xref: /linux/kernel/sched/deadline.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 	raw_spin_lock_init(&dl_b->lock);
63 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 	if (global_rt_runtime() == RUNTIME_INF)
65 		dl_b->bw = -1;
66 	else
67 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 	dl_b->total_bw = 0;
70 }
71 
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 	dl_rq->rb_root = RB_ROOT;
75 
76 #ifdef CONFIG_SMP
77 	/* zero means no -deadline tasks */
78 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79 
80 	dl_rq->dl_nr_migratory = 0;
81 	dl_rq->overloaded = 0;
82 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 	init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87 
88 #ifdef CONFIG_SMP
89 
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 	return atomic_read(&rq->rd->dlo_count);
93 }
94 
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 	if (!rq->online)
98 		return;
99 
100 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 	/*
102 	 * Must be visible before the overload count is
103 	 * set (as in sched_rt.c).
104 	 *
105 	 * Matched by the barrier in pull_dl_task().
106 	 */
107 	smp_wmb();
108 	atomic_inc(&rq->rd->dlo_count);
109 }
110 
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 	if (!rq->online)
114 		return;
115 
116 	atomic_dec(&rq->rd->dlo_count);
117 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119 
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 		if (!dl_rq->overloaded) {
124 			dl_set_overload(rq_of_dl_rq(dl_rq));
125 			dl_rq->overloaded = 1;
126 		}
127 	} else if (dl_rq->overloaded) {
128 		dl_clear_overload(rq_of_dl_rq(dl_rq));
129 		dl_rq->overloaded = 0;
130 	}
131 }
132 
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 	struct task_struct *p = dl_task_of(dl_se);
136 
137 	if (p->nr_cpus_allowed > 1)
138 		dl_rq->dl_nr_migratory++;
139 
140 	update_dl_migration(dl_rq);
141 }
142 
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	struct task_struct *p = dl_task_of(dl_se);
146 
147 	if (p->nr_cpus_allowed > 1)
148 		dl_rq->dl_nr_migratory--;
149 
150 	update_dl_migration(dl_rq);
151 }
152 
153 /*
154  * The list of pushable -deadline task is not a plist, like in
155  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156  */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 	struct dl_rq *dl_rq = &rq->dl;
160 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct task_struct *entry;
163 	int leftmost = 1;
164 
165 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166 
167 	while (*link) {
168 		parent = *link;
169 		entry = rb_entry(parent, struct task_struct,
170 				 pushable_dl_tasks);
171 		if (dl_entity_preempt(&p->dl, &entry->dl))
172 			link = &parent->rb_left;
173 		else {
174 			link = &parent->rb_right;
175 			leftmost = 0;
176 		}
177 	}
178 
179 	if (leftmost) {
180 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 		dl_rq->earliest_dl.next = p->dl.deadline;
182 	}
183 
184 	rb_link_node(&p->pushable_dl_tasks, parent, link);
185 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187 
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 	struct dl_rq *dl_rq = &rq->dl;
191 
192 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 		return;
194 
195 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 		struct rb_node *next_node;
197 
198 		next_node = rb_next(&p->pushable_dl_tasks);
199 		dl_rq->pushable_dl_tasks_leftmost = next_node;
200 		if (next_node) {
201 			dl_rq->earliest_dl.next = rb_entry(next_node,
202 				struct task_struct, pushable_dl_tasks)->dl.deadline;
203 		}
204 	}
205 
206 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
208 }
209 
210 static inline int has_pushable_dl_tasks(struct rq *rq)
211 {
212 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213 }
214 
215 static int push_dl_task(struct rq *rq);
216 
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218 {
219 	return dl_task(prev);
220 }
221 
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
224 
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
227 
228 static inline void queue_push_tasks(struct rq *rq)
229 {
230 	if (!has_pushable_dl_tasks(rq))
231 		return;
232 
233 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234 }
235 
236 static inline void queue_pull_task(struct rq *rq)
237 {
238 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
239 }
240 
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242 
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
244 {
245 	struct rq *later_rq = NULL;
246 	bool fallback = false;
247 
248 	later_rq = find_lock_later_rq(p, rq);
249 
250 	if (!later_rq) {
251 		int cpu;
252 
253 		/*
254 		 * If we cannot preempt any rq, fall back to pick any
255 		 * online cpu.
256 		 */
257 		fallback = true;
258 		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 		if (cpu >= nr_cpu_ids) {
260 			/*
261 			 * Fail to find any suitable cpu.
262 			 * The task will never come back!
263 			 */
264 			BUG_ON(dl_bandwidth_enabled());
265 
266 			/*
267 			 * If admission control is disabled we
268 			 * try a little harder to let the task
269 			 * run.
270 			 */
271 			cpu = cpumask_any(cpu_active_mask);
272 		}
273 		later_rq = cpu_rq(cpu);
274 		double_lock_balance(rq, later_rq);
275 	}
276 
277 	/*
278 	 * By now the task is replenished and enqueued; migrate it.
279 	 */
280 	deactivate_task(rq, p, 0);
281 	set_task_cpu(p, later_rq->cpu);
282 	activate_task(later_rq, p, 0);
283 
284 	if (!fallback)
285 		resched_curr(later_rq);
286 
287 	double_unlock_balance(later_rq, rq);
288 
289 	return later_rq;
290 }
291 
292 #else
293 
294 static inline
295 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
296 {
297 }
298 
299 static inline
300 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
301 {
302 }
303 
304 static inline
305 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306 {
307 }
308 
309 static inline
310 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 }
313 
314 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
315 {
316 	return false;
317 }
318 
319 static inline void pull_dl_task(struct rq *rq)
320 {
321 }
322 
323 static inline void queue_push_tasks(struct rq *rq)
324 {
325 }
326 
327 static inline void queue_pull_task(struct rq *rq)
328 {
329 }
330 #endif /* CONFIG_SMP */
331 
332 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 				  int flags);
336 
337 /*
338  * We are being explicitly informed that a new instance is starting,
339  * and this means that:
340  *  - the absolute deadline of the entity has to be placed at
341  *    current time + relative deadline;
342  *  - the runtime of the entity has to be set to the maximum value.
343  *
344  * The capability of specifying such event is useful whenever a -deadline
345  * entity wants to (try to!) synchronize its behaviour with the scheduler's
346  * one, and to (try to!) reconcile itself with its own scheduling
347  * parameters.
348  */
349 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 				       struct sched_dl_entity *pi_se)
351 {
352 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 	struct rq *rq = rq_of_dl_rq(dl_rq);
354 
355 	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
356 
357 	/*
358 	 * We use the regular wall clock time to set deadlines in the
359 	 * future; in fact, we must consider execution overheads (time
360 	 * spent on hardirq context, etc.).
361 	 */
362 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
363 	dl_se->runtime = pi_se->dl_runtime;
364 	dl_se->dl_new = 0;
365 }
366 
367 /*
368  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
369  * possibility of a entity lasting more than what it declared, and thus
370  * exhausting its runtime.
371  *
372  * Here we are interested in making runtime overrun possible, but we do
373  * not want a entity which is misbehaving to affect the scheduling of all
374  * other entities.
375  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
376  * is used, in order to confine each entity within its own bandwidth.
377  *
378  * This function deals exactly with that, and ensures that when the runtime
379  * of a entity is replenished, its deadline is also postponed. That ensures
380  * the overrunning entity can't interfere with other entity in the system and
381  * can't make them miss their deadlines. Reasons why this kind of overruns
382  * could happen are, typically, a entity voluntarily trying to overcome its
383  * runtime, or it just underestimated it during sched_setattr().
384  */
385 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
386 				struct sched_dl_entity *pi_se)
387 {
388 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
389 	struct rq *rq = rq_of_dl_rq(dl_rq);
390 
391 	BUG_ON(pi_se->dl_runtime <= 0);
392 
393 	/*
394 	 * This could be the case for a !-dl task that is boosted.
395 	 * Just go with full inherited parameters.
396 	 */
397 	if (dl_se->dl_deadline == 0) {
398 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
399 		dl_se->runtime = pi_se->dl_runtime;
400 	}
401 
402 	/*
403 	 * We keep moving the deadline away until we get some
404 	 * available runtime for the entity. This ensures correct
405 	 * handling of situations where the runtime overrun is
406 	 * arbitrary large.
407 	 */
408 	while (dl_se->runtime <= 0) {
409 		dl_se->deadline += pi_se->dl_period;
410 		dl_se->runtime += pi_se->dl_runtime;
411 	}
412 
413 	/*
414 	 * At this point, the deadline really should be "in
415 	 * the future" with respect to rq->clock. If it's
416 	 * not, we are, for some reason, lagging too much!
417 	 * Anyway, after having warn userspace abut that,
418 	 * we still try to keep the things running by
419 	 * resetting the deadline and the budget of the
420 	 * entity.
421 	 */
422 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
423 		printk_deferred_once("sched: DL replenish lagged to much\n");
424 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
425 		dl_se->runtime = pi_se->dl_runtime;
426 	}
427 
428 	if (dl_se->dl_yielded)
429 		dl_se->dl_yielded = 0;
430 	if (dl_se->dl_throttled)
431 		dl_se->dl_throttled = 0;
432 }
433 
434 /*
435  * Here we check if --at time t-- an entity (which is probably being
436  * [re]activated or, in general, enqueued) can use its remaining runtime
437  * and its current deadline _without_ exceeding the bandwidth it is
438  * assigned (function returns true if it can't). We are in fact applying
439  * one of the CBS rules: when a task wakes up, if the residual runtime
440  * over residual deadline fits within the allocated bandwidth, then we
441  * can keep the current (absolute) deadline and residual budget without
442  * disrupting the schedulability of the system. Otherwise, we should
443  * refill the runtime and set the deadline a period in the future,
444  * because keeping the current (absolute) deadline of the task would
445  * result in breaking guarantees promised to other tasks (refer to
446  * Documentation/scheduler/sched-deadline.txt for more informations).
447  *
448  * This function returns true if:
449  *
450  *   runtime / (deadline - t) > dl_runtime / dl_period ,
451  *
452  * IOW we can't recycle current parameters.
453  *
454  * Notice that the bandwidth check is done against the period. For
455  * task with deadline equal to period this is the same of using
456  * dl_deadline instead of dl_period in the equation above.
457  */
458 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
459 			       struct sched_dl_entity *pi_se, u64 t)
460 {
461 	u64 left, right;
462 
463 	/*
464 	 * left and right are the two sides of the equation above,
465 	 * after a bit of shuffling to use multiplications instead
466 	 * of divisions.
467 	 *
468 	 * Note that none of the time values involved in the two
469 	 * multiplications are absolute: dl_deadline and dl_runtime
470 	 * are the relative deadline and the maximum runtime of each
471 	 * instance, runtime is the runtime left for the last instance
472 	 * and (deadline - t), since t is rq->clock, is the time left
473 	 * to the (absolute) deadline. Even if overflowing the u64 type
474 	 * is very unlikely to occur in both cases, here we scale down
475 	 * as we want to avoid that risk at all. Scaling down by 10
476 	 * means that we reduce granularity to 1us. We are fine with it,
477 	 * since this is only a true/false check and, anyway, thinking
478 	 * of anything below microseconds resolution is actually fiction
479 	 * (but still we want to give the user that illusion >;).
480 	 */
481 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
482 	right = ((dl_se->deadline - t) >> DL_SCALE) *
483 		(pi_se->dl_runtime >> DL_SCALE);
484 
485 	return dl_time_before(right, left);
486 }
487 
488 /*
489  * When a -deadline entity is queued back on the runqueue, its runtime and
490  * deadline might need updating.
491  *
492  * The policy here is that we update the deadline of the entity only if:
493  *  - the current deadline is in the past,
494  *  - using the remaining runtime with the current deadline would make
495  *    the entity exceed its bandwidth.
496  */
497 static void update_dl_entity(struct sched_dl_entity *dl_se,
498 			     struct sched_dl_entity *pi_se)
499 {
500 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
501 	struct rq *rq = rq_of_dl_rq(dl_rq);
502 
503 	/*
504 	 * The arrival of a new instance needs special treatment, i.e.,
505 	 * the actual scheduling parameters have to be "renewed".
506 	 */
507 	if (dl_se->dl_new) {
508 		setup_new_dl_entity(dl_se, pi_se);
509 		return;
510 	}
511 
512 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
513 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
514 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
515 		dl_se->runtime = pi_se->dl_runtime;
516 	}
517 }
518 
519 /*
520  * If the entity depleted all its runtime, and if we want it to sleep
521  * while waiting for some new execution time to become available, we
522  * set the bandwidth enforcement timer to the replenishment instant
523  * and try to activate it.
524  *
525  * Notice that it is important for the caller to know if the timer
526  * actually started or not (i.e., the replenishment instant is in
527  * the future or in the past).
528  */
529 static int start_dl_timer(struct task_struct *p)
530 {
531 	struct sched_dl_entity *dl_se = &p->dl;
532 	struct hrtimer *timer = &dl_se->dl_timer;
533 	struct rq *rq = task_rq(p);
534 	ktime_t now, act;
535 	s64 delta;
536 
537 	lockdep_assert_held(&rq->lock);
538 
539 	/*
540 	 * We want the timer to fire at the deadline, but considering
541 	 * that it is actually coming from rq->clock and not from
542 	 * hrtimer's time base reading.
543 	 */
544 	act = ns_to_ktime(dl_se->deadline);
545 	now = hrtimer_cb_get_time(timer);
546 	delta = ktime_to_ns(now) - rq_clock(rq);
547 	act = ktime_add_ns(act, delta);
548 
549 	/*
550 	 * If the expiry time already passed, e.g., because the value
551 	 * chosen as the deadline is too small, don't even try to
552 	 * start the timer in the past!
553 	 */
554 	if (ktime_us_delta(act, now) < 0)
555 		return 0;
556 
557 	/*
558 	 * !enqueued will guarantee another callback; even if one is already in
559 	 * progress. This ensures a balanced {get,put}_task_struct().
560 	 *
561 	 * The race against __run_timer() clearing the enqueued state is
562 	 * harmless because we're holding task_rq()->lock, therefore the timer
563 	 * expiring after we've done the check will wait on its task_rq_lock()
564 	 * and observe our state.
565 	 */
566 	if (!hrtimer_is_queued(timer)) {
567 		get_task_struct(p);
568 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
569 	}
570 
571 	return 1;
572 }
573 
574 /*
575  * This is the bandwidth enforcement timer callback. If here, we know
576  * a task is not on its dl_rq, since the fact that the timer was running
577  * means the task is throttled and needs a runtime replenishment.
578  *
579  * However, what we actually do depends on the fact the task is active,
580  * (it is on its rq) or has been removed from there by a call to
581  * dequeue_task_dl(). In the former case we must issue the runtime
582  * replenishment and add the task back to the dl_rq; in the latter, we just
583  * do nothing but clearing dl_throttled, so that runtime and deadline
584  * updating (and the queueing back to dl_rq) will be done by the
585  * next call to enqueue_task_dl().
586  */
587 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
588 {
589 	struct sched_dl_entity *dl_se = container_of(timer,
590 						     struct sched_dl_entity,
591 						     dl_timer);
592 	struct task_struct *p = dl_task_of(dl_se);
593 	unsigned long flags;
594 	struct rq *rq;
595 
596 	rq = task_rq_lock(p, &flags);
597 
598 	/*
599 	 * The task might have changed its scheduling policy to something
600 	 * different than SCHED_DEADLINE (through switched_fromd_dl()).
601 	 */
602 	if (!dl_task(p)) {
603 		__dl_clear_params(p);
604 		goto unlock;
605 	}
606 
607 	/*
608 	 * This is possible if switched_from_dl() raced against a running
609 	 * callback that took the above !dl_task() path and we've since then
610 	 * switched back into SCHED_DEADLINE.
611 	 *
612 	 * There's nothing to do except drop our task reference.
613 	 */
614 	if (dl_se->dl_new)
615 		goto unlock;
616 
617 	/*
618 	 * The task might have been boosted by someone else and might be in the
619 	 * boosting/deboosting path, its not throttled.
620 	 */
621 	if (dl_se->dl_boosted)
622 		goto unlock;
623 
624 	/*
625 	 * Spurious timer due to start_dl_timer() race; or we already received
626 	 * a replenishment from rt_mutex_setprio().
627 	 */
628 	if (!dl_se->dl_throttled)
629 		goto unlock;
630 
631 	sched_clock_tick();
632 	update_rq_clock(rq);
633 
634 	/*
635 	 * If the throttle happened during sched-out; like:
636 	 *
637 	 *   schedule()
638 	 *     deactivate_task()
639 	 *       dequeue_task_dl()
640 	 *         update_curr_dl()
641 	 *           start_dl_timer()
642 	 *         __dequeue_task_dl()
643 	 *     prev->on_rq = 0;
644 	 *
645 	 * We can be both throttled and !queued. Replenish the counter
646 	 * but do not enqueue -- wait for our wakeup to do that.
647 	 */
648 	if (!task_on_rq_queued(p)) {
649 		replenish_dl_entity(dl_se, dl_se);
650 		goto unlock;
651 	}
652 
653 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
654 	if (dl_task(rq->curr))
655 		check_preempt_curr_dl(rq, p, 0);
656 	else
657 		resched_curr(rq);
658 
659 #ifdef CONFIG_SMP
660 	/*
661 	 * Perform balancing operations here; after the replenishments.  We
662 	 * cannot drop rq->lock before this, otherwise the assertion in
663 	 * start_dl_timer() about not missing updates is not true.
664 	 *
665 	 * If we find that the rq the task was on is no longer available, we
666 	 * need to select a new rq.
667 	 *
668 	 * XXX figure out if select_task_rq_dl() deals with offline cpus.
669 	 */
670 	if (unlikely(!rq->online))
671 		rq = dl_task_offline_migration(rq, p);
672 
673 	/*
674 	 * Queueing this task back might have overloaded rq, check if we need
675 	 * to kick someone away.
676 	 */
677 	if (has_pushable_dl_tasks(rq)) {
678 		/*
679 		 * Nothing relies on rq->lock after this, so its safe to drop
680 		 * rq->lock.
681 		 */
682 		lockdep_unpin_lock(&rq->lock);
683 		push_dl_task(rq);
684 		lockdep_pin_lock(&rq->lock);
685 	}
686 #endif
687 
688 unlock:
689 	task_rq_unlock(rq, p, &flags);
690 
691 	/*
692 	 * This can free the task_struct, including this hrtimer, do not touch
693 	 * anything related to that after this.
694 	 */
695 	put_task_struct(p);
696 
697 	return HRTIMER_NORESTART;
698 }
699 
700 void init_dl_task_timer(struct sched_dl_entity *dl_se)
701 {
702 	struct hrtimer *timer = &dl_se->dl_timer;
703 
704 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
705 	timer->function = dl_task_timer;
706 }
707 
708 static
709 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
710 {
711 	return (dl_se->runtime <= 0);
712 }
713 
714 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
715 
716 /*
717  * Update the current task's runtime statistics (provided it is still
718  * a -deadline task and has not been removed from the dl_rq).
719  */
720 static void update_curr_dl(struct rq *rq)
721 {
722 	struct task_struct *curr = rq->curr;
723 	struct sched_dl_entity *dl_se = &curr->dl;
724 	u64 delta_exec;
725 
726 	if (!dl_task(curr) || !on_dl_rq(dl_se))
727 		return;
728 
729 	/*
730 	 * Consumed budget is computed considering the time as
731 	 * observed by schedulable tasks (excluding time spent
732 	 * in hardirq context, etc.). Deadlines are instead
733 	 * computed using hard walltime. This seems to be the more
734 	 * natural solution, but the full ramifications of this
735 	 * approach need further study.
736 	 */
737 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
738 	if (unlikely((s64)delta_exec <= 0))
739 		return;
740 
741 	schedstat_set(curr->se.statistics.exec_max,
742 		      max(curr->se.statistics.exec_max, delta_exec));
743 
744 	curr->se.sum_exec_runtime += delta_exec;
745 	account_group_exec_runtime(curr, delta_exec);
746 
747 	curr->se.exec_start = rq_clock_task(rq);
748 	cpuacct_charge(curr, delta_exec);
749 
750 	sched_rt_avg_update(rq, delta_exec);
751 
752 	dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
753 	if (dl_runtime_exceeded(dl_se)) {
754 		dl_se->dl_throttled = 1;
755 		__dequeue_task_dl(rq, curr, 0);
756 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
757 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
758 
759 		if (!is_leftmost(curr, &rq->dl))
760 			resched_curr(rq);
761 	}
762 
763 	/*
764 	 * Because -- for now -- we share the rt bandwidth, we need to
765 	 * account our runtime there too, otherwise actual rt tasks
766 	 * would be able to exceed the shared quota.
767 	 *
768 	 * Account to the root rt group for now.
769 	 *
770 	 * The solution we're working towards is having the RT groups scheduled
771 	 * using deadline servers -- however there's a few nasties to figure
772 	 * out before that can happen.
773 	 */
774 	if (rt_bandwidth_enabled()) {
775 		struct rt_rq *rt_rq = &rq->rt;
776 
777 		raw_spin_lock(&rt_rq->rt_runtime_lock);
778 		/*
779 		 * We'll let actual RT tasks worry about the overflow here, we
780 		 * have our own CBS to keep us inline; only account when RT
781 		 * bandwidth is relevant.
782 		 */
783 		if (sched_rt_bandwidth_account(rt_rq))
784 			rt_rq->rt_time += delta_exec;
785 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
786 	}
787 }
788 
789 #ifdef CONFIG_SMP
790 
791 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
792 {
793 	struct rq *rq = rq_of_dl_rq(dl_rq);
794 
795 	if (dl_rq->earliest_dl.curr == 0 ||
796 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
797 		dl_rq->earliest_dl.curr = deadline;
798 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
799 	}
800 }
801 
802 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
803 {
804 	struct rq *rq = rq_of_dl_rq(dl_rq);
805 
806 	/*
807 	 * Since we may have removed our earliest (and/or next earliest)
808 	 * task we must recompute them.
809 	 */
810 	if (!dl_rq->dl_nr_running) {
811 		dl_rq->earliest_dl.curr = 0;
812 		dl_rq->earliest_dl.next = 0;
813 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
814 	} else {
815 		struct rb_node *leftmost = dl_rq->rb_leftmost;
816 		struct sched_dl_entity *entry;
817 
818 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
819 		dl_rq->earliest_dl.curr = entry->deadline;
820 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
821 	}
822 }
823 
824 #else
825 
826 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
827 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
828 
829 #endif /* CONFIG_SMP */
830 
831 static inline
832 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
833 {
834 	int prio = dl_task_of(dl_se)->prio;
835 	u64 deadline = dl_se->deadline;
836 
837 	WARN_ON(!dl_prio(prio));
838 	dl_rq->dl_nr_running++;
839 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
840 
841 	inc_dl_deadline(dl_rq, deadline);
842 	inc_dl_migration(dl_se, dl_rq);
843 }
844 
845 static inline
846 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
847 {
848 	int prio = dl_task_of(dl_se)->prio;
849 
850 	WARN_ON(!dl_prio(prio));
851 	WARN_ON(!dl_rq->dl_nr_running);
852 	dl_rq->dl_nr_running--;
853 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
854 
855 	dec_dl_deadline(dl_rq, dl_se->deadline);
856 	dec_dl_migration(dl_se, dl_rq);
857 }
858 
859 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
860 {
861 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
862 	struct rb_node **link = &dl_rq->rb_root.rb_node;
863 	struct rb_node *parent = NULL;
864 	struct sched_dl_entity *entry;
865 	int leftmost = 1;
866 
867 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
868 
869 	while (*link) {
870 		parent = *link;
871 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
872 		if (dl_time_before(dl_se->deadline, entry->deadline))
873 			link = &parent->rb_left;
874 		else {
875 			link = &parent->rb_right;
876 			leftmost = 0;
877 		}
878 	}
879 
880 	if (leftmost)
881 		dl_rq->rb_leftmost = &dl_se->rb_node;
882 
883 	rb_link_node(&dl_se->rb_node, parent, link);
884 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
885 
886 	inc_dl_tasks(dl_se, dl_rq);
887 }
888 
889 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
890 {
891 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
892 
893 	if (RB_EMPTY_NODE(&dl_se->rb_node))
894 		return;
895 
896 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
897 		struct rb_node *next_node;
898 
899 		next_node = rb_next(&dl_se->rb_node);
900 		dl_rq->rb_leftmost = next_node;
901 	}
902 
903 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
904 	RB_CLEAR_NODE(&dl_se->rb_node);
905 
906 	dec_dl_tasks(dl_se, dl_rq);
907 }
908 
909 static void
910 enqueue_dl_entity(struct sched_dl_entity *dl_se,
911 		  struct sched_dl_entity *pi_se, int flags)
912 {
913 	BUG_ON(on_dl_rq(dl_se));
914 
915 	/*
916 	 * If this is a wakeup or a new instance, the scheduling
917 	 * parameters of the task might need updating. Otherwise,
918 	 * we want a replenishment of its runtime.
919 	 */
920 	if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
921 		update_dl_entity(dl_se, pi_se);
922 	else if (flags & ENQUEUE_REPLENISH)
923 		replenish_dl_entity(dl_se, pi_se);
924 
925 	__enqueue_dl_entity(dl_se);
926 }
927 
928 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
929 {
930 	__dequeue_dl_entity(dl_se);
931 }
932 
933 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
934 {
935 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
936 	struct sched_dl_entity *pi_se = &p->dl;
937 
938 	/*
939 	 * Use the scheduling parameters of the top pi-waiter
940 	 * task if we have one and its (absolute) deadline is
941 	 * smaller than our one... OTW we keep our runtime and
942 	 * deadline.
943 	 */
944 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
945 		pi_se = &pi_task->dl;
946 	} else if (!dl_prio(p->normal_prio)) {
947 		/*
948 		 * Special case in which we have a !SCHED_DEADLINE task
949 		 * that is going to be deboosted, but exceedes its
950 		 * runtime while doing so. No point in replenishing
951 		 * it, as it's going to return back to its original
952 		 * scheduling class after this.
953 		 */
954 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
955 		return;
956 	}
957 
958 	/*
959 	 * If p is throttled, we do nothing. In fact, if it exhausted
960 	 * its budget it needs a replenishment and, since it now is on
961 	 * its rq, the bandwidth timer callback (which clearly has not
962 	 * run yet) will take care of this.
963 	 */
964 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
965 		return;
966 
967 	enqueue_dl_entity(&p->dl, pi_se, flags);
968 
969 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
970 		enqueue_pushable_dl_task(rq, p);
971 }
972 
973 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
974 {
975 	dequeue_dl_entity(&p->dl);
976 	dequeue_pushable_dl_task(rq, p);
977 }
978 
979 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
980 {
981 	update_curr_dl(rq);
982 	__dequeue_task_dl(rq, p, flags);
983 }
984 
985 /*
986  * Yield task semantic for -deadline tasks is:
987  *
988  *   get off from the CPU until our next instance, with
989  *   a new runtime. This is of little use now, since we
990  *   don't have a bandwidth reclaiming mechanism. Anyway,
991  *   bandwidth reclaiming is planned for the future, and
992  *   yield_task_dl will indicate that some spare budget
993  *   is available for other task instances to use it.
994  */
995 static void yield_task_dl(struct rq *rq)
996 {
997 	struct task_struct *p = rq->curr;
998 
999 	/*
1000 	 * We make the task go to sleep until its current deadline by
1001 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1002 	 * it and the bandwidth timer will wake it up and will give it
1003 	 * new scheduling parameters (thanks to dl_yielded=1).
1004 	 */
1005 	if (p->dl.runtime > 0) {
1006 		rq->curr->dl.dl_yielded = 1;
1007 		p->dl.runtime = 0;
1008 	}
1009 	update_rq_clock(rq);
1010 	update_curr_dl(rq);
1011 	/*
1012 	 * Tell update_rq_clock() that we've just updated,
1013 	 * so we don't do microscopic update in schedule()
1014 	 * and double the fastpath cost.
1015 	 */
1016 	rq_clock_skip_update(rq, true);
1017 }
1018 
1019 #ifdef CONFIG_SMP
1020 
1021 static int find_later_rq(struct task_struct *task);
1022 
1023 static int
1024 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1025 {
1026 	struct task_struct *curr;
1027 	struct rq *rq;
1028 
1029 	if (sd_flag != SD_BALANCE_WAKE)
1030 		goto out;
1031 
1032 	rq = cpu_rq(cpu);
1033 
1034 	rcu_read_lock();
1035 	curr = READ_ONCE(rq->curr); /* unlocked access */
1036 
1037 	/*
1038 	 * If we are dealing with a -deadline task, we must
1039 	 * decide where to wake it up.
1040 	 * If it has a later deadline and the current task
1041 	 * on this rq can't move (provided the waking task
1042 	 * can!) we prefer to send it somewhere else. On the
1043 	 * other hand, if it has a shorter deadline, we
1044 	 * try to make it stay here, it might be important.
1045 	 */
1046 	if (unlikely(dl_task(curr)) &&
1047 	    (curr->nr_cpus_allowed < 2 ||
1048 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1049 	    (p->nr_cpus_allowed > 1)) {
1050 		int target = find_later_rq(p);
1051 
1052 		if (target != -1 &&
1053 				(dl_time_before(p->dl.deadline,
1054 					cpu_rq(target)->dl.earliest_dl.curr) ||
1055 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1056 			cpu = target;
1057 	}
1058 	rcu_read_unlock();
1059 
1060 out:
1061 	return cpu;
1062 }
1063 
1064 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1065 {
1066 	/*
1067 	 * Current can't be migrated, useless to reschedule,
1068 	 * let's hope p can move out.
1069 	 */
1070 	if (rq->curr->nr_cpus_allowed == 1 ||
1071 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1072 		return;
1073 
1074 	/*
1075 	 * p is migratable, so let's not schedule it and
1076 	 * see if it is pushed or pulled somewhere else.
1077 	 */
1078 	if (p->nr_cpus_allowed != 1 &&
1079 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1080 		return;
1081 
1082 	resched_curr(rq);
1083 }
1084 
1085 #endif /* CONFIG_SMP */
1086 
1087 /*
1088  * Only called when both the current and waking task are -deadline
1089  * tasks.
1090  */
1091 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1092 				  int flags)
1093 {
1094 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1095 		resched_curr(rq);
1096 		return;
1097 	}
1098 
1099 #ifdef CONFIG_SMP
1100 	/*
1101 	 * In the unlikely case current and p have the same deadline
1102 	 * let us try to decide what's the best thing to do...
1103 	 */
1104 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1105 	    !test_tsk_need_resched(rq->curr))
1106 		check_preempt_equal_dl(rq, p);
1107 #endif /* CONFIG_SMP */
1108 }
1109 
1110 #ifdef CONFIG_SCHED_HRTICK
1111 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1112 {
1113 	hrtick_start(rq, p->dl.runtime);
1114 }
1115 #else /* !CONFIG_SCHED_HRTICK */
1116 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1117 {
1118 }
1119 #endif
1120 
1121 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1122 						   struct dl_rq *dl_rq)
1123 {
1124 	struct rb_node *left = dl_rq->rb_leftmost;
1125 
1126 	if (!left)
1127 		return NULL;
1128 
1129 	return rb_entry(left, struct sched_dl_entity, rb_node);
1130 }
1131 
1132 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1133 {
1134 	struct sched_dl_entity *dl_se;
1135 	struct task_struct *p;
1136 	struct dl_rq *dl_rq;
1137 
1138 	dl_rq = &rq->dl;
1139 
1140 	if (need_pull_dl_task(rq, prev)) {
1141 		/*
1142 		 * This is OK, because current is on_cpu, which avoids it being
1143 		 * picked for load-balance and preemption/IRQs are still
1144 		 * disabled avoiding further scheduler activity on it and we're
1145 		 * being very careful to re-start the picking loop.
1146 		 */
1147 		lockdep_unpin_lock(&rq->lock);
1148 		pull_dl_task(rq);
1149 		lockdep_pin_lock(&rq->lock);
1150 		/*
1151 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1152 		 * means a stop task can slip in, in which case we need to
1153 		 * re-start task selection.
1154 		 */
1155 		if (rq->stop && task_on_rq_queued(rq->stop))
1156 			return RETRY_TASK;
1157 	}
1158 
1159 	/*
1160 	 * When prev is DL, we may throttle it in put_prev_task().
1161 	 * So, we update time before we check for dl_nr_running.
1162 	 */
1163 	if (prev->sched_class == &dl_sched_class)
1164 		update_curr_dl(rq);
1165 
1166 	if (unlikely(!dl_rq->dl_nr_running))
1167 		return NULL;
1168 
1169 	put_prev_task(rq, prev);
1170 
1171 	dl_se = pick_next_dl_entity(rq, dl_rq);
1172 	BUG_ON(!dl_se);
1173 
1174 	p = dl_task_of(dl_se);
1175 	p->se.exec_start = rq_clock_task(rq);
1176 
1177 	/* Running task will never be pushed. */
1178        dequeue_pushable_dl_task(rq, p);
1179 
1180 	if (hrtick_enabled(rq))
1181 		start_hrtick_dl(rq, p);
1182 
1183 	queue_push_tasks(rq);
1184 
1185 	return p;
1186 }
1187 
1188 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1189 {
1190 	update_curr_dl(rq);
1191 
1192 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1193 		enqueue_pushable_dl_task(rq, p);
1194 }
1195 
1196 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1197 {
1198 	update_curr_dl(rq);
1199 
1200 	/*
1201 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1202 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1203 	 * be set and schedule() will start a new hrtick for the next task.
1204 	 */
1205 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1206 	    is_leftmost(p, &rq->dl))
1207 		start_hrtick_dl(rq, p);
1208 }
1209 
1210 static void task_fork_dl(struct task_struct *p)
1211 {
1212 	/*
1213 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1214 	 * sched_fork()
1215 	 */
1216 }
1217 
1218 static void task_dead_dl(struct task_struct *p)
1219 {
1220 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1221 
1222 	/*
1223 	 * Since we are TASK_DEAD we won't slip out of the domain!
1224 	 */
1225 	raw_spin_lock_irq(&dl_b->lock);
1226 	/* XXX we should retain the bw until 0-lag */
1227 	dl_b->total_bw -= p->dl.dl_bw;
1228 	raw_spin_unlock_irq(&dl_b->lock);
1229 }
1230 
1231 static void set_curr_task_dl(struct rq *rq)
1232 {
1233 	struct task_struct *p = rq->curr;
1234 
1235 	p->se.exec_start = rq_clock_task(rq);
1236 
1237 	/* You can't push away the running task */
1238 	dequeue_pushable_dl_task(rq, p);
1239 }
1240 
1241 #ifdef CONFIG_SMP
1242 
1243 /* Only try algorithms three times */
1244 #define DL_MAX_TRIES 3
1245 
1246 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1247 {
1248 	if (!task_running(rq, p) &&
1249 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1250 		return 1;
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Return the earliest pushable rq's task, which is suitable to be executed
1256  * on the CPU, NULL otherwise:
1257  */
1258 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1259 {
1260 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1261 	struct task_struct *p = NULL;
1262 
1263 	if (!has_pushable_dl_tasks(rq))
1264 		return NULL;
1265 
1266 next_node:
1267 	if (next_node) {
1268 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1269 
1270 		if (pick_dl_task(rq, p, cpu))
1271 			return p;
1272 
1273 		next_node = rb_next(next_node);
1274 		goto next_node;
1275 	}
1276 
1277 	return NULL;
1278 }
1279 
1280 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1281 
1282 static int find_later_rq(struct task_struct *task)
1283 {
1284 	struct sched_domain *sd;
1285 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1286 	int this_cpu = smp_processor_id();
1287 	int best_cpu, cpu = task_cpu(task);
1288 
1289 	/* Make sure the mask is initialized first */
1290 	if (unlikely(!later_mask))
1291 		return -1;
1292 
1293 	if (task->nr_cpus_allowed == 1)
1294 		return -1;
1295 
1296 	/*
1297 	 * We have to consider system topology and task affinity
1298 	 * first, then we can look for a suitable cpu.
1299 	 */
1300 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1301 			task, later_mask);
1302 	if (best_cpu == -1)
1303 		return -1;
1304 
1305 	/*
1306 	 * If we are here, some target has been found,
1307 	 * the most suitable of which is cached in best_cpu.
1308 	 * This is, among the runqueues where the current tasks
1309 	 * have later deadlines than the task's one, the rq
1310 	 * with the latest possible one.
1311 	 *
1312 	 * Now we check how well this matches with task's
1313 	 * affinity and system topology.
1314 	 *
1315 	 * The last cpu where the task run is our first
1316 	 * guess, since it is most likely cache-hot there.
1317 	 */
1318 	if (cpumask_test_cpu(cpu, later_mask))
1319 		return cpu;
1320 	/*
1321 	 * Check if this_cpu is to be skipped (i.e., it is
1322 	 * not in the mask) or not.
1323 	 */
1324 	if (!cpumask_test_cpu(this_cpu, later_mask))
1325 		this_cpu = -1;
1326 
1327 	rcu_read_lock();
1328 	for_each_domain(cpu, sd) {
1329 		if (sd->flags & SD_WAKE_AFFINE) {
1330 
1331 			/*
1332 			 * If possible, preempting this_cpu is
1333 			 * cheaper than migrating.
1334 			 */
1335 			if (this_cpu != -1 &&
1336 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1337 				rcu_read_unlock();
1338 				return this_cpu;
1339 			}
1340 
1341 			/*
1342 			 * Last chance: if best_cpu is valid and is
1343 			 * in the mask, that becomes our choice.
1344 			 */
1345 			if (best_cpu < nr_cpu_ids &&
1346 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1347 				rcu_read_unlock();
1348 				return best_cpu;
1349 			}
1350 		}
1351 	}
1352 	rcu_read_unlock();
1353 
1354 	/*
1355 	 * At this point, all our guesses failed, we just return
1356 	 * 'something', and let the caller sort the things out.
1357 	 */
1358 	if (this_cpu != -1)
1359 		return this_cpu;
1360 
1361 	cpu = cpumask_any(later_mask);
1362 	if (cpu < nr_cpu_ids)
1363 		return cpu;
1364 
1365 	return -1;
1366 }
1367 
1368 /* Locks the rq it finds */
1369 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1370 {
1371 	struct rq *later_rq = NULL;
1372 	int tries;
1373 	int cpu;
1374 
1375 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1376 		cpu = find_later_rq(task);
1377 
1378 		if ((cpu == -1) || (cpu == rq->cpu))
1379 			break;
1380 
1381 		later_rq = cpu_rq(cpu);
1382 
1383 		if (later_rq->dl.dl_nr_running &&
1384 		    !dl_time_before(task->dl.deadline,
1385 					later_rq->dl.earliest_dl.curr)) {
1386 			/*
1387 			 * Target rq has tasks of equal or earlier deadline,
1388 			 * retrying does not release any lock and is unlikely
1389 			 * to yield a different result.
1390 			 */
1391 			later_rq = NULL;
1392 			break;
1393 		}
1394 
1395 		/* Retry if something changed. */
1396 		if (double_lock_balance(rq, later_rq)) {
1397 			if (unlikely(task_rq(task) != rq ||
1398 				     !cpumask_test_cpu(later_rq->cpu,
1399 				                       &task->cpus_allowed) ||
1400 				     task_running(rq, task) ||
1401 				     !task_on_rq_queued(task))) {
1402 				double_unlock_balance(rq, later_rq);
1403 				later_rq = NULL;
1404 				break;
1405 			}
1406 		}
1407 
1408 		/*
1409 		 * If the rq we found has no -deadline task, or
1410 		 * its earliest one has a later deadline than our
1411 		 * task, the rq is a good one.
1412 		 */
1413 		if (!later_rq->dl.dl_nr_running ||
1414 		    dl_time_before(task->dl.deadline,
1415 				   later_rq->dl.earliest_dl.curr))
1416 			break;
1417 
1418 		/* Otherwise we try again. */
1419 		double_unlock_balance(rq, later_rq);
1420 		later_rq = NULL;
1421 	}
1422 
1423 	return later_rq;
1424 }
1425 
1426 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1427 {
1428 	struct task_struct *p;
1429 
1430 	if (!has_pushable_dl_tasks(rq))
1431 		return NULL;
1432 
1433 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1434 		     struct task_struct, pushable_dl_tasks);
1435 
1436 	BUG_ON(rq->cpu != task_cpu(p));
1437 	BUG_ON(task_current(rq, p));
1438 	BUG_ON(p->nr_cpus_allowed <= 1);
1439 
1440 	BUG_ON(!task_on_rq_queued(p));
1441 	BUG_ON(!dl_task(p));
1442 
1443 	return p;
1444 }
1445 
1446 /*
1447  * See if the non running -deadline tasks on this rq
1448  * can be sent to some other CPU where they can preempt
1449  * and start executing.
1450  */
1451 static int push_dl_task(struct rq *rq)
1452 {
1453 	struct task_struct *next_task;
1454 	struct rq *later_rq;
1455 	int ret = 0;
1456 
1457 	if (!rq->dl.overloaded)
1458 		return 0;
1459 
1460 	next_task = pick_next_pushable_dl_task(rq);
1461 	if (!next_task)
1462 		return 0;
1463 
1464 retry:
1465 	if (unlikely(next_task == rq->curr)) {
1466 		WARN_ON(1);
1467 		return 0;
1468 	}
1469 
1470 	/*
1471 	 * If next_task preempts rq->curr, and rq->curr
1472 	 * can move away, it makes sense to just reschedule
1473 	 * without going further in pushing next_task.
1474 	 */
1475 	if (dl_task(rq->curr) &&
1476 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1477 	    rq->curr->nr_cpus_allowed > 1) {
1478 		resched_curr(rq);
1479 		return 0;
1480 	}
1481 
1482 	/* We might release rq lock */
1483 	get_task_struct(next_task);
1484 
1485 	/* Will lock the rq it'll find */
1486 	later_rq = find_lock_later_rq(next_task, rq);
1487 	if (!later_rq) {
1488 		struct task_struct *task;
1489 
1490 		/*
1491 		 * We must check all this again, since
1492 		 * find_lock_later_rq releases rq->lock and it is
1493 		 * then possible that next_task has migrated.
1494 		 */
1495 		task = pick_next_pushable_dl_task(rq);
1496 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1497 			/*
1498 			 * The task is still there. We don't try
1499 			 * again, some other cpu will pull it when ready.
1500 			 */
1501 			goto out;
1502 		}
1503 
1504 		if (!task)
1505 			/* No more tasks */
1506 			goto out;
1507 
1508 		put_task_struct(next_task);
1509 		next_task = task;
1510 		goto retry;
1511 	}
1512 
1513 	deactivate_task(rq, next_task, 0);
1514 	set_task_cpu(next_task, later_rq->cpu);
1515 	activate_task(later_rq, next_task, 0);
1516 	ret = 1;
1517 
1518 	resched_curr(later_rq);
1519 
1520 	double_unlock_balance(rq, later_rq);
1521 
1522 out:
1523 	put_task_struct(next_task);
1524 
1525 	return ret;
1526 }
1527 
1528 static void push_dl_tasks(struct rq *rq)
1529 {
1530 	/* push_dl_task() will return true if it moved a -deadline task */
1531 	while (push_dl_task(rq))
1532 		;
1533 }
1534 
1535 static void pull_dl_task(struct rq *this_rq)
1536 {
1537 	int this_cpu = this_rq->cpu, cpu;
1538 	struct task_struct *p;
1539 	bool resched = false;
1540 	struct rq *src_rq;
1541 	u64 dmin = LONG_MAX;
1542 
1543 	if (likely(!dl_overloaded(this_rq)))
1544 		return;
1545 
1546 	/*
1547 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1548 	 * see overloaded we must also see the dlo_mask bit.
1549 	 */
1550 	smp_rmb();
1551 
1552 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1553 		if (this_cpu == cpu)
1554 			continue;
1555 
1556 		src_rq = cpu_rq(cpu);
1557 
1558 		/*
1559 		 * It looks racy, abd it is! However, as in sched_rt.c,
1560 		 * we are fine with this.
1561 		 */
1562 		if (this_rq->dl.dl_nr_running &&
1563 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1564 				   src_rq->dl.earliest_dl.next))
1565 			continue;
1566 
1567 		/* Might drop this_rq->lock */
1568 		double_lock_balance(this_rq, src_rq);
1569 
1570 		/*
1571 		 * If there are no more pullable tasks on the
1572 		 * rq, we're done with it.
1573 		 */
1574 		if (src_rq->dl.dl_nr_running <= 1)
1575 			goto skip;
1576 
1577 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1578 
1579 		/*
1580 		 * We found a task to be pulled if:
1581 		 *  - it preempts our current (if there's one),
1582 		 *  - it will preempt the last one we pulled (if any).
1583 		 */
1584 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1585 		    (!this_rq->dl.dl_nr_running ||
1586 		     dl_time_before(p->dl.deadline,
1587 				    this_rq->dl.earliest_dl.curr))) {
1588 			WARN_ON(p == src_rq->curr);
1589 			WARN_ON(!task_on_rq_queued(p));
1590 
1591 			/*
1592 			 * Then we pull iff p has actually an earlier
1593 			 * deadline than the current task of its runqueue.
1594 			 */
1595 			if (dl_time_before(p->dl.deadline,
1596 					   src_rq->curr->dl.deadline))
1597 				goto skip;
1598 
1599 			resched = true;
1600 
1601 			deactivate_task(src_rq, p, 0);
1602 			set_task_cpu(p, this_cpu);
1603 			activate_task(this_rq, p, 0);
1604 			dmin = p->dl.deadline;
1605 
1606 			/* Is there any other task even earlier? */
1607 		}
1608 skip:
1609 		double_unlock_balance(this_rq, src_rq);
1610 	}
1611 
1612 	if (resched)
1613 		resched_curr(this_rq);
1614 }
1615 
1616 /*
1617  * Since the task is not running and a reschedule is not going to happen
1618  * anytime soon on its runqueue, we try pushing it away now.
1619  */
1620 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1621 {
1622 	if (!task_running(rq, p) &&
1623 	    !test_tsk_need_resched(rq->curr) &&
1624 	    p->nr_cpus_allowed > 1 &&
1625 	    dl_task(rq->curr) &&
1626 	    (rq->curr->nr_cpus_allowed < 2 ||
1627 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1628 		push_dl_tasks(rq);
1629 	}
1630 }
1631 
1632 static void set_cpus_allowed_dl(struct task_struct *p,
1633 				const struct cpumask *new_mask)
1634 {
1635 	struct root_domain *src_rd;
1636 	struct rq *rq;
1637 
1638 	BUG_ON(!dl_task(p));
1639 
1640 	rq = task_rq(p);
1641 	src_rd = rq->rd;
1642 	/*
1643 	 * Migrating a SCHED_DEADLINE task between exclusive
1644 	 * cpusets (different root_domains) entails a bandwidth
1645 	 * update. We already made space for us in the destination
1646 	 * domain (see cpuset_can_attach()).
1647 	 */
1648 	if (!cpumask_intersects(src_rd->span, new_mask)) {
1649 		struct dl_bw *src_dl_b;
1650 
1651 		src_dl_b = dl_bw_of(cpu_of(rq));
1652 		/*
1653 		 * We now free resources of the root_domain we are migrating
1654 		 * off. In the worst case, sched_setattr() may temporary fail
1655 		 * until we complete the update.
1656 		 */
1657 		raw_spin_lock(&src_dl_b->lock);
1658 		__dl_clear(src_dl_b, p->dl.dl_bw);
1659 		raw_spin_unlock(&src_dl_b->lock);
1660 	}
1661 
1662 	set_cpus_allowed_common(p, new_mask);
1663 }
1664 
1665 /* Assumes rq->lock is held */
1666 static void rq_online_dl(struct rq *rq)
1667 {
1668 	if (rq->dl.overloaded)
1669 		dl_set_overload(rq);
1670 
1671 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1672 	if (rq->dl.dl_nr_running > 0)
1673 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1674 }
1675 
1676 /* Assumes rq->lock is held */
1677 static void rq_offline_dl(struct rq *rq)
1678 {
1679 	if (rq->dl.overloaded)
1680 		dl_clear_overload(rq);
1681 
1682 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1683 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1684 }
1685 
1686 void __init init_sched_dl_class(void)
1687 {
1688 	unsigned int i;
1689 
1690 	for_each_possible_cpu(i)
1691 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1692 					GFP_KERNEL, cpu_to_node(i));
1693 }
1694 
1695 #endif /* CONFIG_SMP */
1696 
1697 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1698 {
1699 	/*
1700 	 * Start the deadline timer; if we switch back to dl before this we'll
1701 	 * continue consuming our current CBS slice. If we stay outside of
1702 	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1703 	 * task.
1704 	 */
1705 	if (!start_dl_timer(p))
1706 		__dl_clear_params(p);
1707 
1708 	/*
1709 	 * Since this might be the only -deadline task on the rq,
1710 	 * this is the right place to try to pull some other one
1711 	 * from an overloaded cpu, if any.
1712 	 */
1713 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1714 		return;
1715 
1716 	queue_pull_task(rq);
1717 }
1718 
1719 /*
1720  * When switching to -deadline, we may overload the rq, then
1721  * we try to push someone off, if possible.
1722  */
1723 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1724 {
1725 	if (task_on_rq_queued(p) && rq->curr != p) {
1726 #ifdef CONFIG_SMP
1727 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1728 			queue_push_tasks(rq);
1729 #else
1730 		if (dl_task(rq->curr))
1731 			check_preempt_curr_dl(rq, p, 0);
1732 		else
1733 			resched_curr(rq);
1734 #endif
1735 	}
1736 }
1737 
1738 /*
1739  * If the scheduling parameters of a -deadline task changed,
1740  * a push or pull operation might be needed.
1741  */
1742 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1743 			    int oldprio)
1744 {
1745 	if (task_on_rq_queued(p) || rq->curr == p) {
1746 #ifdef CONFIG_SMP
1747 		/*
1748 		 * This might be too much, but unfortunately
1749 		 * we don't have the old deadline value, and
1750 		 * we can't argue if the task is increasing
1751 		 * or lowering its prio, so...
1752 		 */
1753 		if (!rq->dl.overloaded)
1754 			queue_pull_task(rq);
1755 
1756 		/*
1757 		 * If we now have a earlier deadline task than p,
1758 		 * then reschedule, provided p is still on this
1759 		 * runqueue.
1760 		 */
1761 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1762 			resched_curr(rq);
1763 #else
1764 		/*
1765 		 * Again, we don't know if p has a earlier
1766 		 * or later deadline, so let's blindly set a
1767 		 * (maybe not needed) rescheduling point.
1768 		 */
1769 		resched_curr(rq);
1770 #endif /* CONFIG_SMP */
1771 	} else
1772 		switched_to_dl(rq, p);
1773 }
1774 
1775 const struct sched_class dl_sched_class = {
1776 	.next			= &rt_sched_class,
1777 	.enqueue_task		= enqueue_task_dl,
1778 	.dequeue_task		= dequeue_task_dl,
1779 	.yield_task		= yield_task_dl,
1780 
1781 	.check_preempt_curr	= check_preempt_curr_dl,
1782 
1783 	.pick_next_task		= pick_next_task_dl,
1784 	.put_prev_task		= put_prev_task_dl,
1785 
1786 #ifdef CONFIG_SMP
1787 	.select_task_rq		= select_task_rq_dl,
1788 	.set_cpus_allowed       = set_cpus_allowed_dl,
1789 	.rq_online              = rq_online_dl,
1790 	.rq_offline             = rq_offline_dl,
1791 	.task_woken		= task_woken_dl,
1792 #endif
1793 
1794 	.set_curr_task		= set_curr_task_dl,
1795 	.task_tick		= task_tick_dl,
1796 	.task_fork              = task_fork_dl,
1797 	.task_dead		= task_dead_dl,
1798 
1799 	.prio_changed           = prio_changed_dl,
1800 	.switched_from		= switched_from_dl,
1801 	.switched_to		= switched_to_dl,
1802 
1803 	.update_curr		= update_curr_dl,
1804 };
1805 
1806 #ifdef CONFIG_SCHED_DEBUG
1807 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1808 
1809 void print_dl_stats(struct seq_file *m, int cpu)
1810 {
1811 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1812 }
1813 #endif /* CONFIG_SCHED_DEBUG */
1814