xref: /linux/kernel/sched/deadline.c (revision b2105aa2c6481fda72c1825800b753a0bf614517)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 #include "pelt.h"
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 #ifdef CONFIG_SMP
47 static inline struct dl_bw *dl_bw_of(int i)
48 {
49 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 			 "sched RCU must be held");
51 	return &cpu_rq(i)->rd->dl_bw;
52 }
53 
54 static inline int dl_bw_cpus(int i)
55 {
56 	struct root_domain *rd = cpu_rq(i)->rd;
57 	int cpus;
58 
59 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 			 "sched RCU must be held");
61 
62 	if (cpumask_subset(rd->span, cpu_active_mask))
63 		return cpumask_weight(rd->span);
64 
65 	cpus = 0;
66 
67 	for_each_cpu_and(i, rd->span, cpu_active_mask)
68 		cpus++;
69 
70 	return cpus;
71 }
72 
73 static inline unsigned long __dl_bw_capacity(int i)
74 {
75 	struct root_domain *rd = cpu_rq(i)->rd;
76 	unsigned long cap = 0;
77 
78 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
79 			 "sched RCU must be held");
80 
81 	for_each_cpu_and(i, rd->span, cpu_active_mask)
82 		cap += capacity_orig_of(i);
83 
84 	return cap;
85 }
86 
87 /*
88  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
89  * of the CPU the task is running on rather rd's \Sum CPU capacity.
90  */
91 static inline unsigned long dl_bw_capacity(int i)
92 {
93 	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
94 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
95 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
96 	} else {
97 		return __dl_bw_capacity(i);
98 	}
99 }
100 #else
101 static inline struct dl_bw *dl_bw_of(int i)
102 {
103 	return &cpu_rq(i)->dl.dl_bw;
104 }
105 
106 static inline int dl_bw_cpus(int i)
107 {
108 	return 1;
109 }
110 
111 static inline unsigned long dl_bw_capacity(int i)
112 {
113 	return SCHED_CAPACITY_SCALE;
114 }
115 #endif
116 
117 static inline
118 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
119 {
120 	u64 old = dl_rq->running_bw;
121 
122 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
123 	dl_rq->running_bw += dl_bw;
124 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
125 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
127 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
128 }
129 
130 static inline
131 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
132 {
133 	u64 old = dl_rq->running_bw;
134 
135 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
136 	dl_rq->running_bw -= dl_bw;
137 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
138 	if (dl_rq->running_bw > old)
139 		dl_rq->running_bw = 0;
140 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
141 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
142 }
143 
144 static inline
145 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
146 {
147 	u64 old = dl_rq->this_bw;
148 
149 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
150 	dl_rq->this_bw += dl_bw;
151 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
152 }
153 
154 static inline
155 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
156 {
157 	u64 old = dl_rq->this_bw;
158 
159 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
160 	dl_rq->this_bw -= dl_bw;
161 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
162 	if (dl_rq->this_bw > old)
163 		dl_rq->this_bw = 0;
164 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
165 }
166 
167 static inline
168 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
169 {
170 	if (!dl_entity_is_special(dl_se))
171 		__add_rq_bw(dl_se->dl_bw, dl_rq);
172 }
173 
174 static inline
175 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
176 {
177 	if (!dl_entity_is_special(dl_se))
178 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
179 }
180 
181 static inline
182 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
183 {
184 	if (!dl_entity_is_special(dl_se))
185 		__add_running_bw(dl_se->dl_bw, dl_rq);
186 }
187 
188 static inline
189 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
190 {
191 	if (!dl_entity_is_special(dl_se))
192 		__sub_running_bw(dl_se->dl_bw, dl_rq);
193 }
194 
195 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
196 {
197 	struct rq *rq;
198 
199 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
200 
201 	if (task_on_rq_queued(p))
202 		return;
203 
204 	rq = task_rq(p);
205 	if (p->dl.dl_non_contending) {
206 		sub_running_bw(&p->dl, &rq->dl);
207 		p->dl.dl_non_contending = 0;
208 		/*
209 		 * If the timer handler is currently running and the
210 		 * timer cannot be cancelled, inactive_task_timer()
211 		 * will see that dl_not_contending is not set, and
212 		 * will not touch the rq's active utilization,
213 		 * so we are still safe.
214 		 */
215 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
216 			put_task_struct(p);
217 	}
218 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
219 	__add_rq_bw(new_bw, &rq->dl);
220 }
221 
222 /*
223  * The utilization of a task cannot be immediately removed from
224  * the rq active utilization (running_bw) when the task blocks.
225  * Instead, we have to wait for the so called "0-lag time".
226  *
227  * If a task blocks before the "0-lag time", a timer (the inactive
228  * timer) is armed, and running_bw is decreased when the timer
229  * fires.
230  *
231  * If the task wakes up again before the inactive timer fires,
232  * the timer is cancelled, whereas if the task wakes up after the
233  * inactive timer fired (and running_bw has been decreased) the
234  * task's utilization has to be added to running_bw again.
235  * A flag in the deadline scheduling entity (dl_non_contending)
236  * is used to avoid race conditions between the inactive timer handler
237  * and task wakeups.
238  *
239  * The following diagram shows how running_bw is updated. A task is
240  * "ACTIVE" when its utilization contributes to running_bw; an
241  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
242  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
243  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
244  * time already passed, which does not contribute to running_bw anymore.
245  *                              +------------------+
246  *             wakeup           |    ACTIVE        |
247  *          +------------------>+   contending     |
248  *          | add_running_bw    |                  |
249  *          |                   +----+------+------+
250  *          |                        |      ^
251  *          |                dequeue |      |
252  * +--------+-------+                |      |
253  * |                |   t >= 0-lag   |      | wakeup
254  * |    INACTIVE    |<---------------+      |
255  * |                | sub_running_bw |      |
256  * +--------+-------+                |      |
257  *          ^                        |      |
258  *          |              t < 0-lag |      |
259  *          |                        |      |
260  *          |                        V      |
261  *          |                   +----+------+------+
262  *          | sub_running_bw    |    ACTIVE        |
263  *          +-------------------+                  |
264  *            inactive timer    |  non contending  |
265  *            fired             +------------------+
266  *
267  * The task_non_contending() function is invoked when a task
268  * blocks, and checks if the 0-lag time already passed or
269  * not (in the first case, it directly updates running_bw;
270  * in the second case, it arms the inactive timer).
271  *
272  * The task_contending() function is invoked when a task wakes
273  * up, and checks if the task is still in the "ACTIVE non contending"
274  * state or not (in the second case, it updates running_bw).
275  */
276 static void task_non_contending(struct task_struct *p)
277 {
278 	struct sched_dl_entity *dl_se = &p->dl;
279 	struct hrtimer *timer = &dl_se->inactive_timer;
280 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
281 	struct rq *rq = rq_of_dl_rq(dl_rq);
282 	s64 zerolag_time;
283 
284 	/*
285 	 * If this is a non-deadline task that has been boosted,
286 	 * do nothing
287 	 */
288 	if (dl_se->dl_runtime == 0)
289 		return;
290 
291 	if (dl_entity_is_special(dl_se))
292 		return;
293 
294 	WARN_ON(dl_se->dl_non_contending);
295 
296 	zerolag_time = dl_se->deadline -
297 		 div64_long((dl_se->runtime * dl_se->dl_period),
298 			dl_se->dl_runtime);
299 
300 	/*
301 	 * Using relative times instead of the absolute "0-lag time"
302 	 * allows to simplify the code
303 	 */
304 	zerolag_time -= rq_clock(rq);
305 
306 	/*
307 	 * If the "0-lag time" already passed, decrease the active
308 	 * utilization now, instead of starting a timer
309 	 */
310 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
311 		if (dl_task(p))
312 			sub_running_bw(dl_se, dl_rq);
313 		if (!dl_task(p) || p->state == TASK_DEAD) {
314 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
315 
316 			if (p->state == TASK_DEAD)
317 				sub_rq_bw(&p->dl, &rq->dl);
318 			raw_spin_lock(&dl_b->lock);
319 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
320 			__dl_clear_params(p);
321 			raw_spin_unlock(&dl_b->lock);
322 		}
323 
324 		return;
325 	}
326 
327 	dl_se->dl_non_contending = 1;
328 	get_task_struct(p);
329 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
330 }
331 
332 static void task_contending(struct sched_dl_entity *dl_se, int flags)
333 {
334 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
335 
336 	/*
337 	 * If this is a non-deadline task that has been boosted,
338 	 * do nothing
339 	 */
340 	if (dl_se->dl_runtime == 0)
341 		return;
342 
343 	if (flags & ENQUEUE_MIGRATED)
344 		add_rq_bw(dl_se, dl_rq);
345 
346 	if (dl_se->dl_non_contending) {
347 		dl_se->dl_non_contending = 0;
348 		/*
349 		 * If the timer handler is currently running and the
350 		 * timer cannot be cancelled, inactive_task_timer()
351 		 * will see that dl_not_contending is not set, and
352 		 * will not touch the rq's active utilization,
353 		 * so we are still safe.
354 		 */
355 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
356 			put_task_struct(dl_task_of(dl_se));
357 	} else {
358 		/*
359 		 * Since "dl_non_contending" is not set, the
360 		 * task's utilization has already been removed from
361 		 * active utilization (either when the task blocked,
362 		 * when the "inactive timer" fired).
363 		 * So, add it back.
364 		 */
365 		add_running_bw(dl_se, dl_rq);
366 	}
367 }
368 
369 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
370 {
371 	struct sched_dl_entity *dl_se = &p->dl;
372 
373 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
374 }
375 
376 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
377 
378 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
379 {
380 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
381 	dl_b->dl_period = period;
382 	dl_b->dl_runtime = runtime;
383 }
384 
385 void init_dl_bw(struct dl_bw *dl_b)
386 {
387 	raw_spin_lock_init(&dl_b->lock);
388 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
389 	if (global_rt_runtime() == RUNTIME_INF)
390 		dl_b->bw = -1;
391 	else
392 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
393 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
394 	dl_b->total_bw = 0;
395 }
396 
397 void init_dl_rq(struct dl_rq *dl_rq)
398 {
399 	dl_rq->root = RB_ROOT_CACHED;
400 
401 #ifdef CONFIG_SMP
402 	/* zero means no -deadline tasks */
403 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
404 
405 	dl_rq->dl_nr_migratory = 0;
406 	dl_rq->overloaded = 0;
407 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
408 #else
409 	init_dl_bw(&dl_rq->dl_bw);
410 #endif
411 
412 	dl_rq->running_bw = 0;
413 	dl_rq->this_bw = 0;
414 	init_dl_rq_bw_ratio(dl_rq);
415 }
416 
417 #ifdef CONFIG_SMP
418 
419 static inline int dl_overloaded(struct rq *rq)
420 {
421 	return atomic_read(&rq->rd->dlo_count);
422 }
423 
424 static inline void dl_set_overload(struct rq *rq)
425 {
426 	if (!rq->online)
427 		return;
428 
429 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
430 	/*
431 	 * Must be visible before the overload count is
432 	 * set (as in sched_rt.c).
433 	 *
434 	 * Matched by the barrier in pull_dl_task().
435 	 */
436 	smp_wmb();
437 	atomic_inc(&rq->rd->dlo_count);
438 }
439 
440 static inline void dl_clear_overload(struct rq *rq)
441 {
442 	if (!rq->online)
443 		return;
444 
445 	atomic_dec(&rq->rd->dlo_count);
446 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
447 }
448 
449 static void update_dl_migration(struct dl_rq *dl_rq)
450 {
451 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
452 		if (!dl_rq->overloaded) {
453 			dl_set_overload(rq_of_dl_rq(dl_rq));
454 			dl_rq->overloaded = 1;
455 		}
456 	} else if (dl_rq->overloaded) {
457 		dl_clear_overload(rq_of_dl_rq(dl_rq));
458 		dl_rq->overloaded = 0;
459 	}
460 }
461 
462 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
463 {
464 	struct task_struct *p = dl_task_of(dl_se);
465 
466 	if (p->nr_cpus_allowed > 1)
467 		dl_rq->dl_nr_migratory++;
468 
469 	update_dl_migration(dl_rq);
470 }
471 
472 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
473 {
474 	struct task_struct *p = dl_task_of(dl_se);
475 
476 	if (p->nr_cpus_allowed > 1)
477 		dl_rq->dl_nr_migratory--;
478 
479 	update_dl_migration(dl_rq);
480 }
481 
482 /*
483  * The list of pushable -deadline task is not a plist, like in
484  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
485  */
486 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
487 {
488 	struct dl_rq *dl_rq = &rq->dl;
489 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
490 	struct rb_node *parent = NULL;
491 	struct task_struct *entry;
492 	bool leftmost = true;
493 
494 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
495 
496 	while (*link) {
497 		parent = *link;
498 		entry = rb_entry(parent, struct task_struct,
499 				 pushable_dl_tasks);
500 		if (dl_entity_preempt(&p->dl, &entry->dl))
501 			link = &parent->rb_left;
502 		else {
503 			link = &parent->rb_right;
504 			leftmost = false;
505 		}
506 	}
507 
508 	if (leftmost)
509 		dl_rq->earliest_dl.next = p->dl.deadline;
510 
511 	rb_link_node(&p->pushable_dl_tasks, parent, link);
512 	rb_insert_color_cached(&p->pushable_dl_tasks,
513 			       &dl_rq->pushable_dl_tasks_root, leftmost);
514 }
515 
516 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
517 {
518 	struct dl_rq *dl_rq = &rq->dl;
519 
520 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
521 		return;
522 
523 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
524 		struct rb_node *next_node;
525 
526 		next_node = rb_next(&p->pushable_dl_tasks);
527 		if (next_node) {
528 			dl_rq->earliest_dl.next = rb_entry(next_node,
529 				struct task_struct, pushable_dl_tasks)->dl.deadline;
530 		}
531 	}
532 
533 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
534 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
535 }
536 
537 static inline int has_pushable_dl_tasks(struct rq *rq)
538 {
539 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
540 }
541 
542 static int push_dl_task(struct rq *rq);
543 
544 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
545 {
546 	return dl_task(prev);
547 }
548 
549 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
550 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
551 
552 static void push_dl_tasks(struct rq *);
553 static void pull_dl_task(struct rq *);
554 
555 static inline void deadline_queue_push_tasks(struct rq *rq)
556 {
557 	if (!has_pushable_dl_tasks(rq))
558 		return;
559 
560 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
561 }
562 
563 static inline void deadline_queue_pull_task(struct rq *rq)
564 {
565 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
566 }
567 
568 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
569 
570 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
571 {
572 	struct rq *later_rq = NULL;
573 	struct dl_bw *dl_b;
574 
575 	later_rq = find_lock_later_rq(p, rq);
576 	if (!later_rq) {
577 		int cpu;
578 
579 		/*
580 		 * If we cannot preempt any rq, fall back to pick any
581 		 * online CPU:
582 		 */
583 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
584 		if (cpu >= nr_cpu_ids) {
585 			/*
586 			 * Failed to find any suitable CPU.
587 			 * The task will never come back!
588 			 */
589 			BUG_ON(dl_bandwidth_enabled());
590 
591 			/*
592 			 * If admission control is disabled we
593 			 * try a little harder to let the task
594 			 * run.
595 			 */
596 			cpu = cpumask_any(cpu_active_mask);
597 		}
598 		later_rq = cpu_rq(cpu);
599 		double_lock_balance(rq, later_rq);
600 	}
601 
602 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
603 		/*
604 		 * Inactive timer is armed (or callback is running, but
605 		 * waiting for us to release rq locks). In any case, when it
606 		 * will fire (or continue), it will see running_bw of this
607 		 * task migrated to later_rq (and correctly handle it).
608 		 */
609 		sub_running_bw(&p->dl, &rq->dl);
610 		sub_rq_bw(&p->dl, &rq->dl);
611 
612 		add_rq_bw(&p->dl, &later_rq->dl);
613 		add_running_bw(&p->dl, &later_rq->dl);
614 	} else {
615 		sub_rq_bw(&p->dl, &rq->dl);
616 		add_rq_bw(&p->dl, &later_rq->dl);
617 	}
618 
619 	/*
620 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
621 	 * since p is still hanging out in the old (now moved to default) root
622 	 * domain.
623 	 */
624 	dl_b = &rq->rd->dl_bw;
625 	raw_spin_lock(&dl_b->lock);
626 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
627 	raw_spin_unlock(&dl_b->lock);
628 
629 	dl_b = &later_rq->rd->dl_bw;
630 	raw_spin_lock(&dl_b->lock);
631 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
632 	raw_spin_unlock(&dl_b->lock);
633 
634 	set_task_cpu(p, later_rq->cpu);
635 	double_unlock_balance(later_rq, rq);
636 
637 	return later_rq;
638 }
639 
640 #else
641 
642 static inline
643 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
644 {
645 }
646 
647 static inline
648 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
649 {
650 }
651 
652 static inline
653 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
654 {
655 }
656 
657 static inline
658 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
659 {
660 }
661 
662 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
663 {
664 	return false;
665 }
666 
667 static inline void pull_dl_task(struct rq *rq)
668 {
669 }
670 
671 static inline void deadline_queue_push_tasks(struct rq *rq)
672 {
673 }
674 
675 static inline void deadline_queue_pull_task(struct rq *rq)
676 {
677 }
678 #endif /* CONFIG_SMP */
679 
680 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
681 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
682 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
683 
684 /*
685  * We are being explicitly informed that a new instance is starting,
686  * and this means that:
687  *  - the absolute deadline of the entity has to be placed at
688  *    current time + relative deadline;
689  *  - the runtime of the entity has to be set to the maximum value.
690  *
691  * The capability of specifying such event is useful whenever a -deadline
692  * entity wants to (try to!) synchronize its behaviour with the scheduler's
693  * one, and to (try to!) reconcile itself with its own scheduling
694  * parameters.
695  */
696 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
697 {
698 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
699 	struct rq *rq = rq_of_dl_rq(dl_rq);
700 
701 	WARN_ON(dl_se->dl_boosted);
702 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
703 
704 	/*
705 	 * We are racing with the deadline timer. So, do nothing because
706 	 * the deadline timer handler will take care of properly recharging
707 	 * the runtime and postponing the deadline
708 	 */
709 	if (dl_se->dl_throttled)
710 		return;
711 
712 	/*
713 	 * We use the regular wall clock time to set deadlines in the
714 	 * future; in fact, we must consider execution overheads (time
715 	 * spent on hardirq context, etc.).
716 	 */
717 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
718 	dl_se->runtime = dl_se->dl_runtime;
719 }
720 
721 /*
722  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
723  * possibility of a entity lasting more than what it declared, and thus
724  * exhausting its runtime.
725  *
726  * Here we are interested in making runtime overrun possible, but we do
727  * not want a entity which is misbehaving to affect the scheduling of all
728  * other entities.
729  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
730  * is used, in order to confine each entity within its own bandwidth.
731  *
732  * This function deals exactly with that, and ensures that when the runtime
733  * of a entity is replenished, its deadline is also postponed. That ensures
734  * the overrunning entity can't interfere with other entity in the system and
735  * can't make them miss their deadlines. Reasons why this kind of overruns
736  * could happen are, typically, a entity voluntarily trying to overcome its
737  * runtime, or it just underestimated it during sched_setattr().
738  */
739 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
740 				struct sched_dl_entity *pi_se)
741 {
742 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
743 	struct rq *rq = rq_of_dl_rq(dl_rq);
744 
745 	BUG_ON(pi_se->dl_runtime <= 0);
746 
747 	/*
748 	 * This could be the case for a !-dl task that is boosted.
749 	 * Just go with full inherited parameters.
750 	 */
751 	if (dl_se->dl_deadline == 0) {
752 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
753 		dl_se->runtime = pi_se->dl_runtime;
754 	}
755 
756 	if (dl_se->dl_yielded && dl_se->runtime > 0)
757 		dl_se->runtime = 0;
758 
759 	/*
760 	 * We keep moving the deadline away until we get some
761 	 * available runtime for the entity. This ensures correct
762 	 * handling of situations where the runtime overrun is
763 	 * arbitrary large.
764 	 */
765 	while (dl_se->runtime <= 0) {
766 		dl_se->deadline += pi_se->dl_period;
767 		dl_se->runtime += pi_se->dl_runtime;
768 	}
769 
770 	/*
771 	 * At this point, the deadline really should be "in
772 	 * the future" with respect to rq->clock. If it's
773 	 * not, we are, for some reason, lagging too much!
774 	 * Anyway, after having warn userspace abut that,
775 	 * we still try to keep the things running by
776 	 * resetting the deadline and the budget of the
777 	 * entity.
778 	 */
779 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
780 		printk_deferred_once("sched: DL replenish lagged too much\n");
781 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
782 		dl_se->runtime = pi_se->dl_runtime;
783 	}
784 
785 	if (dl_se->dl_yielded)
786 		dl_se->dl_yielded = 0;
787 	if (dl_se->dl_throttled)
788 		dl_se->dl_throttled = 0;
789 }
790 
791 /*
792  * Here we check if --at time t-- an entity (which is probably being
793  * [re]activated or, in general, enqueued) can use its remaining runtime
794  * and its current deadline _without_ exceeding the bandwidth it is
795  * assigned (function returns true if it can't). We are in fact applying
796  * one of the CBS rules: when a task wakes up, if the residual runtime
797  * over residual deadline fits within the allocated bandwidth, then we
798  * can keep the current (absolute) deadline and residual budget without
799  * disrupting the schedulability of the system. Otherwise, we should
800  * refill the runtime and set the deadline a period in the future,
801  * because keeping the current (absolute) deadline of the task would
802  * result in breaking guarantees promised to other tasks (refer to
803  * Documentation/scheduler/sched-deadline.rst for more information).
804  *
805  * This function returns true if:
806  *
807  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
808  *
809  * IOW we can't recycle current parameters.
810  *
811  * Notice that the bandwidth check is done against the deadline. For
812  * task with deadline equal to period this is the same of using
813  * dl_period instead of dl_deadline in the equation above.
814  */
815 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
816 			       struct sched_dl_entity *pi_se, u64 t)
817 {
818 	u64 left, right;
819 
820 	/*
821 	 * left and right are the two sides of the equation above,
822 	 * after a bit of shuffling to use multiplications instead
823 	 * of divisions.
824 	 *
825 	 * Note that none of the time values involved in the two
826 	 * multiplications are absolute: dl_deadline and dl_runtime
827 	 * are the relative deadline and the maximum runtime of each
828 	 * instance, runtime is the runtime left for the last instance
829 	 * and (deadline - t), since t is rq->clock, is the time left
830 	 * to the (absolute) deadline. Even if overflowing the u64 type
831 	 * is very unlikely to occur in both cases, here we scale down
832 	 * as we want to avoid that risk at all. Scaling down by 10
833 	 * means that we reduce granularity to 1us. We are fine with it,
834 	 * since this is only a true/false check and, anyway, thinking
835 	 * of anything below microseconds resolution is actually fiction
836 	 * (but still we want to give the user that illusion >;).
837 	 */
838 	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
839 	right = ((dl_se->deadline - t) >> DL_SCALE) *
840 		(pi_se->dl_runtime >> DL_SCALE);
841 
842 	return dl_time_before(right, left);
843 }
844 
845 /*
846  * Revised wakeup rule [1]: For self-suspending tasks, rather then
847  * re-initializing task's runtime and deadline, the revised wakeup
848  * rule adjusts the task's runtime to avoid the task to overrun its
849  * density.
850  *
851  * Reasoning: a task may overrun the density if:
852  *    runtime / (deadline - t) > dl_runtime / dl_deadline
853  *
854  * Therefore, runtime can be adjusted to:
855  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
856  *
857  * In such way that runtime will be equal to the maximum density
858  * the task can use without breaking any rule.
859  *
860  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
861  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
862  */
863 static void
864 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
865 {
866 	u64 laxity = dl_se->deadline - rq_clock(rq);
867 
868 	/*
869 	 * If the task has deadline < period, and the deadline is in the past,
870 	 * it should already be throttled before this check.
871 	 *
872 	 * See update_dl_entity() comments for further details.
873 	 */
874 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
875 
876 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
877 }
878 
879 /*
880  * Regarding the deadline, a task with implicit deadline has a relative
881  * deadline == relative period. A task with constrained deadline has a
882  * relative deadline <= relative period.
883  *
884  * We support constrained deadline tasks. However, there are some restrictions
885  * applied only for tasks which do not have an implicit deadline. See
886  * update_dl_entity() to know more about such restrictions.
887  *
888  * The dl_is_implicit() returns true if the task has an implicit deadline.
889  */
890 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
891 {
892 	return dl_se->dl_deadline == dl_se->dl_period;
893 }
894 
895 /*
896  * When a deadline entity is placed in the runqueue, its runtime and deadline
897  * might need to be updated. This is done by a CBS wake up rule. There are two
898  * different rules: 1) the original CBS; and 2) the Revisited CBS.
899  *
900  * When the task is starting a new period, the Original CBS is used. In this
901  * case, the runtime is replenished and a new absolute deadline is set.
902  *
903  * When a task is queued before the begin of the next period, using the
904  * remaining runtime and deadline could make the entity to overflow, see
905  * dl_entity_overflow() to find more about runtime overflow. When such case
906  * is detected, the runtime and deadline need to be updated.
907  *
908  * If the task has an implicit deadline, i.e., deadline == period, the Original
909  * CBS is applied. the runtime is replenished and a new absolute deadline is
910  * set, as in the previous cases.
911  *
912  * However, the Original CBS does not work properly for tasks with
913  * deadline < period, which are said to have a constrained deadline. By
914  * applying the Original CBS, a constrained deadline task would be able to run
915  * runtime/deadline in a period. With deadline < period, the task would
916  * overrun the runtime/period allowed bandwidth, breaking the admission test.
917  *
918  * In order to prevent this misbehave, the Revisited CBS is used for
919  * constrained deadline tasks when a runtime overflow is detected. In the
920  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
921  * the remaining runtime of the task is reduced to avoid runtime overflow.
922  * Please refer to the comments update_dl_revised_wakeup() function to find
923  * more about the Revised CBS rule.
924  */
925 static void update_dl_entity(struct sched_dl_entity *dl_se,
926 			     struct sched_dl_entity *pi_se)
927 {
928 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
929 	struct rq *rq = rq_of_dl_rq(dl_rq);
930 
931 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
932 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
933 
934 		if (unlikely(!dl_is_implicit(dl_se) &&
935 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
936 			     !dl_se->dl_boosted)){
937 			update_dl_revised_wakeup(dl_se, rq);
938 			return;
939 		}
940 
941 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
942 		dl_se->runtime = pi_se->dl_runtime;
943 	}
944 }
945 
946 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
947 {
948 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
949 }
950 
951 /*
952  * If the entity depleted all its runtime, and if we want it to sleep
953  * while waiting for some new execution time to become available, we
954  * set the bandwidth replenishment timer to the replenishment instant
955  * and try to activate it.
956  *
957  * Notice that it is important for the caller to know if the timer
958  * actually started or not (i.e., the replenishment instant is in
959  * the future or in the past).
960  */
961 static int start_dl_timer(struct task_struct *p)
962 {
963 	struct sched_dl_entity *dl_se = &p->dl;
964 	struct hrtimer *timer = &dl_se->dl_timer;
965 	struct rq *rq = task_rq(p);
966 	ktime_t now, act;
967 	s64 delta;
968 
969 	lockdep_assert_held(&rq->lock);
970 
971 	/*
972 	 * We want the timer to fire at the deadline, but considering
973 	 * that it is actually coming from rq->clock and not from
974 	 * hrtimer's time base reading.
975 	 */
976 	act = ns_to_ktime(dl_next_period(dl_se));
977 	now = hrtimer_cb_get_time(timer);
978 	delta = ktime_to_ns(now) - rq_clock(rq);
979 	act = ktime_add_ns(act, delta);
980 
981 	/*
982 	 * If the expiry time already passed, e.g., because the value
983 	 * chosen as the deadline is too small, don't even try to
984 	 * start the timer in the past!
985 	 */
986 	if (ktime_us_delta(act, now) < 0)
987 		return 0;
988 
989 	/*
990 	 * !enqueued will guarantee another callback; even if one is already in
991 	 * progress. This ensures a balanced {get,put}_task_struct().
992 	 *
993 	 * The race against __run_timer() clearing the enqueued state is
994 	 * harmless because we're holding task_rq()->lock, therefore the timer
995 	 * expiring after we've done the check will wait on its task_rq_lock()
996 	 * and observe our state.
997 	 */
998 	if (!hrtimer_is_queued(timer)) {
999 		get_task_struct(p);
1000 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1001 	}
1002 
1003 	return 1;
1004 }
1005 
1006 /*
1007  * This is the bandwidth enforcement timer callback. If here, we know
1008  * a task is not on its dl_rq, since the fact that the timer was running
1009  * means the task is throttled and needs a runtime replenishment.
1010  *
1011  * However, what we actually do depends on the fact the task is active,
1012  * (it is on its rq) or has been removed from there by a call to
1013  * dequeue_task_dl(). In the former case we must issue the runtime
1014  * replenishment and add the task back to the dl_rq; in the latter, we just
1015  * do nothing but clearing dl_throttled, so that runtime and deadline
1016  * updating (and the queueing back to dl_rq) will be done by the
1017  * next call to enqueue_task_dl().
1018  */
1019 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1020 {
1021 	struct sched_dl_entity *dl_se = container_of(timer,
1022 						     struct sched_dl_entity,
1023 						     dl_timer);
1024 	struct task_struct *p = dl_task_of(dl_se);
1025 	struct rq_flags rf;
1026 	struct rq *rq;
1027 
1028 	rq = task_rq_lock(p, &rf);
1029 
1030 	/*
1031 	 * The task might have changed its scheduling policy to something
1032 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1033 	 */
1034 	if (!dl_task(p))
1035 		goto unlock;
1036 
1037 	/*
1038 	 * The task might have been boosted by someone else and might be in the
1039 	 * boosting/deboosting path, its not throttled.
1040 	 */
1041 	if (dl_se->dl_boosted)
1042 		goto unlock;
1043 
1044 	/*
1045 	 * Spurious timer due to start_dl_timer() race; or we already received
1046 	 * a replenishment from rt_mutex_setprio().
1047 	 */
1048 	if (!dl_se->dl_throttled)
1049 		goto unlock;
1050 
1051 	sched_clock_tick();
1052 	update_rq_clock(rq);
1053 
1054 	/*
1055 	 * If the throttle happened during sched-out; like:
1056 	 *
1057 	 *   schedule()
1058 	 *     deactivate_task()
1059 	 *       dequeue_task_dl()
1060 	 *         update_curr_dl()
1061 	 *           start_dl_timer()
1062 	 *         __dequeue_task_dl()
1063 	 *     prev->on_rq = 0;
1064 	 *
1065 	 * We can be both throttled and !queued. Replenish the counter
1066 	 * but do not enqueue -- wait for our wakeup to do that.
1067 	 */
1068 	if (!task_on_rq_queued(p)) {
1069 		replenish_dl_entity(dl_se, dl_se);
1070 		goto unlock;
1071 	}
1072 
1073 #ifdef CONFIG_SMP
1074 	if (unlikely(!rq->online)) {
1075 		/*
1076 		 * If the runqueue is no longer available, migrate the
1077 		 * task elsewhere. This necessarily changes rq.
1078 		 */
1079 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1080 		rq = dl_task_offline_migration(rq, p);
1081 		rf.cookie = lockdep_pin_lock(&rq->lock);
1082 		update_rq_clock(rq);
1083 
1084 		/*
1085 		 * Now that the task has been migrated to the new RQ and we
1086 		 * have that locked, proceed as normal and enqueue the task
1087 		 * there.
1088 		 */
1089 	}
1090 #endif
1091 
1092 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1093 	if (dl_task(rq->curr))
1094 		check_preempt_curr_dl(rq, p, 0);
1095 	else
1096 		resched_curr(rq);
1097 
1098 #ifdef CONFIG_SMP
1099 	/*
1100 	 * Queueing this task back might have overloaded rq, check if we need
1101 	 * to kick someone away.
1102 	 */
1103 	if (has_pushable_dl_tasks(rq)) {
1104 		/*
1105 		 * Nothing relies on rq->lock after this, so its safe to drop
1106 		 * rq->lock.
1107 		 */
1108 		rq_unpin_lock(rq, &rf);
1109 		push_dl_task(rq);
1110 		rq_repin_lock(rq, &rf);
1111 	}
1112 #endif
1113 
1114 unlock:
1115 	task_rq_unlock(rq, p, &rf);
1116 
1117 	/*
1118 	 * This can free the task_struct, including this hrtimer, do not touch
1119 	 * anything related to that after this.
1120 	 */
1121 	put_task_struct(p);
1122 
1123 	return HRTIMER_NORESTART;
1124 }
1125 
1126 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1127 {
1128 	struct hrtimer *timer = &dl_se->dl_timer;
1129 
1130 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1131 	timer->function = dl_task_timer;
1132 }
1133 
1134 /*
1135  * During the activation, CBS checks if it can reuse the current task's
1136  * runtime and period. If the deadline of the task is in the past, CBS
1137  * cannot use the runtime, and so it replenishes the task. This rule
1138  * works fine for implicit deadline tasks (deadline == period), and the
1139  * CBS was designed for implicit deadline tasks. However, a task with
1140  * constrained deadline (deadline < period) might be awakened after the
1141  * deadline, but before the next period. In this case, replenishing the
1142  * task would allow it to run for runtime / deadline. As in this case
1143  * deadline < period, CBS enables a task to run for more than the
1144  * runtime / period. In a very loaded system, this can cause a domino
1145  * effect, making other tasks miss their deadlines.
1146  *
1147  * To avoid this problem, in the activation of a constrained deadline
1148  * task after the deadline but before the next period, throttle the
1149  * task and set the replenishing timer to the begin of the next period,
1150  * unless it is boosted.
1151  */
1152 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1153 {
1154 	struct task_struct *p = dl_task_of(dl_se);
1155 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1156 
1157 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1158 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1159 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1160 			return;
1161 		dl_se->dl_throttled = 1;
1162 		if (dl_se->runtime > 0)
1163 			dl_se->runtime = 0;
1164 	}
1165 }
1166 
1167 static
1168 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1169 {
1170 	return (dl_se->runtime <= 0);
1171 }
1172 
1173 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1174 
1175 /*
1176  * This function implements the GRUB accounting rule:
1177  * according to the GRUB reclaiming algorithm, the runtime is
1178  * not decreased as "dq = -dt", but as
1179  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1180  * where u is the utilization of the task, Umax is the maximum reclaimable
1181  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1182  * as the difference between the "total runqueue utilization" and the
1183  * runqueue active utilization, and Uextra is the (per runqueue) extra
1184  * reclaimable utilization.
1185  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1186  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1187  * BW_SHIFT.
1188  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1189  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1190  * Since delta is a 64 bit variable, to have an overflow its value
1191  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1192  * So, overflow is not an issue here.
1193  */
1194 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1195 {
1196 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1197 	u64 u_act;
1198 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1199 
1200 	/*
1201 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1202 	 * we compare u_inact + rq->dl.extra_bw with
1203 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1204 	 * u_inact + rq->dl.extra_bw can be larger than
1205 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1206 	 * leading to wrong results)
1207 	 */
1208 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1209 		u_act = u_act_min;
1210 	else
1211 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1212 
1213 	return (delta * u_act) >> BW_SHIFT;
1214 }
1215 
1216 /*
1217  * Update the current task's runtime statistics (provided it is still
1218  * a -deadline task and has not been removed from the dl_rq).
1219  */
1220 static void update_curr_dl(struct rq *rq)
1221 {
1222 	struct task_struct *curr = rq->curr;
1223 	struct sched_dl_entity *dl_se = &curr->dl;
1224 	u64 delta_exec, scaled_delta_exec;
1225 	int cpu = cpu_of(rq);
1226 	u64 now;
1227 
1228 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1229 		return;
1230 
1231 	/*
1232 	 * Consumed budget is computed considering the time as
1233 	 * observed by schedulable tasks (excluding time spent
1234 	 * in hardirq context, etc.). Deadlines are instead
1235 	 * computed using hard walltime. This seems to be the more
1236 	 * natural solution, but the full ramifications of this
1237 	 * approach need further study.
1238 	 */
1239 	now = rq_clock_task(rq);
1240 	delta_exec = now - curr->se.exec_start;
1241 	if (unlikely((s64)delta_exec <= 0)) {
1242 		if (unlikely(dl_se->dl_yielded))
1243 			goto throttle;
1244 		return;
1245 	}
1246 
1247 	schedstat_set(curr->se.statistics.exec_max,
1248 		      max(curr->se.statistics.exec_max, delta_exec));
1249 
1250 	curr->se.sum_exec_runtime += delta_exec;
1251 	account_group_exec_runtime(curr, delta_exec);
1252 
1253 	curr->se.exec_start = now;
1254 	cgroup_account_cputime(curr, delta_exec);
1255 
1256 	if (dl_entity_is_special(dl_se))
1257 		return;
1258 
1259 	/*
1260 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1261 	 * spare reclaimed bandwidth is used to clock down frequency.
1262 	 *
1263 	 * For the others, we still need to scale reservation parameters
1264 	 * according to current frequency and CPU maximum capacity.
1265 	 */
1266 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1267 		scaled_delta_exec = grub_reclaim(delta_exec,
1268 						 rq,
1269 						 &curr->dl);
1270 	} else {
1271 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1272 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1273 
1274 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1275 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1276 	}
1277 
1278 	dl_se->runtime -= scaled_delta_exec;
1279 
1280 throttle:
1281 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1282 		dl_se->dl_throttled = 1;
1283 
1284 		/* If requested, inform the user about runtime overruns. */
1285 		if (dl_runtime_exceeded(dl_se) &&
1286 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1287 			dl_se->dl_overrun = 1;
1288 
1289 		__dequeue_task_dl(rq, curr, 0);
1290 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1291 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1292 
1293 		if (!is_leftmost(curr, &rq->dl))
1294 			resched_curr(rq);
1295 	}
1296 
1297 	/*
1298 	 * Because -- for now -- we share the rt bandwidth, we need to
1299 	 * account our runtime there too, otherwise actual rt tasks
1300 	 * would be able to exceed the shared quota.
1301 	 *
1302 	 * Account to the root rt group for now.
1303 	 *
1304 	 * The solution we're working towards is having the RT groups scheduled
1305 	 * using deadline servers -- however there's a few nasties to figure
1306 	 * out before that can happen.
1307 	 */
1308 	if (rt_bandwidth_enabled()) {
1309 		struct rt_rq *rt_rq = &rq->rt;
1310 
1311 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1312 		/*
1313 		 * We'll let actual RT tasks worry about the overflow here, we
1314 		 * have our own CBS to keep us inline; only account when RT
1315 		 * bandwidth is relevant.
1316 		 */
1317 		if (sched_rt_bandwidth_account(rt_rq))
1318 			rt_rq->rt_time += delta_exec;
1319 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1320 	}
1321 }
1322 
1323 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1324 {
1325 	struct sched_dl_entity *dl_se = container_of(timer,
1326 						     struct sched_dl_entity,
1327 						     inactive_timer);
1328 	struct task_struct *p = dl_task_of(dl_se);
1329 	struct rq_flags rf;
1330 	struct rq *rq;
1331 
1332 	rq = task_rq_lock(p, &rf);
1333 
1334 	sched_clock_tick();
1335 	update_rq_clock(rq);
1336 
1337 	if (!dl_task(p) || p->state == TASK_DEAD) {
1338 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1339 
1340 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1341 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1342 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1343 			dl_se->dl_non_contending = 0;
1344 		}
1345 
1346 		raw_spin_lock(&dl_b->lock);
1347 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1348 		raw_spin_unlock(&dl_b->lock);
1349 		__dl_clear_params(p);
1350 
1351 		goto unlock;
1352 	}
1353 	if (dl_se->dl_non_contending == 0)
1354 		goto unlock;
1355 
1356 	sub_running_bw(dl_se, &rq->dl);
1357 	dl_se->dl_non_contending = 0;
1358 unlock:
1359 	task_rq_unlock(rq, p, &rf);
1360 	put_task_struct(p);
1361 
1362 	return HRTIMER_NORESTART;
1363 }
1364 
1365 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1366 {
1367 	struct hrtimer *timer = &dl_se->inactive_timer;
1368 
1369 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1370 	timer->function = inactive_task_timer;
1371 }
1372 
1373 #ifdef CONFIG_SMP
1374 
1375 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1376 {
1377 	struct rq *rq = rq_of_dl_rq(dl_rq);
1378 
1379 	if (dl_rq->earliest_dl.curr == 0 ||
1380 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1381 		dl_rq->earliest_dl.curr = deadline;
1382 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1383 	}
1384 }
1385 
1386 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1387 {
1388 	struct rq *rq = rq_of_dl_rq(dl_rq);
1389 
1390 	/*
1391 	 * Since we may have removed our earliest (and/or next earliest)
1392 	 * task we must recompute them.
1393 	 */
1394 	if (!dl_rq->dl_nr_running) {
1395 		dl_rq->earliest_dl.curr = 0;
1396 		dl_rq->earliest_dl.next = 0;
1397 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1398 	} else {
1399 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1400 		struct sched_dl_entity *entry;
1401 
1402 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1403 		dl_rq->earliest_dl.curr = entry->deadline;
1404 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1405 	}
1406 }
1407 
1408 #else
1409 
1410 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1411 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1412 
1413 #endif /* CONFIG_SMP */
1414 
1415 static inline
1416 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1417 {
1418 	int prio = dl_task_of(dl_se)->prio;
1419 	u64 deadline = dl_se->deadline;
1420 
1421 	WARN_ON(!dl_prio(prio));
1422 	dl_rq->dl_nr_running++;
1423 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1424 
1425 	inc_dl_deadline(dl_rq, deadline);
1426 	inc_dl_migration(dl_se, dl_rq);
1427 }
1428 
1429 static inline
1430 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1431 {
1432 	int prio = dl_task_of(dl_se)->prio;
1433 
1434 	WARN_ON(!dl_prio(prio));
1435 	WARN_ON(!dl_rq->dl_nr_running);
1436 	dl_rq->dl_nr_running--;
1437 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1438 
1439 	dec_dl_deadline(dl_rq, dl_se->deadline);
1440 	dec_dl_migration(dl_se, dl_rq);
1441 }
1442 
1443 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1444 {
1445 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1446 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1447 	struct rb_node *parent = NULL;
1448 	struct sched_dl_entity *entry;
1449 	int leftmost = 1;
1450 
1451 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1452 
1453 	while (*link) {
1454 		parent = *link;
1455 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1456 		if (dl_time_before(dl_se->deadline, entry->deadline))
1457 			link = &parent->rb_left;
1458 		else {
1459 			link = &parent->rb_right;
1460 			leftmost = 0;
1461 		}
1462 	}
1463 
1464 	rb_link_node(&dl_se->rb_node, parent, link);
1465 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1466 
1467 	inc_dl_tasks(dl_se, dl_rq);
1468 }
1469 
1470 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1471 {
1472 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1473 
1474 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1475 		return;
1476 
1477 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1478 	RB_CLEAR_NODE(&dl_se->rb_node);
1479 
1480 	dec_dl_tasks(dl_se, dl_rq);
1481 }
1482 
1483 static void
1484 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1485 		  struct sched_dl_entity *pi_se, int flags)
1486 {
1487 	BUG_ON(on_dl_rq(dl_se));
1488 
1489 	/*
1490 	 * If this is a wakeup or a new instance, the scheduling
1491 	 * parameters of the task might need updating. Otherwise,
1492 	 * we want a replenishment of its runtime.
1493 	 */
1494 	if (flags & ENQUEUE_WAKEUP) {
1495 		task_contending(dl_se, flags);
1496 		update_dl_entity(dl_se, pi_se);
1497 	} else if (flags & ENQUEUE_REPLENISH) {
1498 		replenish_dl_entity(dl_se, pi_se);
1499 	} else if ((flags & ENQUEUE_RESTORE) &&
1500 		  dl_time_before(dl_se->deadline,
1501 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1502 		setup_new_dl_entity(dl_se);
1503 	}
1504 
1505 	__enqueue_dl_entity(dl_se);
1506 }
1507 
1508 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1509 {
1510 	__dequeue_dl_entity(dl_se);
1511 }
1512 
1513 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514 {
1515 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1516 	struct sched_dl_entity *pi_se = &p->dl;
1517 
1518 	/*
1519 	 * Use the scheduling parameters of the top pi-waiter task if:
1520 	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1521 	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1522 	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1523 	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1524 	 * Otherwise we keep our runtime and deadline.
1525 	 */
1526 	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1527 		pi_se = &pi_task->dl;
1528 		/*
1529 		 * Because of delays in the detection of the overrun of a
1530 		 * thread's runtime, it might be the case that a thread
1531 		 * goes to sleep in a rt mutex with negative runtime. As
1532 		 * a consequence, the thread will be throttled.
1533 		 *
1534 		 * While waiting for the mutex, this thread can also be
1535 		 * boosted via PI, resulting in a thread that is throttled
1536 		 * and boosted at the same time.
1537 		 *
1538 		 * In this case, the boost overrides the throttle.
1539 		 */
1540 		if (p->dl.dl_throttled) {
1541 			/*
1542 			 * The replenish timer needs to be canceled. No
1543 			 * problem if it fires concurrently: boosted threads
1544 			 * are ignored in dl_task_timer().
1545 			 */
1546 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1547 			p->dl.dl_throttled = 0;
1548 		}
1549 	} else if (!dl_prio(p->normal_prio)) {
1550 		/*
1551 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1552 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1553 		 * replenishing it, as it's going to return back to its original
1554 		 * scheduling class after this. If it has been throttled, we need to
1555 		 * clear the flag, otherwise the task may wake up as throttled after
1556 		 * being boosted again with no means to replenish the runtime and clear
1557 		 * the throttle.
1558 		 */
1559 		p->dl.dl_throttled = 0;
1560 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1561 		return;
1562 	}
1563 
1564 	/*
1565 	 * Check if a constrained deadline task was activated
1566 	 * after the deadline but before the next period.
1567 	 * If that is the case, the task will be throttled and
1568 	 * the replenishment timer will be set to the next period.
1569 	 */
1570 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1571 		dl_check_constrained_dl(&p->dl);
1572 
1573 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1574 		add_rq_bw(&p->dl, &rq->dl);
1575 		add_running_bw(&p->dl, &rq->dl);
1576 	}
1577 
1578 	/*
1579 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1580 	 * its budget it needs a replenishment and, since it now is on
1581 	 * its rq, the bandwidth timer callback (which clearly has not
1582 	 * run yet) will take care of this.
1583 	 * However, the active utilization does not depend on the fact
1584 	 * that the task is on the runqueue or not (but depends on the
1585 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1586 	 * In other words, even if a task is throttled its utilization must
1587 	 * be counted in the active utilization; hence, we need to call
1588 	 * add_running_bw().
1589 	 */
1590 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1591 		if (flags & ENQUEUE_WAKEUP)
1592 			task_contending(&p->dl, flags);
1593 
1594 		return;
1595 	}
1596 
1597 	enqueue_dl_entity(&p->dl, pi_se, flags);
1598 
1599 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1600 		enqueue_pushable_dl_task(rq, p);
1601 }
1602 
1603 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1604 {
1605 	dequeue_dl_entity(&p->dl);
1606 	dequeue_pushable_dl_task(rq, p);
1607 }
1608 
1609 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1610 {
1611 	update_curr_dl(rq);
1612 	__dequeue_task_dl(rq, p, flags);
1613 
1614 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1615 		sub_running_bw(&p->dl, &rq->dl);
1616 		sub_rq_bw(&p->dl, &rq->dl);
1617 	}
1618 
1619 	/*
1620 	 * This check allows to start the inactive timer (or to immediately
1621 	 * decrease the active utilization, if needed) in two cases:
1622 	 * when the task blocks and when it is terminating
1623 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1624 	 * way, because from GRUB's point of view the same thing is happening
1625 	 * (the task moves from "active contending" to "active non contending"
1626 	 * or "inactive")
1627 	 */
1628 	if (flags & DEQUEUE_SLEEP)
1629 		task_non_contending(p);
1630 }
1631 
1632 /*
1633  * Yield task semantic for -deadline tasks is:
1634  *
1635  *   get off from the CPU until our next instance, with
1636  *   a new runtime. This is of little use now, since we
1637  *   don't have a bandwidth reclaiming mechanism. Anyway,
1638  *   bandwidth reclaiming is planned for the future, and
1639  *   yield_task_dl will indicate that some spare budget
1640  *   is available for other task instances to use it.
1641  */
1642 static void yield_task_dl(struct rq *rq)
1643 {
1644 	/*
1645 	 * We make the task go to sleep until its current deadline by
1646 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1647 	 * it and the bandwidth timer will wake it up and will give it
1648 	 * new scheduling parameters (thanks to dl_yielded=1).
1649 	 */
1650 	rq->curr->dl.dl_yielded = 1;
1651 
1652 	update_rq_clock(rq);
1653 	update_curr_dl(rq);
1654 	/*
1655 	 * Tell update_rq_clock() that we've just updated,
1656 	 * so we don't do microscopic update in schedule()
1657 	 * and double the fastpath cost.
1658 	 */
1659 	rq_clock_skip_update(rq);
1660 }
1661 
1662 #ifdef CONFIG_SMP
1663 
1664 static int find_later_rq(struct task_struct *task);
1665 
1666 static int
1667 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1668 {
1669 	struct task_struct *curr;
1670 	bool select_rq;
1671 	struct rq *rq;
1672 
1673 	if (sd_flag != SD_BALANCE_WAKE)
1674 		goto out;
1675 
1676 	rq = cpu_rq(cpu);
1677 
1678 	rcu_read_lock();
1679 	curr = READ_ONCE(rq->curr); /* unlocked access */
1680 
1681 	/*
1682 	 * If we are dealing with a -deadline task, we must
1683 	 * decide where to wake it up.
1684 	 * If it has a later deadline and the current task
1685 	 * on this rq can't move (provided the waking task
1686 	 * can!) we prefer to send it somewhere else. On the
1687 	 * other hand, if it has a shorter deadline, we
1688 	 * try to make it stay here, it might be important.
1689 	 */
1690 	select_rq = unlikely(dl_task(curr)) &&
1691 		    (curr->nr_cpus_allowed < 2 ||
1692 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1693 		    p->nr_cpus_allowed > 1;
1694 
1695 	/*
1696 	 * Take the capacity of the CPU into account to
1697 	 * ensure it fits the requirement of the task.
1698 	 */
1699 	if (static_branch_unlikely(&sched_asym_cpucapacity))
1700 		select_rq |= !dl_task_fits_capacity(p, cpu);
1701 
1702 	if (select_rq) {
1703 		int target = find_later_rq(p);
1704 
1705 		if (target != -1 &&
1706 				(dl_time_before(p->dl.deadline,
1707 					cpu_rq(target)->dl.earliest_dl.curr) ||
1708 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1709 			cpu = target;
1710 	}
1711 	rcu_read_unlock();
1712 
1713 out:
1714 	return cpu;
1715 }
1716 
1717 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1718 {
1719 	struct rq *rq;
1720 
1721 	if (p->state != TASK_WAKING)
1722 		return;
1723 
1724 	rq = task_rq(p);
1725 	/*
1726 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1727 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1728 	 * rq->lock is not... So, lock it
1729 	 */
1730 	raw_spin_lock(&rq->lock);
1731 	if (p->dl.dl_non_contending) {
1732 		sub_running_bw(&p->dl, &rq->dl);
1733 		p->dl.dl_non_contending = 0;
1734 		/*
1735 		 * If the timer handler is currently running and the
1736 		 * timer cannot be cancelled, inactive_task_timer()
1737 		 * will see that dl_not_contending is not set, and
1738 		 * will not touch the rq's active utilization,
1739 		 * so we are still safe.
1740 		 */
1741 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1742 			put_task_struct(p);
1743 	}
1744 	sub_rq_bw(&p->dl, &rq->dl);
1745 	raw_spin_unlock(&rq->lock);
1746 }
1747 
1748 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1749 {
1750 	/*
1751 	 * Current can't be migrated, useless to reschedule,
1752 	 * let's hope p can move out.
1753 	 */
1754 	if (rq->curr->nr_cpus_allowed == 1 ||
1755 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1756 		return;
1757 
1758 	/*
1759 	 * p is migratable, so let's not schedule it and
1760 	 * see if it is pushed or pulled somewhere else.
1761 	 */
1762 	if (p->nr_cpus_allowed != 1 &&
1763 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1764 		return;
1765 
1766 	resched_curr(rq);
1767 }
1768 
1769 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1770 {
1771 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1772 		/*
1773 		 * This is OK, because current is on_cpu, which avoids it being
1774 		 * picked for load-balance and preemption/IRQs are still
1775 		 * disabled avoiding further scheduler activity on it and we've
1776 		 * not yet started the picking loop.
1777 		 */
1778 		rq_unpin_lock(rq, rf);
1779 		pull_dl_task(rq);
1780 		rq_repin_lock(rq, rf);
1781 	}
1782 
1783 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1784 }
1785 #endif /* CONFIG_SMP */
1786 
1787 /*
1788  * Only called when both the current and waking task are -deadline
1789  * tasks.
1790  */
1791 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1792 				  int flags)
1793 {
1794 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1795 		resched_curr(rq);
1796 		return;
1797 	}
1798 
1799 #ifdef CONFIG_SMP
1800 	/*
1801 	 * In the unlikely case current and p have the same deadline
1802 	 * let us try to decide what's the best thing to do...
1803 	 */
1804 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1805 	    !test_tsk_need_resched(rq->curr))
1806 		check_preempt_equal_dl(rq, p);
1807 #endif /* CONFIG_SMP */
1808 }
1809 
1810 #ifdef CONFIG_SCHED_HRTICK
1811 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1812 {
1813 	hrtick_start(rq, p->dl.runtime);
1814 }
1815 #else /* !CONFIG_SCHED_HRTICK */
1816 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1817 {
1818 }
1819 #endif
1820 
1821 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1822 {
1823 	p->se.exec_start = rq_clock_task(rq);
1824 
1825 	/* You can't push away the running task */
1826 	dequeue_pushable_dl_task(rq, p);
1827 
1828 	if (!first)
1829 		return;
1830 
1831 	if (hrtick_enabled(rq))
1832 		start_hrtick_dl(rq, p);
1833 
1834 	if (rq->curr->sched_class != &dl_sched_class)
1835 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1836 
1837 	deadline_queue_push_tasks(rq);
1838 }
1839 
1840 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1841 						   struct dl_rq *dl_rq)
1842 {
1843 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1844 
1845 	if (!left)
1846 		return NULL;
1847 
1848 	return rb_entry(left, struct sched_dl_entity, rb_node);
1849 }
1850 
1851 static struct task_struct *pick_next_task_dl(struct rq *rq)
1852 {
1853 	struct sched_dl_entity *dl_se;
1854 	struct dl_rq *dl_rq = &rq->dl;
1855 	struct task_struct *p;
1856 
1857 	if (!sched_dl_runnable(rq))
1858 		return NULL;
1859 
1860 	dl_se = pick_next_dl_entity(rq, dl_rq);
1861 	BUG_ON(!dl_se);
1862 	p = dl_task_of(dl_se);
1863 	set_next_task_dl(rq, p, true);
1864 	return p;
1865 }
1866 
1867 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1868 {
1869 	update_curr_dl(rq);
1870 
1871 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1872 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1873 		enqueue_pushable_dl_task(rq, p);
1874 }
1875 
1876 /*
1877  * scheduler tick hitting a task of our scheduling class.
1878  *
1879  * NOTE: This function can be called remotely by the tick offload that
1880  * goes along full dynticks. Therefore no local assumption can be made
1881  * and everything must be accessed through the @rq and @curr passed in
1882  * parameters.
1883  */
1884 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1885 {
1886 	update_curr_dl(rq);
1887 
1888 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1889 	/*
1890 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1891 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1892 	 * be set and schedule() will start a new hrtick for the next task.
1893 	 */
1894 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1895 	    is_leftmost(p, &rq->dl))
1896 		start_hrtick_dl(rq, p);
1897 }
1898 
1899 static void task_fork_dl(struct task_struct *p)
1900 {
1901 	/*
1902 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1903 	 * sched_fork()
1904 	 */
1905 }
1906 
1907 #ifdef CONFIG_SMP
1908 
1909 /* Only try algorithms three times */
1910 #define DL_MAX_TRIES 3
1911 
1912 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1913 {
1914 	if (!task_running(rq, p) &&
1915 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1916 		return 1;
1917 	return 0;
1918 }
1919 
1920 /*
1921  * Return the earliest pushable rq's task, which is suitable to be executed
1922  * on the CPU, NULL otherwise:
1923  */
1924 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1925 {
1926 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1927 	struct task_struct *p = NULL;
1928 
1929 	if (!has_pushable_dl_tasks(rq))
1930 		return NULL;
1931 
1932 next_node:
1933 	if (next_node) {
1934 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1935 
1936 		if (pick_dl_task(rq, p, cpu))
1937 			return p;
1938 
1939 		next_node = rb_next(next_node);
1940 		goto next_node;
1941 	}
1942 
1943 	return NULL;
1944 }
1945 
1946 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1947 
1948 static int find_later_rq(struct task_struct *task)
1949 {
1950 	struct sched_domain *sd;
1951 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1952 	int this_cpu = smp_processor_id();
1953 	int cpu = task_cpu(task);
1954 
1955 	/* Make sure the mask is initialized first */
1956 	if (unlikely(!later_mask))
1957 		return -1;
1958 
1959 	if (task->nr_cpus_allowed == 1)
1960 		return -1;
1961 
1962 	/*
1963 	 * We have to consider system topology and task affinity
1964 	 * first, then we can look for a suitable CPU.
1965 	 */
1966 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1967 		return -1;
1968 
1969 	/*
1970 	 * If we are here, some targets have been found, including
1971 	 * the most suitable which is, among the runqueues where the
1972 	 * current tasks have later deadlines than the task's one, the
1973 	 * rq with the latest possible one.
1974 	 *
1975 	 * Now we check how well this matches with task's
1976 	 * affinity and system topology.
1977 	 *
1978 	 * The last CPU where the task run is our first
1979 	 * guess, since it is most likely cache-hot there.
1980 	 */
1981 	if (cpumask_test_cpu(cpu, later_mask))
1982 		return cpu;
1983 	/*
1984 	 * Check if this_cpu is to be skipped (i.e., it is
1985 	 * not in the mask) or not.
1986 	 */
1987 	if (!cpumask_test_cpu(this_cpu, later_mask))
1988 		this_cpu = -1;
1989 
1990 	rcu_read_lock();
1991 	for_each_domain(cpu, sd) {
1992 		if (sd->flags & SD_WAKE_AFFINE) {
1993 			int best_cpu;
1994 
1995 			/*
1996 			 * If possible, preempting this_cpu is
1997 			 * cheaper than migrating.
1998 			 */
1999 			if (this_cpu != -1 &&
2000 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2001 				rcu_read_unlock();
2002 				return this_cpu;
2003 			}
2004 
2005 			best_cpu = cpumask_first_and(later_mask,
2006 							sched_domain_span(sd));
2007 			/*
2008 			 * Last chance: if a CPU being in both later_mask
2009 			 * and current sd span is valid, that becomes our
2010 			 * choice. Of course, the latest possible CPU is
2011 			 * already under consideration through later_mask.
2012 			 */
2013 			if (best_cpu < nr_cpu_ids) {
2014 				rcu_read_unlock();
2015 				return best_cpu;
2016 			}
2017 		}
2018 	}
2019 	rcu_read_unlock();
2020 
2021 	/*
2022 	 * At this point, all our guesses failed, we just return
2023 	 * 'something', and let the caller sort the things out.
2024 	 */
2025 	if (this_cpu != -1)
2026 		return this_cpu;
2027 
2028 	cpu = cpumask_any(later_mask);
2029 	if (cpu < nr_cpu_ids)
2030 		return cpu;
2031 
2032 	return -1;
2033 }
2034 
2035 /* Locks the rq it finds */
2036 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2037 {
2038 	struct rq *later_rq = NULL;
2039 	int tries;
2040 	int cpu;
2041 
2042 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2043 		cpu = find_later_rq(task);
2044 
2045 		if ((cpu == -1) || (cpu == rq->cpu))
2046 			break;
2047 
2048 		later_rq = cpu_rq(cpu);
2049 
2050 		if (later_rq->dl.dl_nr_running &&
2051 		    !dl_time_before(task->dl.deadline,
2052 					later_rq->dl.earliest_dl.curr)) {
2053 			/*
2054 			 * Target rq has tasks of equal or earlier deadline,
2055 			 * retrying does not release any lock and is unlikely
2056 			 * to yield a different result.
2057 			 */
2058 			later_rq = NULL;
2059 			break;
2060 		}
2061 
2062 		/* Retry if something changed. */
2063 		if (double_lock_balance(rq, later_rq)) {
2064 			if (unlikely(task_rq(task) != rq ||
2065 				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
2066 				     task_running(rq, task) ||
2067 				     !dl_task(task) ||
2068 				     !task_on_rq_queued(task))) {
2069 				double_unlock_balance(rq, later_rq);
2070 				later_rq = NULL;
2071 				break;
2072 			}
2073 		}
2074 
2075 		/*
2076 		 * If the rq we found has no -deadline task, or
2077 		 * its earliest one has a later deadline than our
2078 		 * task, the rq is a good one.
2079 		 */
2080 		if (!later_rq->dl.dl_nr_running ||
2081 		    dl_time_before(task->dl.deadline,
2082 				   later_rq->dl.earliest_dl.curr))
2083 			break;
2084 
2085 		/* Otherwise we try again. */
2086 		double_unlock_balance(rq, later_rq);
2087 		later_rq = NULL;
2088 	}
2089 
2090 	return later_rq;
2091 }
2092 
2093 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2094 {
2095 	struct task_struct *p;
2096 
2097 	if (!has_pushable_dl_tasks(rq))
2098 		return NULL;
2099 
2100 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2101 		     struct task_struct, pushable_dl_tasks);
2102 
2103 	BUG_ON(rq->cpu != task_cpu(p));
2104 	BUG_ON(task_current(rq, p));
2105 	BUG_ON(p->nr_cpus_allowed <= 1);
2106 
2107 	BUG_ON(!task_on_rq_queued(p));
2108 	BUG_ON(!dl_task(p));
2109 
2110 	return p;
2111 }
2112 
2113 /*
2114  * See if the non running -deadline tasks on this rq
2115  * can be sent to some other CPU where they can preempt
2116  * and start executing.
2117  */
2118 static int push_dl_task(struct rq *rq)
2119 {
2120 	struct task_struct *next_task;
2121 	struct rq *later_rq;
2122 	int ret = 0;
2123 
2124 	if (!rq->dl.overloaded)
2125 		return 0;
2126 
2127 	next_task = pick_next_pushable_dl_task(rq);
2128 	if (!next_task)
2129 		return 0;
2130 
2131 retry:
2132 	if (WARN_ON(next_task == rq->curr))
2133 		return 0;
2134 
2135 	/*
2136 	 * If next_task preempts rq->curr, and rq->curr
2137 	 * can move away, it makes sense to just reschedule
2138 	 * without going further in pushing next_task.
2139 	 */
2140 	if (dl_task(rq->curr) &&
2141 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2142 	    rq->curr->nr_cpus_allowed > 1) {
2143 		resched_curr(rq);
2144 		return 0;
2145 	}
2146 
2147 	/* We might release rq lock */
2148 	get_task_struct(next_task);
2149 
2150 	/* Will lock the rq it'll find */
2151 	later_rq = find_lock_later_rq(next_task, rq);
2152 	if (!later_rq) {
2153 		struct task_struct *task;
2154 
2155 		/*
2156 		 * We must check all this again, since
2157 		 * find_lock_later_rq releases rq->lock and it is
2158 		 * then possible that next_task has migrated.
2159 		 */
2160 		task = pick_next_pushable_dl_task(rq);
2161 		if (task == next_task) {
2162 			/*
2163 			 * The task is still there. We don't try
2164 			 * again, some other CPU will pull it when ready.
2165 			 */
2166 			goto out;
2167 		}
2168 
2169 		if (!task)
2170 			/* No more tasks */
2171 			goto out;
2172 
2173 		put_task_struct(next_task);
2174 		next_task = task;
2175 		goto retry;
2176 	}
2177 
2178 	deactivate_task(rq, next_task, 0);
2179 	set_task_cpu(next_task, later_rq->cpu);
2180 
2181 	/*
2182 	 * Update the later_rq clock here, because the clock is used
2183 	 * by the cpufreq_update_util() inside __add_running_bw().
2184 	 */
2185 	update_rq_clock(later_rq);
2186 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2187 	ret = 1;
2188 
2189 	resched_curr(later_rq);
2190 
2191 	double_unlock_balance(rq, later_rq);
2192 
2193 out:
2194 	put_task_struct(next_task);
2195 
2196 	return ret;
2197 }
2198 
2199 static void push_dl_tasks(struct rq *rq)
2200 {
2201 	/* push_dl_task() will return true if it moved a -deadline task */
2202 	while (push_dl_task(rq))
2203 		;
2204 }
2205 
2206 static void pull_dl_task(struct rq *this_rq)
2207 {
2208 	int this_cpu = this_rq->cpu, cpu;
2209 	struct task_struct *p;
2210 	bool resched = false;
2211 	struct rq *src_rq;
2212 	u64 dmin = LONG_MAX;
2213 
2214 	if (likely(!dl_overloaded(this_rq)))
2215 		return;
2216 
2217 	/*
2218 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2219 	 * see overloaded we must also see the dlo_mask bit.
2220 	 */
2221 	smp_rmb();
2222 
2223 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2224 		if (this_cpu == cpu)
2225 			continue;
2226 
2227 		src_rq = cpu_rq(cpu);
2228 
2229 		/*
2230 		 * It looks racy, abd it is! However, as in sched_rt.c,
2231 		 * we are fine with this.
2232 		 */
2233 		if (this_rq->dl.dl_nr_running &&
2234 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2235 				   src_rq->dl.earliest_dl.next))
2236 			continue;
2237 
2238 		/* Might drop this_rq->lock */
2239 		double_lock_balance(this_rq, src_rq);
2240 
2241 		/*
2242 		 * If there are no more pullable tasks on the
2243 		 * rq, we're done with it.
2244 		 */
2245 		if (src_rq->dl.dl_nr_running <= 1)
2246 			goto skip;
2247 
2248 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2249 
2250 		/*
2251 		 * We found a task to be pulled if:
2252 		 *  - it preempts our current (if there's one),
2253 		 *  - it will preempt the last one we pulled (if any).
2254 		 */
2255 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2256 		    (!this_rq->dl.dl_nr_running ||
2257 		     dl_time_before(p->dl.deadline,
2258 				    this_rq->dl.earliest_dl.curr))) {
2259 			WARN_ON(p == src_rq->curr);
2260 			WARN_ON(!task_on_rq_queued(p));
2261 
2262 			/*
2263 			 * Then we pull iff p has actually an earlier
2264 			 * deadline than the current task of its runqueue.
2265 			 */
2266 			if (dl_time_before(p->dl.deadline,
2267 					   src_rq->curr->dl.deadline))
2268 				goto skip;
2269 
2270 			resched = true;
2271 
2272 			deactivate_task(src_rq, p, 0);
2273 			set_task_cpu(p, this_cpu);
2274 			activate_task(this_rq, p, 0);
2275 			dmin = p->dl.deadline;
2276 
2277 			/* Is there any other task even earlier? */
2278 		}
2279 skip:
2280 		double_unlock_balance(this_rq, src_rq);
2281 	}
2282 
2283 	if (resched)
2284 		resched_curr(this_rq);
2285 }
2286 
2287 /*
2288  * Since the task is not running and a reschedule is not going to happen
2289  * anytime soon on its runqueue, we try pushing it away now.
2290  */
2291 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2292 {
2293 	if (!task_running(rq, p) &&
2294 	    !test_tsk_need_resched(rq->curr) &&
2295 	    p->nr_cpus_allowed > 1 &&
2296 	    dl_task(rq->curr) &&
2297 	    (rq->curr->nr_cpus_allowed < 2 ||
2298 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2299 		push_dl_tasks(rq);
2300 	}
2301 }
2302 
2303 static void set_cpus_allowed_dl(struct task_struct *p,
2304 				const struct cpumask *new_mask)
2305 {
2306 	struct root_domain *src_rd;
2307 	struct rq *rq;
2308 
2309 	BUG_ON(!dl_task(p));
2310 
2311 	rq = task_rq(p);
2312 	src_rd = rq->rd;
2313 	/*
2314 	 * Migrating a SCHED_DEADLINE task between exclusive
2315 	 * cpusets (different root_domains) entails a bandwidth
2316 	 * update. We already made space for us in the destination
2317 	 * domain (see cpuset_can_attach()).
2318 	 */
2319 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2320 		struct dl_bw *src_dl_b;
2321 
2322 		src_dl_b = dl_bw_of(cpu_of(rq));
2323 		/*
2324 		 * We now free resources of the root_domain we are migrating
2325 		 * off. In the worst case, sched_setattr() may temporary fail
2326 		 * until we complete the update.
2327 		 */
2328 		raw_spin_lock(&src_dl_b->lock);
2329 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2330 		raw_spin_unlock(&src_dl_b->lock);
2331 	}
2332 
2333 	set_cpus_allowed_common(p, new_mask);
2334 }
2335 
2336 /* Assumes rq->lock is held */
2337 static void rq_online_dl(struct rq *rq)
2338 {
2339 	if (rq->dl.overloaded)
2340 		dl_set_overload(rq);
2341 
2342 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2343 	if (rq->dl.dl_nr_running > 0)
2344 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2345 }
2346 
2347 /* Assumes rq->lock is held */
2348 static void rq_offline_dl(struct rq *rq)
2349 {
2350 	if (rq->dl.overloaded)
2351 		dl_clear_overload(rq);
2352 
2353 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2354 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2355 }
2356 
2357 void __init init_sched_dl_class(void)
2358 {
2359 	unsigned int i;
2360 
2361 	for_each_possible_cpu(i)
2362 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2363 					GFP_KERNEL, cpu_to_node(i));
2364 }
2365 
2366 void dl_add_task_root_domain(struct task_struct *p)
2367 {
2368 	struct rq_flags rf;
2369 	struct rq *rq;
2370 	struct dl_bw *dl_b;
2371 
2372 	rq = task_rq_lock(p, &rf);
2373 	if (!dl_task(p))
2374 		goto unlock;
2375 
2376 	dl_b = &rq->rd->dl_bw;
2377 	raw_spin_lock(&dl_b->lock);
2378 
2379 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2380 
2381 	raw_spin_unlock(&dl_b->lock);
2382 
2383 unlock:
2384 	task_rq_unlock(rq, p, &rf);
2385 }
2386 
2387 void dl_clear_root_domain(struct root_domain *rd)
2388 {
2389 	unsigned long flags;
2390 
2391 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2392 	rd->dl_bw.total_bw = 0;
2393 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2394 }
2395 
2396 #endif /* CONFIG_SMP */
2397 
2398 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2399 {
2400 	/*
2401 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2402 	 * time is in the future). If the task switches back to dl before
2403 	 * the "inactive timer" fires, it can continue to consume its current
2404 	 * runtime using its current deadline. If it stays outside of
2405 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2406 	 * will reset the task parameters.
2407 	 */
2408 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2409 		task_non_contending(p);
2410 
2411 	if (!task_on_rq_queued(p)) {
2412 		/*
2413 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2414 		 * might migrate away from this rq while continuing to run on
2415 		 * some other class. We need to remove its contribution from
2416 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2417 		 */
2418 		if (p->dl.dl_non_contending)
2419 			sub_running_bw(&p->dl, &rq->dl);
2420 		sub_rq_bw(&p->dl, &rq->dl);
2421 	}
2422 
2423 	/*
2424 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2425 	 * at the 0-lag time, because the task could have been migrated
2426 	 * while SCHED_OTHER in the meanwhile.
2427 	 */
2428 	if (p->dl.dl_non_contending)
2429 		p->dl.dl_non_contending = 0;
2430 
2431 	/*
2432 	 * Since this might be the only -deadline task on the rq,
2433 	 * this is the right place to try to pull some other one
2434 	 * from an overloaded CPU, if any.
2435 	 */
2436 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2437 		return;
2438 
2439 	deadline_queue_pull_task(rq);
2440 }
2441 
2442 /*
2443  * When switching to -deadline, we may overload the rq, then
2444  * we try to push someone off, if possible.
2445  */
2446 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2447 {
2448 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2449 		put_task_struct(p);
2450 
2451 	/* If p is not queued we will update its parameters at next wakeup. */
2452 	if (!task_on_rq_queued(p)) {
2453 		add_rq_bw(&p->dl, &rq->dl);
2454 
2455 		return;
2456 	}
2457 
2458 	if (rq->curr != p) {
2459 #ifdef CONFIG_SMP
2460 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2461 			deadline_queue_push_tasks(rq);
2462 #endif
2463 		if (dl_task(rq->curr))
2464 			check_preempt_curr_dl(rq, p, 0);
2465 		else
2466 			resched_curr(rq);
2467 	}
2468 }
2469 
2470 /*
2471  * If the scheduling parameters of a -deadline task changed,
2472  * a push or pull operation might be needed.
2473  */
2474 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2475 			    int oldprio)
2476 {
2477 	if (task_on_rq_queued(p) || rq->curr == p) {
2478 #ifdef CONFIG_SMP
2479 		/*
2480 		 * This might be too much, but unfortunately
2481 		 * we don't have the old deadline value, and
2482 		 * we can't argue if the task is increasing
2483 		 * or lowering its prio, so...
2484 		 */
2485 		if (!rq->dl.overloaded)
2486 			deadline_queue_pull_task(rq);
2487 
2488 		/*
2489 		 * If we now have a earlier deadline task than p,
2490 		 * then reschedule, provided p is still on this
2491 		 * runqueue.
2492 		 */
2493 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2494 			resched_curr(rq);
2495 #else
2496 		/*
2497 		 * Again, we don't know if p has a earlier
2498 		 * or later deadline, so let's blindly set a
2499 		 * (maybe not needed) rescheduling point.
2500 		 */
2501 		resched_curr(rq);
2502 #endif /* CONFIG_SMP */
2503 	}
2504 }
2505 
2506 const struct sched_class dl_sched_class
2507 	__section("__dl_sched_class") = {
2508 	.enqueue_task		= enqueue_task_dl,
2509 	.dequeue_task		= dequeue_task_dl,
2510 	.yield_task		= yield_task_dl,
2511 
2512 	.check_preempt_curr	= check_preempt_curr_dl,
2513 
2514 	.pick_next_task		= pick_next_task_dl,
2515 	.put_prev_task		= put_prev_task_dl,
2516 	.set_next_task		= set_next_task_dl,
2517 
2518 #ifdef CONFIG_SMP
2519 	.balance		= balance_dl,
2520 	.select_task_rq		= select_task_rq_dl,
2521 	.migrate_task_rq	= migrate_task_rq_dl,
2522 	.set_cpus_allowed       = set_cpus_allowed_dl,
2523 	.rq_online              = rq_online_dl,
2524 	.rq_offline             = rq_offline_dl,
2525 	.task_woken		= task_woken_dl,
2526 #endif
2527 
2528 	.task_tick		= task_tick_dl,
2529 	.task_fork              = task_fork_dl,
2530 
2531 	.prio_changed           = prio_changed_dl,
2532 	.switched_from		= switched_from_dl,
2533 	.switched_to		= switched_to_dl,
2534 
2535 	.update_curr		= update_curr_dl,
2536 };
2537 
2538 int sched_dl_global_validate(void)
2539 {
2540 	u64 runtime = global_rt_runtime();
2541 	u64 period = global_rt_period();
2542 	u64 new_bw = to_ratio(period, runtime);
2543 	struct dl_bw *dl_b;
2544 	int cpu, ret = 0;
2545 	unsigned long flags;
2546 
2547 	/*
2548 	 * Here we want to check the bandwidth not being set to some
2549 	 * value smaller than the currently allocated bandwidth in
2550 	 * any of the root_domains.
2551 	 *
2552 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2553 	 * cycling on root_domains... Discussion on different/better
2554 	 * solutions is welcome!
2555 	 */
2556 	for_each_possible_cpu(cpu) {
2557 		rcu_read_lock_sched();
2558 		dl_b = dl_bw_of(cpu);
2559 
2560 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2561 		if (new_bw < dl_b->total_bw)
2562 			ret = -EBUSY;
2563 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2564 
2565 		rcu_read_unlock_sched();
2566 
2567 		if (ret)
2568 			break;
2569 	}
2570 
2571 	return ret;
2572 }
2573 
2574 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2575 {
2576 	if (global_rt_runtime() == RUNTIME_INF) {
2577 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2578 		dl_rq->extra_bw = 1 << BW_SHIFT;
2579 	} else {
2580 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2581 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2582 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2583 						    global_rt_runtime());
2584 	}
2585 }
2586 
2587 void sched_dl_do_global(void)
2588 {
2589 	u64 new_bw = -1;
2590 	struct dl_bw *dl_b;
2591 	int cpu;
2592 	unsigned long flags;
2593 
2594 	def_dl_bandwidth.dl_period = global_rt_period();
2595 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2596 
2597 	if (global_rt_runtime() != RUNTIME_INF)
2598 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2599 
2600 	/*
2601 	 * FIXME: As above...
2602 	 */
2603 	for_each_possible_cpu(cpu) {
2604 		rcu_read_lock_sched();
2605 		dl_b = dl_bw_of(cpu);
2606 
2607 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2608 		dl_b->bw = new_bw;
2609 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2610 
2611 		rcu_read_unlock_sched();
2612 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2613 	}
2614 }
2615 
2616 /*
2617  * We must be sure that accepting a new task (or allowing changing the
2618  * parameters of an existing one) is consistent with the bandwidth
2619  * constraints. If yes, this function also accordingly updates the currently
2620  * allocated bandwidth to reflect the new situation.
2621  *
2622  * This function is called while holding p's rq->lock.
2623  */
2624 int sched_dl_overflow(struct task_struct *p, int policy,
2625 		      const struct sched_attr *attr)
2626 {
2627 	u64 period = attr->sched_period ?: attr->sched_deadline;
2628 	u64 runtime = attr->sched_runtime;
2629 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2630 	int cpus, err = -1, cpu = task_cpu(p);
2631 	struct dl_bw *dl_b = dl_bw_of(cpu);
2632 	unsigned long cap;
2633 
2634 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2635 		return 0;
2636 
2637 	/* !deadline task may carry old deadline bandwidth */
2638 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2639 		return 0;
2640 
2641 	/*
2642 	 * Either if a task, enters, leave, or stays -deadline but changes
2643 	 * its parameters, we may need to update accordingly the total
2644 	 * allocated bandwidth of the container.
2645 	 */
2646 	raw_spin_lock(&dl_b->lock);
2647 	cpus = dl_bw_cpus(cpu);
2648 	cap = dl_bw_capacity(cpu);
2649 
2650 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2651 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2652 		if (hrtimer_active(&p->dl.inactive_timer))
2653 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2654 		__dl_add(dl_b, new_bw, cpus);
2655 		err = 0;
2656 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2657 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2658 		/*
2659 		 * XXX this is slightly incorrect: when the task
2660 		 * utilization decreases, we should delay the total
2661 		 * utilization change until the task's 0-lag point.
2662 		 * But this would require to set the task's "inactive
2663 		 * timer" when the task is not inactive.
2664 		 */
2665 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2666 		__dl_add(dl_b, new_bw, cpus);
2667 		dl_change_utilization(p, new_bw);
2668 		err = 0;
2669 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2670 		/*
2671 		 * Do not decrease the total deadline utilization here,
2672 		 * switched_from_dl() will take care to do it at the correct
2673 		 * (0-lag) time.
2674 		 */
2675 		err = 0;
2676 	}
2677 	raw_spin_unlock(&dl_b->lock);
2678 
2679 	return err;
2680 }
2681 
2682 /*
2683  * This function initializes the sched_dl_entity of a newly becoming
2684  * SCHED_DEADLINE task.
2685  *
2686  * Only the static values are considered here, the actual runtime and the
2687  * absolute deadline will be properly calculated when the task is enqueued
2688  * for the first time with its new policy.
2689  */
2690 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2691 {
2692 	struct sched_dl_entity *dl_se = &p->dl;
2693 
2694 	dl_se->dl_runtime = attr->sched_runtime;
2695 	dl_se->dl_deadline = attr->sched_deadline;
2696 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2697 	dl_se->flags = attr->sched_flags;
2698 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2699 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2700 }
2701 
2702 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2703 {
2704 	struct sched_dl_entity *dl_se = &p->dl;
2705 
2706 	attr->sched_priority = p->rt_priority;
2707 	attr->sched_runtime = dl_se->dl_runtime;
2708 	attr->sched_deadline = dl_se->dl_deadline;
2709 	attr->sched_period = dl_se->dl_period;
2710 	attr->sched_flags = dl_se->flags;
2711 }
2712 
2713 /*
2714  * Default limits for DL period; on the top end we guard against small util
2715  * tasks still getting rediculous long effective runtimes, on the bottom end we
2716  * guard against timer DoS.
2717  */
2718 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2719 unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2720 
2721 /*
2722  * This function validates the new parameters of a -deadline task.
2723  * We ask for the deadline not being zero, and greater or equal
2724  * than the runtime, as well as the period of being zero or
2725  * greater than deadline. Furthermore, we have to be sure that
2726  * user parameters are above the internal resolution of 1us (we
2727  * check sched_runtime only since it is always the smaller one) and
2728  * below 2^63 ns (we have to check both sched_deadline and
2729  * sched_period, as the latter can be zero).
2730  */
2731 bool __checkparam_dl(const struct sched_attr *attr)
2732 {
2733 	u64 period, max, min;
2734 
2735 	/* special dl tasks don't actually use any parameter */
2736 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2737 		return true;
2738 
2739 	/* deadline != 0 */
2740 	if (attr->sched_deadline == 0)
2741 		return false;
2742 
2743 	/*
2744 	 * Since we truncate DL_SCALE bits, make sure we're at least
2745 	 * that big.
2746 	 */
2747 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2748 		return false;
2749 
2750 	/*
2751 	 * Since we use the MSB for wrap-around and sign issues, make
2752 	 * sure it's not set (mind that period can be equal to zero).
2753 	 */
2754 	if (attr->sched_deadline & (1ULL << 63) ||
2755 	    attr->sched_period & (1ULL << 63))
2756 		return false;
2757 
2758 	period = attr->sched_period;
2759 	if (!period)
2760 		period = attr->sched_deadline;
2761 
2762 	/* runtime <= deadline <= period (if period != 0) */
2763 	if (period < attr->sched_deadline ||
2764 	    attr->sched_deadline < attr->sched_runtime)
2765 		return false;
2766 
2767 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2768 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2769 
2770 	if (period < min || period > max)
2771 		return false;
2772 
2773 	return true;
2774 }
2775 
2776 /*
2777  * This function clears the sched_dl_entity static params.
2778  */
2779 void __dl_clear_params(struct task_struct *p)
2780 {
2781 	struct sched_dl_entity *dl_se = &p->dl;
2782 
2783 	dl_se->dl_runtime		= 0;
2784 	dl_se->dl_deadline		= 0;
2785 	dl_se->dl_period		= 0;
2786 	dl_se->flags			= 0;
2787 	dl_se->dl_bw			= 0;
2788 	dl_se->dl_density		= 0;
2789 
2790 	dl_se->dl_boosted		= 0;
2791 	dl_se->dl_throttled		= 0;
2792 	dl_se->dl_yielded		= 0;
2793 	dl_se->dl_non_contending	= 0;
2794 	dl_se->dl_overrun		= 0;
2795 }
2796 
2797 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2798 {
2799 	struct sched_dl_entity *dl_se = &p->dl;
2800 
2801 	if (dl_se->dl_runtime != attr->sched_runtime ||
2802 	    dl_se->dl_deadline != attr->sched_deadline ||
2803 	    dl_se->dl_period != attr->sched_period ||
2804 	    dl_se->flags != attr->sched_flags)
2805 		return true;
2806 
2807 	return false;
2808 }
2809 
2810 #ifdef CONFIG_SMP
2811 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2812 {
2813 	unsigned long flags, cap;
2814 	unsigned int dest_cpu;
2815 	struct dl_bw *dl_b;
2816 	bool overflow;
2817 	int ret;
2818 
2819 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2820 
2821 	rcu_read_lock_sched();
2822 	dl_b = dl_bw_of(dest_cpu);
2823 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2824 	cap = dl_bw_capacity(dest_cpu);
2825 	overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2826 	if (overflow) {
2827 		ret = -EBUSY;
2828 	} else {
2829 		/*
2830 		 * We reserve space for this task in the destination
2831 		 * root_domain, as we can't fail after this point.
2832 		 * We will free resources in the source root_domain
2833 		 * later on (see set_cpus_allowed_dl()).
2834 		 */
2835 		int cpus = dl_bw_cpus(dest_cpu);
2836 
2837 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2838 		ret = 0;
2839 	}
2840 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2841 	rcu_read_unlock_sched();
2842 
2843 	return ret;
2844 }
2845 
2846 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2847 				 const struct cpumask *trial)
2848 {
2849 	int ret = 1, trial_cpus;
2850 	struct dl_bw *cur_dl_b;
2851 	unsigned long flags;
2852 
2853 	rcu_read_lock_sched();
2854 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2855 	trial_cpus = cpumask_weight(trial);
2856 
2857 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2858 	if (cur_dl_b->bw != -1 &&
2859 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2860 		ret = 0;
2861 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2862 	rcu_read_unlock_sched();
2863 
2864 	return ret;
2865 }
2866 
2867 bool dl_cpu_busy(unsigned int cpu)
2868 {
2869 	unsigned long flags, cap;
2870 	struct dl_bw *dl_b;
2871 	bool overflow;
2872 
2873 	rcu_read_lock_sched();
2874 	dl_b = dl_bw_of(cpu);
2875 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2876 	cap = dl_bw_capacity(cpu);
2877 	overflow = __dl_overflow(dl_b, cap, 0, 0);
2878 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2879 	rcu_read_unlock_sched();
2880 
2881 	return overflow;
2882 }
2883 #endif
2884 
2885 #ifdef CONFIG_SCHED_DEBUG
2886 void print_dl_stats(struct seq_file *m, int cpu)
2887 {
2888 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2889 }
2890 #endif /* CONFIG_SCHED_DEBUG */
2891