1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 #include "sched.h" 19 #include "pelt.h" 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 #ifdef CONFIG_RT_MUTEXES 47 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 48 { 49 return dl_se->pi_se; 50 } 51 52 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 53 { 54 return pi_of(dl_se) != dl_se; 55 } 56 #else 57 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 58 { 59 return dl_se; 60 } 61 62 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 63 { 64 return false; 65 } 66 #endif 67 68 #ifdef CONFIG_SMP 69 static inline struct dl_bw *dl_bw_of(int i) 70 { 71 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 72 "sched RCU must be held"); 73 return &cpu_rq(i)->rd->dl_bw; 74 } 75 76 static inline int dl_bw_cpus(int i) 77 { 78 struct root_domain *rd = cpu_rq(i)->rd; 79 int cpus; 80 81 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 82 "sched RCU must be held"); 83 84 if (cpumask_subset(rd->span, cpu_active_mask)) 85 return cpumask_weight(rd->span); 86 87 cpus = 0; 88 89 for_each_cpu_and(i, rd->span, cpu_active_mask) 90 cpus++; 91 92 return cpus; 93 } 94 95 static inline unsigned long __dl_bw_capacity(int i) 96 { 97 struct root_domain *rd = cpu_rq(i)->rd; 98 unsigned long cap = 0; 99 100 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 101 "sched RCU must be held"); 102 103 for_each_cpu_and(i, rd->span, cpu_active_mask) 104 cap += capacity_orig_of(i); 105 106 return cap; 107 } 108 109 /* 110 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 111 * of the CPU the task is running on rather rd's \Sum CPU capacity. 112 */ 113 static inline unsigned long dl_bw_capacity(int i) 114 { 115 if (!static_branch_unlikely(&sched_asym_cpucapacity) && 116 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) { 117 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 118 } else { 119 return __dl_bw_capacity(i); 120 } 121 } 122 123 static inline bool dl_bw_visited(int cpu, u64 gen) 124 { 125 struct root_domain *rd = cpu_rq(cpu)->rd; 126 127 if (rd->visit_gen == gen) 128 return true; 129 130 rd->visit_gen = gen; 131 return false; 132 } 133 #else 134 static inline struct dl_bw *dl_bw_of(int i) 135 { 136 return &cpu_rq(i)->dl.dl_bw; 137 } 138 139 static inline int dl_bw_cpus(int i) 140 { 141 return 1; 142 } 143 144 static inline unsigned long dl_bw_capacity(int i) 145 { 146 return SCHED_CAPACITY_SCALE; 147 } 148 149 static inline bool dl_bw_visited(int cpu, u64 gen) 150 { 151 return false; 152 } 153 #endif 154 155 static inline 156 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 157 { 158 u64 old = dl_rq->running_bw; 159 160 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 161 dl_rq->running_bw += dl_bw; 162 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 163 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 164 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 165 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 166 } 167 168 static inline 169 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 170 { 171 u64 old = dl_rq->running_bw; 172 173 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 174 dl_rq->running_bw -= dl_bw; 175 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 176 if (dl_rq->running_bw > old) 177 dl_rq->running_bw = 0; 178 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 179 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 180 } 181 182 static inline 183 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 184 { 185 u64 old = dl_rq->this_bw; 186 187 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 188 dl_rq->this_bw += dl_bw; 189 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 190 } 191 192 static inline 193 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 194 { 195 u64 old = dl_rq->this_bw; 196 197 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 198 dl_rq->this_bw -= dl_bw; 199 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 200 if (dl_rq->this_bw > old) 201 dl_rq->this_bw = 0; 202 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 203 } 204 205 static inline 206 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 207 { 208 if (!dl_entity_is_special(dl_se)) 209 __add_rq_bw(dl_se->dl_bw, dl_rq); 210 } 211 212 static inline 213 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 214 { 215 if (!dl_entity_is_special(dl_se)) 216 __sub_rq_bw(dl_se->dl_bw, dl_rq); 217 } 218 219 static inline 220 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 221 { 222 if (!dl_entity_is_special(dl_se)) 223 __add_running_bw(dl_se->dl_bw, dl_rq); 224 } 225 226 static inline 227 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 228 { 229 if (!dl_entity_is_special(dl_se)) 230 __sub_running_bw(dl_se->dl_bw, dl_rq); 231 } 232 233 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 234 { 235 struct rq *rq; 236 237 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); 238 239 if (task_on_rq_queued(p)) 240 return; 241 242 rq = task_rq(p); 243 if (p->dl.dl_non_contending) { 244 sub_running_bw(&p->dl, &rq->dl); 245 p->dl.dl_non_contending = 0; 246 /* 247 * If the timer handler is currently running and the 248 * timer cannot be canceled, inactive_task_timer() 249 * will see that dl_not_contending is not set, and 250 * will not touch the rq's active utilization, 251 * so we are still safe. 252 */ 253 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 254 put_task_struct(p); 255 } 256 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 257 __add_rq_bw(new_bw, &rq->dl); 258 } 259 260 /* 261 * The utilization of a task cannot be immediately removed from 262 * the rq active utilization (running_bw) when the task blocks. 263 * Instead, we have to wait for the so called "0-lag time". 264 * 265 * If a task blocks before the "0-lag time", a timer (the inactive 266 * timer) is armed, and running_bw is decreased when the timer 267 * fires. 268 * 269 * If the task wakes up again before the inactive timer fires, 270 * the timer is canceled, whereas if the task wakes up after the 271 * inactive timer fired (and running_bw has been decreased) the 272 * task's utilization has to be added to running_bw again. 273 * A flag in the deadline scheduling entity (dl_non_contending) 274 * is used to avoid race conditions between the inactive timer handler 275 * and task wakeups. 276 * 277 * The following diagram shows how running_bw is updated. A task is 278 * "ACTIVE" when its utilization contributes to running_bw; an 279 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 280 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 281 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 282 * time already passed, which does not contribute to running_bw anymore. 283 * +------------------+ 284 * wakeup | ACTIVE | 285 * +------------------>+ contending | 286 * | add_running_bw | | 287 * | +----+------+------+ 288 * | | ^ 289 * | dequeue | | 290 * +--------+-------+ | | 291 * | | t >= 0-lag | | wakeup 292 * | INACTIVE |<---------------+ | 293 * | | sub_running_bw | | 294 * +--------+-------+ | | 295 * ^ | | 296 * | t < 0-lag | | 297 * | | | 298 * | V | 299 * | +----+------+------+ 300 * | sub_running_bw | ACTIVE | 301 * +-------------------+ | 302 * inactive timer | non contending | 303 * fired +------------------+ 304 * 305 * The task_non_contending() function is invoked when a task 306 * blocks, and checks if the 0-lag time already passed or 307 * not (in the first case, it directly updates running_bw; 308 * in the second case, it arms the inactive timer). 309 * 310 * The task_contending() function is invoked when a task wakes 311 * up, and checks if the task is still in the "ACTIVE non contending" 312 * state or not (in the second case, it updates running_bw). 313 */ 314 static void task_non_contending(struct task_struct *p) 315 { 316 struct sched_dl_entity *dl_se = &p->dl; 317 struct hrtimer *timer = &dl_se->inactive_timer; 318 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 319 struct rq *rq = rq_of_dl_rq(dl_rq); 320 s64 zerolag_time; 321 322 /* 323 * If this is a non-deadline task that has been boosted, 324 * do nothing 325 */ 326 if (dl_se->dl_runtime == 0) 327 return; 328 329 if (dl_entity_is_special(dl_se)) 330 return; 331 332 WARN_ON(dl_se->dl_non_contending); 333 334 zerolag_time = dl_se->deadline - 335 div64_long((dl_se->runtime * dl_se->dl_period), 336 dl_se->dl_runtime); 337 338 /* 339 * Using relative times instead of the absolute "0-lag time" 340 * allows to simplify the code 341 */ 342 zerolag_time -= rq_clock(rq); 343 344 /* 345 * If the "0-lag time" already passed, decrease the active 346 * utilization now, instead of starting a timer 347 */ 348 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 349 if (dl_task(p)) 350 sub_running_bw(dl_se, dl_rq); 351 if (!dl_task(p) || p->state == TASK_DEAD) { 352 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 353 354 if (p->state == TASK_DEAD) 355 sub_rq_bw(&p->dl, &rq->dl); 356 raw_spin_lock(&dl_b->lock); 357 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 358 __dl_clear_params(p); 359 raw_spin_unlock(&dl_b->lock); 360 } 361 362 return; 363 } 364 365 dl_se->dl_non_contending = 1; 366 get_task_struct(p); 367 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 368 } 369 370 static void task_contending(struct sched_dl_entity *dl_se, int flags) 371 { 372 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 373 374 /* 375 * If this is a non-deadline task that has been boosted, 376 * do nothing 377 */ 378 if (dl_se->dl_runtime == 0) 379 return; 380 381 if (flags & ENQUEUE_MIGRATED) 382 add_rq_bw(dl_se, dl_rq); 383 384 if (dl_se->dl_non_contending) { 385 dl_se->dl_non_contending = 0; 386 /* 387 * If the timer handler is currently running and the 388 * timer cannot be canceled, inactive_task_timer() 389 * will see that dl_not_contending is not set, and 390 * will not touch the rq's active utilization, 391 * so we are still safe. 392 */ 393 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 394 put_task_struct(dl_task_of(dl_se)); 395 } else { 396 /* 397 * Since "dl_non_contending" is not set, the 398 * task's utilization has already been removed from 399 * active utilization (either when the task blocked, 400 * when the "inactive timer" fired). 401 * So, add it back. 402 */ 403 add_running_bw(dl_se, dl_rq); 404 } 405 } 406 407 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 408 { 409 struct sched_dl_entity *dl_se = &p->dl; 410 411 return dl_rq->root.rb_leftmost == &dl_se->rb_node; 412 } 413 414 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 415 416 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 417 { 418 raw_spin_lock_init(&dl_b->dl_runtime_lock); 419 dl_b->dl_period = period; 420 dl_b->dl_runtime = runtime; 421 } 422 423 void init_dl_bw(struct dl_bw *dl_b) 424 { 425 raw_spin_lock_init(&dl_b->lock); 426 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 427 if (global_rt_runtime() == RUNTIME_INF) 428 dl_b->bw = -1; 429 else 430 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 431 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 432 dl_b->total_bw = 0; 433 } 434 435 void init_dl_rq(struct dl_rq *dl_rq) 436 { 437 dl_rq->root = RB_ROOT_CACHED; 438 439 #ifdef CONFIG_SMP 440 /* zero means no -deadline tasks */ 441 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 442 443 dl_rq->dl_nr_migratory = 0; 444 dl_rq->overloaded = 0; 445 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 446 #else 447 init_dl_bw(&dl_rq->dl_bw); 448 #endif 449 450 dl_rq->running_bw = 0; 451 dl_rq->this_bw = 0; 452 init_dl_rq_bw_ratio(dl_rq); 453 } 454 455 #ifdef CONFIG_SMP 456 457 static inline int dl_overloaded(struct rq *rq) 458 { 459 return atomic_read(&rq->rd->dlo_count); 460 } 461 462 static inline void dl_set_overload(struct rq *rq) 463 { 464 if (!rq->online) 465 return; 466 467 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 468 /* 469 * Must be visible before the overload count is 470 * set (as in sched_rt.c). 471 * 472 * Matched by the barrier in pull_dl_task(). 473 */ 474 smp_wmb(); 475 atomic_inc(&rq->rd->dlo_count); 476 } 477 478 static inline void dl_clear_overload(struct rq *rq) 479 { 480 if (!rq->online) 481 return; 482 483 atomic_dec(&rq->rd->dlo_count); 484 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 485 } 486 487 static void update_dl_migration(struct dl_rq *dl_rq) 488 { 489 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 490 if (!dl_rq->overloaded) { 491 dl_set_overload(rq_of_dl_rq(dl_rq)); 492 dl_rq->overloaded = 1; 493 } 494 } else if (dl_rq->overloaded) { 495 dl_clear_overload(rq_of_dl_rq(dl_rq)); 496 dl_rq->overloaded = 0; 497 } 498 } 499 500 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 501 { 502 struct task_struct *p = dl_task_of(dl_se); 503 504 if (p->nr_cpus_allowed > 1) 505 dl_rq->dl_nr_migratory++; 506 507 update_dl_migration(dl_rq); 508 } 509 510 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 511 { 512 struct task_struct *p = dl_task_of(dl_se); 513 514 if (p->nr_cpus_allowed > 1) 515 dl_rq->dl_nr_migratory--; 516 517 update_dl_migration(dl_rq); 518 } 519 520 #define __node_2_pdl(node) \ 521 rb_entry((node), struct task_struct, pushable_dl_tasks) 522 523 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 524 { 525 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 526 } 527 528 /* 529 * The list of pushable -deadline task is not a plist, like in 530 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 531 */ 532 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 533 { 534 struct rb_node *leftmost; 535 536 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 537 538 leftmost = rb_add_cached(&p->pushable_dl_tasks, 539 &rq->dl.pushable_dl_tasks_root, 540 __pushable_less); 541 if (leftmost) 542 rq->dl.earliest_dl.next = p->dl.deadline; 543 } 544 545 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 546 { 547 struct dl_rq *dl_rq = &rq->dl; 548 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 549 struct rb_node *leftmost; 550 551 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 552 return; 553 554 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 555 if (leftmost) 556 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 557 558 RB_CLEAR_NODE(&p->pushable_dl_tasks); 559 } 560 561 static inline int has_pushable_dl_tasks(struct rq *rq) 562 { 563 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 564 } 565 566 static int push_dl_task(struct rq *rq); 567 568 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 569 { 570 return rq->online && dl_task(prev); 571 } 572 573 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 574 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 575 576 static void push_dl_tasks(struct rq *); 577 static void pull_dl_task(struct rq *); 578 579 static inline void deadline_queue_push_tasks(struct rq *rq) 580 { 581 if (!has_pushable_dl_tasks(rq)) 582 return; 583 584 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 585 } 586 587 static inline void deadline_queue_pull_task(struct rq *rq) 588 { 589 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 590 } 591 592 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 593 594 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 595 { 596 struct rq *later_rq = NULL; 597 struct dl_bw *dl_b; 598 599 later_rq = find_lock_later_rq(p, rq); 600 if (!later_rq) { 601 int cpu; 602 603 /* 604 * If we cannot preempt any rq, fall back to pick any 605 * online CPU: 606 */ 607 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 608 if (cpu >= nr_cpu_ids) { 609 /* 610 * Failed to find any suitable CPU. 611 * The task will never come back! 612 */ 613 BUG_ON(dl_bandwidth_enabled()); 614 615 /* 616 * If admission control is disabled we 617 * try a little harder to let the task 618 * run. 619 */ 620 cpu = cpumask_any(cpu_active_mask); 621 } 622 later_rq = cpu_rq(cpu); 623 double_lock_balance(rq, later_rq); 624 } 625 626 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 627 /* 628 * Inactive timer is armed (or callback is running, but 629 * waiting for us to release rq locks). In any case, when it 630 * will fire (or continue), it will see running_bw of this 631 * task migrated to later_rq (and correctly handle it). 632 */ 633 sub_running_bw(&p->dl, &rq->dl); 634 sub_rq_bw(&p->dl, &rq->dl); 635 636 add_rq_bw(&p->dl, &later_rq->dl); 637 add_running_bw(&p->dl, &later_rq->dl); 638 } else { 639 sub_rq_bw(&p->dl, &rq->dl); 640 add_rq_bw(&p->dl, &later_rq->dl); 641 } 642 643 /* 644 * And we finally need to fixup root_domain(s) bandwidth accounting, 645 * since p is still hanging out in the old (now moved to default) root 646 * domain. 647 */ 648 dl_b = &rq->rd->dl_bw; 649 raw_spin_lock(&dl_b->lock); 650 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 651 raw_spin_unlock(&dl_b->lock); 652 653 dl_b = &later_rq->rd->dl_bw; 654 raw_spin_lock(&dl_b->lock); 655 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 656 raw_spin_unlock(&dl_b->lock); 657 658 set_task_cpu(p, later_rq->cpu); 659 double_unlock_balance(later_rq, rq); 660 661 return later_rq; 662 } 663 664 #else 665 666 static inline 667 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 668 { 669 } 670 671 static inline 672 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 673 { 674 } 675 676 static inline 677 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 678 { 679 } 680 681 static inline 682 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 683 { 684 } 685 686 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 687 { 688 return false; 689 } 690 691 static inline void pull_dl_task(struct rq *rq) 692 { 693 } 694 695 static inline void deadline_queue_push_tasks(struct rq *rq) 696 { 697 } 698 699 static inline void deadline_queue_pull_task(struct rq *rq) 700 { 701 } 702 #endif /* CONFIG_SMP */ 703 704 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 705 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 706 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 707 708 /* 709 * We are being explicitly informed that a new instance is starting, 710 * and this means that: 711 * - the absolute deadline of the entity has to be placed at 712 * current time + relative deadline; 713 * - the runtime of the entity has to be set to the maximum value. 714 * 715 * The capability of specifying such event is useful whenever a -deadline 716 * entity wants to (try to!) synchronize its behaviour with the scheduler's 717 * one, and to (try to!) reconcile itself with its own scheduling 718 * parameters. 719 */ 720 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 721 { 722 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 723 struct rq *rq = rq_of_dl_rq(dl_rq); 724 725 WARN_ON(is_dl_boosted(dl_se)); 726 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 727 728 /* 729 * We are racing with the deadline timer. So, do nothing because 730 * the deadline timer handler will take care of properly recharging 731 * the runtime and postponing the deadline 732 */ 733 if (dl_se->dl_throttled) 734 return; 735 736 /* 737 * We use the regular wall clock time to set deadlines in the 738 * future; in fact, we must consider execution overheads (time 739 * spent on hardirq context, etc.). 740 */ 741 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 742 dl_se->runtime = dl_se->dl_runtime; 743 } 744 745 /* 746 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 747 * possibility of a entity lasting more than what it declared, and thus 748 * exhausting its runtime. 749 * 750 * Here we are interested in making runtime overrun possible, but we do 751 * not want a entity which is misbehaving to affect the scheduling of all 752 * other entities. 753 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 754 * is used, in order to confine each entity within its own bandwidth. 755 * 756 * This function deals exactly with that, and ensures that when the runtime 757 * of a entity is replenished, its deadline is also postponed. That ensures 758 * the overrunning entity can't interfere with other entity in the system and 759 * can't make them miss their deadlines. Reasons why this kind of overruns 760 * could happen are, typically, a entity voluntarily trying to overcome its 761 * runtime, or it just underestimated it during sched_setattr(). 762 */ 763 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 764 { 765 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 766 struct rq *rq = rq_of_dl_rq(dl_rq); 767 768 BUG_ON(pi_of(dl_se)->dl_runtime <= 0); 769 770 /* 771 * This could be the case for a !-dl task that is boosted. 772 * Just go with full inherited parameters. 773 */ 774 if (dl_se->dl_deadline == 0) { 775 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 776 dl_se->runtime = pi_of(dl_se)->dl_runtime; 777 } 778 779 if (dl_se->dl_yielded && dl_se->runtime > 0) 780 dl_se->runtime = 0; 781 782 /* 783 * We keep moving the deadline away until we get some 784 * available runtime for the entity. This ensures correct 785 * handling of situations where the runtime overrun is 786 * arbitrary large. 787 */ 788 while (dl_se->runtime <= 0) { 789 dl_se->deadline += pi_of(dl_se)->dl_period; 790 dl_se->runtime += pi_of(dl_se)->dl_runtime; 791 } 792 793 /* 794 * At this point, the deadline really should be "in 795 * the future" with respect to rq->clock. If it's 796 * not, we are, for some reason, lagging too much! 797 * Anyway, after having warn userspace abut that, 798 * we still try to keep the things running by 799 * resetting the deadline and the budget of the 800 * entity. 801 */ 802 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 803 printk_deferred_once("sched: DL replenish lagged too much\n"); 804 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 805 dl_se->runtime = pi_of(dl_se)->dl_runtime; 806 } 807 808 if (dl_se->dl_yielded) 809 dl_se->dl_yielded = 0; 810 if (dl_se->dl_throttled) 811 dl_se->dl_throttled = 0; 812 } 813 814 /* 815 * Here we check if --at time t-- an entity (which is probably being 816 * [re]activated or, in general, enqueued) can use its remaining runtime 817 * and its current deadline _without_ exceeding the bandwidth it is 818 * assigned (function returns true if it can't). We are in fact applying 819 * one of the CBS rules: when a task wakes up, if the residual runtime 820 * over residual deadline fits within the allocated bandwidth, then we 821 * can keep the current (absolute) deadline and residual budget without 822 * disrupting the schedulability of the system. Otherwise, we should 823 * refill the runtime and set the deadline a period in the future, 824 * because keeping the current (absolute) deadline of the task would 825 * result in breaking guarantees promised to other tasks (refer to 826 * Documentation/scheduler/sched-deadline.rst for more information). 827 * 828 * This function returns true if: 829 * 830 * runtime / (deadline - t) > dl_runtime / dl_deadline , 831 * 832 * IOW we can't recycle current parameters. 833 * 834 * Notice that the bandwidth check is done against the deadline. For 835 * task with deadline equal to period this is the same of using 836 * dl_period instead of dl_deadline in the equation above. 837 */ 838 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 839 { 840 u64 left, right; 841 842 /* 843 * left and right are the two sides of the equation above, 844 * after a bit of shuffling to use multiplications instead 845 * of divisions. 846 * 847 * Note that none of the time values involved in the two 848 * multiplications are absolute: dl_deadline and dl_runtime 849 * are the relative deadline and the maximum runtime of each 850 * instance, runtime is the runtime left for the last instance 851 * and (deadline - t), since t is rq->clock, is the time left 852 * to the (absolute) deadline. Even if overflowing the u64 type 853 * is very unlikely to occur in both cases, here we scale down 854 * as we want to avoid that risk at all. Scaling down by 10 855 * means that we reduce granularity to 1us. We are fine with it, 856 * since this is only a true/false check and, anyway, thinking 857 * of anything below microseconds resolution is actually fiction 858 * (but still we want to give the user that illusion >;). 859 */ 860 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 861 right = ((dl_se->deadline - t) >> DL_SCALE) * 862 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 863 864 return dl_time_before(right, left); 865 } 866 867 /* 868 * Revised wakeup rule [1]: For self-suspending tasks, rather then 869 * re-initializing task's runtime and deadline, the revised wakeup 870 * rule adjusts the task's runtime to avoid the task to overrun its 871 * density. 872 * 873 * Reasoning: a task may overrun the density if: 874 * runtime / (deadline - t) > dl_runtime / dl_deadline 875 * 876 * Therefore, runtime can be adjusted to: 877 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 878 * 879 * In such way that runtime will be equal to the maximum density 880 * the task can use without breaking any rule. 881 * 882 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 883 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 884 */ 885 static void 886 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 887 { 888 u64 laxity = dl_se->deadline - rq_clock(rq); 889 890 /* 891 * If the task has deadline < period, and the deadline is in the past, 892 * it should already be throttled before this check. 893 * 894 * See update_dl_entity() comments for further details. 895 */ 896 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 897 898 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 899 } 900 901 /* 902 * Regarding the deadline, a task with implicit deadline has a relative 903 * deadline == relative period. A task with constrained deadline has a 904 * relative deadline <= relative period. 905 * 906 * We support constrained deadline tasks. However, there are some restrictions 907 * applied only for tasks which do not have an implicit deadline. See 908 * update_dl_entity() to know more about such restrictions. 909 * 910 * The dl_is_implicit() returns true if the task has an implicit deadline. 911 */ 912 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 913 { 914 return dl_se->dl_deadline == dl_se->dl_period; 915 } 916 917 /* 918 * When a deadline entity is placed in the runqueue, its runtime and deadline 919 * might need to be updated. This is done by a CBS wake up rule. There are two 920 * different rules: 1) the original CBS; and 2) the Revisited CBS. 921 * 922 * When the task is starting a new period, the Original CBS is used. In this 923 * case, the runtime is replenished and a new absolute deadline is set. 924 * 925 * When a task is queued before the begin of the next period, using the 926 * remaining runtime and deadline could make the entity to overflow, see 927 * dl_entity_overflow() to find more about runtime overflow. When such case 928 * is detected, the runtime and deadline need to be updated. 929 * 930 * If the task has an implicit deadline, i.e., deadline == period, the Original 931 * CBS is applied. the runtime is replenished and a new absolute deadline is 932 * set, as in the previous cases. 933 * 934 * However, the Original CBS does not work properly for tasks with 935 * deadline < period, which are said to have a constrained deadline. By 936 * applying the Original CBS, a constrained deadline task would be able to run 937 * runtime/deadline in a period. With deadline < period, the task would 938 * overrun the runtime/period allowed bandwidth, breaking the admission test. 939 * 940 * In order to prevent this misbehave, the Revisited CBS is used for 941 * constrained deadline tasks when a runtime overflow is detected. In the 942 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 943 * the remaining runtime of the task is reduced to avoid runtime overflow. 944 * Please refer to the comments update_dl_revised_wakeup() function to find 945 * more about the Revised CBS rule. 946 */ 947 static void update_dl_entity(struct sched_dl_entity *dl_se) 948 { 949 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 950 struct rq *rq = rq_of_dl_rq(dl_rq); 951 952 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 953 dl_entity_overflow(dl_se, rq_clock(rq))) { 954 955 if (unlikely(!dl_is_implicit(dl_se) && 956 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 957 !is_dl_boosted(dl_se))) { 958 update_dl_revised_wakeup(dl_se, rq); 959 return; 960 } 961 962 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 963 dl_se->runtime = pi_of(dl_se)->dl_runtime; 964 } 965 } 966 967 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 968 { 969 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 970 } 971 972 /* 973 * If the entity depleted all its runtime, and if we want it to sleep 974 * while waiting for some new execution time to become available, we 975 * set the bandwidth replenishment timer to the replenishment instant 976 * and try to activate it. 977 * 978 * Notice that it is important for the caller to know if the timer 979 * actually started or not (i.e., the replenishment instant is in 980 * the future or in the past). 981 */ 982 static int start_dl_timer(struct task_struct *p) 983 { 984 struct sched_dl_entity *dl_se = &p->dl; 985 struct hrtimer *timer = &dl_se->dl_timer; 986 struct rq *rq = task_rq(p); 987 ktime_t now, act; 988 s64 delta; 989 990 lockdep_assert_held(&rq->lock); 991 992 /* 993 * We want the timer to fire at the deadline, but considering 994 * that it is actually coming from rq->clock and not from 995 * hrtimer's time base reading. 996 */ 997 act = ns_to_ktime(dl_next_period(dl_se)); 998 now = hrtimer_cb_get_time(timer); 999 delta = ktime_to_ns(now) - rq_clock(rq); 1000 act = ktime_add_ns(act, delta); 1001 1002 /* 1003 * If the expiry time already passed, e.g., because the value 1004 * chosen as the deadline is too small, don't even try to 1005 * start the timer in the past! 1006 */ 1007 if (ktime_us_delta(act, now) < 0) 1008 return 0; 1009 1010 /* 1011 * !enqueued will guarantee another callback; even if one is already in 1012 * progress. This ensures a balanced {get,put}_task_struct(). 1013 * 1014 * The race against __run_timer() clearing the enqueued state is 1015 * harmless because we're holding task_rq()->lock, therefore the timer 1016 * expiring after we've done the check will wait on its task_rq_lock() 1017 * and observe our state. 1018 */ 1019 if (!hrtimer_is_queued(timer)) { 1020 get_task_struct(p); 1021 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1022 } 1023 1024 return 1; 1025 } 1026 1027 /* 1028 * This is the bandwidth enforcement timer callback. If here, we know 1029 * a task is not on its dl_rq, since the fact that the timer was running 1030 * means the task is throttled and needs a runtime replenishment. 1031 * 1032 * However, what we actually do depends on the fact the task is active, 1033 * (it is on its rq) or has been removed from there by a call to 1034 * dequeue_task_dl(). In the former case we must issue the runtime 1035 * replenishment and add the task back to the dl_rq; in the latter, we just 1036 * do nothing but clearing dl_throttled, so that runtime and deadline 1037 * updating (and the queueing back to dl_rq) will be done by the 1038 * next call to enqueue_task_dl(). 1039 */ 1040 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1041 { 1042 struct sched_dl_entity *dl_se = container_of(timer, 1043 struct sched_dl_entity, 1044 dl_timer); 1045 struct task_struct *p = dl_task_of(dl_se); 1046 struct rq_flags rf; 1047 struct rq *rq; 1048 1049 rq = task_rq_lock(p, &rf); 1050 1051 /* 1052 * The task might have changed its scheduling policy to something 1053 * different than SCHED_DEADLINE (through switched_from_dl()). 1054 */ 1055 if (!dl_task(p)) 1056 goto unlock; 1057 1058 /* 1059 * The task might have been boosted by someone else and might be in the 1060 * boosting/deboosting path, its not throttled. 1061 */ 1062 if (is_dl_boosted(dl_se)) 1063 goto unlock; 1064 1065 /* 1066 * Spurious timer due to start_dl_timer() race; or we already received 1067 * a replenishment from rt_mutex_setprio(). 1068 */ 1069 if (!dl_se->dl_throttled) 1070 goto unlock; 1071 1072 sched_clock_tick(); 1073 update_rq_clock(rq); 1074 1075 /* 1076 * If the throttle happened during sched-out; like: 1077 * 1078 * schedule() 1079 * deactivate_task() 1080 * dequeue_task_dl() 1081 * update_curr_dl() 1082 * start_dl_timer() 1083 * __dequeue_task_dl() 1084 * prev->on_rq = 0; 1085 * 1086 * We can be both throttled and !queued. Replenish the counter 1087 * but do not enqueue -- wait for our wakeup to do that. 1088 */ 1089 if (!task_on_rq_queued(p)) { 1090 replenish_dl_entity(dl_se); 1091 goto unlock; 1092 } 1093 1094 #ifdef CONFIG_SMP 1095 if (unlikely(!rq->online)) { 1096 /* 1097 * If the runqueue is no longer available, migrate the 1098 * task elsewhere. This necessarily changes rq. 1099 */ 1100 lockdep_unpin_lock(&rq->lock, rf.cookie); 1101 rq = dl_task_offline_migration(rq, p); 1102 rf.cookie = lockdep_pin_lock(&rq->lock); 1103 update_rq_clock(rq); 1104 1105 /* 1106 * Now that the task has been migrated to the new RQ and we 1107 * have that locked, proceed as normal and enqueue the task 1108 * there. 1109 */ 1110 } 1111 #endif 1112 1113 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1114 if (dl_task(rq->curr)) 1115 check_preempt_curr_dl(rq, p, 0); 1116 else 1117 resched_curr(rq); 1118 1119 #ifdef CONFIG_SMP 1120 /* 1121 * Queueing this task back might have overloaded rq, check if we need 1122 * to kick someone away. 1123 */ 1124 if (has_pushable_dl_tasks(rq)) { 1125 /* 1126 * Nothing relies on rq->lock after this, so its safe to drop 1127 * rq->lock. 1128 */ 1129 rq_unpin_lock(rq, &rf); 1130 push_dl_task(rq); 1131 rq_repin_lock(rq, &rf); 1132 } 1133 #endif 1134 1135 unlock: 1136 task_rq_unlock(rq, p, &rf); 1137 1138 /* 1139 * This can free the task_struct, including this hrtimer, do not touch 1140 * anything related to that after this. 1141 */ 1142 put_task_struct(p); 1143 1144 return HRTIMER_NORESTART; 1145 } 1146 1147 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1148 { 1149 struct hrtimer *timer = &dl_se->dl_timer; 1150 1151 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1152 timer->function = dl_task_timer; 1153 } 1154 1155 /* 1156 * During the activation, CBS checks if it can reuse the current task's 1157 * runtime and period. If the deadline of the task is in the past, CBS 1158 * cannot use the runtime, and so it replenishes the task. This rule 1159 * works fine for implicit deadline tasks (deadline == period), and the 1160 * CBS was designed for implicit deadline tasks. However, a task with 1161 * constrained deadline (deadline < period) might be awakened after the 1162 * deadline, but before the next period. In this case, replenishing the 1163 * task would allow it to run for runtime / deadline. As in this case 1164 * deadline < period, CBS enables a task to run for more than the 1165 * runtime / period. In a very loaded system, this can cause a domino 1166 * effect, making other tasks miss their deadlines. 1167 * 1168 * To avoid this problem, in the activation of a constrained deadline 1169 * task after the deadline but before the next period, throttle the 1170 * task and set the replenishing timer to the begin of the next period, 1171 * unless it is boosted. 1172 */ 1173 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1174 { 1175 struct task_struct *p = dl_task_of(dl_se); 1176 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1177 1178 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1179 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1180 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p))) 1181 return; 1182 dl_se->dl_throttled = 1; 1183 if (dl_se->runtime > 0) 1184 dl_se->runtime = 0; 1185 } 1186 } 1187 1188 static 1189 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1190 { 1191 return (dl_se->runtime <= 0); 1192 } 1193 1194 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 1195 1196 /* 1197 * This function implements the GRUB accounting rule: 1198 * according to the GRUB reclaiming algorithm, the runtime is 1199 * not decreased as "dq = -dt", but as 1200 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1201 * where u is the utilization of the task, Umax is the maximum reclaimable 1202 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1203 * as the difference between the "total runqueue utilization" and the 1204 * runqueue active utilization, and Uextra is the (per runqueue) extra 1205 * reclaimable utilization. 1206 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1207 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1208 * BW_SHIFT. 1209 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, 1210 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1211 * Since delta is a 64 bit variable, to have an overflow its value 1212 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1213 * So, overflow is not an issue here. 1214 */ 1215 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1216 { 1217 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1218 u64 u_act; 1219 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1220 1221 /* 1222 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1223 * we compare u_inact + rq->dl.extra_bw with 1224 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1225 * u_inact + rq->dl.extra_bw can be larger than 1226 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1227 * leading to wrong results) 1228 */ 1229 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1230 u_act = u_act_min; 1231 else 1232 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1233 1234 return (delta * u_act) >> BW_SHIFT; 1235 } 1236 1237 /* 1238 * Update the current task's runtime statistics (provided it is still 1239 * a -deadline task and has not been removed from the dl_rq). 1240 */ 1241 static void update_curr_dl(struct rq *rq) 1242 { 1243 struct task_struct *curr = rq->curr; 1244 struct sched_dl_entity *dl_se = &curr->dl; 1245 u64 delta_exec, scaled_delta_exec; 1246 int cpu = cpu_of(rq); 1247 u64 now; 1248 1249 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1250 return; 1251 1252 /* 1253 * Consumed budget is computed considering the time as 1254 * observed by schedulable tasks (excluding time spent 1255 * in hardirq context, etc.). Deadlines are instead 1256 * computed using hard walltime. This seems to be the more 1257 * natural solution, but the full ramifications of this 1258 * approach need further study. 1259 */ 1260 now = rq_clock_task(rq); 1261 delta_exec = now - curr->se.exec_start; 1262 if (unlikely((s64)delta_exec <= 0)) { 1263 if (unlikely(dl_se->dl_yielded)) 1264 goto throttle; 1265 return; 1266 } 1267 1268 schedstat_set(curr->se.statistics.exec_max, 1269 max(curr->se.statistics.exec_max, delta_exec)); 1270 1271 curr->se.sum_exec_runtime += delta_exec; 1272 account_group_exec_runtime(curr, delta_exec); 1273 1274 curr->se.exec_start = now; 1275 cgroup_account_cputime(curr, delta_exec); 1276 1277 if (dl_entity_is_special(dl_se)) 1278 return; 1279 1280 /* 1281 * For tasks that participate in GRUB, we implement GRUB-PA: the 1282 * spare reclaimed bandwidth is used to clock down frequency. 1283 * 1284 * For the others, we still need to scale reservation parameters 1285 * according to current frequency and CPU maximum capacity. 1286 */ 1287 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1288 scaled_delta_exec = grub_reclaim(delta_exec, 1289 rq, 1290 &curr->dl); 1291 } else { 1292 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1293 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1294 1295 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1296 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1297 } 1298 1299 dl_se->runtime -= scaled_delta_exec; 1300 1301 throttle: 1302 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1303 dl_se->dl_throttled = 1; 1304 1305 /* If requested, inform the user about runtime overruns. */ 1306 if (dl_runtime_exceeded(dl_se) && 1307 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1308 dl_se->dl_overrun = 1; 1309 1310 __dequeue_task_dl(rq, curr, 0); 1311 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr))) 1312 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1313 1314 if (!is_leftmost(curr, &rq->dl)) 1315 resched_curr(rq); 1316 } 1317 1318 /* 1319 * Because -- for now -- we share the rt bandwidth, we need to 1320 * account our runtime there too, otherwise actual rt tasks 1321 * would be able to exceed the shared quota. 1322 * 1323 * Account to the root rt group for now. 1324 * 1325 * The solution we're working towards is having the RT groups scheduled 1326 * using deadline servers -- however there's a few nasties to figure 1327 * out before that can happen. 1328 */ 1329 if (rt_bandwidth_enabled()) { 1330 struct rt_rq *rt_rq = &rq->rt; 1331 1332 raw_spin_lock(&rt_rq->rt_runtime_lock); 1333 /* 1334 * We'll let actual RT tasks worry about the overflow here, we 1335 * have our own CBS to keep us inline; only account when RT 1336 * bandwidth is relevant. 1337 */ 1338 if (sched_rt_bandwidth_account(rt_rq)) 1339 rt_rq->rt_time += delta_exec; 1340 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1341 } 1342 } 1343 1344 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1345 { 1346 struct sched_dl_entity *dl_se = container_of(timer, 1347 struct sched_dl_entity, 1348 inactive_timer); 1349 struct task_struct *p = dl_task_of(dl_se); 1350 struct rq_flags rf; 1351 struct rq *rq; 1352 1353 rq = task_rq_lock(p, &rf); 1354 1355 sched_clock_tick(); 1356 update_rq_clock(rq); 1357 1358 if (!dl_task(p) || p->state == TASK_DEAD) { 1359 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1360 1361 if (p->state == TASK_DEAD && dl_se->dl_non_contending) { 1362 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1363 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1364 dl_se->dl_non_contending = 0; 1365 } 1366 1367 raw_spin_lock(&dl_b->lock); 1368 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1369 raw_spin_unlock(&dl_b->lock); 1370 __dl_clear_params(p); 1371 1372 goto unlock; 1373 } 1374 if (dl_se->dl_non_contending == 0) 1375 goto unlock; 1376 1377 sub_running_bw(dl_se, &rq->dl); 1378 dl_se->dl_non_contending = 0; 1379 unlock: 1380 task_rq_unlock(rq, p, &rf); 1381 put_task_struct(p); 1382 1383 return HRTIMER_NORESTART; 1384 } 1385 1386 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1387 { 1388 struct hrtimer *timer = &dl_se->inactive_timer; 1389 1390 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1391 timer->function = inactive_task_timer; 1392 } 1393 1394 #ifdef CONFIG_SMP 1395 1396 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1397 { 1398 struct rq *rq = rq_of_dl_rq(dl_rq); 1399 1400 if (dl_rq->earliest_dl.curr == 0 || 1401 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1402 if (dl_rq->earliest_dl.curr == 0) 1403 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1404 dl_rq->earliest_dl.curr = deadline; 1405 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1406 } 1407 } 1408 1409 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1410 { 1411 struct rq *rq = rq_of_dl_rq(dl_rq); 1412 1413 /* 1414 * Since we may have removed our earliest (and/or next earliest) 1415 * task we must recompute them. 1416 */ 1417 if (!dl_rq->dl_nr_running) { 1418 dl_rq->earliest_dl.curr = 0; 1419 dl_rq->earliest_dl.next = 0; 1420 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1421 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1422 } else { 1423 struct rb_node *leftmost = dl_rq->root.rb_leftmost; 1424 struct sched_dl_entity *entry; 1425 1426 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 1427 dl_rq->earliest_dl.curr = entry->deadline; 1428 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1429 } 1430 } 1431 1432 #else 1433 1434 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1435 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1436 1437 #endif /* CONFIG_SMP */ 1438 1439 static inline 1440 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1441 { 1442 int prio = dl_task_of(dl_se)->prio; 1443 u64 deadline = dl_se->deadline; 1444 1445 WARN_ON(!dl_prio(prio)); 1446 dl_rq->dl_nr_running++; 1447 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1448 1449 inc_dl_deadline(dl_rq, deadline); 1450 inc_dl_migration(dl_se, dl_rq); 1451 } 1452 1453 static inline 1454 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1455 { 1456 int prio = dl_task_of(dl_se)->prio; 1457 1458 WARN_ON(!dl_prio(prio)); 1459 WARN_ON(!dl_rq->dl_nr_running); 1460 dl_rq->dl_nr_running--; 1461 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1462 1463 dec_dl_deadline(dl_rq, dl_se->deadline); 1464 dec_dl_migration(dl_se, dl_rq); 1465 } 1466 1467 #define __node_2_dle(node) \ 1468 rb_entry((node), struct sched_dl_entity, rb_node) 1469 1470 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1471 { 1472 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1473 } 1474 1475 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1476 { 1477 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1478 1479 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 1480 1481 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1482 1483 inc_dl_tasks(dl_se, dl_rq); 1484 } 1485 1486 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1487 { 1488 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1489 1490 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1491 return; 1492 1493 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1494 1495 RB_CLEAR_NODE(&dl_se->rb_node); 1496 1497 dec_dl_tasks(dl_se, dl_rq); 1498 } 1499 1500 static void 1501 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1502 { 1503 BUG_ON(on_dl_rq(dl_se)); 1504 1505 /* 1506 * If this is a wakeup or a new instance, the scheduling 1507 * parameters of the task might need updating. Otherwise, 1508 * we want a replenishment of its runtime. 1509 */ 1510 if (flags & ENQUEUE_WAKEUP) { 1511 task_contending(dl_se, flags); 1512 update_dl_entity(dl_se); 1513 } else if (flags & ENQUEUE_REPLENISH) { 1514 replenish_dl_entity(dl_se); 1515 } else if ((flags & ENQUEUE_RESTORE) && 1516 dl_time_before(dl_se->deadline, 1517 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1518 setup_new_dl_entity(dl_se); 1519 } 1520 1521 __enqueue_dl_entity(dl_se); 1522 } 1523 1524 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1525 { 1526 __dequeue_dl_entity(dl_se); 1527 } 1528 1529 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1530 { 1531 if (is_dl_boosted(&p->dl)) { 1532 /* 1533 * Because of delays in the detection of the overrun of a 1534 * thread's runtime, it might be the case that a thread 1535 * goes to sleep in a rt mutex with negative runtime. As 1536 * a consequence, the thread will be throttled. 1537 * 1538 * While waiting for the mutex, this thread can also be 1539 * boosted via PI, resulting in a thread that is throttled 1540 * and boosted at the same time. 1541 * 1542 * In this case, the boost overrides the throttle. 1543 */ 1544 if (p->dl.dl_throttled) { 1545 /* 1546 * The replenish timer needs to be canceled. No 1547 * problem if it fires concurrently: boosted threads 1548 * are ignored in dl_task_timer(). 1549 */ 1550 hrtimer_try_to_cancel(&p->dl.dl_timer); 1551 p->dl.dl_throttled = 0; 1552 } 1553 } else if (!dl_prio(p->normal_prio)) { 1554 /* 1555 * Special case in which we have a !SCHED_DEADLINE task that is going 1556 * to be deboosted, but exceeds its runtime while doing so. No point in 1557 * replenishing it, as it's going to return back to its original 1558 * scheduling class after this. If it has been throttled, we need to 1559 * clear the flag, otherwise the task may wake up as throttled after 1560 * being boosted again with no means to replenish the runtime and clear 1561 * the throttle. 1562 */ 1563 p->dl.dl_throttled = 0; 1564 BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH); 1565 return; 1566 } 1567 1568 /* 1569 * Check if a constrained deadline task was activated 1570 * after the deadline but before the next period. 1571 * If that is the case, the task will be throttled and 1572 * the replenishment timer will be set to the next period. 1573 */ 1574 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1575 dl_check_constrained_dl(&p->dl); 1576 1577 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1578 add_rq_bw(&p->dl, &rq->dl); 1579 add_running_bw(&p->dl, &rq->dl); 1580 } 1581 1582 /* 1583 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1584 * its budget it needs a replenishment and, since it now is on 1585 * its rq, the bandwidth timer callback (which clearly has not 1586 * run yet) will take care of this. 1587 * However, the active utilization does not depend on the fact 1588 * that the task is on the runqueue or not (but depends on the 1589 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1590 * In other words, even if a task is throttled its utilization must 1591 * be counted in the active utilization; hence, we need to call 1592 * add_running_bw(). 1593 */ 1594 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1595 if (flags & ENQUEUE_WAKEUP) 1596 task_contending(&p->dl, flags); 1597 1598 return; 1599 } 1600 1601 enqueue_dl_entity(&p->dl, flags); 1602 1603 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1604 enqueue_pushable_dl_task(rq, p); 1605 } 1606 1607 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1608 { 1609 dequeue_dl_entity(&p->dl); 1610 dequeue_pushable_dl_task(rq, p); 1611 } 1612 1613 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1614 { 1615 update_curr_dl(rq); 1616 __dequeue_task_dl(rq, p, flags); 1617 1618 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1619 sub_running_bw(&p->dl, &rq->dl); 1620 sub_rq_bw(&p->dl, &rq->dl); 1621 } 1622 1623 /* 1624 * This check allows to start the inactive timer (or to immediately 1625 * decrease the active utilization, if needed) in two cases: 1626 * when the task blocks and when it is terminating 1627 * (p->state == TASK_DEAD). We can handle the two cases in the same 1628 * way, because from GRUB's point of view the same thing is happening 1629 * (the task moves from "active contending" to "active non contending" 1630 * or "inactive") 1631 */ 1632 if (flags & DEQUEUE_SLEEP) 1633 task_non_contending(p); 1634 } 1635 1636 /* 1637 * Yield task semantic for -deadline tasks is: 1638 * 1639 * get off from the CPU until our next instance, with 1640 * a new runtime. This is of little use now, since we 1641 * don't have a bandwidth reclaiming mechanism. Anyway, 1642 * bandwidth reclaiming is planned for the future, and 1643 * yield_task_dl will indicate that some spare budget 1644 * is available for other task instances to use it. 1645 */ 1646 static void yield_task_dl(struct rq *rq) 1647 { 1648 /* 1649 * We make the task go to sleep until its current deadline by 1650 * forcing its runtime to zero. This way, update_curr_dl() stops 1651 * it and the bandwidth timer will wake it up and will give it 1652 * new scheduling parameters (thanks to dl_yielded=1). 1653 */ 1654 rq->curr->dl.dl_yielded = 1; 1655 1656 update_rq_clock(rq); 1657 update_curr_dl(rq); 1658 /* 1659 * Tell update_rq_clock() that we've just updated, 1660 * so we don't do microscopic update in schedule() 1661 * and double the fastpath cost. 1662 */ 1663 rq_clock_skip_update(rq); 1664 } 1665 1666 #ifdef CONFIG_SMP 1667 1668 static int find_later_rq(struct task_struct *task); 1669 1670 static int 1671 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 1672 { 1673 struct task_struct *curr; 1674 bool select_rq; 1675 struct rq *rq; 1676 1677 if (!(flags & WF_TTWU)) 1678 goto out; 1679 1680 rq = cpu_rq(cpu); 1681 1682 rcu_read_lock(); 1683 curr = READ_ONCE(rq->curr); /* unlocked access */ 1684 1685 /* 1686 * If we are dealing with a -deadline task, we must 1687 * decide where to wake it up. 1688 * If it has a later deadline and the current task 1689 * on this rq can't move (provided the waking task 1690 * can!) we prefer to send it somewhere else. On the 1691 * other hand, if it has a shorter deadline, we 1692 * try to make it stay here, it might be important. 1693 */ 1694 select_rq = unlikely(dl_task(curr)) && 1695 (curr->nr_cpus_allowed < 2 || 1696 !dl_entity_preempt(&p->dl, &curr->dl)) && 1697 p->nr_cpus_allowed > 1; 1698 1699 /* 1700 * Take the capacity of the CPU into account to 1701 * ensure it fits the requirement of the task. 1702 */ 1703 if (static_branch_unlikely(&sched_asym_cpucapacity)) 1704 select_rq |= !dl_task_fits_capacity(p, cpu); 1705 1706 if (select_rq) { 1707 int target = find_later_rq(p); 1708 1709 if (target != -1 && 1710 (dl_time_before(p->dl.deadline, 1711 cpu_rq(target)->dl.earliest_dl.curr) || 1712 (cpu_rq(target)->dl.dl_nr_running == 0))) 1713 cpu = target; 1714 } 1715 rcu_read_unlock(); 1716 1717 out: 1718 return cpu; 1719 } 1720 1721 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1722 { 1723 struct rq *rq; 1724 1725 if (p->state != TASK_WAKING) 1726 return; 1727 1728 rq = task_rq(p); 1729 /* 1730 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1731 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1732 * rq->lock is not... So, lock it 1733 */ 1734 raw_spin_lock(&rq->lock); 1735 if (p->dl.dl_non_contending) { 1736 sub_running_bw(&p->dl, &rq->dl); 1737 p->dl.dl_non_contending = 0; 1738 /* 1739 * If the timer handler is currently running and the 1740 * timer cannot be canceled, inactive_task_timer() 1741 * will see that dl_not_contending is not set, and 1742 * will not touch the rq's active utilization, 1743 * so we are still safe. 1744 */ 1745 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1746 put_task_struct(p); 1747 } 1748 sub_rq_bw(&p->dl, &rq->dl); 1749 raw_spin_unlock(&rq->lock); 1750 } 1751 1752 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1753 { 1754 /* 1755 * Current can't be migrated, useless to reschedule, 1756 * let's hope p can move out. 1757 */ 1758 if (rq->curr->nr_cpus_allowed == 1 || 1759 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1760 return; 1761 1762 /* 1763 * p is migratable, so let's not schedule it and 1764 * see if it is pushed or pulled somewhere else. 1765 */ 1766 if (p->nr_cpus_allowed != 1 && 1767 cpudl_find(&rq->rd->cpudl, p, NULL)) 1768 return; 1769 1770 resched_curr(rq); 1771 } 1772 1773 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1774 { 1775 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 1776 /* 1777 * This is OK, because current is on_cpu, which avoids it being 1778 * picked for load-balance and preemption/IRQs are still 1779 * disabled avoiding further scheduler activity on it and we've 1780 * not yet started the picking loop. 1781 */ 1782 rq_unpin_lock(rq, rf); 1783 pull_dl_task(rq); 1784 rq_repin_lock(rq, rf); 1785 } 1786 1787 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 1788 } 1789 #endif /* CONFIG_SMP */ 1790 1791 /* 1792 * Only called when both the current and waking task are -deadline 1793 * tasks. 1794 */ 1795 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1796 int flags) 1797 { 1798 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1799 resched_curr(rq); 1800 return; 1801 } 1802 1803 #ifdef CONFIG_SMP 1804 /* 1805 * In the unlikely case current and p have the same deadline 1806 * let us try to decide what's the best thing to do... 1807 */ 1808 if ((p->dl.deadline == rq->curr->dl.deadline) && 1809 !test_tsk_need_resched(rq->curr)) 1810 check_preempt_equal_dl(rq, p); 1811 #endif /* CONFIG_SMP */ 1812 } 1813 1814 #ifdef CONFIG_SCHED_HRTICK 1815 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1816 { 1817 hrtick_start(rq, p->dl.runtime); 1818 } 1819 #else /* !CONFIG_SCHED_HRTICK */ 1820 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1821 { 1822 } 1823 #endif 1824 1825 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 1826 { 1827 p->se.exec_start = rq_clock_task(rq); 1828 1829 /* You can't push away the running task */ 1830 dequeue_pushable_dl_task(rq, p); 1831 1832 if (!first) 1833 return; 1834 1835 if (hrtick_enabled_dl(rq)) 1836 start_hrtick_dl(rq, p); 1837 1838 if (rq->curr->sched_class != &dl_sched_class) 1839 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1840 1841 deadline_queue_push_tasks(rq); 1842 } 1843 1844 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1845 struct dl_rq *dl_rq) 1846 { 1847 struct rb_node *left = rb_first_cached(&dl_rq->root); 1848 1849 if (!left) 1850 return NULL; 1851 1852 return rb_entry(left, struct sched_dl_entity, rb_node); 1853 } 1854 1855 static struct task_struct *pick_next_task_dl(struct rq *rq) 1856 { 1857 struct sched_dl_entity *dl_se; 1858 struct dl_rq *dl_rq = &rq->dl; 1859 struct task_struct *p; 1860 1861 if (!sched_dl_runnable(rq)) 1862 return NULL; 1863 1864 dl_se = pick_next_dl_entity(rq, dl_rq); 1865 BUG_ON(!dl_se); 1866 p = dl_task_of(dl_se); 1867 set_next_task_dl(rq, p, true); 1868 return p; 1869 } 1870 1871 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1872 { 1873 update_curr_dl(rq); 1874 1875 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1876 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1877 enqueue_pushable_dl_task(rq, p); 1878 } 1879 1880 /* 1881 * scheduler tick hitting a task of our scheduling class. 1882 * 1883 * NOTE: This function can be called remotely by the tick offload that 1884 * goes along full dynticks. Therefore no local assumption can be made 1885 * and everything must be accessed through the @rq and @curr passed in 1886 * parameters. 1887 */ 1888 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1889 { 1890 update_curr_dl(rq); 1891 1892 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1893 /* 1894 * Even when we have runtime, update_curr_dl() might have resulted in us 1895 * not being the leftmost task anymore. In that case NEED_RESCHED will 1896 * be set and schedule() will start a new hrtick for the next task. 1897 */ 1898 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 1899 is_leftmost(p, &rq->dl)) 1900 start_hrtick_dl(rq, p); 1901 } 1902 1903 static void task_fork_dl(struct task_struct *p) 1904 { 1905 /* 1906 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1907 * sched_fork() 1908 */ 1909 } 1910 1911 #ifdef CONFIG_SMP 1912 1913 /* Only try algorithms three times */ 1914 #define DL_MAX_TRIES 3 1915 1916 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1917 { 1918 if (!task_running(rq, p) && 1919 cpumask_test_cpu(cpu, &p->cpus_mask)) 1920 return 1; 1921 return 0; 1922 } 1923 1924 /* 1925 * Return the earliest pushable rq's task, which is suitable to be executed 1926 * on the CPU, NULL otherwise: 1927 */ 1928 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1929 { 1930 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; 1931 struct task_struct *p = NULL; 1932 1933 if (!has_pushable_dl_tasks(rq)) 1934 return NULL; 1935 1936 next_node: 1937 if (next_node) { 1938 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1939 1940 if (pick_dl_task(rq, p, cpu)) 1941 return p; 1942 1943 next_node = rb_next(next_node); 1944 goto next_node; 1945 } 1946 1947 return NULL; 1948 } 1949 1950 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1951 1952 static int find_later_rq(struct task_struct *task) 1953 { 1954 struct sched_domain *sd; 1955 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1956 int this_cpu = smp_processor_id(); 1957 int cpu = task_cpu(task); 1958 1959 /* Make sure the mask is initialized first */ 1960 if (unlikely(!later_mask)) 1961 return -1; 1962 1963 if (task->nr_cpus_allowed == 1) 1964 return -1; 1965 1966 /* 1967 * We have to consider system topology and task affinity 1968 * first, then we can look for a suitable CPU. 1969 */ 1970 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 1971 return -1; 1972 1973 /* 1974 * If we are here, some targets have been found, including 1975 * the most suitable which is, among the runqueues where the 1976 * current tasks have later deadlines than the task's one, the 1977 * rq with the latest possible one. 1978 * 1979 * Now we check how well this matches with task's 1980 * affinity and system topology. 1981 * 1982 * The last CPU where the task run is our first 1983 * guess, since it is most likely cache-hot there. 1984 */ 1985 if (cpumask_test_cpu(cpu, later_mask)) 1986 return cpu; 1987 /* 1988 * Check if this_cpu is to be skipped (i.e., it is 1989 * not in the mask) or not. 1990 */ 1991 if (!cpumask_test_cpu(this_cpu, later_mask)) 1992 this_cpu = -1; 1993 1994 rcu_read_lock(); 1995 for_each_domain(cpu, sd) { 1996 if (sd->flags & SD_WAKE_AFFINE) { 1997 int best_cpu; 1998 1999 /* 2000 * If possible, preempting this_cpu is 2001 * cheaper than migrating. 2002 */ 2003 if (this_cpu != -1 && 2004 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2005 rcu_read_unlock(); 2006 return this_cpu; 2007 } 2008 2009 best_cpu = cpumask_any_and_distribute(later_mask, 2010 sched_domain_span(sd)); 2011 /* 2012 * Last chance: if a CPU being in both later_mask 2013 * and current sd span is valid, that becomes our 2014 * choice. Of course, the latest possible CPU is 2015 * already under consideration through later_mask. 2016 */ 2017 if (best_cpu < nr_cpu_ids) { 2018 rcu_read_unlock(); 2019 return best_cpu; 2020 } 2021 } 2022 } 2023 rcu_read_unlock(); 2024 2025 /* 2026 * At this point, all our guesses failed, we just return 2027 * 'something', and let the caller sort the things out. 2028 */ 2029 if (this_cpu != -1) 2030 return this_cpu; 2031 2032 cpu = cpumask_any_distribute(later_mask); 2033 if (cpu < nr_cpu_ids) 2034 return cpu; 2035 2036 return -1; 2037 } 2038 2039 /* Locks the rq it finds */ 2040 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2041 { 2042 struct rq *later_rq = NULL; 2043 int tries; 2044 int cpu; 2045 2046 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2047 cpu = find_later_rq(task); 2048 2049 if ((cpu == -1) || (cpu == rq->cpu)) 2050 break; 2051 2052 later_rq = cpu_rq(cpu); 2053 2054 if (later_rq->dl.dl_nr_running && 2055 !dl_time_before(task->dl.deadline, 2056 later_rq->dl.earliest_dl.curr)) { 2057 /* 2058 * Target rq has tasks of equal or earlier deadline, 2059 * retrying does not release any lock and is unlikely 2060 * to yield a different result. 2061 */ 2062 later_rq = NULL; 2063 break; 2064 } 2065 2066 /* Retry if something changed. */ 2067 if (double_lock_balance(rq, later_rq)) { 2068 if (unlikely(task_rq(task) != rq || 2069 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2070 task_running(rq, task) || 2071 !dl_task(task) || 2072 !task_on_rq_queued(task))) { 2073 double_unlock_balance(rq, later_rq); 2074 later_rq = NULL; 2075 break; 2076 } 2077 } 2078 2079 /* 2080 * If the rq we found has no -deadline task, or 2081 * its earliest one has a later deadline than our 2082 * task, the rq is a good one. 2083 */ 2084 if (!later_rq->dl.dl_nr_running || 2085 dl_time_before(task->dl.deadline, 2086 later_rq->dl.earliest_dl.curr)) 2087 break; 2088 2089 /* Otherwise we try again. */ 2090 double_unlock_balance(rq, later_rq); 2091 later_rq = NULL; 2092 } 2093 2094 return later_rq; 2095 } 2096 2097 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2098 { 2099 struct task_struct *p; 2100 2101 if (!has_pushable_dl_tasks(rq)) 2102 return NULL; 2103 2104 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, 2105 struct task_struct, pushable_dl_tasks); 2106 2107 BUG_ON(rq->cpu != task_cpu(p)); 2108 BUG_ON(task_current(rq, p)); 2109 BUG_ON(p->nr_cpus_allowed <= 1); 2110 2111 BUG_ON(!task_on_rq_queued(p)); 2112 BUG_ON(!dl_task(p)); 2113 2114 return p; 2115 } 2116 2117 /* 2118 * See if the non running -deadline tasks on this rq 2119 * can be sent to some other CPU where they can preempt 2120 * and start executing. 2121 */ 2122 static int push_dl_task(struct rq *rq) 2123 { 2124 struct task_struct *next_task; 2125 struct rq *later_rq; 2126 int ret = 0; 2127 2128 if (!rq->dl.overloaded) 2129 return 0; 2130 2131 next_task = pick_next_pushable_dl_task(rq); 2132 if (!next_task) 2133 return 0; 2134 2135 retry: 2136 if (is_migration_disabled(next_task)) 2137 return 0; 2138 2139 if (WARN_ON(next_task == rq->curr)) 2140 return 0; 2141 2142 /* 2143 * If next_task preempts rq->curr, and rq->curr 2144 * can move away, it makes sense to just reschedule 2145 * without going further in pushing next_task. 2146 */ 2147 if (dl_task(rq->curr) && 2148 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2149 rq->curr->nr_cpus_allowed > 1) { 2150 resched_curr(rq); 2151 return 0; 2152 } 2153 2154 /* We might release rq lock */ 2155 get_task_struct(next_task); 2156 2157 /* Will lock the rq it'll find */ 2158 later_rq = find_lock_later_rq(next_task, rq); 2159 if (!later_rq) { 2160 struct task_struct *task; 2161 2162 /* 2163 * We must check all this again, since 2164 * find_lock_later_rq releases rq->lock and it is 2165 * then possible that next_task has migrated. 2166 */ 2167 task = pick_next_pushable_dl_task(rq); 2168 if (task == next_task) { 2169 /* 2170 * The task is still there. We don't try 2171 * again, some other CPU will pull it when ready. 2172 */ 2173 goto out; 2174 } 2175 2176 if (!task) 2177 /* No more tasks */ 2178 goto out; 2179 2180 put_task_struct(next_task); 2181 next_task = task; 2182 goto retry; 2183 } 2184 2185 deactivate_task(rq, next_task, 0); 2186 set_task_cpu(next_task, later_rq->cpu); 2187 2188 /* 2189 * Update the later_rq clock here, because the clock is used 2190 * by the cpufreq_update_util() inside __add_running_bw(). 2191 */ 2192 update_rq_clock(later_rq); 2193 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK); 2194 ret = 1; 2195 2196 resched_curr(later_rq); 2197 2198 double_unlock_balance(rq, later_rq); 2199 2200 out: 2201 put_task_struct(next_task); 2202 2203 return ret; 2204 } 2205 2206 static void push_dl_tasks(struct rq *rq) 2207 { 2208 /* push_dl_task() will return true if it moved a -deadline task */ 2209 while (push_dl_task(rq)) 2210 ; 2211 } 2212 2213 static void pull_dl_task(struct rq *this_rq) 2214 { 2215 int this_cpu = this_rq->cpu, cpu; 2216 struct task_struct *p, *push_task; 2217 bool resched = false; 2218 struct rq *src_rq; 2219 u64 dmin = LONG_MAX; 2220 2221 if (likely(!dl_overloaded(this_rq))) 2222 return; 2223 2224 /* 2225 * Match the barrier from dl_set_overloaded; this guarantees that if we 2226 * see overloaded we must also see the dlo_mask bit. 2227 */ 2228 smp_rmb(); 2229 2230 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2231 if (this_cpu == cpu) 2232 continue; 2233 2234 src_rq = cpu_rq(cpu); 2235 2236 /* 2237 * It looks racy, abd it is! However, as in sched_rt.c, 2238 * we are fine with this. 2239 */ 2240 if (this_rq->dl.dl_nr_running && 2241 dl_time_before(this_rq->dl.earliest_dl.curr, 2242 src_rq->dl.earliest_dl.next)) 2243 continue; 2244 2245 /* Might drop this_rq->lock */ 2246 push_task = NULL; 2247 double_lock_balance(this_rq, src_rq); 2248 2249 /* 2250 * If there are no more pullable tasks on the 2251 * rq, we're done with it. 2252 */ 2253 if (src_rq->dl.dl_nr_running <= 1) 2254 goto skip; 2255 2256 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2257 2258 /* 2259 * We found a task to be pulled if: 2260 * - it preempts our current (if there's one), 2261 * - it will preempt the last one we pulled (if any). 2262 */ 2263 if (p && dl_time_before(p->dl.deadline, dmin) && 2264 (!this_rq->dl.dl_nr_running || 2265 dl_time_before(p->dl.deadline, 2266 this_rq->dl.earliest_dl.curr))) { 2267 WARN_ON(p == src_rq->curr); 2268 WARN_ON(!task_on_rq_queued(p)); 2269 2270 /* 2271 * Then we pull iff p has actually an earlier 2272 * deadline than the current task of its runqueue. 2273 */ 2274 if (dl_time_before(p->dl.deadline, 2275 src_rq->curr->dl.deadline)) 2276 goto skip; 2277 2278 if (is_migration_disabled(p)) { 2279 push_task = get_push_task(src_rq); 2280 } else { 2281 deactivate_task(src_rq, p, 0); 2282 set_task_cpu(p, this_cpu); 2283 activate_task(this_rq, p, 0); 2284 dmin = p->dl.deadline; 2285 resched = true; 2286 } 2287 2288 /* Is there any other task even earlier? */ 2289 } 2290 skip: 2291 double_unlock_balance(this_rq, src_rq); 2292 2293 if (push_task) { 2294 raw_spin_unlock(&this_rq->lock); 2295 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2296 push_task, &src_rq->push_work); 2297 raw_spin_lock(&this_rq->lock); 2298 } 2299 } 2300 2301 if (resched) 2302 resched_curr(this_rq); 2303 } 2304 2305 /* 2306 * Since the task is not running and a reschedule is not going to happen 2307 * anytime soon on its runqueue, we try pushing it away now. 2308 */ 2309 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2310 { 2311 if (!task_running(rq, p) && 2312 !test_tsk_need_resched(rq->curr) && 2313 p->nr_cpus_allowed > 1 && 2314 dl_task(rq->curr) && 2315 (rq->curr->nr_cpus_allowed < 2 || 2316 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2317 push_dl_tasks(rq); 2318 } 2319 } 2320 2321 static void set_cpus_allowed_dl(struct task_struct *p, 2322 const struct cpumask *new_mask, 2323 u32 flags) 2324 { 2325 struct root_domain *src_rd; 2326 struct rq *rq; 2327 2328 BUG_ON(!dl_task(p)); 2329 2330 rq = task_rq(p); 2331 src_rd = rq->rd; 2332 /* 2333 * Migrating a SCHED_DEADLINE task between exclusive 2334 * cpusets (different root_domains) entails a bandwidth 2335 * update. We already made space for us in the destination 2336 * domain (see cpuset_can_attach()). 2337 */ 2338 if (!cpumask_intersects(src_rd->span, new_mask)) { 2339 struct dl_bw *src_dl_b; 2340 2341 src_dl_b = dl_bw_of(cpu_of(rq)); 2342 /* 2343 * We now free resources of the root_domain we are migrating 2344 * off. In the worst case, sched_setattr() may temporary fail 2345 * until we complete the update. 2346 */ 2347 raw_spin_lock(&src_dl_b->lock); 2348 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2349 raw_spin_unlock(&src_dl_b->lock); 2350 } 2351 2352 set_cpus_allowed_common(p, new_mask, flags); 2353 } 2354 2355 /* Assumes rq->lock is held */ 2356 static void rq_online_dl(struct rq *rq) 2357 { 2358 if (rq->dl.overloaded) 2359 dl_set_overload(rq); 2360 2361 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2362 if (rq->dl.dl_nr_running > 0) 2363 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2364 } 2365 2366 /* Assumes rq->lock is held */ 2367 static void rq_offline_dl(struct rq *rq) 2368 { 2369 if (rq->dl.overloaded) 2370 dl_clear_overload(rq); 2371 2372 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2373 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2374 } 2375 2376 void __init init_sched_dl_class(void) 2377 { 2378 unsigned int i; 2379 2380 for_each_possible_cpu(i) 2381 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2382 GFP_KERNEL, cpu_to_node(i)); 2383 } 2384 2385 void dl_add_task_root_domain(struct task_struct *p) 2386 { 2387 struct rq_flags rf; 2388 struct rq *rq; 2389 struct dl_bw *dl_b; 2390 2391 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2392 if (!dl_task(p)) { 2393 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2394 return; 2395 } 2396 2397 rq = __task_rq_lock(p, &rf); 2398 2399 dl_b = &rq->rd->dl_bw; 2400 raw_spin_lock(&dl_b->lock); 2401 2402 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2403 2404 raw_spin_unlock(&dl_b->lock); 2405 2406 task_rq_unlock(rq, p, &rf); 2407 } 2408 2409 void dl_clear_root_domain(struct root_domain *rd) 2410 { 2411 unsigned long flags; 2412 2413 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2414 rd->dl_bw.total_bw = 0; 2415 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2416 } 2417 2418 #endif /* CONFIG_SMP */ 2419 2420 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2421 { 2422 /* 2423 * task_non_contending() can start the "inactive timer" (if the 0-lag 2424 * time is in the future). If the task switches back to dl before 2425 * the "inactive timer" fires, it can continue to consume its current 2426 * runtime using its current deadline. If it stays outside of 2427 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2428 * will reset the task parameters. 2429 */ 2430 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2431 task_non_contending(p); 2432 2433 if (!task_on_rq_queued(p)) { 2434 /* 2435 * Inactive timer is armed. However, p is leaving DEADLINE and 2436 * might migrate away from this rq while continuing to run on 2437 * some other class. We need to remove its contribution from 2438 * this rq running_bw now, or sub_rq_bw (below) will complain. 2439 */ 2440 if (p->dl.dl_non_contending) 2441 sub_running_bw(&p->dl, &rq->dl); 2442 sub_rq_bw(&p->dl, &rq->dl); 2443 } 2444 2445 /* 2446 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2447 * at the 0-lag time, because the task could have been migrated 2448 * while SCHED_OTHER in the meanwhile. 2449 */ 2450 if (p->dl.dl_non_contending) 2451 p->dl.dl_non_contending = 0; 2452 2453 /* 2454 * Since this might be the only -deadline task on the rq, 2455 * this is the right place to try to pull some other one 2456 * from an overloaded CPU, if any. 2457 */ 2458 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2459 return; 2460 2461 deadline_queue_pull_task(rq); 2462 } 2463 2464 /* 2465 * When switching to -deadline, we may overload the rq, then 2466 * we try to push someone off, if possible. 2467 */ 2468 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2469 { 2470 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2471 put_task_struct(p); 2472 2473 /* If p is not queued we will update its parameters at next wakeup. */ 2474 if (!task_on_rq_queued(p)) { 2475 add_rq_bw(&p->dl, &rq->dl); 2476 2477 return; 2478 } 2479 2480 if (rq->curr != p) { 2481 #ifdef CONFIG_SMP 2482 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2483 deadline_queue_push_tasks(rq); 2484 #endif 2485 if (dl_task(rq->curr)) 2486 check_preempt_curr_dl(rq, p, 0); 2487 else 2488 resched_curr(rq); 2489 } 2490 } 2491 2492 /* 2493 * If the scheduling parameters of a -deadline task changed, 2494 * a push or pull operation might be needed. 2495 */ 2496 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2497 int oldprio) 2498 { 2499 if (task_on_rq_queued(p) || task_current(rq, p)) { 2500 #ifdef CONFIG_SMP 2501 /* 2502 * This might be too much, but unfortunately 2503 * we don't have the old deadline value, and 2504 * we can't argue if the task is increasing 2505 * or lowering its prio, so... 2506 */ 2507 if (!rq->dl.overloaded) 2508 deadline_queue_pull_task(rq); 2509 2510 /* 2511 * If we now have a earlier deadline task than p, 2512 * then reschedule, provided p is still on this 2513 * runqueue. 2514 */ 2515 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2516 resched_curr(rq); 2517 #else 2518 /* 2519 * Again, we don't know if p has a earlier 2520 * or later deadline, so let's blindly set a 2521 * (maybe not needed) rescheduling point. 2522 */ 2523 resched_curr(rq); 2524 #endif /* CONFIG_SMP */ 2525 } 2526 } 2527 2528 DEFINE_SCHED_CLASS(dl) = { 2529 2530 .enqueue_task = enqueue_task_dl, 2531 .dequeue_task = dequeue_task_dl, 2532 .yield_task = yield_task_dl, 2533 2534 .check_preempt_curr = check_preempt_curr_dl, 2535 2536 .pick_next_task = pick_next_task_dl, 2537 .put_prev_task = put_prev_task_dl, 2538 .set_next_task = set_next_task_dl, 2539 2540 #ifdef CONFIG_SMP 2541 .balance = balance_dl, 2542 .select_task_rq = select_task_rq_dl, 2543 .migrate_task_rq = migrate_task_rq_dl, 2544 .set_cpus_allowed = set_cpus_allowed_dl, 2545 .rq_online = rq_online_dl, 2546 .rq_offline = rq_offline_dl, 2547 .task_woken = task_woken_dl, 2548 .find_lock_rq = find_lock_later_rq, 2549 #endif 2550 2551 .task_tick = task_tick_dl, 2552 .task_fork = task_fork_dl, 2553 2554 .prio_changed = prio_changed_dl, 2555 .switched_from = switched_from_dl, 2556 .switched_to = switched_to_dl, 2557 2558 .update_curr = update_curr_dl, 2559 }; 2560 2561 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */ 2562 static u64 dl_generation; 2563 2564 int sched_dl_global_validate(void) 2565 { 2566 u64 runtime = global_rt_runtime(); 2567 u64 period = global_rt_period(); 2568 u64 new_bw = to_ratio(period, runtime); 2569 u64 gen = ++dl_generation; 2570 struct dl_bw *dl_b; 2571 int cpu, cpus, ret = 0; 2572 unsigned long flags; 2573 2574 /* 2575 * Here we want to check the bandwidth not being set to some 2576 * value smaller than the currently allocated bandwidth in 2577 * any of the root_domains. 2578 */ 2579 for_each_possible_cpu(cpu) { 2580 rcu_read_lock_sched(); 2581 2582 if (dl_bw_visited(cpu, gen)) 2583 goto next; 2584 2585 dl_b = dl_bw_of(cpu); 2586 cpus = dl_bw_cpus(cpu); 2587 2588 raw_spin_lock_irqsave(&dl_b->lock, flags); 2589 if (new_bw * cpus < dl_b->total_bw) 2590 ret = -EBUSY; 2591 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2592 2593 next: 2594 rcu_read_unlock_sched(); 2595 2596 if (ret) 2597 break; 2598 } 2599 2600 return ret; 2601 } 2602 2603 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2604 { 2605 if (global_rt_runtime() == RUNTIME_INF) { 2606 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2607 dl_rq->extra_bw = 1 << BW_SHIFT; 2608 } else { 2609 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2610 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2611 dl_rq->extra_bw = to_ratio(global_rt_period(), 2612 global_rt_runtime()); 2613 } 2614 } 2615 2616 void sched_dl_do_global(void) 2617 { 2618 u64 new_bw = -1; 2619 u64 gen = ++dl_generation; 2620 struct dl_bw *dl_b; 2621 int cpu; 2622 unsigned long flags; 2623 2624 def_dl_bandwidth.dl_period = global_rt_period(); 2625 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 2626 2627 if (global_rt_runtime() != RUNTIME_INF) 2628 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2629 2630 for_each_possible_cpu(cpu) { 2631 rcu_read_lock_sched(); 2632 2633 if (dl_bw_visited(cpu, gen)) { 2634 rcu_read_unlock_sched(); 2635 continue; 2636 } 2637 2638 dl_b = dl_bw_of(cpu); 2639 2640 raw_spin_lock_irqsave(&dl_b->lock, flags); 2641 dl_b->bw = new_bw; 2642 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2643 2644 rcu_read_unlock_sched(); 2645 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2646 } 2647 } 2648 2649 /* 2650 * We must be sure that accepting a new task (or allowing changing the 2651 * parameters of an existing one) is consistent with the bandwidth 2652 * constraints. If yes, this function also accordingly updates the currently 2653 * allocated bandwidth to reflect the new situation. 2654 * 2655 * This function is called while holding p's rq->lock. 2656 */ 2657 int sched_dl_overflow(struct task_struct *p, int policy, 2658 const struct sched_attr *attr) 2659 { 2660 u64 period = attr->sched_period ?: attr->sched_deadline; 2661 u64 runtime = attr->sched_runtime; 2662 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2663 int cpus, err = -1, cpu = task_cpu(p); 2664 struct dl_bw *dl_b = dl_bw_of(cpu); 2665 unsigned long cap; 2666 2667 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2668 return 0; 2669 2670 /* !deadline task may carry old deadline bandwidth */ 2671 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2672 return 0; 2673 2674 /* 2675 * Either if a task, enters, leave, or stays -deadline but changes 2676 * its parameters, we may need to update accordingly the total 2677 * allocated bandwidth of the container. 2678 */ 2679 raw_spin_lock(&dl_b->lock); 2680 cpus = dl_bw_cpus(cpu); 2681 cap = dl_bw_capacity(cpu); 2682 2683 if (dl_policy(policy) && !task_has_dl_policy(p) && 2684 !__dl_overflow(dl_b, cap, 0, new_bw)) { 2685 if (hrtimer_active(&p->dl.inactive_timer)) 2686 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2687 __dl_add(dl_b, new_bw, cpus); 2688 err = 0; 2689 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2690 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 2691 /* 2692 * XXX this is slightly incorrect: when the task 2693 * utilization decreases, we should delay the total 2694 * utilization change until the task's 0-lag point. 2695 * But this would require to set the task's "inactive 2696 * timer" when the task is not inactive. 2697 */ 2698 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2699 __dl_add(dl_b, new_bw, cpus); 2700 dl_change_utilization(p, new_bw); 2701 err = 0; 2702 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2703 /* 2704 * Do not decrease the total deadline utilization here, 2705 * switched_from_dl() will take care to do it at the correct 2706 * (0-lag) time. 2707 */ 2708 err = 0; 2709 } 2710 raw_spin_unlock(&dl_b->lock); 2711 2712 return err; 2713 } 2714 2715 /* 2716 * This function initializes the sched_dl_entity of a newly becoming 2717 * SCHED_DEADLINE task. 2718 * 2719 * Only the static values are considered here, the actual runtime and the 2720 * absolute deadline will be properly calculated when the task is enqueued 2721 * for the first time with its new policy. 2722 */ 2723 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2724 { 2725 struct sched_dl_entity *dl_se = &p->dl; 2726 2727 dl_se->dl_runtime = attr->sched_runtime; 2728 dl_se->dl_deadline = attr->sched_deadline; 2729 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2730 dl_se->flags = attr->sched_flags; 2731 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2732 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2733 } 2734 2735 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2736 { 2737 struct sched_dl_entity *dl_se = &p->dl; 2738 2739 attr->sched_priority = p->rt_priority; 2740 attr->sched_runtime = dl_se->dl_runtime; 2741 attr->sched_deadline = dl_se->dl_deadline; 2742 attr->sched_period = dl_se->dl_period; 2743 attr->sched_flags = dl_se->flags; 2744 } 2745 2746 /* 2747 * Default limits for DL period; on the top end we guard against small util 2748 * tasks still getting ridiculously long effective runtimes, on the bottom end we 2749 * guard against timer DoS. 2750 */ 2751 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 2752 unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 2753 2754 /* 2755 * This function validates the new parameters of a -deadline task. 2756 * We ask for the deadline not being zero, and greater or equal 2757 * than the runtime, as well as the period of being zero or 2758 * greater than deadline. Furthermore, we have to be sure that 2759 * user parameters are above the internal resolution of 1us (we 2760 * check sched_runtime only since it is always the smaller one) and 2761 * below 2^63 ns (we have to check both sched_deadline and 2762 * sched_period, as the latter can be zero). 2763 */ 2764 bool __checkparam_dl(const struct sched_attr *attr) 2765 { 2766 u64 period, max, min; 2767 2768 /* special dl tasks don't actually use any parameter */ 2769 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2770 return true; 2771 2772 /* deadline != 0 */ 2773 if (attr->sched_deadline == 0) 2774 return false; 2775 2776 /* 2777 * Since we truncate DL_SCALE bits, make sure we're at least 2778 * that big. 2779 */ 2780 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2781 return false; 2782 2783 /* 2784 * Since we use the MSB for wrap-around and sign issues, make 2785 * sure it's not set (mind that period can be equal to zero). 2786 */ 2787 if (attr->sched_deadline & (1ULL << 63) || 2788 attr->sched_period & (1ULL << 63)) 2789 return false; 2790 2791 period = attr->sched_period; 2792 if (!period) 2793 period = attr->sched_deadline; 2794 2795 /* runtime <= deadline <= period (if period != 0) */ 2796 if (period < attr->sched_deadline || 2797 attr->sched_deadline < attr->sched_runtime) 2798 return false; 2799 2800 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 2801 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 2802 2803 if (period < min || period > max) 2804 return false; 2805 2806 return true; 2807 } 2808 2809 /* 2810 * This function clears the sched_dl_entity static params. 2811 */ 2812 void __dl_clear_params(struct task_struct *p) 2813 { 2814 struct sched_dl_entity *dl_se = &p->dl; 2815 2816 dl_se->dl_runtime = 0; 2817 dl_se->dl_deadline = 0; 2818 dl_se->dl_period = 0; 2819 dl_se->flags = 0; 2820 dl_se->dl_bw = 0; 2821 dl_se->dl_density = 0; 2822 2823 dl_se->dl_throttled = 0; 2824 dl_se->dl_yielded = 0; 2825 dl_se->dl_non_contending = 0; 2826 dl_se->dl_overrun = 0; 2827 2828 #ifdef CONFIG_RT_MUTEXES 2829 dl_se->pi_se = dl_se; 2830 #endif 2831 } 2832 2833 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2834 { 2835 struct sched_dl_entity *dl_se = &p->dl; 2836 2837 if (dl_se->dl_runtime != attr->sched_runtime || 2838 dl_se->dl_deadline != attr->sched_deadline || 2839 dl_se->dl_period != attr->sched_period || 2840 dl_se->flags != attr->sched_flags) 2841 return true; 2842 2843 return false; 2844 } 2845 2846 #ifdef CONFIG_SMP 2847 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) 2848 { 2849 unsigned long flags, cap; 2850 unsigned int dest_cpu; 2851 struct dl_bw *dl_b; 2852 bool overflow; 2853 int ret; 2854 2855 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); 2856 2857 rcu_read_lock_sched(); 2858 dl_b = dl_bw_of(dest_cpu); 2859 raw_spin_lock_irqsave(&dl_b->lock, flags); 2860 cap = dl_bw_capacity(dest_cpu); 2861 overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw); 2862 if (overflow) { 2863 ret = -EBUSY; 2864 } else { 2865 /* 2866 * We reserve space for this task in the destination 2867 * root_domain, as we can't fail after this point. 2868 * We will free resources in the source root_domain 2869 * later on (see set_cpus_allowed_dl()). 2870 */ 2871 int cpus = dl_bw_cpus(dest_cpu); 2872 2873 __dl_add(dl_b, p->dl.dl_bw, cpus); 2874 ret = 0; 2875 } 2876 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2877 rcu_read_unlock_sched(); 2878 2879 return ret; 2880 } 2881 2882 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 2883 const struct cpumask *trial) 2884 { 2885 int ret = 1, trial_cpus; 2886 struct dl_bw *cur_dl_b; 2887 unsigned long flags; 2888 2889 rcu_read_lock_sched(); 2890 cur_dl_b = dl_bw_of(cpumask_any(cur)); 2891 trial_cpus = cpumask_weight(trial); 2892 2893 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 2894 if (cur_dl_b->bw != -1 && 2895 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 2896 ret = 0; 2897 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 2898 rcu_read_unlock_sched(); 2899 2900 return ret; 2901 } 2902 2903 bool dl_cpu_busy(unsigned int cpu) 2904 { 2905 unsigned long flags, cap; 2906 struct dl_bw *dl_b; 2907 bool overflow; 2908 2909 rcu_read_lock_sched(); 2910 dl_b = dl_bw_of(cpu); 2911 raw_spin_lock_irqsave(&dl_b->lock, flags); 2912 cap = dl_bw_capacity(cpu); 2913 overflow = __dl_overflow(dl_b, cap, 0, 0); 2914 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2915 rcu_read_unlock_sched(); 2916 2917 return overflow; 2918 } 2919 #endif 2920 2921 #ifdef CONFIG_SCHED_DEBUG 2922 void print_dl_stats(struct seq_file *m, int cpu) 2923 { 2924 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 2925 } 2926 #endif /* CONFIG_SCHED_DEBUG */ 2927