1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/seq_file.h> 17 #include <linux/kallsyms.h> 18 #include <linux/utsname.h> 19 #include <linux/mempolicy.h> 20 #include <linux/debugfs.h> 21 22 #include "sched.h" 23 24 static DEFINE_SPINLOCK(sched_debug_lock); 25 26 /* 27 * This allows printing both to /proc/sched_debug and 28 * to the console 29 */ 30 #define SEQ_printf(m, x...) \ 31 do { \ 32 if (m) \ 33 seq_printf(m, x); \ 34 else \ 35 printk(x); \ 36 } while (0) 37 38 /* 39 * Ease the printing of nsec fields: 40 */ 41 static long long nsec_high(unsigned long long nsec) 42 { 43 if ((long long)nsec < 0) { 44 nsec = -nsec; 45 do_div(nsec, 1000000); 46 return -nsec; 47 } 48 do_div(nsec, 1000000); 49 50 return nsec; 51 } 52 53 static unsigned long nsec_low(unsigned long long nsec) 54 { 55 if ((long long)nsec < 0) 56 nsec = -nsec; 57 58 return do_div(nsec, 1000000); 59 } 60 61 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 62 63 #define SCHED_FEAT(name, enabled) \ 64 #name , 65 66 static const char * const sched_feat_names[] = { 67 #include "features.h" 68 }; 69 70 #undef SCHED_FEAT 71 72 static int sched_feat_show(struct seq_file *m, void *v) 73 { 74 int i; 75 76 for (i = 0; i < __SCHED_FEAT_NR; i++) { 77 if (!(sysctl_sched_features & (1UL << i))) 78 seq_puts(m, "NO_"); 79 seq_printf(m, "%s ", sched_feat_names[i]); 80 } 81 seq_puts(m, "\n"); 82 83 return 0; 84 } 85 86 #ifdef HAVE_JUMP_LABEL 87 88 #define jump_label_key__true STATIC_KEY_INIT_TRUE 89 #define jump_label_key__false STATIC_KEY_INIT_FALSE 90 91 #define SCHED_FEAT(name, enabled) \ 92 jump_label_key__##enabled , 93 94 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 95 #include "features.h" 96 }; 97 98 #undef SCHED_FEAT 99 100 static void sched_feat_disable(int i) 101 { 102 static_key_disable(&sched_feat_keys[i]); 103 } 104 105 static void sched_feat_enable(int i) 106 { 107 static_key_enable(&sched_feat_keys[i]); 108 } 109 #else 110 static void sched_feat_disable(int i) { }; 111 static void sched_feat_enable(int i) { }; 112 #endif /* HAVE_JUMP_LABEL */ 113 114 static int sched_feat_set(char *cmp) 115 { 116 int i; 117 int neg = 0; 118 119 if (strncmp(cmp, "NO_", 3) == 0) { 120 neg = 1; 121 cmp += 3; 122 } 123 124 for (i = 0; i < __SCHED_FEAT_NR; i++) { 125 if (strcmp(cmp, sched_feat_names[i]) == 0) { 126 if (neg) { 127 sysctl_sched_features &= ~(1UL << i); 128 sched_feat_disable(i); 129 } else { 130 sysctl_sched_features |= (1UL << i); 131 sched_feat_enable(i); 132 } 133 break; 134 } 135 } 136 137 return i; 138 } 139 140 static ssize_t 141 sched_feat_write(struct file *filp, const char __user *ubuf, 142 size_t cnt, loff_t *ppos) 143 { 144 char buf[64]; 145 char *cmp; 146 int i; 147 struct inode *inode; 148 149 if (cnt > 63) 150 cnt = 63; 151 152 if (copy_from_user(&buf, ubuf, cnt)) 153 return -EFAULT; 154 155 buf[cnt] = 0; 156 cmp = strstrip(buf); 157 158 /* Ensure the static_key remains in a consistent state */ 159 inode = file_inode(filp); 160 inode_lock(inode); 161 i = sched_feat_set(cmp); 162 inode_unlock(inode); 163 if (i == __SCHED_FEAT_NR) 164 return -EINVAL; 165 166 *ppos += cnt; 167 168 return cnt; 169 } 170 171 static int sched_feat_open(struct inode *inode, struct file *filp) 172 { 173 return single_open(filp, sched_feat_show, NULL); 174 } 175 176 static const struct file_operations sched_feat_fops = { 177 .open = sched_feat_open, 178 .write = sched_feat_write, 179 .read = seq_read, 180 .llseek = seq_lseek, 181 .release = single_release, 182 }; 183 184 static __init int sched_init_debug(void) 185 { 186 debugfs_create_file("sched_features", 0644, NULL, NULL, 187 &sched_feat_fops); 188 189 return 0; 190 } 191 late_initcall(sched_init_debug); 192 193 #ifdef CONFIG_SMP 194 195 #ifdef CONFIG_SYSCTL 196 197 static struct ctl_table sd_ctl_dir[] = { 198 { 199 .procname = "sched_domain", 200 .mode = 0555, 201 }, 202 {} 203 }; 204 205 static struct ctl_table sd_ctl_root[] = { 206 { 207 .procname = "kernel", 208 .mode = 0555, 209 .child = sd_ctl_dir, 210 }, 211 {} 212 }; 213 214 static struct ctl_table *sd_alloc_ctl_entry(int n) 215 { 216 struct ctl_table *entry = 217 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 218 219 return entry; 220 } 221 222 static void sd_free_ctl_entry(struct ctl_table **tablep) 223 { 224 struct ctl_table *entry; 225 226 /* 227 * In the intermediate directories, both the child directory and 228 * procname are dynamically allocated and could fail but the mode 229 * will always be set. In the lowest directory the names are 230 * static strings and all have proc handlers. 231 */ 232 for (entry = *tablep; entry->mode; entry++) { 233 if (entry->child) 234 sd_free_ctl_entry(&entry->child); 235 if (entry->proc_handler == NULL) 236 kfree(entry->procname); 237 } 238 239 kfree(*tablep); 240 *tablep = NULL; 241 } 242 243 static int min_load_idx = 0; 244 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 245 246 static void 247 set_table_entry(struct ctl_table *entry, 248 const char *procname, void *data, int maxlen, 249 umode_t mode, proc_handler *proc_handler, 250 bool load_idx) 251 { 252 entry->procname = procname; 253 entry->data = data; 254 entry->maxlen = maxlen; 255 entry->mode = mode; 256 entry->proc_handler = proc_handler; 257 258 if (load_idx) { 259 entry->extra1 = &min_load_idx; 260 entry->extra2 = &max_load_idx; 261 } 262 } 263 264 static struct ctl_table * 265 sd_alloc_ctl_domain_table(struct sched_domain *sd) 266 { 267 struct ctl_table *table = sd_alloc_ctl_entry(14); 268 269 if (table == NULL) 270 return NULL; 271 272 set_table_entry(&table[0], "min_interval", &sd->min_interval, 273 sizeof(long), 0644, proc_doulongvec_minmax, false); 274 set_table_entry(&table[1], "max_interval", &sd->max_interval, 275 sizeof(long), 0644, proc_doulongvec_minmax, false); 276 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 277 sizeof(int), 0644, proc_dointvec_minmax, true); 278 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 279 sizeof(int), 0644, proc_dointvec_minmax, true); 280 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 281 sizeof(int), 0644, proc_dointvec_minmax, true); 282 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 283 sizeof(int), 0644, proc_dointvec_minmax, true); 284 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 285 sizeof(int), 0644, proc_dointvec_minmax, true); 286 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 287 sizeof(int), 0644, proc_dointvec_minmax, false); 288 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 289 sizeof(int), 0644, proc_dointvec_minmax, false); 290 set_table_entry(&table[9], "cache_nice_tries", 291 &sd->cache_nice_tries, 292 sizeof(int), 0644, proc_dointvec_minmax, false); 293 set_table_entry(&table[10], "flags", &sd->flags, 294 sizeof(int), 0644, proc_dointvec_minmax, false); 295 set_table_entry(&table[11], "max_newidle_lb_cost", 296 &sd->max_newidle_lb_cost, 297 sizeof(long), 0644, proc_doulongvec_minmax, false); 298 set_table_entry(&table[12], "name", sd->name, 299 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 300 /* &table[13] is terminator */ 301 302 return table; 303 } 304 305 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 306 { 307 struct ctl_table *entry, *table; 308 struct sched_domain *sd; 309 int domain_num = 0, i; 310 char buf[32]; 311 312 for_each_domain(cpu, sd) 313 domain_num++; 314 entry = table = sd_alloc_ctl_entry(domain_num + 1); 315 if (table == NULL) 316 return NULL; 317 318 i = 0; 319 for_each_domain(cpu, sd) { 320 snprintf(buf, 32, "domain%d", i); 321 entry->procname = kstrdup(buf, GFP_KERNEL); 322 entry->mode = 0555; 323 entry->child = sd_alloc_ctl_domain_table(sd); 324 entry++; 325 i++; 326 } 327 return table; 328 } 329 330 static cpumask_var_t sd_sysctl_cpus; 331 static struct ctl_table_header *sd_sysctl_header; 332 333 void register_sched_domain_sysctl(void) 334 { 335 static struct ctl_table *cpu_entries; 336 static struct ctl_table **cpu_idx; 337 char buf[32]; 338 int i; 339 340 if (!cpu_entries) { 341 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1); 342 if (!cpu_entries) 343 return; 344 345 WARN_ON(sd_ctl_dir[0].child); 346 sd_ctl_dir[0].child = cpu_entries; 347 } 348 349 if (!cpu_idx) { 350 struct ctl_table *e = cpu_entries; 351 352 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL); 353 if (!cpu_idx) 354 return; 355 356 /* deal with sparse possible map */ 357 for_each_possible_cpu(i) { 358 cpu_idx[i] = e; 359 e++; 360 } 361 } 362 363 if (!cpumask_available(sd_sysctl_cpus)) { 364 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 365 return; 366 367 /* init to possible to not have holes in @cpu_entries */ 368 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 369 } 370 371 for_each_cpu(i, sd_sysctl_cpus) { 372 struct ctl_table *e = cpu_idx[i]; 373 374 if (e->child) 375 sd_free_ctl_entry(&e->child); 376 377 if (!e->procname) { 378 snprintf(buf, 32, "cpu%d", i); 379 e->procname = kstrdup(buf, GFP_KERNEL); 380 } 381 e->mode = 0555; 382 e->child = sd_alloc_ctl_cpu_table(i); 383 384 __cpumask_clear_cpu(i, sd_sysctl_cpus); 385 } 386 387 WARN_ON(sd_sysctl_header); 388 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 389 } 390 391 void dirty_sched_domain_sysctl(int cpu) 392 { 393 if (cpumask_available(sd_sysctl_cpus)) 394 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 395 } 396 397 /* may be called multiple times per register */ 398 void unregister_sched_domain_sysctl(void) 399 { 400 unregister_sysctl_table(sd_sysctl_header); 401 sd_sysctl_header = NULL; 402 } 403 #endif /* CONFIG_SYSCTL */ 404 #endif /* CONFIG_SMP */ 405 406 #ifdef CONFIG_FAIR_GROUP_SCHED 407 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 408 { 409 struct sched_entity *se = tg->se[cpu]; 410 411 #define P(F) \ 412 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 413 #define P_SCHEDSTAT(F) \ 414 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 415 #define PN(F) \ 416 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 417 #define PN_SCHEDSTAT(F) \ 418 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 419 420 if (!se) 421 return; 422 423 PN(se->exec_start); 424 PN(se->vruntime); 425 PN(se->sum_exec_runtime); 426 if (schedstat_enabled()) { 427 PN_SCHEDSTAT(se->statistics.wait_start); 428 PN_SCHEDSTAT(se->statistics.sleep_start); 429 PN_SCHEDSTAT(se->statistics.block_start); 430 PN_SCHEDSTAT(se->statistics.sleep_max); 431 PN_SCHEDSTAT(se->statistics.block_max); 432 PN_SCHEDSTAT(se->statistics.exec_max); 433 PN_SCHEDSTAT(se->statistics.slice_max); 434 PN_SCHEDSTAT(se->statistics.wait_max); 435 PN_SCHEDSTAT(se->statistics.wait_sum); 436 P_SCHEDSTAT(se->statistics.wait_count); 437 } 438 P(se->load.weight); 439 #ifdef CONFIG_SMP 440 P(se->avg.load_avg); 441 P(se->avg.util_avg); 442 #endif 443 444 #undef PN_SCHEDSTAT 445 #undef PN 446 #undef P_SCHEDSTAT 447 #undef P 448 } 449 #endif 450 451 #ifdef CONFIG_CGROUP_SCHED 452 static char group_path[PATH_MAX]; 453 454 static char *task_group_path(struct task_group *tg) 455 { 456 if (autogroup_path(tg, group_path, PATH_MAX)) 457 return group_path; 458 459 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 460 return group_path; 461 } 462 #endif 463 464 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 465 466 static void 467 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 468 { 469 if (rq->curr == p) 470 SEQ_printf(m, ">R"); 471 else 472 SEQ_printf(m, " %c", task_state_to_char(p)); 473 474 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 475 p->comm, task_pid_nr(p), 476 SPLIT_NS(p->se.vruntime), 477 (long long)(p->nvcsw + p->nivcsw), 478 p->prio); 479 480 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 481 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 482 SPLIT_NS(p->se.sum_exec_runtime), 483 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 484 485 #ifdef CONFIG_NUMA_BALANCING 486 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 487 #endif 488 #ifdef CONFIG_CGROUP_SCHED 489 SEQ_printf(m, " %s", task_group_path(task_group(p))); 490 #endif 491 492 SEQ_printf(m, "\n"); 493 } 494 495 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 496 { 497 struct task_struct *g, *p; 498 499 SEQ_printf(m, 500 "\nrunnable tasks:\n" 501 " S task PID tree-key switches prio" 502 " wait-time sum-exec sum-sleep\n" 503 "-------------------------------------------------------" 504 "----------------------------------------------------\n"); 505 506 rcu_read_lock(); 507 for_each_process_thread(g, p) { 508 if (task_cpu(p) != rq_cpu) 509 continue; 510 511 print_task(m, rq, p); 512 } 513 rcu_read_unlock(); 514 } 515 516 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 517 { 518 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 519 spread, rq0_min_vruntime, spread0; 520 struct rq *rq = cpu_rq(cpu); 521 struct sched_entity *last; 522 unsigned long flags; 523 524 #ifdef CONFIG_FAIR_GROUP_SCHED 525 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 526 #else 527 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 528 #endif 529 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 530 SPLIT_NS(cfs_rq->exec_clock)); 531 532 raw_spin_lock_irqsave(&rq->lock, flags); 533 if (cfs_rq->rb_leftmost) 534 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 535 last = __pick_last_entity(cfs_rq); 536 if (last) 537 max_vruntime = last->vruntime; 538 min_vruntime = cfs_rq->min_vruntime; 539 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 540 raw_spin_unlock_irqrestore(&rq->lock, flags); 541 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 542 SPLIT_NS(MIN_vruntime)); 543 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 544 SPLIT_NS(min_vruntime)); 545 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 546 SPLIT_NS(max_vruntime)); 547 spread = max_vruntime - MIN_vruntime; 548 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 549 SPLIT_NS(spread)); 550 spread0 = min_vruntime - rq0_min_vruntime; 551 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 552 SPLIT_NS(spread0)); 553 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 554 cfs_rq->nr_spread_over); 555 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 556 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 557 #ifdef CONFIG_SMP 558 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 559 cfs_rq->avg.load_avg); 560 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 561 cfs_rq->runnable_load_avg); 562 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 563 cfs_rq->avg.util_avg); 564 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg", 565 atomic_long_read(&cfs_rq->removed_load_avg)); 566 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg", 567 atomic_long_read(&cfs_rq->removed_util_avg)); 568 #ifdef CONFIG_FAIR_GROUP_SCHED 569 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 570 cfs_rq->tg_load_avg_contrib); 571 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 572 atomic_long_read(&cfs_rq->tg->load_avg)); 573 #endif 574 #endif 575 #ifdef CONFIG_CFS_BANDWIDTH 576 SEQ_printf(m, " .%-30s: %d\n", "throttled", 577 cfs_rq->throttled); 578 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 579 cfs_rq->throttle_count); 580 #endif 581 582 #ifdef CONFIG_FAIR_GROUP_SCHED 583 print_cfs_group_stats(m, cpu, cfs_rq->tg); 584 #endif 585 } 586 587 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 588 { 589 #ifdef CONFIG_RT_GROUP_SCHED 590 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 591 #else 592 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 593 #endif 594 595 #define P(x) \ 596 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 597 #define PU(x) \ 598 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 599 #define PN(x) \ 600 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 601 602 PU(rt_nr_running); 603 #ifdef CONFIG_SMP 604 PU(rt_nr_migratory); 605 #endif 606 P(rt_throttled); 607 PN(rt_time); 608 PN(rt_runtime); 609 610 #undef PN 611 #undef PU 612 #undef P 613 } 614 615 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 616 { 617 struct dl_bw *dl_bw; 618 619 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu); 620 621 #define PU(x) \ 622 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 623 624 PU(dl_nr_running); 625 #ifdef CONFIG_SMP 626 PU(dl_nr_migratory); 627 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 628 #else 629 dl_bw = &dl_rq->dl_bw; 630 #endif 631 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 632 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 633 634 #undef PU 635 } 636 637 extern __read_mostly int sched_clock_running; 638 639 static void print_cpu(struct seq_file *m, int cpu) 640 { 641 struct rq *rq = cpu_rq(cpu); 642 unsigned long flags; 643 644 #ifdef CONFIG_X86 645 { 646 unsigned int freq = cpu_khz ? : 1; 647 648 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 649 cpu, freq / 1000, (freq % 1000)); 650 } 651 #else 652 SEQ_printf(m, "cpu#%d\n", cpu); 653 #endif 654 655 #define P(x) \ 656 do { \ 657 if (sizeof(rq->x) == 4) \ 658 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 659 else \ 660 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 661 } while (0) 662 663 #define PN(x) \ 664 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 665 666 P(nr_running); 667 SEQ_printf(m, " .%-30s: %lu\n", "load", 668 rq->load.weight); 669 P(nr_switches); 670 P(nr_load_updates); 671 P(nr_uninterruptible); 672 PN(next_balance); 673 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 674 PN(clock); 675 PN(clock_task); 676 P(cpu_load[0]); 677 P(cpu_load[1]); 678 P(cpu_load[2]); 679 P(cpu_load[3]); 680 P(cpu_load[4]); 681 #undef P 682 #undef PN 683 684 #ifdef CONFIG_SMP 685 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 686 P64(avg_idle); 687 P64(max_idle_balance_cost); 688 #undef P64 689 #endif 690 691 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 692 if (schedstat_enabled()) { 693 P(yld_count); 694 P(sched_count); 695 P(sched_goidle); 696 P(ttwu_count); 697 P(ttwu_local); 698 } 699 #undef P 700 701 spin_lock_irqsave(&sched_debug_lock, flags); 702 print_cfs_stats(m, cpu); 703 print_rt_stats(m, cpu); 704 print_dl_stats(m, cpu); 705 706 print_rq(m, rq, cpu); 707 spin_unlock_irqrestore(&sched_debug_lock, flags); 708 SEQ_printf(m, "\n"); 709 } 710 711 static const char *sched_tunable_scaling_names[] = { 712 "none", 713 "logaritmic", 714 "linear" 715 }; 716 717 static void sched_debug_header(struct seq_file *m) 718 { 719 u64 ktime, sched_clk, cpu_clk; 720 unsigned long flags; 721 722 local_irq_save(flags); 723 ktime = ktime_to_ns(ktime_get()); 724 sched_clk = sched_clock(); 725 cpu_clk = local_clock(); 726 local_irq_restore(flags); 727 728 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 729 init_utsname()->release, 730 (int)strcspn(init_utsname()->version, " "), 731 init_utsname()->version); 732 733 #define P(x) \ 734 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 735 #define PN(x) \ 736 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 737 PN(ktime); 738 PN(sched_clk); 739 PN(cpu_clk); 740 P(jiffies); 741 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 742 P(sched_clock_stable()); 743 #endif 744 #undef PN 745 #undef P 746 747 SEQ_printf(m, "\n"); 748 SEQ_printf(m, "sysctl_sched\n"); 749 750 #define P(x) \ 751 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 752 #define PN(x) \ 753 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 754 PN(sysctl_sched_latency); 755 PN(sysctl_sched_min_granularity); 756 PN(sysctl_sched_wakeup_granularity); 757 P(sysctl_sched_child_runs_first); 758 P(sysctl_sched_features); 759 #undef PN 760 #undef P 761 762 SEQ_printf(m, " .%-40s: %d (%s)\n", 763 "sysctl_sched_tunable_scaling", 764 sysctl_sched_tunable_scaling, 765 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 766 SEQ_printf(m, "\n"); 767 } 768 769 static int sched_debug_show(struct seq_file *m, void *v) 770 { 771 int cpu = (unsigned long)(v - 2); 772 773 if (cpu != -1) 774 print_cpu(m, cpu); 775 else 776 sched_debug_header(m); 777 778 return 0; 779 } 780 781 void sysrq_sched_debug_show(void) 782 { 783 int cpu; 784 785 sched_debug_header(NULL); 786 for_each_online_cpu(cpu) 787 print_cpu(NULL, cpu); 788 789 } 790 791 /* 792 * This itererator needs some explanation. 793 * It returns 1 for the header position. 794 * This means 2 is cpu 0. 795 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 796 * to use cpumask_* to iterate over the cpus. 797 */ 798 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 799 { 800 unsigned long n = *offset; 801 802 if (n == 0) 803 return (void *) 1; 804 805 n--; 806 807 if (n > 0) 808 n = cpumask_next(n - 1, cpu_online_mask); 809 else 810 n = cpumask_first(cpu_online_mask); 811 812 *offset = n + 1; 813 814 if (n < nr_cpu_ids) 815 return (void *)(unsigned long)(n + 2); 816 return NULL; 817 } 818 819 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 820 { 821 (*offset)++; 822 return sched_debug_start(file, offset); 823 } 824 825 static void sched_debug_stop(struct seq_file *file, void *data) 826 { 827 } 828 829 static const struct seq_operations sched_debug_sops = { 830 .start = sched_debug_start, 831 .next = sched_debug_next, 832 .stop = sched_debug_stop, 833 .show = sched_debug_show, 834 }; 835 836 static int sched_debug_release(struct inode *inode, struct file *file) 837 { 838 seq_release(inode, file); 839 840 return 0; 841 } 842 843 static int sched_debug_open(struct inode *inode, struct file *filp) 844 { 845 int ret = 0; 846 847 ret = seq_open(filp, &sched_debug_sops); 848 849 return ret; 850 } 851 852 static const struct file_operations sched_debug_fops = { 853 .open = sched_debug_open, 854 .read = seq_read, 855 .llseek = seq_lseek, 856 .release = sched_debug_release, 857 }; 858 859 static int __init init_sched_debug_procfs(void) 860 { 861 struct proc_dir_entry *pe; 862 863 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 864 if (!pe) 865 return -ENOMEM; 866 return 0; 867 } 868 869 __initcall(init_sched_debug_procfs); 870 871 #define __P(F) \ 872 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 873 #define P(F) \ 874 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 875 #define __PN(F) \ 876 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 877 #define PN(F) \ 878 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 879 880 881 #ifdef CONFIG_NUMA_BALANCING 882 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 883 unsigned long tpf, unsigned long gsf, unsigned long gpf) 884 { 885 SEQ_printf(m, "numa_faults node=%d ", node); 886 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf); 887 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf); 888 } 889 #endif 890 891 892 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 893 { 894 #ifdef CONFIG_NUMA_BALANCING 895 struct mempolicy *pol; 896 897 if (p->mm) 898 P(mm->numa_scan_seq); 899 900 task_lock(p); 901 pol = p->mempolicy; 902 if (pol && !(pol->flags & MPOL_F_MORON)) 903 pol = NULL; 904 mpol_get(pol); 905 task_unlock(p); 906 907 P(numa_pages_migrated); 908 P(numa_preferred_nid); 909 P(total_numa_faults); 910 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 911 task_node(p), task_numa_group_id(p)); 912 show_numa_stats(p, m); 913 mpol_put(pol); 914 #endif 915 } 916 917 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 918 struct seq_file *m) 919 { 920 unsigned long nr_switches; 921 922 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 923 get_nr_threads(p)); 924 SEQ_printf(m, 925 "---------------------------------------------------------" 926 "----------\n"); 927 #define __P(F) \ 928 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 929 #define P(F) \ 930 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 931 #define P_SCHEDSTAT(F) \ 932 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F)) 933 #define __PN(F) \ 934 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 935 #define PN(F) \ 936 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 937 #define PN_SCHEDSTAT(F) \ 938 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F))) 939 940 PN(se.exec_start); 941 PN(se.vruntime); 942 PN(se.sum_exec_runtime); 943 944 nr_switches = p->nvcsw + p->nivcsw; 945 946 P(se.nr_migrations); 947 948 if (schedstat_enabled()) { 949 u64 avg_atom, avg_per_cpu; 950 951 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 952 PN_SCHEDSTAT(se.statistics.wait_start); 953 PN_SCHEDSTAT(se.statistics.sleep_start); 954 PN_SCHEDSTAT(se.statistics.block_start); 955 PN_SCHEDSTAT(se.statistics.sleep_max); 956 PN_SCHEDSTAT(se.statistics.block_max); 957 PN_SCHEDSTAT(se.statistics.exec_max); 958 PN_SCHEDSTAT(se.statistics.slice_max); 959 PN_SCHEDSTAT(se.statistics.wait_max); 960 PN_SCHEDSTAT(se.statistics.wait_sum); 961 P_SCHEDSTAT(se.statistics.wait_count); 962 PN_SCHEDSTAT(se.statistics.iowait_sum); 963 P_SCHEDSTAT(se.statistics.iowait_count); 964 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 965 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 966 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 967 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 968 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 969 P_SCHEDSTAT(se.statistics.nr_wakeups); 970 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 971 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 972 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 973 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 974 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 975 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 976 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 977 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 978 979 avg_atom = p->se.sum_exec_runtime; 980 if (nr_switches) 981 avg_atom = div64_ul(avg_atom, nr_switches); 982 else 983 avg_atom = -1LL; 984 985 avg_per_cpu = p->se.sum_exec_runtime; 986 if (p->se.nr_migrations) { 987 avg_per_cpu = div64_u64(avg_per_cpu, 988 p->se.nr_migrations); 989 } else { 990 avg_per_cpu = -1LL; 991 } 992 993 __PN(avg_atom); 994 __PN(avg_per_cpu); 995 } 996 997 __P(nr_switches); 998 SEQ_printf(m, "%-45s:%21Ld\n", 999 "nr_voluntary_switches", (long long)p->nvcsw); 1000 SEQ_printf(m, "%-45s:%21Ld\n", 1001 "nr_involuntary_switches", (long long)p->nivcsw); 1002 1003 P(se.load.weight); 1004 #ifdef CONFIG_SMP 1005 P(se.avg.load_sum); 1006 P(se.avg.util_sum); 1007 P(se.avg.load_avg); 1008 P(se.avg.util_avg); 1009 P(se.avg.last_update_time); 1010 #endif 1011 P(policy); 1012 P(prio); 1013 if (p->policy == SCHED_DEADLINE) { 1014 P(dl.runtime); 1015 P(dl.deadline); 1016 } 1017 #undef PN_SCHEDSTAT 1018 #undef PN 1019 #undef __PN 1020 #undef P_SCHEDSTAT 1021 #undef P 1022 #undef __P 1023 1024 { 1025 unsigned int this_cpu = raw_smp_processor_id(); 1026 u64 t0, t1; 1027 1028 t0 = cpu_clock(this_cpu); 1029 t1 = cpu_clock(this_cpu); 1030 SEQ_printf(m, "%-45s:%21Ld\n", 1031 "clock-delta", (long long)(t1-t0)); 1032 } 1033 1034 sched_show_numa(p, m); 1035 } 1036 1037 void proc_sched_set_task(struct task_struct *p) 1038 { 1039 #ifdef CONFIG_SCHEDSTATS 1040 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1041 #endif 1042 } 1043