xref: /linux/kernel/sched/deadline.c (revision a83c29e1d145cca5240952100acd1cd60f25fb5f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 
21 /*
22  * Default limits for DL period; on the top end we guard against small util
23  * tasks still getting ridiculously long effective runtimes, on the bottom end we
24  * guard against timer DoS.
25  */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 	{
31 		.procname       = "sched_deadline_period_max_us",
32 		.data           = &sysctl_sched_dl_period_max,
33 		.maxlen         = sizeof(unsigned int),
34 		.mode           = 0644,
35 		.proc_handler   = proc_douintvec_minmax,
36 		.extra1         = (void *)&sysctl_sched_dl_period_min,
37 	},
38 	{
39 		.procname       = "sched_deadline_period_min_us",
40 		.data           = &sysctl_sched_dl_period_min,
41 		.maxlen         = sizeof(unsigned int),
42 		.mode           = 0644,
43 		.proc_handler   = proc_douintvec_minmax,
44 		.extra2         = (void *)&sysctl_sched_dl_period_max,
45 	},
46 };
47 
48 static int __init sched_dl_sysctl_init(void)
49 {
50 	register_sysctl_init("kernel", sched_dl_sysctls);
51 	return 0;
52 }
53 late_initcall(sched_dl_sysctl_init);
54 #endif
55 
56 static bool dl_server(struct sched_dl_entity *dl_se)
57 {
58 	return dl_se->dl_server;
59 }
60 
61 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62 {
63 	BUG_ON(dl_server(dl_se));
64 	return container_of(dl_se, struct task_struct, dl);
65 }
66 
67 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68 {
69 	return container_of(dl_rq, struct rq, dl);
70 }
71 
72 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73 {
74 	struct rq *rq = dl_se->rq;
75 
76 	if (!dl_server(dl_se))
77 		rq = task_rq(dl_task_of(dl_se));
78 
79 	return rq;
80 }
81 
82 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83 {
84 	return &rq_of_dl_se(dl_se)->dl;
85 }
86 
87 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88 {
89 	return !RB_EMPTY_NODE(&dl_se->rb_node);
90 }
91 
92 #ifdef CONFIG_RT_MUTEXES
93 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94 {
95 	return dl_se->pi_se;
96 }
97 
98 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99 {
100 	return pi_of(dl_se) != dl_se;
101 }
102 #else
103 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104 {
105 	return dl_se;
106 }
107 
108 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109 {
110 	return false;
111 }
112 #endif
113 
114 #ifdef CONFIG_SMP
115 static inline struct dl_bw *dl_bw_of(int i)
116 {
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118 			 "sched RCU must be held");
119 	return &cpu_rq(i)->rd->dl_bw;
120 }
121 
122 static inline int dl_bw_cpus(int i)
123 {
124 	struct root_domain *rd = cpu_rq(i)->rd;
125 	int cpus;
126 
127 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128 			 "sched RCU must be held");
129 
130 	if (cpumask_subset(rd->span, cpu_active_mask))
131 		return cpumask_weight(rd->span);
132 
133 	cpus = 0;
134 
135 	for_each_cpu_and(i, rd->span, cpu_active_mask)
136 		cpus++;
137 
138 	return cpus;
139 }
140 
141 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142 {
143 	unsigned long cap = 0;
144 	int i;
145 
146 	for_each_cpu_and(i, mask, cpu_active_mask)
147 		cap += arch_scale_cpu_capacity(i);
148 
149 	return cap;
150 }
151 
152 /*
153  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154  * of the CPU the task is running on rather rd's \Sum CPU capacity.
155  */
156 static inline unsigned long dl_bw_capacity(int i)
157 {
158 	if (!sched_asym_cpucap_active() &&
159 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161 	} else {
162 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163 				 "sched RCU must be held");
164 
165 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
166 	}
167 }
168 
169 static inline bool dl_bw_visited(int cpu, u64 gen)
170 {
171 	struct root_domain *rd = cpu_rq(cpu)->rd;
172 
173 	if (rd->visit_gen == gen)
174 		return true;
175 
176 	rd->visit_gen = gen;
177 	return false;
178 }
179 
180 static inline
181 void __dl_update(struct dl_bw *dl_b, s64 bw)
182 {
183 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184 	int i;
185 
186 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187 			 "sched RCU must be held");
188 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
189 		struct rq *rq = cpu_rq(i);
190 
191 		rq->dl.extra_bw += bw;
192 	}
193 }
194 #else
195 static inline struct dl_bw *dl_bw_of(int i)
196 {
197 	return &cpu_rq(i)->dl.dl_bw;
198 }
199 
200 static inline int dl_bw_cpus(int i)
201 {
202 	return 1;
203 }
204 
205 static inline unsigned long dl_bw_capacity(int i)
206 {
207 	return SCHED_CAPACITY_SCALE;
208 }
209 
210 static inline bool dl_bw_visited(int cpu, u64 gen)
211 {
212 	return false;
213 }
214 
215 static inline
216 void __dl_update(struct dl_bw *dl_b, s64 bw)
217 {
218 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219 
220 	dl->extra_bw += bw;
221 }
222 #endif
223 
224 static inline
225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226 {
227 	dl_b->total_bw -= tsk_bw;
228 	__dl_update(dl_b, (s32)tsk_bw / cpus);
229 }
230 
231 static inline
232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233 {
234 	dl_b->total_bw += tsk_bw;
235 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
236 }
237 
238 static inline bool
239 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240 {
241 	return dl_b->bw != -1 &&
242 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243 }
244 
245 static inline
246 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247 {
248 	u64 old = dl_rq->running_bw;
249 
250 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251 	dl_rq->running_bw += dl_bw;
252 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
253 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
254 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257 
258 static inline
259 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 	u64 old = dl_rq->running_bw;
262 
263 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 	dl_rq->running_bw -= dl_bw;
265 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
266 	if (dl_rq->running_bw > old)
267 		dl_rq->running_bw = 0;
268 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
269 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270 }
271 
272 static inline
273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274 {
275 	u64 old = dl_rq->this_bw;
276 
277 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278 	dl_rq->this_bw += dl_bw;
279 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
280 }
281 
282 static inline
283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284 {
285 	u64 old = dl_rq->this_bw;
286 
287 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288 	dl_rq->this_bw -= dl_bw;
289 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
290 	if (dl_rq->this_bw > old)
291 		dl_rq->this_bw = 0;
292 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
293 }
294 
295 static inline
296 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 	if (!dl_entity_is_special(dl_se))
299 		__add_rq_bw(dl_se->dl_bw, dl_rq);
300 }
301 
302 static inline
303 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 	if (!dl_entity_is_special(dl_se))
306 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
307 }
308 
309 static inline
310 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 	if (!dl_entity_is_special(dl_se))
313 		__add_running_bw(dl_se->dl_bw, dl_rq);
314 }
315 
316 static inline
317 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318 {
319 	if (!dl_entity_is_special(dl_se))
320 		__sub_running_bw(dl_se->dl_bw, dl_rq);
321 }
322 
323 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
324 {
325 	if (dl_se->dl_non_contending) {
326 		sub_running_bw(dl_se, &rq->dl);
327 		dl_se->dl_non_contending = 0;
328 
329 		/*
330 		 * If the timer handler is currently running and the
331 		 * timer cannot be canceled, inactive_task_timer()
332 		 * will see that dl_not_contending is not set, and
333 		 * will not touch the rq's active utilization,
334 		 * so we are still safe.
335 		 */
336 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
337 			if (!dl_server(dl_se))
338 				put_task_struct(dl_task_of(dl_se));
339 		}
340 	}
341 	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
342 	__add_rq_bw(new_bw, &rq->dl);
343 }
344 
345 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
346 {
347 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
348 
349 	if (task_on_rq_queued(p))
350 		return;
351 
352 	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
353 }
354 
355 static void __dl_clear_params(struct sched_dl_entity *dl_se);
356 
357 /*
358  * The utilization of a task cannot be immediately removed from
359  * the rq active utilization (running_bw) when the task blocks.
360  * Instead, we have to wait for the so called "0-lag time".
361  *
362  * If a task blocks before the "0-lag time", a timer (the inactive
363  * timer) is armed, and running_bw is decreased when the timer
364  * fires.
365  *
366  * If the task wakes up again before the inactive timer fires,
367  * the timer is canceled, whereas if the task wakes up after the
368  * inactive timer fired (and running_bw has been decreased) the
369  * task's utilization has to be added to running_bw again.
370  * A flag in the deadline scheduling entity (dl_non_contending)
371  * is used to avoid race conditions between the inactive timer handler
372  * and task wakeups.
373  *
374  * The following diagram shows how running_bw is updated. A task is
375  * "ACTIVE" when its utilization contributes to running_bw; an
376  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
377  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
378  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
379  * time already passed, which does not contribute to running_bw anymore.
380  *                              +------------------+
381  *             wakeup           |    ACTIVE        |
382  *          +------------------>+   contending     |
383  *          | add_running_bw    |                  |
384  *          |                   +----+------+------+
385  *          |                        |      ^
386  *          |                dequeue |      |
387  * +--------+-------+                |      |
388  * |                |   t >= 0-lag   |      | wakeup
389  * |    INACTIVE    |<---------------+      |
390  * |                | sub_running_bw |      |
391  * +--------+-------+                |      |
392  *          ^                        |      |
393  *          |              t < 0-lag |      |
394  *          |                        |      |
395  *          |                        V      |
396  *          |                   +----+------+------+
397  *          | sub_running_bw    |    ACTIVE        |
398  *          +-------------------+                  |
399  *            inactive timer    |  non contending  |
400  *            fired             +------------------+
401  *
402  * The task_non_contending() function is invoked when a task
403  * blocks, and checks if the 0-lag time already passed or
404  * not (in the first case, it directly updates running_bw;
405  * in the second case, it arms the inactive timer).
406  *
407  * The task_contending() function is invoked when a task wakes
408  * up, and checks if the task is still in the "ACTIVE non contending"
409  * state or not (in the second case, it updates running_bw).
410  */
411 static void task_non_contending(struct sched_dl_entity *dl_se)
412 {
413 	struct hrtimer *timer = &dl_se->inactive_timer;
414 	struct rq *rq = rq_of_dl_se(dl_se);
415 	struct dl_rq *dl_rq = &rq->dl;
416 	s64 zerolag_time;
417 
418 	/*
419 	 * If this is a non-deadline task that has been boosted,
420 	 * do nothing
421 	 */
422 	if (dl_se->dl_runtime == 0)
423 		return;
424 
425 	if (dl_entity_is_special(dl_se))
426 		return;
427 
428 	WARN_ON(dl_se->dl_non_contending);
429 
430 	zerolag_time = dl_se->deadline -
431 		 div64_long((dl_se->runtime * dl_se->dl_period),
432 			dl_se->dl_runtime);
433 
434 	/*
435 	 * Using relative times instead of the absolute "0-lag time"
436 	 * allows to simplify the code
437 	 */
438 	zerolag_time -= rq_clock(rq);
439 
440 	/*
441 	 * If the "0-lag time" already passed, decrease the active
442 	 * utilization now, instead of starting a timer
443 	 */
444 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
445 		if (dl_server(dl_se)) {
446 			sub_running_bw(dl_se, dl_rq);
447 		} else {
448 			struct task_struct *p = dl_task_of(dl_se);
449 
450 			if (dl_task(p))
451 				sub_running_bw(dl_se, dl_rq);
452 
453 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
454 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
455 
456 				if (READ_ONCE(p->__state) == TASK_DEAD)
457 					sub_rq_bw(dl_se, &rq->dl);
458 				raw_spin_lock(&dl_b->lock);
459 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
460 				raw_spin_unlock(&dl_b->lock);
461 				__dl_clear_params(dl_se);
462 			}
463 		}
464 
465 		return;
466 	}
467 
468 	dl_se->dl_non_contending = 1;
469 	if (!dl_server(dl_se))
470 		get_task_struct(dl_task_of(dl_se));
471 
472 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
473 }
474 
475 static void task_contending(struct sched_dl_entity *dl_se, int flags)
476 {
477 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
478 
479 	/*
480 	 * If this is a non-deadline task that has been boosted,
481 	 * do nothing
482 	 */
483 	if (dl_se->dl_runtime == 0)
484 		return;
485 
486 	if (flags & ENQUEUE_MIGRATED)
487 		add_rq_bw(dl_se, dl_rq);
488 
489 	if (dl_se->dl_non_contending) {
490 		dl_se->dl_non_contending = 0;
491 		/*
492 		 * If the timer handler is currently running and the
493 		 * timer cannot be canceled, inactive_task_timer()
494 		 * will see that dl_not_contending is not set, and
495 		 * will not touch the rq's active utilization,
496 		 * so we are still safe.
497 		 */
498 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
499 			if (!dl_server(dl_se))
500 				put_task_struct(dl_task_of(dl_se));
501 		}
502 	} else {
503 		/*
504 		 * Since "dl_non_contending" is not set, the
505 		 * task's utilization has already been removed from
506 		 * active utilization (either when the task blocked,
507 		 * when the "inactive timer" fired).
508 		 * So, add it back.
509 		 */
510 		add_running_bw(dl_se, dl_rq);
511 	}
512 }
513 
514 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
515 {
516 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
517 }
518 
519 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
520 
521 void init_dl_bw(struct dl_bw *dl_b)
522 {
523 	raw_spin_lock_init(&dl_b->lock);
524 	if (global_rt_runtime() == RUNTIME_INF)
525 		dl_b->bw = -1;
526 	else
527 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
528 	dl_b->total_bw = 0;
529 }
530 
531 void init_dl_rq(struct dl_rq *dl_rq)
532 {
533 	dl_rq->root = RB_ROOT_CACHED;
534 
535 #ifdef CONFIG_SMP
536 	/* zero means no -deadline tasks */
537 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
538 
539 	dl_rq->overloaded = 0;
540 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
541 #else
542 	init_dl_bw(&dl_rq->dl_bw);
543 #endif
544 
545 	dl_rq->running_bw = 0;
546 	dl_rq->this_bw = 0;
547 	init_dl_rq_bw_ratio(dl_rq);
548 }
549 
550 #ifdef CONFIG_SMP
551 
552 static inline int dl_overloaded(struct rq *rq)
553 {
554 	return atomic_read(&rq->rd->dlo_count);
555 }
556 
557 static inline void dl_set_overload(struct rq *rq)
558 {
559 	if (!rq->online)
560 		return;
561 
562 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
563 	/*
564 	 * Must be visible before the overload count is
565 	 * set (as in sched_rt.c).
566 	 *
567 	 * Matched by the barrier in pull_dl_task().
568 	 */
569 	smp_wmb();
570 	atomic_inc(&rq->rd->dlo_count);
571 }
572 
573 static inline void dl_clear_overload(struct rq *rq)
574 {
575 	if (!rq->online)
576 		return;
577 
578 	atomic_dec(&rq->rd->dlo_count);
579 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
580 }
581 
582 #define __node_2_pdl(node) \
583 	rb_entry((node), struct task_struct, pushable_dl_tasks)
584 
585 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
586 {
587 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
588 }
589 
590 static inline int has_pushable_dl_tasks(struct rq *rq)
591 {
592 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
593 }
594 
595 /*
596  * The list of pushable -deadline task is not a plist, like in
597  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
598  */
599 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
600 {
601 	struct rb_node *leftmost;
602 
603 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
604 
605 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
606 				 &rq->dl.pushable_dl_tasks_root,
607 				 __pushable_less);
608 	if (leftmost)
609 		rq->dl.earliest_dl.next = p->dl.deadline;
610 
611 	if (!rq->dl.overloaded) {
612 		dl_set_overload(rq);
613 		rq->dl.overloaded = 1;
614 	}
615 }
616 
617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
618 {
619 	struct dl_rq *dl_rq = &rq->dl;
620 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
621 	struct rb_node *leftmost;
622 
623 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
624 		return;
625 
626 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
627 	if (leftmost)
628 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
629 
630 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
631 
632 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
633 		dl_clear_overload(rq);
634 		rq->dl.overloaded = 0;
635 	}
636 }
637 
638 static int push_dl_task(struct rq *rq);
639 
640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
641 {
642 	return rq->online && dl_task(prev);
643 }
644 
645 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
646 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
647 
648 static void push_dl_tasks(struct rq *);
649 static void pull_dl_task(struct rq *);
650 
651 static inline void deadline_queue_push_tasks(struct rq *rq)
652 {
653 	if (!has_pushable_dl_tasks(rq))
654 		return;
655 
656 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
657 }
658 
659 static inline void deadline_queue_pull_task(struct rq *rq)
660 {
661 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
662 }
663 
664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
665 
666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
667 {
668 	struct rq *later_rq = NULL;
669 	struct dl_bw *dl_b;
670 
671 	later_rq = find_lock_later_rq(p, rq);
672 	if (!later_rq) {
673 		int cpu;
674 
675 		/*
676 		 * If we cannot preempt any rq, fall back to pick any
677 		 * online CPU:
678 		 */
679 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
680 		if (cpu >= nr_cpu_ids) {
681 			/*
682 			 * Failed to find any suitable CPU.
683 			 * The task will never come back!
684 			 */
685 			WARN_ON_ONCE(dl_bandwidth_enabled());
686 
687 			/*
688 			 * If admission control is disabled we
689 			 * try a little harder to let the task
690 			 * run.
691 			 */
692 			cpu = cpumask_any(cpu_active_mask);
693 		}
694 		later_rq = cpu_rq(cpu);
695 		double_lock_balance(rq, later_rq);
696 	}
697 
698 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
699 		/*
700 		 * Inactive timer is armed (or callback is running, but
701 		 * waiting for us to release rq locks). In any case, when it
702 		 * will fire (or continue), it will see running_bw of this
703 		 * task migrated to later_rq (and correctly handle it).
704 		 */
705 		sub_running_bw(&p->dl, &rq->dl);
706 		sub_rq_bw(&p->dl, &rq->dl);
707 
708 		add_rq_bw(&p->dl, &later_rq->dl);
709 		add_running_bw(&p->dl, &later_rq->dl);
710 	} else {
711 		sub_rq_bw(&p->dl, &rq->dl);
712 		add_rq_bw(&p->dl, &later_rq->dl);
713 	}
714 
715 	/*
716 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
717 	 * since p is still hanging out in the old (now moved to default) root
718 	 * domain.
719 	 */
720 	dl_b = &rq->rd->dl_bw;
721 	raw_spin_lock(&dl_b->lock);
722 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
723 	raw_spin_unlock(&dl_b->lock);
724 
725 	dl_b = &later_rq->rd->dl_bw;
726 	raw_spin_lock(&dl_b->lock);
727 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
728 	raw_spin_unlock(&dl_b->lock);
729 
730 	set_task_cpu(p, later_rq->cpu);
731 	double_unlock_balance(later_rq, rq);
732 
733 	return later_rq;
734 }
735 
736 #else
737 
738 static inline
739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740 {
741 }
742 
743 static inline
744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
745 {
746 }
747 
748 static inline
749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750 {
751 }
752 
753 static inline
754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
755 {
756 }
757 
758 static inline void deadline_queue_push_tasks(struct rq *rq)
759 {
760 }
761 
762 static inline void deadline_queue_pull_task(struct rq *rq)
763 {
764 }
765 #endif /* CONFIG_SMP */
766 
767 static void
768 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
769 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
771 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
772 
773 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
774 					    struct rq *rq)
775 {
776 	/* for non-boosted task, pi_of(dl_se) == dl_se */
777 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
778 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
779 
780 	/*
781 	 * If it is a deferred reservation, and the server
782 	 * is not handling an starvation case, defer it.
783 	 */
784 	if (dl_se->dl_defer & !dl_se->dl_defer_running) {
785 		dl_se->dl_throttled = 1;
786 		dl_se->dl_defer_armed = 1;
787 	}
788 }
789 
790 /*
791  * We are being explicitly informed that a new instance is starting,
792  * and this means that:
793  *  - the absolute deadline of the entity has to be placed at
794  *    current time + relative deadline;
795  *  - the runtime of the entity has to be set to the maximum value.
796  *
797  * The capability of specifying such event is useful whenever a -deadline
798  * entity wants to (try to!) synchronize its behaviour with the scheduler's
799  * one, and to (try to!) reconcile itself with its own scheduling
800  * parameters.
801  */
802 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
803 {
804 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
805 	struct rq *rq = rq_of_dl_rq(dl_rq);
806 
807 	WARN_ON(is_dl_boosted(dl_se));
808 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
809 
810 	/*
811 	 * We are racing with the deadline timer. So, do nothing because
812 	 * the deadline timer handler will take care of properly recharging
813 	 * the runtime and postponing the deadline
814 	 */
815 	if (dl_se->dl_throttled)
816 		return;
817 
818 	/*
819 	 * We use the regular wall clock time to set deadlines in the
820 	 * future; in fact, we must consider execution overheads (time
821 	 * spent on hardirq context, etc.).
822 	 */
823 	replenish_dl_new_period(dl_se, rq);
824 }
825 
826 static int start_dl_timer(struct sched_dl_entity *dl_se);
827 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
828 
829 /*
830  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
831  * possibility of a entity lasting more than what it declared, and thus
832  * exhausting its runtime.
833  *
834  * Here we are interested in making runtime overrun possible, but we do
835  * not want a entity which is misbehaving to affect the scheduling of all
836  * other entities.
837  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
838  * is used, in order to confine each entity within its own bandwidth.
839  *
840  * This function deals exactly with that, and ensures that when the runtime
841  * of a entity is replenished, its deadline is also postponed. That ensures
842  * the overrunning entity can't interfere with other entity in the system and
843  * can't make them miss their deadlines. Reasons why this kind of overruns
844  * could happen are, typically, a entity voluntarily trying to overcome its
845  * runtime, or it just underestimated it during sched_setattr().
846  */
847 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
848 {
849 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
850 	struct rq *rq = rq_of_dl_rq(dl_rq);
851 
852 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
853 
854 	/*
855 	 * This could be the case for a !-dl task that is boosted.
856 	 * Just go with full inherited parameters.
857 	 *
858 	 * Or, it could be the case of a deferred reservation that
859 	 * was not able to consume its runtime in background and
860 	 * reached this point with current u > U.
861 	 *
862 	 * In both cases, set a new period.
863 	 */
864 	if (dl_se->dl_deadline == 0 ||
865 	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
866 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
867 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
868 	}
869 
870 	if (dl_se->dl_yielded && dl_se->runtime > 0)
871 		dl_se->runtime = 0;
872 
873 	/*
874 	 * We keep moving the deadline away until we get some
875 	 * available runtime for the entity. This ensures correct
876 	 * handling of situations where the runtime overrun is
877 	 * arbitrary large.
878 	 */
879 	while (dl_se->runtime <= 0) {
880 		dl_se->deadline += pi_of(dl_se)->dl_period;
881 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
882 	}
883 
884 	/*
885 	 * At this point, the deadline really should be "in
886 	 * the future" with respect to rq->clock. If it's
887 	 * not, we are, for some reason, lagging too much!
888 	 * Anyway, after having warn userspace abut that,
889 	 * we still try to keep the things running by
890 	 * resetting the deadline and the budget of the
891 	 * entity.
892 	 */
893 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
894 		printk_deferred_once("sched: DL replenish lagged too much\n");
895 		replenish_dl_new_period(dl_se, rq);
896 	}
897 
898 	if (dl_se->dl_yielded)
899 		dl_se->dl_yielded = 0;
900 	if (dl_se->dl_throttled)
901 		dl_se->dl_throttled = 0;
902 
903 	/*
904 	 * If this is the replenishment of a deferred reservation,
905 	 * clear the flag and return.
906 	 */
907 	if (dl_se->dl_defer_armed) {
908 		dl_se->dl_defer_armed = 0;
909 		return;
910 	}
911 
912 	/*
913 	 * A this point, if the deferred server is not armed, and the deadline
914 	 * is in the future, if it is not running already, throttle the server
915 	 * and arm the defer timer.
916 	 */
917 	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
918 	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
919 		if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
920 
921 			/*
922 			 * Set dl_se->dl_defer_armed and dl_throttled variables to
923 			 * inform the start_dl_timer() that this is a deferred
924 			 * activation.
925 			 */
926 			dl_se->dl_defer_armed = 1;
927 			dl_se->dl_throttled = 1;
928 			if (!start_dl_timer(dl_se)) {
929 				/*
930 				 * If for whatever reason (delays), a previous timer was
931 				 * queued but not serviced, cancel it and clean the
932 				 * deferrable server variables intended for start_dl_timer().
933 				 */
934 				hrtimer_try_to_cancel(&dl_se->dl_timer);
935 				dl_se->dl_defer_armed = 0;
936 				dl_se->dl_throttled = 0;
937 			}
938 		}
939 	}
940 }
941 
942 /*
943  * Here we check if --at time t-- an entity (which is probably being
944  * [re]activated or, in general, enqueued) can use its remaining runtime
945  * and its current deadline _without_ exceeding the bandwidth it is
946  * assigned (function returns true if it can't). We are in fact applying
947  * one of the CBS rules: when a task wakes up, if the residual runtime
948  * over residual deadline fits within the allocated bandwidth, then we
949  * can keep the current (absolute) deadline and residual budget without
950  * disrupting the schedulability of the system. Otherwise, we should
951  * refill the runtime and set the deadline a period in the future,
952  * because keeping the current (absolute) deadline of the task would
953  * result in breaking guarantees promised to other tasks (refer to
954  * Documentation/scheduler/sched-deadline.rst for more information).
955  *
956  * This function returns true if:
957  *
958  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
959  *
960  * IOW we can't recycle current parameters.
961  *
962  * Notice that the bandwidth check is done against the deadline. For
963  * task with deadline equal to period this is the same of using
964  * dl_period instead of dl_deadline in the equation above.
965  */
966 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
967 {
968 	u64 left, right;
969 
970 	/*
971 	 * left and right are the two sides of the equation above,
972 	 * after a bit of shuffling to use multiplications instead
973 	 * of divisions.
974 	 *
975 	 * Note that none of the time values involved in the two
976 	 * multiplications are absolute: dl_deadline and dl_runtime
977 	 * are the relative deadline and the maximum runtime of each
978 	 * instance, runtime is the runtime left for the last instance
979 	 * and (deadline - t), since t is rq->clock, is the time left
980 	 * to the (absolute) deadline. Even if overflowing the u64 type
981 	 * is very unlikely to occur in both cases, here we scale down
982 	 * as we want to avoid that risk at all. Scaling down by 10
983 	 * means that we reduce granularity to 1us. We are fine with it,
984 	 * since this is only a true/false check and, anyway, thinking
985 	 * of anything below microseconds resolution is actually fiction
986 	 * (but still we want to give the user that illusion >;).
987 	 */
988 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
989 	right = ((dl_se->deadline - t) >> DL_SCALE) *
990 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
991 
992 	return dl_time_before(right, left);
993 }
994 
995 /*
996  * Revised wakeup rule [1]: For self-suspending tasks, rather then
997  * re-initializing task's runtime and deadline, the revised wakeup
998  * rule adjusts the task's runtime to avoid the task to overrun its
999  * density.
1000  *
1001  * Reasoning: a task may overrun the density if:
1002  *    runtime / (deadline - t) > dl_runtime / dl_deadline
1003  *
1004  * Therefore, runtime can be adjusted to:
1005  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
1006  *
1007  * In such way that runtime will be equal to the maximum density
1008  * the task can use without breaking any rule.
1009  *
1010  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1011  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1012  */
1013 static void
1014 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1015 {
1016 	u64 laxity = dl_se->deadline - rq_clock(rq);
1017 
1018 	/*
1019 	 * If the task has deadline < period, and the deadline is in the past,
1020 	 * it should already be throttled before this check.
1021 	 *
1022 	 * See update_dl_entity() comments for further details.
1023 	 */
1024 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1025 
1026 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1027 }
1028 
1029 /*
1030  * Regarding the deadline, a task with implicit deadline has a relative
1031  * deadline == relative period. A task with constrained deadline has a
1032  * relative deadline <= relative period.
1033  *
1034  * We support constrained deadline tasks. However, there are some restrictions
1035  * applied only for tasks which do not have an implicit deadline. See
1036  * update_dl_entity() to know more about such restrictions.
1037  *
1038  * The dl_is_implicit() returns true if the task has an implicit deadline.
1039  */
1040 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1041 {
1042 	return dl_se->dl_deadline == dl_se->dl_period;
1043 }
1044 
1045 /*
1046  * When a deadline entity is placed in the runqueue, its runtime and deadline
1047  * might need to be updated. This is done by a CBS wake up rule. There are two
1048  * different rules: 1) the original CBS; and 2) the Revisited CBS.
1049  *
1050  * When the task is starting a new period, the Original CBS is used. In this
1051  * case, the runtime is replenished and a new absolute deadline is set.
1052  *
1053  * When a task is queued before the begin of the next period, using the
1054  * remaining runtime and deadline could make the entity to overflow, see
1055  * dl_entity_overflow() to find more about runtime overflow. When such case
1056  * is detected, the runtime and deadline need to be updated.
1057  *
1058  * If the task has an implicit deadline, i.e., deadline == period, the Original
1059  * CBS is applied. The runtime is replenished and a new absolute deadline is
1060  * set, as in the previous cases.
1061  *
1062  * However, the Original CBS does not work properly for tasks with
1063  * deadline < period, which are said to have a constrained deadline. By
1064  * applying the Original CBS, a constrained deadline task would be able to run
1065  * runtime/deadline in a period. With deadline < period, the task would
1066  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1067  *
1068  * In order to prevent this misbehave, the Revisited CBS is used for
1069  * constrained deadline tasks when a runtime overflow is detected. In the
1070  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1071  * the remaining runtime of the task is reduced to avoid runtime overflow.
1072  * Please refer to the comments update_dl_revised_wakeup() function to find
1073  * more about the Revised CBS rule.
1074  */
1075 static void update_dl_entity(struct sched_dl_entity *dl_se)
1076 {
1077 	struct rq *rq = rq_of_dl_se(dl_se);
1078 
1079 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1080 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1081 
1082 		if (unlikely(!dl_is_implicit(dl_se) &&
1083 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084 			     !is_dl_boosted(dl_se))) {
1085 			update_dl_revised_wakeup(dl_se, rq);
1086 			return;
1087 		}
1088 
1089 		replenish_dl_new_period(dl_se, rq);
1090 	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1091 		/*
1092 		 * The server can still use its previous deadline, so check if
1093 		 * it left the dl_defer_running state.
1094 		 */
1095 		if (!dl_se->dl_defer_running) {
1096 			dl_se->dl_defer_armed = 1;
1097 			dl_se->dl_throttled = 1;
1098 		}
1099 	}
1100 }
1101 
1102 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1103 {
1104 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1105 }
1106 
1107 /*
1108  * If the entity depleted all its runtime, and if we want it to sleep
1109  * while waiting for some new execution time to become available, we
1110  * set the bandwidth replenishment timer to the replenishment instant
1111  * and try to activate it.
1112  *
1113  * Notice that it is important for the caller to know if the timer
1114  * actually started or not (i.e., the replenishment instant is in
1115  * the future or in the past).
1116  */
1117 static int start_dl_timer(struct sched_dl_entity *dl_se)
1118 {
1119 	struct hrtimer *timer = &dl_se->dl_timer;
1120 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1121 	struct rq *rq = rq_of_dl_rq(dl_rq);
1122 	ktime_t now, act;
1123 	s64 delta;
1124 
1125 	lockdep_assert_rq_held(rq);
1126 
1127 	/*
1128 	 * We want the timer to fire at the deadline, but considering
1129 	 * that it is actually coming from rq->clock and not from
1130 	 * hrtimer's time base reading.
1131 	 *
1132 	 * The deferred reservation will have its timer set to
1133 	 * (deadline - runtime). At that point, the CBS rule will decide
1134 	 * if the current deadline can be used, or if a replenishment is
1135 	 * required to avoid add too much pressure on the system
1136 	 * (current u > U).
1137 	 */
1138 	if (dl_se->dl_defer_armed) {
1139 		WARN_ON_ONCE(!dl_se->dl_throttled);
1140 		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1141 	} else {
1142 		/* act = deadline - rel-deadline + period */
1143 		act = ns_to_ktime(dl_next_period(dl_se));
1144 	}
1145 
1146 	now = hrtimer_cb_get_time(timer);
1147 	delta = ktime_to_ns(now) - rq_clock(rq);
1148 	act = ktime_add_ns(act, delta);
1149 
1150 	/*
1151 	 * If the expiry time already passed, e.g., because the value
1152 	 * chosen as the deadline is too small, don't even try to
1153 	 * start the timer in the past!
1154 	 */
1155 	if (ktime_us_delta(act, now) < 0)
1156 		return 0;
1157 
1158 	/*
1159 	 * !enqueued will guarantee another callback; even if one is already in
1160 	 * progress. This ensures a balanced {get,put}_task_struct().
1161 	 *
1162 	 * The race against __run_timer() clearing the enqueued state is
1163 	 * harmless because we're holding task_rq()->lock, therefore the timer
1164 	 * expiring after we've done the check will wait on its task_rq_lock()
1165 	 * and observe our state.
1166 	 */
1167 	if (!hrtimer_is_queued(timer)) {
1168 		if (!dl_server(dl_se))
1169 			get_task_struct(dl_task_of(dl_se));
1170 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1171 	}
1172 
1173 	return 1;
1174 }
1175 
1176 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1177 {
1178 #ifdef CONFIG_SMP
1179 	/*
1180 	 * Queueing this task back might have overloaded rq, check if we need
1181 	 * to kick someone away.
1182 	 */
1183 	if (has_pushable_dl_tasks(rq)) {
1184 		/*
1185 		 * Nothing relies on rq->lock after this, so its safe to drop
1186 		 * rq->lock.
1187 		 */
1188 		rq_unpin_lock(rq, rf);
1189 		push_dl_task(rq);
1190 		rq_repin_lock(rq, rf);
1191 	}
1192 #endif
1193 }
1194 
1195 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1196 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1197 
1198 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1199 {
1200 	struct rq *rq = rq_of_dl_se(dl_se);
1201 	u64 fw;
1202 
1203 	scoped_guard (rq_lock, rq) {
1204 		struct rq_flags *rf = &scope.rf;
1205 
1206 		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1207 			return HRTIMER_NORESTART;
1208 
1209 		sched_clock_tick();
1210 		update_rq_clock(rq);
1211 
1212 		if (!dl_se->dl_runtime)
1213 			return HRTIMER_NORESTART;
1214 
1215 		if (!dl_se->server_has_tasks(dl_se)) {
1216 			replenish_dl_entity(dl_se);
1217 			return HRTIMER_NORESTART;
1218 		}
1219 
1220 		if (dl_se->dl_defer_armed) {
1221 			/*
1222 			 * First check if the server could consume runtime in background.
1223 			 * If so, it is possible to push the defer timer for this amount
1224 			 * of time. The dl_server_min_res serves as a limit to avoid
1225 			 * forwarding the timer for a too small amount of time.
1226 			 */
1227 			if (dl_time_before(rq_clock(dl_se->rq),
1228 					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1229 
1230 				/* reset the defer timer */
1231 				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1232 
1233 				hrtimer_forward_now(timer, ns_to_ktime(fw));
1234 				return HRTIMER_RESTART;
1235 			}
1236 
1237 			dl_se->dl_defer_running = 1;
1238 		}
1239 
1240 		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1241 
1242 		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1243 			resched_curr(rq);
1244 
1245 		__push_dl_task(rq, rf);
1246 	}
1247 
1248 	return HRTIMER_NORESTART;
1249 }
1250 
1251 /*
1252  * This is the bandwidth enforcement timer callback. If here, we know
1253  * a task is not on its dl_rq, since the fact that the timer was running
1254  * means the task is throttled and needs a runtime replenishment.
1255  *
1256  * However, what we actually do depends on the fact the task is active,
1257  * (it is on its rq) or has been removed from there by a call to
1258  * dequeue_task_dl(). In the former case we must issue the runtime
1259  * replenishment and add the task back to the dl_rq; in the latter, we just
1260  * do nothing but clearing dl_throttled, so that runtime and deadline
1261  * updating (and the queueing back to dl_rq) will be done by the
1262  * next call to enqueue_task_dl().
1263  */
1264 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1265 {
1266 	struct sched_dl_entity *dl_se = container_of(timer,
1267 						     struct sched_dl_entity,
1268 						     dl_timer);
1269 	struct task_struct *p;
1270 	struct rq_flags rf;
1271 	struct rq *rq;
1272 
1273 	if (dl_server(dl_se))
1274 		return dl_server_timer(timer, dl_se);
1275 
1276 	p = dl_task_of(dl_se);
1277 	rq = task_rq_lock(p, &rf);
1278 
1279 	/*
1280 	 * The task might have changed its scheduling policy to something
1281 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1282 	 */
1283 	if (!dl_task(p))
1284 		goto unlock;
1285 
1286 	/*
1287 	 * The task might have been boosted by someone else and might be in the
1288 	 * boosting/deboosting path, its not throttled.
1289 	 */
1290 	if (is_dl_boosted(dl_se))
1291 		goto unlock;
1292 
1293 	/*
1294 	 * Spurious timer due to start_dl_timer() race; or we already received
1295 	 * a replenishment from rt_mutex_setprio().
1296 	 */
1297 	if (!dl_se->dl_throttled)
1298 		goto unlock;
1299 
1300 	sched_clock_tick();
1301 	update_rq_clock(rq);
1302 
1303 	/*
1304 	 * If the throttle happened during sched-out; like:
1305 	 *
1306 	 *   schedule()
1307 	 *     deactivate_task()
1308 	 *       dequeue_task_dl()
1309 	 *         update_curr_dl()
1310 	 *           start_dl_timer()
1311 	 *         __dequeue_task_dl()
1312 	 *     prev->on_rq = 0;
1313 	 *
1314 	 * We can be both throttled and !queued. Replenish the counter
1315 	 * but do not enqueue -- wait for our wakeup to do that.
1316 	 */
1317 	if (!task_on_rq_queued(p)) {
1318 		replenish_dl_entity(dl_se);
1319 		goto unlock;
1320 	}
1321 
1322 #ifdef CONFIG_SMP
1323 	if (unlikely(!rq->online)) {
1324 		/*
1325 		 * If the runqueue is no longer available, migrate the
1326 		 * task elsewhere. This necessarily changes rq.
1327 		 */
1328 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1329 		rq = dl_task_offline_migration(rq, p);
1330 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1331 		update_rq_clock(rq);
1332 
1333 		/*
1334 		 * Now that the task has been migrated to the new RQ and we
1335 		 * have that locked, proceed as normal and enqueue the task
1336 		 * there.
1337 		 */
1338 	}
1339 #endif
1340 
1341 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1342 	if (dl_task(rq->curr))
1343 		wakeup_preempt_dl(rq, p, 0);
1344 	else
1345 		resched_curr(rq);
1346 
1347 	__push_dl_task(rq, &rf);
1348 
1349 unlock:
1350 	task_rq_unlock(rq, p, &rf);
1351 
1352 	/*
1353 	 * This can free the task_struct, including this hrtimer, do not touch
1354 	 * anything related to that after this.
1355 	 */
1356 	put_task_struct(p);
1357 
1358 	return HRTIMER_NORESTART;
1359 }
1360 
1361 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1362 {
1363 	struct hrtimer *timer = &dl_se->dl_timer;
1364 
1365 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1366 	timer->function = dl_task_timer;
1367 }
1368 
1369 /*
1370  * During the activation, CBS checks if it can reuse the current task's
1371  * runtime and period. If the deadline of the task is in the past, CBS
1372  * cannot use the runtime, and so it replenishes the task. This rule
1373  * works fine for implicit deadline tasks (deadline == period), and the
1374  * CBS was designed for implicit deadline tasks. However, a task with
1375  * constrained deadline (deadline < period) might be awakened after the
1376  * deadline, but before the next period. In this case, replenishing the
1377  * task would allow it to run for runtime / deadline. As in this case
1378  * deadline < period, CBS enables a task to run for more than the
1379  * runtime / period. In a very loaded system, this can cause a domino
1380  * effect, making other tasks miss their deadlines.
1381  *
1382  * To avoid this problem, in the activation of a constrained deadline
1383  * task after the deadline but before the next period, throttle the
1384  * task and set the replenishing timer to the begin of the next period,
1385  * unless it is boosted.
1386  */
1387 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1388 {
1389 	struct rq *rq = rq_of_dl_se(dl_se);
1390 
1391 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1392 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1393 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1394 			return;
1395 		dl_se->dl_throttled = 1;
1396 		if (dl_se->runtime > 0)
1397 			dl_se->runtime = 0;
1398 	}
1399 }
1400 
1401 static
1402 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1403 {
1404 	return (dl_se->runtime <= 0);
1405 }
1406 
1407 /*
1408  * This function implements the GRUB accounting rule. According to the
1409  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1410  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1411  * where u is the utilization of the task, Umax is the maximum reclaimable
1412  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1413  * as the difference between the "total runqueue utilization" and the
1414  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1415  * reclaimable utilization.
1416  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1417  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1418  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1419  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1420  * Since delta is a 64 bit variable, to have an overflow its value should be
1421  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1422  * not an issue here.
1423  */
1424 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1425 {
1426 	u64 u_act;
1427 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1428 
1429 	/*
1430 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1431 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1432 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1433 	 * negative leading to wrong results.
1434 	 */
1435 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1436 		u_act = dl_se->dl_bw;
1437 	else
1438 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1439 
1440 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1441 	return (delta * u_act) >> BW_SHIFT;
1442 }
1443 
1444 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1445 {
1446 	s64 scaled_delta_exec;
1447 
1448 	/*
1449 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1450 	 * spare reclaimed bandwidth is used to clock down frequency.
1451 	 *
1452 	 * For the others, we still need to scale reservation parameters
1453 	 * according to current frequency and CPU maximum capacity.
1454 	 */
1455 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1456 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1457 	} else {
1458 		int cpu = cpu_of(rq);
1459 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1460 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1461 
1462 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1463 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1464 	}
1465 
1466 	return scaled_delta_exec;
1467 }
1468 
1469 static inline void
1470 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1471 			int flags);
1472 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1473 {
1474 	s64 scaled_delta_exec;
1475 
1476 	if (unlikely(delta_exec <= 0)) {
1477 		if (unlikely(dl_se->dl_yielded))
1478 			goto throttle;
1479 		return;
1480 	}
1481 
1482 	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1483 		return;
1484 
1485 	if (dl_entity_is_special(dl_se))
1486 		return;
1487 
1488 	scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1489 
1490 	dl_se->runtime -= scaled_delta_exec;
1491 
1492 	/*
1493 	 * The fair server can consume its runtime while throttled (not queued/
1494 	 * running as regular CFS).
1495 	 *
1496 	 * If the server consumes its entire runtime in this state. The server
1497 	 * is not required for the current period. Thus, reset the server by
1498 	 * starting a new period, pushing the activation.
1499 	 */
1500 	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1501 		/*
1502 		 * If the server was previously activated - the starving condition
1503 		 * took place, it this point it went away because the fair scheduler
1504 		 * was able to get runtime in background. So return to the initial
1505 		 * state.
1506 		 */
1507 		dl_se->dl_defer_running = 0;
1508 
1509 		hrtimer_try_to_cancel(&dl_se->dl_timer);
1510 
1511 		replenish_dl_new_period(dl_se, dl_se->rq);
1512 
1513 		/*
1514 		 * Not being able to start the timer seems problematic. If it could not
1515 		 * be started for whatever reason, we need to "unthrottle" the DL server
1516 		 * and queue right away. Otherwise nothing might queue it. That's similar
1517 		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1518 		 */
1519 		WARN_ON_ONCE(!start_dl_timer(dl_se));
1520 
1521 		return;
1522 	}
1523 
1524 throttle:
1525 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1526 		dl_se->dl_throttled = 1;
1527 
1528 		/* If requested, inform the user about runtime overruns. */
1529 		if (dl_runtime_exceeded(dl_se) &&
1530 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1531 			dl_se->dl_overrun = 1;
1532 
1533 		dequeue_dl_entity(dl_se, 0);
1534 		if (!dl_server(dl_se)) {
1535 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1536 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1537 		}
1538 
1539 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1540 			if (dl_server(dl_se))
1541 				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1542 			else
1543 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1544 		}
1545 
1546 		if (!is_leftmost(dl_se, &rq->dl))
1547 			resched_curr(rq);
1548 	}
1549 
1550 	/*
1551 	 * The fair server (sole dl_server) does not account for real-time
1552 	 * workload because it is running fair work.
1553 	 */
1554 	if (dl_se == &rq->fair_server)
1555 		return;
1556 
1557 #ifdef CONFIG_RT_GROUP_SCHED
1558 	/*
1559 	 * Because -- for now -- we share the rt bandwidth, we need to
1560 	 * account our runtime there too, otherwise actual rt tasks
1561 	 * would be able to exceed the shared quota.
1562 	 *
1563 	 * Account to the root rt group for now.
1564 	 *
1565 	 * The solution we're working towards is having the RT groups scheduled
1566 	 * using deadline servers -- however there's a few nasties to figure
1567 	 * out before that can happen.
1568 	 */
1569 	if (rt_bandwidth_enabled()) {
1570 		struct rt_rq *rt_rq = &rq->rt;
1571 
1572 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1573 		/*
1574 		 * We'll let actual RT tasks worry about the overflow here, we
1575 		 * have our own CBS to keep us inline; only account when RT
1576 		 * bandwidth is relevant.
1577 		 */
1578 		if (sched_rt_bandwidth_account(rt_rq))
1579 			rt_rq->rt_time += delta_exec;
1580 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1581 	}
1582 #endif
1583 }
1584 
1585 /*
1586  * In the non-defer mode, the idle time is not accounted, as the
1587  * server provides a guarantee.
1588  *
1589  * If the dl_server is in defer mode, the idle time is also considered
1590  * as time available for the fair server, avoiding a penalty for the
1591  * rt scheduler that did not consumed that time.
1592  */
1593 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1594 {
1595 	s64 delta_exec, scaled_delta_exec;
1596 
1597 	if (!rq->fair_server.dl_defer)
1598 		return;
1599 
1600 	/* no need to discount more */
1601 	if (rq->fair_server.runtime < 0)
1602 		return;
1603 
1604 	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1605 	if (delta_exec < 0)
1606 		return;
1607 
1608 	scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
1609 
1610 	rq->fair_server.runtime -= scaled_delta_exec;
1611 
1612 	if (rq->fair_server.runtime < 0) {
1613 		rq->fair_server.dl_defer_running = 0;
1614 		rq->fair_server.runtime = 0;
1615 	}
1616 
1617 	p->se.exec_start = rq_clock_task(rq);
1618 }
1619 
1620 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1621 {
1622 	/* 0 runtime = fair server disabled */
1623 	if (dl_se->dl_runtime)
1624 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1625 }
1626 
1627 void dl_server_start(struct sched_dl_entity *dl_se)
1628 {
1629 	struct rq *rq = dl_se->rq;
1630 
1631 	/*
1632 	 * XXX: the apply do not work fine at the init phase for the
1633 	 * fair server because things are not yet set. We need to improve
1634 	 * this before getting generic.
1635 	 */
1636 	if (!dl_server(dl_se)) {
1637 		u64 runtime =  50 * NSEC_PER_MSEC;
1638 		u64 period = 1000 * NSEC_PER_MSEC;
1639 
1640 		dl_server_apply_params(dl_se, runtime, period, 1);
1641 
1642 		dl_se->dl_server = 1;
1643 		dl_se->dl_defer = 1;
1644 		setup_new_dl_entity(dl_se);
1645 	}
1646 
1647 	if (!dl_se->dl_runtime)
1648 		return;
1649 
1650 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1651 	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1652 		resched_curr(dl_se->rq);
1653 }
1654 
1655 void dl_server_stop(struct sched_dl_entity *dl_se)
1656 {
1657 	if (!dl_se->dl_runtime)
1658 		return;
1659 
1660 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1661 	hrtimer_try_to_cancel(&dl_se->dl_timer);
1662 	dl_se->dl_defer_armed = 0;
1663 	dl_se->dl_throttled = 0;
1664 }
1665 
1666 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1667 		    dl_server_has_tasks_f has_tasks,
1668 		    dl_server_pick_f pick_task)
1669 {
1670 	dl_se->rq = rq;
1671 	dl_se->server_has_tasks = has_tasks;
1672 	dl_se->server_pick_task = pick_task;
1673 }
1674 
1675 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1676 {
1677 	u64 new_bw = dl_se->dl_bw;
1678 	int cpu = cpu_of(rq);
1679 	struct dl_bw *dl_b;
1680 
1681 	dl_b = dl_bw_of(cpu_of(rq));
1682 	guard(raw_spinlock)(&dl_b->lock);
1683 
1684 	if (!dl_bw_cpus(cpu))
1685 		return;
1686 
1687 	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1688 }
1689 
1690 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1691 {
1692 	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1693 	u64 new_bw = to_ratio(period, runtime);
1694 	struct rq *rq = dl_se->rq;
1695 	int cpu = cpu_of(rq);
1696 	struct dl_bw *dl_b;
1697 	unsigned long cap;
1698 	int retval = 0;
1699 	int cpus;
1700 
1701 	dl_b = dl_bw_of(cpu);
1702 	guard(raw_spinlock)(&dl_b->lock);
1703 
1704 	cpus = dl_bw_cpus(cpu);
1705 	cap = dl_bw_capacity(cpu);
1706 
1707 	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1708 		return -EBUSY;
1709 
1710 	if (init) {
1711 		__add_rq_bw(new_bw, &rq->dl);
1712 		__dl_add(dl_b, new_bw, cpus);
1713 	} else {
1714 		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1715 		__dl_add(dl_b, new_bw, cpus);
1716 
1717 		dl_rq_change_utilization(rq, dl_se, new_bw);
1718 	}
1719 
1720 	dl_se->dl_runtime = runtime;
1721 	dl_se->dl_deadline = period;
1722 	dl_se->dl_period = period;
1723 
1724 	dl_se->runtime = 0;
1725 	dl_se->deadline = 0;
1726 
1727 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1728 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1729 
1730 	return retval;
1731 }
1732 
1733 /*
1734  * Update the current task's runtime statistics (provided it is still
1735  * a -deadline task and has not been removed from the dl_rq).
1736  */
1737 static void update_curr_dl(struct rq *rq)
1738 {
1739 	struct task_struct *curr = rq->curr;
1740 	struct sched_dl_entity *dl_se = &curr->dl;
1741 	s64 delta_exec;
1742 
1743 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1744 		return;
1745 
1746 	/*
1747 	 * Consumed budget is computed considering the time as
1748 	 * observed by schedulable tasks (excluding time spent
1749 	 * in hardirq context, etc.). Deadlines are instead
1750 	 * computed using hard walltime. This seems to be the more
1751 	 * natural solution, but the full ramifications of this
1752 	 * approach need further study.
1753 	 */
1754 	delta_exec = update_curr_common(rq);
1755 	update_curr_dl_se(rq, dl_se, delta_exec);
1756 }
1757 
1758 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1759 {
1760 	struct sched_dl_entity *dl_se = container_of(timer,
1761 						     struct sched_dl_entity,
1762 						     inactive_timer);
1763 	struct task_struct *p = NULL;
1764 	struct rq_flags rf;
1765 	struct rq *rq;
1766 
1767 	if (!dl_server(dl_se)) {
1768 		p = dl_task_of(dl_se);
1769 		rq = task_rq_lock(p, &rf);
1770 	} else {
1771 		rq = dl_se->rq;
1772 		rq_lock(rq, &rf);
1773 	}
1774 
1775 	sched_clock_tick();
1776 	update_rq_clock(rq);
1777 
1778 	if (dl_server(dl_se))
1779 		goto no_task;
1780 
1781 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1782 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1783 
1784 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1785 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1786 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1787 			dl_se->dl_non_contending = 0;
1788 		}
1789 
1790 		raw_spin_lock(&dl_b->lock);
1791 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1792 		raw_spin_unlock(&dl_b->lock);
1793 		__dl_clear_params(dl_se);
1794 
1795 		goto unlock;
1796 	}
1797 
1798 no_task:
1799 	if (dl_se->dl_non_contending == 0)
1800 		goto unlock;
1801 
1802 	sub_running_bw(dl_se, &rq->dl);
1803 	dl_se->dl_non_contending = 0;
1804 unlock:
1805 
1806 	if (!dl_server(dl_se)) {
1807 		task_rq_unlock(rq, p, &rf);
1808 		put_task_struct(p);
1809 	} else {
1810 		rq_unlock(rq, &rf);
1811 	}
1812 
1813 	return HRTIMER_NORESTART;
1814 }
1815 
1816 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1817 {
1818 	struct hrtimer *timer = &dl_se->inactive_timer;
1819 
1820 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1821 	timer->function = inactive_task_timer;
1822 }
1823 
1824 #define __node_2_dle(node) \
1825 	rb_entry((node), struct sched_dl_entity, rb_node)
1826 
1827 #ifdef CONFIG_SMP
1828 
1829 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1830 {
1831 	struct rq *rq = rq_of_dl_rq(dl_rq);
1832 
1833 	if (dl_rq->earliest_dl.curr == 0 ||
1834 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1835 		if (dl_rq->earliest_dl.curr == 0)
1836 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1837 		dl_rq->earliest_dl.curr = deadline;
1838 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1839 	}
1840 }
1841 
1842 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1843 {
1844 	struct rq *rq = rq_of_dl_rq(dl_rq);
1845 
1846 	/*
1847 	 * Since we may have removed our earliest (and/or next earliest)
1848 	 * task we must recompute them.
1849 	 */
1850 	if (!dl_rq->dl_nr_running) {
1851 		dl_rq->earliest_dl.curr = 0;
1852 		dl_rq->earliest_dl.next = 0;
1853 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1854 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1855 	} else {
1856 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1857 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1858 
1859 		dl_rq->earliest_dl.curr = entry->deadline;
1860 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1861 	}
1862 }
1863 
1864 #else
1865 
1866 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1867 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1868 
1869 #endif /* CONFIG_SMP */
1870 
1871 static inline
1872 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1873 {
1874 	u64 deadline = dl_se->deadline;
1875 
1876 	dl_rq->dl_nr_running++;
1877 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1878 
1879 	inc_dl_deadline(dl_rq, deadline);
1880 }
1881 
1882 static inline
1883 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1884 {
1885 	WARN_ON(!dl_rq->dl_nr_running);
1886 	dl_rq->dl_nr_running--;
1887 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1888 
1889 	dec_dl_deadline(dl_rq, dl_se->deadline);
1890 }
1891 
1892 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1893 {
1894 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1895 }
1896 
1897 static __always_inline struct sched_statistics *
1898 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1899 {
1900 	if (!schedstat_enabled())
1901 		return NULL;
1902 
1903 	if (dl_server(dl_se))
1904 		return NULL;
1905 
1906 	return &dl_task_of(dl_se)->stats;
1907 }
1908 
1909 static inline void
1910 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1911 {
1912 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1913 	if (stats)
1914 		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1915 }
1916 
1917 static inline void
1918 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1919 {
1920 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1921 	if (stats)
1922 		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1923 }
1924 
1925 static inline void
1926 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1927 {
1928 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1929 	if (stats)
1930 		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1931 }
1932 
1933 static inline void
1934 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1935 			int flags)
1936 {
1937 	if (!schedstat_enabled())
1938 		return;
1939 
1940 	if (flags & ENQUEUE_WAKEUP)
1941 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1942 }
1943 
1944 static inline void
1945 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1946 			int flags)
1947 {
1948 	struct task_struct *p = dl_task_of(dl_se);
1949 
1950 	if (!schedstat_enabled())
1951 		return;
1952 
1953 	if ((flags & DEQUEUE_SLEEP)) {
1954 		unsigned int state;
1955 
1956 		state = READ_ONCE(p->__state);
1957 		if (state & TASK_INTERRUPTIBLE)
1958 			__schedstat_set(p->stats.sleep_start,
1959 					rq_clock(rq_of_dl_rq(dl_rq)));
1960 
1961 		if (state & TASK_UNINTERRUPTIBLE)
1962 			__schedstat_set(p->stats.block_start,
1963 					rq_clock(rq_of_dl_rq(dl_rq)));
1964 	}
1965 }
1966 
1967 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1968 {
1969 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1970 
1971 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1972 
1973 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1974 
1975 	inc_dl_tasks(dl_se, dl_rq);
1976 }
1977 
1978 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1979 {
1980 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1981 
1982 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1983 		return;
1984 
1985 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1986 
1987 	RB_CLEAR_NODE(&dl_se->rb_node);
1988 
1989 	dec_dl_tasks(dl_se, dl_rq);
1990 }
1991 
1992 static void
1993 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1994 {
1995 	WARN_ON_ONCE(on_dl_rq(dl_se));
1996 
1997 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1998 
1999 	/*
2000 	 * Check if a constrained deadline task was activated
2001 	 * after the deadline but before the next period.
2002 	 * If that is the case, the task will be throttled and
2003 	 * the replenishment timer will be set to the next period.
2004 	 */
2005 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2006 		dl_check_constrained_dl(dl_se);
2007 
2008 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2009 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2010 
2011 		add_rq_bw(dl_se, dl_rq);
2012 		add_running_bw(dl_se, dl_rq);
2013 	}
2014 
2015 	/*
2016 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2017 	 * its budget it needs a replenishment and, since it now is on
2018 	 * its rq, the bandwidth timer callback (which clearly has not
2019 	 * run yet) will take care of this.
2020 	 * However, the active utilization does not depend on the fact
2021 	 * that the task is on the runqueue or not (but depends on the
2022 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
2023 	 * In other words, even if a task is throttled its utilization must
2024 	 * be counted in the active utilization; hence, we need to call
2025 	 * add_running_bw().
2026 	 */
2027 	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2028 		if (flags & ENQUEUE_WAKEUP)
2029 			task_contending(dl_se, flags);
2030 
2031 		return;
2032 	}
2033 
2034 	/*
2035 	 * If this is a wakeup or a new instance, the scheduling
2036 	 * parameters of the task might need updating. Otherwise,
2037 	 * we want a replenishment of its runtime.
2038 	 */
2039 	if (flags & ENQUEUE_WAKEUP) {
2040 		task_contending(dl_se, flags);
2041 		update_dl_entity(dl_se);
2042 	} else if (flags & ENQUEUE_REPLENISH) {
2043 		replenish_dl_entity(dl_se);
2044 	} else if ((flags & ENQUEUE_RESTORE) &&
2045 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2046 		setup_new_dl_entity(dl_se);
2047 	}
2048 
2049 	/*
2050 	 * If the reservation is still throttled, e.g., it got replenished but is a
2051 	 * deferred task and still got to wait, don't enqueue.
2052 	 */
2053 	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2054 		return;
2055 
2056 	/*
2057 	 * We're about to enqueue, make sure we're not ->dl_throttled!
2058 	 * In case the timer was not started, say because the defer time
2059 	 * has passed, mark as not throttled and mark unarmed.
2060 	 * Also cancel earlier timers, since letting those run is pointless.
2061 	 */
2062 	if (dl_se->dl_throttled) {
2063 		hrtimer_try_to_cancel(&dl_se->dl_timer);
2064 		dl_se->dl_defer_armed = 0;
2065 		dl_se->dl_throttled = 0;
2066 	}
2067 
2068 	__enqueue_dl_entity(dl_se);
2069 }
2070 
2071 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2072 {
2073 	__dequeue_dl_entity(dl_se);
2074 
2075 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2076 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2077 
2078 		sub_running_bw(dl_se, dl_rq);
2079 		sub_rq_bw(dl_se, dl_rq);
2080 	}
2081 
2082 	/*
2083 	 * This check allows to start the inactive timer (or to immediately
2084 	 * decrease the active utilization, if needed) in two cases:
2085 	 * when the task blocks and when it is terminating
2086 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2087 	 * way, because from GRUB's point of view the same thing is happening
2088 	 * (the task moves from "active contending" to "active non contending"
2089 	 * or "inactive")
2090 	 */
2091 	if (flags & DEQUEUE_SLEEP)
2092 		task_non_contending(dl_se);
2093 }
2094 
2095 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2096 {
2097 	if (is_dl_boosted(&p->dl)) {
2098 		/*
2099 		 * Because of delays in the detection of the overrun of a
2100 		 * thread's runtime, it might be the case that a thread
2101 		 * goes to sleep in a rt mutex with negative runtime. As
2102 		 * a consequence, the thread will be throttled.
2103 		 *
2104 		 * While waiting for the mutex, this thread can also be
2105 		 * boosted via PI, resulting in a thread that is throttled
2106 		 * and boosted at the same time.
2107 		 *
2108 		 * In this case, the boost overrides the throttle.
2109 		 */
2110 		if (p->dl.dl_throttled) {
2111 			/*
2112 			 * The replenish timer needs to be canceled. No
2113 			 * problem if it fires concurrently: boosted threads
2114 			 * are ignored in dl_task_timer().
2115 			 *
2116 			 * If the timer callback was running (hrtimer_try_to_cancel == -1),
2117 			 * it will eventually call put_task_struct().
2118 			 */
2119 			if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
2120 			    !dl_server(&p->dl))
2121 				put_task_struct(p);
2122 			p->dl.dl_throttled = 0;
2123 		}
2124 	} else if (!dl_prio(p->normal_prio)) {
2125 		/*
2126 		 * Special case in which we have a !SCHED_DEADLINE task that is going
2127 		 * to be deboosted, but exceeds its runtime while doing so. No point in
2128 		 * replenishing it, as it's going to return back to its original
2129 		 * scheduling class after this. If it has been throttled, we need to
2130 		 * clear the flag, otherwise the task may wake up as throttled after
2131 		 * being boosted again with no means to replenish the runtime and clear
2132 		 * the throttle.
2133 		 */
2134 		p->dl.dl_throttled = 0;
2135 		if (!(flags & ENQUEUE_REPLENISH))
2136 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2137 					     task_pid_nr(p));
2138 
2139 		return;
2140 	}
2141 
2142 	check_schedstat_required();
2143 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2144 
2145 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2146 		flags |= ENQUEUE_MIGRATING;
2147 
2148 	enqueue_dl_entity(&p->dl, flags);
2149 
2150 	if (dl_server(&p->dl))
2151 		return;
2152 
2153 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2154 		enqueue_pushable_dl_task(rq, p);
2155 }
2156 
2157 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2158 {
2159 	update_curr_dl(rq);
2160 
2161 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2162 		flags |= DEQUEUE_MIGRATING;
2163 
2164 	dequeue_dl_entity(&p->dl, flags);
2165 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2166 		dequeue_pushable_dl_task(rq, p);
2167 
2168 	return true;
2169 }
2170 
2171 /*
2172  * Yield task semantic for -deadline tasks is:
2173  *
2174  *   get off from the CPU until our next instance, with
2175  *   a new runtime. This is of little use now, since we
2176  *   don't have a bandwidth reclaiming mechanism. Anyway,
2177  *   bandwidth reclaiming is planned for the future, and
2178  *   yield_task_dl will indicate that some spare budget
2179  *   is available for other task instances to use it.
2180  */
2181 static void yield_task_dl(struct rq *rq)
2182 {
2183 	/*
2184 	 * We make the task go to sleep until its current deadline by
2185 	 * forcing its runtime to zero. This way, update_curr_dl() stops
2186 	 * it and the bandwidth timer will wake it up and will give it
2187 	 * new scheduling parameters (thanks to dl_yielded=1).
2188 	 */
2189 	rq->curr->dl.dl_yielded = 1;
2190 
2191 	update_rq_clock(rq);
2192 	update_curr_dl(rq);
2193 	/*
2194 	 * Tell update_rq_clock() that we've just updated,
2195 	 * so we don't do microscopic update in schedule()
2196 	 * and double the fastpath cost.
2197 	 */
2198 	rq_clock_skip_update(rq);
2199 }
2200 
2201 #ifdef CONFIG_SMP
2202 
2203 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2204 						 struct rq *rq)
2205 {
2206 	return (!rq->dl.dl_nr_running ||
2207 		dl_time_before(p->dl.deadline,
2208 			       rq->dl.earliest_dl.curr));
2209 }
2210 
2211 static int find_later_rq(struct task_struct *task);
2212 
2213 static int
2214 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2215 {
2216 	struct task_struct *curr;
2217 	bool select_rq;
2218 	struct rq *rq;
2219 
2220 	if (!(flags & WF_TTWU))
2221 		goto out;
2222 
2223 	rq = cpu_rq(cpu);
2224 
2225 	rcu_read_lock();
2226 	curr = READ_ONCE(rq->curr); /* unlocked access */
2227 
2228 	/*
2229 	 * If we are dealing with a -deadline task, we must
2230 	 * decide where to wake it up.
2231 	 * If it has a later deadline and the current task
2232 	 * on this rq can't move (provided the waking task
2233 	 * can!) we prefer to send it somewhere else. On the
2234 	 * other hand, if it has a shorter deadline, we
2235 	 * try to make it stay here, it might be important.
2236 	 */
2237 	select_rq = unlikely(dl_task(curr)) &&
2238 		    (curr->nr_cpus_allowed < 2 ||
2239 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
2240 		    p->nr_cpus_allowed > 1;
2241 
2242 	/*
2243 	 * Take the capacity of the CPU into account to
2244 	 * ensure it fits the requirement of the task.
2245 	 */
2246 	if (sched_asym_cpucap_active())
2247 		select_rq |= !dl_task_fits_capacity(p, cpu);
2248 
2249 	if (select_rq) {
2250 		int target = find_later_rq(p);
2251 
2252 		if (target != -1 &&
2253 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
2254 			cpu = target;
2255 	}
2256 	rcu_read_unlock();
2257 
2258 out:
2259 	return cpu;
2260 }
2261 
2262 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2263 {
2264 	struct rq_flags rf;
2265 	struct rq *rq;
2266 
2267 	if (READ_ONCE(p->__state) != TASK_WAKING)
2268 		return;
2269 
2270 	rq = task_rq(p);
2271 	/*
2272 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2273 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2274 	 * rq->lock is not... So, lock it
2275 	 */
2276 	rq_lock(rq, &rf);
2277 	if (p->dl.dl_non_contending) {
2278 		update_rq_clock(rq);
2279 		sub_running_bw(&p->dl, &rq->dl);
2280 		p->dl.dl_non_contending = 0;
2281 		/*
2282 		 * If the timer handler is currently running and the
2283 		 * timer cannot be canceled, inactive_task_timer()
2284 		 * will see that dl_not_contending is not set, and
2285 		 * will not touch the rq's active utilization,
2286 		 * so we are still safe.
2287 		 */
2288 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2289 			put_task_struct(p);
2290 	}
2291 	sub_rq_bw(&p->dl, &rq->dl);
2292 	rq_unlock(rq, &rf);
2293 }
2294 
2295 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2296 {
2297 	/*
2298 	 * Current can't be migrated, useless to reschedule,
2299 	 * let's hope p can move out.
2300 	 */
2301 	if (rq->curr->nr_cpus_allowed == 1 ||
2302 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
2303 		return;
2304 
2305 	/*
2306 	 * p is migratable, so let's not schedule it and
2307 	 * see if it is pushed or pulled somewhere else.
2308 	 */
2309 	if (p->nr_cpus_allowed != 1 &&
2310 	    cpudl_find(&rq->rd->cpudl, p, NULL))
2311 		return;
2312 
2313 	resched_curr(rq);
2314 }
2315 
2316 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2317 {
2318 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2319 		/*
2320 		 * This is OK, because current is on_cpu, which avoids it being
2321 		 * picked for load-balance and preemption/IRQs are still
2322 		 * disabled avoiding further scheduler activity on it and we've
2323 		 * not yet started the picking loop.
2324 		 */
2325 		rq_unpin_lock(rq, rf);
2326 		pull_dl_task(rq);
2327 		rq_repin_lock(rq, rf);
2328 	}
2329 
2330 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2331 }
2332 #endif /* CONFIG_SMP */
2333 
2334 /*
2335  * Only called when both the current and waking task are -deadline
2336  * tasks.
2337  */
2338 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2339 				  int flags)
2340 {
2341 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
2342 		resched_curr(rq);
2343 		return;
2344 	}
2345 
2346 #ifdef CONFIG_SMP
2347 	/*
2348 	 * In the unlikely case current and p have the same deadline
2349 	 * let us try to decide what's the best thing to do...
2350 	 */
2351 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
2352 	    !test_tsk_need_resched(rq->curr))
2353 		check_preempt_equal_dl(rq, p);
2354 #endif /* CONFIG_SMP */
2355 }
2356 
2357 #ifdef CONFIG_SCHED_HRTICK
2358 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2359 {
2360 	hrtick_start(rq, dl_se->runtime);
2361 }
2362 #else /* !CONFIG_SCHED_HRTICK */
2363 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2364 {
2365 }
2366 #endif
2367 
2368 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2369 {
2370 	struct sched_dl_entity *dl_se = &p->dl;
2371 	struct dl_rq *dl_rq = &rq->dl;
2372 
2373 	p->se.exec_start = rq_clock_task(rq);
2374 	if (on_dl_rq(&p->dl))
2375 		update_stats_wait_end_dl(dl_rq, dl_se);
2376 
2377 	/* You can't push away the running task */
2378 	dequeue_pushable_dl_task(rq, p);
2379 
2380 	if (!first)
2381 		return;
2382 
2383 	if (rq->curr->sched_class != &dl_sched_class)
2384 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2385 
2386 	deadline_queue_push_tasks(rq);
2387 
2388 	if (hrtick_enabled(rq))
2389 		start_hrtick_dl(rq, &p->dl);
2390 }
2391 
2392 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2393 {
2394 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2395 
2396 	if (!left)
2397 		return NULL;
2398 
2399 	return __node_2_dle(left);
2400 }
2401 
2402 /*
2403  * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2404  * @rq: The runqueue to pick the next task from.
2405  */
2406 static struct task_struct *__pick_task_dl(struct rq *rq)
2407 {
2408 	struct sched_dl_entity *dl_se;
2409 	struct dl_rq *dl_rq = &rq->dl;
2410 	struct task_struct *p;
2411 
2412 again:
2413 	if (!sched_dl_runnable(rq))
2414 		return NULL;
2415 
2416 	dl_se = pick_next_dl_entity(dl_rq);
2417 	WARN_ON_ONCE(!dl_se);
2418 
2419 	if (dl_server(dl_se)) {
2420 		p = dl_se->server_pick_task(dl_se);
2421 		if (!p) {
2422 			dl_se->dl_yielded = 1;
2423 			update_curr_dl_se(rq, dl_se, 0);
2424 			goto again;
2425 		}
2426 		rq->dl_server = dl_se;
2427 	} else {
2428 		p = dl_task_of(dl_se);
2429 	}
2430 
2431 	return p;
2432 }
2433 
2434 static struct task_struct *pick_task_dl(struct rq *rq)
2435 {
2436 	return __pick_task_dl(rq);
2437 }
2438 
2439 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2440 {
2441 	struct sched_dl_entity *dl_se = &p->dl;
2442 	struct dl_rq *dl_rq = &rq->dl;
2443 
2444 	if (on_dl_rq(&p->dl))
2445 		update_stats_wait_start_dl(dl_rq, dl_se);
2446 
2447 	update_curr_dl(rq);
2448 
2449 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2450 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2451 		enqueue_pushable_dl_task(rq, p);
2452 }
2453 
2454 /*
2455  * scheduler tick hitting a task of our scheduling class.
2456  *
2457  * NOTE: This function can be called remotely by the tick offload that
2458  * goes along full dynticks. Therefore no local assumption can be made
2459  * and everything must be accessed through the @rq and @curr passed in
2460  * parameters.
2461  */
2462 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2463 {
2464 	update_curr_dl(rq);
2465 
2466 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2467 	/*
2468 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2469 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2470 	 * be set and schedule() will start a new hrtick for the next task.
2471 	 */
2472 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2473 	    is_leftmost(&p->dl, &rq->dl))
2474 		start_hrtick_dl(rq, &p->dl);
2475 }
2476 
2477 static void task_fork_dl(struct task_struct *p)
2478 {
2479 	/*
2480 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2481 	 * sched_fork()
2482 	 */
2483 }
2484 
2485 #ifdef CONFIG_SMP
2486 
2487 /* Only try algorithms three times */
2488 #define DL_MAX_TRIES 3
2489 
2490 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2491 {
2492 	if (!task_on_cpu(rq, p) &&
2493 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2494 		return 1;
2495 	return 0;
2496 }
2497 
2498 /*
2499  * Return the earliest pushable rq's task, which is suitable to be executed
2500  * on the CPU, NULL otherwise:
2501  */
2502 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2503 {
2504 	struct task_struct *p = NULL;
2505 	struct rb_node *next_node;
2506 
2507 	if (!has_pushable_dl_tasks(rq))
2508 		return NULL;
2509 
2510 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2511 
2512 next_node:
2513 	if (next_node) {
2514 		p = __node_2_pdl(next_node);
2515 
2516 		if (pick_dl_task(rq, p, cpu))
2517 			return p;
2518 
2519 		next_node = rb_next(next_node);
2520 		goto next_node;
2521 	}
2522 
2523 	return NULL;
2524 }
2525 
2526 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2527 
2528 static int find_later_rq(struct task_struct *task)
2529 {
2530 	struct sched_domain *sd;
2531 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2532 	int this_cpu = smp_processor_id();
2533 	int cpu = task_cpu(task);
2534 
2535 	/* Make sure the mask is initialized first */
2536 	if (unlikely(!later_mask))
2537 		return -1;
2538 
2539 	if (task->nr_cpus_allowed == 1)
2540 		return -1;
2541 
2542 	/*
2543 	 * We have to consider system topology and task affinity
2544 	 * first, then we can look for a suitable CPU.
2545 	 */
2546 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2547 		return -1;
2548 
2549 	/*
2550 	 * If we are here, some targets have been found, including
2551 	 * the most suitable which is, among the runqueues where the
2552 	 * current tasks have later deadlines than the task's one, the
2553 	 * rq with the latest possible one.
2554 	 *
2555 	 * Now we check how well this matches with task's
2556 	 * affinity and system topology.
2557 	 *
2558 	 * The last CPU where the task run is our first
2559 	 * guess, since it is most likely cache-hot there.
2560 	 */
2561 	if (cpumask_test_cpu(cpu, later_mask))
2562 		return cpu;
2563 	/*
2564 	 * Check if this_cpu is to be skipped (i.e., it is
2565 	 * not in the mask) or not.
2566 	 */
2567 	if (!cpumask_test_cpu(this_cpu, later_mask))
2568 		this_cpu = -1;
2569 
2570 	rcu_read_lock();
2571 	for_each_domain(cpu, sd) {
2572 		if (sd->flags & SD_WAKE_AFFINE) {
2573 			int best_cpu;
2574 
2575 			/*
2576 			 * If possible, preempting this_cpu is
2577 			 * cheaper than migrating.
2578 			 */
2579 			if (this_cpu != -1 &&
2580 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2581 				rcu_read_unlock();
2582 				return this_cpu;
2583 			}
2584 
2585 			best_cpu = cpumask_any_and_distribute(later_mask,
2586 							      sched_domain_span(sd));
2587 			/*
2588 			 * Last chance: if a CPU being in both later_mask
2589 			 * and current sd span is valid, that becomes our
2590 			 * choice. Of course, the latest possible CPU is
2591 			 * already under consideration through later_mask.
2592 			 */
2593 			if (best_cpu < nr_cpu_ids) {
2594 				rcu_read_unlock();
2595 				return best_cpu;
2596 			}
2597 		}
2598 	}
2599 	rcu_read_unlock();
2600 
2601 	/*
2602 	 * At this point, all our guesses failed, we just return
2603 	 * 'something', and let the caller sort the things out.
2604 	 */
2605 	if (this_cpu != -1)
2606 		return this_cpu;
2607 
2608 	cpu = cpumask_any_distribute(later_mask);
2609 	if (cpu < nr_cpu_ids)
2610 		return cpu;
2611 
2612 	return -1;
2613 }
2614 
2615 /* Locks the rq it finds */
2616 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2617 {
2618 	struct rq *later_rq = NULL;
2619 	int tries;
2620 	int cpu;
2621 
2622 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2623 		cpu = find_later_rq(task);
2624 
2625 		if ((cpu == -1) || (cpu == rq->cpu))
2626 			break;
2627 
2628 		later_rq = cpu_rq(cpu);
2629 
2630 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2631 			/*
2632 			 * Target rq has tasks of equal or earlier deadline,
2633 			 * retrying does not release any lock and is unlikely
2634 			 * to yield a different result.
2635 			 */
2636 			later_rq = NULL;
2637 			break;
2638 		}
2639 
2640 		/* Retry if something changed. */
2641 		if (double_lock_balance(rq, later_rq)) {
2642 			if (unlikely(task_rq(task) != rq ||
2643 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2644 				     task_on_cpu(rq, task) ||
2645 				     !dl_task(task) ||
2646 				     is_migration_disabled(task) ||
2647 				     !task_on_rq_queued(task))) {
2648 				double_unlock_balance(rq, later_rq);
2649 				later_rq = NULL;
2650 				break;
2651 			}
2652 		}
2653 
2654 		/*
2655 		 * If the rq we found has no -deadline task, or
2656 		 * its earliest one has a later deadline than our
2657 		 * task, the rq is a good one.
2658 		 */
2659 		if (dl_task_is_earliest_deadline(task, later_rq))
2660 			break;
2661 
2662 		/* Otherwise we try again. */
2663 		double_unlock_balance(rq, later_rq);
2664 		later_rq = NULL;
2665 	}
2666 
2667 	return later_rq;
2668 }
2669 
2670 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2671 {
2672 	struct task_struct *p;
2673 
2674 	if (!has_pushable_dl_tasks(rq))
2675 		return NULL;
2676 
2677 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2678 
2679 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2680 	WARN_ON_ONCE(task_current(rq, p));
2681 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2682 
2683 	WARN_ON_ONCE(!task_on_rq_queued(p));
2684 	WARN_ON_ONCE(!dl_task(p));
2685 
2686 	return p;
2687 }
2688 
2689 /*
2690  * See if the non running -deadline tasks on this rq
2691  * can be sent to some other CPU where they can preempt
2692  * and start executing.
2693  */
2694 static int push_dl_task(struct rq *rq)
2695 {
2696 	struct task_struct *next_task;
2697 	struct rq *later_rq;
2698 	int ret = 0;
2699 
2700 	next_task = pick_next_pushable_dl_task(rq);
2701 	if (!next_task)
2702 		return 0;
2703 
2704 retry:
2705 	/*
2706 	 * If next_task preempts rq->curr, and rq->curr
2707 	 * can move away, it makes sense to just reschedule
2708 	 * without going further in pushing next_task.
2709 	 */
2710 	if (dl_task(rq->curr) &&
2711 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2712 	    rq->curr->nr_cpus_allowed > 1) {
2713 		resched_curr(rq);
2714 		return 0;
2715 	}
2716 
2717 	if (is_migration_disabled(next_task))
2718 		return 0;
2719 
2720 	if (WARN_ON(next_task == rq->curr))
2721 		return 0;
2722 
2723 	/* We might release rq lock */
2724 	get_task_struct(next_task);
2725 
2726 	/* Will lock the rq it'll find */
2727 	later_rq = find_lock_later_rq(next_task, rq);
2728 	if (!later_rq) {
2729 		struct task_struct *task;
2730 
2731 		/*
2732 		 * We must check all this again, since
2733 		 * find_lock_later_rq releases rq->lock and it is
2734 		 * then possible that next_task has migrated.
2735 		 */
2736 		task = pick_next_pushable_dl_task(rq);
2737 		if (task == next_task) {
2738 			/*
2739 			 * The task is still there. We don't try
2740 			 * again, some other CPU will pull it when ready.
2741 			 */
2742 			goto out;
2743 		}
2744 
2745 		if (!task)
2746 			/* No more tasks */
2747 			goto out;
2748 
2749 		put_task_struct(next_task);
2750 		next_task = task;
2751 		goto retry;
2752 	}
2753 
2754 	deactivate_task(rq, next_task, 0);
2755 	set_task_cpu(next_task, later_rq->cpu);
2756 	activate_task(later_rq, next_task, 0);
2757 	ret = 1;
2758 
2759 	resched_curr(later_rq);
2760 
2761 	double_unlock_balance(rq, later_rq);
2762 
2763 out:
2764 	put_task_struct(next_task);
2765 
2766 	return ret;
2767 }
2768 
2769 static void push_dl_tasks(struct rq *rq)
2770 {
2771 	/* push_dl_task() will return true if it moved a -deadline task */
2772 	while (push_dl_task(rq))
2773 		;
2774 }
2775 
2776 static void pull_dl_task(struct rq *this_rq)
2777 {
2778 	int this_cpu = this_rq->cpu, cpu;
2779 	struct task_struct *p, *push_task;
2780 	bool resched = false;
2781 	struct rq *src_rq;
2782 	u64 dmin = LONG_MAX;
2783 
2784 	if (likely(!dl_overloaded(this_rq)))
2785 		return;
2786 
2787 	/*
2788 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2789 	 * see overloaded we must also see the dlo_mask bit.
2790 	 */
2791 	smp_rmb();
2792 
2793 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2794 		if (this_cpu == cpu)
2795 			continue;
2796 
2797 		src_rq = cpu_rq(cpu);
2798 
2799 		/*
2800 		 * It looks racy, and it is! However, as in sched_rt.c,
2801 		 * we are fine with this.
2802 		 */
2803 		if (this_rq->dl.dl_nr_running &&
2804 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2805 				   src_rq->dl.earliest_dl.next))
2806 			continue;
2807 
2808 		/* Might drop this_rq->lock */
2809 		push_task = NULL;
2810 		double_lock_balance(this_rq, src_rq);
2811 
2812 		/*
2813 		 * If there are no more pullable tasks on the
2814 		 * rq, we're done with it.
2815 		 */
2816 		if (src_rq->dl.dl_nr_running <= 1)
2817 			goto skip;
2818 
2819 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2820 
2821 		/*
2822 		 * We found a task to be pulled if:
2823 		 *  - it preempts our current (if there's one),
2824 		 *  - it will preempt the last one we pulled (if any).
2825 		 */
2826 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2827 		    dl_task_is_earliest_deadline(p, this_rq)) {
2828 			WARN_ON(p == src_rq->curr);
2829 			WARN_ON(!task_on_rq_queued(p));
2830 
2831 			/*
2832 			 * Then we pull iff p has actually an earlier
2833 			 * deadline than the current task of its runqueue.
2834 			 */
2835 			if (dl_time_before(p->dl.deadline,
2836 					   src_rq->curr->dl.deadline))
2837 				goto skip;
2838 
2839 			if (is_migration_disabled(p)) {
2840 				push_task = get_push_task(src_rq);
2841 			} else {
2842 				deactivate_task(src_rq, p, 0);
2843 				set_task_cpu(p, this_cpu);
2844 				activate_task(this_rq, p, 0);
2845 				dmin = p->dl.deadline;
2846 				resched = true;
2847 			}
2848 
2849 			/* Is there any other task even earlier? */
2850 		}
2851 skip:
2852 		double_unlock_balance(this_rq, src_rq);
2853 
2854 		if (push_task) {
2855 			preempt_disable();
2856 			raw_spin_rq_unlock(this_rq);
2857 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2858 					    push_task, &src_rq->push_work);
2859 			preempt_enable();
2860 			raw_spin_rq_lock(this_rq);
2861 		}
2862 	}
2863 
2864 	if (resched)
2865 		resched_curr(this_rq);
2866 }
2867 
2868 /*
2869  * Since the task is not running and a reschedule is not going to happen
2870  * anytime soon on its runqueue, we try pushing it away now.
2871  */
2872 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2873 {
2874 	if (!task_on_cpu(rq, p) &&
2875 	    !test_tsk_need_resched(rq->curr) &&
2876 	    p->nr_cpus_allowed > 1 &&
2877 	    dl_task(rq->curr) &&
2878 	    (rq->curr->nr_cpus_allowed < 2 ||
2879 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2880 		push_dl_tasks(rq);
2881 	}
2882 }
2883 
2884 static void set_cpus_allowed_dl(struct task_struct *p,
2885 				struct affinity_context *ctx)
2886 {
2887 	struct root_domain *src_rd;
2888 	struct rq *rq;
2889 
2890 	WARN_ON_ONCE(!dl_task(p));
2891 
2892 	rq = task_rq(p);
2893 	src_rd = rq->rd;
2894 	/*
2895 	 * Migrating a SCHED_DEADLINE task between exclusive
2896 	 * cpusets (different root_domains) entails a bandwidth
2897 	 * update. We already made space for us in the destination
2898 	 * domain (see cpuset_can_attach()).
2899 	 */
2900 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2901 		struct dl_bw *src_dl_b;
2902 
2903 		src_dl_b = dl_bw_of(cpu_of(rq));
2904 		/*
2905 		 * We now free resources of the root_domain we are migrating
2906 		 * off. In the worst case, sched_setattr() may temporary fail
2907 		 * until we complete the update.
2908 		 */
2909 		raw_spin_lock(&src_dl_b->lock);
2910 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2911 		raw_spin_unlock(&src_dl_b->lock);
2912 	}
2913 
2914 	set_cpus_allowed_common(p, ctx);
2915 }
2916 
2917 /* Assumes rq->lock is held */
2918 static void rq_online_dl(struct rq *rq)
2919 {
2920 	if (rq->dl.overloaded)
2921 		dl_set_overload(rq);
2922 
2923 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2924 	if (rq->dl.dl_nr_running > 0)
2925 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2926 }
2927 
2928 /* Assumes rq->lock is held */
2929 static void rq_offline_dl(struct rq *rq)
2930 {
2931 	if (rq->dl.overloaded)
2932 		dl_clear_overload(rq);
2933 
2934 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2935 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2936 }
2937 
2938 void __init init_sched_dl_class(void)
2939 {
2940 	unsigned int i;
2941 
2942 	for_each_possible_cpu(i)
2943 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2944 					GFP_KERNEL, cpu_to_node(i));
2945 }
2946 
2947 void dl_add_task_root_domain(struct task_struct *p)
2948 {
2949 	struct rq_flags rf;
2950 	struct rq *rq;
2951 	struct dl_bw *dl_b;
2952 
2953 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2954 	if (!dl_task(p)) {
2955 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2956 		return;
2957 	}
2958 
2959 	rq = __task_rq_lock(p, &rf);
2960 
2961 	dl_b = &rq->rd->dl_bw;
2962 	raw_spin_lock(&dl_b->lock);
2963 
2964 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2965 
2966 	raw_spin_unlock(&dl_b->lock);
2967 
2968 	task_rq_unlock(rq, p, &rf);
2969 }
2970 
2971 void dl_clear_root_domain(struct root_domain *rd)
2972 {
2973 	unsigned long flags;
2974 
2975 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2976 	rd->dl_bw.total_bw = 0;
2977 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2978 }
2979 
2980 #endif /* CONFIG_SMP */
2981 
2982 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2983 {
2984 	/*
2985 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2986 	 * time is in the future). If the task switches back to dl before
2987 	 * the "inactive timer" fires, it can continue to consume its current
2988 	 * runtime using its current deadline. If it stays outside of
2989 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2990 	 * will reset the task parameters.
2991 	 */
2992 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2993 		task_non_contending(&p->dl);
2994 
2995 	/*
2996 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2997 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2998 	 */
2999 	dec_dl_tasks_cs(p);
3000 
3001 	if (!task_on_rq_queued(p)) {
3002 		/*
3003 		 * Inactive timer is armed. However, p is leaving DEADLINE and
3004 		 * might migrate away from this rq while continuing to run on
3005 		 * some other class. We need to remove its contribution from
3006 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
3007 		 */
3008 		if (p->dl.dl_non_contending)
3009 			sub_running_bw(&p->dl, &rq->dl);
3010 		sub_rq_bw(&p->dl, &rq->dl);
3011 	}
3012 
3013 	/*
3014 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3015 	 * at the 0-lag time, because the task could have been migrated
3016 	 * while SCHED_OTHER in the meanwhile.
3017 	 */
3018 	if (p->dl.dl_non_contending)
3019 		p->dl.dl_non_contending = 0;
3020 
3021 	/*
3022 	 * Since this might be the only -deadline task on the rq,
3023 	 * this is the right place to try to pull some other one
3024 	 * from an overloaded CPU, if any.
3025 	 */
3026 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3027 		return;
3028 
3029 	deadline_queue_pull_task(rq);
3030 }
3031 
3032 /*
3033  * When switching to -deadline, we may overload the rq, then
3034  * we try to push someone off, if possible.
3035  */
3036 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3037 {
3038 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
3039 		put_task_struct(p);
3040 
3041 	/*
3042 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3043 	 * track of that on its cpuset (for correct bandwidth tracking).
3044 	 */
3045 	inc_dl_tasks_cs(p);
3046 
3047 	/* If p is not queued we will update its parameters at next wakeup. */
3048 	if (!task_on_rq_queued(p)) {
3049 		add_rq_bw(&p->dl, &rq->dl);
3050 
3051 		return;
3052 	}
3053 
3054 	if (rq->curr != p) {
3055 #ifdef CONFIG_SMP
3056 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3057 			deadline_queue_push_tasks(rq);
3058 #endif
3059 		if (dl_task(rq->curr))
3060 			wakeup_preempt_dl(rq, p, 0);
3061 		else
3062 			resched_curr(rq);
3063 	} else {
3064 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3065 	}
3066 }
3067 
3068 /*
3069  * If the scheduling parameters of a -deadline task changed,
3070  * a push or pull operation might be needed.
3071  */
3072 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3073 			    int oldprio)
3074 {
3075 	if (!task_on_rq_queued(p))
3076 		return;
3077 
3078 #ifdef CONFIG_SMP
3079 	/*
3080 	 * This might be too much, but unfortunately
3081 	 * we don't have the old deadline value, and
3082 	 * we can't argue if the task is increasing
3083 	 * or lowering its prio, so...
3084 	 */
3085 	if (!rq->dl.overloaded)
3086 		deadline_queue_pull_task(rq);
3087 
3088 	if (task_current(rq, p)) {
3089 		/*
3090 		 * If we now have a earlier deadline task than p,
3091 		 * then reschedule, provided p is still on this
3092 		 * runqueue.
3093 		 */
3094 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3095 			resched_curr(rq);
3096 	} else {
3097 		/*
3098 		 * Current may not be deadline in case p was throttled but we
3099 		 * have just replenished it (e.g. rt_mutex_setprio()).
3100 		 *
3101 		 * Otherwise, if p was given an earlier deadline, reschedule.
3102 		 */
3103 		if (!dl_task(rq->curr) ||
3104 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3105 			resched_curr(rq);
3106 	}
3107 #else
3108 	/*
3109 	 * We don't know if p has a earlier or later deadline, so let's blindly
3110 	 * set a (maybe not needed) rescheduling point.
3111 	 */
3112 	resched_curr(rq);
3113 #endif
3114 }
3115 
3116 #ifdef CONFIG_SCHED_CORE
3117 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3118 {
3119 	return p->dl.dl_throttled;
3120 }
3121 #endif
3122 
3123 DEFINE_SCHED_CLASS(dl) = {
3124 
3125 	.enqueue_task		= enqueue_task_dl,
3126 	.dequeue_task		= dequeue_task_dl,
3127 	.yield_task		= yield_task_dl,
3128 
3129 	.wakeup_preempt		= wakeup_preempt_dl,
3130 
3131 	.pick_task		= pick_task_dl,
3132 	.put_prev_task		= put_prev_task_dl,
3133 	.set_next_task		= set_next_task_dl,
3134 
3135 #ifdef CONFIG_SMP
3136 	.balance		= balance_dl,
3137 	.select_task_rq		= select_task_rq_dl,
3138 	.migrate_task_rq	= migrate_task_rq_dl,
3139 	.set_cpus_allowed       = set_cpus_allowed_dl,
3140 	.rq_online              = rq_online_dl,
3141 	.rq_offline             = rq_offline_dl,
3142 	.task_woken		= task_woken_dl,
3143 	.find_lock_rq		= find_lock_later_rq,
3144 #endif
3145 
3146 	.task_tick		= task_tick_dl,
3147 	.task_fork              = task_fork_dl,
3148 
3149 	.prio_changed           = prio_changed_dl,
3150 	.switched_from		= switched_from_dl,
3151 	.switched_to		= switched_to_dl,
3152 
3153 	.update_curr		= update_curr_dl,
3154 #ifdef CONFIG_SCHED_CORE
3155 	.task_is_throttled	= task_is_throttled_dl,
3156 #endif
3157 };
3158 
3159 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
3160 static u64 dl_generation;
3161 
3162 int sched_dl_global_validate(void)
3163 {
3164 	u64 runtime = global_rt_runtime();
3165 	u64 period = global_rt_period();
3166 	u64 new_bw = to_ratio(period, runtime);
3167 	u64 gen = ++dl_generation;
3168 	struct dl_bw *dl_b;
3169 	int cpu, cpus, ret = 0;
3170 	unsigned long flags;
3171 
3172 	/*
3173 	 * Here we want to check the bandwidth not being set to some
3174 	 * value smaller than the currently allocated bandwidth in
3175 	 * any of the root_domains.
3176 	 */
3177 	for_each_possible_cpu(cpu) {
3178 		rcu_read_lock_sched();
3179 
3180 		if (dl_bw_visited(cpu, gen))
3181 			goto next;
3182 
3183 		dl_b = dl_bw_of(cpu);
3184 		cpus = dl_bw_cpus(cpu);
3185 
3186 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3187 		if (new_bw * cpus < dl_b->total_bw)
3188 			ret = -EBUSY;
3189 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3190 
3191 next:
3192 		rcu_read_unlock_sched();
3193 
3194 		if (ret)
3195 			break;
3196 	}
3197 
3198 	return ret;
3199 }
3200 
3201 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3202 {
3203 	if (global_rt_runtime() == RUNTIME_INF) {
3204 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3205 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3206 	} else {
3207 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3208 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3209 		dl_rq->max_bw = dl_rq->extra_bw =
3210 			to_ratio(global_rt_period(), global_rt_runtime());
3211 	}
3212 }
3213 
3214 void sched_dl_do_global(void)
3215 {
3216 	u64 new_bw = -1;
3217 	u64 gen = ++dl_generation;
3218 	struct dl_bw *dl_b;
3219 	int cpu;
3220 	unsigned long flags;
3221 
3222 	if (global_rt_runtime() != RUNTIME_INF)
3223 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3224 
3225 	for_each_possible_cpu(cpu) {
3226 		rcu_read_lock_sched();
3227 
3228 		if (dl_bw_visited(cpu, gen)) {
3229 			rcu_read_unlock_sched();
3230 			continue;
3231 		}
3232 
3233 		dl_b = dl_bw_of(cpu);
3234 
3235 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3236 		dl_b->bw = new_bw;
3237 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3238 
3239 		rcu_read_unlock_sched();
3240 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3241 	}
3242 }
3243 
3244 /*
3245  * We must be sure that accepting a new task (or allowing changing the
3246  * parameters of an existing one) is consistent with the bandwidth
3247  * constraints. If yes, this function also accordingly updates the currently
3248  * allocated bandwidth to reflect the new situation.
3249  *
3250  * This function is called while holding p's rq->lock.
3251  */
3252 int sched_dl_overflow(struct task_struct *p, int policy,
3253 		      const struct sched_attr *attr)
3254 {
3255 	u64 period = attr->sched_period ?: attr->sched_deadline;
3256 	u64 runtime = attr->sched_runtime;
3257 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3258 	int cpus, err = -1, cpu = task_cpu(p);
3259 	struct dl_bw *dl_b = dl_bw_of(cpu);
3260 	unsigned long cap;
3261 
3262 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3263 		return 0;
3264 
3265 	/* !deadline task may carry old deadline bandwidth */
3266 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3267 		return 0;
3268 
3269 	/*
3270 	 * Either if a task, enters, leave, or stays -deadline but changes
3271 	 * its parameters, we may need to update accordingly the total
3272 	 * allocated bandwidth of the container.
3273 	 */
3274 	raw_spin_lock(&dl_b->lock);
3275 	cpus = dl_bw_cpus(cpu);
3276 	cap = dl_bw_capacity(cpu);
3277 
3278 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3279 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3280 		if (hrtimer_active(&p->dl.inactive_timer))
3281 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3282 		__dl_add(dl_b, new_bw, cpus);
3283 		err = 0;
3284 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3285 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3286 		/*
3287 		 * XXX this is slightly incorrect: when the task
3288 		 * utilization decreases, we should delay the total
3289 		 * utilization change until the task's 0-lag point.
3290 		 * But this would require to set the task's "inactive
3291 		 * timer" when the task is not inactive.
3292 		 */
3293 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3294 		__dl_add(dl_b, new_bw, cpus);
3295 		dl_change_utilization(p, new_bw);
3296 		err = 0;
3297 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3298 		/*
3299 		 * Do not decrease the total deadline utilization here,
3300 		 * switched_from_dl() will take care to do it at the correct
3301 		 * (0-lag) time.
3302 		 */
3303 		err = 0;
3304 	}
3305 	raw_spin_unlock(&dl_b->lock);
3306 
3307 	return err;
3308 }
3309 
3310 /*
3311  * This function initializes the sched_dl_entity of a newly becoming
3312  * SCHED_DEADLINE task.
3313  *
3314  * Only the static values are considered here, the actual runtime and the
3315  * absolute deadline will be properly calculated when the task is enqueued
3316  * for the first time with its new policy.
3317  */
3318 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3319 {
3320 	struct sched_dl_entity *dl_se = &p->dl;
3321 
3322 	dl_se->dl_runtime = attr->sched_runtime;
3323 	dl_se->dl_deadline = attr->sched_deadline;
3324 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3325 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3326 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3327 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3328 }
3329 
3330 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3331 {
3332 	struct sched_dl_entity *dl_se = &p->dl;
3333 
3334 	attr->sched_priority = p->rt_priority;
3335 	attr->sched_runtime = dl_se->dl_runtime;
3336 	attr->sched_deadline = dl_se->dl_deadline;
3337 	attr->sched_period = dl_se->dl_period;
3338 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3339 	attr->sched_flags |= dl_se->flags;
3340 }
3341 
3342 /*
3343  * This function validates the new parameters of a -deadline task.
3344  * We ask for the deadline not being zero, and greater or equal
3345  * than the runtime, as well as the period of being zero or
3346  * greater than deadline. Furthermore, we have to be sure that
3347  * user parameters are above the internal resolution of 1us (we
3348  * check sched_runtime only since it is always the smaller one) and
3349  * below 2^63 ns (we have to check both sched_deadline and
3350  * sched_period, as the latter can be zero).
3351  */
3352 bool __checkparam_dl(const struct sched_attr *attr)
3353 {
3354 	u64 period, max, min;
3355 
3356 	/* special dl tasks don't actually use any parameter */
3357 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3358 		return true;
3359 
3360 	/* deadline != 0 */
3361 	if (attr->sched_deadline == 0)
3362 		return false;
3363 
3364 	/*
3365 	 * Since we truncate DL_SCALE bits, make sure we're at least
3366 	 * that big.
3367 	 */
3368 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3369 		return false;
3370 
3371 	/*
3372 	 * Since we use the MSB for wrap-around and sign issues, make
3373 	 * sure it's not set (mind that period can be equal to zero).
3374 	 */
3375 	if (attr->sched_deadline & (1ULL << 63) ||
3376 	    attr->sched_period & (1ULL << 63))
3377 		return false;
3378 
3379 	period = attr->sched_period;
3380 	if (!period)
3381 		period = attr->sched_deadline;
3382 
3383 	/* runtime <= deadline <= period (if period != 0) */
3384 	if (period < attr->sched_deadline ||
3385 	    attr->sched_deadline < attr->sched_runtime)
3386 		return false;
3387 
3388 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3389 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3390 
3391 	if (period < min || period > max)
3392 		return false;
3393 
3394 	return true;
3395 }
3396 
3397 /*
3398  * This function clears the sched_dl_entity static params.
3399  */
3400 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3401 {
3402 	dl_se->dl_runtime		= 0;
3403 	dl_se->dl_deadline		= 0;
3404 	dl_se->dl_period		= 0;
3405 	dl_se->flags			= 0;
3406 	dl_se->dl_bw			= 0;
3407 	dl_se->dl_density		= 0;
3408 
3409 	dl_se->dl_throttled		= 0;
3410 	dl_se->dl_yielded		= 0;
3411 	dl_se->dl_non_contending	= 0;
3412 	dl_se->dl_overrun		= 0;
3413 	dl_se->dl_server		= 0;
3414 
3415 #ifdef CONFIG_RT_MUTEXES
3416 	dl_se->pi_se			= dl_se;
3417 #endif
3418 }
3419 
3420 void init_dl_entity(struct sched_dl_entity *dl_se)
3421 {
3422 	RB_CLEAR_NODE(&dl_se->rb_node);
3423 	init_dl_task_timer(dl_se);
3424 	init_dl_inactive_task_timer(dl_se);
3425 	__dl_clear_params(dl_se);
3426 }
3427 
3428 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3429 {
3430 	struct sched_dl_entity *dl_se = &p->dl;
3431 
3432 	if (dl_se->dl_runtime != attr->sched_runtime ||
3433 	    dl_se->dl_deadline != attr->sched_deadline ||
3434 	    dl_se->dl_period != attr->sched_period ||
3435 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3436 		return true;
3437 
3438 	return false;
3439 }
3440 
3441 #ifdef CONFIG_SMP
3442 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3443 				 const struct cpumask *trial)
3444 {
3445 	unsigned long flags, cap;
3446 	struct dl_bw *cur_dl_b;
3447 	int ret = 1;
3448 
3449 	rcu_read_lock_sched();
3450 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3451 	cap = __dl_bw_capacity(trial);
3452 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3453 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3454 		ret = 0;
3455 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3456 	rcu_read_unlock_sched();
3457 
3458 	return ret;
3459 }
3460 
3461 enum dl_bw_request {
3462 	dl_bw_req_check_overflow = 0,
3463 	dl_bw_req_alloc,
3464 	dl_bw_req_free
3465 };
3466 
3467 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3468 {
3469 	unsigned long flags;
3470 	struct dl_bw *dl_b;
3471 	bool overflow = 0;
3472 
3473 	rcu_read_lock_sched();
3474 	dl_b = dl_bw_of(cpu);
3475 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3476 
3477 	if (req == dl_bw_req_free) {
3478 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3479 	} else {
3480 		unsigned long cap = dl_bw_capacity(cpu);
3481 
3482 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3483 
3484 		if (req == dl_bw_req_alloc && !overflow) {
3485 			/*
3486 			 * We reserve space in the destination
3487 			 * root_domain, as we can't fail after this point.
3488 			 * We will free resources in the source root_domain
3489 			 * later on (see set_cpus_allowed_dl()).
3490 			 */
3491 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3492 		}
3493 	}
3494 
3495 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3496 	rcu_read_unlock_sched();
3497 
3498 	return overflow ? -EBUSY : 0;
3499 }
3500 
3501 int dl_bw_check_overflow(int cpu)
3502 {
3503 	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3504 }
3505 
3506 int dl_bw_alloc(int cpu, u64 dl_bw)
3507 {
3508 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3509 }
3510 
3511 void dl_bw_free(int cpu, u64 dl_bw)
3512 {
3513 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3514 }
3515 #endif
3516 
3517 #ifdef CONFIG_SCHED_DEBUG
3518 void print_dl_stats(struct seq_file *m, int cpu)
3519 {
3520 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3521 }
3522 #endif /* CONFIG_SCHED_DEBUG */
3523