1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree and other debugging details 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include "sched.h" 13 14 static DEFINE_SPINLOCK(sched_debug_lock); 15 16 /* 17 * This allows printing both to /proc/sched_debug and 18 * to the console 19 */ 20 #define SEQ_printf(m, x...) \ 21 do { \ 22 if (m) \ 23 seq_printf(m, x); \ 24 else \ 25 pr_cont(x); \ 26 } while (0) 27 28 /* 29 * Ease the printing of nsec fields: 30 */ 31 static long long nsec_high(unsigned long long nsec) 32 { 33 if ((long long)nsec < 0) { 34 nsec = -nsec; 35 do_div(nsec, 1000000); 36 return -nsec; 37 } 38 do_div(nsec, 1000000); 39 40 return nsec; 41 } 42 43 static unsigned long nsec_low(unsigned long long nsec) 44 { 45 if ((long long)nsec < 0) 46 nsec = -nsec; 47 48 return do_div(nsec, 1000000); 49 } 50 51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 52 53 #define SCHED_FEAT(name, enabled) \ 54 #name , 55 56 static const char * const sched_feat_names[] = { 57 #include "features.h" 58 }; 59 60 #undef SCHED_FEAT 61 62 static int sched_feat_show(struct seq_file *m, void *v) 63 { 64 int i; 65 66 for (i = 0; i < __SCHED_FEAT_NR; i++) { 67 if (!(sysctl_sched_features & (1UL << i))) 68 seq_puts(m, "NO_"); 69 seq_printf(m, "%s ", sched_feat_names[i]); 70 } 71 seq_puts(m, "\n"); 72 73 return 0; 74 } 75 76 #ifdef HAVE_JUMP_LABEL 77 78 #define jump_label_key__true STATIC_KEY_INIT_TRUE 79 #define jump_label_key__false STATIC_KEY_INIT_FALSE 80 81 #define SCHED_FEAT(name, enabled) \ 82 jump_label_key__##enabled , 83 84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 85 #include "features.h" 86 }; 87 88 #undef SCHED_FEAT 89 90 static void sched_feat_disable(int i) 91 { 92 static_key_disable(&sched_feat_keys[i]); 93 } 94 95 static void sched_feat_enable(int i) 96 { 97 static_key_enable(&sched_feat_keys[i]); 98 } 99 #else 100 static void sched_feat_disable(int i) { }; 101 static void sched_feat_enable(int i) { }; 102 #endif /* HAVE_JUMP_LABEL */ 103 104 static int sched_feat_set(char *cmp) 105 { 106 int i; 107 int neg = 0; 108 109 if (strncmp(cmp, "NO_", 3) == 0) { 110 neg = 1; 111 cmp += 3; 112 } 113 114 for (i = 0; i < __SCHED_FEAT_NR; i++) { 115 if (strcmp(cmp, sched_feat_names[i]) == 0) { 116 if (neg) { 117 sysctl_sched_features &= ~(1UL << i); 118 sched_feat_disable(i); 119 } else { 120 sysctl_sched_features |= (1UL << i); 121 sched_feat_enable(i); 122 } 123 break; 124 } 125 } 126 127 return i; 128 } 129 130 static ssize_t 131 sched_feat_write(struct file *filp, const char __user *ubuf, 132 size_t cnt, loff_t *ppos) 133 { 134 char buf[64]; 135 char *cmp; 136 int i; 137 struct inode *inode; 138 139 if (cnt > 63) 140 cnt = 63; 141 142 if (copy_from_user(&buf, ubuf, cnt)) 143 return -EFAULT; 144 145 buf[cnt] = 0; 146 cmp = strstrip(buf); 147 148 /* Ensure the static_key remains in a consistent state */ 149 inode = file_inode(filp); 150 inode_lock(inode); 151 i = sched_feat_set(cmp); 152 inode_unlock(inode); 153 if (i == __SCHED_FEAT_NR) 154 return -EINVAL; 155 156 *ppos += cnt; 157 158 return cnt; 159 } 160 161 static int sched_feat_open(struct inode *inode, struct file *filp) 162 { 163 return single_open(filp, sched_feat_show, NULL); 164 } 165 166 static const struct file_operations sched_feat_fops = { 167 .open = sched_feat_open, 168 .write = sched_feat_write, 169 .read = seq_read, 170 .llseek = seq_lseek, 171 .release = single_release, 172 }; 173 174 __read_mostly bool sched_debug_enabled; 175 176 static __init int sched_init_debug(void) 177 { 178 debugfs_create_file("sched_features", 0644, NULL, NULL, 179 &sched_feat_fops); 180 181 debugfs_create_bool("sched_debug", 0644, NULL, 182 &sched_debug_enabled); 183 184 return 0; 185 } 186 late_initcall(sched_init_debug); 187 188 #ifdef CONFIG_SMP 189 190 #ifdef CONFIG_SYSCTL 191 192 static struct ctl_table sd_ctl_dir[] = { 193 { 194 .procname = "sched_domain", 195 .mode = 0555, 196 }, 197 {} 198 }; 199 200 static struct ctl_table sd_ctl_root[] = { 201 { 202 .procname = "kernel", 203 .mode = 0555, 204 .child = sd_ctl_dir, 205 }, 206 {} 207 }; 208 209 static struct ctl_table *sd_alloc_ctl_entry(int n) 210 { 211 struct ctl_table *entry = 212 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 213 214 return entry; 215 } 216 217 static void sd_free_ctl_entry(struct ctl_table **tablep) 218 { 219 struct ctl_table *entry; 220 221 /* 222 * In the intermediate directories, both the child directory and 223 * procname are dynamically allocated and could fail but the mode 224 * will always be set. In the lowest directory the names are 225 * static strings and all have proc handlers. 226 */ 227 for (entry = *tablep; entry->mode; entry++) { 228 if (entry->child) 229 sd_free_ctl_entry(&entry->child); 230 if (entry->proc_handler == NULL) 231 kfree(entry->procname); 232 } 233 234 kfree(*tablep); 235 *tablep = NULL; 236 } 237 238 static int min_load_idx = 0; 239 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 240 241 static void 242 set_table_entry(struct ctl_table *entry, 243 const char *procname, void *data, int maxlen, 244 umode_t mode, proc_handler *proc_handler, 245 bool load_idx) 246 { 247 entry->procname = procname; 248 entry->data = data; 249 entry->maxlen = maxlen; 250 entry->mode = mode; 251 entry->proc_handler = proc_handler; 252 253 if (load_idx) { 254 entry->extra1 = &min_load_idx; 255 entry->extra2 = &max_load_idx; 256 } 257 } 258 259 static struct ctl_table * 260 sd_alloc_ctl_domain_table(struct sched_domain *sd) 261 { 262 struct ctl_table *table = sd_alloc_ctl_entry(14); 263 264 if (table == NULL) 265 return NULL; 266 267 set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false); 268 set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false); 269 set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 270 set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 271 set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 272 set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 273 set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 274 set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false); 275 set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false); 276 set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false); 277 set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false); 278 set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false); 279 set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false); 280 /* &table[13] is terminator */ 281 282 return table; 283 } 284 285 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 286 { 287 struct ctl_table *entry, *table; 288 struct sched_domain *sd; 289 int domain_num = 0, i; 290 char buf[32]; 291 292 for_each_domain(cpu, sd) 293 domain_num++; 294 entry = table = sd_alloc_ctl_entry(domain_num + 1); 295 if (table == NULL) 296 return NULL; 297 298 i = 0; 299 for_each_domain(cpu, sd) { 300 snprintf(buf, 32, "domain%d", i); 301 entry->procname = kstrdup(buf, GFP_KERNEL); 302 entry->mode = 0555; 303 entry->child = sd_alloc_ctl_domain_table(sd); 304 entry++; 305 i++; 306 } 307 return table; 308 } 309 310 static cpumask_var_t sd_sysctl_cpus; 311 static struct ctl_table_header *sd_sysctl_header; 312 313 void register_sched_domain_sysctl(void) 314 { 315 static struct ctl_table *cpu_entries; 316 static struct ctl_table **cpu_idx; 317 char buf[32]; 318 int i; 319 320 if (!cpu_entries) { 321 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1); 322 if (!cpu_entries) 323 return; 324 325 WARN_ON(sd_ctl_dir[0].child); 326 sd_ctl_dir[0].child = cpu_entries; 327 } 328 329 if (!cpu_idx) { 330 struct ctl_table *e = cpu_entries; 331 332 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL); 333 if (!cpu_idx) 334 return; 335 336 /* deal with sparse possible map */ 337 for_each_possible_cpu(i) { 338 cpu_idx[i] = e; 339 e++; 340 } 341 } 342 343 if (!cpumask_available(sd_sysctl_cpus)) { 344 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 345 return; 346 347 /* init to possible to not have holes in @cpu_entries */ 348 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 349 } 350 351 for_each_cpu(i, sd_sysctl_cpus) { 352 struct ctl_table *e = cpu_idx[i]; 353 354 if (e->child) 355 sd_free_ctl_entry(&e->child); 356 357 if (!e->procname) { 358 snprintf(buf, 32, "cpu%d", i); 359 e->procname = kstrdup(buf, GFP_KERNEL); 360 } 361 e->mode = 0555; 362 e->child = sd_alloc_ctl_cpu_table(i); 363 364 __cpumask_clear_cpu(i, sd_sysctl_cpus); 365 } 366 367 WARN_ON(sd_sysctl_header); 368 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 369 } 370 371 void dirty_sched_domain_sysctl(int cpu) 372 { 373 if (cpumask_available(sd_sysctl_cpus)) 374 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 375 } 376 377 /* may be called multiple times per register */ 378 void unregister_sched_domain_sysctl(void) 379 { 380 unregister_sysctl_table(sd_sysctl_header); 381 sd_sysctl_header = NULL; 382 } 383 #endif /* CONFIG_SYSCTL */ 384 #endif /* CONFIG_SMP */ 385 386 #ifdef CONFIG_FAIR_GROUP_SCHED 387 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 388 { 389 struct sched_entity *se = tg->se[cpu]; 390 391 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 392 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 393 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 394 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 395 396 if (!se) 397 return; 398 399 PN(se->exec_start); 400 PN(se->vruntime); 401 PN(se->sum_exec_runtime); 402 403 if (schedstat_enabled()) { 404 PN_SCHEDSTAT(se->statistics.wait_start); 405 PN_SCHEDSTAT(se->statistics.sleep_start); 406 PN_SCHEDSTAT(se->statistics.block_start); 407 PN_SCHEDSTAT(se->statistics.sleep_max); 408 PN_SCHEDSTAT(se->statistics.block_max); 409 PN_SCHEDSTAT(se->statistics.exec_max); 410 PN_SCHEDSTAT(se->statistics.slice_max); 411 PN_SCHEDSTAT(se->statistics.wait_max); 412 PN_SCHEDSTAT(se->statistics.wait_sum); 413 P_SCHEDSTAT(se->statistics.wait_count); 414 } 415 416 P(se->load.weight); 417 P(se->runnable_weight); 418 #ifdef CONFIG_SMP 419 P(se->avg.load_avg); 420 P(se->avg.util_avg); 421 P(se->avg.runnable_load_avg); 422 #endif 423 424 #undef PN_SCHEDSTAT 425 #undef PN 426 #undef P_SCHEDSTAT 427 #undef P 428 } 429 #endif 430 431 #ifdef CONFIG_CGROUP_SCHED 432 static char group_path[PATH_MAX]; 433 434 static char *task_group_path(struct task_group *tg) 435 { 436 if (autogroup_path(tg, group_path, PATH_MAX)) 437 return group_path; 438 439 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 440 441 return group_path; 442 } 443 #endif 444 445 static void 446 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 447 { 448 if (rq->curr == p) 449 SEQ_printf(m, ">R"); 450 else 451 SEQ_printf(m, " %c", task_state_to_char(p)); 452 453 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 454 p->comm, task_pid_nr(p), 455 SPLIT_NS(p->se.vruntime), 456 (long long)(p->nvcsw + p->nivcsw), 457 p->prio); 458 459 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 460 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 461 SPLIT_NS(p->se.sum_exec_runtime), 462 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 463 464 #ifdef CONFIG_NUMA_BALANCING 465 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 466 #endif 467 #ifdef CONFIG_CGROUP_SCHED 468 SEQ_printf(m, " %s", task_group_path(task_group(p))); 469 #endif 470 471 SEQ_printf(m, "\n"); 472 } 473 474 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 475 { 476 struct task_struct *g, *p; 477 478 SEQ_printf(m, "\n"); 479 SEQ_printf(m, "runnable tasks:\n"); 480 SEQ_printf(m, " S task PID tree-key switches prio" 481 " wait-time sum-exec sum-sleep\n"); 482 SEQ_printf(m, "-------------------------------------------------------" 483 "----------------------------------------------------\n"); 484 485 rcu_read_lock(); 486 for_each_process_thread(g, p) { 487 if (task_cpu(p) != rq_cpu) 488 continue; 489 490 print_task(m, rq, p); 491 } 492 rcu_read_unlock(); 493 } 494 495 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 496 { 497 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 498 spread, rq0_min_vruntime, spread0; 499 struct rq *rq = cpu_rq(cpu); 500 struct sched_entity *last; 501 unsigned long flags; 502 503 #ifdef CONFIG_FAIR_GROUP_SCHED 504 SEQ_printf(m, "\n"); 505 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 506 #else 507 SEQ_printf(m, "\n"); 508 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 509 #endif 510 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 511 SPLIT_NS(cfs_rq->exec_clock)); 512 513 raw_spin_lock_irqsave(&rq->lock, flags); 514 if (rb_first_cached(&cfs_rq->tasks_timeline)) 515 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 516 last = __pick_last_entity(cfs_rq); 517 if (last) 518 max_vruntime = last->vruntime; 519 min_vruntime = cfs_rq->min_vruntime; 520 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 521 raw_spin_unlock_irqrestore(&rq->lock, flags); 522 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 523 SPLIT_NS(MIN_vruntime)); 524 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 525 SPLIT_NS(min_vruntime)); 526 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 527 SPLIT_NS(max_vruntime)); 528 spread = max_vruntime - MIN_vruntime; 529 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 530 SPLIT_NS(spread)); 531 spread0 = min_vruntime - rq0_min_vruntime; 532 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 533 SPLIT_NS(spread0)); 534 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 535 cfs_rq->nr_spread_over); 536 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 537 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 538 #ifdef CONFIG_SMP 539 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight); 540 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 541 cfs_rq->avg.load_avg); 542 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 543 cfs_rq->avg.runnable_load_avg); 544 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 545 cfs_rq->avg.util_avg); 546 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 547 cfs_rq->avg.util_est.enqueued); 548 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 549 cfs_rq->removed.load_avg); 550 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 551 cfs_rq->removed.util_avg); 552 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum", 553 cfs_rq->removed.runnable_sum); 554 #ifdef CONFIG_FAIR_GROUP_SCHED 555 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 556 cfs_rq->tg_load_avg_contrib); 557 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 558 atomic_long_read(&cfs_rq->tg->load_avg)); 559 #endif 560 #endif 561 #ifdef CONFIG_CFS_BANDWIDTH 562 SEQ_printf(m, " .%-30s: %d\n", "throttled", 563 cfs_rq->throttled); 564 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 565 cfs_rq->throttle_count); 566 #endif 567 568 #ifdef CONFIG_FAIR_GROUP_SCHED 569 print_cfs_group_stats(m, cpu, cfs_rq->tg); 570 #endif 571 } 572 573 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 574 { 575 #ifdef CONFIG_RT_GROUP_SCHED 576 SEQ_printf(m, "\n"); 577 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 578 #else 579 SEQ_printf(m, "\n"); 580 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 581 #endif 582 583 #define P(x) \ 584 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 585 #define PU(x) \ 586 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 587 #define PN(x) \ 588 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 589 590 PU(rt_nr_running); 591 #ifdef CONFIG_SMP 592 PU(rt_nr_migratory); 593 #endif 594 P(rt_throttled); 595 PN(rt_time); 596 PN(rt_runtime); 597 598 #undef PN 599 #undef PU 600 #undef P 601 } 602 603 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 604 { 605 struct dl_bw *dl_bw; 606 607 SEQ_printf(m, "\n"); 608 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 609 610 #define PU(x) \ 611 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 612 613 PU(dl_nr_running); 614 #ifdef CONFIG_SMP 615 PU(dl_nr_migratory); 616 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 617 #else 618 dl_bw = &dl_rq->dl_bw; 619 #endif 620 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 621 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 622 623 #undef PU 624 } 625 626 extern __read_mostly int sched_clock_running; 627 628 static void print_cpu(struct seq_file *m, int cpu) 629 { 630 struct rq *rq = cpu_rq(cpu); 631 unsigned long flags; 632 633 #ifdef CONFIG_X86 634 { 635 unsigned int freq = cpu_khz ? : 1; 636 637 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 638 cpu, freq / 1000, (freq % 1000)); 639 } 640 #else 641 SEQ_printf(m, "cpu#%d\n", cpu); 642 #endif 643 644 #define P(x) \ 645 do { \ 646 if (sizeof(rq->x) == 4) \ 647 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 648 else \ 649 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 650 } while (0) 651 652 #define PN(x) \ 653 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 654 655 P(nr_running); 656 SEQ_printf(m, " .%-30s: %lu\n", "load", 657 rq->load.weight); 658 P(nr_switches); 659 P(nr_load_updates); 660 P(nr_uninterruptible); 661 PN(next_balance); 662 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 663 PN(clock); 664 PN(clock_task); 665 P(cpu_load[0]); 666 P(cpu_load[1]); 667 P(cpu_load[2]); 668 P(cpu_load[3]); 669 P(cpu_load[4]); 670 #undef P 671 #undef PN 672 673 #ifdef CONFIG_SMP 674 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 675 P64(avg_idle); 676 P64(max_idle_balance_cost); 677 #undef P64 678 #endif 679 680 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 681 if (schedstat_enabled()) { 682 P(yld_count); 683 P(sched_count); 684 P(sched_goidle); 685 P(ttwu_count); 686 P(ttwu_local); 687 } 688 #undef P 689 690 spin_lock_irqsave(&sched_debug_lock, flags); 691 print_cfs_stats(m, cpu); 692 print_rt_stats(m, cpu); 693 print_dl_stats(m, cpu); 694 695 print_rq(m, rq, cpu); 696 spin_unlock_irqrestore(&sched_debug_lock, flags); 697 SEQ_printf(m, "\n"); 698 } 699 700 static const char *sched_tunable_scaling_names[] = { 701 "none", 702 "logaritmic", 703 "linear" 704 }; 705 706 static void sched_debug_header(struct seq_file *m) 707 { 708 u64 ktime, sched_clk, cpu_clk; 709 unsigned long flags; 710 711 local_irq_save(flags); 712 ktime = ktime_to_ns(ktime_get()); 713 sched_clk = sched_clock(); 714 cpu_clk = local_clock(); 715 local_irq_restore(flags); 716 717 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 718 init_utsname()->release, 719 (int)strcspn(init_utsname()->version, " "), 720 init_utsname()->version); 721 722 #define P(x) \ 723 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 724 #define PN(x) \ 725 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 726 PN(ktime); 727 PN(sched_clk); 728 PN(cpu_clk); 729 P(jiffies); 730 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 731 P(sched_clock_stable()); 732 #endif 733 #undef PN 734 #undef P 735 736 SEQ_printf(m, "\n"); 737 SEQ_printf(m, "sysctl_sched\n"); 738 739 #define P(x) \ 740 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 741 #define PN(x) \ 742 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 743 PN(sysctl_sched_latency); 744 PN(sysctl_sched_min_granularity); 745 PN(sysctl_sched_wakeup_granularity); 746 P(sysctl_sched_child_runs_first); 747 P(sysctl_sched_features); 748 #undef PN 749 #undef P 750 751 SEQ_printf(m, " .%-40s: %d (%s)\n", 752 "sysctl_sched_tunable_scaling", 753 sysctl_sched_tunable_scaling, 754 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 755 SEQ_printf(m, "\n"); 756 } 757 758 static int sched_debug_show(struct seq_file *m, void *v) 759 { 760 int cpu = (unsigned long)(v - 2); 761 762 if (cpu != -1) 763 print_cpu(m, cpu); 764 else 765 sched_debug_header(m); 766 767 return 0; 768 } 769 770 void sysrq_sched_debug_show(void) 771 { 772 int cpu; 773 774 sched_debug_header(NULL); 775 for_each_online_cpu(cpu) 776 print_cpu(NULL, cpu); 777 778 } 779 780 /* 781 * This itererator needs some explanation. 782 * It returns 1 for the header position. 783 * This means 2 is CPU 0. 784 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 785 * to use cpumask_* to iterate over the CPUs. 786 */ 787 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 788 { 789 unsigned long n = *offset; 790 791 if (n == 0) 792 return (void *) 1; 793 794 n--; 795 796 if (n > 0) 797 n = cpumask_next(n - 1, cpu_online_mask); 798 else 799 n = cpumask_first(cpu_online_mask); 800 801 *offset = n + 1; 802 803 if (n < nr_cpu_ids) 804 return (void *)(unsigned long)(n + 2); 805 806 return NULL; 807 } 808 809 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 810 { 811 (*offset)++; 812 return sched_debug_start(file, offset); 813 } 814 815 static void sched_debug_stop(struct seq_file *file, void *data) 816 { 817 } 818 819 static const struct seq_operations sched_debug_sops = { 820 .start = sched_debug_start, 821 .next = sched_debug_next, 822 .stop = sched_debug_stop, 823 .show = sched_debug_show, 824 }; 825 826 static int sched_debug_release(struct inode *inode, struct file *file) 827 { 828 seq_release(inode, file); 829 830 return 0; 831 } 832 833 static int sched_debug_open(struct inode *inode, struct file *filp) 834 { 835 int ret = 0; 836 837 ret = seq_open(filp, &sched_debug_sops); 838 839 return ret; 840 } 841 842 static const struct file_operations sched_debug_fops = { 843 .open = sched_debug_open, 844 .read = seq_read, 845 .llseek = seq_lseek, 846 .release = sched_debug_release, 847 }; 848 849 static int __init init_sched_debug_procfs(void) 850 { 851 struct proc_dir_entry *pe; 852 853 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 854 if (!pe) 855 return -ENOMEM; 856 return 0; 857 } 858 859 __initcall(init_sched_debug_procfs); 860 861 #define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 862 #define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 863 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 864 #define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 865 866 867 #ifdef CONFIG_NUMA_BALANCING 868 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 869 unsigned long tpf, unsigned long gsf, unsigned long gpf) 870 { 871 SEQ_printf(m, "numa_faults node=%d ", node); 872 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf); 873 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf); 874 } 875 #endif 876 877 878 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 879 { 880 #ifdef CONFIG_NUMA_BALANCING 881 struct mempolicy *pol; 882 883 if (p->mm) 884 P(mm->numa_scan_seq); 885 886 task_lock(p); 887 pol = p->mempolicy; 888 if (pol && !(pol->flags & MPOL_F_MORON)) 889 pol = NULL; 890 mpol_get(pol); 891 task_unlock(p); 892 893 P(numa_pages_migrated); 894 P(numa_preferred_nid); 895 P(total_numa_faults); 896 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 897 task_node(p), task_numa_group_id(p)); 898 show_numa_stats(p, m); 899 mpol_put(pol); 900 #endif 901 } 902 903 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 904 struct seq_file *m) 905 { 906 unsigned long nr_switches; 907 908 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 909 get_nr_threads(p)); 910 SEQ_printf(m, 911 "---------------------------------------------------------" 912 "----------\n"); 913 #define __P(F) \ 914 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 915 #define P(F) \ 916 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 917 #define P_SCHEDSTAT(F) \ 918 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F)) 919 #define __PN(F) \ 920 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 921 #define PN(F) \ 922 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 923 #define PN_SCHEDSTAT(F) \ 924 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F))) 925 926 PN(se.exec_start); 927 PN(se.vruntime); 928 PN(se.sum_exec_runtime); 929 930 nr_switches = p->nvcsw + p->nivcsw; 931 932 P(se.nr_migrations); 933 934 if (schedstat_enabled()) { 935 u64 avg_atom, avg_per_cpu; 936 937 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 938 PN_SCHEDSTAT(se.statistics.wait_start); 939 PN_SCHEDSTAT(se.statistics.sleep_start); 940 PN_SCHEDSTAT(se.statistics.block_start); 941 PN_SCHEDSTAT(se.statistics.sleep_max); 942 PN_SCHEDSTAT(se.statistics.block_max); 943 PN_SCHEDSTAT(se.statistics.exec_max); 944 PN_SCHEDSTAT(se.statistics.slice_max); 945 PN_SCHEDSTAT(se.statistics.wait_max); 946 PN_SCHEDSTAT(se.statistics.wait_sum); 947 P_SCHEDSTAT(se.statistics.wait_count); 948 PN_SCHEDSTAT(se.statistics.iowait_sum); 949 P_SCHEDSTAT(se.statistics.iowait_count); 950 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 951 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 952 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 953 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 954 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 955 P_SCHEDSTAT(se.statistics.nr_wakeups); 956 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 957 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 958 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 959 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 960 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 961 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 962 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 963 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 964 965 avg_atom = p->se.sum_exec_runtime; 966 if (nr_switches) 967 avg_atom = div64_ul(avg_atom, nr_switches); 968 else 969 avg_atom = -1LL; 970 971 avg_per_cpu = p->se.sum_exec_runtime; 972 if (p->se.nr_migrations) { 973 avg_per_cpu = div64_u64(avg_per_cpu, 974 p->se.nr_migrations); 975 } else { 976 avg_per_cpu = -1LL; 977 } 978 979 __PN(avg_atom); 980 __PN(avg_per_cpu); 981 } 982 983 __P(nr_switches); 984 SEQ_printf(m, "%-45s:%21Ld\n", 985 "nr_voluntary_switches", (long long)p->nvcsw); 986 SEQ_printf(m, "%-45s:%21Ld\n", 987 "nr_involuntary_switches", (long long)p->nivcsw); 988 989 P(se.load.weight); 990 P(se.runnable_weight); 991 #ifdef CONFIG_SMP 992 P(se.avg.load_sum); 993 P(se.avg.runnable_load_sum); 994 P(se.avg.util_sum); 995 P(se.avg.load_avg); 996 P(se.avg.runnable_load_avg); 997 P(se.avg.util_avg); 998 P(se.avg.last_update_time); 999 P(se.avg.util_est.ewma); 1000 P(se.avg.util_est.enqueued); 1001 #endif 1002 P(policy); 1003 P(prio); 1004 if (p->policy == SCHED_DEADLINE) { 1005 P(dl.runtime); 1006 P(dl.deadline); 1007 } 1008 #undef PN_SCHEDSTAT 1009 #undef PN 1010 #undef __PN 1011 #undef P_SCHEDSTAT 1012 #undef P 1013 #undef __P 1014 1015 { 1016 unsigned int this_cpu = raw_smp_processor_id(); 1017 u64 t0, t1; 1018 1019 t0 = cpu_clock(this_cpu); 1020 t1 = cpu_clock(this_cpu); 1021 SEQ_printf(m, "%-45s:%21Ld\n", 1022 "clock-delta", (long long)(t1-t0)); 1023 } 1024 1025 sched_show_numa(p, m); 1026 } 1027 1028 void proc_sched_set_task(struct task_struct *p) 1029 { 1030 #ifdef CONFIG_SCHEDSTATS 1031 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1032 #endif 1033 } 1034