1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 #include <linux/sched/clock.h> 21 #include <uapi/linux/sched/types.h> 22 #include "sched.h" 23 #include "pelt.h" 24 25 /* 26 * Default limits for DL period; on the top end we guard against small util 27 * tasks still getting ridiculously long effective runtimes, on the bottom end we 28 * guard against timer DoS. 29 */ 30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 32 #ifdef CONFIG_SYSCTL 33 static const struct ctl_table sched_dl_sysctls[] = { 34 { 35 .procname = "sched_deadline_period_max_us", 36 .data = &sysctl_sched_dl_period_max, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = proc_douintvec_minmax, 40 .extra1 = (void *)&sysctl_sched_dl_period_min, 41 }, 42 { 43 .procname = "sched_deadline_period_min_us", 44 .data = &sysctl_sched_dl_period_min, 45 .maxlen = sizeof(unsigned int), 46 .mode = 0644, 47 .proc_handler = proc_douintvec_minmax, 48 .extra2 = (void *)&sysctl_sched_dl_period_max, 49 }, 50 }; 51 52 static int __init sched_dl_sysctl_init(void) 53 { 54 register_sysctl_init("kernel", sched_dl_sysctls); 55 return 0; 56 } 57 late_initcall(sched_dl_sysctl_init); 58 #endif /* CONFIG_SYSCTL */ 59 60 static bool dl_server(struct sched_dl_entity *dl_se) 61 { 62 return dl_se->dl_server; 63 } 64 65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 66 { 67 BUG_ON(dl_server(dl_se)); 68 return container_of(dl_se, struct task_struct, dl); 69 } 70 71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 72 { 73 return container_of(dl_rq, struct rq, dl); 74 } 75 76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se) 77 { 78 struct rq *rq = dl_se->rq; 79 80 if (!dl_server(dl_se)) 81 rq = task_rq(dl_task_of(dl_se)); 82 83 return rq; 84 } 85 86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 87 { 88 return &rq_of_dl_se(dl_se)->dl; 89 } 90 91 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 92 { 93 return !RB_EMPTY_NODE(&dl_se->rb_node); 94 } 95 96 #ifdef CONFIG_RT_MUTEXES 97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 98 { 99 return dl_se->pi_se; 100 } 101 102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 103 { 104 return pi_of(dl_se) != dl_se; 105 } 106 #else /* !CONFIG_RT_MUTEXES: */ 107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 108 { 109 return dl_se; 110 } 111 112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 113 { 114 return false; 115 } 116 #endif /* !CONFIG_RT_MUTEXES */ 117 118 static inline struct dl_bw *dl_bw_of(int i) 119 { 120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 121 "sched RCU must be held"); 122 return &cpu_rq(i)->rd->dl_bw; 123 } 124 125 static inline int dl_bw_cpus(int i) 126 { 127 struct root_domain *rd = cpu_rq(i)->rd; 128 int cpus; 129 130 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 131 "sched RCU must be held"); 132 133 if (cpumask_subset(rd->span, cpu_active_mask)) 134 return cpumask_weight(rd->span); 135 136 cpus = 0; 137 138 for_each_cpu_and(i, rd->span, cpu_active_mask) 139 cpus++; 140 141 return cpus; 142 } 143 144 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 145 { 146 unsigned long cap = 0; 147 int i; 148 149 for_each_cpu_and(i, mask, cpu_active_mask) 150 cap += arch_scale_cpu_capacity(i); 151 152 return cap; 153 } 154 155 /* 156 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 157 * of the CPU the task is running on rather rd's \Sum CPU capacity. 158 */ 159 static inline unsigned long dl_bw_capacity(int i) 160 { 161 if (!sched_asym_cpucap_active() && 162 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) { 163 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 164 } else { 165 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 166 "sched RCU must be held"); 167 168 return __dl_bw_capacity(cpu_rq(i)->rd->span); 169 } 170 } 171 172 bool dl_bw_visited(int cpu, u64 cookie) 173 { 174 struct root_domain *rd = cpu_rq(cpu)->rd; 175 176 if (rd->visit_cookie == cookie) 177 return true; 178 179 rd->visit_cookie = cookie; 180 return false; 181 } 182 183 static inline 184 void __dl_update(struct dl_bw *dl_b, s64 bw) 185 { 186 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 187 int i; 188 189 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 190 "sched RCU must be held"); 191 for_each_cpu_and(i, rd->span, cpu_active_mask) { 192 struct rq *rq = cpu_rq(i); 193 194 rq->dl.extra_bw += bw; 195 } 196 } 197 198 static inline 199 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 200 { 201 dl_b->total_bw -= tsk_bw; 202 __dl_update(dl_b, (s32)tsk_bw / cpus); 203 } 204 205 static inline 206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 207 { 208 dl_b->total_bw += tsk_bw; 209 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 210 } 211 212 static inline bool 213 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 214 { 215 return dl_b->bw != -1 && 216 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 217 } 218 219 static inline 220 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 221 { 222 u64 old = dl_rq->running_bw; 223 224 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 225 dl_rq->running_bw += dl_bw; 226 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */ 227 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 228 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 229 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 230 } 231 232 static inline 233 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 234 { 235 u64 old = dl_rq->running_bw; 236 237 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 238 dl_rq->running_bw -= dl_bw; 239 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */ 240 if (dl_rq->running_bw > old) 241 dl_rq->running_bw = 0; 242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 244 } 245 246 static inline 247 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 248 { 249 u64 old = dl_rq->this_bw; 250 251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 252 dl_rq->this_bw += dl_bw; 253 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */ 254 } 255 256 static inline 257 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 258 { 259 u64 old = dl_rq->this_bw; 260 261 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 262 dl_rq->this_bw -= dl_bw; 263 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */ 264 if (dl_rq->this_bw > old) 265 dl_rq->this_bw = 0; 266 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 267 } 268 269 static inline 270 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 271 { 272 if (!dl_entity_is_special(dl_se)) 273 __add_rq_bw(dl_se->dl_bw, dl_rq); 274 } 275 276 static inline 277 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 278 { 279 if (!dl_entity_is_special(dl_se)) 280 __sub_rq_bw(dl_se->dl_bw, dl_rq); 281 } 282 283 static inline 284 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 285 { 286 if (!dl_entity_is_special(dl_se)) 287 __add_running_bw(dl_se->dl_bw, dl_rq); 288 } 289 290 static inline 291 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 292 { 293 if (!dl_entity_is_special(dl_se)) 294 __sub_running_bw(dl_se->dl_bw, dl_rq); 295 } 296 297 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw) 298 { 299 if (dl_se->dl_non_contending) { 300 sub_running_bw(dl_se, &rq->dl); 301 dl_se->dl_non_contending = 0; 302 303 /* 304 * If the timer handler is currently running and the 305 * timer cannot be canceled, inactive_task_timer() 306 * will see that dl_not_contending is not set, and 307 * will not touch the rq's active utilization, 308 * so we are still safe. 309 */ 310 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) { 311 if (!dl_server(dl_se)) 312 put_task_struct(dl_task_of(dl_se)); 313 } 314 } 315 __sub_rq_bw(dl_se->dl_bw, &rq->dl); 316 __add_rq_bw(new_bw, &rq->dl); 317 } 318 319 static __always_inline 320 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer) 321 { 322 /* 323 * If the timer callback was running (hrtimer_try_to_cancel == -1), 324 * it will eventually call put_task_struct(). 325 */ 326 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se)) 327 put_task_struct(dl_task_of(dl_se)); 328 } 329 330 static __always_inline 331 void cancel_replenish_timer(struct sched_dl_entity *dl_se) 332 { 333 cancel_dl_timer(dl_se, &dl_se->dl_timer); 334 } 335 336 static __always_inline 337 void cancel_inactive_timer(struct sched_dl_entity *dl_se) 338 { 339 cancel_dl_timer(dl_se, &dl_se->inactive_timer); 340 } 341 342 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 343 { 344 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 345 346 if (task_on_rq_queued(p)) 347 return; 348 349 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw); 350 } 351 352 static void __dl_clear_params(struct sched_dl_entity *dl_se); 353 354 /* 355 * The utilization of a task cannot be immediately removed from 356 * the rq active utilization (running_bw) when the task blocks. 357 * Instead, we have to wait for the so called "0-lag time". 358 * 359 * If a task blocks before the "0-lag time", a timer (the inactive 360 * timer) is armed, and running_bw is decreased when the timer 361 * fires. 362 * 363 * If the task wakes up again before the inactive timer fires, 364 * the timer is canceled, whereas if the task wakes up after the 365 * inactive timer fired (and running_bw has been decreased) the 366 * task's utilization has to be added to running_bw again. 367 * A flag in the deadline scheduling entity (dl_non_contending) 368 * is used to avoid race conditions between the inactive timer handler 369 * and task wakeups. 370 * 371 * The following diagram shows how running_bw is updated. A task is 372 * "ACTIVE" when its utilization contributes to running_bw; an 373 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 374 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 375 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 376 * time already passed, which does not contribute to running_bw anymore. 377 * +------------------+ 378 * wakeup | ACTIVE | 379 * +------------------>+ contending | 380 * | add_running_bw | | 381 * | +----+------+------+ 382 * | | ^ 383 * | dequeue | | 384 * +--------+-------+ | | 385 * | | t >= 0-lag | | wakeup 386 * | INACTIVE |<---------------+ | 387 * | | sub_running_bw | | 388 * +--------+-------+ | | 389 * ^ | | 390 * | t < 0-lag | | 391 * | | | 392 * | V | 393 * | +----+------+------+ 394 * | sub_running_bw | ACTIVE | 395 * +-------------------+ | 396 * inactive timer | non contending | 397 * fired +------------------+ 398 * 399 * The task_non_contending() function is invoked when a task 400 * blocks, and checks if the 0-lag time already passed or 401 * not (in the first case, it directly updates running_bw; 402 * in the second case, it arms the inactive timer). 403 * 404 * The task_contending() function is invoked when a task wakes 405 * up, and checks if the task is still in the "ACTIVE non contending" 406 * state or not (in the second case, it updates running_bw). 407 */ 408 static void task_non_contending(struct sched_dl_entity *dl_se) 409 { 410 struct hrtimer *timer = &dl_se->inactive_timer; 411 struct rq *rq = rq_of_dl_se(dl_se); 412 struct dl_rq *dl_rq = &rq->dl; 413 s64 zerolag_time; 414 415 /* 416 * If this is a non-deadline task that has been boosted, 417 * do nothing 418 */ 419 if (dl_se->dl_runtime == 0) 420 return; 421 422 if (dl_entity_is_special(dl_se)) 423 return; 424 425 WARN_ON(dl_se->dl_non_contending); 426 427 zerolag_time = dl_se->deadline - 428 div64_long((dl_se->runtime * dl_se->dl_period), 429 dl_se->dl_runtime); 430 431 /* 432 * Using relative times instead of the absolute "0-lag time" 433 * allows to simplify the code 434 */ 435 zerolag_time -= rq_clock(rq); 436 437 /* 438 * If the "0-lag time" already passed, decrease the active 439 * utilization now, instead of starting a timer 440 */ 441 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 442 if (dl_server(dl_se)) { 443 sub_running_bw(dl_se, dl_rq); 444 } else { 445 struct task_struct *p = dl_task_of(dl_se); 446 447 if (dl_task(p)) 448 sub_running_bw(dl_se, dl_rq); 449 450 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 451 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 452 453 if (READ_ONCE(p->__state) == TASK_DEAD) 454 sub_rq_bw(dl_se, &rq->dl); 455 raw_spin_lock(&dl_b->lock); 456 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p))); 457 raw_spin_unlock(&dl_b->lock); 458 __dl_clear_params(dl_se); 459 } 460 } 461 462 return; 463 } 464 465 dl_se->dl_non_contending = 1; 466 if (!dl_server(dl_se)) 467 get_task_struct(dl_task_of(dl_se)); 468 469 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 470 } 471 472 static void task_contending(struct sched_dl_entity *dl_se, int flags) 473 { 474 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 475 476 /* 477 * If this is a non-deadline task that has been boosted, 478 * do nothing 479 */ 480 if (dl_se->dl_runtime == 0) 481 return; 482 483 if (flags & ENQUEUE_MIGRATED) 484 add_rq_bw(dl_se, dl_rq); 485 486 if (dl_se->dl_non_contending) { 487 dl_se->dl_non_contending = 0; 488 /* 489 * If the timer handler is currently running and the 490 * timer cannot be canceled, inactive_task_timer() 491 * will see that dl_not_contending is not set, and 492 * will not touch the rq's active utilization, 493 * so we are still safe. 494 */ 495 cancel_inactive_timer(dl_se); 496 } else { 497 /* 498 * Since "dl_non_contending" is not set, the 499 * task's utilization has already been removed from 500 * active utilization (either when the task blocked, 501 * when the "inactive timer" fired). 502 * So, add it back. 503 */ 504 add_running_bw(dl_se, dl_rq); 505 } 506 } 507 508 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 509 { 510 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 511 } 512 513 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 514 515 void init_dl_bw(struct dl_bw *dl_b) 516 { 517 raw_spin_lock_init(&dl_b->lock); 518 if (global_rt_runtime() == RUNTIME_INF) 519 dl_b->bw = -1; 520 else 521 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 522 dl_b->total_bw = 0; 523 } 524 525 void init_dl_rq(struct dl_rq *dl_rq) 526 { 527 dl_rq->root = RB_ROOT_CACHED; 528 529 /* zero means no -deadline tasks */ 530 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 531 532 dl_rq->overloaded = 0; 533 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 534 535 dl_rq->running_bw = 0; 536 dl_rq->this_bw = 0; 537 init_dl_rq_bw_ratio(dl_rq); 538 } 539 540 static inline int dl_overloaded(struct rq *rq) 541 { 542 return atomic_read(&rq->rd->dlo_count); 543 } 544 545 static inline void dl_set_overload(struct rq *rq) 546 { 547 if (!rq->online) 548 return; 549 550 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 551 /* 552 * Must be visible before the overload count is 553 * set (as in sched_rt.c). 554 * 555 * Matched by the barrier in pull_dl_task(). 556 */ 557 smp_wmb(); 558 atomic_inc(&rq->rd->dlo_count); 559 } 560 561 static inline void dl_clear_overload(struct rq *rq) 562 { 563 if (!rq->online) 564 return; 565 566 atomic_dec(&rq->rd->dlo_count); 567 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 568 } 569 570 #define __node_2_pdl(node) \ 571 rb_entry((node), struct task_struct, pushable_dl_tasks) 572 573 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 574 { 575 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 576 } 577 578 static inline int has_pushable_dl_tasks(struct rq *rq) 579 { 580 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 581 } 582 583 /* 584 * The list of pushable -deadline task is not a plist, like in 585 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 586 */ 587 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 588 { 589 struct rb_node *leftmost; 590 591 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 592 593 leftmost = rb_add_cached(&p->pushable_dl_tasks, 594 &rq->dl.pushable_dl_tasks_root, 595 __pushable_less); 596 if (leftmost) 597 rq->dl.earliest_dl.next = p->dl.deadline; 598 599 if (!rq->dl.overloaded) { 600 dl_set_overload(rq); 601 rq->dl.overloaded = 1; 602 } 603 } 604 605 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 606 { 607 struct dl_rq *dl_rq = &rq->dl; 608 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 609 struct rb_node *leftmost; 610 611 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 612 return; 613 614 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 615 if (leftmost) 616 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 617 618 RB_CLEAR_NODE(&p->pushable_dl_tasks); 619 620 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { 621 dl_clear_overload(rq); 622 rq->dl.overloaded = 0; 623 } 624 } 625 626 static int push_dl_task(struct rq *rq); 627 628 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 629 { 630 return rq->online && dl_task(prev); 631 } 632 633 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 634 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 635 636 static void push_dl_tasks(struct rq *); 637 static void pull_dl_task(struct rq *); 638 639 static inline void deadline_queue_push_tasks(struct rq *rq) 640 { 641 if (!has_pushable_dl_tasks(rq)) 642 return; 643 644 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 645 } 646 647 static inline void deadline_queue_pull_task(struct rq *rq) 648 { 649 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 650 } 651 652 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 653 654 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 655 { 656 struct rq *later_rq = NULL; 657 struct dl_bw *dl_b; 658 659 later_rq = find_lock_later_rq(p, rq); 660 if (!later_rq) { 661 int cpu; 662 663 /* 664 * If we cannot preempt any rq, fall back to pick any 665 * online CPU: 666 */ 667 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 668 if (cpu >= nr_cpu_ids) { 669 /* 670 * Failed to find any suitable CPU. 671 * The task will never come back! 672 */ 673 WARN_ON_ONCE(dl_bandwidth_enabled()); 674 675 /* 676 * If admission control is disabled we 677 * try a little harder to let the task 678 * run. 679 */ 680 cpu = cpumask_any(cpu_active_mask); 681 } 682 later_rq = cpu_rq(cpu); 683 double_lock_balance(rq, later_rq); 684 } 685 686 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 687 /* 688 * Inactive timer is armed (or callback is running, but 689 * waiting for us to release rq locks). In any case, when it 690 * will fire (or continue), it will see running_bw of this 691 * task migrated to later_rq (and correctly handle it). 692 */ 693 sub_running_bw(&p->dl, &rq->dl); 694 sub_rq_bw(&p->dl, &rq->dl); 695 696 add_rq_bw(&p->dl, &later_rq->dl); 697 add_running_bw(&p->dl, &later_rq->dl); 698 } else { 699 sub_rq_bw(&p->dl, &rq->dl); 700 add_rq_bw(&p->dl, &later_rq->dl); 701 } 702 703 /* 704 * And we finally need to fix up root_domain(s) bandwidth accounting, 705 * since p is still hanging out in the old (now moved to default) root 706 * domain. 707 */ 708 dl_b = &rq->rd->dl_bw; 709 raw_spin_lock(&dl_b->lock); 710 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 711 raw_spin_unlock(&dl_b->lock); 712 713 dl_b = &later_rq->rd->dl_bw; 714 raw_spin_lock(&dl_b->lock); 715 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 716 raw_spin_unlock(&dl_b->lock); 717 718 set_task_cpu(p, later_rq->cpu); 719 double_unlock_balance(later_rq, rq); 720 721 return later_rq; 722 } 723 724 static void 725 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags); 726 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 727 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags); 728 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 729 730 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 731 struct rq *rq) 732 { 733 /* for non-boosted task, pi_of(dl_se) == dl_se */ 734 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 735 dl_se->runtime = pi_of(dl_se)->dl_runtime; 736 737 /* 738 * If it is a deferred reservation, and the server 739 * is not handling an starvation case, defer it. 740 */ 741 if (dl_se->dl_defer && !dl_se->dl_defer_running) { 742 dl_se->dl_throttled = 1; 743 dl_se->dl_defer_armed = 1; 744 } 745 } 746 747 /* 748 * We are being explicitly informed that a new instance is starting, 749 * and this means that: 750 * - the absolute deadline of the entity has to be placed at 751 * current time + relative deadline; 752 * - the runtime of the entity has to be set to the maximum value. 753 * 754 * The capability of specifying such event is useful whenever a -deadline 755 * entity wants to (try to!) synchronize its behaviour with the scheduler's 756 * one, and to (try to!) reconcile itself with its own scheduling 757 * parameters. 758 */ 759 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 760 { 761 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 762 struct rq *rq = rq_of_dl_rq(dl_rq); 763 764 update_rq_clock(rq); 765 766 WARN_ON(is_dl_boosted(dl_se)); 767 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 768 769 /* 770 * We are racing with the deadline timer. So, do nothing because 771 * the deadline timer handler will take care of properly recharging 772 * the runtime and postponing the deadline 773 */ 774 if (dl_se->dl_throttled) 775 return; 776 777 /* 778 * We use the regular wall clock time to set deadlines in the 779 * future; in fact, we must consider execution overheads (time 780 * spent on hardirq context, etc.). 781 */ 782 replenish_dl_new_period(dl_se, rq); 783 } 784 785 static int start_dl_timer(struct sched_dl_entity *dl_se); 786 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t); 787 788 /* 789 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 790 * possibility of a entity lasting more than what it declared, and thus 791 * exhausting its runtime. 792 * 793 * Here we are interested in making runtime overrun possible, but we do 794 * not want a entity which is misbehaving to affect the scheduling of all 795 * other entities. 796 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 797 * is used, in order to confine each entity within its own bandwidth. 798 * 799 * This function deals exactly with that, and ensures that when the runtime 800 * of a entity is replenished, its deadline is also postponed. That ensures 801 * the overrunning entity can't interfere with other entity in the system and 802 * can't make them miss their deadlines. Reasons why this kind of overruns 803 * could happen are, typically, a entity voluntarily trying to overcome its 804 * runtime, or it just underestimated it during sched_setattr(). 805 */ 806 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 807 { 808 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 809 struct rq *rq = rq_of_dl_rq(dl_rq); 810 811 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 812 813 /* 814 * This could be the case for a !-dl task that is boosted. 815 * Just go with full inherited parameters. 816 * 817 * Or, it could be the case of a deferred reservation that 818 * was not able to consume its runtime in background and 819 * reached this point with current u > U. 820 * 821 * In both cases, set a new period. 822 */ 823 if (dl_se->dl_deadline == 0 || 824 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) { 825 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 826 dl_se->runtime = pi_of(dl_se)->dl_runtime; 827 } 828 829 if (dl_se->dl_yielded && dl_se->runtime > 0) 830 dl_se->runtime = 0; 831 832 /* 833 * We keep moving the deadline away until we get some 834 * available runtime for the entity. This ensures correct 835 * handling of situations where the runtime overrun is 836 * arbitrary large. 837 */ 838 while (dl_se->runtime <= 0) { 839 dl_se->deadline += pi_of(dl_se)->dl_period; 840 dl_se->runtime += pi_of(dl_se)->dl_runtime; 841 } 842 843 /* 844 * At this point, the deadline really should be "in 845 * the future" with respect to rq->clock. If it's 846 * not, we are, for some reason, lagging too much! 847 * Anyway, after having warn userspace abut that, 848 * we still try to keep the things running by 849 * resetting the deadline and the budget of the 850 * entity. 851 */ 852 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 853 printk_deferred_once("sched: DL replenish lagged too much\n"); 854 replenish_dl_new_period(dl_se, rq); 855 } 856 857 if (dl_se->dl_yielded) 858 dl_se->dl_yielded = 0; 859 if (dl_se->dl_throttled) 860 dl_se->dl_throttled = 0; 861 862 /* 863 * If this is the replenishment of a deferred reservation, 864 * clear the flag and return. 865 */ 866 if (dl_se->dl_defer_armed) { 867 dl_se->dl_defer_armed = 0; 868 return; 869 } 870 871 /* 872 * A this point, if the deferred server is not armed, and the deadline 873 * is in the future, if it is not running already, throttle the server 874 * and arm the defer timer. 875 */ 876 if (dl_se->dl_defer && !dl_se->dl_defer_running && 877 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) { 878 if (!is_dl_boosted(dl_se)) { 879 880 /* 881 * Set dl_se->dl_defer_armed and dl_throttled variables to 882 * inform the start_dl_timer() that this is a deferred 883 * activation. 884 */ 885 dl_se->dl_defer_armed = 1; 886 dl_se->dl_throttled = 1; 887 if (!start_dl_timer(dl_se)) { 888 /* 889 * If for whatever reason (delays), a previous timer was 890 * queued but not serviced, cancel it and clean the 891 * deferrable server variables intended for start_dl_timer(). 892 */ 893 hrtimer_try_to_cancel(&dl_se->dl_timer); 894 dl_se->dl_defer_armed = 0; 895 dl_se->dl_throttled = 0; 896 } 897 } 898 } 899 } 900 901 /* 902 * Here we check if --at time t-- an entity (which is probably being 903 * [re]activated or, in general, enqueued) can use its remaining runtime 904 * and its current deadline _without_ exceeding the bandwidth it is 905 * assigned (function returns true if it can't). We are in fact applying 906 * one of the CBS rules: when a task wakes up, if the residual runtime 907 * over residual deadline fits within the allocated bandwidth, then we 908 * can keep the current (absolute) deadline and residual budget without 909 * disrupting the schedulability of the system. Otherwise, we should 910 * refill the runtime and set the deadline a period in the future, 911 * because keeping the current (absolute) deadline of the task would 912 * result in breaking guarantees promised to other tasks (refer to 913 * Documentation/scheduler/sched-deadline.rst for more information). 914 * 915 * This function returns true if: 916 * 917 * runtime / (deadline - t) > dl_runtime / dl_deadline , 918 * 919 * IOW we can't recycle current parameters. 920 * 921 * Notice that the bandwidth check is done against the deadline. For 922 * task with deadline equal to period this is the same of using 923 * dl_period instead of dl_deadline in the equation above. 924 */ 925 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 926 { 927 u64 left, right; 928 929 /* 930 * left and right are the two sides of the equation above, 931 * after a bit of shuffling to use multiplications instead 932 * of divisions. 933 * 934 * Note that none of the time values involved in the two 935 * multiplications are absolute: dl_deadline and dl_runtime 936 * are the relative deadline and the maximum runtime of each 937 * instance, runtime is the runtime left for the last instance 938 * and (deadline - t), since t is rq->clock, is the time left 939 * to the (absolute) deadline. Even if overflowing the u64 type 940 * is very unlikely to occur in both cases, here we scale down 941 * as we want to avoid that risk at all. Scaling down by 10 942 * means that we reduce granularity to 1us. We are fine with it, 943 * since this is only a true/false check and, anyway, thinking 944 * of anything below microseconds resolution is actually fiction 945 * (but still we want to give the user that illusion >;). 946 */ 947 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 948 right = ((dl_se->deadline - t) >> DL_SCALE) * 949 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 950 951 return dl_time_before(right, left); 952 } 953 954 /* 955 * Revised wakeup rule [1]: For self-suspending tasks, rather then 956 * re-initializing task's runtime and deadline, the revised wakeup 957 * rule adjusts the task's runtime to avoid the task to overrun its 958 * density. 959 * 960 * Reasoning: a task may overrun the density if: 961 * runtime / (deadline - t) > dl_runtime / dl_deadline 962 * 963 * Therefore, runtime can be adjusted to: 964 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 965 * 966 * In such way that runtime will be equal to the maximum density 967 * the task can use without breaking any rule. 968 * 969 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 970 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 971 */ 972 static void 973 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 974 { 975 u64 laxity = dl_se->deadline - rq_clock(rq); 976 977 /* 978 * If the task has deadline < period, and the deadline is in the past, 979 * it should already be throttled before this check. 980 * 981 * See update_dl_entity() comments for further details. 982 */ 983 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 984 985 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 986 } 987 988 /* 989 * Regarding the deadline, a task with implicit deadline has a relative 990 * deadline == relative period. A task with constrained deadline has a 991 * relative deadline <= relative period. 992 * 993 * We support constrained deadline tasks. However, there are some restrictions 994 * applied only for tasks which do not have an implicit deadline. See 995 * update_dl_entity() to know more about such restrictions. 996 * 997 * The dl_is_implicit() returns true if the task has an implicit deadline. 998 */ 999 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 1000 { 1001 return dl_se->dl_deadline == dl_se->dl_period; 1002 } 1003 1004 /* 1005 * When a deadline entity is placed in the runqueue, its runtime and deadline 1006 * might need to be updated. This is done by a CBS wake up rule. There are two 1007 * different rules: 1) the original CBS; and 2) the Revisited CBS. 1008 * 1009 * When the task is starting a new period, the Original CBS is used. In this 1010 * case, the runtime is replenished and a new absolute deadline is set. 1011 * 1012 * When a task is queued before the begin of the next period, using the 1013 * remaining runtime and deadline could make the entity to overflow, see 1014 * dl_entity_overflow() to find more about runtime overflow. When such case 1015 * is detected, the runtime and deadline need to be updated. 1016 * 1017 * If the task has an implicit deadline, i.e., deadline == period, the Original 1018 * CBS is applied. The runtime is replenished and a new absolute deadline is 1019 * set, as in the previous cases. 1020 * 1021 * However, the Original CBS does not work properly for tasks with 1022 * deadline < period, which are said to have a constrained deadline. By 1023 * applying the Original CBS, a constrained deadline task would be able to run 1024 * runtime/deadline in a period. With deadline < period, the task would 1025 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1026 * 1027 * In order to prevent this misbehave, the Revisited CBS is used for 1028 * constrained deadline tasks when a runtime overflow is detected. In the 1029 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1030 * the remaining runtime of the task is reduced to avoid runtime overflow. 1031 * Please refer to the comments update_dl_revised_wakeup() function to find 1032 * more about the Revised CBS rule. 1033 */ 1034 static void update_dl_entity(struct sched_dl_entity *dl_se) 1035 { 1036 struct rq *rq = rq_of_dl_se(dl_se); 1037 1038 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1039 dl_entity_overflow(dl_se, rq_clock(rq))) { 1040 1041 if (unlikely(!dl_is_implicit(dl_se) && 1042 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1043 !is_dl_boosted(dl_se))) { 1044 update_dl_revised_wakeup(dl_se, rq); 1045 return; 1046 } 1047 1048 replenish_dl_new_period(dl_se, rq); 1049 } else if (dl_server(dl_se) && dl_se->dl_defer) { 1050 /* 1051 * The server can still use its previous deadline, so check if 1052 * it left the dl_defer_running state. 1053 */ 1054 if (!dl_se->dl_defer_running) { 1055 dl_se->dl_defer_armed = 1; 1056 dl_se->dl_throttled = 1; 1057 } 1058 } 1059 } 1060 1061 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1062 { 1063 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1064 } 1065 1066 /* 1067 * If the entity depleted all its runtime, and if we want it to sleep 1068 * while waiting for some new execution time to become available, we 1069 * set the bandwidth replenishment timer to the replenishment instant 1070 * and try to activate it. 1071 * 1072 * Notice that it is important for the caller to know if the timer 1073 * actually started or not (i.e., the replenishment instant is in 1074 * the future or in the past). 1075 */ 1076 static int start_dl_timer(struct sched_dl_entity *dl_se) 1077 { 1078 struct hrtimer *timer = &dl_se->dl_timer; 1079 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1080 struct rq *rq = rq_of_dl_rq(dl_rq); 1081 ktime_t now, act; 1082 s64 delta; 1083 1084 lockdep_assert_rq_held(rq); 1085 1086 /* 1087 * We want the timer to fire at the deadline, but considering 1088 * that it is actually coming from rq->clock and not from 1089 * hrtimer's time base reading. 1090 * 1091 * The deferred reservation will have its timer set to 1092 * (deadline - runtime). At that point, the CBS rule will decide 1093 * if the current deadline can be used, or if a replenishment is 1094 * required to avoid add too much pressure on the system 1095 * (current u > U). 1096 */ 1097 if (dl_se->dl_defer_armed) { 1098 WARN_ON_ONCE(!dl_se->dl_throttled); 1099 act = ns_to_ktime(dl_se->deadline - dl_se->runtime); 1100 } else { 1101 /* act = deadline - rel-deadline + period */ 1102 act = ns_to_ktime(dl_next_period(dl_se)); 1103 } 1104 1105 now = hrtimer_cb_get_time(timer); 1106 delta = ktime_to_ns(now) - rq_clock(rq); 1107 act = ktime_add_ns(act, delta); 1108 1109 /* 1110 * If the expiry time already passed, e.g., because the value 1111 * chosen as the deadline is too small, don't even try to 1112 * start the timer in the past! 1113 */ 1114 if (ktime_us_delta(act, now) < 0) 1115 return 0; 1116 1117 /* 1118 * !enqueued will guarantee another callback; even if one is already in 1119 * progress. This ensures a balanced {get,put}_task_struct(). 1120 * 1121 * The race against __run_timer() clearing the enqueued state is 1122 * harmless because we're holding task_rq()->lock, therefore the timer 1123 * expiring after we've done the check will wait on its task_rq_lock() 1124 * and observe our state. 1125 */ 1126 if (!hrtimer_is_queued(timer)) { 1127 if (!dl_server(dl_se)) 1128 get_task_struct(dl_task_of(dl_se)); 1129 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1130 } 1131 1132 return 1; 1133 } 1134 1135 static void __push_dl_task(struct rq *rq, struct rq_flags *rf) 1136 { 1137 /* 1138 * Queueing this task back might have overloaded rq, check if we need 1139 * to kick someone away. 1140 */ 1141 if (has_pushable_dl_tasks(rq)) { 1142 /* 1143 * Nothing relies on rq->lock after this, so its safe to drop 1144 * rq->lock. 1145 */ 1146 rq_unpin_lock(rq, rf); 1147 push_dl_task(rq); 1148 rq_repin_lock(rq, rf); 1149 } 1150 } 1151 1152 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */ 1153 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC; 1154 1155 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se) 1156 { 1157 struct rq *rq = rq_of_dl_se(dl_se); 1158 u64 fw; 1159 1160 scoped_guard (rq_lock, rq) { 1161 struct rq_flags *rf = &scope.rf; 1162 1163 if (!dl_se->dl_throttled || !dl_se->dl_runtime) 1164 return HRTIMER_NORESTART; 1165 1166 sched_clock_tick(); 1167 update_rq_clock(rq); 1168 1169 if (!dl_se->dl_runtime) 1170 return HRTIMER_NORESTART; 1171 1172 if (dl_se->dl_defer_armed) { 1173 /* 1174 * First check if the server could consume runtime in background. 1175 * If so, it is possible to push the defer timer for this amount 1176 * of time. The dl_server_min_res serves as a limit to avoid 1177 * forwarding the timer for a too small amount of time. 1178 */ 1179 if (dl_time_before(rq_clock(dl_se->rq), 1180 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) { 1181 1182 /* reset the defer timer */ 1183 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime; 1184 1185 hrtimer_forward_now(timer, ns_to_ktime(fw)); 1186 return HRTIMER_RESTART; 1187 } 1188 1189 dl_se->dl_defer_running = 1; 1190 } 1191 1192 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1193 1194 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl)) 1195 resched_curr(rq); 1196 1197 __push_dl_task(rq, rf); 1198 } 1199 1200 return HRTIMER_NORESTART; 1201 } 1202 1203 /* 1204 * This is the bandwidth enforcement timer callback. If here, we know 1205 * a task is not on its dl_rq, since the fact that the timer was running 1206 * means the task is throttled and needs a runtime replenishment. 1207 * 1208 * However, what we actually do depends on the fact the task is active, 1209 * (it is on its rq) or has been removed from there by a call to 1210 * dequeue_task_dl(). In the former case we must issue the runtime 1211 * replenishment and add the task back to the dl_rq; in the latter, we just 1212 * do nothing but clearing dl_throttled, so that runtime and deadline 1213 * updating (and the queueing back to dl_rq) will be done by the 1214 * next call to enqueue_task_dl(). 1215 */ 1216 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1217 { 1218 struct sched_dl_entity *dl_se = container_of(timer, 1219 struct sched_dl_entity, 1220 dl_timer); 1221 struct task_struct *p; 1222 struct rq_flags rf; 1223 struct rq *rq; 1224 1225 if (dl_server(dl_se)) 1226 return dl_server_timer(timer, dl_se); 1227 1228 p = dl_task_of(dl_se); 1229 rq = task_rq_lock(p, &rf); 1230 1231 /* 1232 * The task might have changed its scheduling policy to something 1233 * different than SCHED_DEADLINE (through switched_from_dl()). 1234 */ 1235 if (!dl_task(p)) 1236 goto unlock; 1237 1238 /* 1239 * The task might have been boosted by someone else and might be in the 1240 * boosting/deboosting path, its not throttled. 1241 */ 1242 if (is_dl_boosted(dl_se)) 1243 goto unlock; 1244 1245 /* 1246 * Spurious timer due to start_dl_timer() race; or we already received 1247 * a replenishment from rt_mutex_setprio(). 1248 */ 1249 if (!dl_se->dl_throttled) 1250 goto unlock; 1251 1252 sched_clock_tick(); 1253 update_rq_clock(rq); 1254 1255 /* 1256 * If the throttle happened during sched-out; like: 1257 * 1258 * schedule() 1259 * deactivate_task() 1260 * dequeue_task_dl() 1261 * update_curr_dl() 1262 * start_dl_timer() 1263 * __dequeue_task_dl() 1264 * prev->on_rq = 0; 1265 * 1266 * We can be both throttled and !queued. Replenish the counter 1267 * but do not enqueue -- wait for our wakeup to do that. 1268 */ 1269 if (!task_on_rq_queued(p)) { 1270 replenish_dl_entity(dl_se); 1271 goto unlock; 1272 } 1273 1274 if (unlikely(!rq->online)) { 1275 /* 1276 * If the runqueue is no longer available, migrate the 1277 * task elsewhere. This necessarily changes rq. 1278 */ 1279 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1280 rq = dl_task_offline_migration(rq, p); 1281 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1282 update_rq_clock(rq); 1283 1284 /* 1285 * Now that the task has been migrated to the new RQ and we 1286 * have that locked, proceed as normal and enqueue the task 1287 * there. 1288 */ 1289 } 1290 1291 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1292 if (dl_task(rq->donor)) 1293 wakeup_preempt_dl(rq, p, 0); 1294 else 1295 resched_curr(rq); 1296 1297 __push_dl_task(rq, &rf); 1298 1299 unlock: 1300 task_rq_unlock(rq, p, &rf); 1301 1302 /* 1303 * This can free the task_struct, including this hrtimer, do not touch 1304 * anything related to that after this. 1305 */ 1306 put_task_struct(p); 1307 1308 return HRTIMER_NORESTART; 1309 } 1310 1311 static void init_dl_task_timer(struct sched_dl_entity *dl_se) 1312 { 1313 struct hrtimer *timer = &dl_se->dl_timer; 1314 1315 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1316 } 1317 1318 /* 1319 * During the activation, CBS checks if it can reuse the current task's 1320 * runtime and period. If the deadline of the task is in the past, CBS 1321 * cannot use the runtime, and so it replenishes the task. This rule 1322 * works fine for implicit deadline tasks (deadline == period), and the 1323 * CBS was designed for implicit deadline tasks. However, a task with 1324 * constrained deadline (deadline < period) might be awakened after the 1325 * deadline, but before the next period. In this case, replenishing the 1326 * task would allow it to run for runtime / deadline. As in this case 1327 * deadline < period, CBS enables a task to run for more than the 1328 * runtime / period. In a very loaded system, this can cause a domino 1329 * effect, making other tasks miss their deadlines. 1330 * 1331 * To avoid this problem, in the activation of a constrained deadline 1332 * task after the deadline but before the next period, throttle the 1333 * task and set the replenishing timer to the begin of the next period, 1334 * unless it is boosted. 1335 */ 1336 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1337 { 1338 struct rq *rq = rq_of_dl_se(dl_se); 1339 1340 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1341 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1342 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) 1343 return; 1344 dl_se->dl_throttled = 1; 1345 if (dl_se->runtime > 0) 1346 dl_se->runtime = 0; 1347 } 1348 } 1349 1350 static 1351 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1352 { 1353 return (dl_se->runtime <= 0); 1354 } 1355 1356 /* 1357 * This function implements the GRUB accounting rule. According to the 1358 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1359 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1360 * where u is the utilization of the task, Umax is the maximum reclaimable 1361 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1362 * as the difference between the "total runqueue utilization" and the 1363 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1364 * reclaimable utilization. 1365 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1366 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1367 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1368 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1369 * Since delta is a 64 bit variable, to have an overflow its value should be 1370 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1371 * not an issue here. 1372 */ 1373 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1374 { 1375 u64 u_act; 1376 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1377 1378 /* 1379 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1380 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1381 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1382 * negative leading to wrong results. 1383 */ 1384 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1385 u_act = dl_se->dl_bw; 1386 else 1387 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1388 1389 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1390 return (delta * u_act) >> BW_SHIFT; 1391 } 1392 1393 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1394 { 1395 s64 scaled_delta_exec; 1396 1397 /* 1398 * For tasks that participate in GRUB, we implement GRUB-PA: the 1399 * spare reclaimed bandwidth is used to clock down frequency. 1400 * 1401 * For the others, we still need to scale reservation parameters 1402 * according to current frequency and CPU maximum capacity. 1403 */ 1404 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1405 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se); 1406 } else { 1407 int cpu = cpu_of(rq); 1408 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1409 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1410 1411 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1412 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1413 } 1414 1415 return scaled_delta_exec; 1416 } 1417 1418 static inline void 1419 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1420 int flags); 1421 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1422 { 1423 s64 scaled_delta_exec; 1424 1425 if (unlikely(delta_exec <= 0)) { 1426 if (unlikely(dl_se->dl_yielded)) 1427 goto throttle; 1428 return; 1429 } 1430 1431 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer) 1432 return; 1433 1434 if (dl_entity_is_special(dl_se)) 1435 return; 1436 1437 scaled_delta_exec = delta_exec; 1438 if (!dl_server(dl_se)) 1439 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec); 1440 1441 dl_se->runtime -= scaled_delta_exec; 1442 1443 /* 1444 * The fair server can consume its runtime while throttled (not queued/ 1445 * running as regular CFS). 1446 * 1447 * If the server consumes its entire runtime in this state. The server 1448 * is not required for the current period. Thus, reset the server by 1449 * starting a new period, pushing the activation. 1450 */ 1451 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) { 1452 /* 1453 * If the server was previously activated - the starving condition 1454 * took place, it this point it went away because the fair scheduler 1455 * was able to get runtime in background. So return to the initial 1456 * state. 1457 */ 1458 dl_se->dl_defer_running = 0; 1459 1460 hrtimer_try_to_cancel(&dl_se->dl_timer); 1461 1462 replenish_dl_new_period(dl_se, dl_se->rq); 1463 1464 /* 1465 * Not being able to start the timer seems problematic. If it could not 1466 * be started for whatever reason, we need to "unthrottle" the DL server 1467 * and queue right away. Otherwise nothing might queue it. That's similar 1468 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn. 1469 */ 1470 WARN_ON_ONCE(!start_dl_timer(dl_se)); 1471 1472 return; 1473 } 1474 1475 throttle: 1476 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1477 dl_se->dl_throttled = 1; 1478 1479 /* If requested, inform the user about runtime overruns. */ 1480 if (dl_runtime_exceeded(dl_se) && 1481 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1482 dl_se->dl_overrun = 1; 1483 1484 dequeue_dl_entity(dl_se, 0); 1485 if (!dl_server(dl_se)) { 1486 update_stats_dequeue_dl(&rq->dl, dl_se, 0); 1487 dequeue_pushable_dl_task(rq, dl_task_of(dl_se)); 1488 } 1489 1490 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) { 1491 if (dl_server(dl_se)) { 1492 replenish_dl_new_period(dl_se, rq); 1493 start_dl_timer(dl_se); 1494 } else { 1495 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH); 1496 } 1497 } 1498 1499 if (!is_leftmost(dl_se, &rq->dl)) 1500 resched_curr(rq); 1501 } 1502 1503 /* 1504 * The fair server (sole dl_server) does not account for real-time 1505 * workload because it is running fair work. 1506 */ 1507 if (dl_se == &rq->fair_server) 1508 return; 1509 1510 #ifdef CONFIG_RT_GROUP_SCHED 1511 /* 1512 * Because -- for now -- we share the rt bandwidth, we need to 1513 * account our runtime there too, otherwise actual rt tasks 1514 * would be able to exceed the shared quota. 1515 * 1516 * Account to the root rt group for now. 1517 * 1518 * The solution we're working towards is having the RT groups scheduled 1519 * using deadline servers -- however there's a few nasties to figure 1520 * out before that can happen. 1521 */ 1522 if (rt_bandwidth_enabled()) { 1523 struct rt_rq *rt_rq = &rq->rt; 1524 1525 raw_spin_lock(&rt_rq->rt_runtime_lock); 1526 /* 1527 * We'll let actual RT tasks worry about the overflow here, we 1528 * have our own CBS to keep us inline; only account when RT 1529 * bandwidth is relevant. 1530 */ 1531 if (sched_rt_bandwidth_account(rt_rq)) 1532 rt_rq->rt_time += delta_exec; 1533 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1534 } 1535 #endif /* CONFIG_RT_GROUP_SCHED */ 1536 } 1537 1538 /* 1539 * In the non-defer mode, the idle time is not accounted, as the 1540 * server provides a guarantee. 1541 * 1542 * If the dl_server is in defer mode, the idle time is also considered 1543 * as time available for the fair server, avoiding a penalty for the 1544 * rt scheduler that did not consumed that time. 1545 */ 1546 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p) 1547 { 1548 s64 delta_exec; 1549 1550 if (!rq->fair_server.dl_defer) 1551 return; 1552 1553 /* no need to discount more */ 1554 if (rq->fair_server.runtime < 0) 1555 return; 1556 1557 delta_exec = rq_clock_task(rq) - p->se.exec_start; 1558 if (delta_exec < 0) 1559 return; 1560 1561 rq->fair_server.runtime -= delta_exec; 1562 1563 if (rq->fair_server.runtime < 0) { 1564 rq->fair_server.dl_defer_running = 0; 1565 rq->fair_server.runtime = 0; 1566 } 1567 1568 p->se.exec_start = rq_clock_task(rq); 1569 } 1570 1571 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec) 1572 { 1573 /* 0 runtime = fair server disabled */ 1574 if (dl_se->dl_runtime) 1575 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1576 } 1577 1578 void dl_server_start(struct sched_dl_entity *dl_se) 1579 { 1580 struct rq *rq = dl_se->rq; 1581 1582 if (!dl_server(dl_se) || dl_se->dl_server_active) 1583 return; 1584 1585 if (WARN_ON_ONCE(!cpu_online(cpu_of(rq)))) 1586 return; 1587 1588 dl_se->dl_server_active = 1; 1589 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP); 1590 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl)) 1591 resched_curr(dl_se->rq); 1592 } 1593 1594 void dl_server_stop(struct sched_dl_entity *dl_se) 1595 { 1596 if (!dl_server(dl_se) || !dl_server_active(dl_se)) 1597 return; 1598 1599 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP); 1600 hrtimer_try_to_cancel(&dl_se->dl_timer); 1601 dl_se->dl_defer_armed = 0; 1602 dl_se->dl_throttled = 0; 1603 dl_se->dl_server_active = 0; 1604 } 1605 1606 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 1607 dl_server_pick_f pick_task) 1608 { 1609 dl_se->rq = rq; 1610 dl_se->server_pick_task = pick_task; 1611 } 1612 1613 void sched_init_dl_servers(void) 1614 { 1615 int cpu; 1616 struct rq *rq; 1617 struct sched_dl_entity *dl_se; 1618 1619 for_each_online_cpu(cpu) { 1620 u64 runtime = 50 * NSEC_PER_MSEC; 1621 u64 period = 1000 * NSEC_PER_MSEC; 1622 1623 rq = cpu_rq(cpu); 1624 1625 guard(rq_lock_irq)(rq); 1626 1627 dl_se = &rq->fair_server; 1628 1629 WARN_ON(dl_server(dl_se)); 1630 1631 dl_server_apply_params(dl_se, runtime, period, 1); 1632 1633 dl_se->dl_server = 1; 1634 dl_se->dl_defer = 1; 1635 setup_new_dl_entity(dl_se); 1636 } 1637 } 1638 1639 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq) 1640 { 1641 u64 new_bw = dl_se->dl_bw; 1642 int cpu = cpu_of(rq); 1643 struct dl_bw *dl_b; 1644 1645 dl_b = dl_bw_of(cpu_of(rq)); 1646 guard(raw_spinlock)(&dl_b->lock); 1647 1648 if (!dl_bw_cpus(cpu)) 1649 return; 1650 1651 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu)); 1652 } 1653 1654 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init) 1655 { 1656 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1657 u64 new_bw = to_ratio(period, runtime); 1658 struct rq *rq = dl_se->rq; 1659 int cpu = cpu_of(rq); 1660 struct dl_bw *dl_b; 1661 unsigned long cap; 1662 int retval = 0; 1663 int cpus; 1664 1665 dl_b = dl_bw_of(cpu); 1666 guard(raw_spinlock)(&dl_b->lock); 1667 1668 cpus = dl_bw_cpus(cpu); 1669 cap = dl_bw_capacity(cpu); 1670 1671 if (__dl_overflow(dl_b, cap, old_bw, new_bw)) 1672 return -EBUSY; 1673 1674 if (init) { 1675 __add_rq_bw(new_bw, &rq->dl); 1676 __dl_add(dl_b, new_bw, cpus); 1677 } else { 1678 __dl_sub(dl_b, dl_se->dl_bw, cpus); 1679 __dl_add(dl_b, new_bw, cpus); 1680 1681 dl_rq_change_utilization(rq, dl_se, new_bw); 1682 } 1683 1684 dl_se->dl_runtime = runtime; 1685 dl_se->dl_deadline = period; 1686 dl_se->dl_period = period; 1687 1688 dl_se->runtime = 0; 1689 dl_se->deadline = 0; 1690 1691 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1692 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 1693 1694 return retval; 1695 } 1696 1697 /* 1698 * Update the current task's runtime statistics (provided it is still 1699 * a -deadline task and has not been removed from the dl_rq). 1700 */ 1701 static void update_curr_dl(struct rq *rq) 1702 { 1703 struct task_struct *donor = rq->donor; 1704 struct sched_dl_entity *dl_se = &donor->dl; 1705 s64 delta_exec; 1706 1707 if (!dl_task(donor) || !on_dl_rq(dl_se)) 1708 return; 1709 1710 /* 1711 * Consumed budget is computed considering the time as 1712 * observed by schedulable tasks (excluding time spent 1713 * in hardirq context, etc.). Deadlines are instead 1714 * computed using hard walltime. This seems to be the more 1715 * natural solution, but the full ramifications of this 1716 * approach need further study. 1717 */ 1718 delta_exec = update_curr_common(rq); 1719 update_curr_dl_se(rq, dl_se, delta_exec); 1720 } 1721 1722 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1723 { 1724 struct sched_dl_entity *dl_se = container_of(timer, 1725 struct sched_dl_entity, 1726 inactive_timer); 1727 struct task_struct *p = NULL; 1728 struct rq_flags rf; 1729 struct rq *rq; 1730 1731 if (!dl_server(dl_se)) { 1732 p = dl_task_of(dl_se); 1733 rq = task_rq_lock(p, &rf); 1734 } else { 1735 rq = dl_se->rq; 1736 rq_lock(rq, &rf); 1737 } 1738 1739 sched_clock_tick(); 1740 update_rq_clock(rq); 1741 1742 if (dl_server(dl_se)) 1743 goto no_task; 1744 1745 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1746 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1747 1748 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1749 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1750 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1751 dl_se->dl_non_contending = 0; 1752 } 1753 1754 raw_spin_lock(&dl_b->lock); 1755 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1756 raw_spin_unlock(&dl_b->lock); 1757 __dl_clear_params(dl_se); 1758 1759 goto unlock; 1760 } 1761 1762 no_task: 1763 if (dl_se->dl_non_contending == 0) 1764 goto unlock; 1765 1766 sub_running_bw(dl_se, &rq->dl); 1767 dl_se->dl_non_contending = 0; 1768 unlock: 1769 1770 if (!dl_server(dl_se)) { 1771 task_rq_unlock(rq, p, &rf); 1772 put_task_struct(p); 1773 } else { 1774 rq_unlock(rq, &rf); 1775 } 1776 1777 return HRTIMER_NORESTART; 1778 } 1779 1780 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1781 { 1782 struct hrtimer *timer = &dl_se->inactive_timer; 1783 1784 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1785 } 1786 1787 #define __node_2_dle(node) \ 1788 rb_entry((node), struct sched_dl_entity, rb_node) 1789 1790 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1791 { 1792 struct rq *rq = rq_of_dl_rq(dl_rq); 1793 1794 if (dl_rq->earliest_dl.curr == 0 || 1795 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1796 if (dl_rq->earliest_dl.curr == 0) 1797 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1798 dl_rq->earliest_dl.curr = deadline; 1799 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1800 } 1801 } 1802 1803 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1804 { 1805 struct rq *rq = rq_of_dl_rq(dl_rq); 1806 1807 /* 1808 * Since we may have removed our earliest (and/or next earliest) 1809 * task we must recompute them. 1810 */ 1811 if (!dl_rq->dl_nr_running) { 1812 dl_rq->earliest_dl.curr = 0; 1813 dl_rq->earliest_dl.next = 0; 1814 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1815 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1816 } else { 1817 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1818 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1819 1820 dl_rq->earliest_dl.curr = entry->deadline; 1821 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1822 } 1823 } 1824 1825 static inline 1826 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1827 { 1828 u64 deadline = dl_se->deadline; 1829 1830 dl_rq->dl_nr_running++; 1831 1832 if (!dl_server(dl_se)) 1833 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1834 1835 inc_dl_deadline(dl_rq, deadline); 1836 } 1837 1838 static inline 1839 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1840 { 1841 WARN_ON(!dl_rq->dl_nr_running); 1842 dl_rq->dl_nr_running--; 1843 1844 if (!dl_server(dl_se)) 1845 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1846 1847 dec_dl_deadline(dl_rq, dl_se->deadline); 1848 } 1849 1850 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1851 { 1852 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1853 } 1854 1855 static __always_inline struct sched_statistics * 1856 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1857 { 1858 if (!schedstat_enabled()) 1859 return NULL; 1860 1861 if (dl_server(dl_se)) 1862 return NULL; 1863 1864 return &dl_task_of(dl_se)->stats; 1865 } 1866 1867 static inline void 1868 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1869 { 1870 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1871 if (stats) 1872 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1873 } 1874 1875 static inline void 1876 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1877 { 1878 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1879 if (stats) 1880 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1881 } 1882 1883 static inline void 1884 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1885 { 1886 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1887 if (stats) 1888 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1889 } 1890 1891 static inline void 1892 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1893 int flags) 1894 { 1895 if (!schedstat_enabled()) 1896 return; 1897 1898 if (flags & ENQUEUE_WAKEUP) 1899 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1900 } 1901 1902 static inline void 1903 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1904 int flags) 1905 { 1906 struct task_struct *p = dl_task_of(dl_se); 1907 1908 if (!schedstat_enabled()) 1909 return; 1910 1911 if ((flags & DEQUEUE_SLEEP)) { 1912 unsigned int state; 1913 1914 state = READ_ONCE(p->__state); 1915 if (state & TASK_INTERRUPTIBLE) 1916 __schedstat_set(p->stats.sleep_start, 1917 rq_clock(rq_of_dl_rq(dl_rq))); 1918 1919 if (state & TASK_UNINTERRUPTIBLE) 1920 __schedstat_set(p->stats.block_start, 1921 rq_clock(rq_of_dl_rq(dl_rq))); 1922 } 1923 } 1924 1925 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1926 { 1927 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1928 1929 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1930 1931 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1932 1933 inc_dl_tasks(dl_se, dl_rq); 1934 } 1935 1936 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1937 { 1938 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1939 1940 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1941 return; 1942 1943 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1944 1945 RB_CLEAR_NODE(&dl_se->rb_node); 1946 1947 dec_dl_tasks(dl_se, dl_rq); 1948 } 1949 1950 static void 1951 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1952 { 1953 WARN_ON_ONCE(on_dl_rq(dl_se)); 1954 1955 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1956 1957 /* 1958 * Check if a constrained deadline task was activated 1959 * after the deadline but before the next period. 1960 * If that is the case, the task will be throttled and 1961 * the replenishment timer will be set to the next period. 1962 */ 1963 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) 1964 dl_check_constrained_dl(dl_se); 1965 1966 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { 1967 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1968 1969 add_rq_bw(dl_se, dl_rq); 1970 add_running_bw(dl_se, dl_rq); 1971 } 1972 1973 /* 1974 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1975 * its budget it needs a replenishment and, since it now is on 1976 * its rq, the bandwidth timer callback (which clearly has not 1977 * run yet) will take care of this. 1978 * However, the active utilization does not depend on the fact 1979 * that the task is on the runqueue or not (but depends on the 1980 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1981 * In other words, even if a task is throttled its utilization must 1982 * be counted in the active utilization; hence, we need to call 1983 * add_running_bw(). 1984 */ 1985 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1986 if (flags & ENQUEUE_WAKEUP) 1987 task_contending(dl_se, flags); 1988 1989 return; 1990 } 1991 1992 /* 1993 * If this is a wakeup or a new instance, the scheduling 1994 * parameters of the task might need updating. Otherwise, 1995 * we want a replenishment of its runtime. 1996 */ 1997 if (flags & ENQUEUE_WAKEUP) { 1998 task_contending(dl_se, flags); 1999 update_dl_entity(dl_se); 2000 } else if (flags & ENQUEUE_REPLENISH) { 2001 replenish_dl_entity(dl_se); 2002 } else if ((flags & ENQUEUE_RESTORE) && 2003 !is_dl_boosted(dl_se) && 2004 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) { 2005 setup_new_dl_entity(dl_se); 2006 } 2007 2008 /* 2009 * If the reservation is still throttled, e.g., it got replenished but is a 2010 * deferred task and still got to wait, don't enqueue. 2011 */ 2012 if (dl_se->dl_throttled && start_dl_timer(dl_se)) 2013 return; 2014 2015 /* 2016 * We're about to enqueue, make sure we're not ->dl_throttled! 2017 * In case the timer was not started, say because the defer time 2018 * has passed, mark as not throttled and mark unarmed. 2019 * Also cancel earlier timers, since letting those run is pointless. 2020 */ 2021 if (dl_se->dl_throttled) { 2022 hrtimer_try_to_cancel(&dl_se->dl_timer); 2023 dl_se->dl_defer_armed = 0; 2024 dl_se->dl_throttled = 0; 2025 } 2026 2027 __enqueue_dl_entity(dl_se); 2028 } 2029 2030 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2031 { 2032 __dequeue_dl_entity(dl_se); 2033 2034 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { 2035 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2036 2037 sub_running_bw(dl_se, dl_rq); 2038 sub_rq_bw(dl_se, dl_rq); 2039 } 2040 2041 /* 2042 * This check allows to start the inactive timer (or to immediately 2043 * decrease the active utilization, if needed) in two cases: 2044 * when the task blocks and when it is terminating 2045 * (p->state == TASK_DEAD). We can handle the two cases in the same 2046 * way, because from GRUB's point of view the same thing is happening 2047 * (the task moves from "active contending" to "active non contending" 2048 * or "inactive") 2049 */ 2050 if (flags & DEQUEUE_SLEEP) 2051 task_non_contending(dl_se); 2052 } 2053 2054 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2055 { 2056 if (is_dl_boosted(&p->dl)) { 2057 /* 2058 * Because of delays in the detection of the overrun of a 2059 * thread's runtime, it might be the case that a thread 2060 * goes to sleep in a rt mutex with negative runtime. As 2061 * a consequence, the thread will be throttled. 2062 * 2063 * While waiting for the mutex, this thread can also be 2064 * boosted via PI, resulting in a thread that is throttled 2065 * and boosted at the same time. 2066 * 2067 * In this case, the boost overrides the throttle. 2068 */ 2069 if (p->dl.dl_throttled) { 2070 /* 2071 * The replenish timer needs to be canceled. No 2072 * problem if it fires concurrently: boosted threads 2073 * are ignored in dl_task_timer(). 2074 */ 2075 cancel_replenish_timer(&p->dl); 2076 p->dl.dl_throttled = 0; 2077 } 2078 } else if (!dl_prio(p->normal_prio)) { 2079 /* 2080 * Special case in which we have a !SCHED_DEADLINE task that is going 2081 * to be deboosted, but exceeds its runtime while doing so. No point in 2082 * replenishing it, as it's going to return back to its original 2083 * scheduling class after this. If it has been throttled, we need to 2084 * clear the flag, otherwise the task may wake up as throttled after 2085 * being boosted again with no means to replenish the runtime and clear 2086 * the throttle. 2087 */ 2088 p->dl.dl_throttled = 0; 2089 if (!(flags & ENQUEUE_REPLENISH)) 2090 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 2091 task_pid_nr(p)); 2092 2093 return; 2094 } 2095 2096 check_schedstat_required(); 2097 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 2098 2099 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2100 flags |= ENQUEUE_MIGRATING; 2101 2102 enqueue_dl_entity(&p->dl, flags); 2103 2104 if (dl_server(&p->dl)) 2105 return; 2106 2107 if (task_is_blocked(p)) 2108 return; 2109 2110 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) 2111 enqueue_pushable_dl_task(rq, p); 2112 } 2113 2114 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2115 { 2116 update_curr_dl(rq); 2117 2118 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2119 flags |= DEQUEUE_MIGRATING; 2120 2121 dequeue_dl_entity(&p->dl, flags); 2122 if (!p->dl.dl_throttled && !dl_server(&p->dl)) 2123 dequeue_pushable_dl_task(rq, p); 2124 2125 return true; 2126 } 2127 2128 /* 2129 * Yield task semantic for -deadline tasks is: 2130 * 2131 * get off from the CPU until our next instance, with 2132 * a new runtime. This is of little use now, since we 2133 * don't have a bandwidth reclaiming mechanism. Anyway, 2134 * bandwidth reclaiming is planned for the future, and 2135 * yield_task_dl will indicate that some spare budget 2136 * is available for other task instances to use it. 2137 */ 2138 static void yield_task_dl(struct rq *rq) 2139 { 2140 /* 2141 * We make the task go to sleep until its current deadline by 2142 * forcing its runtime to zero. This way, update_curr_dl() stops 2143 * it and the bandwidth timer will wake it up and will give it 2144 * new scheduling parameters (thanks to dl_yielded=1). 2145 */ 2146 rq->curr->dl.dl_yielded = 1; 2147 2148 update_rq_clock(rq); 2149 update_curr_dl(rq); 2150 /* 2151 * Tell update_rq_clock() that we've just updated, 2152 * so we don't do microscopic update in schedule() 2153 * and double the fastpath cost. 2154 */ 2155 rq_clock_skip_update(rq); 2156 } 2157 2158 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 2159 struct rq *rq) 2160 { 2161 return (!rq->dl.dl_nr_running || 2162 dl_time_before(p->dl.deadline, 2163 rq->dl.earliest_dl.curr)); 2164 } 2165 2166 static int find_later_rq(struct task_struct *task); 2167 2168 static int 2169 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 2170 { 2171 struct task_struct *curr, *donor; 2172 bool select_rq; 2173 struct rq *rq; 2174 2175 if (!(flags & WF_TTWU)) 2176 goto out; 2177 2178 rq = cpu_rq(cpu); 2179 2180 rcu_read_lock(); 2181 curr = READ_ONCE(rq->curr); /* unlocked access */ 2182 donor = READ_ONCE(rq->donor); 2183 2184 /* 2185 * If we are dealing with a -deadline task, we must 2186 * decide where to wake it up. 2187 * If it has a later deadline and the current task 2188 * on this rq can't move (provided the waking task 2189 * can!) we prefer to send it somewhere else. On the 2190 * other hand, if it has a shorter deadline, we 2191 * try to make it stay here, it might be important. 2192 */ 2193 select_rq = unlikely(dl_task(donor)) && 2194 (curr->nr_cpus_allowed < 2 || 2195 !dl_entity_preempt(&p->dl, &donor->dl)) && 2196 p->nr_cpus_allowed > 1; 2197 2198 /* 2199 * Take the capacity of the CPU into account to 2200 * ensure it fits the requirement of the task. 2201 */ 2202 if (sched_asym_cpucap_active()) 2203 select_rq |= !dl_task_fits_capacity(p, cpu); 2204 2205 if (select_rq) { 2206 int target = find_later_rq(p); 2207 2208 if (target != -1 && 2209 dl_task_is_earliest_deadline(p, cpu_rq(target))) 2210 cpu = target; 2211 } 2212 rcu_read_unlock(); 2213 2214 out: 2215 return cpu; 2216 } 2217 2218 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 2219 { 2220 struct rq_flags rf; 2221 struct rq *rq; 2222 2223 if (READ_ONCE(p->__state) != TASK_WAKING) 2224 return; 2225 2226 rq = task_rq(p); 2227 /* 2228 * Since p->state == TASK_WAKING, set_task_cpu() has been called 2229 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 2230 * rq->lock is not... So, lock it 2231 */ 2232 rq_lock(rq, &rf); 2233 if (p->dl.dl_non_contending) { 2234 update_rq_clock(rq); 2235 sub_running_bw(&p->dl, &rq->dl); 2236 p->dl.dl_non_contending = 0; 2237 /* 2238 * If the timer handler is currently running and the 2239 * timer cannot be canceled, inactive_task_timer() 2240 * will see that dl_not_contending is not set, and 2241 * will not touch the rq's active utilization, 2242 * so we are still safe. 2243 */ 2244 cancel_inactive_timer(&p->dl); 2245 } 2246 sub_rq_bw(&p->dl, &rq->dl); 2247 rq_unlock(rq, &rf); 2248 } 2249 2250 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 2251 { 2252 /* 2253 * Current can't be migrated, useless to reschedule, 2254 * let's hope p can move out. 2255 */ 2256 if (rq->curr->nr_cpus_allowed == 1 || 2257 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL)) 2258 return; 2259 2260 /* 2261 * p is migratable, so let's not schedule it and 2262 * see if it is pushed or pulled somewhere else. 2263 */ 2264 if (p->nr_cpus_allowed != 1 && 2265 cpudl_find(&rq->rd->cpudl, p, NULL)) 2266 return; 2267 2268 resched_curr(rq); 2269 } 2270 2271 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2272 { 2273 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2274 /* 2275 * This is OK, because current is on_cpu, which avoids it being 2276 * picked for load-balance and preemption/IRQs are still 2277 * disabled avoiding further scheduler activity on it and we've 2278 * not yet started the picking loop. 2279 */ 2280 rq_unpin_lock(rq, rf); 2281 pull_dl_task(rq); 2282 rq_repin_lock(rq, rf); 2283 } 2284 2285 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2286 } 2287 2288 /* 2289 * Only called when both the current and waking task are -deadline 2290 * tasks. 2291 */ 2292 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, 2293 int flags) 2294 { 2295 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) { 2296 resched_curr(rq); 2297 return; 2298 } 2299 2300 /* 2301 * In the unlikely case current and p have the same deadline 2302 * let us try to decide what's the best thing to do... 2303 */ 2304 if ((p->dl.deadline == rq->donor->dl.deadline) && 2305 !test_tsk_need_resched(rq->curr)) 2306 check_preempt_equal_dl(rq, p); 2307 } 2308 2309 #ifdef CONFIG_SCHED_HRTICK 2310 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2311 { 2312 hrtick_start(rq, dl_se->runtime); 2313 } 2314 #else /* !CONFIG_SCHED_HRTICK: */ 2315 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2316 { 2317 } 2318 #endif /* !CONFIG_SCHED_HRTICK */ 2319 2320 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2321 { 2322 struct sched_dl_entity *dl_se = &p->dl; 2323 struct dl_rq *dl_rq = &rq->dl; 2324 2325 p->se.exec_start = rq_clock_task(rq); 2326 if (on_dl_rq(&p->dl)) 2327 update_stats_wait_end_dl(dl_rq, dl_se); 2328 2329 /* You can't push away the running task */ 2330 dequeue_pushable_dl_task(rq, p); 2331 2332 if (!first) 2333 return; 2334 2335 if (rq->donor->sched_class != &dl_sched_class) 2336 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2337 2338 deadline_queue_push_tasks(rq); 2339 2340 if (hrtick_enabled_dl(rq)) 2341 start_hrtick_dl(rq, &p->dl); 2342 } 2343 2344 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2345 { 2346 struct rb_node *left = rb_first_cached(&dl_rq->root); 2347 2348 if (!left) 2349 return NULL; 2350 2351 return __node_2_dle(left); 2352 } 2353 2354 /* 2355 * __pick_next_task_dl - Helper to pick the next -deadline task to run. 2356 * @rq: The runqueue to pick the next task from. 2357 */ 2358 static struct task_struct *__pick_task_dl(struct rq *rq) 2359 { 2360 struct sched_dl_entity *dl_se; 2361 struct dl_rq *dl_rq = &rq->dl; 2362 struct task_struct *p; 2363 2364 again: 2365 if (!sched_dl_runnable(rq)) 2366 return NULL; 2367 2368 dl_se = pick_next_dl_entity(dl_rq); 2369 WARN_ON_ONCE(!dl_se); 2370 2371 if (dl_server(dl_se)) { 2372 p = dl_se->server_pick_task(dl_se); 2373 if (!p) { 2374 dl_server_stop(dl_se); 2375 goto again; 2376 } 2377 rq->dl_server = dl_se; 2378 } else { 2379 p = dl_task_of(dl_se); 2380 } 2381 2382 return p; 2383 } 2384 2385 static struct task_struct *pick_task_dl(struct rq *rq) 2386 { 2387 return __pick_task_dl(rq); 2388 } 2389 2390 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next) 2391 { 2392 struct sched_dl_entity *dl_se = &p->dl; 2393 struct dl_rq *dl_rq = &rq->dl; 2394 2395 if (on_dl_rq(&p->dl)) 2396 update_stats_wait_start_dl(dl_rq, dl_se); 2397 2398 update_curr_dl(rq); 2399 2400 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2401 2402 if (task_is_blocked(p)) 2403 return; 2404 2405 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2406 enqueue_pushable_dl_task(rq, p); 2407 } 2408 2409 /* 2410 * scheduler tick hitting a task of our scheduling class. 2411 * 2412 * NOTE: This function can be called remotely by the tick offload that 2413 * goes along full dynticks. Therefore no local assumption can be made 2414 * and everything must be accessed through the @rq and @curr passed in 2415 * parameters. 2416 */ 2417 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2418 { 2419 update_curr_dl(rq); 2420 2421 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2422 /* 2423 * Even when we have runtime, update_curr_dl() might have resulted in us 2424 * not being the leftmost task anymore. In that case NEED_RESCHED will 2425 * be set and schedule() will start a new hrtick for the next task. 2426 */ 2427 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2428 is_leftmost(&p->dl, &rq->dl)) 2429 start_hrtick_dl(rq, &p->dl); 2430 } 2431 2432 static void task_fork_dl(struct task_struct *p) 2433 { 2434 /* 2435 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2436 * sched_fork() 2437 */ 2438 } 2439 2440 /* Only try algorithms three times */ 2441 #define DL_MAX_TRIES 3 2442 2443 /* 2444 * Return the earliest pushable rq's task, which is suitable to be executed 2445 * on the CPU, NULL otherwise: 2446 */ 2447 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2448 { 2449 struct task_struct *p = NULL; 2450 struct rb_node *next_node; 2451 2452 if (!has_pushable_dl_tasks(rq)) 2453 return NULL; 2454 2455 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2456 while (next_node) { 2457 p = __node_2_pdl(next_node); 2458 2459 if (task_is_pushable(rq, p, cpu)) 2460 return p; 2461 2462 next_node = rb_next(next_node); 2463 } 2464 2465 return NULL; 2466 } 2467 2468 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2469 2470 static int find_later_rq(struct task_struct *task) 2471 { 2472 struct sched_domain *sd; 2473 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2474 int this_cpu = smp_processor_id(); 2475 int cpu = task_cpu(task); 2476 2477 /* Make sure the mask is initialized first */ 2478 if (unlikely(!later_mask)) 2479 return -1; 2480 2481 if (task->nr_cpus_allowed == 1) 2482 return -1; 2483 2484 /* 2485 * We have to consider system topology and task affinity 2486 * first, then we can look for a suitable CPU. 2487 */ 2488 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2489 return -1; 2490 2491 /* 2492 * If we are here, some targets have been found, including 2493 * the most suitable which is, among the runqueues where the 2494 * current tasks have later deadlines than the task's one, the 2495 * rq with the latest possible one. 2496 * 2497 * Now we check how well this matches with task's 2498 * affinity and system topology. 2499 * 2500 * The last CPU where the task run is our first 2501 * guess, since it is most likely cache-hot there. 2502 */ 2503 if (cpumask_test_cpu(cpu, later_mask)) 2504 return cpu; 2505 /* 2506 * Check if this_cpu is to be skipped (i.e., it is 2507 * not in the mask) or not. 2508 */ 2509 if (!cpumask_test_cpu(this_cpu, later_mask)) 2510 this_cpu = -1; 2511 2512 rcu_read_lock(); 2513 for_each_domain(cpu, sd) { 2514 if (sd->flags & SD_WAKE_AFFINE) { 2515 int best_cpu; 2516 2517 /* 2518 * If possible, preempting this_cpu is 2519 * cheaper than migrating. 2520 */ 2521 if (this_cpu != -1 && 2522 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2523 rcu_read_unlock(); 2524 return this_cpu; 2525 } 2526 2527 best_cpu = cpumask_any_and_distribute(later_mask, 2528 sched_domain_span(sd)); 2529 /* 2530 * Last chance: if a CPU being in both later_mask 2531 * and current sd span is valid, that becomes our 2532 * choice. Of course, the latest possible CPU is 2533 * already under consideration through later_mask. 2534 */ 2535 if (best_cpu < nr_cpu_ids) { 2536 rcu_read_unlock(); 2537 return best_cpu; 2538 } 2539 } 2540 } 2541 rcu_read_unlock(); 2542 2543 /* 2544 * At this point, all our guesses failed, we just return 2545 * 'something', and let the caller sort the things out. 2546 */ 2547 if (this_cpu != -1) 2548 return this_cpu; 2549 2550 cpu = cpumask_any_distribute(later_mask); 2551 if (cpu < nr_cpu_ids) 2552 return cpu; 2553 2554 return -1; 2555 } 2556 2557 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2558 { 2559 struct task_struct *p; 2560 2561 if (!has_pushable_dl_tasks(rq)) 2562 return NULL; 2563 2564 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2565 2566 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2567 WARN_ON_ONCE(task_current(rq, p)); 2568 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2569 2570 WARN_ON_ONCE(!task_on_rq_queued(p)); 2571 WARN_ON_ONCE(!dl_task(p)); 2572 2573 return p; 2574 } 2575 2576 /* Locks the rq it finds */ 2577 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2578 { 2579 struct rq *later_rq = NULL; 2580 int tries; 2581 int cpu; 2582 2583 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2584 cpu = find_later_rq(task); 2585 2586 if ((cpu == -1) || (cpu == rq->cpu)) 2587 break; 2588 2589 later_rq = cpu_rq(cpu); 2590 2591 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2592 /* 2593 * Target rq has tasks of equal or earlier deadline, 2594 * retrying does not release any lock and is unlikely 2595 * to yield a different result. 2596 */ 2597 later_rq = NULL; 2598 break; 2599 } 2600 2601 /* Retry if something changed. */ 2602 if (double_lock_balance(rq, later_rq)) { 2603 /* 2604 * double_lock_balance had to release rq->lock, in the 2605 * meantime, task may no longer be fit to be migrated. 2606 * Check the following to ensure that the task is 2607 * still suitable for migration: 2608 * 1. It is possible the task was scheduled, 2609 * migrate_disabled was set and then got preempted, 2610 * so we must check the task migration disable 2611 * flag. 2612 * 2. The CPU picked is in the task's affinity. 2613 * 3. For throttled task (dl_task_offline_migration), 2614 * check the following: 2615 * - the task is not on the rq anymore (it was 2616 * migrated) 2617 * - the task is not on CPU anymore 2618 * - the task is still a dl task 2619 * - the task is not queued on the rq anymore 2620 * 4. For the non-throttled task (push_dl_task), the 2621 * check to ensure that this task is still at the 2622 * head of the pushable tasks list is enough. 2623 */ 2624 if (unlikely(is_migration_disabled(task) || 2625 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2626 (task->dl.dl_throttled && 2627 (task_rq(task) != rq || 2628 task_on_cpu(rq, task) || 2629 !dl_task(task) || 2630 !task_on_rq_queued(task))) || 2631 (!task->dl.dl_throttled && 2632 task != pick_next_pushable_dl_task(rq)))) { 2633 2634 double_unlock_balance(rq, later_rq); 2635 later_rq = NULL; 2636 break; 2637 } 2638 } 2639 2640 /* 2641 * If the rq we found has no -deadline task, or 2642 * its earliest one has a later deadline than our 2643 * task, the rq is a good one. 2644 */ 2645 if (dl_task_is_earliest_deadline(task, later_rq)) 2646 break; 2647 2648 /* Otherwise we try again. */ 2649 double_unlock_balance(rq, later_rq); 2650 later_rq = NULL; 2651 } 2652 2653 return later_rq; 2654 } 2655 2656 /* 2657 * See if the non running -deadline tasks on this rq 2658 * can be sent to some other CPU where they can preempt 2659 * and start executing. 2660 */ 2661 static int push_dl_task(struct rq *rq) 2662 { 2663 struct task_struct *next_task; 2664 struct rq *later_rq; 2665 int ret = 0; 2666 2667 next_task = pick_next_pushable_dl_task(rq); 2668 if (!next_task) 2669 return 0; 2670 2671 retry: 2672 /* 2673 * If next_task preempts rq->curr, and rq->curr 2674 * can move away, it makes sense to just reschedule 2675 * without going further in pushing next_task. 2676 */ 2677 if (dl_task(rq->donor) && 2678 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) && 2679 rq->curr->nr_cpus_allowed > 1) { 2680 resched_curr(rq); 2681 return 0; 2682 } 2683 2684 if (is_migration_disabled(next_task)) 2685 return 0; 2686 2687 if (WARN_ON(next_task == rq->curr)) 2688 return 0; 2689 2690 /* We might release rq lock */ 2691 get_task_struct(next_task); 2692 2693 /* Will lock the rq it'll find */ 2694 later_rq = find_lock_later_rq(next_task, rq); 2695 if (!later_rq) { 2696 struct task_struct *task; 2697 2698 /* 2699 * We must check all this again, since 2700 * find_lock_later_rq releases rq->lock and it is 2701 * then possible that next_task has migrated. 2702 */ 2703 task = pick_next_pushable_dl_task(rq); 2704 if (task == next_task) { 2705 /* 2706 * The task is still there. We don't try 2707 * again, some other CPU will pull it when ready. 2708 */ 2709 goto out; 2710 } 2711 2712 if (!task) 2713 /* No more tasks */ 2714 goto out; 2715 2716 put_task_struct(next_task); 2717 next_task = task; 2718 goto retry; 2719 } 2720 2721 move_queued_task_locked(rq, later_rq, next_task); 2722 ret = 1; 2723 2724 resched_curr(later_rq); 2725 2726 double_unlock_balance(rq, later_rq); 2727 2728 out: 2729 put_task_struct(next_task); 2730 2731 return ret; 2732 } 2733 2734 static void push_dl_tasks(struct rq *rq) 2735 { 2736 /* push_dl_task() will return true if it moved a -deadline task */ 2737 while (push_dl_task(rq)) 2738 ; 2739 } 2740 2741 static void pull_dl_task(struct rq *this_rq) 2742 { 2743 int this_cpu = this_rq->cpu, cpu; 2744 struct task_struct *p, *push_task; 2745 bool resched = false; 2746 struct rq *src_rq; 2747 u64 dmin = LONG_MAX; 2748 2749 if (likely(!dl_overloaded(this_rq))) 2750 return; 2751 2752 /* 2753 * Match the barrier from dl_set_overloaded; this guarantees that if we 2754 * see overloaded we must also see the dlo_mask bit. 2755 */ 2756 smp_rmb(); 2757 2758 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2759 if (this_cpu == cpu) 2760 continue; 2761 2762 src_rq = cpu_rq(cpu); 2763 2764 /* 2765 * It looks racy, and it is! However, as in sched_rt.c, 2766 * we are fine with this. 2767 */ 2768 if (this_rq->dl.dl_nr_running && 2769 dl_time_before(this_rq->dl.earliest_dl.curr, 2770 src_rq->dl.earliest_dl.next)) 2771 continue; 2772 2773 /* Might drop this_rq->lock */ 2774 push_task = NULL; 2775 double_lock_balance(this_rq, src_rq); 2776 2777 /* 2778 * If there are no more pullable tasks on the 2779 * rq, we're done with it. 2780 */ 2781 if (src_rq->dl.dl_nr_running <= 1) 2782 goto skip; 2783 2784 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2785 2786 /* 2787 * We found a task to be pulled if: 2788 * - it preempts our current (if there's one), 2789 * - it will preempt the last one we pulled (if any). 2790 */ 2791 if (p && dl_time_before(p->dl.deadline, dmin) && 2792 dl_task_is_earliest_deadline(p, this_rq)) { 2793 WARN_ON(p == src_rq->curr); 2794 WARN_ON(!task_on_rq_queued(p)); 2795 2796 /* 2797 * Then we pull iff p has actually an earlier 2798 * deadline than the current task of its runqueue. 2799 */ 2800 if (dl_time_before(p->dl.deadline, 2801 src_rq->donor->dl.deadline)) 2802 goto skip; 2803 2804 if (is_migration_disabled(p)) { 2805 push_task = get_push_task(src_rq); 2806 } else { 2807 move_queued_task_locked(src_rq, this_rq, p); 2808 dmin = p->dl.deadline; 2809 resched = true; 2810 } 2811 2812 /* Is there any other task even earlier? */ 2813 } 2814 skip: 2815 double_unlock_balance(this_rq, src_rq); 2816 2817 if (push_task) { 2818 preempt_disable(); 2819 raw_spin_rq_unlock(this_rq); 2820 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2821 push_task, &src_rq->push_work); 2822 preempt_enable(); 2823 raw_spin_rq_lock(this_rq); 2824 } 2825 } 2826 2827 if (resched) 2828 resched_curr(this_rq); 2829 } 2830 2831 /* 2832 * Since the task is not running and a reschedule is not going to happen 2833 * anytime soon on its runqueue, we try pushing it away now. 2834 */ 2835 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2836 { 2837 if (!task_on_cpu(rq, p) && 2838 !test_tsk_need_resched(rq->curr) && 2839 p->nr_cpus_allowed > 1 && 2840 dl_task(rq->donor) && 2841 (rq->curr->nr_cpus_allowed < 2 || 2842 !dl_entity_preempt(&p->dl, &rq->donor->dl))) { 2843 push_dl_tasks(rq); 2844 } 2845 } 2846 2847 static void set_cpus_allowed_dl(struct task_struct *p, 2848 struct affinity_context *ctx) 2849 { 2850 struct root_domain *src_rd; 2851 struct rq *rq; 2852 2853 WARN_ON_ONCE(!dl_task(p)); 2854 2855 rq = task_rq(p); 2856 src_rd = rq->rd; 2857 /* 2858 * Migrating a SCHED_DEADLINE task between exclusive 2859 * cpusets (different root_domains) entails a bandwidth 2860 * update. We already made space for us in the destination 2861 * domain (see cpuset_can_attach()). 2862 */ 2863 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 2864 struct dl_bw *src_dl_b; 2865 2866 src_dl_b = dl_bw_of(cpu_of(rq)); 2867 /* 2868 * We now free resources of the root_domain we are migrating 2869 * off. In the worst case, sched_setattr() may temporary fail 2870 * until we complete the update. 2871 */ 2872 raw_spin_lock(&src_dl_b->lock); 2873 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2874 raw_spin_unlock(&src_dl_b->lock); 2875 } 2876 2877 set_cpus_allowed_common(p, ctx); 2878 } 2879 2880 /* Assumes rq->lock is held */ 2881 static void rq_online_dl(struct rq *rq) 2882 { 2883 if (rq->dl.overloaded) 2884 dl_set_overload(rq); 2885 2886 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2887 if (rq->dl.dl_nr_running > 0) 2888 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2889 } 2890 2891 /* Assumes rq->lock is held */ 2892 static void rq_offline_dl(struct rq *rq) 2893 { 2894 if (rq->dl.overloaded) 2895 dl_clear_overload(rq); 2896 2897 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2898 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2899 } 2900 2901 void __init init_sched_dl_class(void) 2902 { 2903 unsigned int i; 2904 2905 for_each_possible_cpu(i) 2906 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2907 GFP_KERNEL, cpu_to_node(i)); 2908 } 2909 2910 void dl_add_task_root_domain(struct task_struct *p) 2911 { 2912 struct rq_flags rf; 2913 struct rq *rq; 2914 struct dl_bw *dl_b; 2915 2916 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2917 if (!dl_task(p) || dl_entity_is_special(&p->dl)) { 2918 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2919 return; 2920 } 2921 2922 rq = __task_rq_lock(p, &rf); 2923 2924 dl_b = &rq->rd->dl_bw; 2925 raw_spin_lock(&dl_b->lock); 2926 2927 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2928 2929 raw_spin_unlock(&dl_b->lock); 2930 2931 task_rq_unlock(rq, p, &rf); 2932 } 2933 2934 void dl_clear_root_domain(struct root_domain *rd) 2935 { 2936 int i; 2937 2938 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock); 2939 2940 /* 2941 * Reset total_bw to zero and extra_bw to max_bw so that next 2942 * loop will add dl-servers contributions back properly, 2943 */ 2944 rd->dl_bw.total_bw = 0; 2945 for_each_cpu(i, rd->span) 2946 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw; 2947 2948 /* 2949 * dl_servers are not tasks. Since dl_add_task_root_domain ignores 2950 * them, we need to account for them here explicitly. 2951 */ 2952 for_each_cpu(i, rd->span) { 2953 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server; 2954 2955 if (dl_server(dl_se) && cpu_active(i)) 2956 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i)); 2957 } 2958 } 2959 2960 void dl_clear_root_domain_cpu(int cpu) 2961 { 2962 dl_clear_root_domain(cpu_rq(cpu)->rd); 2963 } 2964 2965 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2966 { 2967 /* 2968 * task_non_contending() can start the "inactive timer" (if the 0-lag 2969 * time is in the future). If the task switches back to dl before 2970 * the "inactive timer" fires, it can continue to consume its current 2971 * runtime using its current deadline. If it stays outside of 2972 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2973 * will reset the task parameters. 2974 */ 2975 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2976 task_non_contending(&p->dl); 2977 2978 /* 2979 * In case a task is setscheduled out from SCHED_DEADLINE we need to 2980 * keep track of that on its cpuset (for correct bandwidth tracking). 2981 */ 2982 dec_dl_tasks_cs(p); 2983 2984 if (!task_on_rq_queued(p)) { 2985 /* 2986 * Inactive timer is armed. However, p is leaving DEADLINE and 2987 * might migrate away from this rq while continuing to run on 2988 * some other class. We need to remove its contribution from 2989 * this rq running_bw now, or sub_rq_bw (below) will complain. 2990 */ 2991 if (p->dl.dl_non_contending) 2992 sub_running_bw(&p->dl, &rq->dl); 2993 sub_rq_bw(&p->dl, &rq->dl); 2994 } 2995 2996 /* 2997 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2998 * at the 0-lag time, because the task could have been migrated 2999 * while SCHED_OTHER in the meanwhile. 3000 */ 3001 if (p->dl.dl_non_contending) 3002 p->dl.dl_non_contending = 0; 3003 3004 /* 3005 * Since this might be the only -deadline task on the rq, 3006 * this is the right place to try to pull some other one 3007 * from an overloaded CPU, if any. 3008 */ 3009 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 3010 return; 3011 3012 deadline_queue_pull_task(rq); 3013 } 3014 3015 /* 3016 * When switching to -deadline, we may overload the rq, then 3017 * we try to push someone off, if possible. 3018 */ 3019 static void switched_to_dl(struct rq *rq, struct task_struct *p) 3020 { 3021 cancel_inactive_timer(&p->dl); 3022 3023 /* 3024 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 3025 * track of that on its cpuset (for correct bandwidth tracking). 3026 */ 3027 inc_dl_tasks_cs(p); 3028 3029 /* If p is not queued we will update its parameters at next wakeup. */ 3030 if (!task_on_rq_queued(p)) { 3031 add_rq_bw(&p->dl, &rq->dl); 3032 3033 return; 3034 } 3035 3036 if (rq->donor != p) { 3037 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 3038 deadline_queue_push_tasks(rq); 3039 if (dl_task(rq->donor)) 3040 wakeup_preempt_dl(rq, p, 0); 3041 else 3042 resched_curr(rq); 3043 } else { 3044 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 3045 } 3046 } 3047 3048 /* 3049 * If the scheduling parameters of a -deadline task changed, 3050 * a push or pull operation might be needed. 3051 */ 3052 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 3053 int oldprio) 3054 { 3055 if (!task_on_rq_queued(p)) 3056 return; 3057 3058 /* 3059 * This might be too much, but unfortunately 3060 * we don't have the old deadline value, and 3061 * we can't argue if the task is increasing 3062 * or lowering its prio, so... 3063 */ 3064 if (!rq->dl.overloaded) 3065 deadline_queue_pull_task(rq); 3066 3067 if (task_current_donor(rq, p)) { 3068 /* 3069 * If we now have a earlier deadline task than p, 3070 * then reschedule, provided p is still on this 3071 * runqueue. 3072 */ 3073 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 3074 resched_curr(rq); 3075 } else { 3076 /* 3077 * Current may not be deadline in case p was throttled but we 3078 * have just replenished it (e.g. rt_mutex_setprio()). 3079 * 3080 * Otherwise, if p was given an earlier deadline, reschedule. 3081 */ 3082 if (!dl_task(rq->curr) || 3083 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 3084 resched_curr(rq); 3085 } 3086 } 3087 3088 #ifdef CONFIG_SCHED_CORE 3089 static int task_is_throttled_dl(struct task_struct *p, int cpu) 3090 { 3091 return p->dl.dl_throttled; 3092 } 3093 #endif 3094 3095 DEFINE_SCHED_CLASS(dl) = { 3096 3097 .enqueue_task = enqueue_task_dl, 3098 .dequeue_task = dequeue_task_dl, 3099 .yield_task = yield_task_dl, 3100 3101 .wakeup_preempt = wakeup_preempt_dl, 3102 3103 .pick_task = pick_task_dl, 3104 .put_prev_task = put_prev_task_dl, 3105 .set_next_task = set_next_task_dl, 3106 3107 .balance = balance_dl, 3108 .select_task_rq = select_task_rq_dl, 3109 .migrate_task_rq = migrate_task_rq_dl, 3110 .set_cpus_allowed = set_cpus_allowed_dl, 3111 .rq_online = rq_online_dl, 3112 .rq_offline = rq_offline_dl, 3113 .task_woken = task_woken_dl, 3114 .find_lock_rq = find_lock_later_rq, 3115 3116 .task_tick = task_tick_dl, 3117 .task_fork = task_fork_dl, 3118 3119 .prio_changed = prio_changed_dl, 3120 .switched_from = switched_from_dl, 3121 .switched_to = switched_to_dl, 3122 3123 .update_curr = update_curr_dl, 3124 #ifdef CONFIG_SCHED_CORE 3125 .task_is_throttled = task_is_throttled_dl, 3126 #endif 3127 }; 3128 3129 /* 3130 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and 3131 * sched_domains_mutex. 3132 */ 3133 u64 dl_cookie; 3134 3135 int sched_dl_global_validate(void) 3136 { 3137 u64 runtime = global_rt_runtime(); 3138 u64 period = global_rt_period(); 3139 u64 new_bw = to_ratio(period, runtime); 3140 u64 cookie = ++dl_cookie; 3141 struct dl_bw *dl_b; 3142 int cpu, cpus, ret = 0; 3143 unsigned long flags; 3144 3145 /* 3146 * Here we want to check the bandwidth not being set to some 3147 * value smaller than the currently allocated bandwidth in 3148 * any of the root_domains. 3149 */ 3150 for_each_online_cpu(cpu) { 3151 rcu_read_lock_sched(); 3152 3153 if (dl_bw_visited(cpu, cookie)) 3154 goto next; 3155 3156 dl_b = dl_bw_of(cpu); 3157 cpus = dl_bw_cpus(cpu); 3158 3159 raw_spin_lock_irqsave(&dl_b->lock, flags); 3160 if (new_bw * cpus < dl_b->total_bw) 3161 ret = -EBUSY; 3162 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3163 3164 next: 3165 rcu_read_unlock_sched(); 3166 3167 if (ret) 3168 break; 3169 } 3170 3171 return ret; 3172 } 3173 3174 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 3175 { 3176 if (global_rt_runtime() == RUNTIME_INF) { 3177 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 3178 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 3179 } else { 3180 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 3181 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 3182 dl_rq->max_bw = dl_rq->extra_bw = 3183 to_ratio(global_rt_period(), global_rt_runtime()); 3184 } 3185 } 3186 3187 void sched_dl_do_global(void) 3188 { 3189 u64 new_bw = -1; 3190 u64 cookie = ++dl_cookie; 3191 struct dl_bw *dl_b; 3192 int cpu; 3193 unsigned long flags; 3194 3195 if (global_rt_runtime() != RUNTIME_INF) 3196 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 3197 3198 for_each_possible_cpu(cpu) 3199 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 3200 3201 for_each_possible_cpu(cpu) { 3202 rcu_read_lock_sched(); 3203 3204 if (dl_bw_visited(cpu, cookie)) { 3205 rcu_read_unlock_sched(); 3206 continue; 3207 } 3208 3209 dl_b = dl_bw_of(cpu); 3210 3211 raw_spin_lock_irqsave(&dl_b->lock, flags); 3212 dl_b->bw = new_bw; 3213 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3214 3215 rcu_read_unlock_sched(); 3216 } 3217 } 3218 3219 /* 3220 * We must be sure that accepting a new task (or allowing changing the 3221 * parameters of an existing one) is consistent with the bandwidth 3222 * constraints. If yes, this function also accordingly updates the currently 3223 * allocated bandwidth to reflect the new situation. 3224 * 3225 * This function is called while holding p's rq->lock. 3226 */ 3227 int sched_dl_overflow(struct task_struct *p, int policy, 3228 const struct sched_attr *attr) 3229 { 3230 u64 period = attr->sched_period ?: attr->sched_deadline; 3231 u64 runtime = attr->sched_runtime; 3232 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 3233 int cpus, err = -1, cpu = task_cpu(p); 3234 struct dl_bw *dl_b = dl_bw_of(cpu); 3235 unsigned long cap; 3236 3237 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3238 return 0; 3239 3240 /* !deadline task may carry old deadline bandwidth */ 3241 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 3242 return 0; 3243 3244 /* 3245 * Either if a task, enters, leave, or stays -deadline but changes 3246 * its parameters, we may need to update accordingly the total 3247 * allocated bandwidth of the container. 3248 */ 3249 raw_spin_lock(&dl_b->lock); 3250 cpus = dl_bw_cpus(cpu); 3251 cap = dl_bw_capacity(cpu); 3252 3253 if (dl_policy(policy) && !task_has_dl_policy(p) && 3254 !__dl_overflow(dl_b, cap, 0, new_bw)) { 3255 if (hrtimer_active(&p->dl.inactive_timer)) 3256 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3257 __dl_add(dl_b, new_bw, cpus); 3258 err = 0; 3259 } else if (dl_policy(policy) && task_has_dl_policy(p) && 3260 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 3261 /* 3262 * XXX this is slightly incorrect: when the task 3263 * utilization decreases, we should delay the total 3264 * utilization change until the task's 0-lag point. 3265 * But this would require to set the task's "inactive 3266 * timer" when the task is not inactive. 3267 */ 3268 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3269 __dl_add(dl_b, new_bw, cpus); 3270 dl_change_utilization(p, new_bw); 3271 err = 0; 3272 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 3273 /* 3274 * Do not decrease the total deadline utilization here, 3275 * switched_from_dl() will take care to do it at the correct 3276 * (0-lag) time. 3277 */ 3278 err = 0; 3279 } 3280 raw_spin_unlock(&dl_b->lock); 3281 3282 return err; 3283 } 3284 3285 /* 3286 * This function initializes the sched_dl_entity of a newly becoming 3287 * SCHED_DEADLINE task. 3288 * 3289 * Only the static values are considered here, the actual runtime and the 3290 * absolute deadline will be properly calculated when the task is enqueued 3291 * for the first time with its new policy. 3292 */ 3293 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3294 { 3295 struct sched_dl_entity *dl_se = &p->dl; 3296 3297 dl_se->dl_runtime = attr->sched_runtime; 3298 dl_se->dl_deadline = attr->sched_deadline; 3299 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3300 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 3301 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3302 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3303 } 3304 3305 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3306 { 3307 struct sched_dl_entity *dl_se = &p->dl; 3308 3309 attr->sched_priority = p->rt_priority; 3310 attr->sched_runtime = dl_se->dl_runtime; 3311 attr->sched_deadline = dl_se->dl_deadline; 3312 attr->sched_period = dl_se->dl_period; 3313 attr->sched_flags &= ~SCHED_DL_FLAGS; 3314 attr->sched_flags |= dl_se->flags; 3315 } 3316 3317 /* 3318 * This function validates the new parameters of a -deadline task. 3319 * We ask for the deadline not being zero, and greater or equal 3320 * than the runtime, as well as the period of being zero or 3321 * greater than deadline. Furthermore, we have to be sure that 3322 * user parameters are above the internal resolution of 1us (we 3323 * check sched_runtime only since it is always the smaller one) and 3324 * below 2^63 ns (we have to check both sched_deadline and 3325 * sched_period, as the latter can be zero). 3326 */ 3327 bool __checkparam_dl(const struct sched_attr *attr) 3328 { 3329 u64 period, max, min; 3330 3331 /* special dl tasks don't actually use any parameter */ 3332 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3333 return true; 3334 3335 /* deadline != 0 */ 3336 if (attr->sched_deadline == 0) 3337 return false; 3338 3339 /* 3340 * Since we truncate DL_SCALE bits, make sure we're at least 3341 * that big. 3342 */ 3343 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3344 return false; 3345 3346 /* 3347 * Since we use the MSB for wrap-around and sign issues, make 3348 * sure it's not set (mind that period can be equal to zero). 3349 */ 3350 if (attr->sched_deadline & (1ULL << 63) || 3351 attr->sched_period & (1ULL << 63)) 3352 return false; 3353 3354 period = attr->sched_period; 3355 if (!period) 3356 period = attr->sched_deadline; 3357 3358 /* runtime <= deadline <= period (if period != 0) */ 3359 if (period < attr->sched_deadline || 3360 attr->sched_deadline < attr->sched_runtime) 3361 return false; 3362 3363 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3364 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3365 3366 if (period < min || period > max) 3367 return false; 3368 3369 return true; 3370 } 3371 3372 /* 3373 * This function clears the sched_dl_entity static params. 3374 */ 3375 static void __dl_clear_params(struct sched_dl_entity *dl_se) 3376 { 3377 dl_se->dl_runtime = 0; 3378 dl_se->dl_deadline = 0; 3379 dl_se->dl_period = 0; 3380 dl_se->flags = 0; 3381 dl_se->dl_bw = 0; 3382 dl_se->dl_density = 0; 3383 3384 dl_se->dl_throttled = 0; 3385 dl_se->dl_yielded = 0; 3386 dl_se->dl_non_contending = 0; 3387 dl_se->dl_overrun = 0; 3388 dl_se->dl_server = 0; 3389 3390 #ifdef CONFIG_RT_MUTEXES 3391 dl_se->pi_se = dl_se; 3392 #endif 3393 } 3394 3395 void init_dl_entity(struct sched_dl_entity *dl_se) 3396 { 3397 RB_CLEAR_NODE(&dl_se->rb_node); 3398 init_dl_task_timer(dl_se); 3399 init_dl_inactive_task_timer(dl_se); 3400 __dl_clear_params(dl_se); 3401 } 3402 3403 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3404 { 3405 struct sched_dl_entity *dl_se = &p->dl; 3406 3407 if (dl_se->dl_runtime != attr->sched_runtime || 3408 dl_se->dl_deadline != attr->sched_deadline || 3409 dl_se->dl_period != attr->sched_period || 3410 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3411 return true; 3412 3413 return false; 3414 } 3415 3416 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3417 const struct cpumask *trial) 3418 { 3419 unsigned long flags, cap; 3420 struct dl_bw *cur_dl_b; 3421 int ret = 1; 3422 3423 rcu_read_lock_sched(); 3424 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3425 cap = __dl_bw_capacity(trial); 3426 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3427 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3428 ret = 0; 3429 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3430 rcu_read_unlock_sched(); 3431 3432 return ret; 3433 } 3434 3435 enum dl_bw_request { 3436 dl_bw_req_deactivate = 0, 3437 dl_bw_req_alloc, 3438 dl_bw_req_free 3439 }; 3440 3441 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3442 { 3443 unsigned long flags, cap; 3444 struct dl_bw *dl_b; 3445 bool overflow = 0; 3446 u64 fair_server_bw = 0; 3447 3448 rcu_read_lock_sched(); 3449 dl_b = dl_bw_of(cpu); 3450 raw_spin_lock_irqsave(&dl_b->lock, flags); 3451 3452 cap = dl_bw_capacity(cpu); 3453 switch (req) { 3454 case dl_bw_req_free: 3455 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3456 break; 3457 case dl_bw_req_alloc: 3458 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3459 3460 if (!overflow) { 3461 /* 3462 * We reserve space in the destination 3463 * root_domain, as we can't fail after this point. 3464 * We will free resources in the source root_domain 3465 * later on (see set_cpus_allowed_dl()). 3466 */ 3467 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3468 } 3469 break; 3470 case dl_bw_req_deactivate: 3471 /* 3472 * cpu is not off yet, but we need to do the math by 3473 * considering it off already (i.e., what would happen if we 3474 * turn cpu off?). 3475 */ 3476 cap -= arch_scale_cpu_capacity(cpu); 3477 3478 /* 3479 * cpu is going offline and NORMAL tasks will be moved away 3480 * from it. We can thus discount dl_server bandwidth 3481 * contribution as it won't need to be servicing tasks after 3482 * the cpu is off. 3483 */ 3484 if (cpu_rq(cpu)->fair_server.dl_server) 3485 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw; 3486 3487 /* 3488 * Not much to check if no DEADLINE bandwidth is present. 3489 * dl_servers we can discount, as tasks will be moved out the 3490 * offlined CPUs anyway. 3491 */ 3492 if (dl_b->total_bw - fair_server_bw > 0) { 3493 /* 3494 * Leaving at least one CPU for DEADLINE tasks seems a 3495 * wise thing to do. As said above, cpu is not offline 3496 * yet, so account for that. 3497 */ 3498 if (dl_bw_cpus(cpu) - 1) 3499 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0); 3500 else 3501 overflow = 1; 3502 } 3503 3504 break; 3505 } 3506 3507 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3508 rcu_read_unlock_sched(); 3509 3510 return overflow ? -EBUSY : 0; 3511 } 3512 3513 int dl_bw_deactivate(int cpu) 3514 { 3515 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0); 3516 } 3517 3518 int dl_bw_alloc(int cpu, u64 dl_bw) 3519 { 3520 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3521 } 3522 3523 void dl_bw_free(int cpu, u64 dl_bw) 3524 { 3525 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3526 } 3527 3528 void print_dl_stats(struct seq_file *m, int cpu) 3529 { 3530 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3531 } 3532