1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched.h> 15 #include <linux/seq_file.h> 16 #include <linux/kallsyms.h> 17 #include <linux/utsname.h> 18 #include <linux/mempolicy.h> 19 20 #include "sched.h" 21 22 static DEFINE_SPINLOCK(sched_debug_lock); 23 24 /* 25 * This allows printing both to /proc/sched_debug and 26 * to the console 27 */ 28 #define SEQ_printf(m, x...) \ 29 do { \ 30 if (m) \ 31 seq_printf(m, x); \ 32 else \ 33 printk(x); \ 34 } while (0) 35 36 /* 37 * Ease the printing of nsec fields: 38 */ 39 static long long nsec_high(unsigned long long nsec) 40 { 41 if ((long long)nsec < 0) { 42 nsec = -nsec; 43 do_div(nsec, 1000000); 44 return -nsec; 45 } 46 do_div(nsec, 1000000); 47 48 return nsec; 49 } 50 51 static unsigned long nsec_low(unsigned long long nsec) 52 { 53 if ((long long)nsec < 0) 54 nsec = -nsec; 55 56 return do_div(nsec, 1000000); 57 } 58 59 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 60 61 #ifdef CONFIG_FAIR_GROUP_SCHED 62 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 63 { 64 struct sched_entity *se = tg->se[cpu]; 65 66 #define P(F) \ 67 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 68 #define PN(F) \ 69 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 70 71 if (!se) { 72 struct sched_avg *avg = &cpu_rq(cpu)->avg; 73 P(avg->runnable_avg_sum); 74 P(avg->runnable_avg_period); 75 return; 76 } 77 78 79 PN(se->exec_start); 80 PN(se->vruntime); 81 PN(se->sum_exec_runtime); 82 #ifdef CONFIG_SCHEDSTATS 83 PN(se->statistics.wait_start); 84 PN(se->statistics.sleep_start); 85 PN(se->statistics.block_start); 86 PN(se->statistics.sleep_max); 87 PN(se->statistics.block_max); 88 PN(se->statistics.exec_max); 89 PN(se->statistics.slice_max); 90 PN(se->statistics.wait_max); 91 PN(se->statistics.wait_sum); 92 P(se->statistics.wait_count); 93 #endif 94 P(se->load.weight); 95 #ifdef CONFIG_SMP 96 P(se->avg.runnable_avg_sum); 97 P(se->avg.runnable_avg_period); 98 P(se->avg.load_avg_contrib); 99 P(se->avg.decay_count); 100 #endif 101 #undef PN 102 #undef P 103 } 104 #endif 105 106 #ifdef CONFIG_CGROUP_SCHED 107 static char group_path[PATH_MAX]; 108 109 static char *task_group_path(struct task_group *tg) 110 { 111 if (autogroup_path(tg, group_path, PATH_MAX)) 112 return group_path; 113 114 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 115 return group_path; 116 } 117 #endif 118 119 static void 120 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 121 { 122 if (rq->curr == p) 123 SEQ_printf(m, "R"); 124 else 125 SEQ_printf(m, " "); 126 127 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 128 p->comm, task_pid_nr(p), 129 SPLIT_NS(p->se.vruntime), 130 (long long)(p->nvcsw + p->nivcsw), 131 p->prio); 132 #ifdef CONFIG_SCHEDSTATS 133 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 134 SPLIT_NS(p->se.vruntime), 135 SPLIT_NS(p->se.sum_exec_runtime), 136 SPLIT_NS(p->se.statistics.sum_sleep_runtime)); 137 #else 138 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 139 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); 140 #endif 141 #ifdef CONFIG_NUMA_BALANCING 142 SEQ_printf(m, " %d", task_node(p)); 143 #endif 144 #ifdef CONFIG_CGROUP_SCHED 145 SEQ_printf(m, " %s", task_group_path(task_group(p))); 146 #endif 147 148 SEQ_printf(m, "\n"); 149 } 150 151 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 152 { 153 struct task_struct *g, *p; 154 unsigned long flags; 155 156 SEQ_printf(m, 157 "\nrunnable tasks:\n" 158 " task PID tree-key switches prio" 159 " exec-runtime sum-exec sum-sleep\n" 160 "------------------------------------------------------" 161 "----------------------------------------------------\n"); 162 163 read_lock_irqsave(&tasklist_lock, flags); 164 165 do_each_thread(g, p) { 166 if (task_cpu(p) != rq_cpu) 167 continue; 168 169 print_task(m, rq, p); 170 } while_each_thread(g, p); 171 172 read_unlock_irqrestore(&tasklist_lock, flags); 173 } 174 175 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 176 { 177 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 178 spread, rq0_min_vruntime, spread0; 179 struct rq *rq = cpu_rq(cpu); 180 struct sched_entity *last; 181 unsigned long flags; 182 183 #ifdef CONFIG_FAIR_GROUP_SCHED 184 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 185 #else 186 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 187 #endif 188 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 189 SPLIT_NS(cfs_rq->exec_clock)); 190 191 raw_spin_lock_irqsave(&rq->lock, flags); 192 if (cfs_rq->rb_leftmost) 193 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 194 last = __pick_last_entity(cfs_rq); 195 if (last) 196 max_vruntime = last->vruntime; 197 min_vruntime = cfs_rq->min_vruntime; 198 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 199 raw_spin_unlock_irqrestore(&rq->lock, flags); 200 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 201 SPLIT_NS(MIN_vruntime)); 202 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 203 SPLIT_NS(min_vruntime)); 204 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 205 SPLIT_NS(max_vruntime)); 206 spread = max_vruntime - MIN_vruntime; 207 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 208 SPLIT_NS(spread)); 209 spread0 = min_vruntime - rq0_min_vruntime; 210 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 211 SPLIT_NS(spread0)); 212 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 213 cfs_rq->nr_spread_over); 214 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 215 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 216 #ifdef CONFIG_SMP 217 SEQ_printf(m, " .%-30s: %ld\n", "runnable_load_avg", 218 cfs_rq->runnable_load_avg); 219 SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg", 220 cfs_rq->blocked_load_avg); 221 #ifdef CONFIG_FAIR_GROUP_SCHED 222 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib", 223 cfs_rq->tg_load_contrib); 224 SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib", 225 cfs_rq->tg_runnable_contrib); 226 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 227 atomic_long_read(&cfs_rq->tg->load_avg)); 228 SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg", 229 atomic_read(&cfs_rq->tg->runnable_avg)); 230 #endif 231 #endif 232 #ifdef CONFIG_CFS_BANDWIDTH 233 SEQ_printf(m, " .%-30s: %d\n", "tg->cfs_bandwidth.timer_active", 234 cfs_rq->tg->cfs_bandwidth.timer_active); 235 SEQ_printf(m, " .%-30s: %d\n", "throttled", 236 cfs_rq->throttled); 237 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 238 cfs_rq->throttle_count); 239 #endif 240 241 #ifdef CONFIG_FAIR_GROUP_SCHED 242 print_cfs_group_stats(m, cpu, cfs_rq->tg); 243 #endif 244 } 245 246 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 247 { 248 #ifdef CONFIG_RT_GROUP_SCHED 249 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 250 #else 251 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 252 #endif 253 254 #define P(x) \ 255 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 256 #define PN(x) \ 257 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 258 259 P(rt_nr_running); 260 P(rt_throttled); 261 PN(rt_time); 262 PN(rt_runtime); 263 264 #undef PN 265 #undef P 266 } 267 268 extern __read_mostly int sched_clock_running; 269 270 static void print_cpu(struct seq_file *m, int cpu) 271 { 272 struct rq *rq = cpu_rq(cpu); 273 unsigned long flags; 274 275 #ifdef CONFIG_X86 276 { 277 unsigned int freq = cpu_khz ? : 1; 278 279 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 280 cpu, freq / 1000, (freq % 1000)); 281 } 282 #else 283 SEQ_printf(m, "cpu#%d\n", cpu); 284 #endif 285 286 #define P(x) \ 287 do { \ 288 if (sizeof(rq->x) == 4) \ 289 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 290 else \ 291 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 292 } while (0) 293 294 #define PN(x) \ 295 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 296 297 P(nr_running); 298 SEQ_printf(m, " .%-30s: %lu\n", "load", 299 rq->load.weight); 300 P(nr_switches); 301 P(nr_load_updates); 302 P(nr_uninterruptible); 303 PN(next_balance); 304 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 305 PN(clock); 306 P(cpu_load[0]); 307 P(cpu_load[1]); 308 P(cpu_load[2]); 309 P(cpu_load[3]); 310 P(cpu_load[4]); 311 #undef P 312 #undef PN 313 314 #ifdef CONFIG_SCHEDSTATS 315 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); 316 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 317 318 P(yld_count); 319 320 P(sched_count); 321 P(sched_goidle); 322 #ifdef CONFIG_SMP 323 P64(avg_idle); 324 P64(max_idle_balance_cost); 325 #endif 326 327 P(ttwu_count); 328 P(ttwu_local); 329 330 #undef P 331 #undef P64 332 #endif 333 spin_lock_irqsave(&sched_debug_lock, flags); 334 print_cfs_stats(m, cpu); 335 print_rt_stats(m, cpu); 336 337 rcu_read_lock(); 338 print_rq(m, rq, cpu); 339 rcu_read_unlock(); 340 spin_unlock_irqrestore(&sched_debug_lock, flags); 341 SEQ_printf(m, "\n"); 342 } 343 344 static const char *sched_tunable_scaling_names[] = { 345 "none", 346 "logaritmic", 347 "linear" 348 }; 349 350 static void sched_debug_header(struct seq_file *m) 351 { 352 u64 ktime, sched_clk, cpu_clk; 353 unsigned long flags; 354 355 local_irq_save(flags); 356 ktime = ktime_to_ns(ktime_get()); 357 sched_clk = sched_clock(); 358 cpu_clk = local_clock(); 359 local_irq_restore(flags); 360 361 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 362 init_utsname()->release, 363 (int)strcspn(init_utsname()->version, " "), 364 init_utsname()->version); 365 366 #define P(x) \ 367 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 368 #define PN(x) \ 369 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 370 PN(ktime); 371 PN(sched_clk); 372 PN(cpu_clk); 373 P(jiffies); 374 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 375 P(sched_clock_stable()); 376 #endif 377 #undef PN 378 #undef P 379 380 SEQ_printf(m, "\n"); 381 SEQ_printf(m, "sysctl_sched\n"); 382 383 #define P(x) \ 384 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 385 #define PN(x) \ 386 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 387 PN(sysctl_sched_latency); 388 PN(sysctl_sched_min_granularity); 389 PN(sysctl_sched_wakeup_granularity); 390 P(sysctl_sched_child_runs_first); 391 P(sysctl_sched_features); 392 #undef PN 393 #undef P 394 395 SEQ_printf(m, " .%-40s: %d (%s)\n", 396 "sysctl_sched_tunable_scaling", 397 sysctl_sched_tunable_scaling, 398 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 399 SEQ_printf(m, "\n"); 400 } 401 402 static int sched_debug_show(struct seq_file *m, void *v) 403 { 404 int cpu = (unsigned long)(v - 2); 405 406 if (cpu != -1) 407 print_cpu(m, cpu); 408 else 409 sched_debug_header(m); 410 411 return 0; 412 } 413 414 void sysrq_sched_debug_show(void) 415 { 416 int cpu; 417 418 sched_debug_header(NULL); 419 for_each_online_cpu(cpu) 420 print_cpu(NULL, cpu); 421 422 } 423 424 /* 425 * This itererator needs some explanation. 426 * It returns 1 for the header position. 427 * This means 2 is cpu 0. 428 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 429 * to use cpumask_* to iterate over the cpus. 430 */ 431 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 432 { 433 unsigned long n = *offset; 434 435 if (n == 0) 436 return (void *) 1; 437 438 n--; 439 440 if (n > 0) 441 n = cpumask_next(n - 1, cpu_online_mask); 442 else 443 n = cpumask_first(cpu_online_mask); 444 445 *offset = n + 1; 446 447 if (n < nr_cpu_ids) 448 return (void *)(unsigned long)(n + 2); 449 return NULL; 450 } 451 452 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 453 { 454 (*offset)++; 455 return sched_debug_start(file, offset); 456 } 457 458 static void sched_debug_stop(struct seq_file *file, void *data) 459 { 460 } 461 462 static const struct seq_operations sched_debug_sops = { 463 .start = sched_debug_start, 464 .next = sched_debug_next, 465 .stop = sched_debug_stop, 466 .show = sched_debug_show, 467 }; 468 469 static int sched_debug_release(struct inode *inode, struct file *file) 470 { 471 seq_release(inode, file); 472 473 return 0; 474 } 475 476 static int sched_debug_open(struct inode *inode, struct file *filp) 477 { 478 int ret = 0; 479 480 ret = seq_open(filp, &sched_debug_sops); 481 482 return ret; 483 } 484 485 static const struct file_operations sched_debug_fops = { 486 .open = sched_debug_open, 487 .read = seq_read, 488 .llseek = seq_lseek, 489 .release = sched_debug_release, 490 }; 491 492 static int __init init_sched_debug_procfs(void) 493 { 494 struct proc_dir_entry *pe; 495 496 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 497 if (!pe) 498 return -ENOMEM; 499 return 0; 500 } 501 502 __initcall(init_sched_debug_procfs); 503 504 #define __P(F) \ 505 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 506 #define P(F) \ 507 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 508 #define __PN(F) \ 509 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 510 #define PN(F) \ 511 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 512 513 514 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 515 { 516 #ifdef CONFIG_NUMA_BALANCING 517 struct mempolicy *pol; 518 int node, i; 519 520 if (p->mm) 521 P(mm->numa_scan_seq); 522 523 task_lock(p); 524 pol = p->mempolicy; 525 if (pol && !(pol->flags & MPOL_F_MORON)) 526 pol = NULL; 527 mpol_get(pol); 528 task_unlock(p); 529 530 SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0)); 531 532 for_each_online_node(node) { 533 for (i = 0; i < 2; i++) { 534 unsigned long nr_faults = -1; 535 int cpu_current, home_node; 536 537 if (p->numa_faults_memory) 538 nr_faults = p->numa_faults_memory[2*node + i]; 539 540 cpu_current = !i ? (task_node(p) == node) : 541 (pol && node_isset(node, pol->v.nodes)); 542 543 home_node = (p->numa_preferred_nid == node); 544 545 SEQ_printf(m, "numa_faults_memory, %d, %d, %d, %d, %ld\n", 546 i, node, cpu_current, home_node, nr_faults); 547 } 548 } 549 550 mpol_put(pol); 551 #endif 552 } 553 554 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 555 { 556 unsigned long nr_switches; 557 558 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p), 559 get_nr_threads(p)); 560 SEQ_printf(m, 561 "---------------------------------------------------------" 562 "----------\n"); 563 #define __P(F) \ 564 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 565 #define P(F) \ 566 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 567 #define __PN(F) \ 568 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 569 #define PN(F) \ 570 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 571 572 PN(se.exec_start); 573 PN(se.vruntime); 574 PN(se.sum_exec_runtime); 575 576 nr_switches = p->nvcsw + p->nivcsw; 577 578 #ifdef CONFIG_SCHEDSTATS 579 PN(se.statistics.wait_start); 580 PN(se.statistics.sleep_start); 581 PN(se.statistics.block_start); 582 PN(se.statistics.sleep_max); 583 PN(se.statistics.block_max); 584 PN(se.statistics.exec_max); 585 PN(se.statistics.slice_max); 586 PN(se.statistics.wait_max); 587 PN(se.statistics.wait_sum); 588 P(se.statistics.wait_count); 589 PN(se.statistics.iowait_sum); 590 P(se.statistics.iowait_count); 591 P(se.nr_migrations); 592 P(se.statistics.nr_migrations_cold); 593 P(se.statistics.nr_failed_migrations_affine); 594 P(se.statistics.nr_failed_migrations_running); 595 P(se.statistics.nr_failed_migrations_hot); 596 P(se.statistics.nr_forced_migrations); 597 P(se.statistics.nr_wakeups); 598 P(se.statistics.nr_wakeups_sync); 599 P(se.statistics.nr_wakeups_migrate); 600 P(se.statistics.nr_wakeups_local); 601 P(se.statistics.nr_wakeups_remote); 602 P(se.statistics.nr_wakeups_affine); 603 P(se.statistics.nr_wakeups_affine_attempts); 604 P(se.statistics.nr_wakeups_passive); 605 P(se.statistics.nr_wakeups_idle); 606 607 { 608 u64 avg_atom, avg_per_cpu; 609 610 avg_atom = p->se.sum_exec_runtime; 611 if (nr_switches) 612 do_div(avg_atom, nr_switches); 613 else 614 avg_atom = -1LL; 615 616 avg_per_cpu = p->se.sum_exec_runtime; 617 if (p->se.nr_migrations) { 618 avg_per_cpu = div64_u64(avg_per_cpu, 619 p->se.nr_migrations); 620 } else { 621 avg_per_cpu = -1LL; 622 } 623 624 __PN(avg_atom); 625 __PN(avg_per_cpu); 626 } 627 #endif 628 __P(nr_switches); 629 SEQ_printf(m, "%-45s:%21Ld\n", 630 "nr_voluntary_switches", (long long)p->nvcsw); 631 SEQ_printf(m, "%-45s:%21Ld\n", 632 "nr_involuntary_switches", (long long)p->nivcsw); 633 634 P(se.load.weight); 635 #ifdef CONFIG_SMP 636 P(se.avg.runnable_avg_sum); 637 P(se.avg.runnable_avg_period); 638 P(se.avg.load_avg_contrib); 639 P(se.avg.decay_count); 640 #endif 641 P(policy); 642 P(prio); 643 #undef PN 644 #undef __PN 645 #undef P 646 #undef __P 647 648 { 649 unsigned int this_cpu = raw_smp_processor_id(); 650 u64 t0, t1; 651 652 t0 = cpu_clock(this_cpu); 653 t1 = cpu_clock(this_cpu); 654 SEQ_printf(m, "%-45s:%21Ld\n", 655 "clock-delta", (long long)(t1-t0)); 656 } 657 658 sched_show_numa(p, m); 659 } 660 661 void proc_sched_set_task(struct task_struct *p) 662 { 663 #ifdef CONFIG_SCHEDSTATS 664 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 665 #endif 666 } 667