1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 21 /* 22 * Default limits for DL period; on the top end we guard against small util 23 * tasks still getting ridiculously long effective runtimes, on the bottom end we 24 * guard against timer DoS. 25 */ 26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 27 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 28 #ifdef CONFIG_SYSCTL 29 static struct ctl_table sched_dl_sysctls[] = { 30 { 31 .procname = "sched_deadline_period_max_us", 32 .data = &sysctl_sched_dl_period_max, 33 .maxlen = sizeof(unsigned int), 34 .mode = 0644, 35 .proc_handler = proc_douintvec_minmax, 36 .extra1 = (void *)&sysctl_sched_dl_period_min, 37 }, 38 { 39 .procname = "sched_deadline_period_min_us", 40 .data = &sysctl_sched_dl_period_min, 41 .maxlen = sizeof(unsigned int), 42 .mode = 0644, 43 .proc_handler = proc_douintvec_minmax, 44 .extra2 = (void *)&sysctl_sched_dl_period_max, 45 }, 46 {} 47 }; 48 49 static int __init sched_dl_sysctl_init(void) 50 { 51 register_sysctl_init("kernel", sched_dl_sysctls); 52 return 0; 53 } 54 late_initcall(sched_dl_sysctl_init); 55 #endif 56 57 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 58 { 59 return container_of(dl_se, struct task_struct, dl); 60 } 61 62 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 63 { 64 return container_of(dl_rq, struct rq, dl); 65 } 66 67 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 68 { 69 struct task_struct *p = dl_task_of(dl_se); 70 struct rq *rq = task_rq(p); 71 72 return &rq->dl; 73 } 74 75 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 76 { 77 return !RB_EMPTY_NODE(&dl_se->rb_node); 78 } 79 80 #ifdef CONFIG_RT_MUTEXES 81 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 82 { 83 return dl_se->pi_se; 84 } 85 86 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 87 { 88 return pi_of(dl_se) != dl_se; 89 } 90 #else 91 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 92 { 93 return dl_se; 94 } 95 96 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 97 { 98 return false; 99 } 100 #endif 101 102 #ifdef CONFIG_SMP 103 static inline struct dl_bw *dl_bw_of(int i) 104 { 105 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 106 "sched RCU must be held"); 107 return &cpu_rq(i)->rd->dl_bw; 108 } 109 110 static inline int dl_bw_cpus(int i) 111 { 112 struct root_domain *rd = cpu_rq(i)->rd; 113 int cpus; 114 115 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 116 "sched RCU must be held"); 117 118 if (cpumask_subset(rd->span, cpu_active_mask)) 119 return cpumask_weight(rd->span); 120 121 cpus = 0; 122 123 for_each_cpu_and(i, rd->span, cpu_active_mask) 124 cpus++; 125 126 return cpus; 127 } 128 129 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 130 { 131 unsigned long cap = 0; 132 int i; 133 134 for_each_cpu_and(i, mask, cpu_active_mask) 135 cap += arch_scale_cpu_capacity(i); 136 137 return cap; 138 } 139 140 /* 141 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 142 * of the CPU the task is running on rather rd's \Sum CPU capacity. 143 */ 144 static inline unsigned long dl_bw_capacity(int i) 145 { 146 if (!sched_asym_cpucap_active() && 147 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) { 148 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 149 } else { 150 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 151 "sched RCU must be held"); 152 153 return __dl_bw_capacity(cpu_rq(i)->rd->span); 154 } 155 } 156 157 static inline bool dl_bw_visited(int cpu, u64 gen) 158 { 159 struct root_domain *rd = cpu_rq(cpu)->rd; 160 161 if (rd->visit_gen == gen) 162 return true; 163 164 rd->visit_gen = gen; 165 return false; 166 } 167 168 static inline 169 void __dl_update(struct dl_bw *dl_b, s64 bw) 170 { 171 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 172 int i; 173 174 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 175 "sched RCU must be held"); 176 for_each_cpu_and(i, rd->span, cpu_active_mask) { 177 struct rq *rq = cpu_rq(i); 178 179 rq->dl.extra_bw += bw; 180 } 181 } 182 #else 183 static inline struct dl_bw *dl_bw_of(int i) 184 { 185 return &cpu_rq(i)->dl.dl_bw; 186 } 187 188 static inline int dl_bw_cpus(int i) 189 { 190 return 1; 191 } 192 193 static inline unsigned long dl_bw_capacity(int i) 194 { 195 return SCHED_CAPACITY_SCALE; 196 } 197 198 static inline bool dl_bw_visited(int cpu, u64 gen) 199 { 200 return false; 201 } 202 203 static inline 204 void __dl_update(struct dl_bw *dl_b, s64 bw) 205 { 206 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 207 208 dl->extra_bw += bw; 209 } 210 #endif 211 212 static inline 213 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 214 { 215 dl_b->total_bw -= tsk_bw; 216 __dl_update(dl_b, (s32)tsk_bw / cpus); 217 } 218 219 static inline 220 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 221 { 222 dl_b->total_bw += tsk_bw; 223 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 224 } 225 226 static inline bool 227 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 228 { 229 return dl_b->bw != -1 && 230 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 231 } 232 233 static inline 234 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 235 { 236 u64 old = dl_rq->running_bw; 237 238 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 239 dl_rq->running_bw += dl_bw; 240 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 241 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 244 } 245 246 static inline 247 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 248 { 249 u64 old = dl_rq->running_bw; 250 251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 252 dl_rq->running_bw -= dl_bw; 253 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 254 if (dl_rq->running_bw > old) 255 dl_rq->running_bw = 0; 256 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 257 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 258 } 259 260 static inline 261 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 262 { 263 u64 old = dl_rq->this_bw; 264 265 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 266 dl_rq->this_bw += dl_bw; 267 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 268 } 269 270 static inline 271 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 272 { 273 u64 old = dl_rq->this_bw; 274 275 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 276 dl_rq->this_bw -= dl_bw; 277 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 278 if (dl_rq->this_bw > old) 279 dl_rq->this_bw = 0; 280 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 281 } 282 283 static inline 284 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 285 { 286 if (!dl_entity_is_special(dl_se)) 287 __add_rq_bw(dl_se->dl_bw, dl_rq); 288 } 289 290 static inline 291 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 292 { 293 if (!dl_entity_is_special(dl_se)) 294 __sub_rq_bw(dl_se->dl_bw, dl_rq); 295 } 296 297 static inline 298 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 299 { 300 if (!dl_entity_is_special(dl_se)) 301 __add_running_bw(dl_se->dl_bw, dl_rq); 302 } 303 304 static inline 305 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 306 { 307 if (!dl_entity_is_special(dl_se)) 308 __sub_running_bw(dl_se->dl_bw, dl_rq); 309 } 310 311 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 312 { 313 struct rq *rq; 314 315 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 316 317 if (task_on_rq_queued(p)) 318 return; 319 320 rq = task_rq(p); 321 if (p->dl.dl_non_contending) { 322 sub_running_bw(&p->dl, &rq->dl); 323 p->dl.dl_non_contending = 0; 324 /* 325 * If the timer handler is currently running and the 326 * timer cannot be canceled, inactive_task_timer() 327 * will see that dl_not_contending is not set, and 328 * will not touch the rq's active utilization, 329 * so we are still safe. 330 */ 331 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 332 put_task_struct(p); 333 } 334 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 335 __add_rq_bw(new_bw, &rq->dl); 336 } 337 338 /* 339 * The utilization of a task cannot be immediately removed from 340 * the rq active utilization (running_bw) when the task blocks. 341 * Instead, we have to wait for the so called "0-lag time". 342 * 343 * If a task blocks before the "0-lag time", a timer (the inactive 344 * timer) is armed, and running_bw is decreased when the timer 345 * fires. 346 * 347 * If the task wakes up again before the inactive timer fires, 348 * the timer is canceled, whereas if the task wakes up after the 349 * inactive timer fired (and running_bw has been decreased) the 350 * task's utilization has to be added to running_bw again. 351 * A flag in the deadline scheduling entity (dl_non_contending) 352 * is used to avoid race conditions between the inactive timer handler 353 * and task wakeups. 354 * 355 * The following diagram shows how running_bw is updated. A task is 356 * "ACTIVE" when its utilization contributes to running_bw; an 357 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 358 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 359 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 360 * time already passed, which does not contribute to running_bw anymore. 361 * +------------------+ 362 * wakeup | ACTIVE | 363 * +------------------>+ contending | 364 * | add_running_bw | | 365 * | +----+------+------+ 366 * | | ^ 367 * | dequeue | | 368 * +--------+-------+ | | 369 * | | t >= 0-lag | | wakeup 370 * | INACTIVE |<---------------+ | 371 * | | sub_running_bw | | 372 * +--------+-------+ | | 373 * ^ | | 374 * | t < 0-lag | | 375 * | | | 376 * | V | 377 * | +----+------+------+ 378 * | sub_running_bw | ACTIVE | 379 * +-------------------+ | 380 * inactive timer | non contending | 381 * fired +------------------+ 382 * 383 * The task_non_contending() function is invoked when a task 384 * blocks, and checks if the 0-lag time already passed or 385 * not (in the first case, it directly updates running_bw; 386 * in the second case, it arms the inactive timer). 387 * 388 * The task_contending() function is invoked when a task wakes 389 * up, and checks if the task is still in the "ACTIVE non contending" 390 * state or not (in the second case, it updates running_bw). 391 */ 392 static void task_non_contending(struct task_struct *p) 393 { 394 struct sched_dl_entity *dl_se = &p->dl; 395 struct hrtimer *timer = &dl_se->inactive_timer; 396 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 397 struct rq *rq = rq_of_dl_rq(dl_rq); 398 s64 zerolag_time; 399 400 /* 401 * If this is a non-deadline task that has been boosted, 402 * do nothing 403 */ 404 if (dl_se->dl_runtime == 0) 405 return; 406 407 if (dl_entity_is_special(dl_se)) 408 return; 409 410 WARN_ON(dl_se->dl_non_contending); 411 412 zerolag_time = dl_se->deadline - 413 div64_long((dl_se->runtime * dl_se->dl_period), 414 dl_se->dl_runtime); 415 416 /* 417 * Using relative times instead of the absolute "0-lag time" 418 * allows to simplify the code 419 */ 420 zerolag_time -= rq_clock(rq); 421 422 /* 423 * If the "0-lag time" already passed, decrease the active 424 * utilization now, instead of starting a timer 425 */ 426 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 427 if (dl_task(p)) 428 sub_running_bw(dl_se, dl_rq); 429 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 430 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 431 432 if (READ_ONCE(p->__state) == TASK_DEAD) 433 sub_rq_bw(&p->dl, &rq->dl); 434 raw_spin_lock(&dl_b->lock); 435 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 436 raw_spin_unlock(&dl_b->lock); 437 __dl_clear_params(p); 438 } 439 440 return; 441 } 442 443 dl_se->dl_non_contending = 1; 444 get_task_struct(p); 445 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 446 } 447 448 static void task_contending(struct sched_dl_entity *dl_se, int flags) 449 { 450 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 451 452 /* 453 * If this is a non-deadline task that has been boosted, 454 * do nothing 455 */ 456 if (dl_se->dl_runtime == 0) 457 return; 458 459 if (flags & ENQUEUE_MIGRATED) 460 add_rq_bw(dl_se, dl_rq); 461 462 if (dl_se->dl_non_contending) { 463 dl_se->dl_non_contending = 0; 464 /* 465 * If the timer handler is currently running and the 466 * timer cannot be canceled, inactive_task_timer() 467 * will see that dl_not_contending is not set, and 468 * will not touch the rq's active utilization, 469 * so we are still safe. 470 */ 471 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 472 put_task_struct(dl_task_of(dl_se)); 473 } else { 474 /* 475 * Since "dl_non_contending" is not set, the 476 * task's utilization has already been removed from 477 * active utilization (either when the task blocked, 478 * when the "inactive timer" fired). 479 * So, add it back. 480 */ 481 add_running_bw(dl_se, dl_rq); 482 } 483 } 484 485 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 486 { 487 struct sched_dl_entity *dl_se = &p->dl; 488 489 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 490 } 491 492 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 493 494 void init_dl_bw(struct dl_bw *dl_b) 495 { 496 raw_spin_lock_init(&dl_b->lock); 497 if (global_rt_runtime() == RUNTIME_INF) 498 dl_b->bw = -1; 499 else 500 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 501 dl_b->total_bw = 0; 502 } 503 504 void init_dl_rq(struct dl_rq *dl_rq) 505 { 506 dl_rq->root = RB_ROOT_CACHED; 507 508 #ifdef CONFIG_SMP 509 /* zero means no -deadline tasks */ 510 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 511 512 dl_rq->overloaded = 0; 513 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 514 #else 515 init_dl_bw(&dl_rq->dl_bw); 516 #endif 517 518 dl_rq->running_bw = 0; 519 dl_rq->this_bw = 0; 520 init_dl_rq_bw_ratio(dl_rq); 521 } 522 523 #ifdef CONFIG_SMP 524 525 static inline int dl_overloaded(struct rq *rq) 526 { 527 return atomic_read(&rq->rd->dlo_count); 528 } 529 530 static inline void dl_set_overload(struct rq *rq) 531 { 532 if (!rq->online) 533 return; 534 535 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 536 /* 537 * Must be visible before the overload count is 538 * set (as in sched_rt.c). 539 * 540 * Matched by the barrier in pull_dl_task(). 541 */ 542 smp_wmb(); 543 atomic_inc(&rq->rd->dlo_count); 544 } 545 546 static inline void dl_clear_overload(struct rq *rq) 547 { 548 if (!rq->online) 549 return; 550 551 atomic_dec(&rq->rd->dlo_count); 552 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 553 } 554 555 #define __node_2_pdl(node) \ 556 rb_entry((node), struct task_struct, pushable_dl_tasks) 557 558 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 559 { 560 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 561 } 562 563 static inline int has_pushable_dl_tasks(struct rq *rq) 564 { 565 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 566 } 567 568 /* 569 * The list of pushable -deadline task is not a plist, like in 570 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 571 */ 572 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 573 { 574 struct rb_node *leftmost; 575 576 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 577 578 leftmost = rb_add_cached(&p->pushable_dl_tasks, 579 &rq->dl.pushable_dl_tasks_root, 580 __pushable_less); 581 if (leftmost) 582 rq->dl.earliest_dl.next = p->dl.deadline; 583 584 if (!rq->dl.overloaded) { 585 dl_set_overload(rq); 586 rq->dl.overloaded = 1; 587 } 588 } 589 590 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 591 { 592 struct dl_rq *dl_rq = &rq->dl; 593 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 594 struct rb_node *leftmost; 595 596 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 597 return; 598 599 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 600 if (leftmost) 601 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 602 603 RB_CLEAR_NODE(&p->pushable_dl_tasks); 604 605 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { 606 dl_clear_overload(rq); 607 rq->dl.overloaded = 0; 608 } 609 } 610 611 static int push_dl_task(struct rq *rq); 612 613 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 614 { 615 return rq->online && dl_task(prev); 616 } 617 618 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 619 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 620 621 static void push_dl_tasks(struct rq *); 622 static void pull_dl_task(struct rq *); 623 624 static inline void deadline_queue_push_tasks(struct rq *rq) 625 { 626 if (!has_pushable_dl_tasks(rq)) 627 return; 628 629 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 630 } 631 632 static inline void deadline_queue_pull_task(struct rq *rq) 633 { 634 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 635 } 636 637 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 638 639 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 640 { 641 struct rq *later_rq = NULL; 642 struct dl_bw *dl_b; 643 644 later_rq = find_lock_later_rq(p, rq); 645 if (!later_rq) { 646 int cpu; 647 648 /* 649 * If we cannot preempt any rq, fall back to pick any 650 * online CPU: 651 */ 652 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 653 if (cpu >= nr_cpu_ids) { 654 /* 655 * Failed to find any suitable CPU. 656 * The task will never come back! 657 */ 658 WARN_ON_ONCE(dl_bandwidth_enabled()); 659 660 /* 661 * If admission control is disabled we 662 * try a little harder to let the task 663 * run. 664 */ 665 cpu = cpumask_any(cpu_active_mask); 666 } 667 later_rq = cpu_rq(cpu); 668 double_lock_balance(rq, later_rq); 669 } 670 671 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 672 /* 673 * Inactive timer is armed (or callback is running, but 674 * waiting for us to release rq locks). In any case, when it 675 * will fire (or continue), it will see running_bw of this 676 * task migrated to later_rq (and correctly handle it). 677 */ 678 sub_running_bw(&p->dl, &rq->dl); 679 sub_rq_bw(&p->dl, &rq->dl); 680 681 add_rq_bw(&p->dl, &later_rq->dl); 682 add_running_bw(&p->dl, &later_rq->dl); 683 } else { 684 sub_rq_bw(&p->dl, &rq->dl); 685 add_rq_bw(&p->dl, &later_rq->dl); 686 } 687 688 /* 689 * And we finally need to fixup root_domain(s) bandwidth accounting, 690 * since p is still hanging out in the old (now moved to default) root 691 * domain. 692 */ 693 dl_b = &rq->rd->dl_bw; 694 raw_spin_lock(&dl_b->lock); 695 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 696 raw_spin_unlock(&dl_b->lock); 697 698 dl_b = &later_rq->rd->dl_bw; 699 raw_spin_lock(&dl_b->lock); 700 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 701 raw_spin_unlock(&dl_b->lock); 702 703 set_task_cpu(p, later_rq->cpu); 704 double_unlock_balance(later_rq, rq); 705 706 return later_rq; 707 } 708 709 #else 710 711 static inline 712 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 713 { 714 } 715 716 static inline 717 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 718 { 719 } 720 721 static inline 722 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 723 { 724 } 725 726 static inline 727 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 728 { 729 } 730 731 static inline void deadline_queue_push_tasks(struct rq *rq) 732 { 733 } 734 735 static inline void deadline_queue_pull_task(struct rq *rq) 736 { 737 } 738 #endif /* CONFIG_SMP */ 739 740 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 741 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 742 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 743 744 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 745 struct rq *rq) 746 { 747 /* for non-boosted task, pi_of(dl_se) == dl_se */ 748 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 749 dl_se->runtime = pi_of(dl_se)->dl_runtime; 750 } 751 752 /* 753 * We are being explicitly informed that a new instance is starting, 754 * and this means that: 755 * - the absolute deadline of the entity has to be placed at 756 * current time + relative deadline; 757 * - the runtime of the entity has to be set to the maximum value. 758 * 759 * The capability of specifying such event is useful whenever a -deadline 760 * entity wants to (try to!) synchronize its behaviour with the scheduler's 761 * one, and to (try to!) reconcile itself with its own scheduling 762 * parameters. 763 */ 764 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 765 { 766 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 767 struct rq *rq = rq_of_dl_rq(dl_rq); 768 769 WARN_ON(is_dl_boosted(dl_se)); 770 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 771 772 /* 773 * We are racing with the deadline timer. So, do nothing because 774 * the deadline timer handler will take care of properly recharging 775 * the runtime and postponing the deadline 776 */ 777 if (dl_se->dl_throttled) 778 return; 779 780 /* 781 * We use the regular wall clock time to set deadlines in the 782 * future; in fact, we must consider execution overheads (time 783 * spent on hardirq context, etc.). 784 */ 785 replenish_dl_new_period(dl_se, rq); 786 } 787 788 /* 789 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 790 * possibility of a entity lasting more than what it declared, and thus 791 * exhausting its runtime. 792 * 793 * Here we are interested in making runtime overrun possible, but we do 794 * not want a entity which is misbehaving to affect the scheduling of all 795 * other entities. 796 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 797 * is used, in order to confine each entity within its own bandwidth. 798 * 799 * This function deals exactly with that, and ensures that when the runtime 800 * of a entity is replenished, its deadline is also postponed. That ensures 801 * the overrunning entity can't interfere with other entity in the system and 802 * can't make them miss their deadlines. Reasons why this kind of overruns 803 * could happen are, typically, a entity voluntarily trying to overcome its 804 * runtime, or it just underestimated it during sched_setattr(). 805 */ 806 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 807 { 808 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 809 struct rq *rq = rq_of_dl_rq(dl_rq); 810 811 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 812 813 /* 814 * This could be the case for a !-dl task that is boosted. 815 * Just go with full inherited parameters. 816 */ 817 if (dl_se->dl_deadline == 0) 818 replenish_dl_new_period(dl_se, rq); 819 820 if (dl_se->dl_yielded && dl_se->runtime > 0) 821 dl_se->runtime = 0; 822 823 /* 824 * We keep moving the deadline away until we get some 825 * available runtime for the entity. This ensures correct 826 * handling of situations where the runtime overrun is 827 * arbitrary large. 828 */ 829 while (dl_se->runtime <= 0) { 830 dl_se->deadline += pi_of(dl_se)->dl_period; 831 dl_se->runtime += pi_of(dl_se)->dl_runtime; 832 } 833 834 /* 835 * At this point, the deadline really should be "in 836 * the future" with respect to rq->clock. If it's 837 * not, we are, for some reason, lagging too much! 838 * Anyway, after having warn userspace abut that, 839 * we still try to keep the things running by 840 * resetting the deadline and the budget of the 841 * entity. 842 */ 843 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 844 printk_deferred_once("sched: DL replenish lagged too much\n"); 845 replenish_dl_new_period(dl_se, rq); 846 } 847 848 if (dl_se->dl_yielded) 849 dl_se->dl_yielded = 0; 850 if (dl_se->dl_throttled) 851 dl_se->dl_throttled = 0; 852 } 853 854 /* 855 * Here we check if --at time t-- an entity (which is probably being 856 * [re]activated or, in general, enqueued) can use its remaining runtime 857 * and its current deadline _without_ exceeding the bandwidth it is 858 * assigned (function returns true if it can't). We are in fact applying 859 * one of the CBS rules: when a task wakes up, if the residual runtime 860 * over residual deadline fits within the allocated bandwidth, then we 861 * can keep the current (absolute) deadline and residual budget without 862 * disrupting the schedulability of the system. Otherwise, we should 863 * refill the runtime and set the deadline a period in the future, 864 * because keeping the current (absolute) deadline of the task would 865 * result in breaking guarantees promised to other tasks (refer to 866 * Documentation/scheduler/sched-deadline.rst for more information). 867 * 868 * This function returns true if: 869 * 870 * runtime / (deadline - t) > dl_runtime / dl_deadline , 871 * 872 * IOW we can't recycle current parameters. 873 * 874 * Notice that the bandwidth check is done against the deadline. For 875 * task with deadline equal to period this is the same of using 876 * dl_period instead of dl_deadline in the equation above. 877 */ 878 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 879 { 880 u64 left, right; 881 882 /* 883 * left and right are the two sides of the equation above, 884 * after a bit of shuffling to use multiplications instead 885 * of divisions. 886 * 887 * Note that none of the time values involved in the two 888 * multiplications are absolute: dl_deadline and dl_runtime 889 * are the relative deadline and the maximum runtime of each 890 * instance, runtime is the runtime left for the last instance 891 * and (deadline - t), since t is rq->clock, is the time left 892 * to the (absolute) deadline. Even if overflowing the u64 type 893 * is very unlikely to occur in both cases, here we scale down 894 * as we want to avoid that risk at all. Scaling down by 10 895 * means that we reduce granularity to 1us. We are fine with it, 896 * since this is only a true/false check and, anyway, thinking 897 * of anything below microseconds resolution is actually fiction 898 * (but still we want to give the user that illusion >;). 899 */ 900 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 901 right = ((dl_se->deadline - t) >> DL_SCALE) * 902 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 903 904 return dl_time_before(right, left); 905 } 906 907 /* 908 * Revised wakeup rule [1]: For self-suspending tasks, rather then 909 * re-initializing task's runtime and deadline, the revised wakeup 910 * rule adjusts the task's runtime to avoid the task to overrun its 911 * density. 912 * 913 * Reasoning: a task may overrun the density if: 914 * runtime / (deadline - t) > dl_runtime / dl_deadline 915 * 916 * Therefore, runtime can be adjusted to: 917 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 918 * 919 * In such way that runtime will be equal to the maximum density 920 * the task can use without breaking any rule. 921 * 922 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 923 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 924 */ 925 static void 926 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 927 { 928 u64 laxity = dl_se->deadline - rq_clock(rq); 929 930 /* 931 * If the task has deadline < period, and the deadline is in the past, 932 * it should already be throttled before this check. 933 * 934 * See update_dl_entity() comments for further details. 935 */ 936 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 937 938 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 939 } 940 941 /* 942 * Regarding the deadline, a task with implicit deadline has a relative 943 * deadline == relative period. A task with constrained deadline has a 944 * relative deadline <= relative period. 945 * 946 * We support constrained deadline tasks. However, there are some restrictions 947 * applied only for tasks which do not have an implicit deadline. See 948 * update_dl_entity() to know more about such restrictions. 949 * 950 * The dl_is_implicit() returns true if the task has an implicit deadline. 951 */ 952 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 953 { 954 return dl_se->dl_deadline == dl_se->dl_period; 955 } 956 957 /* 958 * When a deadline entity is placed in the runqueue, its runtime and deadline 959 * might need to be updated. This is done by a CBS wake up rule. There are two 960 * different rules: 1) the original CBS; and 2) the Revisited CBS. 961 * 962 * When the task is starting a new period, the Original CBS is used. In this 963 * case, the runtime is replenished and a new absolute deadline is set. 964 * 965 * When a task is queued before the begin of the next period, using the 966 * remaining runtime and deadline could make the entity to overflow, see 967 * dl_entity_overflow() to find more about runtime overflow. When such case 968 * is detected, the runtime and deadline need to be updated. 969 * 970 * If the task has an implicit deadline, i.e., deadline == period, the Original 971 * CBS is applied. the runtime is replenished and a new absolute deadline is 972 * set, as in the previous cases. 973 * 974 * However, the Original CBS does not work properly for tasks with 975 * deadline < period, which are said to have a constrained deadline. By 976 * applying the Original CBS, a constrained deadline task would be able to run 977 * runtime/deadline in a period. With deadline < period, the task would 978 * overrun the runtime/period allowed bandwidth, breaking the admission test. 979 * 980 * In order to prevent this misbehave, the Revisited CBS is used for 981 * constrained deadline tasks when a runtime overflow is detected. In the 982 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 983 * the remaining runtime of the task is reduced to avoid runtime overflow. 984 * Please refer to the comments update_dl_revised_wakeup() function to find 985 * more about the Revised CBS rule. 986 */ 987 static void update_dl_entity(struct sched_dl_entity *dl_se) 988 { 989 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 990 struct rq *rq = rq_of_dl_rq(dl_rq); 991 992 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 993 dl_entity_overflow(dl_se, rq_clock(rq))) { 994 995 if (unlikely(!dl_is_implicit(dl_se) && 996 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 997 !is_dl_boosted(dl_se))) { 998 update_dl_revised_wakeup(dl_se, rq); 999 return; 1000 } 1001 1002 replenish_dl_new_period(dl_se, rq); 1003 } 1004 } 1005 1006 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1007 { 1008 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1009 } 1010 1011 /* 1012 * If the entity depleted all its runtime, and if we want it to sleep 1013 * while waiting for some new execution time to become available, we 1014 * set the bandwidth replenishment timer to the replenishment instant 1015 * and try to activate it. 1016 * 1017 * Notice that it is important for the caller to know if the timer 1018 * actually started or not (i.e., the replenishment instant is in 1019 * the future or in the past). 1020 */ 1021 static int start_dl_timer(struct task_struct *p) 1022 { 1023 struct sched_dl_entity *dl_se = &p->dl; 1024 struct hrtimer *timer = &dl_se->dl_timer; 1025 struct rq *rq = task_rq(p); 1026 ktime_t now, act; 1027 s64 delta; 1028 1029 lockdep_assert_rq_held(rq); 1030 1031 /* 1032 * We want the timer to fire at the deadline, but considering 1033 * that it is actually coming from rq->clock and not from 1034 * hrtimer's time base reading. 1035 */ 1036 act = ns_to_ktime(dl_next_period(dl_se)); 1037 now = hrtimer_cb_get_time(timer); 1038 delta = ktime_to_ns(now) - rq_clock(rq); 1039 act = ktime_add_ns(act, delta); 1040 1041 /* 1042 * If the expiry time already passed, e.g., because the value 1043 * chosen as the deadline is too small, don't even try to 1044 * start the timer in the past! 1045 */ 1046 if (ktime_us_delta(act, now) < 0) 1047 return 0; 1048 1049 /* 1050 * !enqueued will guarantee another callback; even if one is already in 1051 * progress. This ensures a balanced {get,put}_task_struct(). 1052 * 1053 * The race against __run_timer() clearing the enqueued state is 1054 * harmless because we're holding task_rq()->lock, therefore the timer 1055 * expiring after we've done the check will wait on its task_rq_lock() 1056 * and observe our state. 1057 */ 1058 if (!hrtimer_is_queued(timer)) { 1059 get_task_struct(p); 1060 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1061 } 1062 1063 return 1; 1064 } 1065 1066 /* 1067 * This is the bandwidth enforcement timer callback. If here, we know 1068 * a task is not on its dl_rq, since the fact that the timer was running 1069 * means the task is throttled and needs a runtime replenishment. 1070 * 1071 * However, what we actually do depends on the fact the task is active, 1072 * (it is on its rq) or has been removed from there by a call to 1073 * dequeue_task_dl(). In the former case we must issue the runtime 1074 * replenishment and add the task back to the dl_rq; in the latter, we just 1075 * do nothing but clearing dl_throttled, so that runtime and deadline 1076 * updating (and the queueing back to dl_rq) will be done by the 1077 * next call to enqueue_task_dl(). 1078 */ 1079 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1080 { 1081 struct sched_dl_entity *dl_se = container_of(timer, 1082 struct sched_dl_entity, 1083 dl_timer); 1084 struct task_struct *p = dl_task_of(dl_se); 1085 struct rq_flags rf; 1086 struct rq *rq; 1087 1088 rq = task_rq_lock(p, &rf); 1089 1090 /* 1091 * The task might have changed its scheduling policy to something 1092 * different than SCHED_DEADLINE (through switched_from_dl()). 1093 */ 1094 if (!dl_task(p)) 1095 goto unlock; 1096 1097 /* 1098 * The task might have been boosted by someone else and might be in the 1099 * boosting/deboosting path, its not throttled. 1100 */ 1101 if (is_dl_boosted(dl_se)) 1102 goto unlock; 1103 1104 /* 1105 * Spurious timer due to start_dl_timer() race; or we already received 1106 * a replenishment from rt_mutex_setprio(). 1107 */ 1108 if (!dl_se->dl_throttled) 1109 goto unlock; 1110 1111 sched_clock_tick(); 1112 update_rq_clock(rq); 1113 1114 /* 1115 * If the throttle happened during sched-out; like: 1116 * 1117 * schedule() 1118 * deactivate_task() 1119 * dequeue_task_dl() 1120 * update_curr_dl() 1121 * start_dl_timer() 1122 * __dequeue_task_dl() 1123 * prev->on_rq = 0; 1124 * 1125 * We can be both throttled and !queued. Replenish the counter 1126 * but do not enqueue -- wait for our wakeup to do that. 1127 */ 1128 if (!task_on_rq_queued(p)) { 1129 replenish_dl_entity(dl_se); 1130 goto unlock; 1131 } 1132 1133 #ifdef CONFIG_SMP 1134 if (unlikely(!rq->online)) { 1135 /* 1136 * If the runqueue is no longer available, migrate the 1137 * task elsewhere. This necessarily changes rq. 1138 */ 1139 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1140 rq = dl_task_offline_migration(rq, p); 1141 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1142 update_rq_clock(rq); 1143 1144 /* 1145 * Now that the task has been migrated to the new RQ and we 1146 * have that locked, proceed as normal and enqueue the task 1147 * there. 1148 */ 1149 } 1150 #endif 1151 1152 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1153 if (dl_task(rq->curr)) 1154 wakeup_preempt_dl(rq, p, 0); 1155 else 1156 resched_curr(rq); 1157 1158 #ifdef CONFIG_SMP 1159 /* 1160 * Queueing this task back might have overloaded rq, check if we need 1161 * to kick someone away. 1162 */ 1163 if (has_pushable_dl_tasks(rq)) { 1164 /* 1165 * Nothing relies on rq->lock after this, so its safe to drop 1166 * rq->lock. 1167 */ 1168 rq_unpin_lock(rq, &rf); 1169 push_dl_task(rq); 1170 rq_repin_lock(rq, &rf); 1171 } 1172 #endif 1173 1174 unlock: 1175 task_rq_unlock(rq, p, &rf); 1176 1177 /* 1178 * This can free the task_struct, including this hrtimer, do not touch 1179 * anything related to that after this. 1180 */ 1181 put_task_struct(p); 1182 1183 return HRTIMER_NORESTART; 1184 } 1185 1186 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1187 { 1188 struct hrtimer *timer = &dl_se->dl_timer; 1189 1190 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1191 timer->function = dl_task_timer; 1192 } 1193 1194 /* 1195 * During the activation, CBS checks if it can reuse the current task's 1196 * runtime and period. If the deadline of the task is in the past, CBS 1197 * cannot use the runtime, and so it replenishes the task. This rule 1198 * works fine for implicit deadline tasks (deadline == period), and the 1199 * CBS was designed for implicit deadline tasks. However, a task with 1200 * constrained deadline (deadline < period) might be awakened after the 1201 * deadline, but before the next period. In this case, replenishing the 1202 * task would allow it to run for runtime / deadline. As in this case 1203 * deadline < period, CBS enables a task to run for more than the 1204 * runtime / period. In a very loaded system, this can cause a domino 1205 * effect, making other tasks miss their deadlines. 1206 * 1207 * To avoid this problem, in the activation of a constrained deadline 1208 * task after the deadline but before the next period, throttle the 1209 * task and set the replenishing timer to the begin of the next period, 1210 * unless it is boosted. 1211 */ 1212 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1213 { 1214 struct task_struct *p = dl_task_of(dl_se); 1215 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1216 1217 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1218 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1219 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p))) 1220 return; 1221 dl_se->dl_throttled = 1; 1222 if (dl_se->runtime > 0) 1223 dl_se->runtime = 0; 1224 } 1225 } 1226 1227 static 1228 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1229 { 1230 return (dl_se->runtime <= 0); 1231 } 1232 1233 /* 1234 * This function implements the GRUB accounting rule. According to the 1235 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1236 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1237 * where u is the utilization of the task, Umax is the maximum reclaimable 1238 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1239 * as the difference between the "total runqueue utilization" and the 1240 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1241 * reclaimable utilization. 1242 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1243 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1244 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1245 * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1246 * Since delta is a 64 bit variable, to have an overflow its value should be 1247 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1248 * not an issue here. 1249 */ 1250 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1251 { 1252 u64 u_act; 1253 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1254 1255 /* 1256 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1257 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1258 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1259 * negative leading to wrong results. 1260 */ 1261 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1262 u_act = dl_se->dl_bw; 1263 else 1264 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1265 1266 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1267 return (delta * u_act) >> BW_SHIFT; 1268 } 1269 1270 /* 1271 * Update the current task's runtime statistics (provided it is still 1272 * a -deadline task and has not been removed from the dl_rq). 1273 */ 1274 static void update_curr_dl(struct rq *rq) 1275 { 1276 struct task_struct *curr = rq->curr; 1277 struct sched_dl_entity *dl_se = &curr->dl; 1278 u64 delta_exec, scaled_delta_exec; 1279 int cpu = cpu_of(rq); 1280 u64 now; 1281 1282 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1283 return; 1284 1285 /* 1286 * Consumed budget is computed considering the time as 1287 * observed by schedulable tasks (excluding time spent 1288 * in hardirq context, etc.). Deadlines are instead 1289 * computed using hard walltime. This seems to be the more 1290 * natural solution, but the full ramifications of this 1291 * approach need further study. 1292 */ 1293 now = rq_clock_task(rq); 1294 delta_exec = now - curr->se.exec_start; 1295 if (unlikely((s64)delta_exec <= 0)) { 1296 if (unlikely(dl_se->dl_yielded)) 1297 goto throttle; 1298 return; 1299 } 1300 1301 schedstat_set(curr->stats.exec_max, 1302 max(curr->stats.exec_max, delta_exec)); 1303 1304 trace_sched_stat_runtime(curr, delta_exec, 0); 1305 1306 update_current_exec_runtime(curr, now, delta_exec); 1307 1308 if (dl_entity_is_special(dl_se)) 1309 return; 1310 1311 /* 1312 * For tasks that participate in GRUB, we implement GRUB-PA: the 1313 * spare reclaimed bandwidth is used to clock down frequency. 1314 * 1315 * For the others, we still need to scale reservation parameters 1316 * according to current frequency and CPU maximum capacity. 1317 */ 1318 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1319 scaled_delta_exec = grub_reclaim(delta_exec, 1320 rq, 1321 &curr->dl); 1322 } else { 1323 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1324 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1325 1326 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1327 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1328 } 1329 1330 dl_se->runtime -= scaled_delta_exec; 1331 1332 throttle: 1333 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1334 dl_se->dl_throttled = 1; 1335 1336 /* If requested, inform the user about runtime overruns. */ 1337 if (dl_runtime_exceeded(dl_se) && 1338 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1339 dl_se->dl_overrun = 1; 1340 1341 __dequeue_task_dl(rq, curr, 0); 1342 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr))) 1343 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1344 1345 if (!is_leftmost(curr, &rq->dl)) 1346 resched_curr(rq); 1347 } 1348 1349 /* 1350 * Because -- for now -- we share the rt bandwidth, we need to 1351 * account our runtime there too, otherwise actual rt tasks 1352 * would be able to exceed the shared quota. 1353 * 1354 * Account to the root rt group for now. 1355 * 1356 * The solution we're working towards is having the RT groups scheduled 1357 * using deadline servers -- however there's a few nasties to figure 1358 * out before that can happen. 1359 */ 1360 if (rt_bandwidth_enabled()) { 1361 struct rt_rq *rt_rq = &rq->rt; 1362 1363 raw_spin_lock(&rt_rq->rt_runtime_lock); 1364 /* 1365 * We'll let actual RT tasks worry about the overflow here, we 1366 * have our own CBS to keep us inline; only account when RT 1367 * bandwidth is relevant. 1368 */ 1369 if (sched_rt_bandwidth_account(rt_rq)) 1370 rt_rq->rt_time += delta_exec; 1371 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1372 } 1373 } 1374 1375 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1376 { 1377 struct sched_dl_entity *dl_se = container_of(timer, 1378 struct sched_dl_entity, 1379 inactive_timer); 1380 struct task_struct *p = dl_task_of(dl_se); 1381 struct rq_flags rf; 1382 struct rq *rq; 1383 1384 rq = task_rq_lock(p, &rf); 1385 1386 sched_clock_tick(); 1387 update_rq_clock(rq); 1388 1389 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1390 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1391 1392 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1393 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1394 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1395 dl_se->dl_non_contending = 0; 1396 } 1397 1398 raw_spin_lock(&dl_b->lock); 1399 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1400 raw_spin_unlock(&dl_b->lock); 1401 __dl_clear_params(p); 1402 1403 goto unlock; 1404 } 1405 if (dl_se->dl_non_contending == 0) 1406 goto unlock; 1407 1408 sub_running_bw(dl_se, &rq->dl); 1409 dl_se->dl_non_contending = 0; 1410 unlock: 1411 task_rq_unlock(rq, p, &rf); 1412 put_task_struct(p); 1413 1414 return HRTIMER_NORESTART; 1415 } 1416 1417 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1418 { 1419 struct hrtimer *timer = &dl_se->inactive_timer; 1420 1421 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1422 timer->function = inactive_task_timer; 1423 } 1424 1425 #define __node_2_dle(node) \ 1426 rb_entry((node), struct sched_dl_entity, rb_node) 1427 1428 #ifdef CONFIG_SMP 1429 1430 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1431 { 1432 struct rq *rq = rq_of_dl_rq(dl_rq); 1433 1434 if (dl_rq->earliest_dl.curr == 0 || 1435 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1436 if (dl_rq->earliest_dl.curr == 0) 1437 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1438 dl_rq->earliest_dl.curr = deadline; 1439 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1440 } 1441 } 1442 1443 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1444 { 1445 struct rq *rq = rq_of_dl_rq(dl_rq); 1446 1447 /* 1448 * Since we may have removed our earliest (and/or next earliest) 1449 * task we must recompute them. 1450 */ 1451 if (!dl_rq->dl_nr_running) { 1452 dl_rq->earliest_dl.curr = 0; 1453 dl_rq->earliest_dl.next = 0; 1454 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1455 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1456 } else { 1457 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1458 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1459 1460 dl_rq->earliest_dl.curr = entry->deadline; 1461 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1462 } 1463 } 1464 1465 #else 1466 1467 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1468 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1469 1470 #endif /* CONFIG_SMP */ 1471 1472 static inline 1473 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1474 { 1475 int prio = dl_task_of(dl_se)->prio; 1476 u64 deadline = dl_se->deadline; 1477 1478 WARN_ON(!dl_prio(prio)); 1479 dl_rq->dl_nr_running++; 1480 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1481 1482 inc_dl_deadline(dl_rq, deadline); 1483 } 1484 1485 static inline 1486 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1487 { 1488 int prio = dl_task_of(dl_se)->prio; 1489 1490 WARN_ON(!dl_prio(prio)); 1491 WARN_ON(!dl_rq->dl_nr_running); 1492 dl_rq->dl_nr_running--; 1493 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1494 1495 dec_dl_deadline(dl_rq, dl_se->deadline); 1496 } 1497 1498 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1499 { 1500 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1501 } 1502 1503 static inline struct sched_statistics * 1504 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1505 { 1506 return &dl_task_of(dl_se)->stats; 1507 } 1508 1509 static inline void 1510 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1511 { 1512 struct sched_statistics *stats; 1513 1514 if (!schedstat_enabled()) 1515 return; 1516 1517 stats = __schedstats_from_dl_se(dl_se); 1518 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1519 } 1520 1521 static inline void 1522 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1523 { 1524 struct sched_statistics *stats; 1525 1526 if (!schedstat_enabled()) 1527 return; 1528 1529 stats = __schedstats_from_dl_se(dl_se); 1530 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1531 } 1532 1533 static inline void 1534 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1535 { 1536 struct sched_statistics *stats; 1537 1538 if (!schedstat_enabled()) 1539 return; 1540 1541 stats = __schedstats_from_dl_se(dl_se); 1542 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1543 } 1544 1545 static inline void 1546 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1547 int flags) 1548 { 1549 if (!schedstat_enabled()) 1550 return; 1551 1552 if (flags & ENQUEUE_WAKEUP) 1553 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1554 } 1555 1556 static inline void 1557 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1558 int flags) 1559 { 1560 struct task_struct *p = dl_task_of(dl_se); 1561 1562 if (!schedstat_enabled()) 1563 return; 1564 1565 if ((flags & DEQUEUE_SLEEP)) { 1566 unsigned int state; 1567 1568 state = READ_ONCE(p->__state); 1569 if (state & TASK_INTERRUPTIBLE) 1570 __schedstat_set(p->stats.sleep_start, 1571 rq_clock(rq_of_dl_rq(dl_rq))); 1572 1573 if (state & TASK_UNINTERRUPTIBLE) 1574 __schedstat_set(p->stats.block_start, 1575 rq_clock(rq_of_dl_rq(dl_rq))); 1576 } 1577 } 1578 1579 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1580 { 1581 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1582 1583 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1584 1585 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1586 1587 inc_dl_tasks(dl_se, dl_rq); 1588 } 1589 1590 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1591 { 1592 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1593 1594 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1595 return; 1596 1597 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1598 1599 RB_CLEAR_NODE(&dl_se->rb_node); 1600 1601 dec_dl_tasks(dl_se, dl_rq); 1602 } 1603 1604 static void 1605 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1606 { 1607 WARN_ON_ONCE(on_dl_rq(dl_se)); 1608 1609 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1610 1611 /* 1612 * If this is a wakeup or a new instance, the scheduling 1613 * parameters of the task might need updating. Otherwise, 1614 * we want a replenishment of its runtime. 1615 */ 1616 if (flags & ENQUEUE_WAKEUP) { 1617 task_contending(dl_se, flags); 1618 update_dl_entity(dl_se); 1619 } else if (flags & ENQUEUE_REPLENISH) { 1620 replenish_dl_entity(dl_se); 1621 } else if ((flags & ENQUEUE_RESTORE) && 1622 dl_time_before(dl_se->deadline, 1623 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1624 setup_new_dl_entity(dl_se); 1625 } 1626 1627 __enqueue_dl_entity(dl_se); 1628 } 1629 1630 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1631 { 1632 __dequeue_dl_entity(dl_se); 1633 } 1634 1635 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1636 { 1637 if (is_dl_boosted(&p->dl)) { 1638 /* 1639 * Because of delays in the detection of the overrun of a 1640 * thread's runtime, it might be the case that a thread 1641 * goes to sleep in a rt mutex with negative runtime. As 1642 * a consequence, the thread will be throttled. 1643 * 1644 * While waiting for the mutex, this thread can also be 1645 * boosted via PI, resulting in a thread that is throttled 1646 * and boosted at the same time. 1647 * 1648 * In this case, the boost overrides the throttle. 1649 */ 1650 if (p->dl.dl_throttled) { 1651 /* 1652 * The replenish timer needs to be canceled. No 1653 * problem if it fires concurrently: boosted threads 1654 * are ignored in dl_task_timer(). 1655 */ 1656 hrtimer_try_to_cancel(&p->dl.dl_timer); 1657 p->dl.dl_throttled = 0; 1658 } 1659 } else if (!dl_prio(p->normal_prio)) { 1660 /* 1661 * Special case in which we have a !SCHED_DEADLINE task that is going 1662 * to be deboosted, but exceeds its runtime while doing so. No point in 1663 * replenishing it, as it's going to return back to its original 1664 * scheduling class after this. If it has been throttled, we need to 1665 * clear the flag, otherwise the task may wake up as throttled after 1666 * being boosted again with no means to replenish the runtime and clear 1667 * the throttle. 1668 */ 1669 p->dl.dl_throttled = 0; 1670 if (!(flags & ENQUEUE_REPLENISH)) 1671 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 1672 task_pid_nr(p)); 1673 1674 return; 1675 } 1676 1677 /* 1678 * Check if a constrained deadline task was activated 1679 * after the deadline but before the next period. 1680 * If that is the case, the task will be throttled and 1681 * the replenishment timer will be set to the next period. 1682 */ 1683 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1684 dl_check_constrained_dl(&p->dl); 1685 1686 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1687 add_rq_bw(&p->dl, &rq->dl); 1688 add_running_bw(&p->dl, &rq->dl); 1689 } 1690 1691 /* 1692 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1693 * its budget it needs a replenishment and, since it now is on 1694 * its rq, the bandwidth timer callback (which clearly has not 1695 * run yet) will take care of this. 1696 * However, the active utilization does not depend on the fact 1697 * that the task is on the runqueue or not (but depends on the 1698 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1699 * In other words, even if a task is throttled its utilization must 1700 * be counted in the active utilization; hence, we need to call 1701 * add_running_bw(). 1702 */ 1703 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1704 if (flags & ENQUEUE_WAKEUP) 1705 task_contending(&p->dl, flags); 1706 1707 return; 1708 } 1709 1710 check_schedstat_required(); 1711 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 1712 1713 enqueue_dl_entity(&p->dl, flags); 1714 1715 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1716 enqueue_pushable_dl_task(rq, p); 1717 } 1718 1719 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1720 { 1721 update_stats_dequeue_dl(&rq->dl, &p->dl, flags); 1722 dequeue_dl_entity(&p->dl); 1723 dequeue_pushable_dl_task(rq, p); 1724 } 1725 1726 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1727 { 1728 update_curr_dl(rq); 1729 __dequeue_task_dl(rq, p, flags); 1730 1731 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1732 sub_running_bw(&p->dl, &rq->dl); 1733 sub_rq_bw(&p->dl, &rq->dl); 1734 } 1735 1736 /* 1737 * This check allows to start the inactive timer (or to immediately 1738 * decrease the active utilization, if needed) in two cases: 1739 * when the task blocks and when it is terminating 1740 * (p->state == TASK_DEAD). We can handle the two cases in the same 1741 * way, because from GRUB's point of view the same thing is happening 1742 * (the task moves from "active contending" to "active non contending" 1743 * or "inactive") 1744 */ 1745 if (flags & DEQUEUE_SLEEP) 1746 task_non_contending(p); 1747 } 1748 1749 /* 1750 * Yield task semantic for -deadline tasks is: 1751 * 1752 * get off from the CPU until our next instance, with 1753 * a new runtime. This is of little use now, since we 1754 * don't have a bandwidth reclaiming mechanism. Anyway, 1755 * bandwidth reclaiming is planned for the future, and 1756 * yield_task_dl will indicate that some spare budget 1757 * is available for other task instances to use it. 1758 */ 1759 static void yield_task_dl(struct rq *rq) 1760 { 1761 /* 1762 * We make the task go to sleep until its current deadline by 1763 * forcing its runtime to zero. This way, update_curr_dl() stops 1764 * it and the bandwidth timer will wake it up and will give it 1765 * new scheduling parameters (thanks to dl_yielded=1). 1766 */ 1767 rq->curr->dl.dl_yielded = 1; 1768 1769 update_rq_clock(rq); 1770 update_curr_dl(rq); 1771 /* 1772 * Tell update_rq_clock() that we've just updated, 1773 * so we don't do microscopic update in schedule() 1774 * and double the fastpath cost. 1775 */ 1776 rq_clock_skip_update(rq); 1777 } 1778 1779 #ifdef CONFIG_SMP 1780 1781 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 1782 struct rq *rq) 1783 { 1784 return (!rq->dl.dl_nr_running || 1785 dl_time_before(p->dl.deadline, 1786 rq->dl.earliest_dl.curr)); 1787 } 1788 1789 static int find_later_rq(struct task_struct *task); 1790 1791 static int 1792 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 1793 { 1794 struct task_struct *curr; 1795 bool select_rq; 1796 struct rq *rq; 1797 1798 if (!(flags & WF_TTWU)) 1799 goto out; 1800 1801 rq = cpu_rq(cpu); 1802 1803 rcu_read_lock(); 1804 curr = READ_ONCE(rq->curr); /* unlocked access */ 1805 1806 /* 1807 * If we are dealing with a -deadline task, we must 1808 * decide where to wake it up. 1809 * If it has a later deadline and the current task 1810 * on this rq can't move (provided the waking task 1811 * can!) we prefer to send it somewhere else. On the 1812 * other hand, if it has a shorter deadline, we 1813 * try to make it stay here, it might be important. 1814 */ 1815 select_rq = unlikely(dl_task(curr)) && 1816 (curr->nr_cpus_allowed < 2 || 1817 !dl_entity_preempt(&p->dl, &curr->dl)) && 1818 p->nr_cpus_allowed > 1; 1819 1820 /* 1821 * Take the capacity of the CPU into account to 1822 * ensure it fits the requirement of the task. 1823 */ 1824 if (sched_asym_cpucap_active()) 1825 select_rq |= !dl_task_fits_capacity(p, cpu); 1826 1827 if (select_rq) { 1828 int target = find_later_rq(p); 1829 1830 if (target != -1 && 1831 dl_task_is_earliest_deadline(p, cpu_rq(target))) 1832 cpu = target; 1833 } 1834 rcu_read_unlock(); 1835 1836 out: 1837 return cpu; 1838 } 1839 1840 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1841 { 1842 struct rq_flags rf; 1843 struct rq *rq; 1844 1845 if (READ_ONCE(p->__state) != TASK_WAKING) 1846 return; 1847 1848 rq = task_rq(p); 1849 /* 1850 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1851 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1852 * rq->lock is not... So, lock it 1853 */ 1854 rq_lock(rq, &rf); 1855 if (p->dl.dl_non_contending) { 1856 update_rq_clock(rq); 1857 sub_running_bw(&p->dl, &rq->dl); 1858 p->dl.dl_non_contending = 0; 1859 /* 1860 * If the timer handler is currently running and the 1861 * timer cannot be canceled, inactive_task_timer() 1862 * will see that dl_not_contending is not set, and 1863 * will not touch the rq's active utilization, 1864 * so we are still safe. 1865 */ 1866 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1867 put_task_struct(p); 1868 } 1869 sub_rq_bw(&p->dl, &rq->dl); 1870 rq_unlock(rq, &rf); 1871 } 1872 1873 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1874 { 1875 /* 1876 * Current can't be migrated, useless to reschedule, 1877 * let's hope p can move out. 1878 */ 1879 if (rq->curr->nr_cpus_allowed == 1 || 1880 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1881 return; 1882 1883 /* 1884 * p is migratable, so let's not schedule it and 1885 * see if it is pushed or pulled somewhere else. 1886 */ 1887 if (p->nr_cpus_allowed != 1 && 1888 cpudl_find(&rq->rd->cpudl, p, NULL)) 1889 return; 1890 1891 resched_curr(rq); 1892 } 1893 1894 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1895 { 1896 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 1897 /* 1898 * This is OK, because current is on_cpu, which avoids it being 1899 * picked for load-balance and preemption/IRQs are still 1900 * disabled avoiding further scheduler activity on it and we've 1901 * not yet started the picking loop. 1902 */ 1903 rq_unpin_lock(rq, rf); 1904 pull_dl_task(rq); 1905 rq_repin_lock(rq, rf); 1906 } 1907 1908 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 1909 } 1910 #endif /* CONFIG_SMP */ 1911 1912 /* 1913 * Only called when both the current and waking task are -deadline 1914 * tasks. 1915 */ 1916 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, 1917 int flags) 1918 { 1919 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1920 resched_curr(rq); 1921 return; 1922 } 1923 1924 #ifdef CONFIG_SMP 1925 /* 1926 * In the unlikely case current and p have the same deadline 1927 * let us try to decide what's the best thing to do... 1928 */ 1929 if ((p->dl.deadline == rq->curr->dl.deadline) && 1930 !test_tsk_need_resched(rq->curr)) 1931 check_preempt_equal_dl(rq, p); 1932 #endif /* CONFIG_SMP */ 1933 } 1934 1935 #ifdef CONFIG_SCHED_HRTICK 1936 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1937 { 1938 hrtick_start(rq, p->dl.runtime); 1939 } 1940 #else /* !CONFIG_SCHED_HRTICK */ 1941 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1942 { 1943 } 1944 #endif 1945 1946 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 1947 { 1948 struct sched_dl_entity *dl_se = &p->dl; 1949 struct dl_rq *dl_rq = &rq->dl; 1950 1951 p->se.exec_start = rq_clock_task(rq); 1952 if (on_dl_rq(&p->dl)) 1953 update_stats_wait_end_dl(dl_rq, dl_se); 1954 1955 /* You can't push away the running task */ 1956 dequeue_pushable_dl_task(rq, p); 1957 1958 if (!first) 1959 return; 1960 1961 if (hrtick_enabled_dl(rq)) 1962 start_hrtick_dl(rq, p); 1963 1964 if (rq->curr->sched_class != &dl_sched_class) 1965 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1966 1967 deadline_queue_push_tasks(rq); 1968 } 1969 1970 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 1971 { 1972 struct rb_node *left = rb_first_cached(&dl_rq->root); 1973 1974 if (!left) 1975 return NULL; 1976 1977 return __node_2_dle(left); 1978 } 1979 1980 static struct task_struct *pick_task_dl(struct rq *rq) 1981 { 1982 struct sched_dl_entity *dl_se; 1983 struct dl_rq *dl_rq = &rq->dl; 1984 struct task_struct *p; 1985 1986 if (!sched_dl_runnable(rq)) 1987 return NULL; 1988 1989 dl_se = pick_next_dl_entity(dl_rq); 1990 WARN_ON_ONCE(!dl_se); 1991 p = dl_task_of(dl_se); 1992 1993 return p; 1994 } 1995 1996 static struct task_struct *pick_next_task_dl(struct rq *rq) 1997 { 1998 struct task_struct *p; 1999 2000 p = pick_task_dl(rq); 2001 if (p) 2002 set_next_task_dl(rq, p, true); 2003 2004 return p; 2005 } 2006 2007 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 2008 { 2009 struct sched_dl_entity *dl_se = &p->dl; 2010 struct dl_rq *dl_rq = &rq->dl; 2011 2012 if (on_dl_rq(&p->dl)) 2013 update_stats_wait_start_dl(dl_rq, dl_se); 2014 2015 update_curr_dl(rq); 2016 2017 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2018 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2019 enqueue_pushable_dl_task(rq, p); 2020 } 2021 2022 /* 2023 * scheduler tick hitting a task of our scheduling class. 2024 * 2025 * NOTE: This function can be called remotely by the tick offload that 2026 * goes along full dynticks. Therefore no local assumption can be made 2027 * and everything must be accessed through the @rq and @curr passed in 2028 * parameters. 2029 */ 2030 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2031 { 2032 update_curr_dl(rq); 2033 2034 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2035 /* 2036 * Even when we have runtime, update_curr_dl() might have resulted in us 2037 * not being the leftmost task anymore. In that case NEED_RESCHED will 2038 * be set and schedule() will start a new hrtick for the next task. 2039 */ 2040 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2041 is_leftmost(p, &rq->dl)) 2042 start_hrtick_dl(rq, p); 2043 } 2044 2045 static void task_fork_dl(struct task_struct *p) 2046 { 2047 /* 2048 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2049 * sched_fork() 2050 */ 2051 } 2052 2053 #ifdef CONFIG_SMP 2054 2055 /* Only try algorithms three times */ 2056 #define DL_MAX_TRIES 3 2057 2058 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 2059 { 2060 if (!task_on_cpu(rq, p) && 2061 cpumask_test_cpu(cpu, &p->cpus_mask)) 2062 return 1; 2063 return 0; 2064 } 2065 2066 /* 2067 * Return the earliest pushable rq's task, which is suitable to be executed 2068 * on the CPU, NULL otherwise: 2069 */ 2070 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2071 { 2072 struct task_struct *p = NULL; 2073 struct rb_node *next_node; 2074 2075 if (!has_pushable_dl_tasks(rq)) 2076 return NULL; 2077 2078 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2079 2080 next_node: 2081 if (next_node) { 2082 p = __node_2_pdl(next_node); 2083 2084 if (pick_dl_task(rq, p, cpu)) 2085 return p; 2086 2087 next_node = rb_next(next_node); 2088 goto next_node; 2089 } 2090 2091 return NULL; 2092 } 2093 2094 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2095 2096 static int find_later_rq(struct task_struct *task) 2097 { 2098 struct sched_domain *sd; 2099 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2100 int this_cpu = smp_processor_id(); 2101 int cpu = task_cpu(task); 2102 2103 /* Make sure the mask is initialized first */ 2104 if (unlikely(!later_mask)) 2105 return -1; 2106 2107 if (task->nr_cpus_allowed == 1) 2108 return -1; 2109 2110 /* 2111 * We have to consider system topology and task affinity 2112 * first, then we can look for a suitable CPU. 2113 */ 2114 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2115 return -1; 2116 2117 /* 2118 * If we are here, some targets have been found, including 2119 * the most suitable which is, among the runqueues where the 2120 * current tasks have later deadlines than the task's one, the 2121 * rq with the latest possible one. 2122 * 2123 * Now we check how well this matches with task's 2124 * affinity and system topology. 2125 * 2126 * The last CPU where the task run is our first 2127 * guess, since it is most likely cache-hot there. 2128 */ 2129 if (cpumask_test_cpu(cpu, later_mask)) 2130 return cpu; 2131 /* 2132 * Check if this_cpu is to be skipped (i.e., it is 2133 * not in the mask) or not. 2134 */ 2135 if (!cpumask_test_cpu(this_cpu, later_mask)) 2136 this_cpu = -1; 2137 2138 rcu_read_lock(); 2139 for_each_domain(cpu, sd) { 2140 if (sd->flags & SD_WAKE_AFFINE) { 2141 int best_cpu; 2142 2143 /* 2144 * If possible, preempting this_cpu is 2145 * cheaper than migrating. 2146 */ 2147 if (this_cpu != -1 && 2148 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2149 rcu_read_unlock(); 2150 return this_cpu; 2151 } 2152 2153 best_cpu = cpumask_any_and_distribute(later_mask, 2154 sched_domain_span(sd)); 2155 /* 2156 * Last chance: if a CPU being in both later_mask 2157 * and current sd span is valid, that becomes our 2158 * choice. Of course, the latest possible CPU is 2159 * already under consideration through later_mask. 2160 */ 2161 if (best_cpu < nr_cpu_ids) { 2162 rcu_read_unlock(); 2163 return best_cpu; 2164 } 2165 } 2166 } 2167 rcu_read_unlock(); 2168 2169 /* 2170 * At this point, all our guesses failed, we just return 2171 * 'something', and let the caller sort the things out. 2172 */ 2173 if (this_cpu != -1) 2174 return this_cpu; 2175 2176 cpu = cpumask_any_distribute(later_mask); 2177 if (cpu < nr_cpu_ids) 2178 return cpu; 2179 2180 return -1; 2181 } 2182 2183 /* Locks the rq it finds */ 2184 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2185 { 2186 struct rq *later_rq = NULL; 2187 int tries; 2188 int cpu; 2189 2190 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2191 cpu = find_later_rq(task); 2192 2193 if ((cpu == -1) || (cpu == rq->cpu)) 2194 break; 2195 2196 later_rq = cpu_rq(cpu); 2197 2198 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2199 /* 2200 * Target rq has tasks of equal or earlier deadline, 2201 * retrying does not release any lock and is unlikely 2202 * to yield a different result. 2203 */ 2204 later_rq = NULL; 2205 break; 2206 } 2207 2208 /* Retry if something changed. */ 2209 if (double_lock_balance(rq, later_rq)) { 2210 if (unlikely(task_rq(task) != rq || 2211 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2212 task_on_cpu(rq, task) || 2213 !dl_task(task) || 2214 is_migration_disabled(task) || 2215 !task_on_rq_queued(task))) { 2216 double_unlock_balance(rq, later_rq); 2217 later_rq = NULL; 2218 break; 2219 } 2220 } 2221 2222 /* 2223 * If the rq we found has no -deadline task, or 2224 * its earliest one has a later deadline than our 2225 * task, the rq is a good one. 2226 */ 2227 if (dl_task_is_earliest_deadline(task, later_rq)) 2228 break; 2229 2230 /* Otherwise we try again. */ 2231 double_unlock_balance(rq, later_rq); 2232 later_rq = NULL; 2233 } 2234 2235 return later_rq; 2236 } 2237 2238 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2239 { 2240 struct task_struct *p; 2241 2242 if (!has_pushable_dl_tasks(rq)) 2243 return NULL; 2244 2245 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2246 2247 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2248 WARN_ON_ONCE(task_current(rq, p)); 2249 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2250 2251 WARN_ON_ONCE(!task_on_rq_queued(p)); 2252 WARN_ON_ONCE(!dl_task(p)); 2253 2254 return p; 2255 } 2256 2257 /* 2258 * See if the non running -deadline tasks on this rq 2259 * can be sent to some other CPU where they can preempt 2260 * and start executing. 2261 */ 2262 static int push_dl_task(struct rq *rq) 2263 { 2264 struct task_struct *next_task; 2265 struct rq *later_rq; 2266 int ret = 0; 2267 2268 next_task = pick_next_pushable_dl_task(rq); 2269 if (!next_task) 2270 return 0; 2271 2272 retry: 2273 /* 2274 * If next_task preempts rq->curr, and rq->curr 2275 * can move away, it makes sense to just reschedule 2276 * without going further in pushing next_task. 2277 */ 2278 if (dl_task(rq->curr) && 2279 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2280 rq->curr->nr_cpus_allowed > 1) { 2281 resched_curr(rq); 2282 return 0; 2283 } 2284 2285 if (is_migration_disabled(next_task)) 2286 return 0; 2287 2288 if (WARN_ON(next_task == rq->curr)) 2289 return 0; 2290 2291 /* We might release rq lock */ 2292 get_task_struct(next_task); 2293 2294 /* Will lock the rq it'll find */ 2295 later_rq = find_lock_later_rq(next_task, rq); 2296 if (!later_rq) { 2297 struct task_struct *task; 2298 2299 /* 2300 * We must check all this again, since 2301 * find_lock_later_rq releases rq->lock and it is 2302 * then possible that next_task has migrated. 2303 */ 2304 task = pick_next_pushable_dl_task(rq); 2305 if (task == next_task) { 2306 /* 2307 * The task is still there. We don't try 2308 * again, some other CPU will pull it when ready. 2309 */ 2310 goto out; 2311 } 2312 2313 if (!task) 2314 /* No more tasks */ 2315 goto out; 2316 2317 put_task_struct(next_task); 2318 next_task = task; 2319 goto retry; 2320 } 2321 2322 deactivate_task(rq, next_task, 0); 2323 set_task_cpu(next_task, later_rq->cpu); 2324 activate_task(later_rq, next_task, 0); 2325 ret = 1; 2326 2327 resched_curr(later_rq); 2328 2329 double_unlock_balance(rq, later_rq); 2330 2331 out: 2332 put_task_struct(next_task); 2333 2334 return ret; 2335 } 2336 2337 static void push_dl_tasks(struct rq *rq) 2338 { 2339 /* push_dl_task() will return true if it moved a -deadline task */ 2340 while (push_dl_task(rq)) 2341 ; 2342 } 2343 2344 static void pull_dl_task(struct rq *this_rq) 2345 { 2346 int this_cpu = this_rq->cpu, cpu; 2347 struct task_struct *p, *push_task; 2348 bool resched = false; 2349 struct rq *src_rq; 2350 u64 dmin = LONG_MAX; 2351 2352 if (likely(!dl_overloaded(this_rq))) 2353 return; 2354 2355 /* 2356 * Match the barrier from dl_set_overloaded; this guarantees that if we 2357 * see overloaded we must also see the dlo_mask bit. 2358 */ 2359 smp_rmb(); 2360 2361 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2362 if (this_cpu == cpu) 2363 continue; 2364 2365 src_rq = cpu_rq(cpu); 2366 2367 /* 2368 * It looks racy, abd it is! However, as in sched_rt.c, 2369 * we are fine with this. 2370 */ 2371 if (this_rq->dl.dl_nr_running && 2372 dl_time_before(this_rq->dl.earliest_dl.curr, 2373 src_rq->dl.earliest_dl.next)) 2374 continue; 2375 2376 /* Might drop this_rq->lock */ 2377 push_task = NULL; 2378 double_lock_balance(this_rq, src_rq); 2379 2380 /* 2381 * If there are no more pullable tasks on the 2382 * rq, we're done with it. 2383 */ 2384 if (src_rq->dl.dl_nr_running <= 1) 2385 goto skip; 2386 2387 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2388 2389 /* 2390 * We found a task to be pulled if: 2391 * - it preempts our current (if there's one), 2392 * - it will preempt the last one we pulled (if any). 2393 */ 2394 if (p && dl_time_before(p->dl.deadline, dmin) && 2395 dl_task_is_earliest_deadline(p, this_rq)) { 2396 WARN_ON(p == src_rq->curr); 2397 WARN_ON(!task_on_rq_queued(p)); 2398 2399 /* 2400 * Then we pull iff p has actually an earlier 2401 * deadline than the current task of its runqueue. 2402 */ 2403 if (dl_time_before(p->dl.deadline, 2404 src_rq->curr->dl.deadline)) 2405 goto skip; 2406 2407 if (is_migration_disabled(p)) { 2408 push_task = get_push_task(src_rq); 2409 } else { 2410 deactivate_task(src_rq, p, 0); 2411 set_task_cpu(p, this_cpu); 2412 activate_task(this_rq, p, 0); 2413 dmin = p->dl.deadline; 2414 resched = true; 2415 } 2416 2417 /* Is there any other task even earlier? */ 2418 } 2419 skip: 2420 double_unlock_balance(this_rq, src_rq); 2421 2422 if (push_task) { 2423 preempt_disable(); 2424 raw_spin_rq_unlock(this_rq); 2425 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2426 push_task, &src_rq->push_work); 2427 preempt_enable(); 2428 raw_spin_rq_lock(this_rq); 2429 } 2430 } 2431 2432 if (resched) 2433 resched_curr(this_rq); 2434 } 2435 2436 /* 2437 * Since the task is not running and a reschedule is not going to happen 2438 * anytime soon on its runqueue, we try pushing it away now. 2439 */ 2440 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2441 { 2442 if (!task_on_cpu(rq, p) && 2443 !test_tsk_need_resched(rq->curr) && 2444 p->nr_cpus_allowed > 1 && 2445 dl_task(rq->curr) && 2446 (rq->curr->nr_cpus_allowed < 2 || 2447 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2448 push_dl_tasks(rq); 2449 } 2450 } 2451 2452 static void set_cpus_allowed_dl(struct task_struct *p, 2453 struct affinity_context *ctx) 2454 { 2455 struct root_domain *src_rd; 2456 struct rq *rq; 2457 2458 WARN_ON_ONCE(!dl_task(p)); 2459 2460 rq = task_rq(p); 2461 src_rd = rq->rd; 2462 /* 2463 * Migrating a SCHED_DEADLINE task between exclusive 2464 * cpusets (different root_domains) entails a bandwidth 2465 * update. We already made space for us in the destination 2466 * domain (see cpuset_can_attach()). 2467 */ 2468 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 2469 struct dl_bw *src_dl_b; 2470 2471 src_dl_b = dl_bw_of(cpu_of(rq)); 2472 /* 2473 * We now free resources of the root_domain we are migrating 2474 * off. In the worst case, sched_setattr() may temporary fail 2475 * until we complete the update. 2476 */ 2477 raw_spin_lock(&src_dl_b->lock); 2478 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2479 raw_spin_unlock(&src_dl_b->lock); 2480 } 2481 2482 set_cpus_allowed_common(p, ctx); 2483 } 2484 2485 /* Assumes rq->lock is held */ 2486 static void rq_online_dl(struct rq *rq) 2487 { 2488 if (rq->dl.overloaded) 2489 dl_set_overload(rq); 2490 2491 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2492 if (rq->dl.dl_nr_running > 0) 2493 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2494 } 2495 2496 /* Assumes rq->lock is held */ 2497 static void rq_offline_dl(struct rq *rq) 2498 { 2499 if (rq->dl.overloaded) 2500 dl_clear_overload(rq); 2501 2502 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2503 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2504 } 2505 2506 void __init init_sched_dl_class(void) 2507 { 2508 unsigned int i; 2509 2510 for_each_possible_cpu(i) 2511 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2512 GFP_KERNEL, cpu_to_node(i)); 2513 } 2514 2515 void dl_add_task_root_domain(struct task_struct *p) 2516 { 2517 struct rq_flags rf; 2518 struct rq *rq; 2519 struct dl_bw *dl_b; 2520 2521 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2522 if (!dl_task(p)) { 2523 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2524 return; 2525 } 2526 2527 rq = __task_rq_lock(p, &rf); 2528 2529 dl_b = &rq->rd->dl_bw; 2530 raw_spin_lock(&dl_b->lock); 2531 2532 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2533 2534 raw_spin_unlock(&dl_b->lock); 2535 2536 task_rq_unlock(rq, p, &rf); 2537 } 2538 2539 void dl_clear_root_domain(struct root_domain *rd) 2540 { 2541 unsigned long flags; 2542 2543 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2544 rd->dl_bw.total_bw = 0; 2545 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2546 } 2547 2548 #endif /* CONFIG_SMP */ 2549 2550 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2551 { 2552 /* 2553 * task_non_contending() can start the "inactive timer" (if the 0-lag 2554 * time is in the future). If the task switches back to dl before 2555 * the "inactive timer" fires, it can continue to consume its current 2556 * runtime using its current deadline. If it stays outside of 2557 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2558 * will reset the task parameters. 2559 */ 2560 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2561 task_non_contending(p); 2562 2563 /* 2564 * In case a task is setscheduled out from SCHED_DEADLINE we need to 2565 * keep track of that on its cpuset (for correct bandwidth tracking). 2566 */ 2567 dec_dl_tasks_cs(p); 2568 2569 if (!task_on_rq_queued(p)) { 2570 /* 2571 * Inactive timer is armed. However, p is leaving DEADLINE and 2572 * might migrate away from this rq while continuing to run on 2573 * some other class. We need to remove its contribution from 2574 * this rq running_bw now, or sub_rq_bw (below) will complain. 2575 */ 2576 if (p->dl.dl_non_contending) 2577 sub_running_bw(&p->dl, &rq->dl); 2578 sub_rq_bw(&p->dl, &rq->dl); 2579 } 2580 2581 /* 2582 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2583 * at the 0-lag time, because the task could have been migrated 2584 * while SCHED_OTHER in the meanwhile. 2585 */ 2586 if (p->dl.dl_non_contending) 2587 p->dl.dl_non_contending = 0; 2588 2589 /* 2590 * Since this might be the only -deadline task on the rq, 2591 * this is the right place to try to pull some other one 2592 * from an overloaded CPU, if any. 2593 */ 2594 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2595 return; 2596 2597 deadline_queue_pull_task(rq); 2598 } 2599 2600 /* 2601 * When switching to -deadline, we may overload the rq, then 2602 * we try to push someone off, if possible. 2603 */ 2604 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2605 { 2606 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2607 put_task_struct(p); 2608 2609 /* 2610 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 2611 * track of that on its cpuset (for correct bandwidth tracking). 2612 */ 2613 inc_dl_tasks_cs(p); 2614 2615 /* If p is not queued we will update its parameters at next wakeup. */ 2616 if (!task_on_rq_queued(p)) { 2617 add_rq_bw(&p->dl, &rq->dl); 2618 2619 return; 2620 } 2621 2622 if (rq->curr != p) { 2623 #ifdef CONFIG_SMP 2624 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2625 deadline_queue_push_tasks(rq); 2626 #endif 2627 if (dl_task(rq->curr)) 2628 wakeup_preempt_dl(rq, p, 0); 2629 else 2630 resched_curr(rq); 2631 } else { 2632 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2633 } 2634 } 2635 2636 /* 2637 * If the scheduling parameters of a -deadline task changed, 2638 * a push or pull operation might be needed. 2639 */ 2640 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2641 int oldprio) 2642 { 2643 if (!task_on_rq_queued(p)) 2644 return; 2645 2646 #ifdef CONFIG_SMP 2647 /* 2648 * This might be too much, but unfortunately 2649 * we don't have the old deadline value, and 2650 * we can't argue if the task is increasing 2651 * or lowering its prio, so... 2652 */ 2653 if (!rq->dl.overloaded) 2654 deadline_queue_pull_task(rq); 2655 2656 if (task_current(rq, p)) { 2657 /* 2658 * If we now have a earlier deadline task than p, 2659 * then reschedule, provided p is still on this 2660 * runqueue. 2661 */ 2662 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2663 resched_curr(rq); 2664 } else { 2665 /* 2666 * Current may not be deadline in case p was throttled but we 2667 * have just replenished it (e.g. rt_mutex_setprio()). 2668 * 2669 * Otherwise, if p was given an earlier deadline, reschedule. 2670 */ 2671 if (!dl_task(rq->curr) || 2672 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 2673 resched_curr(rq); 2674 } 2675 #else 2676 /* 2677 * We don't know if p has a earlier or later deadline, so let's blindly 2678 * set a (maybe not needed) rescheduling point. 2679 */ 2680 resched_curr(rq); 2681 #endif 2682 } 2683 2684 #ifdef CONFIG_SCHED_CORE 2685 static int task_is_throttled_dl(struct task_struct *p, int cpu) 2686 { 2687 return p->dl.dl_throttled; 2688 } 2689 #endif 2690 2691 DEFINE_SCHED_CLASS(dl) = { 2692 2693 .enqueue_task = enqueue_task_dl, 2694 .dequeue_task = dequeue_task_dl, 2695 .yield_task = yield_task_dl, 2696 2697 .wakeup_preempt = wakeup_preempt_dl, 2698 2699 .pick_next_task = pick_next_task_dl, 2700 .put_prev_task = put_prev_task_dl, 2701 .set_next_task = set_next_task_dl, 2702 2703 #ifdef CONFIG_SMP 2704 .balance = balance_dl, 2705 .pick_task = pick_task_dl, 2706 .select_task_rq = select_task_rq_dl, 2707 .migrate_task_rq = migrate_task_rq_dl, 2708 .set_cpus_allowed = set_cpus_allowed_dl, 2709 .rq_online = rq_online_dl, 2710 .rq_offline = rq_offline_dl, 2711 .task_woken = task_woken_dl, 2712 .find_lock_rq = find_lock_later_rq, 2713 #endif 2714 2715 .task_tick = task_tick_dl, 2716 .task_fork = task_fork_dl, 2717 2718 .prio_changed = prio_changed_dl, 2719 .switched_from = switched_from_dl, 2720 .switched_to = switched_to_dl, 2721 2722 .update_curr = update_curr_dl, 2723 #ifdef CONFIG_SCHED_CORE 2724 .task_is_throttled = task_is_throttled_dl, 2725 #endif 2726 }; 2727 2728 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */ 2729 static u64 dl_generation; 2730 2731 int sched_dl_global_validate(void) 2732 { 2733 u64 runtime = global_rt_runtime(); 2734 u64 period = global_rt_period(); 2735 u64 new_bw = to_ratio(period, runtime); 2736 u64 gen = ++dl_generation; 2737 struct dl_bw *dl_b; 2738 int cpu, cpus, ret = 0; 2739 unsigned long flags; 2740 2741 /* 2742 * Here we want to check the bandwidth not being set to some 2743 * value smaller than the currently allocated bandwidth in 2744 * any of the root_domains. 2745 */ 2746 for_each_possible_cpu(cpu) { 2747 rcu_read_lock_sched(); 2748 2749 if (dl_bw_visited(cpu, gen)) 2750 goto next; 2751 2752 dl_b = dl_bw_of(cpu); 2753 cpus = dl_bw_cpus(cpu); 2754 2755 raw_spin_lock_irqsave(&dl_b->lock, flags); 2756 if (new_bw * cpus < dl_b->total_bw) 2757 ret = -EBUSY; 2758 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2759 2760 next: 2761 rcu_read_unlock_sched(); 2762 2763 if (ret) 2764 break; 2765 } 2766 2767 return ret; 2768 } 2769 2770 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2771 { 2772 if (global_rt_runtime() == RUNTIME_INF) { 2773 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2774 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 2775 } else { 2776 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2777 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2778 dl_rq->max_bw = dl_rq->extra_bw = 2779 to_ratio(global_rt_period(), global_rt_runtime()); 2780 } 2781 } 2782 2783 void sched_dl_do_global(void) 2784 { 2785 u64 new_bw = -1; 2786 u64 gen = ++dl_generation; 2787 struct dl_bw *dl_b; 2788 int cpu; 2789 unsigned long flags; 2790 2791 if (global_rt_runtime() != RUNTIME_INF) 2792 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2793 2794 for_each_possible_cpu(cpu) { 2795 rcu_read_lock_sched(); 2796 2797 if (dl_bw_visited(cpu, gen)) { 2798 rcu_read_unlock_sched(); 2799 continue; 2800 } 2801 2802 dl_b = dl_bw_of(cpu); 2803 2804 raw_spin_lock_irqsave(&dl_b->lock, flags); 2805 dl_b->bw = new_bw; 2806 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2807 2808 rcu_read_unlock_sched(); 2809 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2810 } 2811 } 2812 2813 /* 2814 * We must be sure that accepting a new task (or allowing changing the 2815 * parameters of an existing one) is consistent with the bandwidth 2816 * constraints. If yes, this function also accordingly updates the currently 2817 * allocated bandwidth to reflect the new situation. 2818 * 2819 * This function is called while holding p's rq->lock. 2820 */ 2821 int sched_dl_overflow(struct task_struct *p, int policy, 2822 const struct sched_attr *attr) 2823 { 2824 u64 period = attr->sched_period ?: attr->sched_deadline; 2825 u64 runtime = attr->sched_runtime; 2826 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2827 int cpus, err = -1, cpu = task_cpu(p); 2828 struct dl_bw *dl_b = dl_bw_of(cpu); 2829 unsigned long cap; 2830 2831 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2832 return 0; 2833 2834 /* !deadline task may carry old deadline bandwidth */ 2835 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2836 return 0; 2837 2838 /* 2839 * Either if a task, enters, leave, or stays -deadline but changes 2840 * its parameters, we may need to update accordingly the total 2841 * allocated bandwidth of the container. 2842 */ 2843 raw_spin_lock(&dl_b->lock); 2844 cpus = dl_bw_cpus(cpu); 2845 cap = dl_bw_capacity(cpu); 2846 2847 if (dl_policy(policy) && !task_has_dl_policy(p) && 2848 !__dl_overflow(dl_b, cap, 0, new_bw)) { 2849 if (hrtimer_active(&p->dl.inactive_timer)) 2850 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2851 __dl_add(dl_b, new_bw, cpus); 2852 err = 0; 2853 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2854 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 2855 /* 2856 * XXX this is slightly incorrect: when the task 2857 * utilization decreases, we should delay the total 2858 * utilization change until the task's 0-lag point. 2859 * But this would require to set the task's "inactive 2860 * timer" when the task is not inactive. 2861 */ 2862 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2863 __dl_add(dl_b, new_bw, cpus); 2864 dl_change_utilization(p, new_bw); 2865 err = 0; 2866 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2867 /* 2868 * Do not decrease the total deadline utilization here, 2869 * switched_from_dl() will take care to do it at the correct 2870 * (0-lag) time. 2871 */ 2872 err = 0; 2873 } 2874 raw_spin_unlock(&dl_b->lock); 2875 2876 return err; 2877 } 2878 2879 /* 2880 * This function initializes the sched_dl_entity of a newly becoming 2881 * SCHED_DEADLINE task. 2882 * 2883 * Only the static values are considered here, the actual runtime and the 2884 * absolute deadline will be properly calculated when the task is enqueued 2885 * for the first time with its new policy. 2886 */ 2887 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2888 { 2889 struct sched_dl_entity *dl_se = &p->dl; 2890 2891 dl_se->dl_runtime = attr->sched_runtime; 2892 dl_se->dl_deadline = attr->sched_deadline; 2893 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2894 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 2895 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2896 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2897 } 2898 2899 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2900 { 2901 struct sched_dl_entity *dl_se = &p->dl; 2902 2903 attr->sched_priority = p->rt_priority; 2904 attr->sched_runtime = dl_se->dl_runtime; 2905 attr->sched_deadline = dl_se->dl_deadline; 2906 attr->sched_period = dl_se->dl_period; 2907 attr->sched_flags &= ~SCHED_DL_FLAGS; 2908 attr->sched_flags |= dl_se->flags; 2909 } 2910 2911 /* 2912 * This function validates the new parameters of a -deadline task. 2913 * We ask for the deadline not being zero, and greater or equal 2914 * than the runtime, as well as the period of being zero or 2915 * greater than deadline. Furthermore, we have to be sure that 2916 * user parameters are above the internal resolution of 1us (we 2917 * check sched_runtime only since it is always the smaller one) and 2918 * below 2^63 ns (we have to check both sched_deadline and 2919 * sched_period, as the latter can be zero). 2920 */ 2921 bool __checkparam_dl(const struct sched_attr *attr) 2922 { 2923 u64 period, max, min; 2924 2925 /* special dl tasks don't actually use any parameter */ 2926 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2927 return true; 2928 2929 /* deadline != 0 */ 2930 if (attr->sched_deadline == 0) 2931 return false; 2932 2933 /* 2934 * Since we truncate DL_SCALE bits, make sure we're at least 2935 * that big. 2936 */ 2937 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2938 return false; 2939 2940 /* 2941 * Since we use the MSB for wrap-around and sign issues, make 2942 * sure it's not set (mind that period can be equal to zero). 2943 */ 2944 if (attr->sched_deadline & (1ULL << 63) || 2945 attr->sched_period & (1ULL << 63)) 2946 return false; 2947 2948 period = attr->sched_period; 2949 if (!period) 2950 period = attr->sched_deadline; 2951 2952 /* runtime <= deadline <= period (if period != 0) */ 2953 if (period < attr->sched_deadline || 2954 attr->sched_deadline < attr->sched_runtime) 2955 return false; 2956 2957 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 2958 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 2959 2960 if (period < min || period > max) 2961 return false; 2962 2963 return true; 2964 } 2965 2966 /* 2967 * This function clears the sched_dl_entity static params. 2968 */ 2969 void __dl_clear_params(struct task_struct *p) 2970 { 2971 struct sched_dl_entity *dl_se = &p->dl; 2972 2973 dl_se->dl_runtime = 0; 2974 dl_se->dl_deadline = 0; 2975 dl_se->dl_period = 0; 2976 dl_se->flags = 0; 2977 dl_se->dl_bw = 0; 2978 dl_se->dl_density = 0; 2979 2980 dl_se->dl_throttled = 0; 2981 dl_se->dl_yielded = 0; 2982 dl_se->dl_non_contending = 0; 2983 dl_se->dl_overrun = 0; 2984 2985 #ifdef CONFIG_RT_MUTEXES 2986 dl_se->pi_se = dl_se; 2987 #endif 2988 } 2989 2990 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2991 { 2992 struct sched_dl_entity *dl_se = &p->dl; 2993 2994 if (dl_se->dl_runtime != attr->sched_runtime || 2995 dl_se->dl_deadline != attr->sched_deadline || 2996 dl_se->dl_period != attr->sched_period || 2997 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 2998 return true; 2999 3000 return false; 3001 } 3002 3003 #ifdef CONFIG_SMP 3004 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3005 const struct cpumask *trial) 3006 { 3007 unsigned long flags, cap; 3008 struct dl_bw *cur_dl_b; 3009 int ret = 1; 3010 3011 rcu_read_lock_sched(); 3012 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3013 cap = __dl_bw_capacity(trial); 3014 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3015 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3016 ret = 0; 3017 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3018 rcu_read_unlock_sched(); 3019 3020 return ret; 3021 } 3022 3023 enum dl_bw_request { 3024 dl_bw_req_check_overflow = 0, 3025 dl_bw_req_alloc, 3026 dl_bw_req_free 3027 }; 3028 3029 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3030 { 3031 unsigned long flags; 3032 struct dl_bw *dl_b; 3033 bool overflow = 0; 3034 3035 rcu_read_lock_sched(); 3036 dl_b = dl_bw_of(cpu); 3037 raw_spin_lock_irqsave(&dl_b->lock, flags); 3038 3039 if (req == dl_bw_req_free) { 3040 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3041 } else { 3042 unsigned long cap = dl_bw_capacity(cpu); 3043 3044 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3045 3046 if (req == dl_bw_req_alloc && !overflow) { 3047 /* 3048 * We reserve space in the destination 3049 * root_domain, as we can't fail after this point. 3050 * We will free resources in the source root_domain 3051 * later on (see set_cpus_allowed_dl()). 3052 */ 3053 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3054 } 3055 } 3056 3057 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3058 rcu_read_unlock_sched(); 3059 3060 return overflow ? -EBUSY : 0; 3061 } 3062 3063 int dl_bw_check_overflow(int cpu) 3064 { 3065 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0); 3066 } 3067 3068 int dl_bw_alloc(int cpu, u64 dl_bw) 3069 { 3070 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3071 } 3072 3073 void dl_bw_free(int cpu, u64 dl_bw) 3074 { 3075 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3076 } 3077 #endif 3078 3079 #ifdef CONFIG_SCHED_DEBUG 3080 void print_dl_stats(struct seq_file *m, int cpu) 3081 { 3082 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3083 } 3084 #endif /* CONFIG_SCHED_DEBUG */ 3085