
5718 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
5719
5720 kit->vtime = vtime;
5721 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
5722 }
5723
5724 /**
5725 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
5726 * @it__iter: DSQ iterator in progress
5727 * @p: task to transfer
5728 * @dsq_id: DSQ to move @p to
5729 * @enq_flags: SCX_ENQ_*
5730 *
5731 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
5732 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
5733 * be the destination.
5734 *
5735 * For the transfer to be successful, @p must still be on the DSQ and have been
5736 * queued before the DSQ iteration started. This function doesn't care whether
5737 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
5738 * been queued before the iteration started.
5739 *
5740 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
5741 *
5742 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
5743 * lock (e.g. BPF timers or SYSCALL programs).
5744 *
5745 * Returns %true if @p has been consumed, %false if @p had already been consumed
5746 * or dequeued.
5747 */
scx_bpf_dsq_move(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)5748 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
5749 struct task_struct *p, u64 dsq_id,
5750 u64 enq_flags)
5751 {
5752 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
5753 p, dsq_id, enq_flags);
5754 }
5755
5756 /**
5757 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
5758 * @it__iter: DSQ iterator in progress
5759 * @p: task to transfer
5760 * @dsq_id: DSQ to move @p to
5761 * @enq_flags: SCX_ENQ_*
5762 *
5763 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
5764 * priority queue of the DSQ specified by @dsq_id. The destination must be a
5765 * user DSQ as only user DSQs support priority queue.
5766 *
5767 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
5768 * and scx_bpf_dsq_move_set_vtime() to update.
5769 *
5770 * All other aspects are identical to scx_bpf_dsq_move(). See
5771 * scx_bpf_dsq_insert_vtime() for more information on @vtime.
5772 */
scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)5773 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
5774 struct task_struct *p, u64 dsq_id,
5775 u64 enq_flags)
5776 {
5777 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
5778 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5779 }
5780
5781 __bpf_kfunc_end_defs();
5782
5783 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
5784 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
5785 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
5786 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
5787 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
5788 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
5789 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
5790 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
5791 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
5792
5793 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
5794 .owner = THIS_MODULE,
5795 .set = &scx_kfunc_ids_dispatch,
5796 };
5797
5798 __bpf_kfunc_start_defs();
5799
5800 /**
5801 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
5802 *
5803 * Iterate over all of the tasks currently enqueued on the local DSQ of the
5804 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
5805 * processed tasks. Can only be called from ops.cpu_release().
5806 */
scx_bpf_reenqueue_local(void)5807 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
5808 {
5809 struct scx_sched *sch;
5810 LIST_HEAD(tasks);
5811 u32 nr_enqueued = 0;
5812 struct rq *rq;
5813 struct task_struct *p, *n;
5814
5815 guard(rcu)();
5816 sch = rcu_dereference(scx_root);
5817 if (unlikely(!sch))
5818 return 0;
5819
5820 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE))
5821 return 0;
5822
5823 rq = cpu_rq(smp_processor_id());
5824 lockdep_assert_rq_held(rq);
5825
5826 /*
5827 * The BPF scheduler may choose to dispatch tasks back to
5828 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
5829 * first to avoid processing the same tasks repeatedly.
5830 */
5831 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
5832 scx.dsq_list.node) {
5833 /*
5834 * If @p is being migrated, @p's current CPU may not agree with
5835 * its allowed CPUs and the migration_cpu_stop is about to
5836 * deactivate and re-activate @p anyway. Skip re-enqueueing.
5837 *
5838 * While racing sched property changes may also dequeue and
5839 * re-enqueue a migrating task while its current CPU and allowed
5840 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
5841 * the current local DSQ for running tasks and thus are not
5842 * visible to the BPF scheduler.
5843 */
5844 if (p->migration_pending)
5845 continue;
5846
5847 dispatch_dequeue(rq, p);
5848 list_add_tail(&p->scx.dsq_list.node, &tasks);
5849 }
5850
5851 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
5852 list_del_init(&p->scx.dsq_list.node);
5853 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
5854 nr_enqueued++;
5855 }
5856
5857 return nr_enqueued;
5858 }
5859
5860 __bpf_kfunc_end_defs();
5861
5862 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
5863 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
5864 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
5865
5866 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
5867 .owner = THIS_MODULE,
5868 .set = &scx_kfunc_ids_cpu_release,
5869 };
5870
5871 __bpf_kfunc_start_defs();
5872
5873 /**
5874 * scx_bpf_create_dsq - Create a custom DSQ
5875 * @dsq_id: DSQ to create
5876 * @node: NUMA node to allocate from
5877 *
5878 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
5879 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
5880 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)5881 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
5882 {
5883 struct scx_dispatch_q *dsq;
5884 struct scx_sched *sch;
5885 s32 ret;
5886
5887 if (unlikely(node >= (int)nr_node_ids ||
5888 (node < 0 && node != NUMA_NO_NODE)))
5889 return -EINVAL;
5890
5891 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN))
5892 return -EINVAL;
5893
5894 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
5895 if (!dsq)
5896 return -ENOMEM;
5897
5898 init_dsq(dsq, dsq_id);
5899
5900 rcu_read_lock();
5901
5902 sch = rcu_dereference(scx_root);
5903 if (sch)
5904 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node,
5905 dsq_hash_params);
5906 else
5907 ret = -ENODEV;
5908
5909 rcu_read_unlock();
5910 if (ret)
5911 kfree(dsq);
5912 return ret;
5913 }
5914
5915 __bpf_kfunc_end_defs();
5916
5917 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
5918 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
5919 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
5920 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
5921 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
5922 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
5923 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
5924
5925 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
5926 .owner = THIS_MODULE,
5927 .set = &scx_kfunc_ids_unlocked,
5928 };
5929
5930 __bpf_kfunc_start_defs();
5931
scx_kick_cpu(struct scx_sched * sch,s32 cpu,u64 flags)5932 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags)
5933 {
5934 struct rq *this_rq;
5935 unsigned long irq_flags;
5936
5937 if (!ops_cpu_valid(sch, cpu, NULL))
5938 return;
5939
5940 local_irq_save(irq_flags);
5941
5942 this_rq = this_rq();
5943
5944 /*
5945 * While bypassing for PM ops, IRQ handling may not be online which can
5946 * lead to irq_work_queue() malfunction such as infinite busy wait for
5947 * IRQ status update. Suppress kicking.
5948 */
5949 if (scx_rq_bypassing(this_rq))
5950 goto out;
5951
5952 /*
5953 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
5954 * rq locks. We can probably be smarter and avoid bouncing if called
5955 * from ops which don't hold a rq lock.
5956 */
5957 if (flags & SCX_KICK_IDLE) {
5958 struct rq *target_rq = cpu_rq(cpu);
5959
5960 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
5961 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
5962
5963 if (raw_spin_rq_trylock(target_rq)) {
5964 if (can_skip_idle_kick(target_rq)) {
5965 raw_spin_rq_unlock(target_rq);
5966 goto out;
5967 }
5968 raw_spin_rq_unlock(target_rq);
5969 }
5970 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
5971 } else {
5972 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
5973
5974 if (flags & SCX_KICK_PREEMPT)
5975 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
5976 if (flags & SCX_KICK_WAIT)
5977 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
5978 }
5979
5980 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
5981 out:
5982 local_irq_restore(irq_flags);
5983 }
5984
5985 /**
5986 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
5987 * @cpu: cpu to kick
5988 * @flags: %SCX_KICK_* flags
5989 *
5990 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
5991 * trigger rescheduling on a busy CPU. This can be called from any online
5992 * scx_ops operation and the actual kicking is performed asynchronously through
5993 * an irq work.
5994 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)5995 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
5996 {
5997 struct scx_sched *sch;
5998
5999 guard(rcu)();
6000 sch = rcu_dereference(scx_root);
6001 if (likely(sch))
6002 scx_kick_cpu(sch, cpu, flags);
6003 }
6004
6005 /**
6006 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6007 * @dsq_id: id of the DSQ
6008 *
6009 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6010 * -%ENOENT is returned.
6011 */
scx_bpf_dsq_nr_queued(u64 dsq_id)6012 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6013 {
6014 struct scx_sched *sch;
6015 struct scx_dispatch_q *dsq;
6016 s32 ret;
6017
6018 preempt_disable();
6019
6020 sch = rcu_dereference_sched(scx_root);
6021 if (unlikely(!sch)) {
6022 ret = -ENODEV;
6023 goto out;
6024 }
6025
6026 if (dsq_id == SCX_DSQ_LOCAL) {
6027 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6028 goto out;
6029 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6030 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6031
6032 if (ops_cpu_valid(sch, cpu, NULL)) {
6033 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6034 goto out;
6035 }
6036 } else {
6037 dsq = find_user_dsq(sch, dsq_id);
6038 if (dsq) {
6039 ret = READ_ONCE(dsq->nr);
6040 goto out;
6041 }
6042 }
6043 ret = -ENOENT;
6044 out:
6045 preempt_enable();
6046 return ret;
6047 }
6048
6049 /**
6050 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6051 * @dsq_id: DSQ to destroy
6052 *
6053 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6054 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6055 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6056 * which doesn't exist. Can be called from any online scx_ops operations.
6057 */
scx_bpf_destroy_dsq(u64 dsq_id)6058 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6059 {
6060 struct scx_sched *sch;
6061
6062 rcu_read_lock();
6063 sch = rcu_dereference(scx_root);
6064 if (sch)
6065 destroy_dsq(sch, dsq_id);
6066 rcu_read_unlock();
6067 }
6068
6069 /**
6070 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6071 * @it: iterator to initialize
6072 * @dsq_id: DSQ to iterate
6073 * @flags: %SCX_DSQ_ITER_*
6074 *
6075 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6076 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6077 * tasks which are already queued when this function is invoked.
6078 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)6079 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6080 u64 flags)
6081 {
6082 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6083 struct scx_sched *sch;
6084
6085 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6086 sizeof(struct bpf_iter_scx_dsq));
6087 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6088 __alignof__(struct bpf_iter_scx_dsq));
6089
6090 /*
6091 * next() and destroy() will be called regardless of the return value.
6092 * Always clear $kit->dsq.
6093 */
6094 kit->dsq = NULL;
6095
6096 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held());
6097 if (unlikely(!sch))
6098 return -ENODEV;
6099
6100 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6101 return -EINVAL;
6102
6103 kit->dsq = find_user_dsq(sch, dsq_id);
6104 if (!kit->dsq)
6105 return -ENOENT;
6106
6107 INIT_LIST_HEAD(&kit->cursor.node);
6108 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags;
6109 kit->cursor.priv = READ_ONCE(kit->dsq->seq);
6110
6111 return 0;
6112 }
6113
6114 /**
6115 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6116 * @it: iterator to progress
6117 *
6118 * Return the next task. See bpf_iter_scx_dsq_new().
6119 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)6120 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6121 {
6122 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6123 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6124 struct task_struct *p;
6125 unsigned long flags;
6126
6127 if (!kit->dsq)
6128 return NULL;
6129
6130 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6131
6132 if (list_empty(&kit->cursor.node))
6133 p = NULL;
6134 else
6135 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6136
6137 /*
6138 * Only tasks which were queued before the iteration started are
6139 * visible. This bounds BPF iterations and guarantees that vtime never
6140 * jumps in the other direction while iterating.
6141 */
6142 do {
6143 p = nldsq_next_task(kit->dsq, p, rev);
6144 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6145
6146 if (p) {
6147 if (rev)
6148 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6149 else
6150 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6151 } else {
6152 list_del_init(&kit->cursor.node);
6153 }
6154
6155 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6156
6157 return p;
6158 }
6159
6160 /**
6161 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6162 * @it: iterator to destroy
6163 *
6164 * Undo scx_iter_scx_dsq_new().
6165 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)6166 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6167 {
6168 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6169
6170 if (!kit->dsq)
6171 return;
6172
6173 if (!list_empty(&kit->cursor.node)) {
6174 unsigned long flags;
6175
6176 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6177 list_del_init(&kit->cursor.node);
6178 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6179 }
6180 kit->dsq = NULL;
6181 }
6182
6183 __bpf_kfunc_end_defs();
6184
__bstr_format(struct scx_sched * sch,u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)6185 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf,
6186 size_t line_size, char *fmt, unsigned long long *data,
6187 u32 data__sz)
6188 {
6189 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6190 s32 ret;
6191
6192 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6193 (data__sz && !data)) {
6194 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz);
6195 return -EINVAL;
6196 }
6197
6198 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6199 if (ret < 0) {
6200 scx_error(sch, "failed to read data fields (%d)", ret);
6201 return ret;
6202 }
6203
6204 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6205 &bprintf_data);
6206 if (ret < 0) {
6207 scx_error(sch, "format preparation failed (%d)", ret);
6208 return ret;
6209 }
6210
6211 ret = bstr_printf(line_buf, line_size, fmt,
6212 bprintf_data.bin_args);
6213 bpf_bprintf_cleanup(&bprintf_data);
6214 if (ret < 0) {
6215 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz);
6216 return ret;
6217 }
6218
6219 return ret;
6220 }
6221
bstr_format(struct scx_sched * sch,struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)6222 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf,
6223 char *fmt, unsigned long long *data, u32 data__sz)
6224 {
6225 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line),
6226 fmt, data, data__sz);
6227 }
6228
6229 __bpf_kfunc_start_defs();
6230
6231 /**
6232 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6233 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6234 * @fmt: error message format string
6235 * @data: format string parameters packaged using ___bpf_fill() macro
6236 * @data__sz: @data len, must end in '__sz' for the verifier
6237 *
6238 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6239 * disabling.
6240 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)6241 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6242 unsigned long long *data, u32 data__sz)
6243 {
6244 struct scx_sched *sch;
6245 unsigned long flags;
6246
6247 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6248 sch = rcu_dereference_bh(scx_root);
6249 if (likely(sch) &&
6250 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6251 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line);
6252 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6253 }
6254
6255 /**
6256 * scx_bpf_error_bstr - Indicate fatal error
6257 * @fmt: error message format string
6258 * @data: format string parameters packaged using ___bpf_fill() macro
6259 * @data__sz: @data len, must end in '__sz' for the verifier
6260 *
6261 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6262 * disabling.
6263 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)6264 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6265 u32 data__sz)
6266 {
6267 struct scx_sched *sch;
6268 unsigned long flags;
6269
6270 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6271 sch = rcu_dereference_bh(scx_root);
6272 if (likely(sch) &&
6273 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6274 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line);
6275 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6276 }
6277
6278 /**
6279 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler
6280 * @fmt: format string
6281 * @data: format string parameters packaged using ___bpf_fill() macro
6282 * @data__sz: @data len, must end in '__sz' for the verifier
6283 *
6284 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6285 * dump_task() to generate extra debug dump specific to the BPF scheduler.
6286 *
6287 * The extra dump may be multiple lines. A single line may be split over
6288 * multiple calls. The last line is automatically terminated.
6289 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)6290 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6291 u32 data__sz)
6292 {
6293 struct scx_sched *sch;
6294 struct scx_dump_data *dd = &scx_dump_data;
6295 struct scx_bstr_buf *buf = &dd->buf;
6296 s32 ret;
6297
6298 guard(rcu)();
6299
6300 sch = rcu_dereference(scx_root);
6301 if (unlikely(!sch))
6302 return;
6303
6304 if (raw_smp_processor_id() != dd->cpu) {
6305 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends");
6306 return;
6307 }
6308
6309 /* append the formatted string to the line buf */
6310 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor,
6311 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6312 if (ret < 0) {
6313 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6314 dd->prefix, fmt, data, data__sz, ret);
6315 return;
6316 }
6317
6318 dd->cursor += ret;
6319 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6320
6321 if (!dd->cursor)
6322 return;
6323
6324 /*
6325 * If the line buf overflowed or ends in a newline, flush it into the
6326 * dump. This is to allow the caller to generate a single line over
6327 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6328 * the line buf, the only case which can lead to an unexpected
6329 * truncation is when the caller keeps generating newlines in the middle
6330 * instead of the end consecutively. Don't do that.
6331 */
6332 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6333 ops_dump_flush();
6334 }
6335
6336 /**
6337 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6338 * @cpu: CPU of interest
6339 *
6340 * Return the maximum relative capacity of @cpu in relation to the most
6341 * performant CPU in the system. The return value is in the range [1,
6342 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6343 */
scx_bpf_cpuperf_cap(s32 cpu)6344 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6345 {
6346 struct scx_sched *sch;
6347
6348 guard(rcu)();
6349
6350 sch = rcu_dereference(scx_root);
6351 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6352 return arch_scale_cpu_capacity(cpu);
6353 else
6354 return SCX_CPUPERF_ONE;
6355 }
6356
6357 /**
6358 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6359 * @cpu: CPU of interest
6360 *
6361 * Return the current relative performance of @cpu in relation to its maximum.
6362 * The return value is in the range [1, %SCX_CPUPERF_ONE].
6363 *
6364 * The current performance level of a CPU in relation to the maximum performance
6365 * available in the system can be calculated as follows:
6366 *
6367 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6368 *
6369 * The result is in the range [1, %SCX_CPUPERF_ONE].
6370 */
scx_bpf_cpuperf_cur(s32 cpu)6371 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6372 {
6373 struct scx_sched *sch;
6374
6375 guard(rcu)();
6376
6377 sch = rcu_dereference(scx_root);
6378 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6379 return arch_scale_freq_capacity(cpu);
6380 else
6381 return SCX_CPUPERF_ONE;
6382 }
6383
6384 /**
6385 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6386 * @cpu: CPU of interest
6387 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6388 *
6389 * Set the target performance level of @cpu to @perf. @perf is in linear
6390 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6391 * schedutil cpufreq governor chooses the target frequency.
6392 *
6393 * The actual performance level chosen, CPU grouping, and the overhead and
6394 * latency of the operations are dependent on the hardware and cpufreq driver in
6395 * use. Consult hardware and cpufreq documentation for more information. The
6396 * current performance level can be monitored using scx_bpf_cpuperf_cur().
6397 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)6398 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6399 {
6400 struct scx_sched *sch;
6401
6402 guard(rcu)();
6403
6404 sch = rcu_dereference(sch);
6405 if (unlikely(!sch))
6406 return;
6407
6408 if (unlikely(perf > SCX_CPUPERF_ONE)) {
6409 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu);
6410 return;
6411 }
6412
6413 if (ops_cpu_valid(sch, cpu, NULL)) {
6414 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq();
6415 struct rq_flags rf;
6416
6417 /*
6418 * When called with an rq lock held, restrict the operation
6419 * to the corresponding CPU to prevent ABBA deadlocks.
6420 */
6421 if (locked_rq && rq != locked_rq) {
6422 scx_error(sch, "Invalid target CPU %d", cpu);
6423 return;
6424 }
6425
6426 /*
6427 * If no rq lock is held, allow to operate on any CPU by
6428 * acquiring the corresponding rq lock.
6429 */
6430 if (!locked_rq) {
6431 rq_lock_irqsave(rq, &rf);
6432 update_rq_clock(rq);
6433 }
6434
6435 rq->scx.cpuperf_target = perf;
6436 cpufreq_update_util(rq, 0);
6437
6438 if (!locked_rq)
6439 rq_unlock_irqrestore(rq, &rf);
6440 }
6441 }
6442
6443 /**
6444 * scx_bpf_nr_node_ids - Return the number of possible node IDs
6445 *
6446 * All valid node IDs in the system are smaller than the returned value.
6447 */
scx_bpf_nr_node_ids(void)6448 __bpf_kfunc u32 scx_bpf_nr_node_ids(void)
6449 {
6450 return nr_node_ids;
6451 }
6452
6453 /**
6454 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6455 *
6456 * All valid CPU IDs in the system are smaller than the returned value.
6457 */
scx_bpf_nr_cpu_ids(void)6458 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6459 {
6460 return nr_cpu_ids;
6461 }
6462
6463 /**
6464 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6465 */
scx_bpf_get_possible_cpumask(void)6466 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6467 {
6468 return cpu_possible_mask;
6469 }
6470
6471 /**
6472 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6473 */
scx_bpf_get_online_cpumask(void)6474 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6475 {
6476 return cpu_online_mask;
6477 }
6478
6479 /**
6480 * scx_bpf_put_cpumask - Release a possible/online cpumask
6481 * @cpumask: cpumask to release
6482 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)6483 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6484 {
6485 /*
6486 * Empty function body because we aren't actually acquiring or releasing
6487 * a reference to a global cpumask, which is read-only in the caller and
6488 * is never released. The acquire / release semantics here are just used
6489 * to make the cpumask is a trusted pointer in the caller.
6490 */
6491 }
6492
6493 /**
6494 * scx_bpf_task_running - Is task currently running?
6495 * @p: task of interest
6496 */
scx_bpf_task_running(const struct task_struct * p)6497 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
6498 {
6499 return task_rq(p)->curr == p;
6500 }
6501
6502 /**
6503 * scx_bpf_task_cpu - CPU a task is currently associated with
6504 * @p: task of interest
6505 */
scx_bpf_task_cpu(const struct task_struct * p)6506 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
6507 {
6508 return task_cpu(p);
6509 }
6510
6511 /**
6512 * scx_bpf_cpu_rq - Fetch the rq of a CPU
6513 * @cpu: CPU of the rq
6514 */
scx_bpf_cpu_rq(s32 cpu)6515 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
6516 {
6517 struct scx_sched *sch;
6518
6519 guard(rcu)();
6520
6521 sch = rcu_dereference(scx_root);
6522 if (unlikely(!sch))
6523 return NULL;
6524
6525 if (!ops_cpu_valid(sch, cpu, NULL))
6526 return NULL;
6527
6528 if (!sch->warned_deprecated_rq) {
6529 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; "
6530 "use scx_bpf_locked_rq() when holding rq lock "
6531 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__);
6532 sch->warned_deprecated_rq = true;
6533 }
6534
6535 return cpu_rq(cpu);
6536 }
6537
6538 /**
6539 * scx_bpf_locked_rq - Return the rq currently locked by SCX
6540 *
6541 * Returns the rq if a rq lock is currently held by SCX.
6542 * Otherwise emits an error and returns NULL.
6543 */
scx_bpf_locked_rq(void)6544 __bpf_kfunc struct rq *scx_bpf_locked_rq(void)
6545 {
6546 struct scx_sched *sch;
6547 struct rq *rq;
6548
6549 guard(preempt)();
6550
6551 sch = rcu_dereference_sched(scx_root);
6552 if (unlikely(!sch))
6553 return NULL;
6554
6555 rq = scx_locked_rq();
6556 if (!rq) {
6557 scx_error(sch, "accessing rq without holding rq lock");
6558 return NULL;
6559 }
6560
6561 return rq;
6562 }
6563
6564 /**
6565 * scx_bpf_cpu_curr - Return remote CPU's curr task
6566 * @cpu: CPU of interest
6567 *
6568 * Callers must hold RCU read lock (KF_RCU).
6569 */
scx_bpf_cpu_curr(s32 cpu)6570 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu)
6571 {
6572 struct scx_sched *sch;
6573
6574 guard(rcu)();
6575
6576 sch = rcu_dereference(scx_root);
6577 if (unlikely(!sch))
6578 return NULL;
6579
6580 if (!ops_cpu_valid(sch, cpu, NULL))
6581 return NULL;
6582
6583 return rcu_dereference(cpu_rq(cpu)->curr);
6584 }
6585
6586 /**
6587 * scx_bpf_task_cgroup - Return the sched cgroup of a task
6588 * @p: task of interest
6589 *
6590 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
6591 * from the scheduler's POV. SCX operations should use this function to
6592 * determine @p's current cgroup as, unlike following @p->cgroups,
6593 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
6594 * rq-locked operations. Can be called on the parameter tasks of rq-locked
6595 * operations. The restriction guarantees that @p's rq is locked by the caller.
6596 */
6597 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)6598 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
6599 {
6600 struct task_group *tg = p->sched_task_group;
6601 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
6602 struct scx_sched *sch;
6603
6604 guard(rcu)();
6605
6606 sch = rcu_dereference(scx_root);
6607 if (unlikely(!sch))
6608 goto out;
6609
6610 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p))
6611 goto out;
6612
6613 cgrp = tg_cgrp(tg);
6614
6615 out:
6616 cgroup_get(cgrp);
6617 return cgrp;
6618 }
6619 #endif
6620
6621 /**
6622 * scx_bpf_now - Returns a high-performance monotonically non-decreasing
6623 * clock for the current CPU. The clock returned is in nanoseconds.
6624 *
6625 * It provides the following properties:
6626 *
6627 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
6628 * to account for execution time and track tasks' runtime properties.
6629 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
6630 * eventually reads a hardware timestamp counter -- is neither performant nor
6631 * scalable. scx_bpf_now() aims to provide a high-performance clock by
6632 * using the rq clock in the scheduler core whenever possible.
6633 *
6634 * 2) High enough resolution for the BPF scheduler use cases: In most BPF
6635 * scheduler use cases, the required clock resolution is lower than the most
6636 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
6637 * uses the rq clock in the scheduler core whenever it is valid. It considers
6638 * that the rq clock is valid from the time the rq clock is updated
6639 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
6640 *
6641 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
6642 * guarantees the clock never goes backward when comparing them in the same
6643 * CPU. On the other hand, when comparing clocks in different CPUs, there
6644 * is no such guarantee -- the clock can go backward. It provides a
6645 * monotonically *non-decreasing* clock so that it would provide the same
6646 * clock values in two different scx_bpf_now() calls in the same CPU
6647 * during the same period of when the rq clock is valid.
6648 */
scx_bpf_now(void)6649 __bpf_kfunc u64 scx_bpf_now(void)
6650 {
6651 struct rq *rq;
6652 u64 clock;
6653
6654 preempt_disable();
6655
6656 rq = this_rq();
6657 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
6658 /*
6659 * If the rq clock is valid, use the cached rq clock.
6660 *
6661 * Note that scx_bpf_now() is re-entrant between a process
6662 * context and an interrupt context (e.g., timer interrupt).
6663 * However, we don't need to consider the race between them
6664 * because such race is not observable from a caller.
6665 */
6666 clock = READ_ONCE(rq->scx.clock);
6667 } else {
6668 /*
6669 * Otherwise, return a fresh rq clock.
6670 *
6671 * The rq clock is updated outside of the rq lock.
6672 * In this case, keep the updated rq clock invalid so the next
6673 * kfunc call outside the rq lock gets a fresh rq clock.
6674 */
6675 clock = sched_clock_cpu(cpu_of(rq));
6676 }
6677
6678 preempt_enable();
6679
6680 return clock;
6681 }
6682
scx_read_events(struct scx_sched * sch,struct scx_event_stats * events)6683 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events)
6684 {
6685 struct scx_event_stats *e_cpu;
6686 int cpu;
6687
6688 /* Aggregate per-CPU event counters into @events. */
6689 memset(events, 0, sizeof(*events));
6690 for_each_possible_cpu(cpu) {
6691 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats;
6692 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK);
6693 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
6694 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST);
6695 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING);
6696 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
6697 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL);
6698 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION);
6699 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH);
6700 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE);
6701 }
6702 }
6703
6704 /*
6705 * scx_bpf_events - Get a system-wide event counter to
6706 * @events: output buffer from a BPF program
6707 * @events__sz: @events len, must end in '__sz'' for the verifier
6708 */
scx_bpf_events(struct scx_event_stats * events,size_t events__sz)6709 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events,
6710 size_t events__sz)
6711 {
6712 struct scx_sched *sch;
6713 struct scx_event_stats e_sys;
6714
6715 rcu_read_lock();
6716 sch = rcu_dereference(scx_root);
6717 if (sch)
6718 scx_read_events(sch, &e_sys);
6719 else
6720 memset(&e_sys, 0, sizeof(e_sys));
6721 rcu_read_unlock();
6722
6723 /*
6724 * We cannot entirely trust a BPF-provided size since a BPF program
6725 * might be compiled against a different vmlinux.h, of which
6726 * scx_event_stats would be larger (a newer vmlinux.h) or smaller
6727 * (an older vmlinux.h). Hence, we use the smaller size to avoid
6728 * memory corruption.
6729 */
6730 events__sz = min(events__sz, sizeof(*events));
6731 memcpy(events, &e_sys, events__sz);
6732 }
6733
6734 __bpf_kfunc_end_defs();
6735
6736 BTF_KFUNCS_START(scx_kfunc_ids_any)
6737 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
6738 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
6739 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
6740 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
6741 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
6742 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
6743 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
6744 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
6745 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
6746 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
6747 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
6748 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
6749 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids)
6750 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
6751 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
6752 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
6753 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
6754 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
6755 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
6756 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
6757 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL)
6758 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED)
6759 #ifdef CONFIG_CGROUP_SCHED
6760 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
6761 #endif
6762 BTF_ID_FLAGS(func, scx_bpf_now)
6763 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS)
6764 BTF_KFUNCS_END(scx_kfunc_ids_any)
6765
6766 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
6767 .owner = THIS_MODULE,
6768 .set = &scx_kfunc_ids_any,
6769 };
6770
scx_init(void)6771 static int __init scx_init(void)
6772 {
6773 int ret;
6774
6775 /*
6776 * kfunc registration can't be done from init_sched_ext_class() as
6777 * register_btf_kfunc_id_set() needs most of the system to be up.
6778 *
6779 * Some kfuncs are context-sensitive and can only be called from
6780 * specific SCX ops. They are grouped into BTF sets accordingly.
6781 * Unfortunately, BPF currently doesn't have a way of enforcing such
6782 * restrictions. Eventually, the verifier should be able to enforce
6783 * them. For now, register them the same and make each kfunc explicitly
6784 * check using scx_kf_allowed().
6785 */
6786 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6787 &scx_kfunc_set_enqueue_dispatch)) ||
6788 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6789 &scx_kfunc_set_dispatch)) ||
6790 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6791 &scx_kfunc_set_cpu_release)) ||
6792 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6793 &scx_kfunc_set_unlocked)) ||
6794 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
6795 &scx_kfunc_set_unlocked)) ||
6796 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
6797 &scx_kfunc_set_any)) ||
6798 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
6799 &scx_kfunc_set_any)) ||
6800 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
6801 &scx_kfunc_set_any))) {
6802 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
6803 return ret;
6804 }
6805
6806 ret = scx_idle_init();
6807 if (ret) {
6808 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret);
6809 return ret;
6810 }
6811
6812 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
6813 if (ret) {
6814 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
6815 return ret;
6816 }
6817
6818 ret = register_pm_notifier(&scx_pm_notifier);
6819 if (ret) {
6820 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
6821 return ret;
6822 }
6823
6824 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
6825 if (!scx_kset) {
6826 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
6827 return -ENOMEM;
6828 }
6829
6830 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
6831 if (ret < 0) {
6832 pr_err("sched_ext: Failed to add global attributes\n");
6833 return ret;
6834 }
6835
6836 return 0;
6837 }
6838 __initcall(scx_init);
6839