xref: /linux/kernel/sched/debug.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 
10 /*
11  * This allows printing both to /sys/kernel/debug/sched/debug and
12  * to the console
13  */
14 #define SEQ_printf(m, x...)			\
15  do {						\
16 	if (m)					\
17 		seq_printf(m, x);		\
18 	else					\
19 		pr_cont(x);			\
20  } while (0)
21 
22 /*
23  * Ease the printing of nsec fields:
24  */
25 static long long nsec_high(unsigned long long nsec)
26 {
27 	if ((long long)nsec < 0) {
28 		nsec = -nsec;
29 		do_div(nsec, 1000000);
30 		return -nsec;
31 	}
32 	do_div(nsec, 1000000);
33 
34 	return nsec;
35 }
36 
37 static unsigned long nsec_low(unsigned long long nsec)
38 {
39 	if ((long long)nsec < 0)
40 		nsec = -nsec;
41 
42 	return do_div(nsec, 1000000);
43 }
44 
45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
46 
47 #define SCHED_FEAT(name, enabled)	\
48 	#name ,
49 
50 static const char * const sched_feat_names[] = {
51 #include "features.h"
52 };
53 
54 #undef SCHED_FEAT
55 
56 static int sched_feat_show(struct seq_file *m, void *v)
57 {
58 	int i;
59 
60 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
61 		if (!(sysctl_sched_features & (1UL << i)))
62 			seq_puts(m, "NO_");
63 		seq_printf(m, "%s ", sched_feat_names[i]);
64 	}
65 	seq_puts(m, "\n");
66 
67 	return 0;
68 }
69 
70 #ifdef CONFIG_JUMP_LABEL
71 
72 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
73 #define jump_label_key__false STATIC_KEY_INIT_FALSE
74 
75 #define SCHED_FEAT(name, enabled)	\
76 	jump_label_key__##enabled ,
77 
78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
79 #include "features.h"
80 };
81 
82 #undef SCHED_FEAT
83 
84 static void sched_feat_disable(int i)
85 {
86 	static_key_disable_cpuslocked(&sched_feat_keys[i]);
87 }
88 
89 static void sched_feat_enable(int i)
90 {
91 	static_key_enable_cpuslocked(&sched_feat_keys[i]);
92 }
93 #else
94 static void sched_feat_disable(int i) { };
95 static void sched_feat_enable(int i) { };
96 #endif /* CONFIG_JUMP_LABEL */
97 
98 static int sched_feat_set(char *cmp)
99 {
100 	int i;
101 	int neg = 0;
102 
103 	if (strncmp(cmp, "NO_", 3) == 0) {
104 		neg = 1;
105 		cmp += 3;
106 	}
107 
108 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
109 	if (i < 0)
110 		return i;
111 
112 	if (neg) {
113 		sysctl_sched_features &= ~(1UL << i);
114 		sched_feat_disable(i);
115 	} else {
116 		sysctl_sched_features |= (1UL << i);
117 		sched_feat_enable(i);
118 	}
119 
120 	return 0;
121 }
122 
123 static ssize_t
124 sched_feat_write(struct file *filp, const char __user *ubuf,
125 		size_t cnt, loff_t *ppos)
126 {
127 	char buf[64];
128 	char *cmp;
129 	int ret;
130 	struct inode *inode;
131 
132 	if (cnt > 63)
133 		cnt = 63;
134 
135 	if (copy_from_user(&buf, ubuf, cnt))
136 		return -EFAULT;
137 
138 	buf[cnt] = 0;
139 	cmp = strstrip(buf);
140 
141 	/* Ensure the static_key remains in a consistent state */
142 	inode = file_inode(filp);
143 	cpus_read_lock();
144 	inode_lock(inode);
145 	ret = sched_feat_set(cmp);
146 	inode_unlock(inode);
147 	cpus_read_unlock();
148 	if (ret < 0)
149 		return ret;
150 
151 	*ppos += cnt;
152 
153 	return cnt;
154 }
155 
156 static int sched_feat_open(struct inode *inode, struct file *filp)
157 {
158 	return single_open(filp, sched_feat_show, NULL);
159 }
160 
161 static const struct file_operations sched_feat_fops = {
162 	.open		= sched_feat_open,
163 	.write		= sched_feat_write,
164 	.read		= seq_read,
165 	.llseek		= seq_lseek,
166 	.release	= single_release,
167 };
168 
169 #ifdef CONFIG_SMP
170 
171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
172 				   size_t cnt, loff_t *ppos)
173 {
174 	char buf[16];
175 	unsigned int scaling;
176 
177 	if (cnt > 15)
178 		cnt = 15;
179 
180 	if (copy_from_user(&buf, ubuf, cnt))
181 		return -EFAULT;
182 	buf[cnt] = '\0';
183 
184 	if (kstrtouint(buf, 10, &scaling))
185 		return -EINVAL;
186 
187 	if (scaling >= SCHED_TUNABLESCALING_END)
188 		return -EINVAL;
189 
190 	sysctl_sched_tunable_scaling = scaling;
191 	if (sched_update_scaling())
192 		return -EINVAL;
193 
194 	*ppos += cnt;
195 	return cnt;
196 }
197 
198 static int sched_scaling_show(struct seq_file *m, void *v)
199 {
200 	seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
201 	return 0;
202 }
203 
204 static int sched_scaling_open(struct inode *inode, struct file *filp)
205 {
206 	return single_open(filp, sched_scaling_show, NULL);
207 }
208 
209 static const struct file_operations sched_scaling_fops = {
210 	.open		= sched_scaling_open,
211 	.write		= sched_scaling_write,
212 	.read		= seq_read,
213 	.llseek		= seq_lseek,
214 	.release	= single_release,
215 };
216 
217 #endif /* SMP */
218 
219 #ifdef CONFIG_PREEMPT_DYNAMIC
220 
221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
222 				   size_t cnt, loff_t *ppos)
223 {
224 	char buf[16];
225 	int mode;
226 
227 	if (cnt > 15)
228 		cnt = 15;
229 
230 	if (copy_from_user(&buf, ubuf, cnt))
231 		return -EFAULT;
232 
233 	buf[cnt] = 0;
234 	mode = sched_dynamic_mode(strstrip(buf));
235 	if (mode < 0)
236 		return mode;
237 
238 	sched_dynamic_update(mode);
239 
240 	*ppos += cnt;
241 
242 	return cnt;
243 }
244 
245 static int sched_dynamic_show(struct seq_file *m, void *v)
246 {
247 	static const char * preempt_modes[] = {
248 		"none", "voluntary", "full"
249 	};
250 	int i;
251 
252 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
253 		if (preempt_dynamic_mode == i)
254 			seq_puts(m, "(");
255 		seq_puts(m, preempt_modes[i]);
256 		if (preempt_dynamic_mode == i)
257 			seq_puts(m, ")");
258 
259 		seq_puts(m, " ");
260 	}
261 
262 	seq_puts(m, "\n");
263 	return 0;
264 }
265 
266 static int sched_dynamic_open(struct inode *inode, struct file *filp)
267 {
268 	return single_open(filp, sched_dynamic_show, NULL);
269 }
270 
271 static const struct file_operations sched_dynamic_fops = {
272 	.open		= sched_dynamic_open,
273 	.write		= sched_dynamic_write,
274 	.read		= seq_read,
275 	.llseek		= seq_lseek,
276 	.release	= single_release,
277 };
278 
279 #endif /* CONFIG_PREEMPT_DYNAMIC */
280 
281 __read_mostly bool sched_debug_verbose;
282 
283 #ifdef CONFIG_SMP
284 static struct dentry           *sd_dentry;
285 
286 
287 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
288 				  size_t cnt, loff_t *ppos)
289 {
290 	ssize_t result;
291 	bool orig;
292 
293 	cpus_read_lock();
294 	mutex_lock(&sched_domains_mutex);
295 
296 	orig = sched_debug_verbose;
297 	result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
298 
299 	if (sched_debug_verbose && !orig)
300 		update_sched_domain_debugfs();
301 	else if (!sched_debug_verbose && orig) {
302 		debugfs_remove(sd_dentry);
303 		sd_dentry = NULL;
304 	}
305 
306 	mutex_unlock(&sched_domains_mutex);
307 	cpus_read_unlock();
308 
309 	return result;
310 }
311 #else
312 #define sched_verbose_write debugfs_write_file_bool
313 #endif
314 
315 static const struct file_operations sched_verbose_fops = {
316 	.read =         debugfs_read_file_bool,
317 	.write =        sched_verbose_write,
318 	.open =         simple_open,
319 	.llseek =       default_llseek,
320 };
321 
322 static const struct seq_operations sched_debug_sops;
323 
324 static int sched_debug_open(struct inode *inode, struct file *filp)
325 {
326 	return seq_open(filp, &sched_debug_sops);
327 }
328 
329 static const struct file_operations sched_debug_fops = {
330 	.open		= sched_debug_open,
331 	.read		= seq_read,
332 	.llseek		= seq_lseek,
333 	.release	= seq_release,
334 };
335 
336 static struct dentry *debugfs_sched;
337 
338 static __init int sched_init_debug(void)
339 {
340 	struct dentry __maybe_unused *numa;
341 
342 	debugfs_sched = debugfs_create_dir("sched", NULL);
343 
344 	debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
345 	debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
346 #ifdef CONFIG_PREEMPT_DYNAMIC
347 	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
348 #endif
349 
350 	debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
351 
352 	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
353 	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
354 
355 #ifdef CONFIG_SMP
356 	debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
357 	debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
358 	debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
359 
360 	mutex_lock(&sched_domains_mutex);
361 	update_sched_domain_debugfs();
362 	mutex_unlock(&sched_domains_mutex);
363 #endif
364 
365 #ifdef CONFIG_NUMA_BALANCING
366 	numa = debugfs_create_dir("numa_balancing", debugfs_sched);
367 
368 	debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
369 	debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
370 	debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
371 	debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
372 	debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
373 #endif
374 
375 	debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
376 
377 	return 0;
378 }
379 late_initcall(sched_init_debug);
380 
381 #ifdef CONFIG_SMP
382 
383 static cpumask_var_t		sd_sysctl_cpus;
384 
385 static int sd_flags_show(struct seq_file *m, void *v)
386 {
387 	unsigned long flags = *(unsigned int *)m->private;
388 	int idx;
389 
390 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
391 		seq_puts(m, sd_flag_debug[idx].name);
392 		seq_puts(m, " ");
393 	}
394 	seq_puts(m, "\n");
395 
396 	return 0;
397 }
398 
399 static int sd_flags_open(struct inode *inode, struct file *file)
400 {
401 	return single_open(file, sd_flags_show, inode->i_private);
402 }
403 
404 static const struct file_operations sd_flags_fops = {
405 	.open		= sd_flags_open,
406 	.read		= seq_read,
407 	.llseek		= seq_lseek,
408 	.release	= single_release,
409 };
410 
411 static void register_sd(struct sched_domain *sd, struct dentry *parent)
412 {
413 #define SDM(type, mode, member)	\
414 	debugfs_create_##type(#member, mode, parent, &sd->member)
415 
416 	SDM(ulong, 0644, min_interval);
417 	SDM(ulong, 0644, max_interval);
418 	SDM(u64,   0644, max_newidle_lb_cost);
419 	SDM(u32,   0644, busy_factor);
420 	SDM(u32,   0644, imbalance_pct);
421 	SDM(u32,   0644, cache_nice_tries);
422 	SDM(str,   0444, name);
423 
424 #undef SDM
425 
426 	debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
427 	debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
428 	debugfs_create_u32("level", 0444, parent, (u32 *)&sd->level);
429 }
430 
431 void update_sched_domain_debugfs(void)
432 {
433 	int cpu, i;
434 
435 	/*
436 	 * This can unfortunately be invoked before sched_debug_init() creates
437 	 * the debug directory. Don't touch sd_sysctl_cpus until then.
438 	 */
439 	if (!debugfs_sched)
440 		return;
441 
442 	if (!sched_debug_verbose)
443 		return;
444 
445 	if (!cpumask_available(sd_sysctl_cpus)) {
446 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
447 			return;
448 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
449 	}
450 
451 	if (!sd_dentry) {
452 		sd_dentry = debugfs_create_dir("domains", debugfs_sched);
453 
454 		/* rebuild sd_sysctl_cpus if empty since it gets cleared below */
455 		if (cpumask_empty(sd_sysctl_cpus))
456 			cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
457 	}
458 
459 	for_each_cpu(cpu, sd_sysctl_cpus) {
460 		struct sched_domain *sd;
461 		struct dentry *d_cpu;
462 		char buf[32];
463 
464 		snprintf(buf, sizeof(buf), "cpu%d", cpu);
465 		debugfs_lookup_and_remove(buf, sd_dentry);
466 		d_cpu = debugfs_create_dir(buf, sd_dentry);
467 
468 		i = 0;
469 		for_each_domain(cpu, sd) {
470 			struct dentry *d_sd;
471 
472 			snprintf(buf, sizeof(buf), "domain%d", i);
473 			d_sd = debugfs_create_dir(buf, d_cpu);
474 
475 			register_sd(sd, d_sd);
476 			i++;
477 		}
478 
479 		__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
480 	}
481 }
482 
483 void dirty_sched_domain_sysctl(int cpu)
484 {
485 	if (cpumask_available(sd_sysctl_cpus))
486 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
487 }
488 
489 #endif /* CONFIG_SMP */
490 
491 #ifdef CONFIG_FAIR_GROUP_SCHED
492 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
493 {
494 	struct sched_entity *se = tg->se[cpu];
495 
496 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
497 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	\
498 		#F, (long long)schedstat_val(stats->F))
499 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
500 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", \
501 		#F, SPLIT_NS((long long)schedstat_val(stats->F)))
502 
503 	if (!se)
504 		return;
505 
506 	PN(se->exec_start);
507 	PN(se->vruntime);
508 	PN(se->sum_exec_runtime);
509 
510 	if (schedstat_enabled()) {
511 		struct sched_statistics *stats;
512 		stats = __schedstats_from_se(se);
513 
514 		PN_SCHEDSTAT(wait_start);
515 		PN_SCHEDSTAT(sleep_start);
516 		PN_SCHEDSTAT(block_start);
517 		PN_SCHEDSTAT(sleep_max);
518 		PN_SCHEDSTAT(block_max);
519 		PN_SCHEDSTAT(exec_max);
520 		PN_SCHEDSTAT(slice_max);
521 		PN_SCHEDSTAT(wait_max);
522 		PN_SCHEDSTAT(wait_sum);
523 		P_SCHEDSTAT(wait_count);
524 	}
525 
526 	P(se->load.weight);
527 #ifdef CONFIG_SMP
528 	P(se->avg.load_avg);
529 	P(se->avg.util_avg);
530 	P(se->avg.runnable_avg);
531 #endif
532 
533 #undef PN_SCHEDSTAT
534 #undef PN
535 #undef P_SCHEDSTAT
536 #undef P
537 }
538 #endif
539 
540 #ifdef CONFIG_CGROUP_SCHED
541 static DEFINE_SPINLOCK(sched_debug_lock);
542 static char group_path[PATH_MAX];
543 
544 static void task_group_path(struct task_group *tg, char *path, int plen)
545 {
546 	if (autogroup_path(tg, path, plen))
547 		return;
548 
549 	cgroup_path(tg->css.cgroup, path, plen);
550 }
551 
552 /*
553  * Only 1 SEQ_printf_task_group_path() caller can use the full length
554  * group_path[] for cgroup path. Other simultaneous callers will have
555  * to use a shorter stack buffer. A "..." suffix is appended at the end
556  * of the stack buffer so that it will show up in case the output length
557  * matches the given buffer size to indicate possible path name truncation.
558  */
559 #define SEQ_printf_task_group_path(m, tg, fmt...)			\
560 {									\
561 	if (spin_trylock(&sched_debug_lock)) {				\
562 		task_group_path(tg, group_path, sizeof(group_path));	\
563 		SEQ_printf(m, fmt, group_path);				\
564 		spin_unlock(&sched_debug_lock);				\
565 	} else {							\
566 		char buf[128];						\
567 		char *bufend = buf + sizeof(buf) - 3;			\
568 		task_group_path(tg, buf, bufend - buf);			\
569 		strcpy(bufend - 1, "...");				\
570 		SEQ_printf(m, fmt, buf);				\
571 	}								\
572 }
573 #endif
574 
575 static void
576 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
577 {
578 	if (task_current(rq, p))
579 		SEQ_printf(m, ">R");
580 	else
581 		SEQ_printf(m, " %c", task_state_to_char(p));
582 
583 	SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
584 		p->comm, task_pid_nr(p),
585 		SPLIT_NS(p->se.vruntime),
586 		entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
587 		SPLIT_NS(p->se.deadline),
588 		SPLIT_NS(p->se.slice),
589 		SPLIT_NS(p->se.sum_exec_runtime),
590 		(long long)(p->nvcsw + p->nivcsw),
591 		p->prio);
592 
593 	SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
594 		SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
595 		SPLIT_NS(p->se.sum_exec_runtime),
596 		SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
597 		SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
598 
599 #ifdef CONFIG_NUMA_BALANCING
600 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
601 #endif
602 #ifdef CONFIG_CGROUP_SCHED
603 	SEQ_printf_task_group_path(m, task_group(p), " %s")
604 #endif
605 
606 	SEQ_printf(m, "\n");
607 }
608 
609 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
610 {
611 	struct task_struct *g, *p;
612 
613 	SEQ_printf(m, "\n");
614 	SEQ_printf(m, "runnable tasks:\n");
615 	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
616 		   "     wait-time             sum-exec        sum-sleep\n");
617 	SEQ_printf(m, "-------------------------------------------------------"
618 		   "------------------------------------------------------\n");
619 
620 	rcu_read_lock();
621 	for_each_process_thread(g, p) {
622 		if (task_cpu(p) != rq_cpu)
623 			continue;
624 
625 		print_task(m, rq, p);
626 	}
627 	rcu_read_unlock();
628 }
629 
630 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
631 {
632 	s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread;
633 	struct sched_entity *last, *first, *root;
634 	struct rq *rq = cpu_rq(cpu);
635 	unsigned long flags;
636 
637 #ifdef CONFIG_FAIR_GROUP_SCHED
638 	SEQ_printf(m, "\n");
639 	SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
640 #else
641 	SEQ_printf(m, "\n");
642 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
643 #endif
644 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
645 			SPLIT_NS(cfs_rq->exec_clock));
646 
647 	raw_spin_rq_lock_irqsave(rq, flags);
648 	root = __pick_root_entity(cfs_rq);
649 	if (root)
650 		left_vruntime = root->min_vruntime;
651 	first = __pick_first_entity(cfs_rq);
652 	if (first)
653 		left_deadline = first->deadline;
654 	last = __pick_last_entity(cfs_rq);
655 	if (last)
656 		right_vruntime = last->vruntime;
657 	min_vruntime = cfs_rq->min_vruntime;
658 	raw_spin_rq_unlock_irqrestore(rq, flags);
659 
660 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "left_deadline",
661 			SPLIT_NS(left_deadline));
662 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "left_vruntime",
663 			SPLIT_NS(left_vruntime));
664 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
665 			SPLIT_NS(min_vruntime));
666 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "avg_vruntime",
667 			SPLIT_NS(avg_vruntime(cfs_rq)));
668 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "right_vruntime",
669 			SPLIT_NS(right_vruntime));
670 	spread = right_vruntime - left_vruntime;
671 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
672 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
673 			cfs_rq->nr_spread_over);
674 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
675 	SEQ_printf(m, "  .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
676 	SEQ_printf(m, "  .%-30s: %d\n", "idle_nr_running",
677 			cfs_rq->idle_nr_running);
678 	SEQ_printf(m, "  .%-30s: %d\n", "idle_h_nr_running",
679 			cfs_rq->idle_h_nr_running);
680 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
681 #ifdef CONFIG_SMP
682 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
683 			cfs_rq->avg.load_avg);
684 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
685 			cfs_rq->avg.runnable_avg);
686 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
687 			cfs_rq->avg.util_avg);
688 	SEQ_printf(m, "  .%-30s: %u\n", "util_est",
689 			cfs_rq->avg.util_est);
690 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
691 			cfs_rq->removed.load_avg);
692 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
693 			cfs_rq->removed.util_avg);
694 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
695 			cfs_rq->removed.runnable_avg);
696 #ifdef CONFIG_FAIR_GROUP_SCHED
697 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
698 			cfs_rq->tg_load_avg_contrib);
699 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
700 			atomic_long_read(&cfs_rq->tg->load_avg));
701 #endif
702 #endif
703 #ifdef CONFIG_CFS_BANDWIDTH
704 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
705 			cfs_rq->throttled);
706 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
707 			cfs_rq->throttle_count);
708 #endif
709 
710 #ifdef CONFIG_FAIR_GROUP_SCHED
711 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
712 #endif
713 }
714 
715 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
716 {
717 #ifdef CONFIG_RT_GROUP_SCHED
718 	SEQ_printf(m, "\n");
719 	SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
720 #else
721 	SEQ_printf(m, "\n");
722 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
723 #endif
724 
725 #define P(x) \
726 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
727 #define PU(x) \
728 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
729 #define PN(x) \
730 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
731 
732 	PU(rt_nr_running);
733 	P(rt_throttled);
734 	PN(rt_time);
735 	PN(rt_runtime);
736 
737 #undef PN
738 #undef PU
739 #undef P
740 }
741 
742 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
743 {
744 	struct dl_bw *dl_bw;
745 
746 	SEQ_printf(m, "\n");
747 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
748 
749 #define PU(x) \
750 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
751 
752 	PU(dl_nr_running);
753 #ifdef CONFIG_SMP
754 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
755 #else
756 	dl_bw = &dl_rq->dl_bw;
757 #endif
758 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
759 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
760 
761 #undef PU
762 }
763 
764 static void print_cpu(struct seq_file *m, int cpu)
765 {
766 	struct rq *rq = cpu_rq(cpu);
767 
768 #ifdef CONFIG_X86
769 	{
770 		unsigned int freq = cpu_khz ? : 1;
771 
772 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
773 			   cpu, freq / 1000, (freq % 1000));
774 	}
775 #else
776 	SEQ_printf(m, "cpu#%d\n", cpu);
777 #endif
778 
779 #define P(x)								\
780 do {									\
781 	if (sizeof(rq->x) == 4)						\
782 		SEQ_printf(m, "  .%-30s: %d\n", #x, (int)(rq->x));	\
783 	else								\
784 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
785 } while (0)
786 
787 #define PN(x) \
788 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
789 
790 	P(nr_running);
791 	P(nr_switches);
792 	P(nr_uninterruptible);
793 	PN(next_balance);
794 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
795 	PN(clock);
796 	PN(clock_task);
797 #undef P
798 #undef PN
799 
800 #ifdef CONFIG_SMP
801 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
802 	P64(avg_idle);
803 	P64(max_idle_balance_cost);
804 #undef P64
805 #endif
806 
807 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
808 	if (schedstat_enabled()) {
809 		P(yld_count);
810 		P(sched_count);
811 		P(sched_goidle);
812 		P(ttwu_count);
813 		P(ttwu_local);
814 	}
815 #undef P
816 
817 	print_cfs_stats(m, cpu);
818 	print_rt_stats(m, cpu);
819 	print_dl_stats(m, cpu);
820 
821 	print_rq(m, rq, cpu);
822 	SEQ_printf(m, "\n");
823 }
824 
825 static const char *sched_tunable_scaling_names[] = {
826 	"none",
827 	"logarithmic",
828 	"linear"
829 };
830 
831 static void sched_debug_header(struct seq_file *m)
832 {
833 	u64 ktime, sched_clk, cpu_clk;
834 	unsigned long flags;
835 
836 	local_irq_save(flags);
837 	ktime = ktime_to_ns(ktime_get());
838 	sched_clk = sched_clock();
839 	cpu_clk = local_clock();
840 	local_irq_restore(flags);
841 
842 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
843 		init_utsname()->release,
844 		(int)strcspn(init_utsname()->version, " "),
845 		init_utsname()->version);
846 
847 #define P(x) \
848 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
849 #define PN(x) \
850 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
851 	PN(ktime);
852 	PN(sched_clk);
853 	PN(cpu_clk);
854 	P(jiffies);
855 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
856 	P(sched_clock_stable());
857 #endif
858 #undef PN
859 #undef P
860 
861 	SEQ_printf(m, "\n");
862 	SEQ_printf(m, "sysctl_sched\n");
863 
864 #define P(x) \
865 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
866 #define PN(x) \
867 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
868 	PN(sysctl_sched_base_slice);
869 	P(sysctl_sched_features);
870 #undef PN
871 #undef P
872 
873 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
874 		"sysctl_sched_tunable_scaling",
875 		sysctl_sched_tunable_scaling,
876 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
877 	SEQ_printf(m, "\n");
878 }
879 
880 static int sched_debug_show(struct seq_file *m, void *v)
881 {
882 	int cpu = (unsigned long)(v - 2);
883 
884 	if (cpu != -1)
885 		print_cpu(m, cpu);
886 	else
887 		sched_debug_header(m);
888 
889 	return 0;
890 }
891 
892 void sysrq_sched_debug_show(void)
893 {
894 	int cpu;
895 
896 	sched_debug_header(NULL);
897 	for_each_online_cpu(cpu) {
898 		/*
899 		 * Need to reset softlockup watchdogs on all CPUs, because
900 		 * another CPU might be blocked waiting for us to process
901 		 * an IPI or stop_machine.
902 		 */
903 		touch_nmi_watchdog();
904 		touch_all_softlockup_watchdogs();
905 		print_cpu(NULL, cpu);
906 	}
907 }
908 
909 /*
910  * This iterator needs some explanation.
911  * It returns 1 for the header position.
912  * This means 2 is CPU 0.
913  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
914  * to use cpumask_* to iterate over the CPUs.
915  */
916 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
917 {
918 	unsigned long n = *offset;
919 
920 	if (n == 0)
921 		return (void *) 1;
922 
923 	n--;
924 
925 	if (n > 0)
926 		n = cpumask_next(n - 1, cpu_online_mask);
927 	else
928 		n = cpumask_first(cpu_online_mask);
929 
930 	*offset = n + 1;
931 
932 	if (n < nr_cpu_ids)
933 		return (void *)(unsigned long)(n + 2);
934 
935 	return NULL;
936 }
937 
938 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
939 {
940 	(*offset)++;
941 	return sched_debug_start(file, offset);
942 }
943 
944 static void sched_debug_stop(struct seq_file *file, void *data)
945 {
946 }
947 
948 static const struct seq_operations sched_debug_sops = {
949 	.start		= sched_debug_start,
950 	.next		= sched_debug_next,
951 	.stop		= sched_debug_stop,
952 	.show		= sched_debug_show,
953 };
954 
955 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
956 #define __P(F) __PS(#F, F)
957 #define   P(F) __PS(#F, p->F)
958 #define   PM(F, M) __PS(#F, p->F & (M))
959 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
960 #define __PN(F) __PSN(#F, F)
961 #define   PN(F) __PSN(#F, p->F)
962 
963 
964 #ifdef CONFIG_NUMA_BALANCING
965 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
966 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
967 {
968 	SEQ_printf(m, "numa_faults node=%d ", node);
969 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
970 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
971 }
972 #endif
973 
974 
975 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
976 {
977 #ifdef CONFIG_NUMA_BALANCING
978 	if (p->mm)
979 		P(mm->numa_scan_seq);
980 
981 	P(numa_pages_migrated);
982 	P(numa_preferred_nid);
983 	P(total_numa_faults);
984 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
985 			task_node(p), task_numa_group_id(p));
986 	show_numa_stats(p, m);
987 #endif
988 }
989 
990 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
991 						  struct seq_file *m)
992 {
993 	unsigned long nr_switches;
994 
995 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
996 						get_nr_threads(p));
997 	SEQ_printf(m,
998 		"---------------------------------------------------------"
999 		"----------\n");
1000 
1001 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->stats.F))
1002 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1003 
1004 	PN(se.exec_start);
1005 	PN(se.vruntime);
1006 	PN(se.sum_exec_runtime);
1007 
1008 	nr_switches = p->nvcsw + p->nivcsw;
1009 
1010 	P(se.nr_migrations);
1011 
1012 	if (schedstat_enabled()) {
1013 		u64 avg_atom, avg_per_cpu;
1014 
1015 		PN_SCHEDSTAT(sum_sleep_runtime);
1016 		PN_SCHEDSTAT(sum_block_runtime);
1017 		PN_SCHEDSTAT(wait_start);
1018 		PN_SCHEDSTAT(sleep_start);
1019 		PN_SCHEDSTAT(block_start);
1020 		PN_SCHEDSTAT(sleep_max);
1021 		PN_SCHEDSTAT(block_max);
1022 		PN_SCHEDSTAT(exec_max);
1023 		PN_SCHEDSTAT(slice_max);
1024 		PN_SCHEDSTAT(wait_max);
1025 		PN_SCHEDSTAT(wait_sum);
1026 		P_SCHEDSTAT(wait_count);
1027 		PN_SCHEDSTAT(iowait_sum);
1028 		P_SCHEDSTAT(iowait_count);
1029 		P_SCHEDSTAT(nr_migrations_cold);
1030 		P_SCHEDSTAT(nr_failed_migrations_affine);
1031 		P_SCHEDSTAT(nr_failed_migrations_running);
1032 		P_SCHEDSTAT(nr_failed_migrations_hot);
1033 		P_SCHEDSTAT(nr_forced_migrations);
1034 		P_SCHEDSTAT(nr_wakeups);
1035 		P_SCHEDSTAT(nr_wakeups_sync);
1036 		P_SCHEDSTAT(nr_wakeups_migrate);
1037 		P_SCHEDSTAT(nr_wakeups_local);
1038 		P_SCHEDSTAT(nr_wakeups_remote);
1039 		P_SCHEDSTAT(nr_wakeups_affine);
1040 		P_SCHEDSTAT(nr_wakeups_affine_attempts);
1041 		P_SCHEDSTAT(nr_wakeups_passive);
1042 		P_SCHEDSTAT(nr_wakeups_idle);
1043 
1044 		avg_atom = p->se.sum_exec_runtime;
1045 		if (nr_switches)
1046 			avg_atom = div64_ul(avg_atom, nr_switches);
1047 		else
1048 			avg_atom = -1LL;
1049 
1050 		avg_per_cpu = p->se.sum_exec_runtime;
1051 		if (p->se.nr_migrations) {
1052 			avg_per_cpu = div64_u64(avg_per_cpu,
1053 						p->se.nr_migrations);
1054 		} else {
1055 			avg_per_cpu = -1LL;
1056 		}
1057 
1058 		__PN(avg_atom);
1059 		__PN(avg_per_cpu);
1060 
1061 #ifdef CONFIG_SCHED_CORE
1062 		PN_SCHEDSTAT(core_forceidle_sum);
1063 #endif
1064 	}
1065 
1066 	__P(nr_switches);
1067 	__PS("nr_voluntary_switches", p->nvcsw);
1068 	__PS("nr_involuntary_switches", p->nivcsw);
1069 
1070 	P(se.load.weight);
1071 #ifdef CONFIG_SMP
1072 	P(se.avg.load_sum);
1073 	P(se.avg.runnable_sum);
1074 	P(se.avg.util_sum);
1075 	P(se.avg.load_avg);
1076 	P(se.avg.runnable_avg);
1077 	P(se.avg.util_avg);
1078 	P(se.avg.last_update_time);
1079 	PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED);
1080 #endif
1081 #ifdef CONFIG_UCLAMP_TASK
1082 	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1083 	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1084 	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1085 	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1086 #endif
1087 	P(policy);
1088 	P(prio);
1089 	if (task_has_dl_policy(p)) {
1090 		P(dl.runtime);
1091 		P(dl.deadline);
1092 	}
1093 #undef PN_SCHEDSTAT
1094 #undef P_SCHEDSTAT
1095 
1096 	{
1097 		unsigned int this_cpu = raw_smp_processor_id();
1098 		u64 t0, t1;
1099 
1100 		t0 = cpu_clock(this_cpu);
1101 		t1 = cpu_clock(this_cpu);
1102 		__PS("clock-delta", t1-t0);
1103 	}
1104 
1105 	sched_show_numa(p, m);
1106 }
1107 
1108 void proc_sched_set_task(struct task_struct *p)
1109 {
1110 #ifdef CONFIG_SCHEDSTATS
1111 	memset(&p->stats, 0, sizeof(p->stats));
1112 #endif
1113 }
1114 
1115 void resched_latency_warn(int cpu, u64 latency)
1116 {
1117 	static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1118 
1119 	WARN(__ratelimit(&latency_check_ratelimit),
1120 	     "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1121 	     "without schedule\n",
1122 	     cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1123 }
1124