xref: /linux/kernel/sched/debug.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 #include "sched.h"
10 
11 /*
12  * This allows printing both to /proc/sched_debug and
13  * to the console
14  */
15 #define SEQ_printf(m, x...)			\
16  do {						\
17 	if (m)					\
18 		seq_printf(m, x);		\
19 	else					\
20 		pr_cont(x);			\
21  } while (0)
22 
23 /*
24  * Ease the printing of nsec fields:
25  */
26 static long long nsec_high(unsigned long long nsec)
27 {
28 	if ((long long)nsec < 0) {
29 		nsec = -nsec;
30 		do_div(nsec, 1000000);
31 		return -nsec;
32 	}
33 	do_div(nsec, 1000000);
34 
35 	return nsec;
36 }
37 
38 static unsigned long nsec_low(unsigned long long nsec)
39 {
40 	if ((long long)nsec < 0)
41 		nsec = -nsec;
42 
43 	return do_div(nsec, 1000000);
44 }
45 
46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
47 
48 #define SCHED_FEAT(name, enabled)	\
49 	#name ,
50 
51 static const char * const sched_feat_names[] = {
52 #include "features.h"
53 };
54 
55 #undef SCHED_FEAT
56 
57 static int sched_feat_show(struct seq_file *m, void *v)
58 {
59 	int i;
60 
61 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
62 		if (!(sysctl_sched_features & (1UL << i)))
63 			seq_puts(m, "NO_");
64 		seq_printf(m, "%s ", sched_feat_names[i]);
65 	}
66 	seq_puts(m, "\n");
67 
68 	return 0;
69 }
70 
71 #ifdef CONFIG_JUMP_LABEL
72 
73 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
74 #define jump_label_key__false STATIC_KEY_INIT_FALSE
75 
76 #define SCHED_FEAT(name, enabled)	\
77 	jump_label_key__##enabled ,
78 
79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
80 #include "features.h"
81 };
82 
83 #undef SCHED_FEAT
84 
85 static void sched_feat_disable(int i)
86 {
87 	static_key_disable_cpuslocked(&sched_feat_keys[i]);
88 }
89 
90 static void sched_feat_enable(int i)
91 {
92 	static_key_enable_cpuslocked(&sched_feat_keys[i]);
93 }
94 #else
95 static void sched_feat_disable(int i) { };
96 static void sched_feat_enable(int i) { };
97 #endif /* CONFIG_JUMP_LABEL */
98 
99 static int sched_feat_set(char *cmp)
100 {
101 	int i;
102 	int neg = 0;
103 
104 	if (strncmp(cmp, "NO_", 3) == 0) {
105 		neg = 1;
106 		cmp += 3;
107 	}
108 
109 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
110 	if (i < 0)
111 		return i;
112 
113 	if (neg) {
114 		sysctl_sched_features &= ~(1UL << i);
115 		sched_feat_disable(i);
116 	} else {
117 		sysctl_sched_features |= (1UL << i);
118 		sched_feat_enable(i);
119 	}
120 
121 	return 0;
122 }
123 
124 static ssize_t
125 sched_feat_write(struct file *filp, const char __user *ubuf,
126 		size_t cnt, loff_t *ppos)
127 {
128 	char buf[64];
129 	char *cmp;
130 	int ret;
131 	struct inode *inode;
132 
133 	if (cnt > 63)
134 		cnt = 63;
135 
136 	if (copy_from_user(&buf, ubuf, cnt))
137 		return -EFAULT;
138 
139 	buf[cnt] = 0;
140 	cmp = strstrip(buf);
141 
142 	/* Ensure the static_key remains in a consistent state */
143 	inode = file_inode(filp);
144 	cpus_read_lock();
145 	inode_lock(inode);
146 	ret = sched_feat_set(cmp);
147 	inode_unlock(inode);
148 	cpus_read_unlock();
149 	if (ret < 0)
150 		return ret;
151 
152 	*ppos += cnt;
153 
154 	return cnt;
155 }
156 
157 static int sched_feat_open(struct inode *inode, struct file *filp)
158 {
159 	return single_open(filp, sched_feat_show, NULL);
160 }
161 
162 static const struct file_operations sched_feat_fops = {
163 	.open		= sched_feat_open,
164 	.write		= sched_feat_write,
165 	.read		= seq_read,
166 	.llseek		= seq_lseek,
167 	.release	= single_release,
168 };
169 
170 #ifdef CONFIG_SMP
171 
172 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
173 				   size_t cnt, loff_t *ppos)
174 {
175 	char buf[16];
176 
177 	if (cnt > 15)
178 		cnt = 15;
179 
180 	if (copy_from_user(&buf, ubuf, cnt))
181 		return -EFAULT;
182 
183 	if (kstrtouint(buf, 10, &sysctl_sched_tunable_scaling))
184 		return -EINVAL;
185 
186 	if (sched_update_scaling())
187 		return -EINVAL;
188 
189 	*ppos += cnt;
190 	return cnt;
191 }
192 
193 static int sched_scaling_show(struct seq_file *m, void *v)
194 {
195 	seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
196 	return 0;
197 }
198 
199 static int sched_scaling_open(struct inode *inode, struct file *filp)
200 {
201 	return single_open(filp, sched_scaling_show, NULL);
202 }
203 
204 static const struct file_operations sched_scaling_fops = {
205 	.open		= sched_scaling_open,
206 	.write		= sched_scaling_write,
207 	.read		= seq_read,
208 	.llseek		= seq_lseek,
209 	.release	= single_release,
210 };
211 
212 #endif /* SMP */
213 
214 #ifdef CONFIG_PREEMPT_DYNAMIC
215 
216 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
217 				   size_t cnt, loff_t *ppos)
218 {
219 	char buf[16];
220 	int mode;
221 
222 	if (cnt > 15)
223 		cnt = 15;
224 
225 	if (copy_from_user(&buf, ubuf, cnt))
226 		return -EFAULT;
227 
228 	buf[cnt] = 0;
229 	mode = sched_dynamic_mode(strstrip(buf));
230 	if (mode < 0)
231 		return mode;
232 
233 	sched_dynamic_update(mode);
234 
235 	*ppos += cnt;
236 
237 	return cnt;
238 }
239 
240 static int sched_dynamic_show(struct seq_file *m, void *v)
241 {
242 	static const char * preempt_modes[] = {
243 		"none", "voluntary", "full"
244 	};
245 	int i;
246 
247 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
248 		if (preempt_dynamic_mode == i)
249 			seq_puts(m, "(");
250 		seq_puts(m, preempt_modes[i]);
251 		if (preempt_dynamic_mode == i)
252 			seq_puts(m, ")");
253 
254 		seq_puts(m, " ");
255 	}
256 
257 	seq_puts(m, "\n");
258 	return 0;
259 }
260 
261 static int sched_dynamic_open(struct inode *inode, struct file *filp)
262 {
263 	return single_open(filp, sched_dynamic_show, NULL);
264 }
265 
266 static const struct file_operations sched_dynamic_fops = {
267 	.open		= sched_dynamic_open,
268 	.write		= sched_dynamic_write,
269 	.read		= seq_read,
270 	.llseek		= seq_lseek,
271 	.release	= single_release,
272 };
273 
274 #endif /* CONFIG_PREEMPT_DYNAMIC */
275 
276 __read_mostly bool sched_debug_verbose;
277 
278 static const struct seq_operations sched_debug_sops;
279 
280 static int sched_debug_open(struct inode *inode, struct file *filp)
281 {
282 	return seq_open(filp, &sched_debug_sops);
283 }
284 
285 static const struct file_operations sched_debug_fops = {
286 	.open		= sched_debug_open,
287 	.read		= seq_read,
288 	.llseek		= seq_lseek,
289 	.release	= seq_release,
290 };
291 
292 static struct dentry *debugfs_sched;
293 
294 static __init int sched_init_debug(void)
295 {
296 	struct dentry __maybe_unused *numa;
297 
298 	debugfs_sched = debugfs_create_dir("sched", NULL);
299 
300 	debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
301 	debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose);
302 #ifdef CONFIG_PREEMPT_DYNAMIC
303 	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
304 #endif
305 
306 	debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
307 	debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
308 	debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
309 
310 	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
311 	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
312 
313 #ifdef CONFIG_SMP
314 	debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
315 	debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
316 	debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
317 
318 	mutex_lock(&sched_domains_mutex);
319 	update_sched_domain_debugfs();
320 	mutex_unlock(&sched_domains_mutex);
321 #endif
322 
323 #ifdef CONFIG_NUMA_BALANCING
324 	numa = debugfs_create_dir("numa_balancing", debugfs_sched);
325 
326 	debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
327 	debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
328 	debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
329 	debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
330 #endif
331 
332 	debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
333 
334 	return 0;
335 }
336 late_initcall(sched_init_debug);
337 
338 #ifdef CONFIG_SMP
339 
340 static cpumask_var_t		sd_sysctl_cpus;
341 static struct dentry		*sd_dentry;
342 
343 static int sd_flags_show(struct seq_file *m, void *v)
344 {
345 	unsigned long flags = *(unsigned int *)m->private;
346 	int idx;
347 
348 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
349 		seq_puts(m, sd_flag_debug[idx].name);
350 		seq_puts(m, " ");
351 	}
352 	seq_puts(m, "\n");
353 
354 	return 0;
355 }
356 
357 static int sd_flags_open(struct inode *inode, struct file *file)
358 {
359 	return single_open(file, sd_flags_show, inode->i_private);
360 }
361 
362 static const struct file_operations sd_flags_fops = {
363 	.open		= sd_flags_open,
364 	.read		= seq_read,
365 	.llseek		= seq_lseek,
366 	.release	= single_release,
367 };
368 
369 static void register_sd(struct sched_domain *sd, struct dentry *parent)
370 {
371 #define SDM(type, mode, member)	\
372 	debugfs_create_##type(#member, mode, parent, &sd->member)
373 
374 	SDM(ulong, 0644, min_interval);
375 	SDM(ulong, 0644, max_interval);
376 	SDM(u64,   0644, max_newidle_lb_cost);
377 	SDM(u32,   0644, busy_factor);
378 	SDM(u32,   0644, imbalance_pct);
379 	SDM(u32,   0644, cache_nice_tries);
380 	SDM(str,   0444, name);
381 
382 #undef SDM
383 
384 	debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
385 }
386 
387 void update_sched_domain_debugfs(void)
388 {
389 	int cpu, i;
390 
391 	if (!cpumask_available(sd_sysctl_cpus)) {
392 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
393 			return;
394 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
395 	}
396 
397 	if (!sd_dentry)
398 		sd_dentry = debugfs_create_dir("domains", debugfs_sched);
399 
400 	for_each_cpu(cpu, sd_sysctl_cpus) {
401 		struct sched_domain *sd;
402 		struct dentry *d_cpu;
403 		char buf[32];
404 
405 		snprintf(buf, sizeof(buf), "cpu%d", cpu);
406 		debugfs_remove(debugfs_lookup(buf, sd_dentry));
407 		d_cpu = debugfs_create_dir(buf, sd_dentry);
408 
409 		i = 0;
410 		for_each_domain(cpu, sd) {
411 			struct dentry *d_sd;
412 
413 			snprintf(buf, sizeof(buf), "domain%d", i);
414 			d_sd = debugfs_create_dir(buf, d_cpu);
415 
416 			register_sd(sd, d_sd);
417 			i++;
418 		}
419 
420 		__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
421 	}
422 }
423 
424 void dirty_sched_domain_sysctl(int cpu)
425 {
426 	if (cpumask_available(sd_sysctl_cpus))
427 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
428 }
429 
430 #endif /* CONFIG_SMP */
431 
432 #ifdef CONFIG_FAIR_GROUP_SCHED
433 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
434 {
435 	struct sched_entity *se = tg->se[cpu];
436 
437 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
438 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
439 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
440 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
441 
442 	if (!se)
443 		return;
444 
445 	PN(se->exec_start);
446 	PN(se->vruntime);
447 	PN(se->sum_exec_runtime);
448 
449 	if (schedstat_enabled()) {
450 		PN_SCHEDSTAT(se->statistics.wait_start);
451 		PN_SCHEDSTAT(se->statistics.sleep_start);
452 		PN_SCHEDSTAT(se->statistics.block_start);
453 		PN_SCHEDSTAT(se->statistics.sleep_max);
454 		PN_SCHEDSTAT(se->statistics.block_max);
455 		PN_SCHEDSTAT(se->statistics.exec_max);
456 		PN_SCHEDSTAT(se->statistics.slice_max);
457 		PN_SCHEDSTAT(se->statistics.wait_max);
458 		PN_SCHEDSTAT(se->statistics.wait_sum);
459 		P_SCHEDSTAT(se->statistics.wait_count);
460 	}
461 
462 	P(se->load.weight);
463 #ifdef CONFIG_SMP
464 	P(se->avg.load_avg);
465 	P(se->avg.util_avg);
466 	P(se->avg.runnable_avg);
467 #endif
468 
469 #undef PN_SCHEDSTAT
470 #undef PN
471 #undef P_SCHEDSTAT
472 #undef P
473 }
474 #endif
475 
476 #ifdef CONFIG_CGROUP_SCHED
477 static DEFINE_SPINLOCK(sched_debug_lock);
478 static char group_path[PATH_MAX];
479 
480 static void task_group_path(struct task_group *tg, char *path, int plen)
481 {
482 	if (autogroup_path(tg, path, plen))
483 		return;
484 
485 	cgroup_path(tg->css.cgroup, path, plen);
486 }
487 
488 /*
489  * Only 1 SEQ_printf_task_group_path() caller can use the full length
490  * group_path[] for cgroup path. Other simultaneous callers will have
491  * to use a shorter stack buffer. A "..." suffix is appended at the end
492  * of the stack buffer so that it will show up in case the output length
493  * matches the given buffer size to indicate possible path name truncation.
494  */
495 #define SEQ_printf_task_group_path(m, tg, fmt...)			\
496 {									\
497 	if (spin_trylock(&sched_debug_lock)) {				\
498 		task_group_path(tg, group_path, sizeof(group_path));	\
499 		SEQ_printf(m, fmt, group_path);				\
500 		spin_unlock(&sched_debug_lock);				\
501 	} else {							\
502 		char buf[128];						\
503 		char *bufend = buf + sizeof(buf) - 3;			\
504 		task_group_path(tg, buf, bufend - buf);			\
505 		strcpy(bufend - 1, "...");				\
506 		SEQ_printf(m, fmt, buf);				\
507 	}								\
508 }
509 #endif
510 
511 static void
512 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
513 {
514 	if (task_current(rq, p))
515 		SEQ_printf(m, ">R");
516 	else
517 		SEQ_printf(m, " %c", task_state_to_char(p));
518 
519 	SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
520 		p->comm, task_pid_nr(p),
521 		SPLIT_NS(p->se.vruntime),
522 		(long long)(p->nvcsw + p->nivcsw),
523 		p->prio);
524 
525 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
526 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
527 		SPLIT_NS(p->se.sum_exec_runtime),
528 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
529 
530 #ifdef CONFIG_NUMA_BALANCING
531 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
532 #endif
533 #ifdef CONFIG_CGROUP_SCHED
534 	SEQ_printf_task_group_path(m, task_group(p), " %s")
535 #endif
536 
537 	SEQ_printf(m, "\n");
538 }
539 
540 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
541 {
542 	struct task_struct *g, *p;
543 
544 	SEQ_printf(m, "\n");
545 	SEQ_printf(m, "runnable tasks:\n");
546 	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
547 		   "     wait-time             sum-exec        sum-sleep\n");
548 	SEQ_printf(m, "-------------------------------------------------------"
549 		   "------------------------------------------------------\n");
550 
551 	rcu_read_lock();
552 	for_each_process_thread(g, p) {
553 		if (task_cpu(p) != rq_cpu)
554 			continue;
555 
556 		print_task(m, rq, p);
557 	}
558 	rcu_read_unlock();
559 }
560 
561 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
562 {
563 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
564 		spread, rq0_min_vruntime, spread0;
565 	struct rq *rq = cpu_rq(cpu);
566 	struct sched_entity *last;
567 	unsigned long flags;
568 
569 #ifdef CONFIG_FAIR_GROUP_SCHED
570 	SEQ_printf(m, "\n");
571 	SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
572 #else
573 	SEQ_printf(m, "\n");
574 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
575 #endif
576 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
577 			SPLIT_NS(cfs_rq->exec_clock));
578 
579 	raw_spin_lock_irqsave(&rq->lock, flags);
580 	if (rb_first_cached(&cfs_rq->tasks_timeline))
581 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
582 	last = __pick_last_entity(cfs_rq);
583 	if (last)
584 		max_vruntime = last->vruntime;
585 	min_vruntime = cfs_rq->min_vruntime;
586 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
587 	raw_spin_unlock_irqrestore(&rq->lock, flags);
588 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
589 			SPLIT_NS(MIN_vruntime));
590 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
591 			SPLIT_NS(min_vruntime));
592 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
593 			SPLIT_NS(max_vruntime));
594 	spread = max_vruntime - MIN_vruntime;
595 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
596 			SPLIT_NS(spread));
597 	spread0 = min_vruntime - rq0_min_vruntime;
598 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
599 			SPLIT_NS(spread0));
600 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
601 			cfs_rq->nr_spread_over);
602 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
603 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
604 #ifdef CONFIG_SMP
605 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
606 			cfs_rq->avg.load_avg);
607 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
608 			cfs_rq->avg.runnable_avg);
609 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
610 			cfs_rq->avg.util_avg);
611 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
612 			cfs_rq->avg.util_est.enqueued);
613 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
614 			cfs_rq->removed.load_avg);
615 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
616 			cfs_rq->removed.util_avg);
617 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
618 			cfs_rq->removed.runnable_avg);
619 #ifdef CONFIG_FAIR_GROUP_SCHED
620 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
621 			cfs_rq->tg_load_avg_contrib);
622 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
623 			atomic_long_read(&cfs_rq->tg->load_avg));
624 #endif
625 #endif
626 #ifdef CONFIG_CFS_BANDWIDTH
627 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
628 			cfs_rq->throttled);
629 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
630 			cfs_rq->throttle_count);
631 #endif
632 
633 #ifdef CONFIG_FAIR_GROUP_SCHED
634 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
635 #endif
636 }
637 
638 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
639 {
640 #ifdef CONFIG_RT_GROUP_SCHED
641 	SEQ_printf(m, "\n");
642 	SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
643 #else
644 	SEQ_printf(m, "\n");
645 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
646 #endif
647 
648 #define P(x) \
649 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
650 #define PU(x) \
651 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
652 #define PN(x) \
653 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
654 
655 	PU(rt_nr_running);
656 #ifdef CONFIG_SMP
657 	PU(rt_nr_migratory);
658 #endif
659 	P(rt_throttled);
660 	PN(rt_time);
661 	PN(rt_runtime);
662 
663 #undef PN
664 #undef PU
665 #undef P
666 }
667 
668 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
669 {
670 	struct dl_bw *dl_bw;
671 
672 	SEQ_printf(m, "\n");
673 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
674 
675 #define PU(x) \
676 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
677 
678 	PU(dl_nr_running);
679 #ifdef CONFIG_SMP
680 	PU(dl_nr_migratory);
681 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
682 #else
683 	dl_bw = &dl_rq->dl_bw;
684 #endif
685 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
686 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
687 
688 #undef PU
689 }
690 
691 static void print_cpu(struct seq_file *m, int cpu)
692 {
693 	struct rq *rq = cpu_rq(cpu);
694 
695 #ifdef CONFIG_X86
696 	{
697 		unsigned int freq = cpu_khz ? : 1;
698 
699 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
700 			   cpu, freq / 1000, (freq % 1000));
701 	}
702 #else
703 	SEQ_printf(m, "cpu#%d\n", cpu);
704 #endif
705 
706 #define P(x)								\
707 do {									\
708 	if (sizeof(rq->x) == 4)						\
709 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
710 	else								\
711 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
712 } while (0)
713 
714 #define PN(x) \
715 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
716 
717 	P(nr_running);
718 	P(nr_switches);
719 	P(nr_uninterruptible);
720 	PN(next_balance);
721 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
722 	PN(clock);
723 	PN(clock_task);
724 #undef P
725 #undef PN
726 
727 #ifdef CONFIG_SMP
728 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
729 	P64(avg_idle);
730 	P64(max_idle_balance_cost);
731 #undef P64
732 #endif
733 
734 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
735 	if (schedstat_enabled()) {
736 		P(yld_count);
737 		P(sched_count);
738 		P(sched_goidle);
739 		P(ttwu_count);
740 		P(ttwu_local);
741 	}
742 #undef P
743 
744 	print_cfs_stats(m, cpu);
745 	print_rt_stats(m, cpu);
746 	print_dl_stats(m, cpu);
747 
748 	print_rq(m, rq, cpu);
749 	SEQ_printf(m, "\n");
750 }
751 
752 static const char *sched_tunable_scaling_names[] = {
753 	"none",
754 	"logarithmic",
755 	"linear"
756 };
757 
758 static void sched_debug_header(struct seq_file *m)
759 {
760 	u64 ktime, sched_clk, cpu_clk;
761 	unsigned long flags;
762 
763 	local_irq_save(flags);
764 	ktime = ktime_to_ns(ktime_get());
765 	sched_clk = sched_clock();
766 	cpu_clk = local_clock();
767 	local_irq_restore(flags);
768 
769 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
770 		init_utsname()->release,
771 		(int)strcspn(init_utsname()->version, " "),
772 		init_utsname()->version);
773 
774 #define P(x) \
775 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
776 #define PN(x) \
777 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
778 	PN(ktime);
779 	PN(sched_clk);
780 	PN(cpu_clk);
781 	P(jiffies);
782 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
783 	P(sched_clock_stable());
784 #endif
785 #undef PN
786 #undef P
787 
788 	SEQ_printf(m, "\n");
789 	SEQ_printf(m, "sysctl_sched\n");
790 
791 #define P(x) \
792 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
793 #define PN(x) \
794 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
795 	PN(sysctl_sched_latency);
796 	PN(sysctl_sched_min_granularity);
797 	PN(sysctl_sched_wakeup_granularity);
798 	P(sysctl_sched_child_runs_first);
799 	P(sysctl_sched_features);
800 #undef PN
801 #undef P
802 
803 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
804 		"sysctl_sched_tunable_scaling",
805 		sysctl_sched_tunable_scaling,
806 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
807 	SEQ_printf(m, "\n");
808 }
809 
810 static int sched_debug_show(struct seq_file *m, void *v)
811 {
812 	int cpu = (unsigned long)(v - 2);
813 
814 	if (cpu != -1)
815 		print_cpu(m, cpu);
816 	else
817 		sched_debug_header(m);
818 
819 	return 0;
820 }
821 
822 void sysrq_sched_debug_show(void)
823 {
824 	int cpu;
825 
826 	sched_debug_header(NULL);
827 	for_each_online_cpu(cpu) {
828 		/*
829 		 * Need to reset softlockup watchdogs on all CPUs, because
830 		 * another CPU might be blocked waiting for us to process
831 		 * an IPI or stop_machine.
832 		 */
833 		touch_nmi_watchdog();
834 		touch_all_softlockup_watchdogs();
835 		print_cpu(NULL, cpu);
836 	}
837 }
838 
839 /*
840  * This iterator needs some explanation.
841  * It returns 1 for the header position.
842  * This means 2 is CPU 0.
843  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
844  * to use cpumask_* to iterate over the CPUs.
845  */
846 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
847 {
848 	unsigned long n = *offset;
849 
850 	if (n == 0)
851 		return (void *) 1;
852 
853 	n--;
854 
855 	if (n > 0)
856 		n = cpumask_next(n - 1, cpu_online_mask);
857 	else
858 		n = cpumask_first(cpu_online_mask);
859 
860 	*offset = n + 1;
861 
862 	if (n < nr_cpu_ids)
863 		return (void *)(unsigned long)(n + 2);
864 
865 	return NULL;
866 }
867 
868 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
869 {
870 	(*offset)++;
871 	return sched_debug_start(file, offset);
872 }
873 
874 static void sched_debug_stop(struct seq_file *file, void *data)
875 {
876 }
877 
878 static const struct seq_operations sched_debug_sops = {
879 	.start		= sched_debug_start,
880 	.next		= sched_debug_next,
881 	.stop		= sched_debug_stop,
882 	.show		= sched_debug_show,
883 };
884 
885 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
886 #define __P(F) __PS(#F, F)
887 #define   P(F) __PS(#F, p->F)
888 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
889 #define __PN(F) __PSN(#F, F)
890 #define   PN(F) __PSN(#F, p->F)
891 
892 
893 #ifdef CONFIG_NUMA_BALANCING
894 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
895 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
896 {
897 	SEQ_printf(m, "numa_faults node=%d ", node);
898 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
899 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
900 }
901 #endif
902 
903 
904 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
905 {
906 #ifdef CONFIG_NUMA_BALANCING
907 	struct mempolicy *pol;
908 
909 	if (p->mm)
910 		P(mm->numa_scan_seq);
911 
912 	task_lock(p);
913 	pol = p->mempolicy;
914 	if (pol && !(pol->flags & MPOL_F_MORON))
915 		pol = NULL;
916 	mpol_get(pol);
917 	task_unlock(p);
918 
919 	P(numa_pages_migrated);
920 	P(numa_preferred_nid);
921 	P(total_numa_faults);
922 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
923 			task_node(p), task_numa_group_id(p));
924 	show_numa_stats(p, m);
925 	mpol_put(pol);
926 #endif
927 }
928 
929 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
930 						  struct seq_file *m)
931 {
932 	unsigned long nr_switches;
933 
934 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
935 						get_nr_threads(p));
936 	SEQ_printf(m,
937 		"---------------------------------------------------------"
938 		"----------\n");
939 
940 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->F))
941 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
942 
943 	PN(se.exec_start);
944 	PN(se.vruntime);
945 	PN(se.sum_exec_runtime);
946 
947 	nr_switches = p->nvcsw + p->nivcsw;
948 
949 	P(se.nr_migrations);
950 
951 	if (schedstat_enabled()) {
952 		u64 avg_atom, avg_per_cpu;
953 
954 		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
955 		PN_SCHEDSTAT(se.statistics.wait_start);
956 		PN_SCHEDSTAT(se.statistics.sleep_start);
957 		PN_SCHEDSTAT(se.statistics.block_start);
958 		PN_SCHEDSTAT(se.statistics.sleep_max);
959 		PN_SCHEDSTAT(se.statistics.block_max);
960 		PN_SCHEDSTAT(se.statistics.exec_max);
961 		PN_SCHEDSTAT(se.statistics.slice_max);
962 		PN_SCHEDSTAT(se.statistics.wait_max);
963 		PN_SCHEDSTAT(se.statistics.wait_sum);
964 		P_SCHEDSTAT(se.statistics.wait_count);
965 		PN_SCHEDSTAT(se.statistics.iowait_sum);
966 		P_SCHEDSTAT(se.statistics.iowait_count);
967 		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
968 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
969 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
970 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
971 		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
972 		P_SCHEDSTAT(se.statistics.nr_wakeups);
973 		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
974 		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
975 		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
976 		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
977 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
978 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
979 		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
980 		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
981 
982 		avg_atom = p->se.sum_exec_runtime;
983 		if (nr_switches)
984 			avg_atom = div64_ul(avg_atom, nr_switches);
985 		else
986 			avg_atom = -1LL;
987 
988 		avg_per_cpu = p->se.sum_exec_runtime;
989 		if (p->se.nr_migrations) {
990 			avg_per_cpu = div64_u64(avg_per_cpu,
991 						p->se.nr_migrations);
992 		} else {
993 			avg_per_cpu = -1LL;
994 		}
995 
996 		__PN(avg_atom);
997 		__PN(avg_per_cpu);
998 	}
999 
1000 	__P(nr_switches);
1001 	__PS("nr_voluntary_switches", p->nvcsw);
1002 	__PS("nr_involuntary_switches", p->nivcsw);
1003 
1004 	P(se.load.weight);
1005 #ifdef CONFIG_SMP
1006 	P(se.avg.load_sum);
1007 	P(se.avg.runnable_sum);
1008 	P(se.avg.util_sum);
1009 	P(se.avg.load_avg);
1010 	P(se.avg.runnable_avg);
1011 	P(se.avg.util_avg);
1012 	P(se.avg.last_update_time);
1013 	P(se.avg.util_est.ewma);
1014 	P(se.avg.util_est.enqueued);
1015 #endif
1016 #ifdef CONFIG_UCLAMP_TASK
1017 	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1018 	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1019 	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1020 	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1021 #endif
1022 	P(policy);
1023 	P(prio);
1024 	if (task_has_dl_policy(p)) {
1025 		P(dl.runtime);
1026 		P(dl.deadline);
1027 	}
1028 #undef PN_SCHEDSTAT
1029 #undef P_SCHEDSTAT
1030 
1031 	{
1032 		unsigned int this_cpu = raw_smp_processor_id();
1033 		u64 t0, t1;
1034 
1035 		t0 = cpu_clock(this_cpu);
1036 		t1 = cpu_clock(this_cpu);
1037 		__PS("clock-delta", t1-t0);
1038 	}
1039 
1040 	sched_show_numa(p, m);
1041 }
1042 
1043 void proc_sched_set_task(struct task_struct *p)
1044 {
1045 #ifdef CONFIG_SCHEDSTATS
1046 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1047 #endif
1048 }
1049 
1050 void resched_latency_warn(int cpu, u64 latency)
1051 {
1052 	static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1053 
1054 	WARN(__ratelimit(&latency_check_ratelimit),
1055 	     "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1056 	     "without schedule\n",
1057 	     cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1058 }
1059