1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/seq_file.h> 17 #include <linux/kallsyms.h> 18 #include <linux/utsname.h> 19 #include <linux/mempolicy.h> 20 #include <linux/debugfs.h> 21 22 #include "sched.h" 23 24 static DEFINE_SPINLOCK(sched_debug_lock); 25 26 /* 27 * This allows printing both to /proc/sched_debug and 28 * to the console 29 */ 30 #define SEQ_printf(m, x...) \ 31 do { \ 32 if (m) \ 33 seq_printf(m, x); \ 34 else \ 35 printk(x); \ 36 } while (0) 37 38 /* 39 * Ease the printing of nsec fields: 40 */ 41 static long long nsec_high(unsigned long long nsec) 42 { 43 if ((long long)nsec < 0) { 44 nsec = -nsec; 45 do_div(nsec, 1000000); 46 return -nsec; 47 } 48 do_div(nsec, 1000000); 49 50 return nsec; 51 } 52 53 static unsigned long nsec_low(unsigned long long nsec) 54 { 55 if ((long long)nsec < 0) 56 nsec = -nsec; 57 58 return do_div(nsec, 1000000); 59 } 60 61 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 62 63 #define SCHED_FEAT(name, enabled) \ 64 #name , 65 66 static const char * const sched_feat_names[] = { 67 #include "features.h" 68 }; 69 70 #undef SCHED_FEAT 71 72 static int sched_feat_show(struct seq_file *m, void *v) 73 { 74 int i; 75 76 for (i = 0; i < __SCHED_FEAT_NR; i++) { 77 if (!(sysctl_sched_features & (1UL << i))) 78 seq_puts(m, "NO_"); 79 seq_printf(m, "%s ", sched_feat_names[i]); 80 } 81 seq_puts(m, "\n"); 82 83 return 0; 84 } 85 86 #ifdef HAVE_JUMP_LABEL 87 88 #define jump_label_key__true STATIC_KEY_INIT_TRUE 89 #define jump_label_key__false STATIC_KEY_INIT_FALSE 90 91 #define SCHED_FEAT(name, enabled) \ 92 jump_label_key__##enabled , 93 94 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 95 #include "features.h" 96 }; 97 98 #undef SCHED_FEAT 99 100 static void sched_feat_disable(int i) 101 { 102 static_key_disable(&sched_feat_keys[i]); 103 } 104 105 static void sched_feat_enable(int i) 106 { 107 static_key_enable(&sched_feat_keys[i]); 108 } 109 #else 110 static void sched_feat_disable(int i) { }; 111 static void sched_feat_enable(int i) { }; 112 #endif /* HAVE_JUMP_LABEL */ 113 114 static int sched_feat_set(char *cmp) 115 { 116 int i; 117 int neg = 0; 118 119 if (strncmp(cmp, "NO_", 3) == 0) { 120 neg = 1; 121 cmp += 3; 122 } 123 124 for (i = 0; i < __SCHED_FEAT_NR; i++) { 125 if (strcmp(cmp, sched_feat_names[i]) == 0) { 126 if (neg) { 127 sysctl_sched_features &= ~(1UL << i); 128 sched_feat_disable(i); 129 } else { 130 sysctl_sched_features |= (1UL << i); 131 sched_feat_enable(i); 132 } 133 break; 134 } 135 } 136 137 return i; 138 } 139 140 static ssize_t 141 sched_feat_write(struct file *filp, const char __user *ubuf, 142 size_t cnt, loff_t *ppos) 143 { 144 char buf[64]; 145 char *cmp; 146 int i; 147 struct inode *inode; 148 149 if (cnt > 63) 150 cnt = 63; 151 152 if (copy_from_user(&buf, ubuf, cnt)) 153 return -EFAULT; 154 155 buf[cnt] = 0; 156 cmp = strstrip(buf); 157 158 /* Ensure the static_key remains in a consistent state */ 159 inode = file_inode(filp); 160 inode_lock(inode); 161 i = sched_feat_set(cmp); 162 inode_unlock(inode); 163 if (i == __SCHED_FEAT_NR) 164 return -EINVAL; 165 166 *ppos += cnt; 167 168 return cnt; 169 } 170 171 static int sched_feat_open(struct inode *inode, struct file *filp) 172 { 173 return single_open(filp, sched_feat_show, NULL); 174 } 175 176 static const struct file_operations sched_feat_fops = { 177 .open = sched_feat_open, 178 .write = sched_feat_write, 179 .read = seq_read, 180 .llseek = seq_lseek, 181 .release = single_release, 182 }; 183 184 __read_mostly bool sched_debug_enabled; 185 186 static __init int sched_init_debug(void) 187 { 188 debugfs_create_file("sched_features", 0644, NULL, NULL, 189 &sched_feat_fops); 190 191 debugfs_create_bool("sched_debug", 0644, NULL, 192 &sched_debug_enabled); 193 194 return 0; 195 } 196 late_initcall(sched_init_debug); 197 198 #ifdef CONFIG_SMP 199 200 #ifdef CONFIG_SYSCTL 201 202 static struct ctl_table sd_ctl_dir[] = { 203 { 204 .procname = "sched_domain", 205 .mode = 0555, 206 }, 207 {} 208 }; 209 210 static struct ctl_table sd_ctl_root[] = { 211 { 212 .procname = "kernel", 213 .mode = 0555, 214 .child = sd_ctl_dir, 215 }, 216 {} 217 }; 218 219 static struct ctl_table *sd_alloc_ctl_entry(int n) 220 { 221 struct ctl_table *entry = 222 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 223 224 return entry; 225 } 226 227 static void sd_free_ctl_entry(struct ctl_table **tablep) 228 { 229 struct ctl_table *entry; 230 231 /* 232 * In the intermediate directories, both the child directory and 233 * procname are dynamically allocated and could fail but the mode 234 * will always be set. In the lowest directory the names are 235 * static strings and all have proc handlers. 236 */ 237 for (entry = *tablep; entry->mode; entry++) { 238 if (entry->child) 239 sd_free_ctl_entry(&entry->child); 240 if (entry->proc_handler == NULL) 241 kfree(entry->procname); 242 } 243 244 kfree(*tablep); 245 *tablep = NULL; 246 } 247 248 static int min_load_idx = 0; 249 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 250 251 static void 252 set_table_entry(struct ctl_table *entry, 253 const char *procname, void *data, int maxlen, 254 umode_t mode, proc_handler *proc_handler, 255 bool load_idx) 256 { 257 entry->procname = procname; 258 entry->data = data; 259 entry->maxlen = maxlen; 260 entry->mode = mode; 261 entry->proc_handler = proc_handler; 262 263 if (load_idx) { 264 entry->extra1 = &min_load_idx; 265 entry->extra2 = &max_load_idx; 266 } 267 } 268 269 static struct ctl_table * 270 sd_alloc_ctl_domain_table(struct sched_domain *sd) 271 { 272 struct ctl_table *table = sd_alloc_ctl_entry(14); 273 274 if (table == NULL) 275 return NULL; 276 277 set_table_entry(&table[0], "min_interval", &sd->min_interval, 278 sizeof(long), 0644, proc_doulongvec_minmax, false); 279 set_table_entry(&table[1], "max_interval", &sd->max_interval, 280 sizeof(long), 0644, proc_doulongvec_minmax, false); 281 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 282 sizeof(int), 0644, proc_dointvec_minmax, true); 283 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 284 sizeof(int), 0644, proc_dointvec_minmax, true); 285 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 286 sizeof(int), 0644, proc_dointvec_minmax, true); 287 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 288 sizeof(int), 0644, proc_dointvec_minmax, true); 289 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 290 sizeof(int), 0644, proc_dointvec_minmax, true); 291 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 292 sizeof(int), 0644, proc_dointvec_minmax, false); 293 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 294 sizeof(int), 0644, proc_dointvec_minmax, false); 295 set_table_entry(&table[9], "cache_nice_tries", 296 &sd->cache_nice_tries, 297 sizeof(int), 0644, proc_dointvec_minmax, false); 298 set_table_entry(&table[10], "flags", &sd->flags, 299 sizeof(int), 0644, proc_dointvec_minmax, false); 300 set_table_entry(&table[11], "max_newidle_lb_cost", 301 &sd->max_newidle_lb_cost, 302 sizeof(long), 0644, proc_doulongvec_minmax, false); 303 set_table_entry(&table[12], "name", sd->name, 304 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 305 /* &table[13] is terminator */ 306 307 return table; 308 } 309 310 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 311 { 312 struct ctl_table *entry, *table; 313 struct sched_domain *sd; 314 int domain_num = 0, i; 315 char buf[32]; 316 317 for_each_domain(cpu, sd) 318 domain_num++; 319 entry = table = sd_alloc_ctl_entry(domain_num + 1); 320 if (table == NULL) 321 return NULL; 322 323 i = 0; 324 for_each_domain(cpu, sd) { 325 snprintf(buf, 32, "domain%d", i); 326 entry->procname = kstrdup(buf, GFP_KERNEL); 327 entry->mode = 0555; 328 entry->child = sd_alloc_ctl_domain_table(sd); 329 entry++; 330 i++; 331 } 332 return table; 333 } 334 335 static cpumask_var_t sd_sysctl_cpus; 336 static struct ctl_table_header *sd_sysctl_header; 337 338 void register_sched_domain_sysctl(void) 339 { 340 static struct ctl_table *cpu_entries; 341 static struct ctl_table **cpu_idx; 342 char buf[32]; 343 int i; 344 345 if (!cpu_entries) { 346 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1); 347 if (!cpu_entries) 348 return; 349 350 WARN_ON(sd_ctl_dir[0].child); 351 sd_ctl_dir[0].child = cpu_entries; 352 } 353 354 if (!cpu_idx) { 355 struct ctl_table *e = cpu_entries; 356 357 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL); 358 if (!cpu_idx) 359 return; 360 361 /* deal with sparse possible map */ 362 for_each_possible_cpu(i) { 363 cpu_idx[i] = e; 364 e++; 365 } 366 } 367 368 if (!cpumask_available(sd_sysctl_cpus)) { 369 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 370 return; 371 372 /* init to possible to not have holes in @cpu_entries */ 373 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 374 } 375 376 for_each_cpu(i, sd_sysctl_cpus) { 377 struct ctl_table *e = cpu_idx[i]; 378 379 if (e->child) 380 sd_free_ctl_entry(&e->child); 381 382 if (!e->procname) { 383 snprintf(buf, 32, "cpu%d", i); 384 e->procname = kstrdup(buf, GFP_KERNEL); 385 } 386 e->mode = 0555; 387 e->child = sd_alloc_ctl_cpu_table(i); 388 389 __cpumask_clear_cpu(i, sd_sysctl_cpus); 390 } 391 392 WARN_ON(sd_sysctl_header); 393 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 394 } 395 396 void dirty_sched_domain_sysctl(int cpu) 397 { 398 if (cpumask_available(sd_sysctl_cpus)) 399 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 400 } 401 402 /* may be called multiple times per register */ 403 void unregister_sched_domain_sysctl(void) 404 { 405 unregister_sysctl_table(sd_sysctl_header); 406 sd_sysctl_header = NULL; 407 } 408 #endif /* CONFIG_SYSCTL */ 409 #endif /* CONFIG_SMP */ 410 411 #ifdef CONFIG_FAIR_GROUP_SCHED 412 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 413 { 414 struct sched_entity *se = tg->se[cpu]; 415 416 #define P(F) \ 417 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 418 #define P_SCHEDSTAT(F) \ 419 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 420 #define PN(F) \ 421 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 422 #define PN_SCHEDSTAT(F) \ 423 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 424 425 if (!se) 426 return; 427 428 PN(se->exec_start); 429 PN(se->vruntime); 430 PN(se->sum_exec_runtime); 431 if (schedstat_enabled()) { 432 PN_SCHEDSTAT(se->statistics.wait_start); 433 PN_SCHEDSTAT(se->statistics.sleep_start); 434 PN_SCHEDSTAT(se->statistics.block_start); 435 PN_SCHEDSTAT(se->statistics.sleep_max); 436 PN_SCHEDSTAT(se->statistics.block_max); 437 PN_SCHEDSTAT(se->statistics.exec_max); 438 PN_SCHEDSTAT(se->statistics.slice_max); 439 PN_SCHEDSTAT(se->statistics.wait_max); 440 PN_SCHEDSTAT(se->statistics.wait_sum); 441 P_SCHEDSTAT(se->statistics.wait_count); 442 } 443 P(se->load.weight); 444 #ifdef CONFIG_SMP 445 P(se->avg.load_avg); 446 P(se->avg.util_avg); 447 #endif 448 449 #undef PN_SCHEDSTAT 450 #undef PN 451 #undef P_SCHEDSTAT 452 #undef P 453 } 454 #endif 455 456 #ifdef CONFIG_CGROUP_SCHED 457 static char group_path[PATH_MAX]; 458 459 static char *task_group_path(struct task_group *tg) 460 { 461 if (autogroup_path(tg, group_path, PATH_MAX)) 462 return group_path; 463 464 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 465 return group_path; 466 } 467 #endif 468 469 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 470 471 static void 472 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 473 { 474 if (rq->curr == p) 475 SEQ_printf(m, ">R"); 476 else 477 SEQ_printf(m, " %c", task_state_to_char(p)); 478 479 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 480 p->comm, task_pid_nr(p), 481 SPLIT_NS(p->se.vruntime), 482 (long long)(p->nvcsw + p->nivcsw), 483 p->prio); 484 485 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 486 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 487 SPLIT_NS(p->se.sum_exec_runtime), 488 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 489 490 #ifdef CONFIG_NUMA_BALANCING 491 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 492 #endif 493 #ifdef CONFIG_CGROUP_SCHED 494 SEQ_printf(m, " %s", task_group_path(task_group(p))); 495 #endif 496 497 SEQ_printf(m, "\n"); 498 } 499 500 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 501 { 502 struct task_struct *g, *p; 503 504 SEQ_printf(m, 505 "\nrunnable tasks:\n" 506 " S task PID tree-key switches prio" 507 " wait-time sum-exec sum-sleep\n" 508 "-------------------------------------------------------" 509 "----------------------------------------------------\n"); 510 511 rcu_read_lock(); 512 for_each_process_thread(g, p) { 513 if (task_cpu(p) != rq_cpu) 514 continue; 515 516 print_task(m, rq, p); 517 } 518 rcu_read_unlock(); 519 } 520 521 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 522 { 523 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 524 spread, rq0_min_vruntime, spread0; 525 struct rq *rq = cpu_rq(cpu); 526 struct sched_entity *last; 527 unsigned long flags; 528 529 #ifdef CONFIG_FAIR_GROUP_SCHED 530 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 531 #else 532 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 533 #endif 534 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 535 SPLIT_NS(cfs_rq->exec_clock)); 536 537 raw_spin_lock_irqsave(&rq->lock, flags); 538 if (rb_first_cached(&cfs_rq->tasks_timeline)) 539 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 540 last = __pick_last_entity(cfs_rq); 541 if (last) 542 max_vruntime = last->vruntime; 543 min_vruntime = cfs_rq->min_vruntime; 544 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 545 raw_spin_unlock_irqrestore(&rq->lock, flags); 546 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 547 SPLIT_NS(MIN_vruntime)); 548 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 549 SPLIT_NS(min_vruntime)); 550 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 551 SPLIT_NS(max_vruntime)); 552 spread = max_vruntime - MIN_vruntime; 553 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 554 SPLIT_NS(spread)); 555 spread0 = min_vruntime - rq0_min_vruntime; 556 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 557 SPLIT_NS(spread0)); 558 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 559 cfs_rq->nr_spread_over); 560 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 561 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 562 #ifdef CONFIG_SMP 563 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 564 cfs_rq->avg.load_avg); 565 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 566 cfs_rq->runnable_load_avg); 567 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 568 cfs_rq->avg.util_avg); 569 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg", 570 atomic_long_read(&cfs_rq->removed_load_avg)); 571 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg", 572 atomic_long_read(&cfs_rq->removed_util_avg)); 573 #ifdef CONFIG_FAIR_GROUP_SCHED 574 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 575 cfs_rq->tg_load_avg_contrib); 576 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 577 atomic_long_read(&cfs_rq->tg->load_avg)); 578 #endif 579 #endif 580 #ifdef CONFIG_CFS_BANDWIDTH 581 SEQ_printf(m, " .%-30s: %d\n", "throttled", 582 cfs_rq->throttled); 583 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 584 cfs_rq->throttle_count); 585 #endif 586 587 #ifdef CONFIG_FAIR_GROUP_SCHED 588 print_cfs_group_stats(m, cpu, cfs_rq->tg); 589 #endif 590 } 591 592 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 593 { 594 #ifdef CONFIG_RT_GROUP_SCHED 595 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 596 #else 597 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 598 #endif 599 600 #define P(x) \ 601 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 602 #define PU(x) \ 603 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 604 #define PN(x) \ 605 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 606 607 PU(rt_nr_running); 608 #ifdef CONFIG_SMP 609 PU(rt_nr_migratory); 610 #endif 611 P(rt_throttled); 612 PN(rt_time); 613 PN(rt_runtime); 614 615 #undef PN 616 #undef PU 617 #undef P 618 } 619 620 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 621 { 622 struct dl_bw *dl_bw; 623 624 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu); 625 626 #define PU(x) \ 627 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 628 629 PU(dl_nr_running); 630 #ifdef CONFIG_SMP 631 PU(dl_nr_migratory); 632 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 633 #else 634 dl_bw = &dl_rq->dl_bw; 635 #endif 636 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 637 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 638 639 #undef PU 640 } 641 642 extern __read_mostly int sched_clock_running; 643 644 static void print_cpu(struct seq_file *m, int cpu) 645 { 646 struct rq *rq = cpu_rq(cpu); 647 unsigned long flags; 648 649 #ifdef CONFIG_X86 650 { 651 unsigned int freq = cpu_khz ? : 1; 652 653 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 654 cpu, freq / 1000, (freq % 1000)); 655 } 656 #else 657 SEQ_printf(m, "cpu#%d\n", cpu); 658 #endif 659 660 #define P(x) \ 661 do { \ 662 if (sizeof(rq->x) == 4) \ 663 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 664 else \ 665 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 666 } while (0) 667 668 #define PN(x) \ 669 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 670 671 P(nr_running); 672 SEQ_printf(m, " .%-30s: %lu\n", "load", 673 rq->load.weight); 674 P(nr_switches); 675 P(nr_load_updates); 676 P(nr_uninterruptible); 677 PN(next_balance); 678 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 679 PN(clock); 680 PN(clock_task); 681 P(cpu_load[0]); 682 P(cpu_load[1]); 683 P(cpu_load[2]); 684 P(cpu_load[3]); 685 P(cpu_load[4]); 686 #undef P 687 #undef PN 688 689 #ifdef CONFIG_SMP 690 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 691 P64(avg_idle); 692 P64(max_idle_balance_cost); 693 #undef P64 694 #endif 695 696 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 697 if (schedstat_enabled()) { 698 P(yld_count); 699 P(sched_count); 700 P(sched_goidle); 701 P(ttwu_count); 702 P(ttwu_local); 703 } 704 #undef P 705 706 spin_lock_irqsave(&sched_debug_lock, flags); 707 print_cfs_stats(m, cpu); 708 print_rt_stats(m, cpu); 709 print_dl_stats(m, cpu); 710 711 print_rq(m, rq, cpu); 712 spin_unlock_irqrestore(&sched_debug_lock, flags); 713 SEQ_printf(m, "\n"); 714 } 715 716 static const char *sched_tunable_scaling_names[] = { 717 "none", 718 "logaritmic", 719 "linear" 720 }; 721 722 static void sched_debug_header(struct seq_file *m) 723 { 724 u64 ktime, sched_clk, cpu_clk; 725 unsigned long flags; 726 727 local_irq_save(flags); 728 ktime = ktime_to_ns(ktime_get()); 729 sched_clk = sched_clock(); 730 cpu_clk = local_clock(); 731 local_irq_restore(flags); 732 733 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 734 init_utsname()->release, 735 (int)strcspn(init_utsname()->version, " "), 736 init_utsname()->version); 737 738 #define P(x) \ 739 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 740 #define PN(x) \ 741 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 742 PN(ktime); 743 PN(sched_clk); 744 PN(cpu_clk); 745 P(jiffies); 746 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 747 P(sched_clock_stable()); 748 #endif 749 #undef PN 750 #undef P 751 752 SEQ_printf(m, "\n"); 753 SEQ_printf(m, "sysctl_sched\n"); 754 755 #define P(x) \ 756 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 757 #define PN(x) \ 758 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 759 PN(sysctl_sched_latency); 760 PN(sysctl_sched_min_granularity); 761 PN(sysctl_sched_wakeup_granularity); 762 P(sysctl_sched_child_runs_first); 763 P(sysctl_sched_features); 764 #undef PN 765 #undef P 766 767 SEQ_printf(m, " .%-40s: %d (%s)\n", 768 "sysctl_sched_tunable_scaling", 769 sysctl_sched_tunable_scaling, 770 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 771 SEQ_printf(m, "\n"); 772 } 773 774 static int sched_debug_show(struct seq_file *m, void *v) 775 { 776 int cpu = (unsigned long)(v - 2); 777 778 if (cpu != -1) 779 print_cpu(m, cpu); 780 else 781 sched_debug_header(m); 782 783 return 0; 784 } 785 786 void sysrq_sched_debug_show(void) 787 { 788 int cpu; 789 790 sched_debug_header(NULL); 791 for_each_online_cpu(cpu) 792 print_cpu(NULL, cpu); 793 794 } 795 796 /* 797 * This itererator needs some explanation. 798 * It returns 1 for the header position. 799 * This means 2 is cpu 0. 800 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 801 * to use cpumask_* to iterate over the cpus. 802 */ 803 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 804 { 805 unsigned long n = *offset; 806 807 if (n == 0) 808 return (void *) 1; 809 810 n--; 811 812 if (n > 0) 813 n = cpumask_next(n - 1, cpu_online_mask); 814 else 815 n = cpumask_first(cpu_online_mask); 816 817 *offset = n + 1; 818 819 if (n < nr_cpu_ids) 820 return (void *)(unsigned long)(n + 2); 821 return NULL; 822 } 823 824 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 825 { 826 (*offset)++; 827 return sched_debug_start(file, offset); 828 } 829 830 static void sched_debug_stop(struct seq_file *file, void *data) 831 { 832 } 833 834 static const struct seq_operations sched_debug_sops = { 835 .start = sched_debug_start, 836 .next = sched_debug_next, 837 .stop = sched_debug_stop, 838 .show = sched_debug_show, 839 }; 840 841 static int sched_debug_release(struct inode *inode, struct file *file) 842 { 843 seq_release(inode, file); 844 845 return 0; 846 } 847 848 static int sched_debug_open(struct inode *inode, struct file *filp) 849 { 850 int ret = 0; 851 852 ret = seq_open(filp, &sched_debug_sops); 853 854 return ret; 855 } 856 857 static const struct file_operations sched_debug_fops = { 858 .open = sched_debug_open, 859 .read = seq_read, 860 .llseek = seq_lseek, 861 .release = sched_debug_release, 862 }; 863 864 static int __init init_sched_debug_procfs(void) 865 { 866 struct proc_dir_entry *pe; 867 868 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 869 if (!pe) 870 return -ENOMEM; 871 return 0; 872 } 873 874 __initcall(init_sched_debug_procfs); 875 876 #define __P(F) \ 877 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 878 #define P(F) \ 879 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 880 #define __PN(F) \ 881 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 882 #define PN(F) \ 883 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 884 885 886 #ifdef CONFIG_NUMA_BALANCING 887 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 888 unsigned long tpf, unsigned long gsf, unsigned long gpf) 889 { 890 SEQ_printf(m, "numa_faults node=%d ", node); 891 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf); 892 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf); 893 } 894 #endif 895 896 897 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 898 { 899 #ifdef CONFIG_NUMA_BALANCING 900 struct mempolicy *pol; 901 902 if (p->mm) 903 P(mm->numa_scan_seq); 904 905 task_lock(p); 906 pol = p->mempolicy; 907 if (pol && !(pol->flags & MPOL_F_MORON)) 908 pol = NULL; 909 mpol_get(pol); 910 task_unlock(p); 911 912 P(numa_pages_migrated); 913 P(numa_preferred_nid); 914 P(total_numa_faults); 915 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 916 task_node(p), task_numa_group_id(p)); 917 show_numa_stats(p, m); 918 mpol_put(pol); 919 #endif 920 } 921 922 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 923 struct seq_file *m) 924 { 925 unsigned long nr_switches; 926 927 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 928 get_nr_threads(p)); 929 SEQ_printf(m, 930 "---------------------------------------------------------" 931 "----------\n"); 932 #define __P(F) \ 933 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 934 #define P(F) \ 935 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 936 #define P_SCHEDSTAT(F) \ 937 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F)) 938 #define __PN(F) \ 939 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 940 #define PN(F) \ 941 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 942 #define PN_SCHEDSTAT(F) \ 943 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F))) 944 945 PN(se.exec_start); 946 PN(se.vruntime); 947 PN(se.sum_exec_runtime); 948 949 nr_switches = p->nvcsw + p->nivcsw; 950 951 P(se.nr_migrations); 952 953 if (schedstat_enabled()) { 954 u64 avg_atom, avg_per_cpu; 955 956 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 957 PN_SCHEDSTAT(se.statistics.wait_start); 958 PN_SCHEDSTAT(se.statistics.sleep_start); 959 PN_SCHEDSTAT(se.statistics.block_start); 960 PN_SCHEDSTAT(se.statistics.sleep_max); 961 PN_SCHEDSTAT(se.statistics.block_max); 962 PN_SCHEDSTAT(se.statistics.exec_max); 963 PN_SCHEDSTAT(se.statistics.slice_max); 964 PN_SCHEDSTAT(se.statistics.wait_max); 965 PN_SCHEDSTAT(se.statistics.wait_sum); 966 P_SCHEDSTAT(se.statistics.wait_count); 967 PN_SCHEDSTAT(se.statistics.iowait_sum); 968 P_SCHEDSTAT(se.statistics.iowait_count); 969 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 970 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 971 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 972 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 973 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 974 P_SCHEDSTAT(se.statistics.nr_wakeups); 975 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 976 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 977 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 978 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 979 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 980 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 981 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 982 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 983 984 avg_atom = p->se.sum_exec_runtime; 985 if (nr_switches) 986 avg_atom = div64_ul(avg_atom, nr_switches); 987 else 988 avg_atom = -1LL; 989 990 avg_per_cpu = p->se.sum_exec_runtime; 991 if (p->se.nr_migrations) { 992 avg_per_cpu = div64_u64(avg_per_cpu, 993 p->se.nr_migrations); 994 } else { 995 avg_per_cpu = -1LL; 996 } 997 998 __PN(avg_atom); 999 __PN(avg_per_cpu); 1000 } 1001 1002 __P(nr_switches); 1003 SEQ_printf(m, "%-45s:%21Ld\n", 1004 "nr_voluntary_switches", (long long)p->nvcsw); 1005 SEQ_printf(m, "%-45s:%21Ld\n", 1006 "nr_involuntary_switches", (long long)p->nivcsw); 1007 1008 P(se.load.weight); 1009 #ifdef CONFIG_SMP 1010 P(se.avg.load_sum); 1011 P(se.avg.util_sum); 1012 P(se.avg.load_avg); 1013 P(se.avg.util_avg); 1014 P(se.avg.last_update_time); 1015 #endif 1016 P(policy); 1017 P(prio); 1018 if (p->policy == SCHED_DEADLINE) { 1019 P(dl.runtime); 1020 P(dl.deadline); 1021 } 1022 #undef PN_SCHEDSTAT 1023 #undef PN 1024 #undef __PN 1025 #undef P_SCHEDSTAT 1026 #undef P 1027 #undef __P 1028 1029 { 1030 unsigned int this_cpu = raw_smp_processor_id(); 1031 u64 t0, t1; 1032 1033 t0 = cpu_clock(this_cpu); 1034 t1 = cpu_clock(this_cpu); 1035 SEQ_printf(m, "%-45s:%21Ld\n", 1036 "clock-delta", (long long)(t1-t0)); 1037 } 1038 1039 sched_show_numa(p, m); 1040 } 1041 1042 void proc_sched_set_task(struct task_struct *p) 1043 { 1044 #ifdef CONFIG_SCHEDSTATS 1045 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1046 #endif 1047 } 1048