1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 10 /* 11 * This allows printing both to /sys/kernel/debug/sched/debug and 12 * to the console 13 */ 14 #define SEQ_printf(m, x...) \ 15 do { \ 16 if (m) \ 17 seq_printf(m, x); \ 18 else \ 19 pr_cont(x); \ 20 } while (0) 21 22 /* 23 * Ease the printing of nsec fields: 24 */ 25 static long long nsec_high(unsigned long long nsec) 26 { 27 if ((long long)nsec < 0) { 28 nsec = -nsec; 29 do_div(nsec, 1000000); 30 return -nsec; 31 } 32 do_div(nsec, 1000000); 33 34 return nsec; 35 } 36 37 static unsigned long nsec_low(unsigned long long nsec) 38 { 39 if ((long long)nsec < 0) 40 nsec = -nsec; 41 42 return do_div(nsec, 1000000); 43 } 44 45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 46 47 #define SCHED_FEAT(name, enabled) \ 48 #name , 49 50 static const char * const sched_feat_names[] = { 51 #include "features.h" 52 }; 53 54 #undef SCHED_FEAT 55 56 static int sched_feat_show(struct seq_file *m, void *v) 57 { 58 int i; 59 60 for (i = 0; i < __SCHED_FEAT_NR; i++) { 61 if (!(sysctl_sched_features & (1UL << i))) 62 seq_puts(m, "NO_"); 63 seq_printf(m, "%s ", sched_feat_names[i]); 64 } 65 seq_puts(m, "\n"); 66 67 return 0; 68 } 69 70 #ifdef CONFIG_JUMP_LABEL 71 72 #define jump_label_key__true STATIC_KEY_INIT_TRUE 73 #define jump_label_key__false STATIC_KEY_INIT_FALSE 74 75 #define SCHED_FEAT(name, enabled) \ 76 jump_label_key__##enabled , 77 78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 79 #include "features.h" 80 }; 81 82 #undef SCHED_FEAT 83 84 static void sched_feat_disable(int i) 85 { 86 static_key_disable_cpuslocked(&sched_feat_keys[i]); 87 } 88 89 static void sched_feat_enable(int i) 90 { 91 static_key_enable_cpuslocked(&sched_feat_keys[i]); 92 } 93 #else 94 static void sched_feat_disable(int i) { }; 95 static void sched_feat_enable(int i) { }; 96 #endif /* CONFIG_JUMP_LABEL */ 97 98 static int sched_feat_set(char *cmp) 99 { 100 int i; 101 int neg = 0; 102 103 if (strncmp(cmp, "NO_", 3) == 0) { 104 neg = 1; 105 cmp += 3; 106 } 107 108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 109 if (i < 0) 110 return i; 111 112 if (neg) { 113 sysctl_sched_features &= ~(1UL << i); 114 sched_feat_disable(i); 115 } else { 116 sysctl_sched_features |= (1UL << i); 117 sched_feat_enable(i); 118 } 119 120 return 0; 121 } 122 123 static ssize_t 124 sched_feat_write(struct file *filp, const char __user *ubuf, 125 size_t cnt, loff_t *ppos) 126 { 127 char buf[64]; 128 char *cmp; 129 int ret; 130 struct inode *inode; 131 132 if (cnt > 63) 133 cnt = 63; 134 135 if (copy_from_user(&buf, ubuf, cnt)) 136 return -EFAULT; 137 138 buf[cnt] = 0; 139 cmp = strstrip(buf); 140 141 /* Ensure the static_key remains in a consistent state */ 142 inode = file_inode(filp); 143 cpus_read_lock(); 144 inode_lock(inode); 145 ret = sched_feat_set(cmp); 146 inode_unlock(inode); 147 cpus_read_unlock(); 148 if (ret < 0) 149 return ret; 150 151 *ppos += cnt; 152 153 return cnt; 154 } 155 156 static int sched_feat_open(struct inode *inode, struct file *filp) 157 { 158 return single_open(filp, sched_feat_show, NULL); 159 } 160 161 static const struct file_operations sched_feat_fops = { 162 .open = sched_feat_open, 163 .write = sched_feat_write, 164 .read = seq_read, 165 .llseek = seq_lseek, 166 .release = single_release, 167 }; 168 169 #ifdef CONFIG_SMP 170 171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 172 size_t cnt, loff_t *ppos) 173 { 174 char buf[16]; 175 unsigned int scaling; 176 177 if (cnt > 15) 178 cnt = 15; 179 180 if (copy_from_user(&buf, ubuf, cnt)) 181 return -EFAULT; 182 buf[cnt] = '\0'; 183 184 if (kstrtouint(buf, 10, &scaling)) 185 return -EINVAL; 186 187 if (scaling >= SCHED_TUNABLESCALING_END) 188 return -EINVAL; 189 190 sysctl_sched_tunable_scaling = scaling; 191 if (sched_update_scaling()) 192 return -EINVAL; 193 194 *ppos += cnt; 195 return cnt; 196 } 197 198 static int sched_scaling_show(struct seq_file *m, void *v) 199 { 200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 201 return 0; 202 } 203 204 static int sched_scaling_open(struct inode *inode, struct file *filp) 205 { 206 return single_open(filp, sched_scaling_show, NULL); 207 } 208 209 static const struct file_operations sched_scaling_fops = { 210 .open = sched_scaling_open, 211 .write = sched_scaling_write, 212 .read = seq_read, 213 .llseek = seq_lseek, 214 .release = single_release, 215 }; 216 217 #endif /* SMP */ 218 219 #ifdef CONFIG_PREEMPT_DYNAMIC 220 221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 222 size_t cnt, loff_t *ppos) 223 { 224 char buf[16]; 225 int mode; 226 227 if (cnt > 15) 228 cnt = 15; 229 230 if (copy_from_user(&buf, ubuf, cnt)) 231 return -EFAULT; 232 233 buf[cnt] = 0; 234 mode = sched_dynamic_mode(strstrip(buf)); 235 if (mode < 0) 236 return mode; 237 238 sched_dynamic_update(mode); 239 240 *ppos += cnt; 241 242 return cnt; 243 } 244 245 static int sched_dynamic_show(struct seq_file *m, void *v) 246 { 247 static const char * preempt_modes[] = { 248 "none", "voluntary", "full" 249 }; 250 int i; 251 252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 253 if (preempt_dynamic_mode == i) 254 seq_puts(m, "("); 255 seq_puts(m, preempt_modes[i]); 256 if (preempt_dynamic_mode == i) 257 seq_puts(m, ")"); 258 259 seq_puts(m, " "); 260 } 261 262 seq_puts(m, "\n"); 263 return 0; 264 } 265 266 static int sched_dynamic_open(struct inode *inode, struct file *filp) 267 { 268 return single_open(filp, sched_dynamic_show, NULL); 269 } 270 271 static const struct file_operations sched_dynamic_fops = { 272 .open = sched_dynamic_open, 273 .write = sched_dynamic_write, 274 .read = seq_read, 275 .llseek = seq_lseek, 276 .release = single_release, 277 }; 278 279 #endif /* CONFIG_PREEMPT_DYNAMIC */ 280 281 __read_mostly bool sched_debug_verbose; 282 283 #ifdef CONFIG_SMP 284 static struct dentry *sd_dentry; 285 286 287 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf, 288 size_t cnt, loff_t *ppos) 289 { 290 ssize_t result; 291 bool orig; 292 293 cpus_read_lock(); 294 mutex_lock(&sched_domains_mutex); 295 296 orig = sched_debug_verbose; 297 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos); 298 299 if (sched_debug_verbose && !orig) 300 update_sched_domain_debugfs(); 301 else if (!sched_debug_verbose && orig) { 302 debugfs_remove(sd_dentry); 303 sd_dentry = NULL; 304 } 305 306 mutex_unlock(&sched_domains_mutex); 307 cpus_read_unlock(); 308 309 return result; 310 } 311 #else 312 #define sched_verbose_write debugfs_write_file_bool 313 #endif 314 315 static const struct file_operations sched_verbose_fops = { 316 .read = debugfs_read_file_bool, 317 .write = sched_verbose_write, 318 .open = simple_open, 319 .llseek = default_llseek, 320 }; 321 322 static const struct seq_operations sched_debug_sops; 323 324 static int sched_debug_open(struct inode *inode, struct file *filp) 325 { 326 return seq_open(filp, &sched_debug_sops); 327 } 328 329 static const struct file_operations sched_debug_fops = { 330 .open = sched_debug_open, 331 .read = seq_read, 332 .llseek = seq_lseek, 333 .release = seq_release, 334 }; 335 336 static struct dentry *debugfs_sched; 337 338 static __init int sched_init_debug(void) 339 { 340 struct dentry __maybe_unused *numa; 341 342 debugfs_sched = debugfs_create_dir("sched", NULL); 343 344 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 345 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops); 346 #ifdef CONFIG_PREEMPT_DYNAMIC 347 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 348 #endif 349 350 debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice); 351 352 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 353 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 354 355 #ifdef CONFIG_SMP 356 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 357 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 358 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 359 360 mutex_lock(&sched_domains_mutex); 361 update_sched_domain_debugfs(); 362 mutex_unlock(&sched_domains_mutex); 363 #endif 364 365 #ifdef CONFIG_NUMA_BALANCING 366 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 367 368 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 369 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 370 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 371 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 372 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold); 373 #endif 374 375 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 376 377 return 0; 378 } 379 late_initcall(sched_init_debug); 380 381 #ifdef CONFIG_SMP 382 383 static cpumask_var_t sd_sysctl_cpus; 384 385 static int sd_flags_show(struct seq_file *m, void *v) 386 { 387 unsigned long flags = *(unsigned int *)m->private; 388 int idx; 389 390 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 391 seq_puts(m, sd_flag_debug[idx].name); 392 seq_puts(m, " "); 393 } 394 seq_puts(m, "\n"); 395 396 return 0; 397 } 398 399 static int sd_flags_open(struct inode *inode, struct file *file) 400 { 401 return single_open(file, sd_flags_show, inode->i_private); 402 } 403 404 static const struct file_operations sd_flags_fops = { 405 .open = sd_flags_open, 406 .read = seq_read, 407 .llseek = seq_lseek, 408 .release = single_release, 409 }; 410 411 static void register_sd(struct sched_domain *sd, struct dentry *parent) 412 { 413 #define SDM(type, mode, member) \ 414 debugfs_create_##type(#member, mode, parent, &sd->member) 415 416 SDM(ulong, 0644, min_interval); 417 SDM(ulong, 0644, max_interval); 418 SDM(u64, 0644, max_newidle_lb_cost); 419 SDM(u32, 0644, busy_factor); 420 SDM(u32, 0644, imbalance_pct); 421 SDM(u32, 0644, cache_nice_tries); 422 SDM(str, 0444, name); 423 424 #undef SDM 425 426 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 427 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops); 428 } 429 430 void update_sched_domain_debugfs(void) 431 { 432 int cpu, i; 433 434 /* 435 * This can unfortunately be invoked before sched_debug_init() creates 436 * the debug directory. Don't touch sd_sysctl_cpus until then. 437 */ 438 if (!debugfs_sched) 439 return; 440 441 if (!sched_debug_verbose) 442 return; 443 444 if (!cpumask_available(sd_sysctl_cpus)) { 445 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 446 return; 447 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 448 } 449 450 if (!sd_dentry) { 451 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 452 453 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */ 454 if (cpumask_empty(sd_sysctl_cpus)) 455 cpumask_copy(sd_sysctl_cpus, cpu_online_mask); 456 } 457 458 for_each_cpu(cpu, sd_sysctl_cpus) { 459 struct sched_domain *sd; 460 struct dentry *d_cpu; 461 char buf[32]; 462 463 snprintf(buf, sizeof(buf), "cpu%d", cpu); 464 debugfs_lookup_and_remove(buf, sd_dentry); 465 d_cpu = debugfs_create_dir(buf, sd_dentry); 466 467 i = 0; 468 for_each_domain(cpu, sd) { 469 struct dentry *d_sd; 470 471 snprintf(buf, sizeof(buf), "domain%d", i); 472 d_sd = debugfs_create_dir(buf, d_cpu); 473 474 register_sd(sd, d_sd); 475 i++; 476 } 477 478 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 479 } 480 } 481 482 void dirty_sched_domain_sysctl(int cpu) 483 { 484 if (cpumask_available(sd_sysctl_cpus)) 485 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 486 } 487 488 #endif /* CONFIG_SMP */ 489 490 #ifdef CONFIG_FAIR_GROUP_SCHED 491 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 492 { 493 struct sched_entity *se = tg->se[cpu]; 494 495 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 496 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \ 497 #F, (long long)schedstat_val(stats->F)) 498 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 499 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \ 500 #F, SPLIT_NS((long long)schedstat_val(stats->F))) 501 502 if (!se) 503 return; 504 505 PN(se->exec_start); 506 PN(se->vruntime); 507 PN(se->sum_exec_runtime); 508 509 if (schedstat_enabled()) { 510 struct sched_statistics *stats; 511 stats = __schedstats_from_se(se); 512 513 PN_SCHEDSTAT(wait_start); 514 PN_SCHEDSTAT(sleep_start); 515 PN_SCHEDSTAT(block_start); 516 PN_SCHEDSTAT(sleep_max); 517 PN_SCHEDSTAT(block_max); 518 PN_SCHEDSTAT(exec_max); 519 PN_SCHEDSTAT(slice_max); 520 PN_SCHEDSTAT(wait_max); 521 PN_SCHEDSTAT(wait_sum); 522 P_SCHEDSTAT(wait_count); 523 } 524 525 P(se->load.weight); 526 #ifdef CONFIG_SMP 527 P(se->avg.load_avg); 528 P(se->avg.util_avg); 529 P(se->avg.runnable_avg); 530 #endif 531 532 #undef PN_SCHEDSTAT 533 #undef PN 534 #undef P_SCHEDSTAT 535 #undef P 536 } 537 #endif 538 539 #ifdef CONFIG_CGROUP_SCHED 540 static DEFINE_SPINLOCK(sched_debug_lock); 541 static char group_path[PATH_MAX]; 542 543 static void task_group_path(struct task_group *tg, char *path, int plen) 544 { 545 if (autogroup_path(tg, path, plen)) 546 return; 547 548 cgroup_path(tg->css.cgroup, path, plen); 549 } 550 551 /* 552 * Only 1 SEQ_printf_task_group_path() caller can use the full length 553 * group_path[] for cgroup path. Other simultaneous callers will have 554 * to use a shorter stack buffer. A "..." suffix is appended at the end 555 * of the stack buffer so that it will show up in case the output length 556 * matches the given buffer size to indicate possible path name truncation. 557 */ 558 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 559 { \ 560 if (spin_trylock(&sched_debug_lock)) { \ 561 task_group_path(tg, group_path, sizeof(group_path)); \ 562 SEQ_printf(m, fmt, group_path); \ 563 spin_unlock(&sched_debug_lock); \ 564 } else { \ 565 char buf[128]; \ 566 char *bufend = buf + sizeof(buf) - 3; \ 567 task_group_path(tg, buf, bufend - buf); \ 568 strcpy(bufend - 1, "..."); \ 569 SEQ_printf(m, fmt, buf); \ 570 } \ 571 } 572 #endif 573 574 static void 575 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 576 { 577 if (task_current(rq, p)) 578 SEQ_printf(m, ">R"); 579 else 580 SEQ_printf(m, " %c", task_state_to_char(p)); 581 582 SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ", 583 p->comm, task_pid_nr(p), 584 SPLIT_NS(p->se.vruntime), 585 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N', 586 SPLIT_NS(p->se.deadline), 587 SPLIT_NS(p->se.slice), 588 SPLIT_NS(p->se.sum_exec_runtime), 589 (long long)(p->nvcsw + p->nivcsw), 590 p->prio); 591 592 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld", 593 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)), 594 SPLIT_NS(p->se.sum_exec_runtime), 595 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)), 596 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime))); 597 598 #ifdef CONFIG_NUMA_BALANCING 599 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 600 #endif 601 #ifdef CONFIG_CGROUP_SCHED 602 SEQ_printf_task_group_path(m, task_group(p), " %s") 603 #endif 604 605 SEQ_printf(m, "\n"); 606 } 607 608 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 609 { 610 struct task_struct *g, *p; 611 612 SEQ_printf(m, "\n"); 613 SEQ_printf(m, "runnable tasks:\n"); 614 SEQ_printf(m, " S task PID tree-key switches prio" 615 " wait-time sum-exec sum-sleep\n"); 616 SEQ_printf(m, "-------------------------------------------------------" 617 "------------------------------------------------------\n"); 618 619 rcu_read_lock(); 620 for_each_process_thread(g, p) { 621 if (task_cpu(p) != rq_cpu) 622 continue; 623 624 print_task(m, rq, p); 625 } 626 rcu_read_unlock(); 627 } 628 629 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 630 { 631 s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, spread; 632 struct sched_entity *last, *first; 633 struct rq *rq = cpu_rq(cpu); 634 unsigned long flags; 635 636 #ifdef CONFIG_FAIR_GROUP_SCHED 637 SEQ_printf(m, "\n"); 638 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 639 #else 640 SEQ_printf(m, "\n"); 641 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 642 #endif 643 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 644 SPLIT_NS(cfs_rq->exec_clock)); 645 646 raw_spin_rq_lock_irqsave(rq, flags); 647 first = __pick_first_entity(cfs_rq); 648 if (first) 649 left_vruntime = first->vruntime; 650 last = __pick_last_entity(cfs_rq); 651 if (last) 652 right_vruntime = last->vruntime; 653 min_vruntime = cfs_rq->min_vruntime; 654 raw_spin_rq_unlock_irqrestore(rq, flags); 655 656 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime", 657 SPLIT_NS(left_vruntime)); 658 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 659 SPLIT_NS(min_vruntime)); 660 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime", 661 SPLIT_NS(avg_vruntime(cfs_rq))); 662 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime", 663 SPLIT_NS(right_vruntime)); 664 spread = right_vruntime - left_vruntime; 665 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread)); 666 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 667 cfs_rq->nr_spread_over); 668 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 669 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 670 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running", 671 cfs_rq->idle_nr_running); 672 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 673 cfs_rq->idle_h_nr_running); 674 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 675 #ifdef CONFIG_SMP 676 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 677 cfs_rq->avg.load_avg); 678 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 679 cfs_rq->avg.runnable_avg); 680 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 681 cfs_rq->avg.util_avg); 682 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 683 cfs_rq->avg.util_est.enqueued); 684 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 685 cfs_rq->removed.load_avg); 686 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 687 cfs_rq->removed.util_avg); 688 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 689 cfs_rq->removed.runnable_avg); 690 #ifdef CONFIG_FAIR_GROUP_SCHED 691 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 692 cfs_rq->tg_load_avg_contrib); 693 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 694 atomic_long_read(&cfs_rq->tg->load_avg)); 695 #endif 696 #endif 697 #ifdef CONFIG_CFS_BANDWIDTH 698 SEQ_printf(m, " .%-30s: %d\n", "throttled", 699 cfs_rq->throttled); 700 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 701 cfs_rq->throttle_count); 702 #endif 703 704 #ifdef CONFIG_FAIR_GROUP_SCHED 705 print_cfs_group_stats(m, cpu, cfs_rq->tg); 706 #endif 707 } 708 709 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 710 { 711 #ifdef CONFIG_RT_GROUP_SCHED 712 SEQ_printf(m, "\n"); 713 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 714 #else 715 SEQ_printf(m, "\n"); 716 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 717 #endif 718 719 #define P(x) \ 720 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 721 #define PU(x) \ 722 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 723 #define PN(x) \ 724 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 725 726 PU(rt_nr_running); 727 P(rt_throttled); 728 PN(rt_time); 729 PN(rt_runtime); 730 731 #undef PN 732 #undef PU 733 #undef P 734 } 735 736 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 737 { 738 struct dl_bw *dl_bw; 739 740 SEQ_printf(m, "\n"); 741 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 742 743 #define PU(x) \ 744 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 745 746 PU(dl_nr_running); 747 #ifdef CONFIG_SMP 748 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 749 #else 750 dl_bw = &dl_rq->dl_bw; 751 #endif 752 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 753 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 754 755 #undef PU 756 } 757 758 static void print_cpu(struct seq_file *m, int cpu) 759 { 760 struct rq *rq = cpu_rq(cpu); 761 762 #ifdef CONFIG_X86 763 { 764 unsigned int freq = cpu_khz ? : 1; 765 766 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 767 cpu, freq / 1000, (freq % 1000)); 768 } 769 #else 770 SEQ_printf(m, "cpu#%d\n", cpu); 771 #endif 772 773 #define P(x) \ 774 do { \ 775 if (sizeof(rq->x) == 4) \ 776 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \ 777 else \ 778 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 779 } while (0) 780 781 #define PN(x) \ 782 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 783 784 P(nr_running); 785 P(nr_switches); 786 P(nr_uninterruptible); 787 PN(next_balance); 788 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 789 PN(clock); 790 PN(clock_task); 791 #undef P 792 #undef PN 793 794 #ifdef CONFIG_SMP 795 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 796 P64(avg_idle); 797 P64(max_idle_balance_cost); 798 #undef P64 799 #endif 800 801 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 802 if (schedstat_enabled()) { 803 P(yld_count); 804 P(sched_count); 805 P(sched_goidle); 806 P(ttwu_count); 807 P(ttwu_local); 808 } 809 #undef P 810 811 print_cfs_stats(m, cpu); 812 print_rt_stats(m, cpu); 813 print_dl_stats(m, cpu); 814 815 print_rq(m, rq, cpu); 816 SEQ_printf(m, "\n"); 817 } 818 819 static const char *sched_tunable_scaling_names[] = { 820 "none", 821 "logarithmic", 822 "linear" 823 }; 824 825 static void sched_debug_header(struct seq_file *m) 826 { 827 u64 ktime, sched_clk, cpu_clk; 828 unsigned long flags; 829 830 local_irq_save(flags); 831 ktime = ktime_to_ns(ktime_get()); 832 sched_clk = sched_clock(); 833 cpu_clk = local_clock(); 834 local_irq_restore(flags); 835 836 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 837 init_utsname()->release, 838 (int)strcspn(init_utsname()->version, " "), 839 init_utsname()->version); 840 841 #define P(x) \ 842 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 843 #define PN(x) \ 844 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 845 PN(ktime); 846 PN(sched_clk); 847 PN(cpu_clk); 848 P(jiffies); 849 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 850 P(sched_clock_stable()); 851 #endif 852 #undef PN 853 #undef P 854 855 SEQ_printf(m, "\n"); 856 SEQ_printf(m, "sysctl_sched\n"); 857 858 #define P(x) \ 859 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 860 #define PN(x) \ 861 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 862 PN(sysctl_sched_base_slice); 863 P(sysctl_sched_features); 864 #undef PN 865 #undef P 866 867 SEQ_printf(m, " .%-40s: %d (%s)\n", 868 "sysctl_sched_tunable_scaling", 869 sysctl_sched_tunable_scaling, 870 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 871 SEQ_printf(m, "\n"); 872 } 873 874 static int sched_debug_show(struct seq_file *m, void *v) 875 { 876 int cpu = (unsigned long)(v - 2); 877 878 if (cpu != -1) 879 print_cpu(m, cpu); 880 else 881 sched_debug_header(m); 882 883 return 0; 884 } 885 886 void sysrq_sched_debug_show(void) 887 { 888 int cpu; 889 890 sched_debug_header(NULL); 891 for_each_online_cpu(cpu) { 892 /* 893 * Need to reset softlockup watchdogs on all CPUs, because 894 * another CPU might be blocked waiting for us to process 895 * an IPI or stop_machine. 896 */ 897 touch_nmi_watchdog(); 898 touch_all_softlockup_watchdogs(); 899 print_cpu(NULL, cpu); 900 } 901 } 902 903 /* 904 * This iterator needs some explanation. 905 * It returns 1 for the header position. 906 * This means 2 is CPU 0. 907 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 908 * to use cpumask_* to iterate over the CPUs. 909 */ 910 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 911 { 912 unsigned long n = *offset; 913 914 if (n == 0) 915 return (void *) 1; 916 917 n--; 918 919 if (n > 0) 920 n = cpumask_next(n - 1, cpu_online_mask); 921 else 922 n = cpumask_first(cpu_online_mask); 923 924 *offset = n + 1; 925 926 if (n < nr_cpu_ids) 927 return (void *)(unsigned long)(n + 2); 928 929 return NULL; 930 } 931 932 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 933 { 934 (*offset)++; 935 return sched_debug_start(file, offset); 936 } 937 938 static void sched_debug_stop(struct seq_file *file, void *data) 939 { 940 } 941 942 static const struct seq_operations sched_debug_sops = { 943 .start = sched_debug_start, 944 .next = sched_debug_next, 945 .stop = sched_debug_stop, 946 .show = sched_debug_show, 947 }; 948 949 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 950 #define __P(F) __PS(#F, F) 951 #define P(F) __PS(#F, p->F) 952 #define PM(F, M) __PS(#F, p->F & (M)) 953 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 954 #define __PN(F) __PSN(#F, F) 955 #define PN(F) __PSN(#F, p->F) 956 957 958 #ifdef CONFIG_NUMA_BALANCING 959 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 960 unsigned long tpf, unsigned long gsf, unsigned long gpf) 961 { 962 SEQ_printf(m, "numa_faults node=%d ", node); 963 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 964 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 965 } 966 #endif 967 968 969 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 970 { 971 #ifdef CONFIG_NUMA_BALANCING 972 if (p->mm) 973 P(mm->numa_scan_seq); 974 975 P(numa_pages_migrated); 976 P(numa_preferred_nid); 977 P(total_numa_faults); 978 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 979 task_node(p), task_numa_group_id(p)); 980 show_numa_stats(p, m); 981 #endif 982 } 983 984 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 985 struct seq_file *m) 986 { 987 unsigned long nr_switches; 988 989 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 990 get_nr_threads(p)); 991 SEQ_printf(m, 992 "---------------------------------------------------------" 993 "----------\n"); 994 995 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F)) 996 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F)) 997 998 PN(se.exec_start); 999 PN(se.vruntime); 1000 PN(se.sum_exec_runtime); 1001 1002 nr_switches = p->nvcsw + p->nivcsw; 1003 1004 P(se.nr_migrations); 1005 1006 if (schedstat_enabled()) { 1007 u64 avg_atom, avg_per_cpu; 1008 1009 PN_SCHEDSTAT(sum_sleep_runtime); 1010 PN_SCHEDSTAT(sum_block_runtime); 1011 PN_SCHEDSTAT(wait_start); 1012 PN_SCHEDSTAT(sleep_start); 1013 PN_SCHEDSTAT(block_start); 1014 PN_SCHEDSTAT(sleep_max); 1015 PN_SCHEDSTAT(block_max); 1016 PN_SCHEDSTAT(exec_max); 1017 PN_SCHEDSTAT(slice_max); 1018 PN_SCHEDSTAT(wait_max); 1019 PN_SCHEDSTAT(wait_sum); 1020 P_SCHEDSTAT(wait_count); 1021 PN_SCHEDSTAT(iowait_sum); 1022 P_SCHEDSTAT(iowait_count); 1023 P_SCHEDSTAT(nr_migrations_cold); 1024 P_SCHEDSTAT(nr_failed_migrations_affine); 1025 P_SCHEDSTAT(nr_failed_migrations_running); 1026 P_SCHEDSTAT(nr_failed_migrations_hot); 1027 P_SCHEDSTAT(nr_forced_migrations); 1028 P_SCHEDSTAT(nr_wakeups); 1029 P_SCHEDSTAT(nr_wakeups_sync); 1030 P_SCHEDSTAT(nr_wakeups_migrate); 1031 P_SCHEDSTAT(nr_wakeups_local); 1032 P_SCHEDSTAT(nr_wakeups_remote); 1033 P_SCHEDSTAT(nr_wakeups_affine); 1034 P_SCHEDSTAT(nr_wakeups_affine_attempts); 1035 P_SCHEDSTAT(nr_wakeups_passive); 1036 P_SCHEDSTAT(nr_wakeups_idle); 1037 1038 avg_atom = p->se.sum_exec_runtime; 1039 if (nr_switches) 1040 avg_atom = div64_ul(avg_atom, nr_switches); 1041 else 1042 avg_atom = -1LL; 1043 1044 avg_per_cpu = p->se.sum_exec_runtime; 1045 if (p->se.nr_migrations) { 1046 avg_per_cpu = div64_u64(avg_per_cpu, 1047 p->se.nr_migrations); 1048 } else { 1049 avg_per_cpu = -1LL; 1050 } 1051 1052 __PN(avg_atom); 1053 __PN(avg_per_cpu); 1054 1055 #ifdef CONFIG_SCHED_CORE 1056 PN_SCHEDSTAT(core_forceidle_sum); 1057 #endif 1058 } 1059 1060 __P(nr_switches); 1061 __PS("nr_voluntary_switches", p->nvcsw); 1062 __PS("nr_involuntary_switches", p->nivcsw); 1063 1064 P(se.load.weight); 1065 #ifdef CONFIG_SMP 1066 P(se.avg.load_sum); 1067 P(se.avg.runnable_sum); 1068 P(se.avg.util_sum); 1069 P(se.avg.load_avg); 1070 P(se.avg.runnable_avg); 1071 P(se.avg.util_avg); 1072 P(se.avg.last_update_time); 1073 P(se.avg.util_est.ewma); 1074 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1075 #endif 1076 #ifdef CONFIG_UCLAMP_TASK 1077 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1078 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1079 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1080 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1081 #endif 1082 P(policy); 1083 P(prio); 1084 if (task_has_dl_policy(p)) { 1085 P(dl.runtime); 1086 P(dl.deadline); 1087 } 1088 #undef PN_SCHEDSTAT 1089 #undef P_SCHEDSTAT 1090 1091 { 1092 unsigned int this_cpu = raw_smp_processor_id(); 1093 u64 t0, t1; 1094 1095 t0 = cpu_clock(this_cpu); 1096 t1 = cpu_clock(this_cpu); 1097 __PS("clock-delta", t1-t0); 1098 } 1099 1100 sched_show_numa(p, m); 1101 } 1102 1103 void proc_sched_set_task(struct task_struct *p) 1104 { 1105 #ifdef CONFIG_SCHEDSTATS 1106 memset(&p->stats, 0, sizeof(p->stats)); 1107 #endif 1108 } 1109 1110 void resched_latency_warn(int cpu, u64 latency) 1111 { 1112 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1113 1114 WARN(__ratelimit(&latency_check_ratelimit), 1115 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1116 "without schedule\n", 1117 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1118 } 1119