1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 extern unsigned long to_ratio(u64 period, u64 runtime); 61 62 void init_dl_bw(struct dl_bw *dl_b) 63 { 64 raw_spin_lock_init(&dl_b->lock); 65 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 66 if (global_rt_runtime() == RUNTIME_INF) 67 dl_b->bw = -1; 68 else 69 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 70 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 71 dl_b->total_bw = 0; 72 } 73 74 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) 75 { 76 dl_rq->rb_root = RB_ROOT; 77 78 #ifdef CONFIG_SMP 79 /* zero means no -deadline tasks */ 80 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 81 82 dl_rq->dl_nr_migratory = 0; 83 dl_rq->overloaded = 0; 84 dl_rq->pushable_dl_tasks_root = RB_ROOT; 85 #else 86 init_dl_bw(&dl_rq->dl_bw); 87 #endif 88 } 89 90 #ifdef CONFIG_SMP 91 92 static inline int dl_overloaded(struct rq *rq) 93 { 94 return atomic_read(&rq->rd->dlo_count); 95 } 96 97 static inline void dl_set_overload(struct rq *rq) 98 { 99 if (!rq->online) 100 return; 101 102 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 103 /* 104 * Must be visible before the overload count is 105 * set (as in sched_rt.c). 106 * 107 * Matched by the barrier in pull_dl_task(). 108 */ 109 smp_wmb(); 110 atomic_inc(&rq->rd->dlo_count); 111 } 112 113 static inline void dl_clear_overload(struct rq *rq) 114 { 115 if (!rq->online) 116 return; 117 118 atomic_dec(&rq->rd->dlo_count); 119 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 120 } 121 122 static void update_dl_migration(struct dl_rq *dl_rq) 123 { 124 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 125 if (!dl_rq->overloaded) { 126 dl_set_overload(rq_of_dl_rq(dl_rq)); 127 dl_rq->overloaded = 1; 128 } 129 } else if (dl_rq->overloaded) { 130 dl_clear_overload(rq_of_dl_rq(dl_rq)); 131 dl_rq->overloaded = 0; 132 } 133 } 134 135 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 136 { 137 struct task_struct *p = dl_task_of(dl_se); 138 dl_rq = &rq_of_dl_rq(dl_rq)->dl; 139 140 if (p->nr_cpus_allowed > 1) 141 dl_rq->dl_nr_migratory++; 142 143 update_dl_migration(dl_rq); 144 } 145 146 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 147 { 148 struct task_struct *p = dl_task_of(dl_se); 149 dl_rq = &rq_of_dl_rq(dl_rq)->dl; 150 151 if (p->nr_cpus_allowed > 1) 152 dl_rq->dl_nr_migratory--; 153 154 update_dl_migration(dl_rq); 155 } 156 157 /* 158 * The list of pushable -deadline task is not a plist, like in 159 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 160 */ 161 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 162 { 163 struct dl_rq *dl_rq = &rq->dl; 164 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 165 struct rb_node *parent = NULL; 166 struct task_struct *entry; 167 int leftmost = 1; 168 169 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 170 171 while (*link) { 172 parent = *link; 173 entry = rb_entry(parent, struct task_struct, 174 pushable_dl_tasks); 175 if (dl_entity_preempt(&p->dl, &entry->dl)) 176 link = &parent->rb_left; 177 else { 178 link = &parent->rb_right; 179 leftmost = 0; 180 } 181 } 182 183 if (leftmost) 184 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 185 186 rb_link_node(&p->pushable_dl_tasks, parent, link); 187 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 188 } 189 190 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 191 { 192 struct dl_rq *dl_rq = &rq->dl; 193 194 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 195 return; 196 197 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 198 struct rb_node *next_node; 199 200 next_node = rb_next(&p->pushable_dl_tasks); 201 dl_rq->pushable_dl_tasks_leftmost = next_node; 202 } 203 204 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 205 RB_CLEAR_NODE(&p->pushable_dl_tasks); 206 } 207 208 static inline int has_pushable_dl_tasks(struct rq *rq) 209 { 210 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 211 } 212 213 static int push_dl_task(struct rq *rq); 214 215 #else 216 217 static inline 218 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 219 { 220 } 221 222 static inline 223 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 224 { 225 } 226 227 static inline 228 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 229 { 230 } 231 232 static inline 233 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 234 { 235 } 236 237 #endif /* CONFIG_SMP */ 238 239 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 240 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 241 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 242 int flags); 243 244 /* 245 * We are being explicitly informed that a new instance is starting, 246 * and this means that: 247 * - the absolute deadline of the entity has to be placed at 248 * current time + relative deadline; 249 * - the runtime of the entity has to be set to the maximum value. 250 * 251 * The capability of specifying such event is useful whenever a -deadline 252 * entity wants to (try to!) synchronize its behaviour with the scheduler's 253 * one, and to (try to!) reconcile itself with its own scheduling 254 * parameters. 255 */ 256 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 257 struct sched_dl_entity *pi_se) 258 { 259 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 260 struct rq *rq = rq_of_dl_rq(dl_rq); 261 262 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); 263 264 /* 265 * We use the regular wall clock time to set deadlines in the 266 * future; in fact, we must consider execution overheads (time 267 * spent on hardirq context, etc.). 268 */ 269 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 270 dl_se->runtime = pi_se->dl_runtime; 271 dl_se->dl_new = 0; 272 } 273 274 /* 275 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 276 * possibility of a entity lasting more than what it declared, and thus 277 * exhausting its runtime. 278 * 279 * Here we are interested in making runtime overrun possible, but we do 280 * not want a entity which is misbehaving to affect the scheduling of all 281 * other entities. 282 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 283 * is used, in order to confine each entity within its own bandwidth. 284 * 285 * This function deals exactly with that, and ensures that when the runtime 286 * of a entity is replenished, its deadline is also postponed. That ensures 287 * the overrunning entity can't interfere with other entity in the system and 288 * can't make them miss their deadlines. Reasons why this kind of overruns 289 * could happen are, typically, a entity voluntarily trying to overcome its 290 * runtime, or it just underestimated it during sched_setscheduler_ex(). 291 */ 292 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 293 struct sched_dl_entity *pi_se) 294 { 295 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 296 struct rq *rq = rq_of_dl_rq(dl_rq); 297 298 BUG_ON(pi_se->dl_runtime <= 0); 299 300 /* 301 * This could be the case for a !-dl task that is boosted. 302 * Just go with full inherited parameters. 303 */ 304 if (dl_se->dl_deadline == 0) { 305 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 306 dl_se->runtime = pi_se->dl_runtime; 307 } 308 309 /* 310 * We keep moving the deadline away until we get some 311 * available runtime for the entity. This ensures correct 312 * handling of situations where the runtime overrun is 313 * arbitrary large. 314 */ 315 while (dl_se->runtime <= 0) { 316 dl_se->deadline += pi_se->dl_period; 317 dl_se->runtime += pi_se->dl_runtime; 318 } 319 320 /* 321 * At this point, the deadline really should be "in 322 * the future" with respect to rq->clock. If it's 323 * not, we are, for some reason, lagging too much! 324 * Anyway, after having warn userspace abut that, 325 * we still try to keep the things running by 326 * resetting the deadline and the budget of the 327 * entity. 328 */ 329 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 330 static bool lag_once = false; 331 332 if (!lag_once) { 333 lag_once = true; 334 printk_sched("sched: DL replenish lagged to much\n"); 335 } 336 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 337 dl_se->runtime = pi_se->dl_runtime; 338 } 339 } 340 341 /* 342 * Here we check if --at time t-- an entity (which is probably being 343 * [re]activated or, in general, enqueued) can use its remaining runtime 344 * and its current deadline _without_ exceeding the bandwidth it is 345 * assigned (function returns true if it can't). We are in fact applying 346 * one of the CBS rules: when a task wakes up, if the residual runtime 347 * over residual deadline fits within the allocated bandwidth, then we 348 * can keep the current (absolute) deadline and residual budget without 349 * disrupting the schedulability of the system. Otherwise, we should 350 * refill the runtime and set the deadline a period in the future, 351 * because keeping the current (absolute) deadline of the task would 352 * result in breaking guarantees promised to other tasks (refer to 353 * Documentation/scheduler/sched-deadline.txt for more informations). 354 * 355 * This function returns true if: 356 * 357 * runtime / (deadline - t) > dl_runtime / dl_period , 358 * 359 * IOW we can't recycle current parameters. 360 * 361 * Notice that the bandwidth check is done against the period. For 362 * task with deadline equal to period this is the same of using 363 * dl_deadline instead of dl_period in the equation above. 364 */ 365 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 366 struct sched_dl_entity *pi_se, u64 t) 367 { 368 u64 left, right; 369 370 /* 371 * left and right are the two sides of the equation above, 372 * after a bit of shuffling to use multiplications instead 373 * of divisions. 374 * 375 * Note that none of the time values involved in the two 376 * multiplications are absolute: dl_deadline and dl_runtime 377 * are the relative deadline and the maximum runtime of each 378 * instance, runtime is the runtime left for the last instance 379 * and (deadline - t), since t is rq->clock, is the time left 380 * to the (absolute) deadline. Even if overflowing the u64 type 381 * is very unlikely to occur in both cases, here we scale down 382 * as we want to avoid that risk at all. Scaling down by 10 383 * means that we reduce granularity to 1us. We are fine with it, 384 * since this is only a true/false check and, anyway, thinking 385 * of anything below microseconds resolution is actually fiction 386 * (but still we want to give the user that illusion >;). 387 */ 388 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 389 right = ((dl_se->deadline - t) >> DL_SCALE) * 390 (pi_se->dl_runtime >> DL_SCALE); 391 392 return dl_time_before(right, left); 393 } 394 395 /* 396 * When a -deadline entity is queued back on the runqueue, its runtime and 397 * deadline might need updating. 398 * 399 * The policy here is that we update the deadline of the entity only if: 400 * - the current deadline is in the past, 401 * - using the remaining runtime with the current deadline would make 402 * the entity exceed its bandwidth. 403 */ 404 static void update_dl_entity(struct sched_dl_entity *dl_se, 405 struct sched_dl_entity *pi_se) 406 { 407 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 408 struct rq *rq = rq_of_dl_rq(dl_rq); 409 410 /* 411 * The arrival of a new instance needs special treatment, i.e., 412 * the actual scheduling parameters have to be "renewed". 413 */ 414 if (dl_se->dl_new) { 415 setup_new_dl_entity(dl_se, pi_se); 416 return; 417 } 418 419 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 420 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 421 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 422 dl_se->runtime = pi_se->dl_runtime; 423 } 424 } 425 426 /* 427 * If the entity depleted all its runtime, and if we want it to sleep 428 * while waiting for some new execution time to become available, we 429 * set the bandwidth enforcement timer to the replenishment instant 430 * and try to activate it. 431 * 432 * Notice that it is important for the caller to know if the timer 433 * actually started or not (i.e., the replenishment instant is in 434 * the future or in the past). 435 */ 436 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) 437 { 438 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 439 struct rq *rq = rq_of_dl_rq(dl_rq); 440 ktime_t now, act; 441 ktime_t soft, hard; 442 unsigned long range; 443 s64 delta; 444 445 if (boosted) 446 return 0; 447 /* 448 * We want the timer to fire at the deadline, but considering 449 * that it is actually coming from rq->clock and not from 450 * hrtimer's time base reading. 451 */ 452 act = ns_to_ktime(dl_se->deadline); 453 now = hrtimer_cb_get_time(&dl_se->dl_timer); 454 delta = ktime_to_ns(now) - rq_clock(rq); 455 act = ktime_add_ns(act, delta); 456 457 /* 458 * If the expiry time already passed, e.g., because the value 459 * chosen as the deadline is too small, don't even try to 460 * start the timer in the past! 461 */ 462 if (ktime_us_delta(act, now) < 0) 463 return 0; 464 465 hrtimer_set_expires(&dl_se->dl_timer, act); 466 467 soft = hrtimer_get_softexpires(&dl_se->dl_timer); 468 hard = hrtimer_get_expires(&dl_se->dl_timer); 469 range = ktime_to_ns(ktime_sub(hard, soft)); 470 __hrtimer_start_range_ns(&dl_se->dl_timer, soft, 471 range, HRTIMER_MODE_ABS, 0); 472 473 return hrtimer_active(&dl_se->dl_timer); 474 } 475 476 /* 477 * This is the bandwidth enforcement timer callback. If here, we know 478 * a task is not on its dl_rq, since the fact that the timer was running 479 * means the task is throttled and needs a runtime replenishment. 480 * 481 * However, what we actually do depends on the fact the task is active, 482 * (it is on its rq) or has been removed from there by a call to 483 * dequeue_task_dl(). In the former case we must issue the runtime 484 * replenishment and add the task back to the dl_rq; in the latter, we just 485 * do nothing but clearing dl_throttled, so that runtime and deadline 486 * updating (and the queueing back to dl_rq) will be done by the 487 * next call to enqueue_task_dl(). 488 */ 489 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 490 { 491 struct sched_dl_entity *dl_se = container_of(timer, 492 struct sched_dl_entity, 493 dl_timer); 494 struct task_struct *p = dl_task_of(dl_se); 495 struct rq *rq = task_rq(p); 496 raw_spin_lock(&rq->lock); 497 498 /* 499 * We need to take care of a possible races here. In fact, the 500 * task might have changed its scheduling policy to something 501 * different from SCHED_DEADLINE or changed its reservation 502 * parameters (through sched_setscheduler()). 503 */ 504 if (!dl_task(p) || dl_se->dl_new) 505 goto unlock; 506 507 sched_clock_tick(); 508 update_rq_clock(rq); 509 dl_se->dl_throttled = 0; 510 if (p->on_rq) { 511 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 512 if (task_has_dl_policy(rq->curr)) 513 check_preempt_curr_dl(rq, p, 0); 514 else 515 resched_task(rq->curr); 516 #ifdef CONFIG_SMP 517 /* 518 * Queueing this task back might have overloaded rq, 519 * check if we need to kick someone away. 520 */ 521 if (has_pushable_dl_tasks(rq)) 522 push_dl_task(rq); 523 #endif 524 } 525 unlock: 526 raw_spin_unlock(&rq->lock); 527 528 return HRTIMER_NORESTART; 529 } 530 531 void init_dl_task_timer(struct sched_dl_entity *dl_se) 532 { 533 struct hrtimer *timer = &dl_se->dl_timer; 534 535 if (hrtimer_active(timer)) { 536 hrtimer_try_to_cancel(timer); 537 return; 538 } 539 540 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 541 timer->function = dl_task_timer; 542 } 543 544 static 545 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) 546 { 547 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); 548 int rorun = dl_se->runtime <= 0; 549 550 if (!rorun && !dmiss) 551 return 0; 552 553 /* 554 * If we are beyond our current deadline and we are still 555 * executing, then we have already used some of the runtime of 556 * the next instance. Thus, if we do not account that, we are 557 * stealing bandwidth from the system at each deadline miss! 558 */ 559 if (dmiss) { 560 dl_se->runtime = rorun ? dl_se->runtime : 0; 561 dl_se->runtime -= rq_clock(rq) - dl_se->deadline; 562 } 563 564 return 1; 565 } 566 567 /* 568 * Update the current task's runtime statistics (provided it is still 569 * a -deadline task and has not been removed from the dl_rq). 570 */ 571 static void update_curr_dl(struct rq *rq) 572 { 573 struct task_struct *curr = rq->curr; 574 struct sched_dl_entity *dl_se = &curr->dl; 575 u64 delta_exec; 576 577 if (!dl_task(curr) || !on_dl_rq(dl_se)) 578 return; 579 580 /* 581 * Consumed budget is computed considering the time as 582 * observed by schedulable tasks (excluding time spent 583 * in hardirq context, etc.). Deadlines are instead 584 * computed using hard walltime. This seems to be the more 585 * natural solution, but the full ramifications of this 586 * approach need further study. 587 */ 588 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 589 if (unlikely((s64)delta_exec < 0)) 590 delta_exec = 0; 591 592 schedstat_set(curr->se.statistics.exec_max, 593 max(curr->se.statistics.exec_max, delta_exec)); 594 595 curr->se.sum_exec_runtime += delta_exec; 596 account_group_exec_runtime(curr, delta_exec); 597 598 curr->se.exec_start = rq_clock_task(rq); 599 cpuacct_charge(curr, delta_exec); 600 601 sched_rt_avg_update(rq, delta_exec); 602 603 dl_se->runtime -= delta_exec; 604 if (dl_runtime_exceeded(rq, dl_se)) { 605 __dequeue_task_dl(rq, curr, 0); 606 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) 607 dl_se->dl_throttled = 1; 608 else 609 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 610 611 if (!is_leftmost(curr, &rq->dl)) 612 resched_task(curr); 613 } 614 615 /* 616 * Because -- for now -- we share the rt bandwidth, we need to 617 * account our runtime there too, otherwise actual rt tasks 618 * would be able to exceed the shared quota. 619 * 620 * Account to the root rt group for now. 621 * 622 * The solution we're working towards is having the RT groups scheduled 623 * using deadline servers -- however there's a few nasties to figure 624 * out before that can happen. 625 */ 626 if (rt_bandwidth_enabled()) { 627 struct rt_rq *rt_rq = &rq->rt; 628 629 raw_spin_lock(&rt_rq->rt_runtime_lock); 630 rt_rq->rt_time += delta_exec; 631 /* 632 * We'll let actual RT tasks worry about the overflow here, we 633 * have our own CBS to keep us inline -- see above. 634 */ 635 raw_spin_unlock(&rt_rq->rt_runtime_lock); 636 } 637 } 638 639 #ifdef CONFIG_SMP 640 641 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); 642 643 static inline u64 next_deadline(struct rq *rq) 644 { 645 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); 646 647 if (next && dl_prio(next->prio)) 648 return next->dl.deadline; 649 else 650 return 0; 651 } 652 653 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 654 { 655 struct rq *rq = rq_of_dl_rq(dl_rq); 656 657 if (dl_rq->earliest_dl.curr == 0 || 658 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 659 /* 660 * If the dl_rq had no -deadline tasks, or if the new task 661 * has shorter deadline than the current one on dl_rq, we 662 * know that the previous earliest becomes our next earliest, 663 * as the new task becomes the earliest itself. 664 */ 665 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; 666 dl_rq->earliest_dl.curr = deadline; 667 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 668 } else if (dl_rq->earliest_dl.next == 0 || 669 dl_time_before(deadline, dl_rq->earliest_dl.next)) { 670 /* 671 * On the other hand, if the new -deadline task has a 672 * a later deadline than the earliest one on dl_rq, but 673 * it is earlier than the next (if any), we must 674 * recompute the next-earliest. 675 */ 676 dl_rq->earliest_dl.next = next_deadline(rq); 677 } 678 } 679 680 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 681 { 682 struct rq *rq = rq_of_dl_rq(dl_rq); 683 684 /* 685 * Since we may have removed our earliest (and/or next earliest) 686 * task we must recompute them. 687 */ 688 if (!dl_rq->dl_nr_running) { 689 dl_rq->earliest_dl.curr = 0; 690 dl_rq->earliest_dl.next = 0; 691 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 692 } else { 693 struct rb_node *leftmost = dl_rq->rb_leftmost; 694 struct sched_dl_entity *entry; 695 696 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 697 dl_rq->earliest_dl.curr = entry->deadline; 698 dl_rq->earliest_dl.next = next_deadline(rq); 699 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 700 } 701 } 702 703 #else 704 705 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 706 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 707 708 #endif /* CONFIG_SMP */ 709 710 static inline 711 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 712 { 713 int prio = dl_task_of(dl_se)->prio; 714 u64 deadline = dl_se->deadline; 715 716 WARN_ON(!dl_prio(prio)); 717 dl_rq->dl_nr_running++; 718 inc_nr_running(rq_of_dl_rq(dl_rq)); 719 720 inc_dl_deadline(dl_rq, deadline); 721 inc_dl_migration(dl_se, dl_rq); 722 } 723 724 static inline 725 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 726 { 727 int prio = dl_task_of(dl_se)->prio; 728 729 WARN_ON(!dl_prio(prio)); 730 WARN_ON(!dl_rq->dl_nr_running); 731 dl_rq->dl_nr_running--; 732 dec_nr_running(rq_of_dl_rq(dl_rq)); 733 734 dec_dl_deadline(dl_rq, dl_se->deadline); 735 dec_dl_migration(dl_se, dl_rq); 736 } 737 738 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 739 { 740 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 741 struct rb_node **link = &dl_rq->rb_root.rb_node; 742 struct rb_node *parent = NULL; 743 struct sched_dl_entity *entry; 744 int leftmost = 1; 745 746 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 747 748 while (*link) { 749 parent = *link; 750 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 751 if (dl_time_before(dl_se->deadline, entry->deadline)) 752 link = &parent->rb_left; 753 else { 754 link = &parent->rb_right; 755 leftmost = 0; 756 } 757 } 758 759 if (leftmost) 760 dl_rq->rb_leftmost = &dl_se->rb_node; 761 762 rb_link_node(&dl_se->rb_node, parent, link); 763 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 764 765 inc_dl_tasks(dl_se, dl_rq); 766 } 767 768 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 769 { 770 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 771 772 if (RB_EMPTY_NODE(&dl_se->rb_node)) 773 return; 774 775 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 776 struct rb_node *next_node; 777 778 next_node = rb_next(&dl_se->rb_node); 779 dl_rq->rb_leftmost = next_node; 780 } 781 782 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 783 RB_CLEAR_NODE(&dl_se->rb_node); 784 785 dec_dl_tasks(dl_se, dl_rq); 786 } 787 788 static void 789 enqueue_dl_entity(struct sched_dl_entity *dl_se, 790 struct sched_dl_entity *pi_se, int flags) 791 { 792 BUG_ON(on_dl_rq(dl_se)); 793 794 /* 795 * If this is a wakeup or a new instance, the scheduling 796 * parameters of the task might need updating. Otherwise, 797 * we want a replenishment of its runtime. 798 */ 799 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) 800 replenish_dl_entity(dl_se, pi_se); 801 else 802 update_dl_entity(dl_se, pi_se); 803 804 __enqueue_dl_entity(dl_se); 805 } 806 807 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 808 { 809 __dequeue_dl_entity(dl_se); 810 } 811 812 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 813 { 814 struct task_struct *pi_task = rt_mutex_get_top_task(p); 815 struct sched_dl_entity *pi_se = &p->dl; 816 817 /* 818 * Use the scheduling parameters of the top pi-waiter 819 * task if we have one and its (relative) deadline is 820 * smaller than our one... OTW we keep our runtime and 821 * deadline. 822 */ 823 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) 824 pi_se = &pi_task->dl; 825 826 /* 827 * If p is throttled, we do nothing. In fact, if it exhausted 828 * its budget it needs a replenishment and, since it now is on 829 * its rq, the bandwidth timer callback (which clearly has not 830 * run yet) will take care of this. 831 */ 832 if (p->dl.dl_throttled) 833 return; 834 835 enqueue_dl_entity(&p->dl, pi_se, flags); 836 837 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 838 enqueue_pushable_dl_task(rq, p); 839 } 840 841 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 842 { 843 dequeue_dl_entity(&p->dl); 844 dequeue_pushable_dl_task(rq, p); 845 } 846 847 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 848 { 849 update_curr_dl(rq); 850 __dequeue_task_dl(rq, p, flags); 851 } 852 853 /* 854 * Yield task semantic for -deadline tasks is: 855 * 856 * get off from the CPU until our next instance, with 857 * a new runtime. This is of little use now, since we 858 * don't have a bandwidth reclaiming mechanism. Anyway, 859 * bandwidth reclaiming is planned for the future, and 860 * yield_task_dl will indicate that some spare budget 861 * is available for other task instances to use it. 862 */ 863 static void yield_task_dl(struct rq *rq) 864 { 865 struct task_struct *p = rq->curr; 866 867 /* 868 * We make the task go to sleep until its current deadline by 869 * forcing its runtime to zero. This way, update_curr_dl() stops 870 * it and the bandwidth timer will wake it up and will give it 871 * new scheduling parameters (thanks to dl_new=1). 872 */ 873 if (p->dl.runtime > 0) { 874 rq->curr->dl.dl_new = 1; 875 p->dl.runtime = 0; 876 } 877 update_curr_dl(rq); 878 } 879 880 #ifdef CONFIG_SMP 881 882 static int find_later_rq(struct task_struct *task); 883 884 static int 885 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 886 { 887 struct task_struct *curr; 888 struct rq *rq; 889 890 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 891 goto out; 892 893 rq = cpu_rq(cpu); 894 895 rcu_read_lock(); 896 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 897 898 /* 899 * If we are dealing with a -deadline task, we must 900 * decide where to wake it up. 901 * If it has a later deadline and the current task 902 * on this rq can't move (provided the waking task 903 * can!) we prefer to send it somewhere else. On the 904 * other hand, if it has a shorter deadline, we 905 * try to make it stay here, it might be important. 906 */ 907 if (unlikely(dl_task(curr)) && 908 (curr->nr_cpus_allowed < 2 || 909 !dl_entity_preempt(&p->dl, &curr->dl)) && 910 (p->nr_cpus_allowed > 1)) { 911 int target = find_later_rq(p); 912 913 if (target != -1) 914 cpu = target; 915 } 916 rcu_read_unlock(); 917 918 out: 919 return cpu; 920 } 921 922 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 923 { 924 /* 925 * Current can't be migrated, useless to reschedule, 926 * let's hope p can move out. 927 */ 928 if (rq->curr->nr_cpus_allowed == 1 || 929 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 930 return; 931 932 /* 933 * p is migratable, so let's not schedule it and 934 * see if it is pushed or pulled somewhere else. 935 */ 936 if (p->nr_cpus_allowed != 1 && 937 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 938 return; 939 940 resched_task(rq->curr); 941 } 942 943 #endif /* CONFIG_SMP */ 944 945 /* 946 * Only called when both the current and waking task are -deadline 947 * tasks. 948 */ 949 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 950 int flags) 951 { 952 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 953 resched_task(rq->curr); 954 return; 955 } 956 957 #ifdef CONFIG_SMP 958 /* 959 * In the unlikely case current and p have the same deadline 960 * let us try to decide what's the best thing to do... 961 */ 962 if ((p->dl.deadline == rq->curr->dl.deadline) && 963 !test_tsk_need_resched(rq->curr)) 964 check_preempt_equal_dl(rq, p); 965 #endif /* CONFIG_SMP */ 966 } 967 968 #ifdef CONFIG_SCHED_HRTICK 969 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 970 { 971 s64 delta = p->dl.dl_runtime - p->dl.runtime; 972 973 if (delta > 10000) 974 hrtick_start(rq, p->dl.runtime); 975 } 976 #endif 977 978 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 979 struct dl_rq *dl_rq) 980 { 981 struct rb_node *left = dl_rq->rb_leftmost; 982 983 if (!left) 984 return NULL; 985 986 return rb_entry(left, struct sched_dl_entity, rb_node); 987 } 988 989 struct task_struct *pick_next_task_dl(struct rq *rq) 990 { 991 struct sched_dl_entity *dl_se; 992 struct task_struct *p; 993 struct dl_rq *dl_rq; 994 995 dl_rq = &rq->dl; 996 997 if (unlikely(!dl_rq->dl_nr_running)) 998 return NULL; 999 1000 dl_se = pick_next_dl_entity(rq, dl_rq); 1001 BUG_ON(!dl_se); 1002 1003 p = dl_task_of(dl_se); 1004 p->se.exec_start = rq_clock_task(rq); 1005 1006 /* Running task will never be pushed. */ 1007 dequeue_pushable_dl_task(rq, p); 1008 1009 #ifdef CONFIG_SCHED_HRTICK 1010 if (hrtick_enabled(rq)) 1011 start_hrtick_dl(rq, p); 1012 #endif 1013 1014 #ifdef CONFIG_SMP 1015 rq->post_schedule = has_pushable_dl_tasks(rq); 1016 #endif /* CONFIG_SMP */ 1017 1018 return p; 1019 } 1020 1021 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1022 { 1023 update_curr_dl(rq); 1024 1025 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1026 enqueue_pushable_dl_task(rq, p); 1027 } 1028 1029 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1030 { 1031 update_curr_dl(rq); 1032 1033 #ifdef CONFIG_SCHED_HRTICK 1034 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) 1035 start_hrtick_dl(rq, p); 1036 #endif 1037 } 1038 1039 static void task_fork_dl(struct task_struct *p) 1040 { 1041 /* 1042 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1043 * sched_fork() 1044 */ 1045 } 1046 1047 static void task_dead_dl(struct task_struct *p) 1048 { 1049 struct hrtimer *timer = &p->dl.dl_timer; 1050 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1051 1052 /* 1053 * Since we are TASK_DEAD we won't slip out of the domain! 1054 */ 1055 raw_spin_lock_irq(&dl_b->lock); 1056 dl_b->total_bw -= p->dl.dl_bw; 1057 raw_spin_unlock_irq(&dl_b->lock); 1058 1059 hrtimer_cancel(timer); 1060 } 1061 1062 static void set_curr_task_dl(struct rq *rq) 1063 { 1064 struct task_struct *p = rq->curr; 1065 1066 p->se.exec_start = rq_clock_task(rq); 1067 1068 /* You can't push away the running task */ 1069 dequeue_pushable_dl_task(rq, p); 1070 } 1071 1072 #ifdef CONFIG_SMP 1073 1074 /* Only try algorithms three times */ 1075 #define DL_MAX_TRIES 3 1076 1077 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1078 { 1079 if (!task_running(rq, p) && 1080 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && 1081 (p->nr_cpus_allowed > 1)) 1082 return 1; 1083 1084 return 0; 1085 } 1086 1087 /* Returns the second earliest -deadline task, NULL otherwise */ 1088 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) 1089 { 1090 struct rb_node *next_node = rq->dl.rb_leftmost; 1091 struct sched_dl_entity *dl_se; 1092 struct task_struct *p = NULL; 1093 1094 next_node: 1095 next_node = rb_next(next_node); 1096 if (next_node) { 1097 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); 1098 p = dl_task_of(dl_se); 1099 1100 if (pick_dl_task(rq, p, cpu)) 1101 return p; 1102 1103 goto next_node; 1104 } 1105 1106 return NULL; 1107 } 1108 1109 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1110 1111 static int find_later_rq(struct task_struct *task) 1112 { 1113 struct sched_domain *sd; 1114 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl); 1115 int this_cpu = smp_processor_id(); 1116 int best_cpu, cpu = task_cpu(task); 1117 1118 /* Make sure the mask is initialized first */ 1119 if (unlikely(!later_mask)) 1120 return -1; 1121 1122 if (task->nr_cpus_allowed == 1) 1123 return -1; 1124 1125 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1126 task, later_mask); 1127 if (best_cpu == -1) 1128 return -1; 1129 1130 /* 1131 * If we are here, some target has been found, 1132 * the most suitable of which is cached in best_cpu. 1133 * This is, among the runqueues where the current tasks 1134 * have later deadlines than the task's one, the rq 1135 * with the latest possible one. 1136 * 1137 * Now we check how well this matches with task's 1138 * affinity and system topology. 1139 * 1140 * The last cpu where the task run is our first 1141 * guess, since it is most likely cache-hot there. 1142 */ 1143 if (cpumask_test_cpu(cpu, later_mask)) 1144 return cpu; 1145 /* 1146 * Check if this_cpu is to be skipped (i.e., it is 1147 * not in the mask) or not. 1148 */ 1149 if (!cpumask_test_cpu(this_cpu, later_mask)) 1150 this_cpu = -1; 1151 1152 rcu_read_lock(); 1153 for_each_domain(cpu, sd) { 1154 if (sd->flags & SD_WAKE_AFFINE) { 1155 1156 /* 1157 * If possible, preempting this_cpu is 1158 * cheaper than migrating. 1159 */ 1160 if (this_cpu != -1 && 1161 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1162 rcu_read_unlock(); 1163 return this_cpu; 1164 } 1165 1166 /* 1167 * Last chance: if best_cpu is valid and is 1168 * in the mask, that becomes our choice. 1169 */ 1170 if (best_cpu < nr_cpu_ids && 1171 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1172 rcu_read_unlock(); 1173 return best_cpu; 1174 } 1175 } 1176 } 1177 rcu_read_unlock(); 1178 1179 /* 1180 * At this point, all our guesses failed, we just return 1181 * 'something', and let the caller sort the things out. 1182 */ 1183 if (this_cpu != -1) 1184 return this_cpu; 1185 1186 cpu = cpumask_any(later_mask); 1187 if (cpu < nr_cpu_ids) 1188 return cpu; 1189 1190 return -1; 1191 } 1192 1193 /* Locks the rq it finds */ 1194 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1195 { 1196 struct rq *later_rq = NULL; 1197 int tries; 1198 int cpu; 1199 1200 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1201 cpu = find_later_rq(task); 1202 1203 if ((cpu == -1) || (cpu == rq->cpu)) 1204 break; 1205 1206 later_rq = cpu_rq(cpu); 1207 1208 /* Retry if something changed. */ 1209 if (double_lock_balance(rq, later_rq)) { 1210 if (unlikely(task_rq(task) != rq || 1211 !cpumask_test_cpu(later_rq->cpu, 1212 &task->cpus_allowed) || 1213 task_running(rq, task) || !task->on_rq)) { 1214 double_unlock_balance(rq, later_rq); 1215 later_rq = NULL; 1216 break; 1217 } 1218 } 1219 1220 /* 1221 * If the rq we found has no -deadline task, or 1222 * its earliest one has a later deadline than our 1223 * task, the rq is a good one. 1224 */ 1225 if (!later_rq->dl.dl_nr_running || 1226 dl_time_before(task->dl.deadline, 1227 later_rq->dl.earliest_dl.curr)) 1228 break; 1229 1230 /* Otherwise we try again. */ 1231 double_unlock_balance(rq, later_rq); 1232 later_rq = NULL; 1233 } 1234 1235 return later_rq; 1236 } 1237 1238 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1239 { 1240 struct task_struct *p; 1241 1242 if (!has_pushable_dl_tasks(rq)) 1243 return NULL; 1244 1245 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1246 struct task_struct, pushable_dl_tasks); 1247 1248 BUG_ON(rq->cpu != task_cpu(p)); 1249 BUG_ON(task_current(rq, p)); 1250 BUG_ON(p->nr_cpus_allowed <= 1); 1251 1252 BUG_ON(!p->on_rq); 1253 BUG_ON(!dl_task(p)); 1254 1255 return p; 1256 } 1257 1258 /* 1259 * See if the non running -deadline tasks on this rq 1260 * can be sent to some other CPU where they can preempt 1261 * and start executing. 1262 */ 1263 static int push_dl_task(struct rq *rq) 1264 { 1265 struct task_struct *next_task; 1266 struct rq *later_rq; 1267 1268 if (!rq->dl.overloaded) 1269 return 0; 1270 1271 next_task = pick_next_pushable_dl_task(rq); 1272 if (!next_task) 1273 return 0; 1274 1275 retry: 1276 if (unlikely(next_task == rq->curr)) { 1277 WARN_ON(1); 1278 return 0; 1279 } 1280 1281 /* 1282 * If next_task preempts rq->curr, and rq->curr 1283 * can move away, it makes sense to just reschedule 1284 * without going further in pushing next_task. 1285 */ 1286 if (dl_task(rq->curr) && 1287 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1288 rq->curr->nr_cpus_allowed > 1) { 1289 resched_task(rq->curr); 1290 return 0; 1291 } 1292 1293 /* We might release rq lock */ 1294 get_task_struct(next_task); 1295 1296 /* Will lock the rq it'll find */ 1297 later_rq = find_lock_later_rq(next_task, rq); 1298 if (!later_rq) { 1299 struct task_struct *task; 1300 1301 /* 1302 * We must check all this again, since 1303 * find_lock_later_rq releases rq->lock and it is 1304 * then possible that next_task has migrated. 1305 */ 1306 task = pick_next_pushable_dl_task(rq); 1307 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1308 /* 1309 * The task is still there. We don't try 1310 * again, some other cpu will pull it when ready. 1311 */ 1312 dequeue_pushable_dl_task(rq, next_task); 1313 goto out; 1314 } 1315 1316 if (!task) 1317 /* No more tasks */ 1318 goto out; 1319 1320 put_task_struct(next_task); 1321 next_task = task; 1322 goto retry; 1323 } 1324 1325 deactivate_task(rq, next_task, 0); 1326 set_task_cpu(next_task, later_rq->cpu); 1327 activate_task(later_rq, next_task, 0); 1328 1329 resched_task(later_rq->curr); 1330 1331 double_unlock_balance(rq, later_rq); 1332 1333 out: 1334 put_task_struct(next_task); 1335 1336 return 1; 1337 } 1338 1339 static void push_dl_tasks(struct rq *rq) 1340 { 1341 /* Terminates as it moves a -deadline task */ 1342 while (push_dl_task(rq)) 1343 ; 1344 } 1345 1346 static int pull_dl_task(struct rq *this_rq) 1347 { 1348 int this_cpu = this_rq->cpu, ret = 0, cpu; 1349 struct task_struct *p; 1350 struct rq *src_rq; 1351 u64 dmin = LONG_MAX; 1352 1353 if (likely(!dl_overloaded(this_rq))) 1354 return 0; 1355 1356 /* 1357 * Match the barrier from dl_set_overloaded; this guarantees that if we 1358 * see overloaded we must also see the dlo_mask bit. 1359 */ 1360 smp_rmb(); 1361 1362 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1363 if (this_cpu == cpu) 1364 continue; 1365 1366 src_rq = cpu_rq(cpu); 1367 1368 /* 1369 * It looks racy, abd it is! However, as in sched_rt.c, 1370 * we are fine with this. 1371 */ 1372 if (this_rq->dl.dl_nr_running && 1373 dl_time_before(this_rq->dl.earliest_dl.curr, 1374 src_rq->dl.earliest_dl.next)) 1375 continue; 1376 1377 /* Might drop this_rq->lock */ 1378 double_lock_balance(this_rq, src_rq); 1379 1380 /* 1381 * If there are no more pullable tasks on the 1382 * rq, we're done with it. 1383 */ 1384 if (src_rq->dl.dl_nr_running <= 1) 1385 goto skip; 1386 1387 p = pick_next_earliest_dl_task(src_rq, this_cpu); 1388 1389 /* 1390 * We found a task to be pulled if: 1391 * - it preempts our current (if there's one), 1392 * - it will preempt the last one we pulled (if any). 1393 */ 1394 if (p && dl_time_before(p->dl.deadline, dmin) && 1395 (!this_rq->dl.dl_nr_running || 1396 dl_time_before(p->dl.deadline, 1397 this_rq->dl.earliest_dl.curr))) { 1398 WARN_ON(p == src_rq->curr); 1399 WARN_ON(!p->on_rq); 1400 1401 /* 1402 * Then we pull iff p has actually an earlier 1403 * deadline than the current task of its runqueue. 1404 */ 1405 if (dl_time_before(p->dl.deadline, 1406 src_rq->curr->dl.deadline)) 1407 goto skip; 1408 1409 ret = 1; 1410 1411 deactivate_task(src_rq, p, 0); 1412 set_task_cpu(p, this_cpu); 1413 activate_task(this_rq, p, 0); 1414 dmin = p->dl.deadline; 1415 1416 /* Is there any other task even earlier? */ 1417 } 1418 skip: 1419 double_unlock_balance(this_rq, src_rq); 1420 } 1421 1422 return ret; 1423 } 1424 1425 static void pre_schedule_dl(struct rq *rq, struct task_struct *prev) 1426 { 1427 /* Try to pull other tasks here */ 1428 if (dl_task(prev)) 1429 pull_dl_task(rq); 1430 } 1431 1432 static void post_schedule_dl(struct rq *rq) 1433 { 1434 push_dl_tasks(rq); 1435 } 1436 1437 /* 1438 * Since the task is not running and a reschedule is not going to happen 1439 * anytime soon on its runqueue, we try pushing it away now. 1440 */ 1441 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1442 { 1443 if (!task_running(rq, p) && 1444 !test_tsk_need_resched(rq->curr) && 1445 has_pushable_dl_tasks(rq) && 1446 p->nr_cpus_allowed > 1 && 1447 dl_task(rq->curr) && 1448 (rq->curr->nr_cpus_allowed < 2 || 1449 dl_entity_preempt(&rq->curr->dl, &p->dl))) { 1450 push_dl_tasks(rq); 1451 } 1452 } 1453 1454 static void set_cpus_allowed_dl(struct task_struct *p, 1455 const struct cpumask *new_mask) 1456 { 1457 struct rq *rq; 1458 int weight; 1459 1460 BUG_ON(!dl_task(p)); 1461 1462 /* 1463 * Update only if the task is actually running (i.e., 1464 * it is on the rq AND it is not throttled). 1465 */ 1466 if (!on_dl_rq(&p->dl)) 1467 return; 1468 1469 weight = cpumask_weight(new_mask); 1470 1471 /* 1472 * Only update if the process changes its state from whether it 1473 * can migrate or not. 1474 */ 1475 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1476 return; 1477 1478 rq = task_rq(p); 1479 1480 /* 1481 * The process used to be able to migrate OR it can now migrate 1482 */ 1483 if (weight <= 1) { 1484 if (!task_current(rq, p)) 1485 dequeue_pushable_dl_task(rq, p); 1486 BUG_ON(!rq->dl.dl_nr_migratory); 1487 rq->dl.dl_nr_migratory--; 1488 } else { 1489 if (!task_current(rq, p)) 1490 enqueue_pushable_dl_task(rq, p); 1491 rq->dl.dl_nr_migratory++; 1492 } 1493 1494 update_dl_migration(&rq->dl); 1495 } 1496 1497 /* Assumes rq->lock is held */ 1498 static void rq_online_dl(struct rq *rq) 1499 { 1500 if (rq->dl.overloaded) 1501 dl_set_overload(rq); 1502 1503 if (rq->dl.dl_nr_running > 0) 1504 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1505 } 1506 1507 /* Assumes rq->lock is held */ 1508 static void rq_offline_dl(struct rq *rq) 1509 { 1510 if (rq->dl.overloaded) 1511 dl_clear_overload(rq); 1512 1513 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1514 } 1515 1516 void init_sched_dl_class(void) 1517 { 1518 unsigned int i; 1519 1520 for_each_possible_cpu(i) 1521 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1522 GFP_KERNEL, cpu_to_node(i)); 1523 } 1524 1525 #endif /* CONFIG_SMP */ 1526 1527 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1528 { 1529 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) 1530 hrtimer_try_to_cancel(&p->dl.dl_timer); 1531 1532 #ifdef CONFIG_SMP 1533 /* 1534 * Since this might be the only -deadline task on the rq, 1535 * this is the right place to try to pull some other one 1536 * from an overloaded cpu, if any. 1537 */ 1538 if (!rq->dl.dl_nr_running) 1539 pull_dl_task(rq); 1540 #endif 1541 } 1542 1543 /* 1544 * When switching to -deadline, we may overload the rq, then 1545 * we try to push someone off, if possible. 1546 */ 1547 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1548 { 1549 int check_resched = 1; 1550 1551 /* 1552 * If p is throttled, don't consider the possibility 1553 * of preempting rq->curr, the check will be done right 1554 * after its runtime will get replenished. 1555 */ 1556 if (unlikely(p->dl.dl_throttled)) 1557 return; 1558 1559 if (p->on_rq || rq->curr != p) { 1560 #ifdef CONFIG_SMP 1561 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) 1562 /* Only reschedule if pushing failed */ 1563 check_resched = 0; 1564 #endif /* CONFIG_SMP */ 1565 if (check_resched && task_has_dl_policy(rq->curr)) 1566 check_preempt_curr_dl(rq, p, 0); 1567 } 1568 } 1569 1570 /* 1571 * If the scheduling parameters of a -deadline task changed, 1572 * a push or pull operation might be needed. 1573 */ 1574 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1575 int oldprio) 1576 { 1577 if (p->on_rq || rq->curr == p) { 1578 #ifdef CONFIG_SMP 1579 /* 1580 * This might be too much, but unfortunately 1581 * we don't have the old deadline value, and 1582 * we can't argue if the task is increasing 1583 * or lowering its prio, so... 1584 */ 1585 if (!rq->dl.overloaded) 1586 pull_dl_task(rq); 1587 1588 /* 1589 * If we now have a earlier deadline task than p, 1590 * then reschedule, provided p is still on this 1591 * runqueue. 1592 */ 1593 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && 1594 rq->curr == p) 1595 resched_task(p); 1596 #else 1597 /* 1598 * Again, we don't know if p has a earlier 1599 * or later deadline, so let's blindly set a 1600 * (maybe not needed) rescheduling point. 1601 */ 1602 resched_task(p); 1603 #endif /* CONFIG_SMP */ 1604 } else 1605 switched_to_dl(rq, p); 1606 } 1607 1608 const struct sched_class dl_sched_class = { 1609 .next = &rt_sched_class, 1610 .enqueue_task = enqueue_task_dl, 1611 .dequeue_task = dequeue_task_dl, 1612 .yield_task = yield_task_dl, 1613 1614 .check_preempt_curr = check_preempt_curr_dl, 1615 1616 .pick_next_task = pick_next_task_dl, 1617 .put_prev_task = put_prev_task_dl, 1618 1619 #ifdef CONFIG_SMP 1620 .select_task_rq = select_task_rq_dl, 1621 .set_cpus_allowed = set_cpus_allowed_dl, 1622 .rq_online = rq_online_dl, 1623 .rq_offline = rq_offline_dl, 1624 .pre_schedule = pre_schedule_dl, 1625 .post_schedule = post_schedule_dl, 1626 .task_woken = task_woken_dl, 1627 #endif 1628 1629 .set_curr_task = set_curr_task_dl, 1630 .task_tick = task_tick_dl, 1631 .task_fork = task_fork_dl, 1632 .task_dead = task_dead_dl, 1633 1634 .prio_changed = prio_changed_dl, 1635 .switched_from = switched_from_dl, 1636 .switched_to = switched_to_dl, 1637 }; 1638