1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 #include "sched.h" 10 11 /* 12 * This allows printing both to /proc/sched_debug and 13 * to the console 14 */ 15 #define SEQ_printf(m, x...) \ 16 do { \ 17 if (m) \ 18 seq_printf(m, x); \ 19 else \ 20 pr_cont(x); \ 21 } while (0) 22 23 /* 24 * Ease the printing of nsec fields: 25 */ 26 static long long nsec_high(unsigned long long nsec) 27 { 28 if ((long long)nsec < 0) { 29 nsec = -nsec; 30 do_div(nsec, 1000000); 31 return -nsec; 32 } 33 do_div(nsec, 1000000); 34 35 return nsec; 36 } 37 38 static unsigned long nsec_low(unsigned long long nsec) 39 { 40 if ((long long)nsec < 0) 41 nsec = -nsec; 42 43 return do_div(nsec, 1000000); 44 } 45 46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 47 48 #define SCHED_FEAT(name, enabled) \ 49 #name , 50 51 static const char * const sched_feat_names[] = { 52 #include "features.h" 53 }; 54 55 #undef SCHED_FEAT 56 57 static int sched_feat_show(struct seq_file *m, void *v) 58 { 59 int i; 60 61 for (i = 0; i < __SCHED_FEAT_NR; i++) { 62 if (!(sysctl_sched_features & (1UL << i))) 63 seq_puts(m, "NO_"); 64 seq_printf(m, "%s ", sched_feat_names[i]); 65 } 66 seq_puts(m, "\n"); 67 68 return 0; 69 } 70 71 #ifdef CONFIG_JUMP_LABEL 72 73 #define jump_label_key__true STATIC_KEY_INIT_TRUE 74 #define jump_label_key__false STATIC_KEY_INIT_FALSE 75 76 #define SCHED_FEAT(name, enabled) \ 77 jump_label_key__##enabled , 78 79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 80 #include "features.h" 81 }; 82 83 #undef SCHED_FEAT 84 85 static void sched_feat_disable(int i) 86 { 87 static_key_disable_cpuslocked(&sched_feat_keys[i]); 88 } 89 90 static void sched_feat_enable(int i) 91 { 92 static_key_enable_cpuslocked(&sched_feat_keys[i]); 93 } 94 #else 95 static void sched_feat_disable(int i) { }; 96 static void sched_feat_enable(int i) { }; 97 #endif /* CONFIG_JUMP_LABEL */ 98 99 static int sched_feat_set(char *cmp) 100 { 101 int i; 102 int neg = 0; 103 104 if (strncmp(cmp, "NO_", 3) == 0) { 105 neg = 1; 106 cmp += 3; 107 } 108 109 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 110 if (i < 0) 111 return i; 112 113 if (neg) { 114 sysctl_sched_features &= ~(1UL << i); 115 sched_feat_disable(i); 116 } else { 117 sysctl_sched_features |= (1UL << i); 118 sched_feat_enable(i); 119 } 120 121 return 0; 122 } 123 124 static ssize_t 125 sched_feat_write(struct file *filp, const char __user *ubuf, 126 size_t cnt, loff_t *ppos) 127 { 128 char buf[64]; 129 char *cmp; 130 int ret; 131 struct inode *inode; 132 133 if (cnt > 63) 134 cnt = 63; 135 136 if (copy_from_user(&buf, ubuf, cnt)) 137 return -EFAULT; 138 139 buf[cnt] = 0; 140 cmp = strstrip(buf); 141 142 /* Ensure the static_key remains in a consistent state */ 143 inode = file_inode(filp); 144 cpus_read_lock(); 145 inode_lock(inode); 146 ret = sched_feat_set(cmp); 147 inode_unlock(inode); 148 cpus_read_unlock(); 149 if (ret < 0) 150 return ret; 151 152 *ppos += cnt; 153 154 return cnt; 155 } 156 157 static int sched_feat_open(struct inode *inode, struct file *filp) 158 { 159 return single_open(filp, sched_feat_show, NULL); 160 } 161 162 static const struct file_operations sched_feat_fops = { 163 .open = sched_feat_open, 164 .write = sched_feat_write, 165 .read = seq_read, 166 .llseek = seq_lseek, 167 .release = single_release, 168 }; 169 170 #ifdef CONFIG_SMP 171 172 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 173 size_t cnt, loff_t *ppos) 174 { 175 char buf[16]; 176 177 if (cnt > 15) 178 cnt = 15; 179 180 if (copy_from_user(&buf, ubuf, cnt)) 181 return -EFAULT; 182 183 if (kstrtouint(buf, 10, &sysctl_sched_tunable_scaling)) 184 return -EINVAL; 185 186 if (sched_update_scaling()) 187 return -EINVAL; 188 189 *ppos += cnt; 190 return cnt; 191 } 192 193 static int sched_scaling_show(struct seq_file *m, void *v) 194 { 195 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 196 return 0; 197 } 198 199 static int sched_scaling_open(struct inode *inode, struct file *filp) 200 { 201 return single_open(filp, sched_scaling_show, NULL); 202 } 203 204 static const struct file_operations sched_scaling_fops = { 205 .open = sched_scaling_open, 206 .write = sched_scaling_write, 207 .read = seq_read, 208 .llseek = seq_lseek, 209 .release = single_release, 210 }; 211 212 #endif /* SMP */ 213 214 #ifdef CONFIG_PREEMPT_DYNAMIC 215 216 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 217 size_t cnt, loff_t *ppos) 218 { 219 char buf[16]; 220 int mode; 221 222 if (cnt > 15) 223 cnt = 15; 224 225 if (copy_from_user(&buf, ubuf, cnt)) 226 return -EFAULT; 227 228 buf[cnt] = 0; 229 mode = sched_dynamic_mode(strstrip(buf)); 230 if (mode < 0) 231 return mode; 232 233 sched_dynamic_update(mode); 234 235 *ppos += cnt; 236 237 return cnt; 238 } 239 240 static int sched_dynamic_show(struct seq_file *m, void *v) 241 { 242 static const char * preempt_modes[] = { 243 "none", "voluntary", "full" 244 }; 245 int i; 246 247 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 248 if (preempt_dynamic_mode == i) 249 seq_puts(m, "("); 250 seq_puts(m, preempt_modes[i]); 251 if (preempt_dynamic_mode == i) 252 seq_puts(m, ")"); 253 254 seq_puts(m, " "); 255 } 256 257 seq_puts(m, "\n"); 258 return 0; 259 } 260 261 static int sched_dynamic_open(struct inode *inode, struct file *filp) 262 { 263 return single_open(filp, sched_dynamic_show, NULL); 264 } 265 266 static const struct file_operations sched_dynamic_fops = { 267 .open = sched_dynamic_open, 268 .write = sched_dynamic_write, 269 .read = seq_read, 270 .llseek = seq_lseek, 271 .release = single_release, 272 }; 273 274 #endif /* CONFIG_PREEMPT_DYNAMIC */ 275 276 __read_mostly bool sched_debug_verbose; 277 278 static const struct seq_operations sched_debug_sops; 279 280 static int sched_debug_open(struct inode *inode, struct file *filp) 281 { 282 return seq_open(filp, &sched_debug_sops); 283 } 284 285 static const struct file_operations sched_debug_fops = { 286 .open = sched_debug_open, 287 .read = seq_read, 288 .llseek = seq_lseek, 289 .release = seq_release, 290 }; 291 292 static struct dentry *debugfs_sched; 293 294 static __init int sched_init_debug(void) 295 { 296 struct dentry __maybe_unused *numa; 297 298 debugfs_sched = debugfs_create_dir("sched", NULL); 299 300 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 301 debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose); 302 #ifdef CONFIG_PREEMPT_DYNAMIC 303 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 304 #endif 305 306 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); 307 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); 308 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); 309 310 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 311 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 312 313 #ifdef CONFIG_SMP 314 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 315 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 316 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 317 318 mutex_lock(&sched_domains_mutex); 319 update_sched_domain_debugfs(); 320 mutex_unlock(&sched_domains_mutex); 321 #endif 322 323 #ifdef CONFIG_NUMA_BALANCING 324 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 325 326 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 327 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 328 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 329 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 330 #endif 331 332 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 333 334 return 0; 335 } 336 late_initcall(sched_init_debug); 337 338 #ifdef CONFIG_SMP 339 340 static cpumask_var_t sd_sysctl_cpus; 341 static struct dentry *sd_dentry; 342 343 static int sd_flags_show(struct seq_file *m, void *v) 344 { 345 unsigned long flags = *(unsigned int *)m->private; 346 int idx; 347 348 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 349 seq_puts(m, sd_flag_debug[idx].name); 350 seq_puts(m, " "); 351 } 352 seq_puts(m, "\n"); 353 354 return 0; 355 } 356 357 static int sd_flags_open(struct inode *inode, struct file *file) 358 { 359 return single_open(file, sd_flags_show, inode->i_private); 360 } 361 362 static const struct file_operations sd_flags_fops = { 363 .open = sd_flags_open, 364 .read = seq_read, 365 .llseek = seq_lseek, 366 .release = single_release, 367 }; 368 369 static void register_sd(struct sched_domain *sd, struct dentry *parent) 370 { 371 #define SDM(type, mode, member) \ 372 debugfs_create_##type(#member, mode, parent, &sd->member) 373 374 SDM(ulong, 0644, min_interval); 375 SDM(ulong, 0644, max_interval); 376 SDM(u64, 0644, max_newidle_lb_cost); 377 SDM(u32, 0644, busy_factor); 378 SDM(u32, 0644, imbalance_pct); 379 SDM(u32, 0644, cache_nice_tries); 380 SDM(str, 0444, name); 381 382 #undef SDM 383 384 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 385 } 386 387 void update_sched_domain_debugfs(void) 388 { 389 int cpu, i; 390 391 /* 392 * This can unfortunately be invoked before sched_debug_init() creates 393 * the debug directory. Don't touch sd_sysctl_cpus until then. 394 */ 395 if (!debugfs_sched) 396 return; 397 398 if (!cpumask_available(sd_sysctl_cpus)) { 399 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 400 return; 401 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 402 } 403 404 if (!sd_dentry) 405 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 406 407 for_each_cpu(cpu, sd_sysctl_cpus) { 408 struct sched_domain *sd; 409 struct dentry *d_cpu; 410 char buf[32]; 411 412 snprintf(buf, sizeof(buf), "cpu%d", cpu); 413 debugfs_remove(debugfs_lookup(buf, sd_dentry)); 414 d_cpu = debugfs_create_dir(buf, sd_dentry); 415 416 i = 0; 417 for_each_domain(cpu, sd) { 418 struct dentry *d_sd; 419 420 snprintf(buf, sizeof(buf), "domain%d", i); 421 d_sd = debugfs_create_dir(buf, d_cpu); 422 423 register_sd(sd, d_sd); 424 i++; 425 } 426 427 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 428 } 429 } 430 431 void dirty_sched_domain_sysctl(int cpu) 432 { 433 if (cpumask_available(sd_sysctl_cpus)) 434 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 435 } 436 437 #endif /* CONFIG_SMP */ 438 439 #ifdef CONFIG_FAIR_GROUP_SCHED 440 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 441 { 442 struct sched_entity *se = tg->se[cpu]; 443 444 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 445 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 446 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 447 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 448 449 if (!se) 450 return; 451 452 PN(se->exec_start); 453 PN(se->vruntime); 454 PN(se->sum_exec_runtime); 455 456 if (schedstat_enabled()) { 457 PN_SCHEDSTAT(se->statistics.wait_start); 458 PN_SCHEDSTAT(se->statistics.sleep_start); 459 PN_SCHEDSTAT(se->statistics.block_start); 460 PN_SCHEDSTAT(se->statistics.sleep_max); 461 PN_SCHEDSTAT(se->statistics.block_max); 462 PN_SCHEDSTAT(se->statistics.exec_max); 463 PN_SCHEDSTAT(se->statistics.slice_max); 464 PN_SCHEDSTAT(se->statistics.wait_max); 465 PN_SCHEDSTAT(se->statistics.wait_sum); 466 P_SCHEDSTAT(se->statistics.wait_count); 467 } 468 469 P(se->load.weight); 470 #ifdef CONFIG_SMP 471 P(se->avg.load_avg); 472 P(se->avg.util_avg); 473 P(se->avg.runnable_avg); 474 #endif 475 476 #undef PN_SCHEDSTAT 477 #undef PN 478 #undef P_SCHEDSTAT 479 #undef P 480 } 481 #endif 482 483 #ifdef CONFIG_CGROUP_SCHED 484 static DEFINE_SPINLOCK(sched_debug_lock); 485 static char group_path[PATH_MAX]; 486 487 static void task_group_path(struct task_group *tg, char *path, int plen) 488 { 489 if (autogroup_path(tg, path, plen)) 490 return; 491 492 cgroup_path(tg->css.cgroup, path, plen); 493 } 494 495 /* 496 * Only 1 SEQ_printf_task_group_path() caller can use the full length 497 * group_path[] for cgroup path. Other simultaneous callers will have 498 * to use a shorter stack buffer. A "..." suffix is appended at the end 499 * of the stack buffer so that it will show up in case the output length 500 * matches the given buffer size to indicate possible path name truncation. 501 */ 502 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 503 { \ 504 if (spin_trylock(&sched_debug_lock)) { \ 505 task_group_path(tg, group_path, sizeof(group_path)); \ 506 SEQ_printf(m, fmt, group_path); \ 507 spin_unlock(&sched_debug_lock); \ 508 } else { \ 509 char buf[128]; \ 510 char *bufend = buf + sizeof(buf) - 3; \ 511 task_group_path(tg, buf, bufend - buf); \ 512 strcpy(bufend - 1, "..."); \ 513 SEQ_printf(m, fmt, buf); \ 514 } \ 515 } 516 #endif 517 518 static void 519 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 520 { 521 if (task_current(rq, p)) 522 SEQ_printf(m, ">R"); 523 else 524 SEQ_printf(m, " %c", task_state_to_char(p)); 525 526 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", 527 p->comm, task_pid_nr(p), 528 SPLIT_NS(p->se.vruntime), 529 (long long)(p->nvcsw + p->nivcsw), 530 p->prio); 531 532 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 533 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 534 SPLIT_NS(p->se.sum_exec_runtime), 535 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 536 537 #ifdef CONFIG_NUMA_BALANCING 538 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 539 #endif 540 #ifdef CONFIG_CGROUP_SCHED 541 SEQ_printf_task_group_path(m, task_group(p), " %s") 542 #endif 543 544 SEQ_printf(m, "\n"); 545 } 546 547 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 548 { 549 struct task_struct *g, *p; 550 551 SEQ_printf(m, "\n"); 552 SEQ_printf(m, "runnable tasks:\n"); 553 SEQ_printf(m, " S task PID tree-key switches prio" 554 " wait-time sum-exec sum-sleep\n"); 555 SEQ_printf(m, "-------------------------------------------------------" 556 "------------------------------------------------------\n"); 557 558 rcu_read_lock(); 559 for_each_process_thread(g, p) { 560 if (task_cpu(p) != rq_cpu) 561 continue; 562 563 print_task(m, rq, p); 564 } 565 rcu_read_unlock(); 566 } 567 568 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 569 { 570 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 571 spread, rq0_min_vruntime, spread0; 572 struct rq *rq = cpu_rq(cpu); 573 struct sched_entity *last; 574 unsigned long flags; 575 576 #ifdef CONFIG_FAIR_GROUP_SCHED 577 SEQ_printf(m, "\n"); 578 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 579 #else 580 SEQ_printf(m, "\n"); 581 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 582 #endif 583 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 584 SPLIT_NS(cfs_rq->exec_clock)); 585 586 raw_spin_rq_lock_irqsave(rq, flags); 587 if (rb_first_cached(&cfs_rq->tasks_timeline)) 588 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 589 last = __pick_last_entity(cfs_rq); 590 if (last) 591 max_vruntime = last->vruntime; 592 min_vruntime = cfs_rq->min_vruntime; 593 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 594 raw_spin_rq_unlock_irqrestore(rq, flags); 595 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 596 SPLIT_NS(MIN_vruntime)); 597 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 598 SPLIT_NS(min_vruntime)); 599 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 600 SPLIT_NS(max_vruntime)); 601 spread = max_vruntime - MIN_vruntime; 602 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 603 SPLIT_NS(spread)); 604 spread0 = min_vruntime - rq0_min_vruntime; 605 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 606 SPLIT_NS(spread0)); 607 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 608 cfs_rq->nr_spread_over); 609 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 610 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 611 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 612 cfs_rq->idle_h_nr_running); 613 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 614 #ifdef CONFIG_SMP 615 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 616 cfs_rq->avg.load_avg); 617 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 618 cfs_rq->avg.runnable_avg); 619 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 620 cfs_rq->avg.util_avg); 621 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 622 cfs_rq->avg.util_est.enqueued); 623 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 624 cfs_rq->removed.load_avg); 625 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 626 cfs_rq->removed.util_avg); 627 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 628 cfs_rq->removed.runnable_avg); 629 #ifdef CONFIG_FAIR_GROUP_SCHED 630 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 631 cfs_rq->tg_load_avg_contrib); 632 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 633 atomic_long_read(&cfs_rq->tg->load_avg)); 634 #endif 635 #endif 636 #ifdef CONFIG_CFS_BANDWIDTH 637 SEQ_printf(m, " .%-30s: %d\n", "throttled", 638 cfs_rq->throttled); 639 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 640 cfs_rq->throttle_count); 641 #endif 642 643 #ifdef CONFIG_FAIR_GROUP_SCHED 644 print_cfs_group_stats(m, cpu, cfs_rq->tg); 645 #endif 646 } 647 648 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 649 { 650 #ifdef CONFIG_RT_GROUP_SCHED 651 SEQ_printf(m, "\n"); 652 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 653 #else 654 SEQ_printf(m, "\n"); 655 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 656 #endif 657 658 #define P(x) \ 659 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 660 #define PU(x) \ 661 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 662 #define PN(x) \ 663 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 664 665 PU(rt_nr_running); 666 #ifdef CONFIG_SMP 667 PU(rt_nr_migratory); 668 #endif 669 P(rt_throttled); 670 PN(rt_time); 671 PN(rt_runtime); 672 673 #undef PN 674 #undef PU 675 #undef P 676 } 677 678 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 679 { 680 struct dl_bw *dl_bw; 681 682 SEQ_printf(m, "\n"); 683 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 684 685 #define PU(x) \ 686 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 687 688 PU(dl_nr_running); 689 #ifdef CONFIG_SMP 690 PU(dl_nr_migratory); 691 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 692 #else 693 dl_bw = &dl_rq->dl_bw; 694 #endif 695 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 696 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 697 698 #undef PU 699 } 700 701 static void print_cpu(struct seq_file *m, int cpu) 702 { 703 struct rq *rq = cpu_rq(cpu); 704 705 #ifdef CONFIG_X86 706 { 707 unsigned int freq = cpu_khz ? : 1; 708 709 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 710 cpu, freq / 1000, (freq % 1000)); 711 } 712 #else 713 SEQ_printf(m, "cpu#%d\n", cpu); 714 #endif 715 716 #define P(x) \ 717 do { \ 718 if (sizeof(rq->x) == 4) \ 719 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 720 else \ 721 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 722 } while (0) 723 724 #define PN(x) \ 725 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 726 727 P(nr_running); 728 P(nr_switches); 729 P(nr_uninterruptible); 730 PN(next_balance); 731 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 732 PN(clock); 733 PN(clock_task); 734 #undef P 735 #undef PN 736 737 #ifdef CONFIG_SMP 738 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 739 P64(avg_idle); 740 P64(max_idle_balance_cost); 741 #undef P64 742 #endif 743 744 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 745 if (schedstat_enabled()) { 746 P(yld_count); 747 P(sched_count); 748 P(sched_goidle); 749 P(ttwu_count); 750 P(ttwu_local); 751 } 752 #undef P 753 754 print_cfs_stats(m, cpu); 755 print_rt_stats(m, cpu); 756 print_dl_stats(m, cpu); 757 758 print_rq(m, rq, cpu); 759 SEQ_printf(m, "\n"); 760 } 761 762 static const char *sched_tunable_scaling_names[] = { 763 "none", 764 "logarithmic", 765 "linear" 766 }; 767 768 static void sched_debug_header(struct seq_file *m) 769 { 770 u64 ktime, sched_clk, cpu_clk; 771 unsigned long flags; 772 773 local_irq_save(flags); 774 ktime = ktime_to_ns(ktime_get()); 775 sched_clk = sched_clock(); 776 cpu_clk = local_clock(); 777 local_irq_restore(flags); 778 779 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 780 init_utsname()->release, 781 (int)strcspn(init_utsname()->version, " "), 782 init_utsname()->version); 783 784 #define P(x) \ 785 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 786 #define PN(x) \ 787 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 788 PN(ktime); 789 PN(sched_clk); 790 PN(cpu_clk); 791 P(jiffies); 792 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 793 P(sched_clock_stable()); 794 #endif 795 #undef PN 796 #undef P 797 798 SEQ_printf(m, "\n"); 799 SEQ_printf(m, "sysctl_sched\n"); 800 801 #define P(x) \ 802 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 803 #define PN(x) \ 804 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 805 PN(sysctl_sched_latency); 806 PN(sysctl_sched_min_granularity); 807 PN(sysctl_sched_wakeup_granularity); 808 P(sysctl_sched_child_runs_first); 809 P(sysctl_sched_features); 810 #undef PN 811 #undef P 812 813 SEQ_printf(m, " .%-40s: %d (%s)\n", 814 "sysctl_sched_tunable_scaling", 815 sysctl_sched_tunable_scaling, 816 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 817 SEQ_printf(m, "\n"); 818 } 819 820 static int sched_debug_show(struct seq_file *m, void *v) 821 { 822 int cpu = (unsigned long)(v - 2); 823 824 if (cpu != -1) 825 print_cpu(m, cpu); 826 else 827 sched_debug_header(m); 828 829 return 0; 830 } 831 832 void sysrq_sched_debug_show(void) 833 { 834 int cpu; 835 836 sched_debug_header(NULL); 837 for_each_online_cpu(cpu) { 838 /* 839 * Need to reset softlockup watchdogs on all CPUs, because 840 * another CPU might be blocked waiting for us to process 841 * an IPI or stop_machine. 842 */ 843 touch_nmi_watchdog(); 844 touch_all_softlockup_watchdogs(); 845 print_cpu(NULL, cpu); 846 } 847 } 848 849 /* 850 * This iterator needs some explanation. 851 * It returns 1 for the header position. 852 * This means 2 is CPU 0. 853 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 854 * to use cpumask_* to iterate over the CPUs. 855 */ 856 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 857 { 858 unsigned long n = *offset; 859 860 if (n == 0) 861 return (void *) 1; 862 863 n--; 864 865 if (n > 0) 866 n = cpumask_next(n - 1, cpu_online_mask); 867 else 868 n = cpumask_first(cpu_online_mask); 869 870 *offset = n + 1; 871 872 if (n < nr_cpu_ids) 873 return (void *)(unsigned long)(n + 2); 874 875 return NULL; 876 } 877 878 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 879 { 880 (*offset)++; 881 return sched_debug_start(file, offset); 882 } 883 884 static void sched_debug_stop(struct seq_file *file, void *data) 885 { 886 } 887 888 static const struct seq_operations sched_debug_sops = { 889 .start = sched_debug_start, 890 .next = sched_debug_next, 891 .stop = sched_debug_stop, 892 .show = sched_debug_show, 893 }; 894 895 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 896 #define __P(F) __PS(#F, F) 897 #define P(F) __PS(#F, p->F) 898 #define PM(F, M) __PS(#F, p->F & (M)) 899 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 900 #define __PN(F) __PSN(#F, F) 901 #define PN(F) __PSN(#F, p->F) 902 903 904 #ifdef CONFIG_NUMA_BALANCING 905 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 906 unsigned long tpf, unsigned long gsf, unsigned long gpf) 907 { 908 SEQ_printf(m, "numa_faults node=%d ", node); 909 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 910 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 911 } 912 #endif 913 914 915 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 916 { 917 #ifdef CONFIG_NUMA_BALANCING 918 struct mempolicy *pol; 919 920 if (p->mm) 921 P(mm->numa_scan_seq); 922 923 task_lock(p); 924 pol = p->mempolicy; 925 if (pol && !(pol->flags & MPOL_F_MORON)) 926 pol = NULL; 927 mpol_get(pol); 928 task_unlock(p); 929 930 P(numa_pages_migrated); 931 P(numa_preferred_nid); 932 P(total_numa_faults); 933 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 934 task_node(p), task_numa_group_id(p)); 935 show_numa_stats(p, m); 936 mpol_put(pol); 937 #endif 938 } 939 940 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 941 struct seq_file *m) 942 { 943 unsigned long nr_switches; 944 945 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 946 get_nr_threads(p)); 947 SEQ_printf(m, 948 "---------------------------------------------------------" 949 "----------\n"); 950 951 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F)) 952 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F)) 953 954 PN(se.exec_start); 955 PN(se.vruntime); 956 PN(se.sum_exec_runtime); 957 958 nr_switches = p->nvcsw + p->nivcsw; 959 960 P(se.nr_migrations); 961 962 if (schedstat_enabled()) { 963 u64 avg_atom, avg_per_cpu; 964 965 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 966 PN_SCHEDSTAT(se.statistics.wait_start); 967 PN_SCHEDSTAT(se.statistics.sleep_start); 968 PN_SCHEDSTAT(se.statistics.block_start); 969 PN_SCHEDSTAT(se.statistics.sleep_max); 970 PN_SCHEDSTAT(se.statistics.block_max); 971 PN_SCHEDSTAT(se.statistics.exec_max); 972 PN_SCHEDSTAT(se.statistics.slice_max); 973 PN_SCHEDSTAT(se.statistics.wait_max); 974 PN_SCHEDSTAT(se.statistics.wait_sum); 975 P_SCHEDSTAT(se.statistics.wait_count); 976 PN_SCHEDSTAT(se.statistics.iowait_sum); 977 P_SCHEDSTAT(se.statistics.iowait_count); 978 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 979 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 980 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 981 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 982 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 983 P_SCHEDSTAT(se.statistics.nr_wakeups); 984 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 985 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 986 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 987 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 988 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 989 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 990 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 991 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 992 993 avg_atom = p->se.sum_exec_runtime; 994 if (nr_switches) 995 avg_atom = div64_ul(avg_atom, nr_switches); 996 else 997 avg_atom = -1LL; 998 999 avg_per_cpu = p->se.sum_exec_runtime; 1000 if (p->se.nr_migrations) { 1001 avg_per_cpu = div64_u64(avg_per_cpu, 1002 p->se.nr_migrations); 1003 } else { 1004 avg_per_cpu = -1LL; 1005 } 1006 1007 __PN(avg_atom); 1008 __PN(avg_per_cpu); 1009 } 1010 1011 __P(nr_switches); 1012 __PS("nr_voluntary_switches", p->nvcsw); 1013 __PS("nr_involuntary_switches", p->nivcsw); 1014 1015 P(se.load.weight); 1016 #ifdef CONFIG_SMP 1017 P(se.avg.load_sum); 1018 P(se.avg.runnable_sum); 1019 P(se.avg.util_sum); 1020 P(se.avg.load_avg); 1021 P(se.avg.runnable_avg); 1022 P(se.avg.util_avg); 1023 P(se.avg.last_update_time); 1024 P(se.avg.util_est.ewma); 1025 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1026 #endif 1027 #ifdef CONFIG_UCLAMP_TASK 1028 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1029 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1030 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1031 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1032 #endif 1033 P(policy); 1034 P(prio); 1035 if (task_has_dl_policy(p)) { 1036 P(dl.runtime); 1037 P(dl.deadline); 1038 } 1039 #undef PN_SCHEDSTAT 1040 #undef P_SCHEDSTAT 1041 1042 { 1043 unsigned int this_cpu = raw_smp_processor_id(); 1044 u64 t0, t1; 1045 1046 t0 = cpu_clock(this_cpu); 1047 t1 = cpu_clock(this_cpu); 1048 __PS("clock-delta", t1-t0); 1049 } 1050 1051 sched_show_numa(p, m); 1052 } 1053 1054 void proc_sched_set_task(struct task_struct *p) 1055 { 1056 #ifdef CONFIG_SCHEDSTATS 1057 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1058 #endif 1059 } 1060 1061 void resched_latency_warn(int cpu, u64 latency) 1062 { 1063 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1064 1065 WARN(__ratelimit(&latency_check_ratelimit), 1066 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1067 "without schedule\n", 1068 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1069 } 1070