xref: /linux/kernel/sched/debug.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18 #include <linux/mempolicy.h>
19 
20 #include "sched.h"
21 
22 static DEFINE_SPINLOCK(sched_debug_lock);
23 
24 /*
25  * This allows printing both to /proc/sched_debug and
26  * to the console
27  */
28 #define SEQ_printf(m, x...)			\
29  do {						\
30 	if (m)					\
31 		seq_printf(m, x);		\
32 	else					\
33 		printk(x);			\
34  } while (0)
35 
36 /*
37  * Ease the printing of nsec fields:
38  */
39 static long long nsec_high(unsigned long long nsec)
40 {
41 	if ((long long)nsec < 0) {
42 		nsec = -nsec;
43 		do_div(nsec, 1000000);
44 		return -nsec;
45 	}
46 	do_div(nsec, 1000000);
47 
48 	return nsec;
49 }
50 
51 static unsigned long nsec_low(unsigned long long nsec)
52 {
53 	if ((long long)nsec < 0)
54 		nsec = -nsec;
55 
56 	return do_div(nsec, 1000000);
57 }
58 
59 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
60 
61 #ifdef CONFIG_FAIR_GROUP_SCHED
62 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
63 {
64 	struct sched_entity *se = tg->se[cpu];
65 
66 #define P(F) \
67 	SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
68 #define PN(F) \
69 	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
70 
71 	if (!se)
72 		return;
73 
74 	PN(se->exec_start);
75 	PN(se->vruntime);
76 	PN(se->sum_exec_runtime);
77 #ifdef CONFIG_SCHEDSTATS
78 	PN(se->statistics.wait_start);
79 	PN(se->statistics.sleep_start);
80 	PN(se->statistics.block_start);
81 	PN(se->statistics.sleep_max);
82 	PN(se->statistics.block_max);
83 	PN(se->statistics.exec_max);
84 	PN(se->statistics.slice_max);
85 	PN(se->statistics.wait_max);
86 	PN(se->statistics.wait_sum);
87 	P(se->statistics.wait_count);
88 #endif
89 	P(se->load.weight);
90 #ifdef CONFIG_SMP
91 	P(se->avg.load_avg);
92 	P(se->avg.util_avg);
93 #endif
94 #undef PN
95 #undef P
96 }
97 #endif
98 
99 #ifdef CONFIG_CGROUP_SCHED
100 static char group_path[PATH_MAX];
101 
102 static char *task_group_path(struct task_group *tg)
103 {
104 	if (autogroup_path(tg, group_path, PATH_MAX))
105 		return group_path;
106 
107 	return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
108 }
109 #endif
110 
111 static void
112 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
113 {
114 	if (rq->curr == p)
115 		SEQ_printf(m, "R");
116 	else
117 		SEQ_printf(m, " ");
118 
119 	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
120 		p->comm, task_pid_nr(p),
121 		SPLIT_NS(p->se.vruntime),
122 		(long long)(p->nvcsw + p->nivcsw),
123 		p->prio);
124 #ifdef CONFIG_SCHEDSTATS
125 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
126 		SPLIT_NS(p->se.statistics.wait_sum),
127 		SPLIT_NS(p->se.sum_exec_runtime),
128 		SPLIT_NS(p->se.statistics.sum_sleep_runtime));
129 #else
130 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
131 		0LL, 0L,
132 		SPLIT_NS(p->se.sum_exec_runtime),
133 		0LL, 0L);
134 #endif
135 #ifdef CONFIG_NUMA_BALANCING
136 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
137 #endif
138 #ifdef CONFIG_CGROUP_SCHED
139 	SEQ_printf(m, " %s", task_group_path(task_group(p)));
140 #endif
141 
142 	SEQ_printf(m, "\n");
143 }
144 
145 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
146 {
147 	struct task_struct *g, *p;
148 
149 	SEQ_printf(m,
150 	"\nrunnable tasks:\n"
151 	"            task   PID         tree-key  switches  prio"
152 	"     wait-time             sum-exec        sum-sleep\n"
153 	"------------------------------------------------------"
154 	"----------------------------------------------------\n");
155 
156 	rcu_read_lock();
157 	for_each_process_thread(g, p) {
158 		if (task_cpu(p) != rq_cpu)
159 			continue;
160 
161 		print_task(m, rq, p);
162 	}
163 	rcu_read_unlock();
164 }
165 
166 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
167 {
168 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
169 		spread, rq0_min_vruntime, spread0;
170 	struct rq *rq = cpu_rq(cpu);
171 	struct sched_entity *last;
172 	unsigned long flags;
173 
174 #ifdef CONFIG_FAIR_GROUP_SCHED
175 	SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
176 #else
177 	SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
178 #endif
179 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
180 			SPLIT_NS(cfs_rq->exec_clock));
181 
182 	raw_spin_lock_irqsave(&rq->lock, flags);
183 	if (cfs_rq->rb_leftmost)
184 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
185 	last = __pick_last_entity(cfs_rq);
186 	if (last)
187 		max_vruntime = last->vruntime;
188 	min_vruntime = cfs_rq->min_vruntime;
189 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
190 	raw_spin_unlock_irqrestore(&rq->lock, flags);
191 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
192 			SPLIT_NS(MIN_vruntime));
193 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
194 			SPLIT_NS(min_vruntime));
195 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
196 			SPLIT_NS(max_vruntime));
197 	spread = max_vruntime - MIN_vruntime;
198 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
199 			SPLIT_NS(spread));
200 	spread0 = min_vruntime - rq0_min_vruntime;
201 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
202 			SPLIT_NS(spread0));
203 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
204 			cfs_rq->nr_spread_over);
205 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
206 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
207 #ifdef CONFIG_SMP
208 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
209 			cfs_rq->avg.load_avg);
210 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
211 			cfs_rq->runnable_load_avg);
212 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
213 			cfs_rq->avg.util_avg);
214 	SEQ_printf(m, "  .%-30s: %ld\n", "removed_load_avg",
215 			atomic_long_read(&cfs_rq->removed_load_avg));
216 	SEQ_printf(m, "  .%-30s: %ld\n", "removed_util_avg",
217 			atomic_long_read(&cfs_rq->removed_util_avg));
218 #ifdef CONFIG_FAIR_GROUP_SCHED
219 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
220 			cfs_rq->tg_load_avg_contrib);
221 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
222 			atomic_long_read(&cfs_rq->tg->load_avg));
223 #endif
224 #endif
225 #ifdef CONFIG_CFS_BANDWIDTH
226 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
227 			cfs_rq->throttled);
228 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
229 			cfs_rq->throttle_count);
230 #endif
231 
232 #ifdef CONFIG_FAIR_GROUP_SCHED
233 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
234 #endif
235 }
236 
237 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
238 {
239 #ifdef CONFIG_RT_GROUP_SCHED
240 	SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
241 #else
242 	SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
243 #endif
244 
245 #define P(x) \
246 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
247 #define PN(x) \
248 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
249 
250 	P(rt_nr_running);
251 	P(rt_throttled);
252 	PN(rt_time);
253 	PN(rt_runtime);
254 
255 #undef PN
256 #undef P
257 }
258 
259 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
260 {
261 	SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
262 	SEQ_printf(m, "  .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running);
263 }
264 
265 extern __read_mostly int sched_clock_running;
266 
267 static void print_cpu(struct seq_file *m, int cpu)
268 {
269 	struct rq *rq = cpu_rq(cpu);
270 	unsigned long flags;
271 
272 #ifdef CONFIG_X86
273 	{
274 		unsigned int freq = cpu_khz ? : 1;
275 
276 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
277 			   cpu, freq / 1000, (freq % 1000));
278 	}
279 #else
280 	SEQ_printf(m, "cpu#%d\n", cpu);
281 #endif
282 
283 #define P(x)								\
284 do {									\
285 	if (sizeof(rq->x) == 4)						\
286 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
287 	else								\
288 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
289 } while (0)
290 
291 #define PN(x) \
292 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
293 
294 	P(nr_running);
295 	SEQ_printf(m, "  .%-30s: %lu\n", "load",
296 		   rq->load.weight);
297 	P(nr_switches);
298 	P(nr_load_updates);
299 	P(nr_uninterruptible);
300 	PN(next_balance);
301 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
302 	PN(clock);
303 	PN(clock_task);
304 	P(cpu_load[0]);
305 	P(cpu_load[1]);
306 	P(cpu_load[2]);
307 	P(cpu_load[3]);
308 	P(cpu_load[4]);
309 #undef P
310 #undef PN
311 
312 #ifdef CONFIG_SCHEDSTATS
313 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
314 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
315 
316 	P(yld_count);
317 
318 	P(sched_count);
319 	P(sched_goidle);
320 #ifdef CONFIG_SMP
321 	P64(avg_idle);
322 	P64(max_idle_balance_cost);
323 #endif
324 
325 	P(ttwu_count);
326 	P(ttwu_local);
327 
328 #undef P
329 #undef P64
330 #endif
331 	spin_lock_irqsave(&sched_debug_lock, flags);
332 	print_cfs_stats(m, cpu);
333 	print_rt_stats(m, cpu);
334 	print_dl_stats(m, cpu);
335 
336 	print_rq(m, rq, cpu);
337 	spin_unlock_irqrestore(&sched_debug_lock, flags);
338 	SEQ_printf(m, "\n");
339 }
340 
341 static const char *sched_tunable_scaling_names[] = {
342 	"none",
343 	"logaritmic",
344 	"linear"
345 };
346 
347 static void sched_debug_header(struct seq_file *m)
348 {
349 	u64 ktime, sched_clk, cpu_clk;
350 	unsigned long flags;
351 
352 	local_irq_save(flags);
353 	ktime = ktime_to_ns(ktime_get());
354 	sched_clk = sched_clock();
355 	cpu_clk = local_clock();
356 	local_irq_restore(flags);
357 
358 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
359 		init_utsname()->release,
360 		(int)strcspn(init_utsname()->version, " "),
361 		init_utsname()->version);
362 
363 #define P(x) \
364 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
365 #define PN(x) \
366 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
367 	PN(ktime);
368 	PN(sched_clk);
369 	PN(cpu_clk);
370 	P(jiffies);
371 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
372 	P(sched_clock_stable());
373 #endif
374 #undef PN
375 #undef P
376 
377 	SEQ_printf(m, "\n");
378 	SEQ_printf(m, "sysctl_sched\n");
379 
380 #define P(x) \
381 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
382 #define PN(x) \
383 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
384 	PN(sysctl_sched_latency);
385 	PN(sysctl_sched_min_granularity);
386 	PN(sysctl_sched_wakeup_granularity);
387 	P(sysctl_sched_child_runs_first);
388 	P(sysctl_sched_features);
389 #undef PN
390 #undef P
391 
392 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
393 		"sysctl_sched_tunable_scaling",
394 		sysctl_sched_tunable_scaling,
395 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
396 	SEQ_printf(m, "\n");
397 }
398 
399 static int sched_debug_show(struct seq_file *m, void *v)
400 {
401 	int cpu = (unsigned long)(v - 2);
402 
403 	if (cpu != -1)
404 		print_cpu(m, cpu);
405 	else
406 		sched_debug_header(m);
407 
408 	return 0;
409 }
410 
411 void sysrq_sched_debug_show(void)
412 {
413 	int cpu;
414 
415 	sched_debug_header(NULL);
416 	for_each_online_cpu(cpu)
417 		print_cpu(NULL, cpu);
418 
419 }
420 
421 /*
422  * This itererator needs some explanation.
423  * It returns 1 for the header position.
424  * This means 2 is cpu 0.
425  * In a hotplugged system some cpus, including cpu 0, may be missing so we have
426  * to use cpumask_* to iterate over the cpus.
427  */
428 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
429 {
430 	unsigned long n = *offset;
431 
432 	if (n == 0)
433 		return (void *) 1;
434 
435 	n--;
436 
437 	if (n > 0)
438 		n = cpumask_next(n - 1, cpu_online_mask);
439 	else
440 		n = cpumask_first(cpu_online_mask);
441 
442 	*offset = n + 1;
443 
444 	if (n < nr_cpu_ids)
445 		return (void *)(unsigned long)(n + 2);
446 	return NULL;
447 }
448 
449 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
450 {
451 	(*offset)++;
452 	return sched_debug_start(file, offset);
453 }
454 
455 static void sched_debug_stop(struct seq_file *file, void *data)
456 {
457 }
458 
459 static const struct seq_operations sched_debug_sops = {
460 	.start = sched_debug_start,
461 	.next = sched_debug_next,
462 	.stop = sched_debug_stop,
463 	.show = sched_debug_show,
464 };
465 
466 static int sched_debug_release(struct inode *inode, struct file *file)
467 {
468 	seq_release(inode, file);
469 
470 	return 0;
471 }
472 
473 static int sched_debug_open(struct inode *inode, struct file *filp)
474 {
475 	int ret = 0;
476 
477 	ret = seq_open(filp, &sched_debug_sops);
478 
479 	return ret;
480 }
481 
482 static const struct file_operations sched_debug_fops = {
483 	.open		= sched_debug_open,
484 	.read		= seq_read,
485 	.llseek		= seq_lseek,
486 	.release	= sched_debug_release,
487 };
488 
489 static int __init init_sched_debug_procfs(void)
490 {
491 	struct proc_dir_entry *pe;
492 
493 	pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
494 	if (!pe)
495 		return -ENOMEM;
496 	return 0;
497 }
498 
499 __initcall(init_sched_debug_procfs);
500 
501 #define __P(F) \
502 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
503 #define P(F) \
504 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
505 #define __PN(F) \
506 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
507 #define PN(F) \
508 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
509 
510 
511 #ifdef CONFIG_NUMA_BALANCING
512 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
513 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
514 {
515 	SEQ_printf(m, "numa_faults node=%d ", node);
516 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
517 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
518 }
519 #endif
520 
521 
522 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
523 {
524 #ifdef CONFIG_NUMA_BALANCING
525 	struct mempolicy *pol;
526 
527 	if (p->mm)
528 		P(mm->numa_scan_seq);
529 
530 	task_lock(p);
531 	pol = p->mempolicy;
532 	if (pol && !(pol->flags & MPOL_F_MORON))
533 		pol = NULL;
534 	mpol_get(pol);
535 	task_unlock(p);
536 
537 	P(numa_pages_migrated);
538 	P(numa_preferred_nid);
539 	P(total_numa_faults);
540 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
541 			task_node(p), task_numa_group_id(p));
542 	show_numa_stats(p, m);
543 	mpol_put(pol);
544 #endif
545 }
546 
547 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
548 {
549 	unsigned long nr_switches;
550 
551 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
552 						get_nr_threads(p));
553 	SEQ_printf(m,
554 		"---------------------------------------------------------"
555 		"----------\n");
556 #define __P(F) \
557 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
558 #define P(F) \
559 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
560 #define __PN(F) \
561 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
562 #define PN(F) \
563 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
564 
565 	PN(se.exec_start);
566 	PN(se.vruntime);
567 	PN(se.sum_exec_runtime);
568 
569 	nr_switches = p->nvcsw + p->nivcsw;
570 
571 #ifdef CONFIG_SCHEDSTATS
572 	PN(se.statistics.sum_sleep_runtime);
573 	PN(se.statistics.wait_start);
574 	PN(se.statistics.sleep_start);
575 	PN(se.statistics.block_start);
576 	PN(se.statistics.sleep_max);
577 	PN(se.statistics.block_max);
578 	PN(se.statistics.exec_max);
579 	PN(se.statistics.slice_max);
580 	PN(se.statistics.wait_max);
581 	PN(se.statistics.wait_sum);
582 	P(se.statistics.wait_count);
583 	PN(se.statistics.iowait_sum);
584 	P(se.statistics.iowait_count);
585 	P(se.nr_migrations);
586 	P(se.statistics.nr_migrations_cold);
587 	P(se.statistics.nr_failed_migrations_affine);
588 	P(se.statistics.nr_failed_migrations_running);
589 	P(se.statistics.nr_failed_migrations_hot);
590 	P(se.statistics.nr_forced_migrations);
591 	P(se.statistics.nr_wakeups);
592 	P(se.statistics.nr_wakeups_sync);
593 	P(se.statistics.nr_wakeups_migrate);
594 	P(se.statistics.nr_wakeups_local);
595 	P(se.statistics.nr_wakeups_remote);
596 	P(se.statistics.nr_wakeups_affine);
597 	P(se.statistics.nr_wakeups_affine_attempts);
598 	P(se.statistics.nr_wakeups_passive);
599 	P(se.statistics.nr_wakeups_idle);
600 
601 	{
602 		u64 avg_atom, avg_per_cpu;
603 
604 		avg_atom = p->se.sum_exec_runtime;
605 		if (nr_switches)
606 			avg_atom = div64_ul(avg_atom, nr_switches);
607 		else
608 			avg_atom = -1LL;
609 
610 		avg_per_cpu = p->se.sum_exec_runtime;
611 		if (p->se.nr_migrations) {
612 			avg_per_cpu = div64_u64(avg_per_cpu,
613 						p->se.nr_migrations);
614 		} else {
615 			avg_per_cpu = -1LL;
616 		}
617 
618 		__PN(avg_atom);
619 		__PN(avg_per_cpu);
620 	}
621 #endif
622 	__P(nr_switches);
623 	SEQ_printf(m, "%-45s:%21Ld\n",
624 		   "nr_voluntary_switches", (long long)p->nvcsw);
625 	SEQ_printf(m, "%-45s:%21Ld\n",
626 		   "nr_involuntary_switches", (long long)p->nivcsw);
627 
628 	P(se.load.weight);
629 #ifdef CONFIG_SMP
630 	P(se.avg.load_sum);
631 	P(se.avg.util_sum);
632 	P(se.avg.load_avg);
633 	P(se.avg.util_avg);
634 	P(se.avg.last_update_time);
635 #endif
636 	P(policy);
637 	P(prio);
638 #undef PN
639 #undef __PN
640 #undef P
641 #undef __P
642 
643 	{
644 		unsigned int this_cpu = raw_smp_processor_id();
645 		u64 t0, t1;
646 
647 		t0 = cpu_clock(this_cpu);
648 		t1 = cpu_clock(this_cpu);
649 		SEQ_printf(m, "%-45s:%21Ld\n",
650 			   "clock-delta", (long long)(t1-t0));
651 	}
652 
653 	sched_show_numa(p, m);
654 }
655 
656 void proc_sched_set_task(struct task_struct *p)
657 {
658 #ifdef CONFIG_SCHEDSTATS
659 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
660 #endif
661 }
662