1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched.h> 15 #include <linux/seq_file.h> 16 #include <linux/kallsyms.h> 17 #include <linux/utsname.h> 18 19 #include "sched.h" 20 21 static DEFINE_SPINLOCK(sched_debug_lock); 22 23 /* 24 * This allows printing both to /proc/sched_debug and 25 * to the console 26 */ 27 #define SEQ_printf(m, x...) \ 28 do { \ 29 if (m) \ 30 seq_printf(m, x); \ 31 else \ 32 printk(x); \ 33 } while (0) 34 35 /* 36 * Ease the printing of nsec fields: 37 */ 38 static long long nsec_high(unsigned long long nsec) 39 { 40 if ((long long)nsec < 0) { 41 nsec = -nsec; 42 do_div(nsec, 1000000); 43 return -nsec; 44 } 45 do_div(nsec, 1000000); 46 47 return nsec; 48 } 49 50 static unsigned long nsec_low(unsigned long long nsec) 51 { 52 if ((long long)nsec < 0) 53 nsec = -nsec; 54 55 return do_div(nsec, 1000000); 56 } 57 58 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 59 60 #ifdef CONFIG_FAIR_GROUP_SCHED 61 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 62 { 63 struct sched_entity *se = tg->se[cpu]; 64 65 #define P(F) \ 66 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 67 #define PN(F) \ 68 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 69 70 if (!se) { 71 struct sched_avg *avg = &cpu_rq(cpu)->avg; 72 P(avg->runnable_avg_sum); 73 P(avg->runnable_avg_period); 74 return; 75 } 76 77 78 PN(se->exec_start); 79 PN(se->vruntime); 80 PN(se->sum_exec_runtime); 81 #ifdef CONFIG_SCHEDSTATS 82 PN(se->statistics.wait_start); 83 PN(se->statistics.sleep_start); 84 PN(se->statistics.block_start); 85 PN(se->statistics.sleep_max); 86 PN(se->statistics.block_max); 87 PN(se->statistics.exec_max); 88 PN(se->statistics.slice_max); 89 PN(se->statistics.wait_max); 90 PN(se->statistics.wait_sum); 91 P(se->statistics.wait_count); 92 #endif 93 P(se->load.weight); 94 #ifdef CONFIG_SMP 95 P(se->avg.runnable_avg_sum); 96 P(se->avg.runnable_avg_period); 97 P(se->avg.load_avg_contrib); 98 P(se->avg.decay_count); 99 #endif 100 #undef PN 101 #undef P 102 } 103 #endif 104 105 #ifdef CONFIG_CGROUP_SCHED 106 static char group_path[PATH_MAX]; 107 108 static char *task_group_path(struct task_group *tg) 109 { 110 if (autogroup_path(tg, group_path, PATH_MAX)) 111 return group_path; 112 113 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 114 return group_path; 115 } 116 #endif 117 118 static void 119 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 120 { 121 if (rq->curr == p) 122 SEQ_printf(m, "R"); 123 else 124 SEQ_printf(m, " "); 125 126 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 127 p->comm, p->pid, 128 SPLIT_NS(p->se.vruntime), 129 (long long)(p->nvcsw + p->nivcsw), 130 p->prio); 131 #ifdef CONFIG_SCHEDSTATS 132 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 133 SPLIT_NS(p->se.vruntime), 134 SPLIT_NS(p->se.sum_exec_runtime), 135 SPLIT_NS(p->se.statistics.sum_sleep_runtime)); 136 #else 137 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 138 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); 139 #endif 140 #ifdef CONFIG_CGROUP_SCHED 141 SEQ_printf(m, " %s", task_group_path(task_group(p))); 142 #endif 143 144 SEQ_printf(m, "\n"); 145 } 146 147 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 148 { 149 struct task_struct *g, *p; 150 unsigned long flags; 151 152 SEQ_printf(m, 153 "\nrunnable tasks:\n" 154 " task PID tree-key switches prio" 155 " exec-runtime sum-exec sum-sleep\n" 156 "------------------------------------------------------" 157 "----------------------------------------------------\n"); 158 159 read_lock_irqsave(&tasklist_lock, flags); 160 161 do_each_thread(g, p) { 162 if (!p->on_rq || task_cpu(p) != rq_cpu) 163 continue; 164 165 print_task(m, rq, p); 166 } while_each_thread(g, p); 167 168 read_unlock_irqrestore(&tasklist_lock, flags); 169 } 170 171 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 172 { 173 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 174 spread, rq0_min_vruntime, spread0; 175 struct rq *rq = cpu_rq(cpu); 176 struct sched_entity *last; 177 unsigned long flags; 178 179 #ifdef CONFIG_FAIR_GROUP_SCHED 180 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 181 #else 182 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 183 #endif 184 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 185 SPLIT_NS(cfs_rq->exec_clock)); 186 187 raw_spin_lock_irqsave(&rq->lock, flags); 188 if (cfs_rq->rb_leftmost) 189 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 190 last = __pick_last_entity(cfs_rq); 191 if (last) 192 max_vruntime = last->vruntime; 193 min_vruntime = cfs_rq->min_vruntime; 194 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 195 raw_spin_unlock_irqrestore(&rq->lock, flags); 196 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 197 SPLIT_NS(MIN_vruntime)); 198 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 199 SPLIT_NS(min_vruntime)); 200 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 201 SPLIT_NS(max_vruntime)); 202 spread = max_vruntime - MIN_vruntime; 203 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 204 SPLIT_NS(spread)); 205 spread0 = min_vruntime - rq0_min_vruntime; 206 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 207 SPLIT_NS(spread0)); 208 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 209 cfs_rq->nr_spread_over); 210 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 211 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 212 #ifdef CONFIG_FAIR_GROUP_SCHED 213 #ifdef CONFIG_SMP 214 SEQ_printf(m, " .%-30s: %lld\n", "runnable_load_avg", 215 cfs_rq->runnable_load_avg); 216 SEQ_printf(m, " .%-30s: %lld\n", "blocked_load_avg", 217 cfs_rq->blocked_load_avg); 218 SEQ_printf(m, " .%-30s: %lld\n", "tg_load_avg", 219 (unsigned long long)atomic64_read(&cfs_rq->tg->load_avg)); 220 SEQ_printf(m, " .%-30s: %lld\n", "tg_load_contrib", 221 cfs_rq->tg_load_contrib); 222 SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib", 223 cfs_rq->tg_runnable_contrib); 224 SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg", 225 atomic_read(&cfs_rq->tg->runnable_avg)); 226 #endif 227 228 print_cfs_group_stats(m, cpu, cfs_rq->tg); 229 #endif 230 } 231 232 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 233 { 234 #ifdef CONFIG_RT_GROUP_SCHED 235 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 236 #else 237 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 238 #endif 239 240 #define P(x) \ 241 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 242 #define PN(x) \ 243 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 244 245 P(rt_nr_running); 246 P(rt_throttled); 247 PN(rt_time); 248 PN(rt_runtime); 249 250 #undef PN 251 #undef P 252 } 253 254 extern __read_mostly int sched_clock_running; 255 256 static void print_cpu(struct seq_file *m, int cpu) 257 { 258 struct rq *rq = cpu_rq(cpu); 259 unsigned long flags; 260 261 #ifdef CONFIG_X86 262 { 263 unsigned int freq = cpu_khz ? : 1; 264 265 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 266 cpu, freq / 1000, (freq % 1000)); 267 } 268 #else 269 SEQ_printf(m, "cpu#%d\n", cpu); 270 #endif 271 272 #define P(x) \ 273 do { \ 274 if (sizeof(rq->x) == 4) \ 275 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 276 else \ 277 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 278 } while (0) 279 280 #define PN(x) \ 281 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 282 283 P(nr_running); 284 SEQ_printf(m, " .%-30s: %lu\n", "load", 285 rq->load.weight); 286 P(nr_switches); 287 P(nr_load_updates); 288 P(nr_uninterruptible); 289 PN(next_balance); 290 P(curr->pid); 291 PN(clock); 292 P(cpu_load[0]); 293 P(cpu_load[1]); 294 P(cpu_load[2]); 295 P(cpu_load[3]); 296 P(cpu_load[4]); 297 #undef P 298 #undef PN 299 300 #ifdef CONFIG_SCHEDSTATS 301 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); 302 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 303 304 P(yld_count); 305 306 P(sched_count); 307 P(sched_goidle); 308 #ifdef CONFIG_SMP 309 P64(avg_idle); 310 #endif 311 312 P(ttwu_count); 313 P(ttwu_local); 314 315 #undef P 316 #undef P64 317 #endif 318 spin_lock_irqsave(&sched_debug_lock, flags); 319 print_cfs_stats(m, cpu); 320 print_rt_stats(m, cpu); 321 322 rcu_read_lock(); 323 print_rq(m, rq, cpu); 324 rcu_read_unlock(); 325 spin_unlock_irqrestore(&sched_debug_lock, flags); 326 SEQ_printf(m, "\n"); 327 } 328 329 static const char *sched_tunable_scaling_names[] = { 330 "none", 331 "logaritmic", 332 "linear" 333 }; 334 335 static void sched_debug_header(struct seq_file *m) 336 { 337 u64 ktime, sched_clk, cpu_clk; 338 unsigned long flags; 339 340 local_irq_save(flags); 341 ktime = ktime_to_ns(ktime_get()); 342 sched_clk = sched_clock(); 343 cpu_clk = local_clock(); 344 local_irq_restore(flags); 345 346 SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n", 347 init_utsname()->release, 348 (int)strcspn(init_utsname()->version, " "), 349 init_utsname()->version); 350 351 #define P(x) \ 352 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 353 #define PN(x) \ 354 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 355 PN(ktime); 356 PN(sched_clk); 357 PN(cpu_clk); 358 P(jiffies); 359 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 360 P(sched_clock_stable); 361 #endif 362 #undef PN 363 #undef P 364 365 SEQ_printf(m, "\n"); 366 SEQ_printf(m, "sysctl_sched\n"); 367 368 #define P(x) \ 369 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 370 #define PN(x) \ 371 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 372 PN(sysctl_sched_latency); 373 PN(sysctl_sched_min_granularity); 374 PN(sysctl_sched_wakeup_granularity); 375 P(sysctl_sched_child_runs_first); 376 P(sysctl_sched_features); 377 #undef PN 378 #undef P 379 380 SEQ_printf(m, " .%-40s: %d (%s)\n", 381 "sysctl_sched_tunable_scaling", 382 sysctl_sched_tunable_scaling, 383 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 384 SEQ_printf(m, "\n"); 385 } 386 387 static int sched_debug_show(struct seq_file *m, void *v) 388 { 389 int cpu = (unsigned long)(v - 2); 390 391 if (cpu != -1) 392 print_cpu(m, cpu); 393 else 394 sched_debug_header(m); 395 396 return 0; 397 } 398 399 void sysrq_sched_debug_show(void) 400 { 401 int cpu; 402 403 sched_debug_header(NULL); 404 for_each_online_cpu(cpu) 405 print_cpu(NULL, cpu); 406 407 } 408 409 /* 410 * This itererator needs some explanation. 411 * It returns 1 for the header position. 412 * This means 2 is cpu 0. 413 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 414 * to use cpumask_* to iterate over the cpus. 415 */ 416 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 417 { 418 unsigned long n = *offset; 419 420 if (n == 0) 421 return (void *) 1; 422 423 n--; 424 425 if (n > 0) 426 n = cpumask_next(n - 1, cpu_online_mask); 427 else 428 n = cpumask_first(cpu_online_mask); 429 430 *offset = n + 1; 431 432 if (n < nr_cpu_ids) 433 return (void *)(unsigned long)(n + 2); 434 return NULL; 435 } 436 437 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 438 { 439 (*offset)++; 440 return sched_debug_start(file, offset); 441 } 442 443 static void sched_debug_stop(struct seq_file *file, void *data) 444 { 445 } 446 447 static const struct seq_operations sched_debug_sops = { 448 .start = sched_debug_start, 449 .next = sched_debug_next, 450 .stop = sched_debug_stop, 451 .show = sched_debug_show, 452 }; 453 454 static int sched_debug_release(struct inode *inode, struct file *file) 455 { 456 seq_release(inode, file); 457 458 return 0; 459 } 460 461 static int sched_debug_open(struct inode *inode, struct file *filp) 462 { 463 int ret = 0; 464 465 ret = seq_open(filp, &sched_debug_sops); 466 467 return ret; 468 } 469 470 static const struct file_operations sched_debug_fops = { 471 .open = sched_debug_open, 472 .read = seq_read, 473 .llseek = seq_lseek, 474 .release = sched_debug_release, 475 }; 476 477 static int __init init_sched_debug_procfs(void) 478 { 479 struct proc_dir_entry *pe; 480 481 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 482 if (!pe) 483 return -ENOMEM; 484 return 0; 485 } 486 487 __initcall(init_sched_debug_procfs); 488 489 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 490 { 491 unsigned long nr_switches; 492 493 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, 494 get_nr_threads(p)); 495 SEQ_printf(m, 496 "---------------------------------------------------------\n"); 497 #define __P(F) \ 498 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F) 499 #define P(F) \ 500 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F) 501 #define __PN(F) \ 502 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 503 #define PN(F) \ 504 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 505 506 PN(se.exec_start); 507 PN(se.vruntime); 508 PN(se.sum_exec_runtime); 509 510 nr_switches = p->nvcsw + p->nivcsw; 511 512 #ifdef CONFIG_SCHEDSTATS 513 PN(se.statistics.wait_start); 514 PN(se.statistics.sleep_start); 515 PN(se.statistics.block_start); 516 PN(se.statistics.sleep_max); 517 PN(se.statistics.block_max); 518 PN(se.statistics.exec_max); 519 PN(se.statistics.slice_max); 520 PN(se.statistics.wait_max); 521 PN(se.statistics.wait_sum); 522 P(se.statistics.wait_count); 523 PN(se.statistics.iowait_sum); 524 P(se.statistics.iowait_count); 525 P(se.nr_migrations); 526 P(se.statistics.nr_migrations_cold); 527 P(se.statistics.nr_failed_migrations_affine); 528 P(se.statistics.nr_failed_migrations_running); 529 P(se.statistics.nr_failed_migrations_hot); 530 P(se.statistics.nr_forced_migrations); 531 P(se.statistics.nr_wakeups); 532 P(se.statistics.nr_wakeups_sync); 533 P(se.statistics.nr_wakeups_migrate); 534 P(se.statistics.nr_wakeups_local); 535 P(se.statistics.nr_wakeups_remote); 536 P(se.statistics.nr_wakeups_affine); 537 P(se.statistics.nr_wakeups_affine_attempts); 538 P(se.statistics.nr_wakeups_passive); 539 P(se.statistics.nr_wakeups_idle); 540 541 { 542 u64 avg_atom, avg_per_cpu; 543 544 avg_atom = p->se.sum_exec_runtime; 545 if (nr_switches) 546 do_div(avg_atom, nr_switches); 547 else 548 avg_atom = -1LL; 549 550 avg_per_cpu = p->se.sum_exec_runtime; 551 if (p->se.nr_migrations) { 552 avg_per_cpu = div64_u64(avg_per_cpu, 553 p->se.nr_migrations); 554 } else { 555 avg_per_cpu = -1LL; 556 } 557 558 __PN(avg_atom); 559 __PN(avg_per_cpu); 560 } 561 #endif 562 __P(nr_switches); 563 SEQ_printf(m, "%-35s:%21Ld\n", 564 "nr_voluntary_switches", (long long)p->nvcsw); 565 SEQ_printf(m, "%-35s:%21Ld\n", 566 "nr_involuntary_switches", (long long)p->nivcsw); 567 568 P(se.load.weight); 569 P(policy); 570 P(prio); 571 #undef PN 572 #undef __PN 573 #undef P 574 #undef __P 575 576 { 577 unsigned int this_cpu = raw_smp_processor_id(); 578 u64 t0, t1; 579 580 t0 = cpu_clock(this_cpu); 581 t1 = cpu_clock(this_cpu); 582 SEQ_printf(m, "%-35s:%21Ld\n", 583 "clock-delta", (long long)(t1-t0)); 584 } 585 } 586 587 void proc_sched_set_task(struct task_struct *p) 588 { 589 #ifdef CONFIG_SCHEDSTATS 590 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 591 #endif 592 } 593