xref: /linux/kernel/sched/deadline.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 
21 /*
22  * Default limits for DL period; on the top end we guard against small util
23  * tasks still getting ridiculously long effective runtimes, on the bottom end we
24  * guard against timer DoS.
25  */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 	{
31 		.procname       = "sched_deadline_period_max_us",
32 		.data           = &sysctl_sched_dl_period_max,
33 		.maxlen         = sizeof(unsigned int),
34 		.mode           = 0644,
35 		.proc_handler   = proc_douintvec_minmax,
36 		.extra1         = (void *)&sysctl_sched_dl_period_min,
37 	},
38 	{
39 		.procname       = "sched_deadline_period_min_us",
40 		.data           = &sysctl_sched_dl_period_min,
41 		.maxlen         = sizeof(unsigned int),
42 		.mode           = 0644,
43 		.proc_handler   = proc_douintvec_minmax,
44 		.extra2         = (void *)&sysctl_sched_dl_period_max,
45 	},
46 	{}
47 };
48 
49 static int __init sched_dl_sysctl_init(void)
50 {
51 	register_sysctl_init("kernel", sched_dl_sysctls);
52 	return 0;
53 }
54 late_initcall(sched_dl_sysctl_init);
55 #endif
56 
57 static bool dl_server(struct sched_dl_entity *dl_se)
58 {
59 	return dl_se->dl_server;
60 }
61 
62 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
63 {
64 	BUG_ON(dl_server(dl_se));
65 	return container_of(dl_se, struct task_struct, dl);
66 }
67 
68 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
69 {
70 	return container_of(dl_rq, struct rq, dl);
71 }
72 
73 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
74 {
75 	struct rq *rq = dl_se->rq;
76 
77 	if (!dl_server(dl_se))
78 		rq = task_rq(dl_task_of(dl_se));
79 
80 	return rq;
81 }
82 
83 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
84 {
85 	return &rq_of_dl_se(dl_se)->dl;
86 }
87 
88 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
89 {
90 	return !RB_EMPTY_NODE(&dl_se->rb_node);
91 }
92 
93 #ifdef CONFIG_RT_MUTEXES
94 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
95 {
96 	return dl_se->pi_se;
97 }
98 
99 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
100 {
101 	return pi_of(dl_se) != dl_se;
102 }
103 #else
104 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
105 {
106 	return dl_se;
107 }
108 
109 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
110 {
111 	return false;
112 }
113 #endif
114 
115 #ifdef CONFIG_SMP
116 static inline struct dl_bw *dl_bw_of(int i)
117 {
118 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
119 			 "sched RCU must be held");
120 	return &cpu_rq(i)->rd->dl_bw;
121 }
122 
123 static inline int dl_bw_cpus(int i)
124 {
125 	struct root_domain *rd = cpu_rq(i)->rd;
126 	int cpus;
127 
128 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
129 			 "sched RCU must be held");
130 
131 	if (cpumask_subset(rd->span, cpu_active_mask))
132 		return cpumask_weight(rd->span);
133 
134 	cpus = 0;
135 
136 	for_each_cpu_and(i, rd->span, cpu_active_mask)
137 		cpus++;
138 
139 	return cpus;
140 }
141 
142 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
143 {
144 	unsigned long cap = 0;
145 	int i;
146 
147 	for_each_cpu_and(i, mask, cpu_active_mask)
148 		cap += arch_scale_cpu_capacity(i);
149 
150 	return cap;
151 }
152 
153 /*
154  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
155  * of the CPU the task is running on rather rd's \Sum CPU capacity.
156  */
157 static inline unsigned long dl_bw_capacity(int i)
158 {
159 	if (!sched_asym_cpucap_active() &&
160 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
161 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
162 	} else {
163 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
164 				 "sched RCU must be held");
165 
166 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
167 	}
168 }
169 
170 static inline bool dl_bw_visited(int cpu, u64 gen)
171 {
172 	struct root_domain *rd = cpu_rq(cpu)->rd;
173 
174 	if (rd->visit_gen == gen)
175 		return true;
176 
177 	rd->visit_gen = gen;
178 	return false;
179 }
180 
181 static inline
182 void __dl_update(struct dl_bw *dl_b, s64 bw)
183 {
184 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
185 	int i;
186 
187 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
188 			 "sched RCU must be held");
189 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
190 		struct rq *rq = cpu_rq(i);
191 
192 		rq->dl.extra_bw += bw;
193 	}
194 }
195 #else
196 static inline struct dl_bw *dl_bw_of(int i)
197 {
198 	return &cpu_rq(i)->dl.dl_bw;
199 }
200 
201 static inline int dl_bw_cpus(int i)
202 {
203 	return 1;
204 }
205 
206 static inline unsigned long dl_bw_capacity(int i)
207 {
208 	return SCHED_CAPACITY_SCALE;
209 }
210 
211 static inline bool dl_bw_visited(int cpu, u64 gen)
212 {
213 	return false;
214 }
215 
216 static inline
217 void __dl_update(struct dl_bw *dl_b, s64 bw)
218 {
219 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
220 
221 	dl->extra_bw += bw;
222 }
223 #endif
224 
225 static inline
226 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
227 {
228 	dl_b->total_bw -= tsk_bw;
229 	__dl_update(dl_b, (s32)tsk_bw / cpus);
230 }
231 
232 static inline
233 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
234 {
235 	dl_b->total_bw += tsk_bw;
236 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
237 }
238 
239 static inline bool
240 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
241 {
242 	return dl_b->bw != -1 &&
243 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
244 }
245 
246 static inline
247 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 	u64 old = dl_rq->running_bw;
250 
251 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 	dl_rq->running_bw += dl_bw;
253 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
254 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
255 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
256 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
257 }
258 
259 static inline
260 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
261 {
262 	u64 old = dl_rq->running_bw;
263 
264 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
265 	dl_rq->running_bw -= dl_bw;
266 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
267 	if (dl_rq->running_bw > old)
268 		dl_rq->running_bw = 0;
269 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
270 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
271 }
272 
273 static inline
274 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
275 {
276 	u64 old = dl_rq->this_bw;
277 
278 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
279 	dl_rq->this_bw += dl_bw;
280 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
281 }
282 
283 static inline
284 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
285 {
286 	u64 old = dl_rq->this_bw;
287 
288 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
289 	dl_rq->this_bw -= dl_bw;
290 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
291 	if (dl_rq->this_bw > old)
292 		dl_rq->this_bw = 0;
293 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
294 }
295 
296 static inline
297 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
298 {
299 	if (!dl_entity_is_special(dl_se))
300 		__add_rq_bw(dl_se->dl_bw, dl_rq);
301 }
302 
303 static inline
304 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
305 {
306 	if (!dl_entity_is_special(dl_se))
307 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
308 }
309 
310 static inline
311 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
312 {
313 	if (!dl_entity_is_special(dl_se))
314 		__add_running_bw(dl_se->dl_bw, dl_rq);
315 }
316 
317 static inline
318 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
319 {
320 	if (!dl_entity_is_special(dl_se))
321 		__sub_running_bw(dl_se->dl_bw, dl_rq);
322 }
323 
324 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
325 {
326 	struct rq *rq;
327 
328 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
329 
330 	if (task_on_rq_queued(p))
331 		return;
332 
333 	rq = task_rq(p);
334 	if (p->dl.dl_non_contending) {
335 		sub_running_bw(&p->dl, &rq->dl);
336 		p->dl.dl_non_contending = 0;
337 		/*
338 		 * If the timer handler is currently running and the
339 		 * timer cannot be canceled, inactive_task_timer()
340 		 * will see that dl_not_contending is not set, and
341 		 * will not touch the rq's active utilization,
342 		 * so we are still safe.
343 		 */
344 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
345 			put_task_struct(p);
346 	}
347 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
348 	__add_rq_bw(new_bw, &rq->dl);
349 }
350 
351 static void __dl_clear_params(struct sched_dl_entity *dl_se);
352 
353 /*
354  * The utilization of a task cannot be immediately removed from
355  * the rq active utilization (running_bw) when the task blocks.
356  * Instead, we have to wait for the so called "0-lag time".
357  *
358  * If a task blocks before the "0-lag time", a timer (the inactive
359  * timer) is armed, and running_bw is decreased when the timer
360  * fires.
361  *
362  * If the task wakes up again before the inactive timer fires,
363  * the timer is canceled, whereas if the task wakes up after the
364  * inactive timer fired (and running_bw has been decreased) the
365  * task's utilization has to be added to running_bw again.
366  * A flag in the deadline scheduling entity (dl_non_contending)
367  * is used to avoid race conditions between the inactive timer handler
368  * and task wakeups.
369  *
370  * The following diagram shows how running_bw is updated. A task is
371  * "ACTIVE" when its utilization contributes to running_bw; an
372  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
373  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
374  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
375  * time already passed, which does not contribute to running_bw anymore.
376  *                              +------------------+
377  *             wakeup           |    ACTIVE        |
378  *          +------------------>+   contending     |
379  *          | add_running_bw    |                  |
380  *          |                   +----+------+------+
381  *          |                        |      ^
382  *          |                dequeue |      |
383  * +--------+-------+                |      |
384  * |                |   t >= 0-lag   |      | wakeup
385  * |    INACTIVE    |<---------------+      |
386  * |                | sub_running_bw |      |
387  * +--------+-------+                |      |
388  *          ^                        |      |
389  *          |              t < 0-lag |      |
390  *          |                        |      |
391  *          |                        V      |
392  *          |                   +----+------+------+
393  *          | sub_running_bw    |    ACTIVE        |
394  *          +-------------------+                  |
395  *            inactive timer    |  non contending  |
396  *            fired             +------------------+
397  *
398  * The task_non_contending() function is invoked when a task
399  * blocks, and checks if the 0-lag time already passed or
400  * not (in the first case, it directly updates running_bw;
401  * in the second case, it arms the inactive timer).
402  *
403  * The task_contending() function is invoked when a task wakes
404  * up, and checks if the task is still in the "ACTIVE non contending"
405  * state or not (in the second case, it updates running_bw).
406  */
407 static void task_non_contending(struct sched_dl_entity *dl_se)
408 {
409 	struct hrtimer *timer = &dl_se->inactive_timer;
410 	struct rq *rq = rq_of_dl_se(dl_se);
411 	struct dl_rq *dl_rq = &rq->dl;
412 	s64 zerolag_time;
413 
414 	/*
415 	 * If this is a non-deadline task that has been boosted,
416 	 * do nothing
417 	 */
418 	if (dl_se->dl_runtime == 0)
419 		return;
420 
421 	if (dl_entity_is_special(dl_se))
422 		return;
423 
424 	WARN_ON(dl_se->dl_non_contending);
425 
426 	zerolag_time = dl_se->deadline -
427 		 div64_long((dl_se->runtime * dl_se->dl_period),
428 			dl_se->dl_runtime);
429 
430 	/*
431 	 * Using relative times instead of the absolute "0-lag time"
432 	 * allows to simplify the code
433 	 */
434 	zerolag_time -= rq_clock(rq);
435 
436 	/*
437 	 * If the "0-lag time" already passed, decrease the active
438 	 * utilization now, instead of starting a timer
439 	 */
440 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
441 		if (dl_server(dl_se)) {
442 			sub_running_bw(dl_se, dl_rq);
443 		} else {
444 			struct task_struct *p = dl_task_of(dl_se);
445 
446 			if (dl_task(p))
447 				sub_running_bw(dl_se, dl_rq);
448 
449 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
450 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
451 
452 				if (READ_ONCE(p->__state) == TASK_DEAD)
453 					sub_rq_bw(dl_se, &rq->dl);
454 				raw_spin_lock(&dl_b->lock);
455 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
456 				raw_spin_unlock(&dl_b->lock);
457 				__dl_clear_params(dl_se);
458 			}
459 		}
460 
461 		return;
462 	}
463 
464 	dl_se->dl_non_contending = 1;
465 	if (!dl_server(dl_se))
466 		get_task_struct(dl_task_of(dl_se));
467 
468 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
469 }
470 
471 static void task_contending(struct sched_dl_entity *dl_se, int flags)
472 {
473 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
474 
475 	/*
476 	 * If this is a non-deadline task that has been boosted,
477 	 * do nothing
478 	 */
479 	if (dl_se->dl_runtime == 0)
480 		return;
481 
482 	if (flags & ENQUEUE_MIGRATED)
483 		add_rq_bw(dl_se, dl_rq);
484 
485 	if (dl_se->dl_non_contending) {
486 		dl_se->dl_non_contending = 0;
487 		/*
488 		 * If the timer handler is currently running and the
489 		 * timer cannot be canceled, inactive_task_timer()
490 		 * will see that dl_not_contending is not set, and
491 		 * will not touch the rq's active utilization,
492 		 * so we are still safe.
493 		 */
494 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
495 			if (!dl_server(dl_se))
496 				put_task_struct(dl_task_of(dl_se));
497 		}
498 	} else {
499 		/*
500 		 * Since "dl_non_contending" is not set, the
501 		 * task's utilization has already been removed from
502 		 * active utilization (either when the task blocked,
503 		 * when the "inactive timer" fired).
504 		 * So, add it back.
505 		 */
506 		add_running_bw(dl_se, dl_rq);
507 	}
508 }
509 
510 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
511 {
512 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
513 }
514 
515 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
516 
517 void init_dl_bw(struct dl_bw *dl_b)
518 {
519 	raw_spin_lock_init(&dl_b->lock);
520 	if (global_rt_runtime() == RUNTIME_INF)
521 		dl_b->bw = -1;
522 	else
523 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
524 	dl_b->total_bw = 0;
525 }
526 
527 void init_dl_rq(struct dl_rq *dl_rq)
528 {
529 	dl_rq->root = RB_ROOT_CACHED;
530 
531 #ifdef CONFIG_SMP
532 	/* zero means no -deadline tasks */
533 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
534 
535 	dl_rq->overloaded = 0;
536 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
537 #else
538 	init_dl_bw(&dl_rq->dl_bw);
539 #endif
540 
541 	dl_rq->running_bw = 0;
542 	dl_rq->this_bw = 0;
543 	init_dl_rq_bw_ratio(dl_rq);
544 }
545 
546 #ifdef CONFIG_SMP
547 
548 static inline int dl_overloaded(struct rq *rq)
549 {
550 	return atomic_read(&rq->rd->dlo_count);
551 }
552 
553 static inline void dl_set_overload(struct rq *rq)
554 {
555 	if (!rq->online)
556 		return;
557 
558 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
559 	/*
560 	 * Must be visible before the overload count is
561 	 * set (as in sched_rt.c).
562 	 *
563 	 * Matched by the barrier in pull_dl_task().
564 	 */
565 	smp_wmb();
566 	atomic_inc(&rq->rd->dlo_count);
567 }
568 
569 static inline void dl_clear_overload(struct rq *rq)
570 {
571 	if (!rq->online)
572 		return;
573 
574 	atomic_dec(&rq->rd->dlo_count);
575 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
576 }
577 
578 #define __node_2_pdl(node) \
579 	rb_entry((node), struct task_struct, pushable_dl_tasks)
580 
581 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
582 {
583 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
584 }
585 
586 static inline int has_pushable_dl_tasks(struct rq *rq)
587 {
588 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
589 }
590 
591 /*
592  * The list of pushable -deadline task is not a plist, like in
593  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
594  */
595 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
596 {
597 	struct rb_node *leftmost;
598 
599 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
600 
601 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
602 				 &rq->dl.pushable_dl_tasks_root,
603 				 __pushable_less);
604 	if (leftmost)
605 		rq->dl.earliest_dl.next = p->dl.deadline;
606 
607 	if (!rq->dl.overloaded) {
608 		dl_set_overload(rq);
609 		rq->dl.overloaded = 1;
610 	}
611 }
612 
613 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
614 {
615 	struct dl_rq *dl_rq = &rq->dl;
616 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
617 	struct rb_node *leftmost;
618 
619 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
620 		return;
621 
622 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
623 	if (leftmost)
624 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
625 
626 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
627 
628 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
629 		dl_clear_overload(rq);
630 		rq->dl.overloaded = 0;
631 	}
632 }
633 
634 static int push_dl_task(struct rq *rq);
635 
636 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
637 {
638 	return rq->online && dl_task(prev);
639 }
640 
641 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
642 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
643 
644 static void push_dl_tasks(struct rq *);
645 static void pull_dl_task(struct rq *);
646 
647 static inline void deadline_queue_push_tasks(struct rq *rq)
648 {
649 	if (!has_pushable_dl_tasks(rq))
650 		return;
651 
652 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
653 }
654 
655 static inline void deadline_queue_pull_task(struct rq *rq)
656 {
657 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
658 }
659 
660 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
661 
662 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
663 {
664 	struct rq *later_rq = NULL;
665 	struct dl_bw *dl_b;
666 
667 	later_rq = find_lock_later_rq(p, rq);
668 	if (!later_rq) {
669 		int cpu;
670 
671 		/*
672 		 * If we cannot preempt any rq, fall back to pick any
673 		 * online CPU:
674 		 */
675 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
676 		if (cpu >= nr_cpu_ids) {
677 			/*
678 			 * Failed to find any suitable CPU.
679 			 * The task will never come back!
680 			 */
681 			WARN_ON_ONCE(dl_bandwidth_enabled());
682 
683 			/*
684 			 * If admission control is disabled we
685 			 * try a little harder to let the task
686 			 * run.
687 			 */
688 			cpu = cpumask_any(cpu_active_mask);
689 		}
690 		later_rq = cpu_rq(cpu);
691 		double_lock_balance(rq, later_rq);
692 	}
693 
694 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
695 		/*
696 		 * Inactive timer is armed (or callback is running, but
697 		 * waiting for us to release rq locks). In any case, when it
698 		 * will fire (or continue), it will see running_bw of this
699 		 * task migrated to later_rq (and correctly handle it).
700 		 */
701 		sub_running_bw(&p->dl, &rq->dl);
702 		sub_rq_bw(&p->dl, &rq->dl);
703 
704 		add_rq_bw(&p->dl, &later_rq->dl);
705 		add_running_bw(&p->dl, &later_rq->dl);
706 	} else {
707 		sub_rq_bw(&p->dl, &rq->dl);
708 		add_rq_bw(&p->dl, &later_rq->dl);
709 	}
710 
711 	/*
712 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
713 	 * since p is still hanging out in the old (now moved to default) root
714 	 * domain.
715 	 */
716 	dl_b = &rq->rd->dl_bw;
717 	raw_spin_lock(&dl_b->lock);
718 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
719 	raw_spin_unlock(&dl_b->lock);
720 
721 	dl_b = &later_rq->rd->dl_bw;
722 	raw_spin_lock(&dl_b->lock);
723 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
724 	raw_spin_unlock(&dl_b->lock);
725 
726 	set_task_cpu(p, later_rq->cpu);
727 	double_unlock_balance(later_rq, rq);
728 
729 	return later_rq;
730 }
731 
732 #else
733 
734 static inline
735 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
736 {
737 }
738 
739 static inline
740 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
741 {
742 }
743 
744 static inline
745 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
746 {
747 }
748 
749 static inline
750 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
751 {
752 }
753 
754 static inline void deadline_queue_push_tasks(struct rq *rq)
755 {
756 }
757 
758 static inline void deadline_queue_pull_task(struct rq *rq)
759 {
760 }
761 #endif /* CONFIG_SMP */
762 
763 static void
764 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
765 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
766 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
767 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
768 
769 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
770 					    struct rq *rq)
771 {
772 	/* for non-boosted task, pi_of(dl_se) == dl_se */
773 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
774 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
775 }
776 
777 /*
778  * We are being explicitly informed that a new instance is starting,
779  * and this means that:
780  *  - the absolute deadline of the entity has to be placed at
781  *    current time + relative deadline;
782  *  - the runtime of the entity has to be set to the maximum value.
783  *
784  * The capability of specifying such event is useful whenever a -deadline
785  * entity wants to (try to!) synchronize its behaviour with the scheduler's
786  * one, and to (try to!) reconcile itself with its own scheduling
787  * parameters.
788  */
789 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
790 {
791 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
792 	struct rq *rq = rq_of_dl_rq(dl_rq);
793 
794 	WARN_ON(is_dl_boosted(dl_se));
795 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
796 
797 	/*
798 	 * We are racing with the deadline timer. So, do nothing because
799 	 * the deadline timer handler will take care of properly recharging
800 	 * the runtime and postponing the deadline
801 	 */
802 	if (dl_se->dl_throttled)
803 		return;
804 
805 	/*
806 	 * We use the regular wall clock time to set deadlines in the
807 	 * future; in fact, we must consider execution overheads (time
808 	 * spent on hardirq context, etc.).
809 	 */
810 	replenish_dl_new_period(dl_se, rq);
811 }
812 
813 /*
814  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
815  * possibility of a entity lasting more than what it declared, and thus
816  * exhausting its runtime.
817  *
818  * Here we are interested in making runtime overrun possible, but we do
819  * not want a entity which is misbehaving to affect the scheduling of all
820  * other entities.
821  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
822  * is used, in order to confine each entity within its own bandwidth.
823  *
824  * This function deals exactly with that, and ensures that when the runtime
825  * of a entity is replenished, its deadline is also postponed. That ensures
826  * the overrunning entity can't interfere with other entity in the system and
827  * can't make them miss their deadlines. Reasons why this kind of overruns
828  * could happen are, typically, a entity voluntarily trying to overcome its
829  * runtime, or it just underestimated it during sched_setattr().
830  */
831 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
832 {
833 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
834 	struct rq *rq = rq_of_dl_rq(dl_rq);
835 
836 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
837 
838 	/*
839 	 * This could be the case for a !-dl task that is boosted.
840 	 * Just go with full inherited parameters.
841 	 */
842 	if (dl_se->dl_deadline == 0)
843 		replenish_dl_new_period(dl_se, rq);
844 
845 	if (dl_se->dl_yielded && dl_se->runtime > 0)
846 		dl_se->runtime = 0;
847 
848 	/*
849 	 * We keep moving the deadline away until we get some
850 	 * available runtime for the entity. This ensures correct
851 	 * handling of situations where the runtime overrun is
852 	 * arbitrary large.
853 	 */
854 	while (dl_se->runtime <= 0) {
855 		dl_se->deadline += pi_of(dl_se)->dl_period;
856 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
857 	}
858 
859 	/*
860 	 * At this point, the deadline really should be "in
861 	 * the future" with respect to rq->clock. If it's
862 	 * not, we are, for some reason, lagging too much!
863 	 * Anyway, after having warn userspace abut that,
864 	 * we still try to keep the things running by
865 	 * resetting the deadline and the budget of the
866 	 * entity.
867 	 */
868 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
869 		printk_deferred_once("sched: DL replenish lagged too much\n");
870 		replenish_dl_new_period(dl_se, rq);
871 	}
872 
873 	if (dl_se->dl_yielded)
874 		dl_se->dl_yielded = 0;
875 	if (dl_se->dl_throttled)
876 		dl_se->dl_throttled = 0;
877 }
878 
879 /*
880  * Here we check if --at time t-- an entity (which is probably being
881  * [re]activated or, in general, enqueued) can use its remaining runtime
882  * and its current deadline _without_ exceeding the bandwidth it is
883  * assigned (function returns true if it can't). We are in fact applying
884  * one of the CBS rules: when a task wakes up, if the residual runtime
885  * over residual deadline fits within the allocated bandwidth, then we
886  * can keep the current (absolute) deadline and residual budget without
887  * disrupting the schedulability of the system. Otherwise, we should
888  * refill the runtime and set the deadline a period in the future,
889  * because keeping the current (absolute) deadline of the task would
890  * result in breaking guarantees promised to other tasks (refer to
891  * Documentation/scheduler/sched-deadline.rst for more information).
892  *
893  * This function returns true if:
894  *
895  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
896  *
897  * IOW we can't recycle current parameters.
898  *
899  * Notice that the bandwidth check is done against the deadline. For
900  * task with deadline equal to period this is the same of using
901  * dl_period instead of dl_deadline in the equation above.
902  */
903 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
904 {
905 	u64 left, right;
906 
907 	/*
908 	 * left and right are the two sides of the equation above,
909 	 * after a bit of shuffling to use multiplications instead
910 	 * of divisions.
911 	 *
912 	 * Note that none of the time values involved in the two
913 	 * multiplications are absolute: dl_deadline and dl_runtime
914 	 * are the relative deadline and the maximum runtime of each
915 	 * instance, runtime is the runtime left for the last instance
916 	 * and (deadline - t), since t is rq->clock, is the time left
917 	 * to the (absolute) deadline. Even if overflowing the u64 type
918 	 * is very unlikely to occur in both cases, here we scale down
919 	 * as we want to avoid that risk at all. Scaling down by 10
920 	 * means that we reduce granularity to 1us. We are fine with it,
921 	 * since this is only a true/false check and, anyway, thinking
922 	 * of anything below microseconds resolution is actually fiction
923 	 * (but still we want to give the user that illusion >;).
924 	 */
925 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
926 	right = ((dl_se->deadline - t) >> DL_SCALE) *
927 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
928 
929 	return dl_time_before(right, left);
930 }
931 
932 /*
933  * Revised wakeup rule [1]: For self-suspending tasks, rather then
934  * re-initializing task's runtime and deadline, the revised wakeup
935  * rule adjusts the task's runtime to avoid the task to overrun its
936  * density.
937  *
938  * Reasoning: a task may overrun the density if:
939  *    runtime / (deadline - t) > dl_runtime / dl_deadline
940  *
941  * Therefore, runtime can be adjusted to:
942  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
943  *
944  * In such way that runtime will be equal to the maximum density
945  * the task can use without breaking any rule.
946  *
947  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
948  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
949  */
950 static void
951 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
952 {
953 	u64 laxity = dl_se->deadline - rq_clock(rq);
954 
955 	/*
956 	 * If the task has deadline < period, and the deadline is in the past,
957 	 * it should already be throttled before this check.
958 	 *
959 	 * See update_dl_entity() comments for further details.
960 	 */
961 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
962 
963 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
964 }
965 
966 /*
967  * Regarding the deadline, a task with implicit deadline has a relative
968  * deadline == relative period. A task with constrained deadline has a
969  * relative deadline <= relative period.
970  *
971  * We support constrained deadline tasks. However, there are some restrictions
972  * applied only for tasks which do not have an implicit deadline. See
973  * update_dl_entity() to know more about such restrictions.
974  *
975  * The dl_is_implicit() returns true if the task has an implicit deadline.
976  */
977 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
978 {
979 	return dl_se->dl_deadline == dl_se->dl_period;
980 }
981 
982 /*
983  * When a deadline entity is placed in the runqueue, its runtime and deadline
984  * might need to be updated. This is done by a CBS wake up rule. There are two
985  * different rules: 1) the original CBS; and 2) the Revisited CBS.
986  *
987  * When the task is starting a new period, the Original CBS is used. In this
988  * case, the runtime is replenished and a new absolute deadline is set.
989  *
990  * When a task is queued before the begin of the next period, using the
991  * remaining runtime and deadline could make the entity to overflow, see
992  * dl_entity_overflow() to find more about runtime overflow. When such case
993  * is detected, the runtime and deadline need to be updated.
994  *
995  * If the task has an implicit deadline, i.e., deadline == period, the Original
996  * CBS is applied. the runtime is replenished and a new absolute deadline is
997  * set, as in the previous cases.
998  *
999  * However, the Original CBS does not work properly for tasks with
1000  * deadline < period, which are said to have a constrained deadline. By
1001  * applying the Original CBS, a constrained deadline task would be able to run
1002  * runtime/deadline in a period. With deadline < period, the task would
1003  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1004  *
1005  * In order to prevent this misbehave, the Revisited CBS is used for
1006  * constrained deadline tasks when a runtime overflow is detected. In the
1007  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1008  * the remaining runtime of the task is reduced to avoid runtime overflow.
1009  * Please refer to the comments update_dl_revised_wakeup() function to find
1010  * more about the Revised CBS rule.
1011  */
1012 static void update_dl_entity(struct sched_dl_entity *dl_se)
1013 {
1014 	struct rq *rq = rq_of_dl_se(dl_se);
1015 
1016 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1017 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1018 
1019 		if (unlikely(!dl_is_implicit(dl_se) &&
1020 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1021 			     !is_dl_boosted(dl_se))) {
1022 			update_dl_revised_wakeup(dl_se, rq);
1023 			return;
1024 		}
1025 
1026 		replenish_dl_new_period(dl_se, rq);
1027 	}
1028 }
1029 
1030 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1031 {
1032 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1033 }
1034 
1035 /*
1036  * If the entity depleted all its runtime, and if we want it to sleep
1037  * while waiting for some new execution time to become available, we
1038  * set the bandwidth replenishment timer to the replenishment instant
1039  * and try to activate it.
1040  *
1041  * Notice that it is important for the caller to know if the timer
1042  * actually started or not (i.e., the replenishment instant is in
1043  * the future or in the past).
1044  */
1045 static int start_dl_timer(struct sched_dl_entity *dl_se)
1046 {
1047 	struct hrtimer *timer = &dl_se->dl_timer;
1048 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1049 	struct rq *rq = rq_of_dl_rq(dl_rq);
1050 	ktime_t now, act;
1051 	s64 delta;
1052 
1053 	lockdep_assert_rq_held(rq);
1054 
1055 	/*
1056 	 * We want the timer to fire at the deadline, but considering
1057 	 * that it is actually coming from rq->clock and not from
1058 	 * hrtimer's time base reading.
1059 	 */
1060 	act = ns_to_ktime(dl_next_period(dl_se));
1061 	now = hrtimer_cb_get_time(timer);
1062 	delta = ktime_to_ns(now) - rq_clock(rq);
1063 	act = ktime_add_ns(act, delta);
1064 
1065 	/*
1066 	 * If the expiry time already passed, e.g., because the value
1067 	 * chosen as the deadline is too small, don't even try to
1068 	 * start the timer in the past!
1069 	 */
1070 	if (ktime_us_delta(act, now) < 0)
1071 		return 0;
1072 
1073 	/*
1074 	 * !enqueued will guarantee another callback; even if one is already in
1075 	 * progress. This ensures a balanced {get,put}_task_struct().
1076 	 *
1077 	 * The race against __run_timer() clearing the enqueued state is
1078 	 * harmless because we're holding task_rq()->lock, therefore the timer
1079 	 * expiring after we've done the check will wait on its task_rq_lock()
1080 	 * and observe our state.
1081 	 */
1082 	if (!hrtimer_is_queued(timer)) {
1083 		if (!dl_server(dl_se))
1084 			get_task_struct(dl_task_of(dl_se));
1085 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1086 	}
1087 
1088 	return 1;
1089 }
1090 
1091 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1092 {
1093 #ifdef CONFIG_SMP
1094 	/*
1095 	 * Queueing this task back might have overloaded rq, check if we need
1096 	 * to kick someone away.
1097 	 */
1098 	if (has_pushable_dl_tasks(rq)) {
1099 		/*
1100 		 * Nothing relies on rq->lock after this, so its safe to drop
1101 		 * rq->lock.
1102 		 */
1103 		rq_unpin_lock(rq, rf);
1104 		push_dl_task(rq);
1105 		rq_repin_lock(rq, rf);
1106 	}
1107 #endif
1108 }
1109 
1110 /*
1111  * This is the bandwidth enforcement timer callback. If here, we know
1112  * a task is not on its dl_rq, since the fact that the timer was running
1113  * means the task is throttled and needs a runtime replenishment.
1114  *
1115  * However, what we actually do depends on the fact the task is active,
1116  * (it is on its rq) or has been removed from there by a call to
1117  * dequeue_task_dl(). In the former case we must issue the runtime
1118  * replenishment and add the task back to the dl_rq; in the latter, we just
1119  * do nothing but clearing dl_throttled, so that runtime and deadline
1120  * updating (and the queueing back to dl_rq) will be done by the
1121  * next call to enqueue_task_dl().
1122  */
1123 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1124 {
1125 	struct sched_dl_entity *dl_se = container_of(timer,
1126 						     struct sched_dl_entity,
1127 						     dl_timer);
1128 	struct task_struct *p;
1129 	struct rq_flags rf;
1130 	struct rq *rq;
1131 
1132 	if (dl_server(dl_se)) {
1133 		struct rq *rq = rq_of_dl_se(dl_se);
1134 		struct rq_flags rf;
1135 
1136 		rq_lock(rq, &rf);
1137 		if (dl_se->dl_throttled) {
1138 			sched_clock_tick();
1139 			update_rq_clock(rq);
1140 
1141 			if (dl_se->server_has_tasks(dl_se)) {
1142 				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1143 				resched_curr(rq);
1144 				__push_dl_task(rq, &rf);
1145 			} else {
1146 				replenish_dl_entity(dl_se);
1147 			}
1148 
1149 		}
1150 		rq_unlock(rq, &rf);
1151 
1152 		return HRTIMER_NORESTART;
1153 	}
1154 
1155 	p = dl_task_of(dl_se);
1156 	rq = task_rq_lock(p, &rf);
1157 
1158 	/*
1159 	 * The task might have changed its scheduling policy to something
1160 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1161 	 */
1162 	if (!dl_task(p))
1163 		goto unlock;
1164 
1165 	/*
1166 	 * The task might have been boosted by someone else and might be in the
1167 	 * boosting/deboosting path, its not throttled.
1168 	 */
1169 	if (is_dl_boosted(dl_se))
1170 		goto unlock;
1171 
1172 	/*
1173 	 * Spurious timer due to start_dl_timer() race; or we already received
1174 	 * a replenishment from rt_mutex_setprio().
1175 	 */
1176 	if (!dl_se->dl_throttled)
1177 		goto unlock;
1178 
1179 	sched_clock_tick();
1180 	update_rq_clock(rq);
1181 
1182 	/*
1183 	 * If the throttle happened during sched-out; like:
1184 	 *
1185 	 *   schedule()
1186 	 *     deactivate_task()
1187 	 *       dequeue_task_dl()
1188 	 *         update_curr_dl()
1189 	 *           start_dl_timer()
1190 	 *         __dequeue_task_dl()
1191 	 *     prev->on_rq = 0;
1192 	 *
1193 	 * We can be both throttled and !queued. Replenish the counter
1194 	 * but do not enqueue -- wait for our wakeup to do that.
1195 	 */
1196 	if (!task_on_rq_queued(p)) {
1197 		replenish_dl_entity(dl_se);
1198 		goto unlock;
1199 	}
1200 
1201 #ifdef CONFIG_SMP
1202 	if (unlikely(!rq->online)) {
1203 		/*
1204 		 * If the runqueue is no longer available, migrate the
1205 		 * task elsewhere. This necessarily changes rq.
1206 		 */
1207 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1208 		rq = dl_task_offline_migration(rq, p);
1209 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1210 		update_rq_clock(rq);
1211 
1212 		/*
1213 		 * Now that the task has been migrated to the new RQ and we
1214 		 * have that locked, proceed as normal and enqueue the task
1215 		 * there.
1216 		 */
1217 	}
1218 #endif
1219 
1220 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1221 	if (dl_task(rq->curr))
1222 		wakeup_preempt_dl(rq, p, 0);
1223 	else
1224 		resched_curr(rq);
1225 
1226 	__push_dl_task(rq, &rf);
1227 
1228 unlock:
1229 	task_rq_unlock(rq, p, &rf);
1230 
1231 	/*
1232 	 * This can free the task_struct, including this hrtimer, do not touch
1233 	 * anything related to that after this.
1234 	 */
1235 	put_task_struct(p);
1236 
1237 	return HRTIMER_NORESTART;
1238 }
1239 
1240 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1241 {
1242 	struct hrtimer *timer = &dl_se->dl_timer;
1243 
1244 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1245 	timer->function = dl_task_timer;
1246 }
1247 
1248 /*
1249  * During the activation, CBS checks if it can reuse the current task's
1250  * runtime and period. If the deadline of the task is in the past, CBS
1251  * cannot use the runtime, and so it replenishes the task. This rule
1252  * works fine for implicit deadline tasks (deadline == period), and the
1253  * CBS was designed for implicit deadline tasks. However, a task with
1254  * constrained deadline (deadline < period) might be awakened after the
1255  * deadline, but before the next period. In this case, replenishing the
1256  * task would allow it to run for runtime / deadline. As in this case
1257  * deadline < period, CBS enables a task to run for more than the
1258  * runtime / period. In a very loaded system, this can cause a domino
1259  * effect, making other tasks miss their deadlines.
1260  *
1261  * To avoid this problem, in the activation of a constrained deadline
1262  * task after the deadline but before the next period, throttle the
1263  * task and set the replenishing timer to the begin of the next period,
1264  * unless it is boosted.
1265  */
1266 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1267 {
1268 	struct rq *rq = rq_of_dl_se(dl_se);
1269 
1270 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1271 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1272 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1273 			return;
1274 		dl_se->dl_throttled = 1;
1275 		if (dl_se->runtime > 0)
1276 			dl_se->runtime = 0;
1277 	}
1278 }
1279 
1280 static
1281 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1282 {
1283 	return (dl_se->runtime <= 0);
1284 }
1285 
1286 /*
1287  * This function implements the GRUB accounting rule. According to the
1288  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1289  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1290  * where u is the utilization of the task, Umax is the maximum reclaimable
1291  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1292  * as the difference between the "total runqueue utilization" and the
1293  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1294  * reclaimable utilization.
1295  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1296  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1297  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1298  * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1299  * Since delta is a 64 bit variable, to have an overflow its value should be
1300  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1301  * not an issue here.
1302  */
1303 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1304 {
1305 	u64 u_act;
1306 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1307 
1308 	/*
1309 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1310 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1311 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1312 	 * negative leading to wrong results.
1313 	 */
1314 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1315 		u_act = dl_se->dl_bw;
1316 	else
1317 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1318 
1319 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1320 	return (delta * u_act) >> BW_SHIFT;
1321 }
1322 
1323 static inline void
1324 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1325                         int flags);
1326 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1327 {
1328 	s64 scaled_delta_exec;
1329 
1330 	if (unlikely(delta_exec <= 0)) {
1331 		if (unlikely(dl_se->dl_yielded))
1332 			goto throttle;
1333 		return;
1334 	}
1335 
1336 	if (dl_entity_is_special(dl_se))
1337 		return;
1338 
1339 	/*
1340 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1341 	 * spare reclaimed bandwidth is used to clock down frequency.
1342 	 *
1343 	 * For the others, we still need to scale reservation parameters
1344 	 * according to current frequency and CPU maximum capacity.
1345 	 */
1346 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1347 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1348 	} else {
1349 		int cpu = cpu_of(rq);
1350 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1351 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1352 
1353 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1354 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1355 	}
1356 
1357 	dl_se->runtime -= scaled_delta_exec;
1358 
1359 throttle:
1360 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1361 		dl_se->dl_throttled = 1;
1362 
1363 		/* If requested, inform the user about runtime overruns. */
1364 		if (dl_runtime_exceeded(dl_se) &&
1365 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1366 			dl_se->dl_overrun = 1;
1367 
1368 		dequeue_dl_entity(dl_se, 0);
1369 		if (!dl_server(dl_se)) {
1370 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1371 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1372 		}
1373 
1374 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1375 			if (dl_server(dl_se))
1376 				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1377 			else
1378 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1379 		}
1380 
1381 		if (!is_leftmost(dl_se, &rq->dl))
1382 			resched_curr(rq);
1383 	}
1384 
1385 	/*
1386 	 * Because -- for now -- we share the rt bandwidth, we need to
1387 	 * account our runtime there too, otherwise actual rt tasks
1388 	 * would be able to exceed the shared quota.
1389 	 *
1390 	 * Account to the root rt group for now.
1391 	 *
1392 	 * The solution we're working towards is having the RT groups scheduled
1393 	 * using deadline servers -- however there's a few nasties to figure
1394 	 * out before that can happen.
1395 	 */
1396 	if (rt_bandwidth_enabled()) {
1397 		struct rt_rq *rt_rq = &rq->rt;
1398 
1399 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1400 		/*
1401 		 * We'll let actual RT tasks worry about the overflow here, we
1402 		 * have our own CBS to keep us inline; only account when RT
1403 		 * bandwidth is relevant.
1404 		 */
1405 		if (sched_rt_bandwidth_account(rt_rq))
1406 			rt_rq->rt_time += delta_exec;
1407 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1408 	}
1409 }
1410 
1411 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1412 {
1413 	update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1414 }
1415 
1416 void dl_server_start(struct sched_dl_entity *dl_se)
1417 {
1418 	if (!dl_server(dl_se)) {
1419 		dl_se->dl_server = 1;
1420 		setup_new_dl_entity(dl_se);
1421 	}
1422 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1423 }
1424 
1425 void dl_server_stop(struct sched_dl_entity *dl_se)
1426 {
1427 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1428 }
1429 
1430 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1431 		    dl_server_has_tasks_f has_tasks,
1432 		    dl_server_pick_f pick)
1433 {
1434 	dl_se->rq = rq;
1435 	dl_se->server_has_tasks = has_tasks;
1436 	dl_se->server_pick = pick;
1437 }
1438 
1439 /*
1440  * Update the current task's runtime statistics (provided it is still
1441  * a -deadline task and has not been removed from the dl_rq).
1442  */
1443 static void update_curr_dl(struct rq *rq)
1444 {
1445 	struct task_struct *curr = rq->curr;
1446 	struct sched_dl_entity *dl_se = &curr->dl;
1447 	s64 delta_exec;
1448 
1449 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1450 		return;
1451 
1452 	/*
1453 	 * Consumed budget is computed considering the time as
1454 	 * observed by schedulable tasks (excluding time spent
1455 	 * in hardirq context, etc.). Deadlines are instead
1456 	 * computed using hard walltime. This seems to be the more
1457 	 * natural solution, but the full ramifications of this
1458 	 * approach need further study.
1459 	 */
1460 	delta_exec = update_curr_common(rq);
1461 	update_curr_dl_se(rq, dl_se, delta_exec);
1462 }
1463 
1464 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1465 {
1466 	struct sched_dl_entity *dl_se = container_of(timer,
1467 						     struct sched_dl_entity,
1468 						     inactive_timer);
1469 	struct task_struct *p = NULL;
1470 	struct rq_flags rf;
1471 	struct rq *rq;
1472 
1473 	if (!dl_server(dl_se)) {
1474 		p = dl_task_of(dl_se);
1475 		rq = task_rq_lock(p, &rf);
1476 	} else {
1477 		rq = dl_se->rq;
1478 		rq_lock(rq, &rf);
1479 	}
1480 
1481 	sched_clock_tick();
1482 	update_rq_clock(rq);
1483 
1484 	if (dl_server(dl_se))
1485 		goto no_task;
1486 
1487 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1488 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1489 
1490 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1491 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1492 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1493 			dl_se->dl_non_contending = 0;
1494 		}
1495 
1496 		raw_spin_lock(&dl_b->lock);
1497 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1498 		raw_spin_unlock(&dl_b->lock);
1499 		__dl_clear_params(dl_se);
1500 
1501 		goto unlock;
1502 	}
1503 
1504 no_task:
1505 	if (dl_se->dl_non_contending == 0)
1506 		goto unlock;
1507 
1508 	sub_running_bw(dl_se, &rq->dl);
1509 	dl_se->dl_non_contending = 0;
1510 unlock:
1511 
1512 	if (!dl_server(dl_se)) {
1513 		task_rq_unlock(rq, p, &rf);
1514 		put_task_struct(p);
1515 	} else {
1516 		rq_unlock(rq, &rf);
1517 	}
1518 
1519 	return HRTIMER_NORESTART;
1520 }
1521 
1522 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1523 {
1524 	struct hrtimer *timer = &dl_se->inactive_timer;
1525 
1526 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1527 	timer->function = inactive_task_timer;
1528 }
1529 
1530 #define __node_2_dle(node) \
1531 	rb_entry((node), struct sched_dl_entity, rb_node)
1532 
1533 #ifdef CONFIG_SMP
1534 
1535 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1536 {
1537 	struct rq *rq = rq_of_dl_rq(dl_rq);
1538 
1539 	if (dl_rq->earliest_dl.curr == 0 ||
1540 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1541 		if (dl_rq->earliest_dl.curr == 0)
1542 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1543 		dl_rq->earliest_dl.curr = deadline;
1544 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1545 	}
1546 }
1547 
1548 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1549 {
1550 	struct rq *rq = rq_of_dl_rq(dl_rq);
1551 
1552 	/*
1553 	 * Since we may have removed our earliest (and/or next earliest)
1554 	 * task we must recompute them.
1555 	 */
1556 	if (!dl_rq->dl_nr_running) {
1557 		dl_rq->earliest_dl.curr = 0;
1558 		dl_rq->earliest_dl.next = 0;
1559 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1560 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1561 	} else {
1562 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1563 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1564 
1565 		dl_rq->earliest_dl.curr = entry->deadline;
1566 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1567 	}
1568 }
1569 
1570 #else
1571 
1572 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1573 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1574 
1575 #endif /* CONFIG_SMP */
1576 
1577 static inline
1578 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1579 {
1580 	u64 deadline = dl_se->deadline;
1581 
1582 	dl_rq->dl_nr_running++;
1583 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1584 
1585 	inc_dl_deadline(dl_rq, deadline);
1586 }
1587 
1588 static inline
1589 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1590 {
1591 	WARN_ON(!dl_rq->dl_nr_running);
1592 	dl_rq->dl_nr_running--;
1593 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1594 
1595 	dec_dl_deadline(dl_rq, dl_se->deadline);
1596 }
1597 
1598 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1599 {
1600 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1601 }
1602 
1603 static inline struct sched_statistics *
1604 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1605 {
1606 	return &dl_task_of(dl_se)->stats;
1607 }
1608 
1609 static inline void
1610 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1611 {
1612 	struct sched_statistics *stats;
1613 
1614 	if (!schedstat_enabled())
1615 		return;
1616 
1617 	stats = __schedstats_from_dl_se(dl_se);
1618 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1619 }
1620 
1621 static inline void
1622 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1623 {
1624 	struct sched_statistics *stats;
1625 
1626 	if (!schedstat_enabled())
1627 		return;
1628 
1629 	stats = __schedstats_from_dl_se(dl_se);
1630 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1631 }
1632 
1633 static inline void
1634 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1635 {
1636 	struct sched_statistics *stats;
1637 
1638 	if (!schedstat_enabled())
1639 		return;
1640 
1641 	stats = __schedstats_from_dl_se(dl_se);
1642 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1643 }
1644 
1645 static inline void
1646 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1647 			int flags)
1648 {
1649 	if (!schedstat_enabled())
1650 		return;
1651 
1652 	if (flags & ENQUEUE_WAKEUP)
1653 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1654 }
1655 
1656 static inline void
1657 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1658 			int flags)
1659 {
1660 	struct task_struct *p = dl_task_of(dl_se);
1661 
1662 	if (!schedstat_enabled())
1663 		return;
1664 
1665 	if ((flags & DEQUEUE_SLEEP)) {
1666 		unsigned int state;
1667 
1668 		state = READ_ONCE(p->__state);
1669 		if (state & TASK_INTERRUPTIBLE)
1670 			__schedstat_set(p->stats.sleep_start,
1671 					rq_clock(rq_of_dl_rq(dl_rq)));
1672 
1673 		if (state & TASK_UNINTERRUPTIBLE)
1674 			__schedstat_set(p->stats.block_start,
1675 					rq_clock(rq_of_dl_rq(dl_rq)));
1676 	}
1677 }
1678 
1679 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1680 {
1681 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1682 
1683 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1684 
1685 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1686 
1687 	inc_dl_tasks(dl_se, dl_rq);
1688 }
1689 
1690 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1691 {
1692 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1693 
1694 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1695 		return;
1696 
1697 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1698 
1699 	RB_CLEAR_NODE(&dl_se->rb_node);
1700 
1701 	dec_dl_tasks(dl_se, dl_rq);
1702 }
1703 
1704 static void
1705 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1706 {
1707 	WARN_ON_ONCE(on_dl_rq(dl_se));
1708 
1709 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1710 
1711 	/*
1712 	 * Check if a constrained deadline task was activated
1713 	 * after the deadline but before the next period.
1714 	 * If that is the case, the task will be throttled and
1715 	 * the replenishment timer will be set to the next period.
1716 	 */
1717 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1718 		dl_check_constrained_dl(dl_se);
1719 
1720 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1721 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1722 
1723 		add_rq_bw(dl_se, dl_rq);
1724 		add_running_bw(dl_se, dl_rq);
1725 	}
1726 
1727 	/*
1728 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1729 	 * its budget it needs a replenishment and, since it now is on
1730 	 * its rq, the bandwidth timer callback (which clearly has not
1731 	 * run yet) will take care of this.
1732 	 * However, the active utilization does not depend on the fact
1733 	 * that the task is on the runqueue or not (but depends on the
1734 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1735 	 * In other words, even if a task is throttled its utilization must
1736 	 * be counted in the active utilization; hence, we need to call
1737 	 * add_running_bw().
1738 	 */
1739 	if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1740 		if (flags & ENQUEUE_WAKEUP)
1741 			task_contending(dl_se, flags);
1742 
1743 		return;
1744 	}
1745 
1746 	/*
1747 	 * If this is a wakeup or a new instance, the scheduling
1748 	 * parameters of the task might need updating. Otherwise,
1749 	 * we want a replenishment of its runtime.
1750 	 */
1751 	if (flags & ENQUEUE_WAKEUP) {
1752 		task_contending(dl_se, flags);
1753 		update_dl_entity(dl_se);
1754 	} else if (flags & ENQUEUE_REPLENISH) {
1755 		replenish_dl_entity(dl_se);
1756 	} else if ((flags & ENQUEUE_RESTORE) &&
1757 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
1758 		setup_new_dl_entity(dl_se);
1759 	}
1760 
1761 	__enqueue_dl_entity(dl_se);
1762 }
1763 
1764 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1765 {
1766 	__dequeue_dl_entity(dl_se);
1767 
1768 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
1769 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1770 
1771 		sub_running_bw(dl_se, dl_rq);
1772 		sub_rq_bw(dl_se, dl_rq);
1773 	}
1774 
1775 	/*
1776 	 * This check allows to start the inactive timer (or to immediately
1777 	 * decrease the active utilization, if needed) in two cases:
1778 	 * when the task blocks and when it is terminating
1779 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1780 	 * way, because from GRUB's point of view the same thing is happening
1781 	 * (the task moves from "active contending" to "active non contending"
1782 	 * or "inactive")
1783 	 */
1784 	if (flags & DEQUEUE_SLEEP)
1785 		task_non_contending(dl_se);
1786 }
1787 
1788 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1789 {
1790 	if (is_dl_boosted(&p->dl)) {
1791 		/*
1792 		 * Because of delays in the detection of the overrun of a
1793 		 * thread's runtime, it might be the case that a thread
1794 		 * goes to sleep in a rt mutex with negative runtime. As
1795 		 * a consequence, the thread will be throttled.
1796 		 *
1797 		 * While waiting for the mutex, this thread can also be
1798 		 * boosted via PI, resulting in a thread that is throttled
1799 		 * and boosted at the same time.
1800 		 *
1801 		 * In this case, the boost overrides the throttle.
1802 		 */
1803 		if (p->dl.dl_throttled) {
1804 			/*
1805 			 * The replenish timer needs to be canceled. No
1806 			 * problem if it fires concurrently: boosted threads
1807 			 * are ignored in dl_task_timer().
1808 			 */
1809 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1810 			p->dl.dl_throttled = 0;
1811 		}
1812 	} else if (!dl_prio(p->normal_prio)) {
1813 		/*
1814 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1815 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1816 		 * replenishing it, as it's going to return back to its original
1817 		 * scheduling class after this. If it has been throttled, we need to
1818 		 * clear the flag, otherwise the task may wake up as throttled after
1819 		 * being boosted again with no means to replenish the runtime and clear
1820 		 * the throttle.
1821 		 */
1822 		p->dl.dl_throttled = 0;
1823 		if (!(flags & ENQUEUE_REPLENISH))
1824 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1825 					     task_pid_nr(p));
1826 
1827 		return;
1828 	}
1829 
1830 	check_schedstat_required();
1831 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1832 
1833 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1834 		flags |= ENQUEUE_MIGRATING;
1835 
1836 	enqueue_dl_entity(&p->dl, flags);
1837 
1838 	if (dl_server(&p->dl))
1839 		return;
1840 
1841 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
1842 		enqueue_pushable_dl_task(rq, p);
1843 }
1844 
1845 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1846 {
1847 	update_curr_dl(rq);
1848 
1849 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1850 		flags |= DEQUEUE_MIGRATING;
1851 
1852 	dequeue_dl_entity(&p->dl, flags);
1853 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
1854 		dequeue_pushable_dl_task(rq, p);
1855 }
1856 
1857 /*
1858  * Yield task semantic for -deadline tasks is:
1859  *
1860  *   get off from the CPU until our next instance, with
1861  *   a new runtime. This is of little use now, since we
1862  *   don't have a bandwidth reclaiming mechanism. Anyway,
1863  *   bandwidth reclaiming is planned for the future, and
1864  *   yield_task_dl will indicate that some spare budget
1865  *   is available for other task instances to use it.
1866  */
1867 static void yield_task_dl(struct rq *rq)
1868 {
1869 	/*
1870 	 * We make the task go to sleep until its current deadline by
1871 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1872 	 * it and the bandwidth timer will wake it up and will give it
1873 	 * new scheduling parameters (thanks to dl_yielded=1).
1874 	 */
1875 	rq->curr->dl.dl_yielded = 1;
1876 
1877 	update_rq_clock(rq);
1878 	update_curr_dl(rq);
1879 	/*
1880 	 * Tell update_rq_clock() that we've just updated,
1881 	 * so we don't do microscopic update in schedule()
1882 	 * and double the fastpath cost.
1883 	 */
1884 	rq_clock_skip_update(rq);
1885 }
1886 
1887 #ifdef CONFIG_SMP
1888 
1889 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1890 						 struct rq *rq)
1891 {
1892 	return (!rq->dl.dl_nr_running ||
1893 		dl_time_before(p->dl.deadline,
1894 			       rq->dl.earliest_dl.curr));
1895 }
1896 
1897 static int find_later_rq(struct task_struct *task);
1898 
1899 static int
1900 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1901 {
1902 	struct task_struct *curr;
1903 	bool select_rq;
1904 	struct rq *rq;
1905 
1906 	if (!(flags & WF_TTWU))
1907 		goto out;
1908 
1909 	rq = cpu_rq(cpu);
1910 
1911 	rcu_read_lock();
1912 	curr = READ_ONCE(rq->curr); /* unlocked access */
1913 
1914 	/*
1915 	 * If we are dealing with a -deadline task, we must
1916 	 * decide where to wake it up.
1917 	 * If it has a later deadline and the current task
1918 	 * on this rq can't move (provided the waking task
1919 	 * can!) we prefer to send it somewhere else. On the
1920 	 * other hand, if it has a shorter deadline, we
1921 	 * try to make it stay here, it might be important.
1922 	 */
1923 	select_rq = unlikely(dl_task(curr)) &&
1924 		    (curr->nr_cpus_allowed < 2 ||
1925 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1926 		    p->nr_cpus_allowed > 1;
1927 
1928 	/*
1929 	 * Take the capacity of the CPU into account to
1930 	 * ensure it fits the requirement of the task.
1931 	 */
1932 	if (sched_asym_cpucap_active())
1933 		select_rq |= !dl_task_fits_capacity(p, cpu);
1934 
1935 	if (select_rq) {
1936 		int target = find_later_rq(p);
1937 
1938 		if (target != -1 &&
1939 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
1940 			cpu = target;
1941 	}
1942 	rcu_read_unlock();
1943 
1944 out:
1945 	return cpu;
1946 }
1947 
1948 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1949 {
1950 	struct rq_flags rf;
1951 	struct rq *rq;
1952 
1953 	if (READ_ONCE(p->__state) != TASK_WAKING)
1954 		return;
1955 
1956 	rq = task_rq(p);
1957 	/*
1958 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1959 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1960 	 * rq->lock is not... So, lock it
1961 	 */
1962 	rq_lock(rq, &rf);
1963 	if (p->dl.dl_non_contending) {
1964 		update_rq_clock(rq);
1965 		sub_running_bw(&p->dl, &rq->dl);
1966 		p->dl.dl_non_contending = 0;
1967 		/*
1968 		 * If the timer handler is currently running and the
1969 		 * timer cannot be canceled, inactive_task_timer()
1970 		 * will see that dl_not_contending is not set, and
1971 		 * will not touch the rq's active utilization,
1972 		 * so we are still safe.
1973 		 */
1974 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1975 			put_task_struct(p);
1976 	}
1977 	sub_rq_bw(&p->dl, &rq->dl);
1978 	rq_unlock(rq, &rf);
1979 }
1980 
1981 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1982 {
1983 	/*
1984 	 * Current can't be migrated, useless to reschedule,
1985 	 * let's hope p can move out.
1986 	 */
1987 	if (rq->curr->nr_cpus_allowed == 1 ||
1988 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1989 		return;
1990 
1991 	/*
1992 	 * p is migratable, so let's not schedule it and
1993 	 * see if it is pushed or pulled somewhere else.
1994 	 */
1995 	if (p->nr_cpus_allowed != 1 &&
1996 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1997 		return;
1998 
1999 	resched_curr(rq);
2000 }
2001 
2002 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2003 {
2004 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2005 		/*
2006 		 * This is OK, because current is on_cpu, which avoids it being
2007 		 * picked for load-balance and preemption/IRQs are still
2008 		 * disabled avoiding further scheduler activity on it and we've
2009 		 * not yet started the picking loop.
2010 		 */
2011 		rq_unpin_lock(rq, rf);
2012 		pull_dl_task(rq);
2013 		rq_repin_lock(rq, rf);
2014 	}
2015 
2016 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2017 }
2018 #endif /* CONFIG_SMP */
2019 
2020 /*
2021  * Only called when both the current and waking task are -deadline
2022  * tasks.
2023  */
2024 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2025 				  int flags)
2026 {
2027 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
2028 		resched_curr(rq);
2029 		return;
2030 	}
2031 
2032 #ifdef CONFIG_SMP
2033 	/*
2034 	 * In the unlikely case current and p have the same deadline
2035 	 * let us try to decide what's the best thing to do...
2036 	 */
2037 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
2038 	    !test_tsk_need_resched(rq->curr))
2039 		check_preempt_equal_dl(rq, p);
2040 #endif /* CONFIG_SMP */
2041 }
2042 
2043 #ifdef CONFIG_SCHED_HRTICK
2044 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2045 {
2046 	hrtick_start(rq, dl_se->runtime);
2047 }
2048 #else /* !CONFIG_SCHED_HRTICK */
2049 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2050 {
2051 }
2052 #endif
2053 
2054 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2055 {
2056 	struct sched_dl_entity *dl_se = &p->dl;
2057 	struct dl_rq *dl_rq = &rq->dl;
2058 
2059 	p->se.exec_start = rq_clock_task(rq);
2060 	if (on_dl_rq(&p->dl))
2061 		update_stats_wait_end_dl(dl_rq, dl_se);
2062 
2063 	/* You can't push away the running task */
2064 	dequeue_pushable_dl_task(rq, p);
2065 
2066 	if (!first)
2067 		return;
2068 
2069 	if (rq->curr->sched_class != &dl_sched_class)
2070 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2071 
2072 	deadline_queue_push_tasks(rq);
2073 }
2074 
2075 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2076 {
2077 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2078 
2079 	if (!left)
2080 		return NULL;
2081 
2082 	return __node_2_dle(left);
2083 }
2084 
2085 static struct task_struct *pick_task_dl(struct rq *rq)
2086 {
2087 	struct sched_dl_entity *dl_se;
2088 	struct dl_rq *dl_rq = &rq->dl;
2089 	struct task_struct *p;
2090 
2091 again:
2092 	if (!sched_dl_runnable(rq))
2093 		return NULL;
2094 
2095 	dl_se = pick_next_dl_entity(dl_rq);
2096 	WARN_ON_ONCE(!dl_se);
2097 
2098 	if (dl_server(dl_se)) {
2099 		p = dl_se->server_pick(dl_se);
2100 		if (!p) {
2101 			WARN_ON_ONCE(1);
2102 			dl_se->dl_yielded = 1;
2103 			update_curr_dl_se(rq, dl_se, 0);
2104 			goto again;
2105 		}
2106 		p->dl_server = dl_se;
2107 	} else {
2108 		p = dl_task_of(dl_se);
2109 	}
2110 
2111 	return p;
2112 }
2113 
2114 static struct task_struct *pick_next_task_dl(struct rq *rq)
2115 {
2116 	struct task_struct *p;
2117 
2118 	p = pick_task_dl(rq);
2119 	if (!p)
2120 		return p;
2121 
2122 	if (!p->dl_server)
2123 		set_next_task_dl(rq, p, true);
2124 
2125 	if (hrtick_enabled(rq))
2126 		start_hrtick_dl(rq, &p->dl);
2127 
2128 	return p;
2129 }
2130 
2131 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2132 {
2133 	struct sched_dl_entity *dl_se = &p->dl;
2134 	struct dl_rq *dl_rq = &rq->dl;
2135 
2136 	if (on_dl_rq(&p->dl))
2137 		update_stats_wait_start_dl(dl_rq, dl_se);
2138 
2139 	update_curr_dl(rq);
2140 
2141 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2142 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2143 		enqueue_pushable_dl_task(rq, p);
2144 }
2145 
2146 /*
2147  * scheduler tick hitting a task of our scheduling class.
2148  *
2149  * NOTE: This function can be called remotely by the tick offload that
2150  * goes along full dynticks. Therefore no local assumption can be made
2151  * and everything must be accessed through the @rq and @curr passed in
2152  * parameters.
2153  */
2154 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2155 {
2156 	update_curr_dl(rq);
2157 
2158 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2159 	/*
2160 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2161 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2162 	 * be set and schedule() will start a new hrtick for the next task.
2163 	 */
2164 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2165 	    is_leftmost(&p->dl, &rq->dl))
2166 		start_hrtick_dl(rq, &p->dl);
2167 }
2168 
2169 static void task_fork_dl(struct task_struct *p)
2170 {
2171 	/*
2172 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2173 	 * sched_fork()
2174 	 */
2175 }
2176 
2177 #ifdef CONFIG_SMP
2178 
2179 /* Only try algorithms three times */
2180 #define DL_MAX_TRIES 3
2181 
2182 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2183 {
2184 	if (!task_on_cpu(rq, p) &&
2185 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2186 		return 1;
2187 	return 0;
2188 }
2189 
2190 /*
2191  * Return the earliest pushable rq's task, which is suitable to be executed
2192  * on the CPU, NULL otherwise:
2193  */
2194 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2195 {
2196 	struct task_struct *p = NULL;
2197 	struct rb_node *next_node;
2198 
2199 	if (!has_pushable_dl_tasks(rq))
2200 		return NULL;
2201 
2202 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2203 
2204 next_node:
2205 	if (next_node) {
2206 		p = __node_2_pdl(next_node);
2207 
2208 		if (pick_dl_task(rq, p, cpu))
2209 			return p;
2210 
2211 		next_node = rb_next(next_node);
2212 		goto next_node;
2213 	}
2214 
2215 	return NULL;
2216 }
2217 
2218 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2219 
2220 static int find_later_rq(struct task_struct *task)
2221 {
2222 	struct sched_domain *sd;
2223 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2224 	int this_cpu = smp_processor_id();
2225 	int cpu = task_cpu(task);
2226 
2227 	/* Make sure the mask is initialized first */
2228 	if (unlikely(!later_mask))
2229 		return -1;
2230 
2231 	if (task->nr_cpus_allowed == 1)
2232 		return -1;
2233 
2234 	/*
2235 	 * We have to consider system topology and task affinity
2236 	 * first, then we can look for a suitable CPU.
2237 	 */
2238 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2239 		return -1;
2240 
2241 	/*
2242 	 * If we are here, some targets have been found, including
2243 	 * the most suitable which is, among the runqueues where the
2244 	 * current tasks have later deadlines than the task's one, the
2245 	 * rq with the latest possible one.
2246 	 *
2247 	 * Now we check how well this matches with task's
2248 	 * affinity and system topology.
2249 	 *
2250 	 * The last CPU where the task run is our first
2251 	 * guess, since it is most likely cache-hot there.
2252 	 */
2253 	if (cpumask_test_cpu(cpu, later_mask))
2254 		return cpu;
2255 	/*
2256 	 * Check if this_cpu is to be skipped (i.e., it is
2257 	 * not in the mask) or not.
2258 	 */
2259 	if (!cpumask_test_cpu(this_cpu, later_mask))
2260 		this_cpu = -1;
2261 
2262 	rcu_read_lock();
2263 	for_each_domain(cpu, sd) {
2264 		if (sd->flags & SD_WAKE_AFFINE) {
2265 			int best_cpu;
2266 
2267 			/*
2268 			 * If possible, preempting this_cpu is
2269 			 * cheaper than migrating.
2270 			 */
2271 			if (this_cpu != -1 &&
2272 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2273 				rcu_read_unlock();
2274 				return this_cpu;
2275 			}
2276 
2277 			best_cpu = cpumask_any_and_distribute(later_mask,
2278 							      sched_domain_span(sd));
2279 			/*
2280 			 * Last chance: if a CPU being in both later_mask
2281 			 * and current sd span is valid, that becomes our
2282 			 * choice. Of course, the latest possible CPU is
2283 			 * already under consideration through later_mask.
2284 			 */
2285 			if (best_cpu < nr_cpu_ids) {
2286 				rcu_read_unlock();
2287 				return best_cpu;
2288 			}
2289 		}
2290 	}
2291 	rcu_read_unlock();
2292 
2293 	/*
2294 	 * At this point, all our guesses failed, we just return
2295 	 * 'something', and let the caller sort the things out.
2296 	 */
2297 	if (this_cpu != -1)
2298 		return this_cpu;
2299 
2300 	cpu = cpumask_any_distribute(later_mask);
2301 	if (cpu < nr_cpu_ids)
2302 		return cpu;
2303 
2304 	return -1;
2305 }
2306 
2307 /* Locks the rq it finds */
2308 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2309 {
2310 	struct rq *later_rq = NULL;
2311 	int tries;
2312 	int cpu;
2313 
2314 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2315 		cpu = find_later_rq(task);
2316 
2317 		if ((cpu == -1) || (cpu == rq->cpu))
2318 			break;
2319 
2320 		later_rq = cpu_rq(cpu);
2321 
2322 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2323 			/*
2324 			 * Target rq has tasks of equal or earlier deadline,
2325 			 * retrying does not release any lock and is unlikely
2326 			 * to yield a different result.
2327 			 */
2328 			later_rq = NULL;
2329 			break;
2330 		}
2331 
2332 		/* Retry if something changed. */
2333 		if (double_lock_balance(rq, later_rq)) {
2334 			if (unlikely(task_rq(task) != rq ||
2335 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2336 				     task_on_cpu(rq, task) ||
2337 				     !dl_task(task) ||
2338 				     is_migration_disabled(task) ||
2339 				     !task_on_rq_queued(task))) {
2340 				double_unlock_balance(rq, later_rq);
2341 				later_rq = NULL;
2342 				break;
2343 			}
2344 		}
2345 
2346 		/*
2347 		 * If the rq we found has no -deadline task, or
2348 		 * its earliest one has a later deadline than our
2349 		 * task, the rq is a good one.
2350 		 */
2351 		if (dl_task_is_earliest_deadline(task, later_rq))
2352 			break;
2353 
2354 		/* Otherwise we try again. */
2355 		double_unlock_balance(rq, later_rq);
2356 		later_rq = NULL;
2357 	}
2358 
2359 	return later_rq;
2360 }
2361 
2362 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2363 {
2364 	struct task_struct *p;
2365 
2366 	if (!has_pushable_dl_tasks(rq))
2367 		return NULL;
2368 
2369 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2370 
2371 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2372 	WARN_ON_ONCE(task_current(rq, p));
2373 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2374 
2375 	WARN_ON_ONCE(!task_on_rq_queued(p));
2376 	WARN_ON_ONCE(!dl_task(p));
2377 
2378 	return p;
2379 }
2380 
2381 /*
2382  * See if the non running -deadline tasks on this rq
2383  * can be sent to some other CPU where they can preempt
2384  * and start executing.
2385  */
2386 static int push_dl_task(struct rq *rq)
2387 {
2388 	struct task_struct *next_task;
2389 	struct rq *later_rq;
2390 	int ret = 0;
2391 
2392 	next_task = pick_next_pushable_dl_task(rq);
2393 	if (!next_task)
2394 		return 0;
2395 
2396 retry:
2397 	/*
2398 	 * If next_task preempts rq->curr, and rq->curr
2399 	 * can move away, it makes sense to just reschedule
2400 	 * without going further in pushing next_task.
2401 	 */
2402 	if (dl_task(rq->curr) &&
2403 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2404 	    rq->curr->nr_cpus_allowed > 1) {
2405 		resched_curr(rq);
2406 		return 0;
2407 	}
2408 
2409 	if (is_migration_disabled(next_task))
2410 		return 0;
2411 
2412 	if (WARN_ON(next_task == rq->curr))
2413 		return 0;
2414 
2415 	/* We might release rq lock */
2416 	get_task_struct(next_task);
2417 
2418 	/* Will lock the rq it'll find */
2419 	later_rq = find_lock_later_rq(next_task, rq);
2420 	if (!later_rq) {
2421 		struct task_struct *task;
2422 
2423 		/*
2424 		 * We must check all this again, since
2425 		 * find_lock_later_rq releases rq->lock and it is
2426 		 * then possible that next_task has migrated.
2427 		 */
2428 		task = pick_next_pushable_dl_task(rq);
2429 		if (task == next_task) {
2430 			/*
2431 			 * The task is still there. We don't try
2432 			 * again, some other CPU will pull it when ready.
2433 			 */
2434 			goto out;
2435 		}
2436 
2437 		if (!task)
2438 			/* No more tasks */
2439 			goto out;
2440 
2441 		put_task_struct(next_task);
2442 		next_task = task;
2443 		goto retry;
2444 	}
2445 
2446 	deactivate_task(rq, next_task, 0);
2447 	set_task_cpu(next_task, later_rq->cpu);
2448 	activate_task(later_rq, next_task, 0);
2449 	ret = 1;
2450 
2451 	resched_curr(later_rq);
2452 
2453 	double_unlock_balance(rq, later_rq);
2454 
2455 out:
2456 	put_task_struct(next_task);
2457 
2458 	return ret;
2459 }
2460 
2461 static void push_dl_tasks(struct rq *rq)
2462 {
2463 	/* push_dl_task() will return true if it moved a -deadline task */
2464 	while (push_dl_task(rq))
2465 		;
2466 }
2467 
2468 static void pull_dl_task(struct rq *this_rq)
2469 {
2470 	int this_cpu = this_rq->cpu, cpu;
2471 	struct task_struct *p, *push_task;
2472 	bool resched = false;
2473 	struct rq *src_rq;
2474 	u64 dmin = LONG_MAX;
2475 
2476 	if (likely(!dl_overloaded(this_rq)))
2477 		return;
2478 
2479 	/*
2480 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2481 	 * see overloaded we must also see the dlo_mask bit.
2482 	 */
2483 	smp_rmb();
2484 
2485 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2486 		if (this_cpu == cpu)
2487 			continue;
2488 
2489 		src_rq = cpu_rq(cpu);
2490 
2491 		/*
2492 		 * It looks racy, abd it is! However, as in sched_rt.c,
2493 		 * we are fine with this.
2494 		 */
2495 		if (this_rq->dl.dl_nr_running &&
2496 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2497 				   src_rq->dl.earliest_dl.next))
2498 			continue;
2499 
2500 		/* Might drop this_rq->lock */
2501 		push_task = NULL;
2502 		double_lock_balance(this_rq, src_rq);
2503 
2504 		/*
2505 		 * If there are no more pullable tasks on the
2506 		 * rq, we're done with it.
2507 		 */
2508 		if (src_rq->dl.dl_nr_running <= 1)
2509 			goto skip;
2510 
2511 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2512 
2513 		/*
2514 		 * We found a task to be pulled if:
2515 		 *  - it preempts our current (if there's one),
2516 		 *  - it will preempt the last one we pulled (if any).
2517 		 */
2518 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2519 		    dl_task_is_earliest_deadline(p, this_rq)) {
2520 			WARN_ON(p == src_rq->curr);
2521 			WARN_ON(!task_on_rq_queued(p));
2522 
2523 			/*
2524 			 * Then we pull iff p has actually an earlier
2525 			 * deadline than the current task of its runqueue.
2526 			 */
2527 			if (dl_time_before(p->dl.deadline,
2528 					   src_rq->curr->dl.deadline))
2529 				goto skip;
2530 
2531 			if (is_migration_disabled(p)) {
2532 				push_task = get_push_task(src_rq);
2533 			} else {
2534 				deactivate_task(src_rq, p, 0);
2535 				set_task_cpu(p, this_cpu);
2536 				activate_task(this_rq, p, 0);
2537 				dmin = p->dl.deadline;
2538 				resched = true;
2539 			}
2540 
2541 			/* Is there any other task even earlier? */
2542 		}
2543 skip:
2544 		double_unlock_balance(this_rq, src_rq);
2545 
2546 		if (push_task) {
2547 			preempt_disable();
2548 			raw_spin_rq_unlock(this_rq);
2549 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2550 					    push_task, &src_rq->push_work);
2551 			preempt_enable();
2552 			raw_spin_rq_lock(this_rq);
2553 		}
2554 	}
2555 
2556 	if (resched)
2557 		resched_curr(this_rq);
2558 }
2559 
2560 /*
2561  * Since the task is not running and a reschedule is not going to happen
2562  * anytime soon on its runqueue, we try pushing it away now.
2563  */
2564 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2565 {
2566 	if (!task_on_cpu(rq, p) &&
2567 	    !test_tsk_need_resched(rq->curr) &&
2568 	    p->nr_cpus_allowed > 1 &&
2569 	    dl_task(rq->curr) &&
2570 	    (rq->curr->nr_cpus_allowed < 2 ||
2571 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2572 		push_dl_tasks(rq);
2573 	}
2574 }
2575 
2576 static void set_cpus_allowed_dl(struct task_struct *p,
2577 				struct affinity_context *ctx)
2578 {
2579 	struct root_domain *src_rd;
2580 	struct rq *rq;
2581 
2582 	WARN_ON_ONCE(!dl_task(p));
2583 
2584 	rq = task_rq(p);
2585 	src_rd = rq->rd;
2586 	/*
2587 	 * Migrating a SCHED_DEADLINE task between exclusive
2588 	 * cpusets (different root_domains) entails a bandwidth
2589 	 * update. We already made space for us in the destination
2590 	 * domain (see cpuset_can_attach()).
2591 	 */
2592 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2593 		struct dl_bw *src_dl_b;
2594 
2595 		src_dl_b = dl_bw_of(cpu_of(rq));
2596 		/*
2597 		 * We now free resources of the root_domain we are migrating
2598 		 * off. In the worst case, sched_setattr() may temporary fail
2599 		 * until we complete the update.
2600 		 */
2601 		raw_spin_lock(&src_dl_b->lock);
2602 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2603 		raw_spin_unlock(&src_dl_b->lock);
2604 	}
2605 
2606 	set_cpus_allowed_common(p, ctx);
2607 }
2608 
2609 /* Assumes rq->lock is held */
2610 static void rq_online_dl(struct rq *rq)
2611 {
2612 	if (rq->dl.overloaded)
2613 		dl_set_overload(rq);
2614 
2615 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2616 	if (rq->dl.dl_nr_running > 0)
2617 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2618 }
2619 
2620 /* Assumes rq->lock is held */
2621 static void rq_offline_dl(struct rq *rq)
2622 {
2623 	if (rq->dl.overloaded)
2624 		dl_clear_overload(rq);
2625 
2626 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2627 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2628 }
2629 
2630 void __init init_sched_dl_class(void)
2631 {
2632 	unsigned int i;
2633 
2634 	for_each_possible_cpu(i)
2635 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2636 					GFP_KERNEL, cpu_to_node(i));
2637 }
2638 
2639 void dl_add_task_root_domain(struct task_struct *p)
2640 {
2641 	struct rq_flags rf;
2642 	struct rq *rq;
2643 	struct dl_bw *dl_b;
2644 
2645 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2646 	if (!dl_task(p)) {
2647 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2648 		return;
2649 	}
2650 
2651 	rq = __task_rq_lock(p, &rf);
2652 
2653 	dl_b = &rq->rd->dl_bw;
2654 	raw_spin_lock(&dl_b->lock);
2655 
2656 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2657 
2658 	raw_spin_unlock(&dl_b->lock);
2659 
2660 	task_rq_unlock(rq, p, &rf);
2661 }
2662 
2663 void dl_clear_root_domain(struct root_domain *rd)
2664 {
2665 	unsigned long flags;
2666 
2667 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2668 	rd->dl_bw.total_bw = 0;
2669 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2670 }
2671 
2672 #endif /* CONFIG_SMP */
2673 
2674 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2675 {
2676 	/*
2677 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2678 	 * time is in the future). If the task switches back to dl before
2679 	 * the "inactive timer" fires, it can continue to consume its current
2680 	 * runtime using its current deadline. If it stays outside of
2681 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2682 	 * will reset the task parameters.
2683 	 */
2684 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2685 		task_non_contending(&p->dl);
2686 
2687 	/*
2688 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2689 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2690 	 */
2691 	dec_dl_tasks_cs(p);
2692 
2693 	if (!task_on_rq_queued(p)) {
2694 		/*
2695 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2696 		 * might migrate away from this rq while continuing to run on
2697 		 * some other class. We need to remove its contribution from
2698 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2699 		 */
2700 		if (p->dl.dl_non_contending)
2701 			sub_running_bw(&p->dl, &rq->dl);
2702 		sub_rq_bw(&p->dl, &rq->dl);
2703 	}
2704 
2705 	/*
2706 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2707 	 * at the 0-lag time, because the task could have been migrated
2708 	 * while SCHED_OTHER in the meanwhile.
2709 	 */
2710 	if (p->dl.dl_non_contending)
2711 		p->dl.dl_non_contending = 0;
2712 
2713 	/*
2714 	 * Since this might be the only -deadline task on the rq,
2715 	 * this is the right place to try to pull some other one
2716 	 * from an overloaded CPU, if any.
2717 	 */
2718 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2719 		return;
2720 
2721 	deadline_queue_pull_task(rq);
2722 }
2723 
2724 /*
2725  * When switching to -deadline, we may overload the rq, then
2726  * we try to push someone off, if possible.
2727  */
2728 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2729 {
2730 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2731 		put_task_struct(p);
2732 
2733 	/*
2734 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2735 	 * track of that on its cpuset (for correct bandwidth tracking).
2736 	 */
2737 	inc_dl_tasks_cs(p);
2738 
2739 	/* If p is not queued we will update its parameters at next wakeup. */
2740 	if (!task_on_rq_queued(p)) {
2741 		add_rq_bw(&p->dl, &rq->dl);
2742 
2743 		return;
2744 	}
2745 
2746 	if (rq->curr != p) {
2747 #ifdef CONFIG_SMP
2748 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2749 			deadline_queue_push_tasks(rq);
2750 #endif
2751 		if (dl_task(rq->curr))
2752 			wakeup_preempt_dl(rq, p, 0);
2753 		else
2754 			resched_curr(rq);
2755 	} else {
2756 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2757 	}
2758 }
2759 
2760 /*
2761  * If the scheduling parameters of a -deadline task changed,
2762  * a push or pull operation might be needed.
2763  */
2764 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2765 			    int oldprio)
2766 {
2767 	if (!task_on_rq_queued(p))
2768 		return;
2769 
2770 #ifdef CONFIG_SMP
2771 	/*
2772 	 * This might be too much, but unfortunately
2773 	 * we don't have the old deadline value, and
2774 	 * we can't argue if the task is increasing
2775 	 * or lowering its prio, so...
2776 	 */
2777 	if (!rq->dl.overloaded)
2778 		deadline_queue_pull_task(rq);
2779 
2780 	if (task_current(rq, p)) {
2781 		/*
2782 		 * If we now have a earlier deadline task than p,
2783 		 * then reschedule, provided p is still on this
2784 		 * runqueue.
2785 		 */
2786 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2787 			resched_curr(rq);
2788 	} else {
2789 		/*
2790 		 * Current may not be deadline in case p was throttled but we
2791 		 * have just replenished it (e.g. rt_mutex_setprio()).
2792 		 *
2793 		 * Otherwise, if p was given an earlier deadline, reschedule.
2794 		 */
2795 		if (!dl_task(rq->curr) ||
2796 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2797 			resched_curr(rq);
2798 	}
2799 #else
2800 	/*
2801 	 * We don't know if p has a earlier or later deadline, so let's blindly
2802 	 * set a (maybe not needed) rescheduling point.
2803 	 */
2804 	resched_curr(rq);
2805 #endif
2806 }
2807 
2808 #ifdef CONFIG_SCHED_CORE
2809 static int task_is_throttled_dl(struct task_struct *p, int cpu)
2810 {
2811 	return p->dl.dl_throttled;
2812 }
2813 #endif
2814 
2815 DEFINE_SCHED_CLASS(dl) = {
2816 
2817 	.enqueue_task		= enqueue_task_dl,
2818 	.dequeue_task		= dequeue_task_dl,
2819 	.yield_task		= yield_task_dl,
2820 
2821 	.wakeup_preempt		= wakeup_preempt_dl,
2822 
2823 	.pick_next_task		= pick_next_task_dl,
2824 	.put_prev_task		= put_prev_task_dl,
2825 	.set_next_task		= set_next_task_dl,
2826 
2827 #ifdef CONFIG_SMP
2828 	.balance		= balance_dl,
2829 	.pick_task		= pick_task_dl,
2830 	.select_task_rq		= select_task_rq_dl,
2831 	.migrate_task_rq	= migrate_task_rq_dl,
2832 	.set_cpus_allowed       = set_cpus_allowed_dl,
2833 	.rq_online              = rq_online_dl,
2834 	.rq_offline             = rq_offline_dl,
2835 	.task_woken		= task_woken_dl,
2836 	.find_lock_rq		= find_lock_later_rq,
2837 #endif
2838 
2839 	.task_tick		= task_tick_dl,
2840 	.task_fork              = task_fork_dl,
2841 
2842 	.prio_changed           = prio_changed_dl,
2843 	.switched_from		= switched_from_dl,
2844 	.switched_to		= switched_to_dl,
2845 
2846 	.update_curr		= update_curr_dl,
2847 #ifdef CONFIG_SCHED_CORE
2848 	.task_is_throttled	= task_is_throttled_dl,
2849 #endif
2850 };
2851 
2852 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2853 static u64 dl_generation;
2854 
2855 int sched_dl_global_validate(void)
2856 {
2857 	u64 runtime = global_rt_runtime();
2858 	u64 period = global_rt_period();
2859 	u64 new_bw = to_ratio(period, runtime);
2860 	u64 gen = ++dl_generation;
2861 	struct dl_bw *dl_b;
2862 	int cpu, cpus, ret = 0;
2863 	unsigned long flags;
2864 
2865 	/*
2866 	 * Here we want to check the bandwidth not being set to some
2867 	 * value smaller than the currently allocated bandwidth in
2868 	 * any of the root_domains.
2869 	 */
2870 	for_each_possible_cpu(cpu) {
2871 		rcu_read_lock_sched();
2872 
2873 		if (dl_bw_visited(cpu, gen))
2874 			goto next;
2875 
2876 		dl_b = dl_bw_of(cpu);
2877 		cpus = dl_bw_cpus(cpu);
2878 
2879 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2880 		if (new_bw * cpus < dl_b->total_bw)
2881 			ret = -EBUSY;
2882 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2883 
2884 next:
2885 		rcu_read_unlock_sched();
2886 
2887 		if (ret)
2888 			break;
2889 	}
2890 
2891 	return ret;
2892 }
2893 
2894 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2895 {
2896 	if (global_rt_runtime() == RUNTIME_INF) {
2897 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2898 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2899 	} else {
2900 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2901 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2902 		dl_rq->max_bw = dl_rq->extra_bw =
2903 			to_ratio(global_rt_period(), global_rt_runtime());
2904 	}
2905 }
2906 
2907 void sched_dl_do_global(void)
2908 {
2909 	u64 new_bw = -1;
2910 	u64 gen = ++dl_generation;
2911 	struct dl_bw *dl_b;
2912 	int cpu;
2913 	unsigned long flags;
2914 
2915 	if (global_rt_runtime() != RUNTIME_INF)
2916 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2917 
2918 	for_each_possible_cpu(cpu) {
2919 		rcu_read_lock_sched();
2920 
2921 		if (dl_bw_visited(cpu, gen)) {
2922 			rcu_read_unlock_sched();
2923 			continue;
2924 		}
2925 
2926 		dl_b = dl_bw_of(cpu);
2927 
2928 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2929 		dl_b->bw = new_bw;
2930 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2931 
2932 		rcu_read_unlock_sched();
2933 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2934 	}
2935 }
2936 
2937 /*
2938  * We must be sure that accepting a new task (or allowing changing the
2939  * parameters of an existing one) is consistent with the bandwidth
2940  * constraints. If yes, this function also accordingly updates the currently
2941  * allocated bandwidth to reflect the new situation.
2942  *
2943  * This function is called while holding p's rq->lock.
2944  */
2945 int sched_dl_overflow(struct task_struct *p, int policy,
2946 		      const struct sched_attr *attr)
2947 {
2948 	u64 period = attr->sched_period ?: attr->sched_deadline;
2949 	u64 runtime = attr->sched_runtime;
2950 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2951 	int cpus, err = -1, cpu = task_cpu(p);
2952 	struct dl_bw *dl_b = dl_bw_of(cpu);
2953 	unsigned long cap;
2954 
2955 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2956 		return 0;
2957 
2958 	/* !deadline task may carry old deadline bandwidth */
2959 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2960 		return 0;
2961 
2962 	/*
2963 	 * Either if a task, enters, leave, or stays -deadline but changes
2964 	 * its parameters, we may need to update accordingly the total
2965 	 * allocated bandwidth of the container.
2966 	 */
2967 	raw_spin_lock(&dl_b->lock);
2968 	cpus = dl_bw_cpus(cpu);
2969 	cap = dl_bw_capacity(cpu);
2970 
2971 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2972 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2973 		if (hrtimer_active(&p->dl.inactive_timer))
2974 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2975 		__dl_add(dl_b, new_bw, cpus);
2976 		err = 0;
2977 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2978 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2979 		/*
2980 		 * XXX this is slightly incorrect: when the task
2981 		 * utilization decreases, we should delay the total
2982 		 * utilization change until the task's 0-lag point.
2983 		 * But this would require to set the task's "inactive
2984 		 * timer" when the task is not inactive.
2985 		 */
2986 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2987 		__dl_add(dl_b, new_bw, cpus);
2988 		dl_change_utilization(p, new_bw);
2989 		err = 0;
2990 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2991 		/*
2992 		 * Do not decrease the total deadline utilization here,
2993 		 * switched_from_dl() will take care to do it at the correct
2994 		 * (0-lag) time.
2995 		 */
2996 		err = 0;
2997 	}
2998 	raw_spin_unlock(&dl_b->lock);
2999 
3000 	return err;
3001 }
3002 
3003 /*
3004  * This function initializes the sched_dl_entity of a newly becoming
3005  * SCHED_DEADLINE task.
3006  *
3007  * Only the static values are considered here, the actual runtime and the
3008  * absolute deadline will be properly calculated when the task is enqueued
3009  * for the first time with its new policy.
3010  */
3011 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3012 {
3013 	struct sched_dl_entity *dl_se = &p->dl;
3014 
3015 	dl_se->dl_runtime = attr->sched_runtime;
3016 	dl_se->dl_deadline = attr->sched_deadline;
3017 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3018 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3019 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3020 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3021 }
3022 
3023 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3024 {
3025 	struct sched_dl_entity *dl_se = &p->dl;
3026 
3027 	attr->sched_priority = p->rt_priority;
3028 	attr->sched_runtime = dl_se->dl_runtime;
3029 	attr->sched_deadline = dl_se->dl_deadline;
3030 	attr->sched_period = dl_se->dl_period;
3031 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3032 	attr->sched_flags |= dl_se->flags;
3033 }
3034 
3035 /*
3036  * This function validates the new parameters of a -deadline task.
3037  * We ask for the deadline not being zero, and greater or equal
3038  * than the runtime, as well as the period of being zero or
3039  * greater than deadline. Furthermore, we have to be sure that
3040  * user parameters are above the internal resolution of 1us (we
3041  * check sched_runtime only since it is always the smaller one) and
3042  * below 2^63 ns (we have to check both sched_deadline and
3043  * sched_period, as the latter can be zero).
3044  */
3045 bool __checkparam_dl(const struct sched_attr *attr)
3046 {
3047 	u64 period, max, min;
3048 
3049 	/* special dl tasks don't actually use any parameter */
3050 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3051 		return true;
3052 
3053 	/* deadline != 0 */
3054 	if (attr->sched_deadline == 0)
3055 		return false;
3056 
3057 	/*
3058 	 * Since we truncate DL_SCALE bits, make sure we're at least
3059 	 * that big.
3060 	 */
3061 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3062 		return false;
3063 
3064 	/*
3065 	 * Since we use the MSB for wrap-around and sign issues, make
3066 	 * sure it's not set (mind that period can be equal to zero).
3067 	 */
3068 	if (attr->sched_deadline & (1ULL << 63) ||
3069 	    attr->sched_period & (1ULL << 63))
3070 		return false;
3071 
3072 	period = attr->sched_period;
3073 	if (!period)
3074 		period = attr->sched_deadline;
3075 
3076 	/* runtime <= deadline <= period (if period != 0) */
3077 	if (period < attr->sched_deadline ||
3078 	    attr->sched_deadline < attr->sched_runtime)
3079 		return false;
3080 
3081 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3082 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3083 
3084 	if (period < min || period > max)
3085 		return false;
3086 
3087 	return true;
3088 }
3089 
3090 /*
3091  * This function clears the sched_dl_entity static params.
3092  */
3093 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3094 {
3095 	dl_se->dl_runtime		= 0;
3096 	dl_se->dl_deadline		= 0;
3097 	dl_se->dl_period		= 0;
3098 	dl_se->flags			= 0;
3099 	dl_se->dl_bw			= 0;
3100 	dl_se->dl_density		= 0;
3101 
3102 	dl_se->dl_throttled		= 0;
3103 	dl_se->dl_yielded		= 0;
3104 	dl_se->dl_non_contending	= 0;
3105 	dl_se->dl_overrun		= 0;
3106 	dl_se->dl_server		= 0;
3107 
3108 #ifdef CONFIG_RT_MUTEXES
3109 	dl_se->pi_se			= dl_se;
3110 #endif
3111 }
3112 
3113 void init_dl_entity(struct sched_dl_entity *dl_se)
3114 {
3115 	RB_CLEAR_NODE(&dl_se->rb_node);
3116 	init_dl_task_timer(dl_se);
3117 	init_dl_inactive_task_timer(dl_se);
3118 	__dl_clear_params(dl_se);
3119 }
3120 
3121 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3122 {
3123 	struct sched_dl_entity *dl_se = &p->dl;
3124 
3125 	if (dl_se->dl_runtime != attr->sched_runtime ||
3126 	    dl_se->dl_deadline != attr->sched_deadline ||
3127 	    dl_se->dl_period != attr->sched_period ||
3128 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3129 		return true;
3130 
3131 	return false;
3132 }
3133 
3134 #ifdef CONFIG_SMP
3135 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3136 				 const struct cpumask *trial)
3137 {
3138 	unsigned long flags, cap;
3139 	struct dl_bw *cur_dl_b;
3140 	int ret = 1;
3141 
3142 	rcu_read_lock_sched();
3143 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3144 	cap = __dl_bw_capacity(trial);
3145 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3146 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3147 		ret = 0;
3148 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3149 	rcu_read_unlock_sched();
3150 
3151 	return ret;
3152 }
3153 
3154 enum dl_bw_request {
3155 	dl_bw_req_check_overflow = 0,
3156 	dl_bw_req_alloc,
3157 	dl_bw_req_free
3158 };
3159 
3160 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3161 {
3162 	unsigned long flags;
3163 	struct dl_bw *dl_b;
3164 	bool overflow = 0;
3165 
3166 	rcu_read_lock_sched();
3167 	dl_b = dl_bw_of(cpu);
3168 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3169 
3170 	if (req == dl_bw_req_free) {
3171 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3172 	} else {
3173 		unsigned long cap = dl_bw_capacity(cpu);
3174 
3175 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3176 
3177 		if (req == dl_bw_req_alloc && !overflow) {
3178 			/*
3179 			 * We reserve space in the destination
3180 			 * root_domain, as we can't fail after this point.
3181 			 * We will free resources in the source root_domain
3182 			 * later on (see set_cpus_allowed_dl()).
3183 			 */
3184 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3185 		}
3186 	}
3187 
3188 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3189 	rcu_read_unlock_sched();
3190 
3191 	return overflow ? -EBUSY : 0;
3192 }
3193 
3194 int dl_bw_check_overflow(int cpu)
3195 {
3196 	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3197 }
3198 
3199 int dl_bw_alloc(int cpu, u64 dl_bw)
3200 {
3201 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3202 }
3203 
3204 void dl_bw_free(int cpu, u64 dl_bw)
3205 {
3206 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3207 }
3208 #endif
3209 
3210 #ifdef CONFIG_SCHED_DEBUG
3211 void print_dl_stats(struct seq_file *m, int cpu)
3212 {
3213 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3214 }
3215 #endif /* CONFIG_SCHED_DEBUG */
3216