xref: /linux/kernel/sched/deadline.c (revision be10afcd2274d263fed8f74c6fc59ef71265e7d5)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 extern unsigned long to_ratio(u64 period, u64 runtime);
61 
62 void init_dl_bw(struct dl_bw *dl_b)
63 {
64 	raw_spin_lock_init(&dl_b->lock);
65 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
66 	if (global_rt_runtime() == RUNTIME_INF)
67 		dl_b->bw = -1;
68 	else
69 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
70 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
71 	dl_b->total_bw = 0;
72 }
73 
74 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
75 {
76 	dl_rq->rb_root = RB_ROOT;
77 
78 #ifdef CONFIG_SMP
79 	/* zero means no -deadline tasks */
80 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
81 
82 	dl_rq->dl_nr_migratory = 0;
83 	dl_rq->overloaded = 0;
84 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
85 #else
86 	init_dl_bw(&dl_rq->dl_bw);
87 #endif
88 }
89 
90 #ifdef CONFIG_SMP
91 
92 static inline int dl_overloaded(struct rq *rq)
93 {
94 	return atomic_read(&rq->rd->dlo_count);
95 }
96 
97 static inline void dl_set_overload(struct rq *rq)
98 {
99 	if (!rq->online)
100 		return;
101 
102 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
103 	/*
104 	 * Must be visible before the overload count is
105 	 * set (as in sched_rt.c).
106 	 *
107 	 * Matched by the barrier in pull_dl_task().
108 	 */
109 	smp_wmb();
110 	atomic_inc(&rq->rd->dlo_count);
111 }
112 
113 static inline void dl_clear_overload(struct rq *rq)
114 {
115 	if (!rq->online)
116 		return;
117 
118 	atomic_dec(&rq->rd->dlo_count);
119 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 }
121 
122 static void update_dl_migration(struct dl_rq *dl_rq)
123 {
124 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
125 		if (!dl_rq->overloaded) {
126 			dl_set_overload(rq_of_dl_rq(dl_rq));
127 			dl_rq->overloaded = 1;
128 		}
129 	} else if (dl_rq->overloaded) {
130 		dl_clear_overload(rq_of_dl_rq(dl_rq));
131 		dl_rq->overloaded = 0;
132 	}
133 }
134 
135 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136 {
137 	struct task_struct *p = dl_task_of(dl_se);
138 	dl_rq = &rq_of_dl_rq(dl_rq)->dl;
139 
140 	if (p->nr_cpus_allowed > 1)
141 		dl_rq->dl_nr_migratory++;
142 
143 	update_dl_migration(dl_rq);
144 }
145 
146 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
147 {
148 	struct task_struct *p = dl_task_of(dl_se);
149 	dl_rq = &rq_of_dl_rq(dl_rq)->dl;
150 
151 	if (p->nr_cpus_allowed > 1)
152 		dl_rq->dl_nr_migratory--;
153 
154 	update_dl_migration(dl_rq);
155 }
156 
157 /*
158  * The list of pushable -deadline task is not a plist, like in
159  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
160  */
161 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
162 {
163 	struct dl_rq *dl_rq = &rq->dl;
164 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
165 	struct rb_node *parent = NULL;
166 	struct task_struct *entry;
167 	int leftmost = 1;
168 
169 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
170 
171 	while (*link) {
172 		parent = *link;
173 		entry = rb_entry(parent, struct task_struct,
174 				 pushable_dl_tasks);
175 		if (dl_entity_preempt(&p->dl, &entry->dl))
176 			link = &parent->rb_left;
177 		else {
178 			link = &parent->rb_right;
179 			leftmost = 0;
180 		}
181 	}
182 
183 	if (leftmost)
184 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
185 
186 	rb_link_node(&p->pushable_dl_tasks, parent, link);
187 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
188 }
189 
190 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
191 {
192 	struct dl_rq *dl_rq = &rq->dl;
193 
194 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
195 		return;
196 
197 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
198 		struct rb_node *next_node;
199 
200 		next_node = rb_next(&p->pushable_dl_tasks);
201 		dl_rq->pushable_dl_tasks_leftmost = next_node;
202 	}
203 
204 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
205 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
206 }
207 
208 static inline int has_pushable_dl_tasks(struct rq *rq)
209 {
210 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
211 }
212 
213 static int push_dl_task(struct rq *rq);
214 
215 #else
216 
217 static inline
218 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
219 {
220 }
221 
222 static inline
223 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
224 {
225 }
226 
227 static inline
228 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
229 {
230 }
231 
232 static inline
233 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
234 {
235 }
236 
237 #endif /* CONFIG_SMP */
238 
239 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
240 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
241 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
242 				  int flags);
243 
244 /*
245  * We are being explicitly informed that a new instance is starting,
246  * and this means that:
247  *  - the absolute deadline of the entity has to be placed at
248  *    current time + relative deadline;
249  *  - the runtime of the entity has to be set to the maximum value.
250  *
251  * The capability of specifying such event is useful whenever a -deadline
252  * entity wants to (try to!) synchronize its behaviour with the scheduler's
253  * one, and to (try to!) reconcile itself with its own scheduling
254  * parameters.
255  */
256 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
257 				       struct sched_dl_entity *pi_se)
258 {
259 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
260 	struct rq *rq = rq_of_dl_rq(dl_rq);
261 
262 	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
263 
264 	/*
265 	 * We use the regular wall clock time to set deadlines in the
266 	 * future; in fact, we must consider execution overheads (time
267 	 * spent on hardirq context, etc.).
268 	 */
269 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
270 	dl_se->runtime = pi_se->dl_runtime;
271 	dl_se->dl_new = 0;
272 }
273 
274 /*
275  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
276  * possibility of a entity lasting more than what it declared, and thus
277  * exhausting its runtime.
278  *
279  * Here we are interested in making runtime overrun possible, but we do
280  * not want a entity which is misbehaving to affect the scheduling of all
281  * other entities.
282  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
283  * is used, in order to confine each entity within its own bandwidth.
284  *
285  * This function deals exactly with that, and ensures that when the runtime
286  * of a entity is replenished, its deadline is also postponed. That ensures
287  * the overrunning entity can't interfere with other entity in the system and
288  * can't make them miss their deadlines. Reasons why this kind of overruns
289  * could happen are, typically, a entity voluntarily trying to overcome its
290  * runtime, or it just underestimated it during sched_setscheduler_ex().
291  */
292 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
293 				struct sched_dl_entity *pi_se)
294 {
295 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296 	struct rq *rq = rq_of_dl_rq(dl_rq);
297 
298 	BUG_ON(pi_se->dl_runtime <= 0);
299 
300 	/*
301 	 * This could be the case for a !-dl task that is boosted.
302 	 * Just go with full inherited parameters.
303 	 */
304 	if (dl_se->dl_deadline == 0) {
305 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
306 		dl_se->runtime = pi_se->dl_runtime;
307 	}
308 
309 	/*
310 	 * We keep moving the deadline away until we get some
311 	 * available runtime for the entity. This ensures correct
312 	 * handling of situations where the runtime overrun is
313 	 * arbitrary large.
314 	 */
315 	while (dl_se->runtime <= 0) {
316 		dl_se->deadline += pi_se->dl_period;
317 		dl_se->runtime += pi_se->dl_runtime;
318 	}
319 
320 	/*
321 	 * At this point, the deadline really should be "in
322 	 * the future" with respect to rq->clock. If it's
323 	 * not, we are, for some reason, lagging too much!
324 	 * Anyway, after having warn userspace abut that,
325 	 * we still try to keep the things running by
326 	 * resetting the deadline and the budget of the
327 	 * entity.
328 	 */
329 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
330 		static bool lag_once = false;
331 
332 		if (!lag_once) {
333 			lag_once = true;
334 			printk_sched("sched: DL replenish lagged to much\n");
335 		}
336 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
337 		dl_se->runtime = pi_se->dl_runtime;
338 	}
339 }
340 
341 /*
342  * Here we check if --at time t-- an entity (which is probably being
343  * [re]activated or, in general, enqueued) can use its remaining runtime
344  * and its current deadline _without_ exceeding the bandwidth it is
345  * assigned (function returns true if it can't). We are in fact applying
346  * one of the CBS rules: when a task wakes up, if the residual runtime
347  * over residual deadline fits within the allocated bandwidth, then we
348  * can keep the current (absolute) deadline and residual budget without
349  * disrupting the schedulability of the system. Otherwise, we should
350  * refill the runtime and set the deadline a period in the future,
351  * because keeping the current (absolute) deadline of the task would
352  * result in breaking guarantees promised to other tasks (refer to
353  * Documentation/scheduler/sched-deadline.txt for more informations).
354  *
355  * This function returns true if:
356  *
357  *   runtime / (deadline - t) > dl_runtime / dl_period ,
358  *
359  * IOW we can't recycle current parameters.
360  *
361  * Notice that the bandwidth check is done against the period. For
362  * task with deadline equal to period this is the same of using
363  * dl_deadline instead of dl_period in the equation above.
364  */
365 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
366 			       struct sched_dl_entity *pi_se, u64 t)
367 {
368 	u64 left, right;
369 
370 	/*
371 	 * left and right are the two sides of the equation above,
372 	 * after a bit of shuffling to use multiplications instead
373 	 * of divisions.
374 	 *
375 	 * Note that none of the time values involved in the two
376 	 * multiplications are absolute: dl_deadline and dl_runtime
377 	 * are the relative deadline and the maximum runtime of each
378 	 * instance, runtime is the runtime left for the last instance
379 	 * and (deadline - t), since t is rq->clock, is the time left
380 	 * to the (absolute) deadline. Even if overflowing the u64 type
381 	 * is very unlikely to occur in both cases, here we scale down
382 	 * as we want to avoid that risk at all. Scaling down by 10
383 	 * means that we reduce granularity to 1us. We are fine with it,
384 	 * since this is only a true/false check and, anyway, thinking
385 	 * of anything below microseconds resolution is actually fiction
386 	 * (but still we want to give the user that illusion >;).
387 	 */
388 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
389 	right = ((dl_se->deadline - t) >> DL_SCALE) *
390 		(pi_se->dl_runtime >> DL_SCALE);
391 
392 	return dl_time_before(right, left);
393 }
394 
395 /*
396  * When a -deadline entity is queued back on the runqueue, its runtime and
397  * deadline might need updating.
398  *
399  * The policy here is that we update the deadline of the entity only if:
400  *  - the current deadline is in the past,
401  *  - using the remaining runtime with the current deadline would make
402  *    the entity exceed its bandwidth.
403  */
404 static void update_dl_entity(struct sched_dl_entity *dl_se,
405 			     struct sched_dl_entity *pi_se)
406 {
407 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
408 	struct rq *rq = rq_of_dl_rq(dl_rq);
409 
410 	/*
411 	 * The arrival of a new instance needs special treatment, i.e.,
412 	 * the actual scheduling parameters have to be "renewed".
413 	 */
414 	if (dl_se->dl_new) {
415 		setup_new_dl_entity(dl_se, pi_se);
416 		return;
417 	}
418 
419 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
420 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
421 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
422 		dl_se->runtime = pi_se->dl_runtime;
423 	}
424 }
425 
426 /*
427  * If the entity depleted all its runtime, and if we want it to sleep
428  * while waiting for some new execution time to become available, we
429  * set the bandwidth enforcement timer to the replenishment instant
430  * and try to activate it.
431  *
432  * Notice that it is important for the caller to know if the timer
433  * actually started or not (i.e., the replenishment instant is in
434  * the future or in the past).
435  */
436 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
437 {
438 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
439 	struct rq *rq = rq_of_dl_rq(dl_rq);
440 	ktime_t now, act;
441 	ktime_t soft, hard;
442 	unsigned long range;
443 	s64 delta;
444 
445 	if (boosted)
446 		return 0;
447 	/*
448 	 * We want the timer to fire at the deadline, but considering
449 	 * that it is actually coming from rq->clock and not from
450 	 * hrtimer's time base reading.
451 	 */
452 	act = ns_to_ktime(dl_se->deadline);
453 	now = hrtimer_cb_get_time(&dl_se->dl_timer);
454 	delta = ktime_to_ns(now) - rq_clock(rq);
455 	act = ktime_add_ns(act, delta);
456 
457 	/*
458 	 * If the expiry time already passed, e.g., because the value
459 	 * chosen as the deadline is too small, don't even try to
460 	 * start the timer in the past!
461 	 */
462 	if (ktime_us_delta(act, now) < 0)
463 		return 0;
464 
465 	hrtimer_set_expires(&dl_se->dl_timer, act);
466 
467 	soft = hrtimer_get_softexpires(&dl_se->dl_timer);
468 	hard = hrtimer_get_expires(&dl_se->dl_timer);
469 	range = ktime_to_ns(ktime_sub(hard, soft));
470 	__hrtimer_start_range_ns(&dl_se->dl_timer, soft,
471 				 range, HRTIMER_MODE_ABS, 0);
472 
473 	return hrtimer_active(&dl_se->dl_timer);
474 }
475 
476 /*
477  * This is the bandwidth enforcement timer callback. If here, we know
478  * a task is not on its dl_rq, since the fact that the timer was running
479  * means the task is throttled and needs a runtime replenishment.
480  *
481  * However, what we actually do depends on the fact the task is active,
482  * (it is on its rq) or has been removed from there by a call to
483  * dequeue_task_dl(). In the former case we must issue the runtime
484  * replenishment and add the task back to the dl_rq; in the latter, we just
485  * do nothing but clearing dl_throttled, so that runtime and deadline
486  * updating (and the queueing back to dl_rq) will be done by the
487  * next call to enqueue_task_dl().
488  */
489 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
490 {
491 	struct sched_dl_entity *dl_se = container_of(timer,
492 						     struct sched_dl_entity,
493 						     dl_timer);
494 	struct task_struct *p = dl_task_of(dl_se);
495 	struct rq *rq = task_rq(p);
496 	raw_spin_lock(&rq->lock);
497 
498 	/*
499 	 * We need to take care of a possible races here. In fact, the
500 	 * task might have changed its scheduling policy to something
501 	 * different from SCHED_DEADLINE or changed its reservation
502 	 * parameters (through sched_setscheduler()).
503 	 */
504 	if (!dl_task(p) || dl_se->dl_new)
505 		goto unlock;
506 
507 	sched_clock_tick();
508 	update_rq_clock(rq);
509 	dl_se->dl_throttled = 0;
510 	if (p->on_rq) {
511 		enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
512 		if (task_has_dl_policy(rq->curr))
513 			check_preempt_curr_dl(rq, p, 0);
514 		else
515 			resched_task(rq->curr);
516 #ifdef CONFIG_SMP
517 		/*
518 		 * Queueing this task back might have overloaded rq,
519 		 * check if we need to kick someone away.
520 		 */
521 		if (has_pushable_dl_tasks(rq))
522 			push_dl_task(rq);
523 #endif
524 	}
525 unlock:
526 	raw_spin_unlock(&rq->lock);
527 
528 	return HRTIMER_NORESTART;
529 }
530 
531 void init_dl_task_timer(struct sched_dl_entity *dl_se)
532 {
533 	struct hrtimer *timer = &dl_se->dl_timer;
534 
535 	if (hrtimer_active(timer)) {
536 		hrtimer_try_to_cancel(timer);
537 		return;
538 	}
539 
540 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
541 	timer->function = dl_task_timer;
542 }
543 
544 static
545 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
546 {
547 	int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
548 	int rorun = dl_se->runtime <= 0;
549 
550 	if (!rorun && !dmiss)
551 		return 0;
552 
553 	/*
554 	 * If we are beyond our current deadline and we are still
555 	 * executing, then we have already used some of the runtime of
556 	 * the next instance. Thus, if we do not account that, we are
557 	 * stealing bandwidth from the system at each deadline miss!
558 	 */
559 	if (dmiss) {
560 		dl_se->runtime = rorun ? dl_se->runtime : 0;
561 		dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
562 	}
563 
564 	return 1;
565 }
566 
567 /*
568  * Update the current task's runtime statistics (provided it is still
569  * a -deadline task and has not been removed from the dl_rq).
570  */
571 static void update_curr_dl(struct rq *rq)
572 {
573 	struct task_struct *curr = rq->curr;
574 	struct sched_dl_entity *dl_se = &curr->dl;
575 	u64 delta_exec;
576 
577 	if (!dl_task(curr) || !on_dl_rq(dl_se))
578 		return;
579 
580 	/*
581 	 * Consumed budget is computed considering the time as
582 	 * observed by schedulable tasks (excluding time spent
583 	 * in hardirq context, etc.). Deadlines are instead
584 	 * computed using hard walltime. This seems to be the more
585 	 * natural solution, but the full ramifications of this
586 	 * approach need further study.
587 	 */
588 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
589 	if (unlikely((s64)delta_exec < 0))
590 		delta_exec = 0;
591 
592 	schedstat_set(curr->se.statistics.exec_max,
593 		      max(curr->se.statistics.exec_max, delta_exec));
594 
595 	curr->se.sum_exec_runtime += delta_exec;
596 	account_group_exec_runtime(curr, delta_exec);
597 
598 	curr->se.exec_start = rq_clock_task(rq);
599 	cpuacct_charge(curr, delta_exec);
600 
601 	sched_rt_avg_update(rq, delta_exec);
602 
603 	dl_se->runtime -= delta_exec;
604 	if (dl_runtime_exceeded(rq, dl_se)) {
605 		__dequeue_task_dl(rq, curr, 0);
606 		if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
607 			dl_se->dl_throttled = 1;
608 		else
609 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
610 
611 		if (!is_leftmost(curr, &rq->dl))
612 			resched_task(curr);
613 	}
614 
615 	/*
616 	 * Because -- for now -- we share the rt bandwidth, we need to
617 	 * account our runtime there too, otherwise actual rt tasks
618 	 * would be able to exceed the shared quota.
619 	 *
620 	 * Account to the root rt group for now.
621 	 *
622 	 * The solution we're working towards is having the RT groups scheduled
623 	 * using deadline servers -- however there's a few nasties to figure
624 	 * out before that can happen.
625 	 */
626 	if (rt_bandwidth_enabled()) {
627 		struct rt_rq *rt_rq = &rq->rt;
628 
629 		raw_spin_lock(&rt_rq->rt_runtime_lock);
630 		rt_rq->rt_time += delta_exec;
631 		/*
632 		 * We'll let actual RT tasks worry about the overflow here, we
633 		 * have our own CBS to keep us inline -- see above.
634 		 */
635 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
636 	}
637 }
638 
639 #ifdef CONFIG_SMP
640 
641 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
642 
643 static inline u64 next_deadline(struct rq *rq)
644 {
645 	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
646 
647 	if (next && dl_prio(next->prio))
648 		return next->dl.deadline;
649 	else
650 		return 0;
651 }
652 
653 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
654 {
655 	struct rq *rq = rq_of_dl_rq(dl_rq);
656 
657 	if (dl_rq->earliest_dl.curr == 0 ||
658 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
659 		/*
660 		 * If the dl_rq had no -deadline tasks, or if the new task
661 		 * has shorter deadline than the current one on dl_rq, we
662 		 * know that the previous earliest becomes our next earliest,
663 		 * as the new task becomes the earliest itself.
664 		 */
665 		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
666 		dl_rq->earliest_dl.curr = deadline;
667 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
668 	} else if (dl_rq->earliest_dl.next == 0 ||
669 		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
670 		/*
671 		 * On the other hand, if the new -deadline task has a
672 		 * a later deadline than the earliest one on dl_rq, but
673 		 * it is earlier than the next (if any), we must
674 		 * recompute the next-earliest.
675 		 */
676 		dl_rq->earliest_dl.next = next_deadline(rq);
677 	}
678 }
679 
680 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
681 {
682 	struct rq *rq = rq_of_dl_rq(dl_rq);
683 
684 	/*
685 	 * Since we may have removed our earliest (and/or next earliest)
686 	 * task we must recompute them.
687 	 */
688 	if (!dl_rq->dl_nr_running) {
689 		dl_rq->earliest_dl.curr = 0;
690 		dl_rq->earliest_dl.next = 0;
691 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
692 	} else {
693 		struct rb_node *leftmost = dl_rq->rb_leftmost;
694 		struct sched_dl_entity *entry;
695 
696 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
697 		dl_rq->earliest_dl.curr = entry->deadline;
698 		dl_rq->earliest_dl.next = next_deadline(rq);
699 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
700 	}
701 }
702 
703 #else
704 
705 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
706 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
707 
708 #endif /* CONFIG_SMP */
709 
710 static inline
711 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
712 {
713 	int prio = dl_task_of(dl_se)->prio;
714 	u64 deadline = dl_se->deadline;
715 
716 	WARN_ON(!dl_prio(prio));
717 	dl_rq->dl_nr_running++;
718 	inc_nr_running(rq_of_dl_rq(dl_rq));
719 
720 	inc_dl_deadline(dl_rq, deadline);
721 	inc_dl_migration(dl_se, dl_rq);
722 }
723 
724 static inline
725 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
726 {
727 	int prio = dl_task_of(dl_se)->prio;
728 
729 	WARN_ON(!dl_prio(prio));
730 	WARN_ON(!dl_rq->dl_nr_running);
731 	dl_rq->dl_nr_running--;
732 	dec_nr_running(rq_of_dl_rq(dl_rq));
733 
734 	dec_dl_deadline(dl_rq, dl_se->deadline);
735 	dec_dl_migration(dl_se, dl_rq);
736 }
737 
738 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
739 {
740 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
741 	struct rb_node **link = &dl_rq->rb_root.rb_node;
742 	struct rb_node *parent = NULL;
743 	struct sched_dl_entity *entry;
744 	int leftmost = 1;
745 
746 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
747 
748 	while (*link) {
749 		parent = *link;
750 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
751 		if (dl_time_before(dl_se->deadline, entry->deadline))
752 			link = &parent->rb_left;
753 		else {
754 			link = &parent->rb_right;
755 			leftmost = 0;
756 		}
757 	}
758 
759 	if (leftmost)
760 		dl_rq->rb_leftmost = &dl_se->rb_node;
761 
762 	rb_link_node(&dl_se->rb_node, parent, link);
763 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
764 
765 	inc_dl_tasks(dl_se, dl_rq);
766 }
767 
768 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
769 {
770 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
771 
772 	if (RB_EMPTY_NODE(&dl_se->rb_node))
773 		return;
774 
775 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
776 		struct rb_node *next_node;
777 
778 		next_node = rb_next(&dl_se->rb_node);
779 		dl_rq->rb_leftmost = next_node;
780 	}
781 
782 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
783 	RB_CLEAR_NODE(&dl_se->rb_node);
784 
785 	dec_dl_tasks(dl_se, dl_rq);
786 }
787 
788 static void
789 enqueue_dl_entity(struct sched_dl_entity *dl_se,
790 		  struct sched_dl_entity *pi_se, int flags)
791 {
792 	BUG_ON(on_dl_rq(dl_se));
793 
794 	/*
795 	 * If this is a wakeup or a new instance, the scheduling
796 	 * parameters of the task might need updating. Otherwise,
797 	 * we want a replenishment of its runtime.
798 	 */
799 	if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
800 		replenish_dl_entity(dl_se, pi_se);
801 	else
802 		update_dl_entity(dl_se, pi_se);
803 
804 	__enqueue_dl_entity(dl_se);
805 }
806 
807 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
808 {
809 	__dequeue_dl_entity(dl_se);
810 }
811 
812 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
813 {
814 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
815 	struct sched_dl_entity *pi_se = &p->dl;
816 
817 	/*
818 	 * Use the scheduling parameters of the top pi-waiter
819 	 * task if we have one and its (relative) deadline is
820 	 * smaller than our one... OTW we keep our runtime and
821 	 * deadline.
822 	 */
823 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
824 		pi_se = &pi_task->dl;
825 
826 	/*
827 	 * If p is throttled, we do nothing. In fact, if it exhausted
828 	 * its budget it needs a replenishment and, since it now is on
829 	 * its rq, the bandwidth timer callback (which clearly has not
830 	 * run yet) will take care of this.
831 	 */
832 	if (p->dl.dl_throttled)
833 		return;
834 
835 	enqueue_dl_entity(&p->dl, pi_se, flags);
836 
837 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
838 		enqueue_pushable_dl_task(rq, p);
839 }
840 
841 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
842 {
843 	dequeue_dl_entity(&p->dl);
844 	dequeue_pushable_dl_task(rq, p);
845 }
846 
847 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
848 {
849 	update_curr_dl(rq);
850 	__dequeue_task_dl(rq, p, flags);
851 }
852 
853 /*
854  * Yield task semantic for -deadline tasks is:
855  *
856  *   get off from the CPU until our next instance, with
857  *   a new runtime. This is of little use now, since we
858  *   don't have a bandwidth reclaiming mechanism. Anyway,
859  *   bandwidth reclaiming is planned for the future, and
860  *   yield_task_dl will indicate that some spare budget
861  *   is available for other task instances to use it.
862  */
863 static void yield_task_dl(struct rq *rq)
864 {
865 	struct task_struct *p = rq->curr;
866 
867 	/*
868 	 * We make the task go to sleep until its current deadline by
869 	 * forcing its runtime to zero. This way, update_curr_dl() stops
870 	 * it and the bandwidth timer will wake it up and will give it
871 	 * new scheduling parameters (thanks to dl_new=1).
872 	 */
873 	if (p->dl.runtime > 0) {
874 		rq->curr->dl.dl_new = 1;
875 		p->dl.runtime = 0;
876 	}
877 	update_curr_dl(rq);
878 }
879 
880 #ifdef CONFIG_SMP
881 
882 static int find_later_rq(struct task_struct *task);
883 
884 static int
885 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
886 {
887 	struct task_struct *curr;
888 	struct rq *rq;
889 
890 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
891 		goto out;
892 
893 	rq = cpu_rq(cpu);
894 
895 	rcu_read_lock();
896 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
897 
898 	/*
899 	 * If we are dealing with a -deadline task, we must
900 	 * decide where to wake it up.
901 	 * If it has a later deadline and the current task
902 	 * on this rq can't move (provided the waking task
903 	 * can!) we prefer to send it somewhere else. On the
904 	 * other hand, if it has a shorter deadline, we
905 	 * try to make it stay here, it might be important.
906 	 */
907 	if (unlikely(dl_task(curr)) &&
908 	    (curr->nr_cpus_allowed < 2 ||
909 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
910 	    (p->nr_cpus_allowed > 1)) {
911 		int target = find_later_rq(p);
912 
913 		if (target != -1)
914 			cpu = target;
915 	}
916 	rcu_read_unlock();
917 
918 out:
919 	return cpu;
920 }
921 
922 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
923 {
924 	/*
925 	 * Current can't be migrated, useless to reschedule,
926 	 * let's hope p can move out.
927 	 */
928 	if (rq->curr->nr_cpus_allowed == 1 ||
929 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
930 		return;
931 
932 	/*
933 	 * p is migratable, so let's not schedule it and
934 	 * see if it is pushed or pulled somewhere else.
935 	 */
936 	if (p->nr_cpus_allowed != 1 &&
937 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
938 		return;
939 
940 	resched_task(rq->curr);
941 }
942 
943 #endif /* CONFIG_SMP */
944 
945 /*
946  * Only called when both the current and waking task are -deadline
947  * tasks.
948  */
949 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
950 				  int flags)
951 {
952 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
953 		resched_task(rq->curr);
954 		return;
955 	}
956 
957 #ifdef CONFIG_SMP
958 	/*
959 	 * In the unlikely case current and p have the same deadline
960 	 * let us try to decide what's the best thing to do...
961 	 */
962 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
963 	    !test_tsk_need_resched(rq->curr))
964 		check_preempt_equal_dl(rq, p);
965 #endif /* CONFIG_SMP */
966 }
967 
968 #ifdef CONFIG_SCHED_HRTICK
969 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
970 {
971 	s64 delta = p->dl.dl_runtime - p->dl.runtime;
972 
973 	if (delta > 10000)
974 		hrtick_start(rq, p->dl.runtime);
975 }
976 #endif
977 
978 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
979 						   struct dl_rq *dl_rq)
980 {
981 	struct rb_node *left = dl_rq->rb_leftmost;
982 
983 	if (!left)
984 		return NULL;
985 
986 	return rb_entry(left, struct sched_dl_entity, rb_node);
987 }
988 
989 struct task_struct *pick_next_task_dl(struct rq *rq)
990 {
991 	struct sched_dl_entity *dl_se;
992 	struct task_struct *p;
993 	struct dl_rq *dl_rq;
994 
995 	dl_rq = &rq->dl;
996 
997 	if (unlikely(!dl_rq->dl_nr_running))
998 		return NULL;
999 
1000 	dl_se = pick_next_dl_entity(rq, dl_rq);
1001 	BUG_ON(!dl_se);
1002 
1003 	p = dl_task_of(dl_se);
1004 	p->se.exec_start = rq_clock_task(rq);
1005 
1006 	/* Running task will never be pushed. */
1007        dequeue_pushable_dl_task(rq, p);
1008 
1009 #ifdef CONFIG_SCHED_HRTICK
1010 	if (hrtick_enabled(rq))
1011 		start_hrtick_dl(rq, p);
1012 #endif
1013 
1014 #ifdef CONFIG_SMP
1015 	rq->post_schedule = has_pushable_dl_tasks(rq);
1016 #endif /* CONFIG_SMP */
1017 
1018 	return p;
1019 }
1020 
1021 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1022 {
1023 	update_curr_dl(rq);
1024 
1025 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1026 		enqueue_pushable_dl_task(rq, p);
1027 }
1028 
1029 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1030 {
1031 	update_curr_dl(rq);
1032 
1033 #ifdef CONFIG_SCHED_HRTICK
1034 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1035 		start_hrtick_dl(rq, p);
1036 #endif
1037 }
1038 
1039 static void task_fork_dl(struct task_struct *p)
1040 {
1041 	/*
1042 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1043 	 * sched_fork()
1044 	 */
1045 }
1046 
1047 static void task_dead_dl(struct task_struct *p)
1048 {
1049 	struct hrtimer *timer = &p->dl.dl_timer;
1050 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1051 
1052 	/*
1053 	 * Since we are TASK_DEAD we won't slip out of the domain!
1054 	 */
1055 	raw_spin_lock_irq(&dl_b->lock);
1056 	dl_b->total_bw -= p->dl.dl_bw;
1057 	raw_spin_unlock_irq(&dl_b->lock);
1058 
1059 	hrtimer_cancel(timer);
1060 }
1061 
1062 static void set_curr_task_dl(struct rq *rq)
1063 {
1064 	struct task_struct *p = rq->curr;
1065 
1066 	p->se.exec_start = rq_clock_task(rq);
1067 
1068 	/* You can't push away the running task */
1069 	dequeue_pushable_dl_task(rq, p);
1070 }
1071 
1072 #ifdef CONFIG_SMP
1073 
1074 /* Only try algorithms three times */
1075 #define DL_MAX_TRIES 3
1076 
1077 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1078 {
1079 	if (!task_running(rq, p) &&
1080 	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1081 	    (p->nr_cpus_allowed > 1))
1082 		return 1;
1083 
1084 	return 0;
1085 }
1086 
1087 /* Returns the second earliest -deadline task, NULL otherwise */
1088 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1089 {
1090 	struct rb_node *next_node = rq->dl.rb_leftmost;
1091 	struct sched_dl_entity *dl_se;
1092 	struct task_struct *p = NULL;
1093 
1094 next_node:
1095 	next_node = rb_next(next_node);
1096 	if (next_node) {
1097 		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1098 		p = dl_task_of(dl_se);
1099 
1100 		if (pick_dl_task(rq, p, cpu))
1101 			return p;
1102 
1103 		goto next_node;
1104 	}
1105 
1106 	return NULL;
1107 }
1108 
1109 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1110 
1111 static int find_later_rq(struct task_struct *task)
1112 {
1113 	struct sched_domain *sd;
1114 	struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1115 	int this_cpu = smp_processor_id();
1116 	int best_cpu, cpu = task_cpu(task);
1117 
1118 	/* Make sure the mask is initialized first */
1119 	if (unlikely(!later_mask))
1120 		return -1;
1121 
1122 	if (task->nr_cpus_allowed == 1)
1123 		return -1;
1124 
1125 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1126 			task, later_mask);
1127 	if (best_cpu == -1)
1128 		return -1;
1129 
1130 	/*
1131 	 * If we are here, some target has been found,
1132 	 * the most suitable of which is cached in best_cpu.
1133 	 * This is, among the runqueues where the current tasks
1134 	 * have later deadlines than the task's one, the rq
1135 	 * with the latest possible one.
1136 	 *
1137 	 * Now we check how well this matches with task's
1138 	 * affinity and system topology.
1139 	 *
1140 	 * The last cpu where the task run is our first
1141 	 * guess, since it is most likely cache-hot there.
1142 	 */
1143 	if (cpumask_test_cpu(cpu, later_mask))
1144 		return cpu;
1145 	/*
1146 	 * Check if this_cpu is to be skipped (i.e., it is
1147 	 * not in the mask) or not.
1148 	 */
1149 	if (!cpumask_test_cpu(this_cpu, later_mask))
1150 		this_cpu = -1;
1151 
1152 	rcu_read_lock();
1153 	for_each_domain(cpu, sd) {
1154 		if (sd->flags & SD_WAKE_AFFINE) {
1155 
1156 			/*
1157 			 * If possible, preempting this_cpu is
1158 			 * cheaper than migrating.
1159 			 */
1160 			if (this_cpu != -1 &&
1161 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1162 				rcu_read_unlock();
1163 				return this_cpu;
1164 			}
1165 
1166 			/*
1167 			 * Last chance: if best_cpu is valid and is
1168 			 * in the mask, that becomes our choice.
1169 			 */
1170 			if (best_cpu < nr_cpu_ids &&
1171 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1172 				rcu_read_unlock();
1173 				return best_cpu;
1174 			}
1175 		}
1176 	}
1177 	rcu_read_unlock();
1178 
1179 	/*
1180 	 * At this point, all our guesses failed, we just return
1181 	 * 'something', and let the caller sort the things out.
1182 	 */
1183 	if (this_cpu != -1)
1184 		return this_cpu;
1185 
1186 	cpu = cpumask_any(later_mask);
1187 	if (cpu < nr_cpu_ids)
1188 		return cpu;
1189 
1190 	return -1;
1191 }
1192 
1193 /* Locks the rq it finds */
1194 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1195 {
1196 	struct rq *later_rq = NULL;
1197 	int tries;
1198 	int cpu;
1199 
1200 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1201 		cpu = find_later_rq(task);
1202 
1203 		if ((cpu == -1) || (cpu == rq->cpu))
1204 			break;
1205 
1206 		later_rq = cpu_rq(cpu);
1207 
1208 		/* Retry if something changed. */
1209 		if (double_lock_balance(rq, later_rq)) {
1210 			if (unlikely(task_rq(task) != rq ||
1211 				     !cpumask_test_cpu(later_rq->cpu,
1212 				                       &task->cpus_allowed) ||
1213 				     task_running(rq, task) || !task->on_rq)) {
1214 				double_unlock_balance(rq, later_rq);
1215 				later_rq = NULL;
1216 				break;
1217 			}
1218 		}
1219 
1220 		/*
1221 		 * If the rq we found has no -deadline task, or
1222 		 * its earliest one has a later deadline than our
1223 		 * task, the rq is a good one.
1224 		 */
1225 		if (!later_rq->dl.dl_nr_running ||
1226 		    dl_time_before(task->dl.deadline,
1227 				   later_rq->dl.earliest_dl.curr))
1228 			break;
1229 
1230 		/* Otherwise we try again. */
1231 		double_unlock_balance(rq, later_rq);
1232 		later_rq = NULL;
1233 	}
1234 
1235 	return later_rq;
1236 }
1237 
1238 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1239 {
1240 	struct task_struct *p;
1241 
1242 	if (!has_pushable_dl_tasks(rq))
1243 		return NULL;
1244 
1245 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1246 		     struct task_struct, pushable_dl_tasks);
1247 
1248 	BUG_ON(rq->cpu != task_cpu(p));
1249 	BUG_ON(task_current(rq, p));
1250 	BUG_ON(p->nr_cpus_allowed <= 1);
1251 
1252 	BUG_ON(!p->on_rq);
1253 	BUG_ON(!dl_task(p));
1254 
1255 	return p;
1256 }
1257 
1258 /*
1259  * See if the non running -deadline tasks on this rq
1260  * can be sent to some other CPU where they can preempt
1261  * and start executing.
1262  */
1263 static int push_dl_task(struct rq *rq)
1264 {
1265 	struct task_struct *next_task;
1266 	struct rq *later_rq;
1267 
1268 	if (!rq->dl.overloaded)
1269 		return 0;
1270 
1271 	next_task = pick_next_pushable_dl_task(rq);
1272 	if (!next_task)
1273 		return 0;
1274 
1275 retry:
1276 	if (unlikely(next_task == rq->curr)) {
1277 		WARN_ON(1);
1278 		return 0;
1279 	}
1280 
1281 	/*
1282 	 * If next_task preempts rq->curr, and rq->curr
1283 	 * can move away, it makes sense to just reschedule
1284 	 * without going further in pushing next_task.
1285 	 */
1286 	if (dl_task(rq->curr) &&
1287 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1288 	    rq->curr->nr_cpus_allowed > 1) {
1289 		resched_task(rq->curr);
1290 		return 0;
1291 	}
1292 
1293 	/* We might release rq lock */
1294 	get_task_struct(next_task);
1295 
1296 	/* Will lock the rq it'll find */
1297 	later_rq = find_lock_later_rq(next_task, rq);
1298 	if (!later_rq) {
1299 		struct task_struct *task;
1300 
1301 		/*
1302 		 * We must check all this again, since
1303 		 * find_lock_later_rq releases rq->lock and it is
1304 		 * then possible that next_task has migrated.
1305 		 */
1306 		task = pick_next_pushable_dl_task(rq);
1307 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1308 			/*
1309 			 * The task is still there. We don't try
1310 			 * again, some other cpu will pull it when ready.
1311 			 */
1312 			dequeue_pushable_dl_task(rq, next_task);
1313 			goto out;
1314 		}
1315 
1316 		if (!task)
1317 			/* No more tasks */
1318 			goto out;
1319 
1320 		put_task_struct(next_task);
1321 		next_task = task;
1322 		goto retry;
1323 	}
1324 
1325 	deactivate_task(rq, next_task, 0);
1326 	set_task_cpu(next_task, later_rq->cpu);
1327 	activate_task(later_rq, next_task, 0);
1328 
1329 	resched_task(later_rq->curr);
1330 
1331 	double_unlock_balance(rq, later_rq);
1332 
1333 out:
1334 	put_task_struct(next_task);
1335 
1336 	return 1;
1337 }
1338 
1339 static void push_dl_tasks(struct rq *rq)
1340 {
1341 	/* Terminates as it moves a -deadline task */
1342 	while (push_dl_task(rq))
1343 		;
1344 }
1345 
1346 static int pull_dl_task(struct rq *this_rq)
1347 {
1348 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1349 	struct task_struct *p;
1350 	struct rq *src_rq;
1351 	u64 dmin = LONG_MAX;
1352 
1353 	if (likely(!dl_overloaded(this_rq)))
1354 		return 0;
1355 
1356 	/*
1357 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1358 	 * see overloaded we must also see the dlo_mask bit.
1359 	 */
1360 	smp_rmb();
1361 
1362 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1363 		if (this_cpu == cpu)
1364 			continue;
1365 
1366 		src_rq = cpu_rq(cpu);
1367 
1368 		/*
1369 		 * It looks racy, abd it is! However, as in sched_rt.c,
1370 		 * we are fine with this.
1371 		 */
1372 		if (this_rq->dl.dl_nr_running &&
1373 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1374 				   src_rq->dl.earliest_dl.next))
1375 			continue;
1376 
1377 		/* Might drop this_rq->lock */
1378 		double_lock_balance(this_rq, src_rq);
1379 
1380 		/*
1381 		 * If there are no more pullable tasks on the
1382 		 * rq, we're done with it.
1383 		 */
1384 		if (src_rq->dl.dl_nr_running <= 1)
1385 			goto skip;
1386 
1387 		p = pick_next_earliest_dl_task(src_rq, this_cpu);
1388 
1389 		/*
1390 		 * We found a task to be pulled if:
1391 		 *  - it preempts our current (if there's one),
1392 		 *  - it will preempt the last one we pulled (if any).
1393 		 */
1394 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1395 		    (!this_rq->dl.dl_nr_running ||
1396 		     dl_time_before(p->dl.deadline,
1397 				    this_rq->dl.earliest_dl.curr))) {
1398 			WARN_ON(p == src_rq->curr);
1399 			WARN_ON(!p->on_rq);
1400 
1401 			/*
1402 			 * Then we pull iff p has actually an earlier
1403 			 * deadline than the current task of its runqueue.
1404 			 */
1405 			if (dl_time_before(p->dl.deadline,
1406 					   src_rq->curr->dl.deadline))
1407 				goto skip;
1408 
1409 			ret = 1;
1410 
1411 			deactivate_task(src_rq, p, 0);
1412 			set_task_cpu(p, this_cpu);
1413 			activate_task(this_rq, p, 0);
1414 			dmin = p->dl.deadline;
1415 
1416 			/* Is there any other task even earlier? */
1417 		}
1418 skip:
1419 		double_unlock_balance(this_rq, src_rq);
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 static void pre_schedule_dl(struct rq *rq, struct task_struct *prev)
1426 {
1427 	/* Try to pull other tasks here */
1428 	if (dl_task(prev))
1429 		pull_dl_task(rq);
1430 }
1431 
1432 static void post_schedule_dl(struct rq *rq)
1433 {
1434 	push_dl_tasks(rq);
1435 }
1436 
1437 /*
1438  * Since the task is not running and a reschedule is not going to happen
1439  * anytime soon on its runqueue, we try pushing it away now.
1440  */
1441 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1442 {
1443 	if (!task_running(rq, p) &&
1444 	    !test_tsk_need_resched(rq->curr) &&
1445 	    has_pushable_dl_tasks(rq) &&
1446 	    p->nr_cpus_allowed > 1 &&
1447 	    dl_task(rq->curr) &&
1448 	    (rq->curr->nr_cpus_allowed < 2 ||
1449 	     dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1450 		push_dl_tasks(rq);
1451 	}
1452 }
1453 
1454 static void set_cpus_allowed_dl(struct task_struct *p,
1455 				const struct cpumask *new_mask)
1456 {
1457 	struct rq *rq;
1458 	int weight;
1459 
1460 	BUG_ON(!dl_task(p));
1461 
1462 	/*
1463 	 * Update only if the task is actually running (i.e.,
1464 	 * it is on the rq AND it is not throttled).
1465 	 */
1466 	if (!on_dl_rq(&p->dl))
1467 		return;
1468 
1469 	weight = cpumask_weight(new_mask);
1470 
1471 	/*
1472 	 * Only update if the process changes its state from whether it
1473 	 * can migrate or not.
1474 	 */
1475 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1476 		return;
1477 
1478 	rq = task_rq(p);
1479 
1480 	/*
1481 	 * The process used to be able to migrate OR it can now migrate
1482 	 */
1483 	if (weight <= 1) {
1484 		if (!task_current(rq, p))
1485 			dequeue_pushable_dl_task(rq, p);
1486 		BUG_ON(!rq->dl.dl_nr_migratory);
1487 		rq->dl.dl_nr_migratory--;
1488 	} else {
1489 		if (!task_current(rq, p))
1490 			enqueue_pushable_dl_task(rq, p);
1491 		rq->dl.dl_nr_migratory++;
1492 	}
1493 
1494 	update_dl_migration(&rq->dl);
1495 }
1496 
1497 /* Assumes rq->lock is held */
1498 static void rq_online_dl(struct rq *rq)
1499 {
1500 	if (rq->dl.overloaded)
1501 		dl_set_overload(rq);
1502 
1503 	if (rq->dl.dl_nr_running > 0)
1504 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1505 }
1506 
1507 /* Assumes rq->lock is held */
1508 static void rq_offline_dl(struct rq *rq)
1509 {
1510 	if (rq->dl.overloaded)
1511 		dl_clear_overload(rq);
1512 
1513 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1514 }
1515 
1516 void init_sched_dl_class(void)
1517 {
1518 	unsigned int i;
1519 
1520 	for_each_possible_cpu(i)
1521 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1522 					GFP_KERNEL, cpu_to_node(i));
1523 }
1524 
1525 #endif /* CONFIG_SMP */
1526 
1527 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1528 {
1529 	if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
1530 		hrtimer_try_to_cancel(&p->dl.dl_timer);
1531 
1532 #ifdef CONFIG_SMP
1533 	/*
1534 	 * Since this might be the only -deadline task on the rq,
1535 	 * this is the right place to try to pull some other one
1536 	 * from an overloaded cpu, if any.
1537 	 */
1538 	if (!rq->dl.dl_nr_running)
1539 		pull_dl_task(rq);
1540 #endif
1541 }
1542 
1543 /*
1544  * When switching to -deadline, we may overload the rq, then
1545  * we try to push someone off, if possible.
1546  */
1547 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1548 {
1549 	int check_resched = 1;
1550 
1551 	/*
1552 	 * If p is throttled, don't consider the possibility
1553 	 * of preempting rq->curr, the check will be done right
1554 	 * after its runtime will get replenished.
1555 	 */
1556 	if (unlikely(p->dl.dl_throttled))
1557 		return;
1558 
1559 	if (p->on_rq || rq->curr != p) {
1560 #ifdef CONFIG_SMP
1561 		if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1562 			/* Only reschedule if pushing failed */
1563 			check_resched = 0;
1564 #endif /* CONFIG_SMP */
1565 		if (check_resched && task_has_dl_policy(rq->curr))
1566 			check_preempt_curr_dl(rq, p, 0);
1567 	}
1568 }
1569 
1570 /*
1571  * If the scheduling parameters of a -deadline task changed,
1572  * a push or pull operation might be needed.
1573  */
1574 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1575 			    int oldprio)
1576 {
1577 	if (p->on_rq || rq->curr == p) {
1578 #ifdef CONFIG_SMP
1579 		/*
1580 		 * This might be too much, but unfortunately
1581 		 * we don't have the old deadline value, and
1582 		 * we can't argue if the task is increasing
1583 		 * or lowering its prio, so...
1584 		 */
1585 		if (!rq->dl.overloaded)
1586 			pull_dl_task(rq);
1587 
1588 		/*
1589 		 * If we now have a earlier deadline task than p,
1590 		 * then reschedule, provided p is still on this
1591 		 * runqueue.
1592 		 */
1593 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1594 		    rq->curr == p)
1595 			resched_task(p);
1596 #else
1597 		/*
1598 		 * Again, we don't know if p has a earlier
1599 		 * or later deadline, so let's blindly set a
1600 		 * (maybe not needed) rescheduling point.
1601 		 */
1602 		resched_task(p);
1603 #endif /* CONFIG_SMP */
1604 	} else
1605 		switched_to_dl(rq, p);
1606 }
1607 
1608 const struct sched_class dl_sched_class = {
1609 	.next			= &rt_sched_class,
1610 	.enqueue_task		= enqueue_task_dl,
1611 	.dequeue_task		= dequeue_task_dl,
1612 	.yield_task		= yield_task_dl,
1613 
1614 	.check_preempt_curr	= check_preempt_curr_dl,
1615 
1616 	.pick_next_task		= pick_next_task_dl,
1617 	.put_prev_task		= put_prev_task_dl,
1618 
1619 #ifdef CONFIG_SMP
1620 	.select_task_rq		= select_task_rq_dl,
1621 	.set_cpus_allowed       = set_cpus_allowed_dl,
1622 	.rq_online              = rq_online_dl,
1623 	.rq_offline             = rq_offline_dl,
1624 	.pre_schedule		= pre_schedule_dl,
1625 	.post_schedule		= post_schedule_dl,
1626 	.task_woken		= task_woken_dl,
1627 #endif
1628 
1629 	.set_curr_task		= set_curr_task_dl,
1630 	.task_tick		= task_tick_dl,
1631 	.task_fork              = task_fork_dl,
1632 	.task_dead		= task_dead_dl,
1633 
1634 	.prio_changed           = prio_changed_dl,
1635 	.switched_from		= switched_from_dl,
1636 	.switched_to		= switched_to_dl,
1637 };
1638