xref: /linux/kernel/sched/deadline.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 	raw_spin_lock_init(&dl_b->lock);
63 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 	if (global_rt_runtime() == RUNTIME_INF)
65 		dl_b->bw = -1;
66 	else
67 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 	dl_b->total_bw = 0;
70 }
71 
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 	dl_rq->rb_root = RB_ROOT;
75 
76 #ifdef CONFIG_SMP
77 	/* zero means no -deadline tasks */
78 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79 
80 	dl_rq->dl_nr_migratory = 0;
81 	dl_rq->overloaded = 0;
82 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 	init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87 
88 #ifdef CONFIG_SMP
89 
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 	return atomic_read(&rq->rd->dlo_count);
93 }
94 
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 	if (!rq->online)
98 		return;
99 
100 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 	/*
102 	 * Must be visible before the overload count is
103 	 * set (as in sched_rt.c).
104 	 *
105 	 * Matched by the barrier in pull_dl_task().
106 	 */
107 	smp_wmb();
108 	atomic_inc(&rq->rd->dlo_count);
109 }
110 
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 	if (!rq->online)
114 		return;
115 
116 	atomic_dec(&rq->rd->dlo_count);
117 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119 
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 		if (!dl_rq->overloaded) {
124 			dl_set_overload(rq_of_dl_rq(dl_rq));
125 			dl_rq->overloaded = 1;
126 		}
127 	} else if (dl_rq->overloaded) {
128 		dl_clear_overload(rq_of_dl_rq(dl_rq));
129 		dl_rq->overloaded = 0;
130 	}
131 }
132 
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 	struct task_struct *p = dl_task_of(dl_se);
136 
137 	if (p->nr_cpus_allowed > 1)
138 		dl_rq->dl_nr_migratory++;
139 
140 	update_dl_migration(dl_rq);
141 }
142 
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	struct task_struct *p = dl_task_of(dl_se);
146 
147 	if (p->nr_cpus_allowed > 1)
148 		dl_rq->dl_nr_migratory--;
149 
150 	update_dl_migration(dl_rq);
151 }
152 
153 /*
154  * The list of pushable -deadline task is not a plist, like in
155  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156  */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 	struct dl_rq *dl_rq = &rq->dl;
160 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct task_struct *entry;
163 	int leftmost = 1;
164 
165 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166 
167 	while (*link) {
168 		parent = *link;
169 		entry = rb_entry(parent, struct task_struct,
170 				 pushable_dl_tasks);
171 		if (dl_entity_preempt(&p->dl, &entry->dl))
172 			link = &parent->rb_left;
173 		else {
174 			link = &parent->rb_right;
175 			leftmost = 0;
176 		}
177 	}
178 
179 	if (leftmost) {
180 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 		dl_rq->earliest_dl.next = p->dl.deadline;
182 	}
183 
184 	rb_link_node(&p->pushable_dl_tasks, parent, link);
185 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187 
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 	struct dl_rq *dl_rq = &rq->dl;
191 
192 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 		return;
194 
195 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 		struct rb_node *next_node;
197 
198 		next_node = rb_next(&p->pushable_dl_tasks);
199 		dl_rq->pushable_dl_tasks_leftmost = next_node;
200 		if (next_node) {
201 			dl_rq->earliest_dl.next = rb_entry(next_node,
202 				struct task_struct, pushable_dl_tasks)->dl.deadline;
203 		}
204 	}
205 
206 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
208 }
209 
210 static inline int has_pushable_dl_tasks(struct rq *rq)
211 {
212 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213 }
214 
215 static int push_dl_task(struct rq *rq);
216 
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218 {
219 	return dl_task(prev);
220 }
221 
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
224 
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
227 
228 static inline void queue_push_tasks(struct rq *rq)
229 {
230 	if (!has_pushable_dl_tasks(rq))
231 		return;
232 
233 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234 }
235 
236 static inline void queue_pull_task(struct rq *rq)
237 {
238 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
239 }
240 
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242 
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
244 {
245 	struct rq *later_rq = NULL;
246 
247 	later_rq = find_lock_later_rq(p, rq);
248 	if (!later_rq) {
249 		int cpu;
250 
251 		/*
252 		 * If we cannot preempt any rq, fall back to pick any
253 		 * online cpu.
254 		 */
255 		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
256 		if (cpu >= nr_cpu_ids) {
257 			/*
258 			 * Fail to find any suitable cpu.
259 			 * The task will never come back!
260 			 */
261 			BUG_ON(dl_bandwidth_enabled());
262 
263 			/*
264 			 * If admission control is disabled we
265 			 * try a little harder to let the task
266 			 * run.
267 			 */
268 			cpu = cpumask_any(cpu_active_mask);
269 		}
270 		later_rq = cpu_rq(cpu);
271 		double_lock_balance(rq, later_rq);
272 	}
273 
274 	set_task_cpu(p, later_rq->cpu);
275 	double_unlock_balance(later_rq, rq);
276 
277 	return later_rq;
278 }
279 
280 #else
281 
282 static inline
283 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
284 {
285 }
286 
287 static inline
288 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
289 {
290 }
291 
292 static inline
293 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
294 {
295 }
296 
297 static inline
298 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
299 {
300 }
301 
302 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
303 {
304 	return false;
305 }
306 
307 static inline void pull_dl_task(struct rq *rq)
308 {
309 }
310 
311 static inline void queue_push_tasks(struct rq *rq)
312 {
313 }
314 
315 static inline void queue_pull_task(struct rq *rq)
316 {
317 }
318 #endif /* CONFIG_SMP */
319 
320 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
321 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
322 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
323 				  int flags);
324 
325 /*
326  * We are being explicitly informed that a new instance is starting,
327  * and this means that:
328  *  - the absolute deadline of the entity has to be placed at
329  *    current time + relative deadline;
330  *  - the runtime of the entity has to be set to the maximum value.
331  *
332  * The capability of specifying such event is useful whenever a -deadline
333  * entity wants to (try to!) synchronize its behaviour with the scheduler's
334  * one, and to (try to!) reconcile itself with its own scheduling
335  * parameters.
336  */
337 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
338 {
339 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
340 	struct rq *rq = rq_of_dl_rq(dl_rq);
341 
342 	WARN_ON(dl_se->dl_boosted);
343 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
344 
345 	/*
346 	 * We are racing with the deadline timer. So, do nothing because
347 	 * the deadline timer handler will take care of properly recharging
348 	 * the runtime and postponing the deadline
349 	 */
350 	if (dl_se->dl_throttled)
351 		return;
352 
353 	/*
354 	 * We use the regular wall clock time to set deadlines in the
355 	 * future; in fact, we must consider execution overheads (time
356 	 * spent on hardirq context, etc.).
357 	 */
358 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
359 	dl_se->runtime = dl_se->dl_runtime;
360 }
361 
362 /*
363  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
364  * possibility of a entity lasting more than what it declared, and thus
365  * exhausting its runtime.
366  *
367  * Here we are interested in making runtime overrun possible, but we do
368  * not want a entity which is misbehaving to affect the scheduling of all
369  * other entities.
370  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
371  * is used, in order to confine each entity within its own bandwidth.
372  *
373  * This function deals exactly with that, and ensures that when the runtime
374  * of a entity is replenished, its deadline is also postponed. That ensures
375  * the overrunning entity can't interfere with other entity in the system and
376  * can't make them miss their deadlines. Reasons why this kind of overruns
377  * could happen are, typically, a entity voluntarily trying to overcome its
378  * runtime, or it just underestimated it during sched_setattr().
379  */
380 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
381 				struct sched_dl_entity *pi_se)
382 {
383 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
384 	struct rq *rq = rq_of_dl_rq(dl_rq);
385 
386 	BUG_ON(pi_se->dl_runtime <= 0);
387 
388 	/*
389 	 * This could be the case for a !-dl task that is boosted.
390 	 * Just go with full inherited parameters.
391 	 */
392 	if (dl_se->dl_deadline == 0) {
393 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
394 		dl_se->runtime = pi_se->dl_runtime;
395 	}
396 
397 	if (dl_se->dl_yielded && dl_se->runtime > 0)
398 		dl_se->runtime = 0;
399 
400 	/*
401 	 * We keep moving the deadline away until we get some
402 	 * available runtime for the entity. This ensures correct
403 	 * handling of situations where the runtime overrun is
404 	 * arbitrary large.
405 	 */
406 	while (dl_se->runtime <= 0) {
407 		dl_se->deadline += pi_se->dl_period;
408 		dl_se->runtime += pi_se->dl_runtime;
409 	}
410 
411 	/*
412 	 * At this point, the deadline really should be "in
413 	 * the future" with respect to rq->clock. If it's
414 	 * not, we are, for some reason, lagging too much!
415 	 * Anyway, after having warn userspace abut that,
416 	 * we still try to keep the things running by
417 	 * resetting the deadline and the budget of the
418 	 * entity.
419 	 */
420 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
421 		printk_deferred_once("sched: DL replenish lagged too much\n");
422 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
423 		dl_se->runtime = pi_se->dl_runtime;
424 	}
425 
426 	if (dl_se->dl_yielded)
427 		dl_se->dl_yielded = 0;
428 	if (dl_se->dl_throttled)
429 		dl_se->dl_throttled = 0;
430 }
431 
432 /*
433  * Here we check if --at time t-- an entity (which is probably being
434  * [re]activated or, in general, enqueued) can use its remaining runtime
435  * and its current deadline _without_ exceeding the bandwidth it is
436  * assigned (function returns true if it can't). We are in fact applying
437  * one of the CBS rules: when a task wakes up, if the residual runtime
438  * over residual deadline fits within the allocated bandwidth, then we
439  * can keep the current (absolute) deadline and residual budget without
440  * disrupting the schedulability of the system. Otherwise, we should
441  * refill the runtime and set the deadline a period in the future,
442  * because keeping the current (absolute) deadline of the task would
443  * result in breaking guarantees promised to other tasks (refer to
444  * Documentation/scheduler/sched-deadline.txt for more informations).
445  *
446  * This function returns true if:
447  *
448  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
449  *
450  * IOW we can't recycle current parameters.
451  *
452  * Notice that the bandwidth check is done against the deadline. For
453  * task with deadline equal to period this is the same of using
454  * dl_period instead of dl_deadline in the equation above.
455  */
456 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
457 			       struct sched_dl_entity *pi_se, u64 t)
458 {
459 	u64 left, right;
460 
461 	/*
462 	 * left and right are the two sides of the equation above,
463 	 * after a bit of shuffling to use multiplications instead
464 	 * of divisions.
465 	 *
466 	 * Note that none of the time values involved in the two
467 	 * multiplications are absolute: dl_deadline and dl_runtime
468 	 * are the relative deadline and the maximum runtime of each
469 	 * instance, runtime is the runtime left for the last instance
470 	 * and (deadline - t), since t is rq->clock, is the time left
471 	 * to the (absolute) deadline. Even if overflowing the u64 type
472 	 * is very unlikely to occur in both cases, here we scale down
473 	 * as we want to avoid that risk at all. Scaling down by 10
474 	 * means that we reduce granularity to 1us. We are fine with it,
475 	 * since this is only a true/false check and, anyway, thinking
476 	 * of anything below microseconds resolution is actually fiction
477 	 * (but still we want to give the user that illusion >;).
478 	 */
479 	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
480 	right = ((dl_se->deadline - t) >> DL_SCALE) *
481 		(pi_se->dl_runtime >> DL_SCALE);
482 
483 	return dl_time_before(right, left);
484 }
485 
486 /*
487  * When a -deadline entity is queued back on the runqueue, its runtime and
488  * deadline might need updating.
489  *
490  * The policy here is that we update the deadline of the entity only if:
491  *  - the current deadline is in the past,
492  *  - using the remaining runtime with the current deadline would make
493  *    the entity exceed its bandwidth.
494  */
495 static void update_dl_entity(struct sched_dl_entity *dl_se,
496 			     struct sched_dl_entity *pi_se)
497 {
498 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
499 	struct rq *rq = rq_of_dl_rq(dl_rq);
500 
501 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
502 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
503 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
504 		dl_se->runtime = pi_se->dl_runtime;
505 	}
506 }
507 
508 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
509 {
510 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
511 }
512 
513 /*
514  * If the entity depleted all its runtime, and if we want it to sleep
515  * while waiting for some new execution time to become available, we
516  * set the bandwidth replenishment timer to the replenishment instant
517  * and try to activate it.
518  *
519  * Notice that it is important for the caller to know if the timer
520  * actually started or not (i.e., the replenishment instant is in
521  * the future or in the past).
522  */
523 static int start_dl_timer(struct task_struct *p)
524 {
525 	struct sched_dl_entity *dl_se = &p->dl;
526 	struct hrtimer *timer = &dl_se->dl_timer;
527 	struct rq *rq = task_rq(p);
528 	ktime_t now, act;
529 	s64 delta;
530 
531 	lockdep_assert_held(&rq->lock);
532 
533 	/*
534 	 * We want the timer to fire at the deadline, but considering
535 	 * that it is actually coming from rq->clock and not from
536 	 * hrtimer's time base reading.
537 	 */
538 	act = ns_to_ktime(dl_next_period(dl_se));
539 	now = hrtimer_cb_get_time(timer);
540 	delta = ktime_to_ns(now) - rq_clock(rq);
541 	act = ktime_add_ns(act, delta);
542 
543 	/*
544 	 * If the expiry time already passed, e.g., because the value
545 	 * chosen as the deadline is too small, don't even try to
546 	 * start the timer in the past!
547 	 */
548 	if (ktime_us_delta(act, now) < 0)
549 		return 0;
550 
551 	/*
552 	 * !enqueued will guarantee another callback; even if one is already in
553 	 * progress. This ensures a balanced {get,put}_task_struct().
554 	 *
555 	 * The race against __run_timer() clearing the enqueued state is
556 	 * harmless because we're holding task_rq()->lock, therefore the timer
557 	 * expiring after we've done the check will wait on its task_rq_lock()
558 	 * and observe our state.
559 	 */
560 	if (!hrtimer_is_queued(timer)) {
561 		get_task_struct(p);
562 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
563 	}
564 
565 	return 1;
566 }
567 
568 /*
569  * This is the bandwidth enforcement timer callback. If here, we know
570  * a task is not on its dl_rq, since the fact that the timer was running
571  * means the task is throttled and needs a runtime replenishment.
572  *
573  * However, what we actually do depends on the fact the task is active,
574  * (it is on its rq) or has been removed from there by a call to
575  * dequeue_task_dl(). In the former case we must issue the runtime
576  * replenishment and add the task back to the dl_rq; in the latter, we just
577  * do nothing but clearing dl_throttled, so that runtime and deadline
578  * updating (and the queueing back to dl_rq) will be done by the
579  * next call to enqueue_task_dl().
580  */
581 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
582 {
583 	struct sched_dl_entity *dl_se = container_of(timer,
584 						     struct sched_dl_entity,
585 						     dl_timer);
586 	struct task_struct *p = dl_task_of(dl_se);
587 	struct rq_flags rf;
588 	struct rq *rq;
589 
590 	rq = task_rq_lock(p, &rf);
591 
592 	/*
593 	 * The task might have changed its scheduling policy to something
594 	 * different than SCHED_DEADLINE (through switched_from_dl()).
595 	 */
596 	if (!dl_task(p)) {
597 		__dl_clear_params(p);
598 		goto unlock;
599 	}
600 
601 	/*
602 	 * The task might have been boosted by someone else and might be in the
603 	 * boosting/deboosting path, its not throttled.
604 	 */
605 	if (dl_se->dl_boosted)
606 		goto unlock;
607 
608 	/*
609 	 * Spurious timer due to start_dl_timer() race; or we already received
610 	 * a replenishment from rt_mutex_setprio().
611 	 */
612 	if (!dl_se->dl_throttled)
613 		goto unlock;
614 
615 	sched_clock_tick();
616 	update_rq_clock(rq);
617 
618 	/*
619 	 * If the throttle happened during sched-out; like:
620 	 *
621 	 *   schedule()
622 	 *     deactivate_task()
623 	 *       dequeue_task_dl()
624 	 *         update_curr_dl()
625 	 *           start_dl_timer()
626 	 *         __dequeue_task_dl()
627 	 *     prev->on_rq = 0;
628 	 *
629 	 * We can be both throttled and !queued. Replenish the counter
630 	 * but do not enqueue -- wait for our wakeup to do that.
631 	 */
632 	if (!task_on_rq_queued(p)) {
633 		replenish_dl_entity(dl_se, dl_se);
634 		goto unlock;
635 	}
636 
637 #ifdef CONFIG_SMP
638 	if (unlikely(!rq->online)) {
639 		/*
640 		 * If the runqueue is no longer available, migrate the
641 		 * task elsewhere. This necessarily changes rq.
642 		 */
643 		lockdep_unpin_lock(&rq->lock, rf.cookie);
644 		rq = dl_task_offline_migration(rq, p);
645 		rf.cookie = lockdep_pin_lock(&rq->lock);
646 		update_rq_clock(rq);
647 
648 		/*
649 		 * Now that the task has been migrated to the new RQ and we
650 		 * have that locked, proceed as normal and enqueue the task
651 		 * there.
652 		 */
653 	}
654 #endif
655 
656 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
657 	if (dl_task(rq->curr))
658 		check_preempt_curr_dl(rq, p, 0);
659 	else
660 		resched_curr(rq);
661 
662 #ifdef CONFIG_SMP
663 	/*
664 	 * Queueing this task back might have overloaded rq, check if we need
665 	 * to kick someone away.
666 	 */
667 	if (has_pushable_dl_tasks(rq)) {
668 		/*
669 		 * Nothing relies on rq->lock after this, so its safe to drop
670 		 * rq->lock.
671 		 */
672 		rq_unpin_lock(rq, &rf);
673 		push_dl_task(rq);
674 		rq_repin_lock(rq, &rf);
675 	}
676 #endif
677 
678 unlock:
679 	task_rq_unlock(rq, p, &rf);
680 
681 	/*
682 	 * This can free the task_struct, including this hrtimer, do not touch
683 	 * anything related to that after this.
684 	 */
685 	put_task_struct(p);
686 
687 	return HRTIMER_NORESTART;
688 }
689 
690 void init_dl_task_timer(struct sched_dl_entity *dl_se)
691 {
692 	struct hrtimer *timer = &dl_se->dl_timer;
693 
694 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
695 	timer->function = dl_task_timer;
696 }
697 
698 /*
699  * During the activation, CBS checks if it can reuse the current task's
700  * runtime and period. If the deadline of the task is in the past, CBS
701  * cannot use the runtime, and so it replenishes the task. This rule
702  * works fine for implicit deadline tasks (deadline == period), and the
703  * CBS was designed for implicit deadline tasks. However, a task with
704  * constrained deadline (deadine < period) might be awakened after the
705  * deadline, but before the next period. In this case, replenishing the
706  * task would allow it to run for runtime / deadline. As in this case
707  * deadline < period, CBS enables a task to run for more than the
708  * runtime / period. In a very loaded system, this can cause a domino
709  * effect, making other tasks miss their deadlines.
710  *
711  * To avoid this problem, in the activation of a constrained deadline
712  * task after the deadline but before the next period, throttle the
713  * task and set the replenishing timer to the begin of the next period,
714  * unless it is boosted.
715  */
716 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
717 {
718 	struct task_struct *p = dl_task_of(dl_se);
719 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
720 
721 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
722 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
723 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
724 			return;
725 		dl_se->dl_throttled = 1;
726 	}
727 }
728 
729 static
730 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
731 {
732 	return (dl_se->runtime <= 0);
733 }
734 
735 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
736 
737 /*
738  * Update the current task's runtime statistics (provided it is still
739  * a -deadline task and has not been removed from the dl_rq).
740  */
741 static void update_curr_dl(struct rq *rq)
742 {
743 	struct task_struct *curr = rq->curr;
744 	struct sched_dl_entity *dl_se = &curr->dl;
745 	u64 delta_exec;
746 
747 	if (!dl_task(curr) || !on_dl_rq(dl_se))
748 		return;
749 
750 	/*
751 	 * Consumed budget is computed considering the time as
752 	 * observed by schedulable tasks (excluding time spent
753 	 * in hardirq context, etc.). Deadlines are instead
754 	 * computed using hard walltime. This seems to be the more
755 	 * natural solution, but the full ramifications of this
756 	 * approach need further study.
757 	 */
758 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
759 	if (unlikely((s64)delta_exec <= 0)) {
760 		if (unlikely(dl_se->dl_yielded))
761 			goto throttle;
762 		return;
763 	}
764 
765 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
766 	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
767 
768 	schedstat_set(curr->se.statistics.exec_max,
769 		      max(curr->se.statistics.exec_max, delta_exec));
770 
771 	curr->se.sum_exec_runtime += delta_exec;
772 	account_group_exec_runtime(curr, delta_exec);
773 
774 	curr->se.exec_start = rq_clock_task(rq);
775 	cpuacct_charge(curr, delta_exec);
776 
777 	sched_rt_avg_update(rq, delta_exec);
778 
779 	dl_se->runtime -= delta_exec;
780 
781 throttle:
782 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
783 		dl_se->dl_throttled = 1;
784 		__dequeue_task_dl(rq, curr, 0);
785 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
786 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
787 
788 		if (!is_leftmost(curr, &rq->dl))
789 			resched_curr(rq);
790 	}
791 
792 	/*
793 	 * Because -- for now -- we share the rt bandwidth, we need to
794 	 * account our runtime there too, otherwise actual rt tasks
795 	 * would be able to exceed the shared quota.
796 	 *
797 	 * Account to the root rt group for now.
798 	 *
799 	 * The solution we're working towards is having the RT groups scheduled
800 	 * using deadline servers -- however there's a few nasties to figure
801 	 * out before that can happen.
802 	 */
803 	if (rt_bandwidth_enabled()) {
804 		struct rt_rq *rt_rq = &rq->rt;
805 
806 		raw_spin_lock(&rt_rq->rt_runtime_lock);
807 		/*
808 		 * We'll let actual RT tasks worry about the overflow here, we
809 		 * have our own CBS to keep us inline; only account when RT
810 		 * bandwidth is relevant.
811 		 */
812 		if (sched_rt_bandwidth_account(rt_rq))
813 			rt_rq->rt_time += delta_exec;
814 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
815 	}
816 }
817 
818 #ifdef CONFIG_SMP
819 
820 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
821 {
822 	struct rq *rq = rq_of_dl_rq(dl_rq);
823 
824 	if (dl_rq->earliest_dl.curr == 0 ||
825 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
826 		dl_rq->earliest_dl.curr = deadline;
827 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
828 	}
829 }
830 
831 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
832 {
833 	struct rq *rq = rq_of_dl_rq(dl_rq);
834 
835 	/*
836 	 * Since we may have removed our earliest (and/or next earliest)
837 	 * task we must recompute them.
838 	 */
839 	if (!dl_rq->dl_nr_running) {
840 		dl_rq->earliest_dl.curr = 0;
841 		dl_rq->earliest_dl.next = 0;
842 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
843 	} else {
844 		struct rb_node *leftmost = dl_rq->rb_leftmost;
845 		struct sched_dl_entity *entry;
846 
847 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
848 		dl_rq->earliest_dl.curr = entry->deadline;
849 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
850 	}
851 }
852 
853 #else
854 
855 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
856 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
857 
858 #endif /* CONFIG_SMP */
859 
860 static inline
861 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
862 {
863 	int prio = dl_task_of(dl_se)->prio;
864 	u64 deadline = dl_se->deadline;
865 
866 	WARN_ON(!dl_prio(prio));
867 	dl_rq->dl_nr_running++;
868 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
869 
870 	inc_dl_deadline(dl_rq, deadline);
871 	inc_dl_migration(dl_se, dl_rq);
872 }
873 
874 static inline
875 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
876 {
877 	int prio = dl_task_of(dl_se)->prio;
878 
879 	WARN_ON(!dl_prio(prio));
880 	WARN_ON(!dl_rq->dl_nr_running);
881 	dl_rq->dl_nr_running--;
882 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
883 
884 	dec_dl_deadline(dl_rq, dl_se->deadline);
885 	dec_dl_migration(dl_se, dl_rq);
886 }
887 
888 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
889 {
890 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
891 	struct rb_node **link = &dl_rq->rb_root.rb_node;
892 	struct rb_node *parent = NULL;
893 	struct sched_dl_entity *entry;
894 	int leftmost = 1;
895 
896 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
897 
898 	while (*link) {
899 		parent = *link;
900 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
901 		if (dl_time_before(dl_se->deadline, entry->deadline))
902 			link = &parent->rb_left;
903 		else {
904 			link = &parent->rb_right;
905 			leftmost = 0;
906 		}
907 	}
908 
909 	if (leftmost)
910 		dl_rq->rb_leftmost = &dl_se->rb_node;
911 
912 	rb_link_node(&dl_se->rb_node, parent, link);
913 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
914 
915 	inc_dl_tasks(dl_se, dl_rq);
916 }
917 
918 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
919 {
920 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
921 
922 	if (RB_EMPTY_NODE(&dl_se->rb_node))
923 		return;
924 
925 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
926 		struct rb_node *next_node;
927 
928 		next_node = rb_next(&dl_se->rb_node);
929 		dl_rq->rb_leftmost = next_node;
930 	}
931 
932 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
933 	RB_CLEAR_NODE(&dl_se->rb_node);
934 
935 	dec_dl_tasks(dl_se, dl_rq);
936 }
937 
938 static void
939 enqueue_dl_entity(struct sched_dl_entity *dl_se,
940 		  struct sched_dl_entity *pi_se, int flags)
941 {
942 	BUG_ON(on_dl_rq(dl_se));
943 
944 	/*
945 	 * If this is a wakeup or a new instance, the scheduling
946 	 * parameters of the task might need updating. Otherwise,
947 	 * we want a replenishment of its runtime.
948 	 */
949 	if (flags & ENQUEUE_WAKEUP)
950 		update_dl_entity(dl_se, pi_se);
951 	else if (flags & ENQUEUE_REPLENISH)
952 		replenish_dl_entity(dl_se, pi_se);
953 
954 	__enqueue_dl_entity(dl_se);
955 }
956 
957 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
958 {
959 	__dequeue_dl_entity(dl_se);
960 }
961 
962 static inline bool dl_is_constrained(struct sched_dl_entity *dl_se)
963 {
964 	return dl_se->dl_deadline < dl_se->dl_period;
965 }
966 
967 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
968 {
969 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
970 	struct sched_dl_entity *pi_se = &p->dl;
971 
972 	/*
973 	 * Use the scheduling parameters of the top pi-waiter
974 	 * task if we have one and its (absolute) deadline is
975 	 * smaller than our one... OTW we keep our runtime and
976 	 * deadline.
977 	 */
978 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
979 		pi_se = &pi_task->dl;
980 	} else if (!dl_prio(p->normal_prio)) {
981 		/*
982 		 * Special case in which we have a !SCHED_DEADLINE task
983 		 * that is going to be deboosted, but exceedes its
984 		 * runtime while doing so. No point in replenishing
985 		 * it, as it's going to return back to its original
986 		 * scheduling class after this.
987 		 */
988 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
989 		return;
990 	}
991 
992 	/*
993 	 * Check if a constrained deadline task was activated
994 	 * after the deadline but before the next period.
995 	 * If that is the case, the task will be throttled and
996 	 * the replenishment timer will be set to the next period.
997 	 */
998 	if (!p->dl.dl_throttled && dl_is_constrained(&p->dl))
999 		dl_check_constrained_dl(&p->dl);
1000 
1001 	/*
1002 	 * If p is throttled, we do nothing. In fact, if it exhausted
1003 	 * its budget it needs a replenishment and, since it now is on
1004 	 * its rq, the bandwidth timer callback (which clearly has not
1005 	 * run yet) will take care of this.
1006 	 */
1007 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
1008 		return;
1009 
1010 	enqueue_dl_entity(&p->dl, pi_se, flags);
1011 
1012 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1013 		enqueue_pushable_dl_task(rq, p);
1014 }
1015 
1016 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1017 {
1018 	dequeue_dl_entity(&p->dl);
1019 	dequeue_pushable_dl_task(rq, p);
1020 }
1021 
1022 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1023 {
1024 	update_curr_dl(rq);
1025 	__dequeue_task_dl(rq, p, flags);
1026 }
1027 
1028 /*
1029  * Yield task semantic for -deadline tasks is:
1030  *
1031  *   get off from the CPU until our next instance, with
1032  *   a new runtime. This is of little use now, since we
1033  *   don't have a bandwidth reclaiming mechanism. Anyway,
1034  *   bandwidth reclaiming is planned for the future, and
1035  *   yield_task_dl will indicate that some spare budget
1036  *   is available for other task instances to use it.
1037  */
1038 static void yield_task_dl(struct rq *rq)
1039 {
1040 	/*
1041 	 * We make the task go to sleep until its current deadline by
1042 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1043 	 * it and the bandwidth timer will wake it up and will give it
1044 	 * new scheduling parameters (thanks to dl_yielded=1).
1045 	 */
1046 	rq->curr->dl.dl_yielded = 1;
1047 
1048 	update_rq_clock(rq);
1049 	update_curr_dl(rq);
1050 	/*
1051 	 * Tell update_rq_clock() that we've just updated,
1052 	 * so we don't do microscopic update in schedule()
1053 	 * and double the fastpath cost.
1054 	 */
1055 	rq_clock_skip_update(rq, true);
1056 }
1057 
1058 #ifdef CONFIG_SMP
1059 
1060 static int find_later_rq(struct task_struct *task);
1061 
1062 static int
1063 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1064 {
1065 	struct task_struct *curr;
1066 	struct rq *rq;
1067 
1068 	if (sd_flag != SD_BALANCE_WAKE)
1069 		goto out;
1070 
1071 	rq = cpu_rq(cpu);
1072 
1073 	rcu_read_lock();
1074 	curr = READ_ONCE(rq->curr); /* unlocked access */
1075 
1076 	/*
1077 	 * If we are dealing with a -deadline task, we must
1078 	 * decide where to wake it up.
1079 	 * If it has a later deadline and the current task
1080 	 * on this rq can't move (provided the waking task
1081 	 * can!) we prefer to send it somewhere else. On the
1082 	 * other hand, if it has a shorter deadline, we
1083 	 * try to make it stay here, it might be important.
1084 	 */
1085 	if (unlikely(dl_task(curr)) &&
1086 	    (curr->nr_cpus_allowed < 2 ||
1087 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1088 	    (p->nr_cpus_allowed > 1)) {
1089 		int target = find_later_rq(p);
1090 
1091 		if (target != -1 &&
1092 				(dl_time_before(p->dl.deadline,
1093 					cpu_rq(target)->dl.earliest_dl.curr) ||
1094 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1095 			cpu = target;
1096 	}
1097 	rcu_read_unlock();
1098 
1099 out:
1100 	return cpu;
1101 }
1102 
1103 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1104 {
1105 	/*
1106 	 * Current can't be migrated, useless to reschedule,
1107 	 * let's hope p can move out.
1108 	 */
1109 	if (rq->curr->nr_cpus_allowed == 1 ||
1110 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1111 		return;
1112 
1113 	/*
1114 	 * p is migratable, so let's not schedule it and
1115 	 * see if it is pushed or pulled somewhere else.
1116 	 */
1117 	if (p->nr_cpus_allowed != 1 &&
1118 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1119 		return;
1120 
1121 	resched_curr(rq);
1122 }
1123 
1124 #endif /* CONFIG_SMP */
1125 
1126 /*
1127  * Only called when both the current and waking task are -deadline
1128  * tasks.
1129  */
1130 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1131 				  int flags)
1132 {
1133 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1134 		resched_curr(rq);
1135 		return;
1136 	}
1137 
1138 #ifdef CONFIG_SMP
1139 	/*
1140 	 * In the unlikely case current and p have the same deadline
1141 	 * let us try to decide what's the best thing to do...
1142 	 */
1143 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1144 	    !test_tsk_need_resched(rq->curr))
1145 		check_preempt_equal_dl(rq, p);
1146 #endif /* CONFIG_SMP */
1147 }
1148 
1149 #ifdef CONFIG_SCHED_HRTICK
1150 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1151 {
1152 	hrtick_start(rq, p->dl.runtime);
1153 }
1154 #else /* !CONFIG_SCHED_HRTICK */
1155 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1156 {
1157 }
1158 #endif
1159 
1160 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1161 						   struct dl_rq *dl_rq)
1162 {
1163 	struct rb_node *left = dl_rq->rb_leftmost;
1164 
1165 	if (!left)
1166 		return NULL;
1167 
1168 	return rb_entry(left, struct sched_dl_entity, rb_node);
1169 }
1170 
1171 struct task_struct *
1172 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1173 {
1174 	struct sched_dl_entity *dl_se;
1175 	struct task_struct *p;
1176 	struct dl_rq *dl_rq;
1177 
1178 	dl_rq = &rq->dl;
1179 
1180 	if (need_pull_dl_task(rq, prev)) {
1181 		/*
1182 		 * This is OK, because current is on_cpu, which avoids it being
1183 		 * picked for load-balance and preemption/IRQs are still
1184 		 * disabled avoiding further scheduler activity on it and we're
1185 		 * being very careful to re-start the picking loop.
1186 		 */
1187 		rq_unpin_lock(rq, rf);
1188 		pull_dl_task(rq);
1189 		rq_repin_lock(rq, rf);
1190 		/*
1191 		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1192 		 * means a stop task can slip in, in which case we need to
1193 		 * re-start task selection.
1194 		 */
1195 		if (rq->stop && task_on_rq_queued(rq->stop))
1196 			return RETRY_TASK;
1197 	}
1198 
1199 	/*
1200 	 * When prev is DL, we may throttle it in put_prev_task().
1201 	 * So, we update time before we check for dl_nr_running.
1202 	 */
1203 	if (prev->sched_class == &dl_sched_class)
1204 		update_curr_dl(rq);
1205 
1206 	if (unlikely(!dl_rq->dl_nr_running))
1207 		return NULL;
1208 
1209 	put_prev_task(rq, prev);
1210 
1211 	dl_se = pick_next_dl_entity(rq, dl_rq);
1212 	BUG_ON(!dl_se);
1213 
1214 	p = dl_task_of(dl_se);
1215 	p->se.exec_start = rq_clock_task(rq);
1216 
1217 	/* Running task will never be pushed. */
1218        dequeue_pushable_dl_task(rq, p);
1219 
1220 	if (hrtick_enabled(rq))
1221 		start_hrtick_dl(rq, p);
1222 
1223 	queue_push_tasks(rq);
1224 
1225 	return p;
1226 }
1227 
1228 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1229 {
1230 	update_curr_dl(rq);
1231 
1232 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1233 		enqueue_pushable_dl_task(rq, p);
1234 }
1235 
1236 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1237 {
1238 	update_curr_dl(rq);
1239 
1240 	/*
1241 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1242 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1243 	 * be set and schedule() will start a new hrtick for the next task.
1244 	 */
1245 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1246 	    is_leftmost(p, &rq->dl))
1247 		start_hrtick_dl(rq, p);
1248 }
1249 
1250 static void task_fork_dl(struct task_struct *p)
1251 {
1252 	/*
1253 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1254 	 * sched_fork()
1255 	 */
1256 }
1257 
1258 static void task_dead_dl(struct task_struct *p)
1259 {
1260 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1261 
1262 	/*
1263 	 * Since we are TASK_DEAD we won't slip out of the domain!
1264 	 */
1265 	raw_spin_lock_irq(&dl_b->lock);
1266 	/* XXX we should retain the bw until 0-lag */
1267 	dl_b->total_bw -= p->dl.dl_bw;
1268 	raw_spin_unlock_irq(&dl_b->lock);
1269 }
1270 
1271 static void set_curr_task_dl(struct rq *rq)
1272 {
1273 	struct task_struct *p = rq->curr;
1274 
1275 	p->se.exec_start = rq_clock_task(rq);
1276 
1277 	/* You can't push away the running task */
1278 	dequeue_pushable_dl_task(rq, p);
1279 }
1280 
1281 #ifdef CONFIG_SMP
1282 
1283 /* Only try algorithms three times */
1284 #define DL_MAX_TRIES 3
1285 
1286 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1287 {
1288 	if (!task_running(rq, p) &&
1289 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1290 		return 1;
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Return the earliest pushable rq's task, which is suitable to be executed
1296  * on the CPU, NULL otherwise:
1297  */
1298 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1299 {
1300 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1301 	struct task_struct *p = NULL;
1302 
1303 	if (!has_pushable_dl_tasks(rq))
1304 		return NULL;
1305 
1306 next_node:
1307 	if (next_node) {
1308 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1309 
1310 		if (pick_dl_task(rq, p, cpu))
1311 			return p;
1312 
1313 		next_node = rb_next(next_node);
1314 		goto next_node;
1315 	}
1316 
1317 	return NULL;
1318 }
1319 
1320 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1321 
1322 static int find_later_rq(struct task_struct *task)
1323 {
1324 	struct sched_domain *sd;
1325 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1326 	int this_cpu = smp_processor_id();
1327 	int best_cpu, cpu = task_cpu(task);
1328 
1329 	/* Make sure the mask is initialized first */
1330 	if (unlikely(!later_mask))
1331 		return -1;
1332 
1333 	if (task->nr_cpus_allowed == 1)
1334 		return -1;
1335 
1336 	/*
1337 	 * We have to consider system topology and task affinity
1338 	 * first, then we can look for a suitable cpu.
1339 	 */
1340 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1341 			task, later_mask);
1342 	if (best_cpu == -1)
1343 		return -1;
1344 
1345 	/*
1346 	 * If we are here, some target has been found,
1347 	 * the most suitable of which is cached in best_cpu.
1348 	 * This is, among the runqueues where the current tasks
1349 	 * have later deadlines than the task's one, the rq
1350 	 * with the latest possible one.
1351 	 *
1352 	 * Now we check how well this matches with task's
1353 	 * affinity and system topology.
1354 	 *
1355 	 * The last cpu where the task run is our first
1356 	 * guess, since it is most likely cache-hot there.
1357 	 */
1358 	if (cpumask_test_cpu(cpu, later_mask))
1359 		return cpu;
1360 	/*
1361 	 * Check if this_cpu is to be skipped (i.e., it is
1362 	 * not in the mask) or not.
1363 	 */
1364 	if (!cpumask_test_cpu(this_cpu, later_mask))
1365 		this_cpu = -1;
1366 
1367 	rcu_read_lock();
1368 	for_each_domain(cpu, sd) {
1369 		if (sd->flags & SD_WAKE_AFFINE) {
1370 
1371 			/*
1372 			 * If possible, preempting this_cpu is
1373 			 * cheaper than migrating.
1374 			 */
1375 			if (this_cpu != -1 &&
1376 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1377 				rcu_read_unlock();
1378 				return this_cpu;
1379 			}
1380 
1381 			/*
1382 			 * Last chance: if best_cpu is valid and is
1383 			 * in the mask, that becomes our choice.
1384 			 */
1385 			if (best_cpu < nr_cpu_ids &&
1386 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1387 				rcu_read_unlock();
1388 				return best_cpu;
1389 			}
1390 		}
1391 	}
1392 	rcu_read_unlock();
1393 
1394 	/*
1395 	 * At this point, all our guesses failed, we just return
1396 	 * 'something', and let the caller sort the things out.
1397 	 */
1398 	if (this_cpu != -1)
1399 		return this_cpu;
1400 
1401 	cpu = cpumask_any(later_mask);
1402 	if (cpu < nr_cpu_ids)
1403 		return cpu;
1404 
1405 	return -1;
1406 }
1407 
1408 /* Locks the rq it finds */
1409 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1410 {
1411 	struct rq *later_rq = NULL;
1412 	int tries;
1413 	int cpu;
1414 
1415 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1416 		cpu = find_later_rq(task);
1417 
1418 		if ((cpu == -1) || (cpu == rq->cpu))
1419 			break;
1420 
1421 		later_rq = cpu_rq(cpu);
1422 
1423 		if (later_rq->dl.dl_nr_running &&
1424 		    !dl_time_before(task->dl.deadline,
1425 					later_rq->dl.earliest_dl.curr)) {
1426 			/*
1427 			 * Target rq has tasks of equal or earlier deadline,
1428 			 * retrying does not release any lock and is unlikely
1429 			 * to yield a different result.
1430 			 */
1431 			later_rq = NULL;
1432 			break;
1433 		}
1434 
1435 		/* Retry if something changed. */
1436 		if (double_lock_balance(rq, later_rq)) {
1437 			if (unlikely(task_rq(task) != rq ||
1438 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1439 				     task_running(rq, task) ||
1440 				     !dl_task(task) ||
1441 				     !task_on_rq_queued(task))) {
1442 				double_unlock_balance(rq, later_rq);
1443 				later_rq = NULL;
1444 				break;
1445 			}
1446 		}
1447 
1448 		/*
1449 		 * If the rq we found has no -deadline task, or
1450 		 * its earliest one has a later deadline than our
1451 		 * task, the rq is a good one.
1452 		 */
1453 		if (!later_rq->dl.dl_nr_running ||
1454 		    dl_time_before(task->dl.deadline,
1455 				   later_rq->dl.earliest_dl.curr))
1456 			break;
1457 
1458 		/* Otherwise we try again. */
1459 		double_unlock_balance(rq, later_rq);
1460 		later_rq = NULL;
1461 	}
1462 
1463 	return later_rq;
1464 }
1465 
1466 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1467 {
1468 	struct task_struct *p;
1469 
1470 	if (!has_pushable_dl_tasks(rq))
1471 		return NULL;
1472 
1473 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1474 		     struct task_struct, pushable_dl_tasks);
1475 
1476 	BUG_ON(rq->cpu != task_cpu(p));
1477 	BUG_ON(task_current(rq, p));
1478 	BUG_ON(p->nr_cpus_allowed <= 1);
1479 
1480 	BUG_ON(!task_on_rq_queued(p));
1481 	BUG_ON(!dl_task(p));
1482 
1483 	return p;
1484 }
1485 
1486 /*
1487  * See if the non running -deadline tasks on this rq
1488  * can be sent to some other CPU where they can preempt
1489  * and start executing.
1490  */
1491 static int push_dl_task(struct rq *rq)
1492 {
1493 	struct task_struct *next_task;
1494 	struct rq *later_rq;
1495 	int ret = 0;
1496 
1497 	if (!rq->dl.overloaded)
1498 		return 0;
1499 
1500 	next_task = pick_next_pushable_dl_task(rq);
1501 	if (!next_task)
1502 		return 0;
1503 
1504 retry:
1505 	if (unlikely(next_task == rq->curr)) {
1506 		WARN_ON(1);
1507 		return 0;
1508 	}
1509 
1510 	/*
1511 	 * If next_task preempts rq->curr, and rq->curr
1512 	 * can move away, it makes sense to just reschedule
1513 	 * without going further in pushing next_task.
1514 	 */
1515 	if (dl_task(rq->curr) &&
1516 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1517 	    rq->curr->nr_cpus_allowed > 1) {
1518 		resched_curr(rq);
1519 		return 0;
1520 	}
1521 
1522 	/* We might release rq lock */
1523 	get_task_struct(next_task);
1524 
1525 	/* Will lock the rq it'll find */
1526 	later_rq = find_lock_later_rq(next_task, rq);
1527 	if (!later_rq) {
1528 		struct task_struct *task;
1529 
1530 		/*
1531 		 * We must check all this again, since
1532 		 * find_lock_later_rq releases rq->lock and it is
1533 		 * then possible that next_task has migrated.
1534 		 */
1535 		task = pick_next_pushable_dl_task(rq);
1536 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1537 			/*
1538 			 * The task is still there. We don't try
1539 			 * again, some other cpu will pull it when ready.
1540 			 */
1541 			goto out;
1542 		}
1543 
1544 		if (!task)
1545 			/* No more tasks */
1546 			goto out;
1547 
1548 		put_task_struct(next_task);
1549 		next_task = task;
1550 		goto retry;
1551 	}
1552 
1553 	deactivate_task(rq, next_task, 0);
1554 	set_task_cpu(next_task, later_rq->cpu);
1555 	activate_task(later_rq, next_task, 0);
1556 	ret = 1;
1557 
1558 	resched_curr(later_rq);
1559 
1560 	double_unlock_balance(rq, later_rq);
1561 
1562 out:
1563 	put_task_struct(next_task);
1564 
1565 	return ret;
1566 }
1567 
1568 static void push_dl_tasks(struct rq *rq)
1569 {
1570 	/* push_dl_task() will return true if it moved a -deadline task */
1571 	while (push_dl_task(rq))
1572 		;
1573 }
1574 
1575 static void pull_dl_task(struct rq *this_rq)
1576 {
1577 	int this_cpu = this_rq->cpu, cpu;
1578 	struct task_struct *p;
1579 	bool resched = false;
1580 	struct rq *src_rq;
1581 	u64 dmin = LONG_MAX;
1582 
1583 	if (likely(!dl_overloaded(this_rq)))
1584 		return;
1585 
1586 	/*
1587 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1588 	 * see overloaded we must also see the dlo_mask bit.
1589 	 */
1590 	smp_rmb();
1591 
1592 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1593 		if (this_cpu == cpu)
1594 			continue;
1595 
1596 		src_rq = cpu_rq(cpu);
1597 
1598 		/*
1599 		 * It looks racy, abd it is! However, as in sched_rt.c,
1600 		 * we are fine with this.
1601 		 */
1602 		if (this_rq->dl.dl_nr_running &&
1603 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1604 				   src_rq->dl.earliest_dl.next))
1605 			continue;
1606 
1607 		/* Might drop this_rq->lock */
1608 		double_lock_balance(this_rq, src_rq);
1609 
1610 		/*
1611 		 * If there are no more pullable tasks on the
1612 		 * rq, we're done with it.
1613 		 */
1614 		if (src_rq->dl.dl_nr_running <= 1)
1615 			goto skip;
1616 
1617 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1618 
1619 		/*
1620 		 * We found a task to be pulled if:
1621 		 *  - it preempts our current (if there's one),
1622 		 *  - it will preempt the last one we pulled (if any).
1623 		 */
1624 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1625 		    (!this_rq->dl.dl_nr_running ||
1626 		     dl_time_before(p->dl.deadline,
1627 				    this_rq->dl.earliest_dl.curr))) {
1628 			WARN_ON(p == src_rq->curr);
1629 			WARN_ON(!task_on_rq_queued(p));
1630 
1631 			/*
1632 			 * Then we pull iff p has actually an earlier
1633 			 * deadline than the current task of its runqueue.
1634 			 */
1635 			if (dl_time_before(p->dl.deadline,
1636 					   src_rq->curr->dl.deadline))
1637 				goto skip;
1638 
1639 			resched = true;
1640 
1641 			deactivate_task(src_rq, p, 0);
1642 			set_task_cpu(p, this_cpu);
1643 			activate_task(this_rq, p, 0);
1644 			dmin = p->dl.deadline;
1645 
1646 			/* Is there any other task even earlier? */
1647 		}
1648 skip:
1649 		double_unlock_balance(this_rq, src_rq);
1650 	}
1651 
1652 	if (resched)
1653 		resched_curr(this_rq);
1654 }
1655 
1656 /*
1657  * Since the task is not running and a reschedule is not going to happen
1658  * anytime soon on its runqueue, we try pushing it away now.
1659  */
1660 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1661 {
1662 	if (!task_running(rq, p) &&
1663 	    !test_tsk_need_resched(rq->curr) &&
1664 	    p->nr_cpus_allowed > 1 &&
1665 	    dl_task(rq->curr) &&
1666 	    (rq->curr->nr_cpus_allowed < 2 ||
1667 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1668 		push_dl_tasks(rq);
1669 	}
1670 }
1671 
1672 static void set_cpus_allowed_dl(struct task_struct *p,
1673 				const struct cpumask *new_mask)
1674 {
1675 	struct root_domain *src_rd;
1676 	struct rq *rq;
1677 
1678 	BUG_ON(!dl_task(p));
1679 
1680 	rq = task_rq(p);
1681 	src_rd = rq->rd;
1682 	/*
1683 	 * Migrating a SCHED_DEADLINE task between exclusive
1684 	 * cpusets (different root_domains) entails a bandwidth
1685 	 * update. We already made space for us in the destination
1686 	 * domain (see cpuset_can_attach()).
1687 	 */
1688 	if (!cpumask_intersects(src_rd->span, new_mask)) {
1689 		struct dl_bw *src_dl_b;
1690 
1691 		src_dl_b = dl_bw_of(cpu_of(rq));
1692 		/*
1693 		 * We now free resources of the root_domain we are migrating
1694 		 * off. In the worst case, sched_setattr() may temporary fail
1695 		 * until we complete the update.
1696 		 */
1697 		raw_spin_lock(&src_dl_b->lock);
1698 		__dl_clear(src_dl_b, p->dl.dl_bw);
1699 		raw_spin_unlock(&src_dl_b->lock);
1700 	}
1701 
1702 	set_cpus_allowed_common(p, new_mask);
1703 }
1704 
1705 /* Assumes rq->lock is held */
1706 static void rq_online_dl(struct rq *rq)
1707 {
1708 	if (rq->dl.overloaded)
1709 		dl_set_overload(rq);
1710 
1711 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1712 	if (rq->dl.dl_nr_running > 0)
1713 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1714 }
1715 
1716 /* Assumes rq->lock is held */
1717 static void rq_offline_dl(struct rq *rq)
1718 {
1719 	if (rq->dl.overloaded)
1720 		dl_clear_overload(rq);
1721 
1722 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
1723 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1724 }
1725 
1726 void __init init_sched_dl_class(void)
1727 {
1728 	unsigned int i;
1729 
1730 	for_each_possible_cpu(i)
1731 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1732 					GFP_KERNEL, cpu_to_node(i));
1733 }
1734 
1735 #endif /* CONFIG_SMP */
1736 
1737 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1738 {
1739 	/*
1740 	 * Start the deadline timer; if we switch back to dl before this we'll
1741 	 * continue consuming our current CBS slice. If we stay outside of
1742 	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1743 	 * task.
1744 	 */
1745 	if (!start_dl_timer(p))
1746 		__dl_clear_params(p);
1747 
1748 	/*
1749 	 * Since this might be the only -deadline task on the rq,
1750 	 * this is the right place to try to pull some other one
1751 	 * from an overloaded cpu, if any.
1752 	 */
1753 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1754 		return;
1755 
1756 	queue_pull_task(rq);
1757 }
1758 
1759 /*
1760  * When switching to -deadline, we may overload the rq, then
1761  * we try to push someone off, if possible.
1762  */
1763 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1764 {
1765 
1766 	/* If p is not queued we will update its parameters at next wakeup. */
1767 	if (!task_on_rq_queued(p))
1768 		return;
1769 
1770 	/*
1771 	 * If p is boosted we already updated its params in
1772 	 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
1773 	 * p's deadline being now already after rq_clock(rq).
1774 	 */
1775 	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1776 		setup_new_dl_entity(&p->dl);
1777 
1778 	if (rq->curr != p) {
1779 #ifdef CONFIG_SMP
1780 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1781 			queue_push_tasks(rq);
1782 #endif
1783 		if (dl_task(rq->curr))
1784 			check_preempt_curr_dl(rq, p, 0);
1785 		else
1786 			resched_curr(rq);
1787 	}
1788 }
1789 
1790 /*
1791  * If the scheduling parameters of a -deadline task changed,
1792  * a push or pull operation might be needed.
1793  */
1794 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1795 			    int oldprio)
1796 {
1797 	if (task_on_rq_queued(p) || rq->curr == p) {
1798 #ifdef CONFIG_SMP
1799 		/*
1800 		 * This might be too much, but unfortunately
1801 		 * we don't have the old deadline value, and
1802 		 * we can't argue if the task is increasing
1803 		 * or lowering its prio, so...
1804 		 */
1805 		if (!rq->dl.overloaded)
1806 			queue_pull_task(rq);
1807 
1808 		/*
1809 		 * If we now have a earlier deadline task than p,
1810 		 * then reschedule, provided p is still on this
1811 		 * runqueue.
1812 		 */
1813 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1814 			resched_curr(rq);
1815 #else
1816 		/*
1817 		 * Again, we don't know if p has a earlier
1818 		 * or later deadline, so let's blindly set a
1819 		 * (maybe not needed) rescheduling point.
1820 		 */
1821 		resched_curr(rq);
1822 #endif /* CONFIG_SMP */
1823 	}
1824 }
1825 
1826 const struct sched_class dl_sched_class = {
1827 	.next			= &rt_sched_class,
1828 	.enqueue_task		= enqueue_task_dl,
1829 	.dequeue_task		= dequeue_task_dl,
1830 	.yield_task		= yield_task_dl,
1831 
1832 	.check_preempt_curr	= check_preempt_curr_dl,
1833 
1834 	.pick_next_task		= pick_next_task_dl,
1835 	.put_prev_task		= put_prev_task_dl,
1836 
1837 #ifdef CONFIG_SMP
1838 	.select_task_rq		= select_task_rq_dl,
1839 	.set_cpus_allowed       = set_cpus_allowed_dl,
1840 	.rq_online              = rq_online_dl,
1841 	.rq_offline             = rq_offline_dl,
1842 	.task_woken		= task_woken_dl,
1843 #endif
1844 
1845 	.set_curr_task		= set_curr_task_dl,
1846 	.task_tick		= task_tick_dl,
1847 	.task_fork              = task_fork_dl,
1848 	.task_dead		= task_dead_dl,
1849 
1850 	.prio_changed           = prio_changed_dl,
1851 	.switched_from		= switched_from_dl,
1852 	.switched_to		= switched_to_dl,
1853 
1854 	.update_curr		= update_curr_dl,
1855 };
1856 
1857 #ifdef CONFIG_SCHED_DEBUG
1858 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1859 
1860 void print_dl_stats(struct seq_file *m, int cpu)
1861 {
1862 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1863 }
1864 #endif /* CONFIG_SCHED_DEBUG */
1865