xref: /linux/kernel/sched/deadline.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 	raw_spin_lock_init(&dl_b->lock);
63 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 	if (global_rt_runtime() == RUNTIME_INF)
65 		dl_b->bw = -1;
66 	else
67 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 	dl_b->total_bw = 0;
70 }
71 
72 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
73 {
74 	dl_rq->rb_root = RB_ROOT;
75 
76 #ifdef CONFIG_SMP
77 	/* zero means no -deadline tasks */
78 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79 
80 	dl_rq->dl_nr_migratory = 0;
81 	dl_rq->overloaded = 0;
82 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 	init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87 
88 #ifdef CONFIG_SMP
89 
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 	return atomic_read(&rq->rd->dlo_count);
93 }
94 
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 	if (!rq->online)
98 		return;
99 
100 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 	/*
102 	 * Must be visible before the overload count is
103 	 * set (as in sched_rt.c).
104 	 *
105 	 * Matched by the barrier in pull_dl_task().
106 	 */
107 	smp_wmb();
108 	atomic_inc(&rq->rd->dlo_count);
109 }
110 
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 	if (!rq->online)
114 		return;
115 
116 	atomic_dec(&rq->rd->dlo_count);
117 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119 
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 		if (!dl_rq->overloaded) {
124 			dl_set_overload(rq_of_dl_rq(dl_rq));
125 			dl_rq->overloaded = 1;
126 		}
127 	} else if (dl_rq->overloaded) {
128 		dl_clear_overload(rq_of_dl_rq(dl_rq));
129 		dl_rq->overloaded = 0;
130 	}
131 }
132 
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 	struct task_struct *p = dl_task_of(dl_se);
136 
137 	if (p->nr_cpus_allowed > 1)
138 		dl_rq->dl_nr_migratory++;
139 
140 	update_dl_migration(dl_rq);
141 }
142 
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	struct task_struct *p = dl_task_of(dl_se);
146 
147 	if (p->nr_cpus_allowed > 1)
148 		dl_rq->dl_nr_migratory--;
149 
150 	update_dl_migration(dl_rq);
151 }
152 
153 /*
154  * The list of pushable -deadline task is not a plist, like in
155  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156  */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 	struct dl_rq *dl_rq = &rq->dl;
160 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct task_struct *entry;
163 	int leftmost = 1;
164 
165 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166 
167 	while (*link) {
168 		parent = *link;
169 		entry = rb_entry(parent, struct task_struct,
170 				 pushable_dl_tasks);
171 		if (dl_entity_preempt(&p->dl, &entry->dl))
172 			link = &parent->rb_left;
173 		else {
174 			link = &parent->rb_right;
175 			leftmost = 0;
176 		}
177 	}
178 
179 	if (leftmost)
180 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 
182 	rb_link_node(&p->pushable_dl_tasks, parent, link);
183 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
184 }
185 
186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187 {
188 	struct dl_rq *dl_rq = &rq->dl;
189 
190 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 		return;
192 
193 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 		struct rb_node *next_node;
195 
196 		next_node = rb_next(&p->pushable_dl_tasks);
197 		dl_rq->pushable_dl_tasks_leftmost = next_node;
198 	}
199 
200 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
202 }
203 
204 static inline int has_pushable_dl_tasks(struct rq *rq)
205 {
206 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207 }
208 
209 static int push_dl_task(struct rq *rq);
210 
211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212 {
213 	return dl_task(prev);
214 }
215 
216 static inline void set_post_schedule(struct rq *rq)
217 {
218 	rq->post_schedule = has_pushable_dl_tasks(rq);
219 }
220 
221 #else
222 
223 static inline
224 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
225 {
226 }
227 
228 static inline
229 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
230 {
231 }
232 
233 static inline
234 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
235 {
236 }
237 
238 static inline
239 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
240 {
241 }
242 
243 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
244 {
245 	return false;
246 }
247 
248 static inline int pull_dl_task(struct rq *rq)
249 {
250 	return 0;
251 }
252 
253 static inline void set_post_schedule(struct rq *rq)
254 {
255 }
256 #endif /* CONFIG_SMP */
257 
258 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
259 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
260 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
261 				  int flags);
262 
263 /*
264  * We are being explicitly informed that a new instance is starting,
265  * and this means that:
266  *  - the absolute deadline of the entity has to be placed at
267  *    current time + relative deadline;
268  *  - the runtime of the entity has to be set to the maximum value.
269  *
270  * The capability of specifying such event is useful whenever a -deadline
271  * entity wants to (try to!) synchronize its behaviour with the scheduler's
272  * one, and to (try to!) reconcile itself with its own scheduling
273  * parameters.
274  */
275 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
276 				       struct sched_dl_entity *pi_se)
277 {
278 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
279 	struct rq *rq = rq_of_dl_rq(dl_rq);
280 
281 	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
282 
283 	/*
284 	 * We use the regular wall clock time to set deadlines in the
285 	 * future; in fact, we must consider execution overheads (time
286 	 * spent on hardirq context, etc.).
287 	 */
288 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
289 	dl_se->runtime = pi_se->dl_runtime;
290 	dl_se->dl_new = 0;
291 }
292 
293 /*
294  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
295  * possibility of a entity lasting more than what it declared, and thus
296  * exhausting its runtime.
297  *
298  * Here we are interested in making runtime overrun possible, but we do
299  * not want a entity which is misbehaving to affect the scheduling of all
300  * other entities.
301  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
302  * is used, in order to confine each entity within its own bandwidth.
303  *
304  * This function deals exactly with that, and ensures that when the runtime
305  * of a entity is replenished, its deadline is also postponed. That ensures
306  * the overrunning entity can't interfere with other entity in the system and
307  * can't make them miss their deadlines. Reasons why this kind of overruns
308  * could happen are, typically, a entity voluntarily trying to overcome its
309  * runtime, or it just underestimated it during sched_setattr().
310  */
311 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
312 				struct sched_dl_entity *pi_se)
313 {
314 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
315 	struct rq *rq = rq_of_dl_rq(dl_rq);
316 
317 	BUG_ON(pi_se->dl_runtime <= 0);
318 
319 	/*
320 	 * This could be the case for a !-dl task that is boosted.
321 	 * Just go with full inherited parameters.
322 	 */
323 	if (dl_se->dl_deadline == 0) {
324 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
325 		dl_se->runtime = pi_se->dl_runtime;
326 	}
327 
328 	/*
329 	 * We keep moving the deadline away until we get some
330 	 * available runtime for the entity. This ensures correct
331 	 * handling of situations where the runtime overrun is
332 	 * arbitrary large.
333 	 */
334 	while (dl_se->runtime <= 0) {
335 		dl_se->deadline += pi_se->dl_period;
336 		dl_se->runtime += pi_se->dl_runtime;
337 	}
338 
339 	/*
340 	 * At this point, the deadline really should be "in
341 	 * the future" with respect to rq->clock. If it's
342 	 * not, we are, for some reason, lagging too much!
343 	 * Anyway, after having warn userspace abut that,
344 	 * we still try to keep the things running by
345 	 * resetting the deadline and the budget of the
346 	 * entity.
347 	 */
348 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
349 		printk_deferred_once("sched: DL replenish lagged to much\n");
350 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
351 		dl_se->runtime = pi_se->dl_runtime;
352 	}
353 }
354 
355 /*
356  * Here we check if --at time t-- an entity (which is probably being
357  * [re]activated or, in general, enqueued) can use its remaining runtime
358  * and its current deadline _without_ exceeding the bandwidth it is
359  * assigned (function returns true if it can't). We are in fact applying
360  * one of the CBS rules: when a task wakes up, if the residual runtime
361  * over residual deadline fits within the allocated bandwidth, then we
362  * can keep the current (absolute) deadline and residual budget without
363  * disrupting the schedulability of the system. Otherwise, we should
364  * refill the runtime and set the deadline a period in the future,
365  * because keeping the current (absolute) deadline of the task would
366  * result in breaking guarantees promised to other tasks (refer to
367  * Documentation/scheduler/sched-deadline.txt for more informations).
368  *
369  * This function returns true if:
370  *
371  *   runtime / (deadline - t) > dl_runtime / dl_period ,
372  *
373  * IOW we can't recycle current parameters.
374  *
375  * Notice that the bandwidth check is done against the period. For
376  * task with deadline equal to period this is the same of using
377  * dl_deadline instead of dl_period in the equation above.
378  */
379 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
380 			       struct sched_dl_entity *pi_se, u64 t)
381 {
382 	u64 left, right;
383 
384 	/*
385 	 * left and right are the two sides of the equation above,
386 	 * after a bit of shuffling to use multiplications instead
387 	 * of divisions.
388 	 *
389 	 * Note that none of the time values involved in the two
390 	 * multiplications are absolute: dl_deadline and dl_runtime
391 	 * are the relative deadline and the maximum runtime of each
392 	 * instance, runtime is the runtime left for the last instance
393 	 * and (deadline - t), since t is rq->clock, is the time left
394 	 * to the (absolute) deadline. Even if overflowing the u64 type
395 	 * is very unlikely to occur in both cases, here we scale down
396 	 * as we want to avoid that risk at all. Scaling down by 10
397 	 * means that we reduce granularity to 1us. We are fine with it,
398 	 * since this is only a true/false check and, anyway, thinking
399 	 * of anything below microseconds resolution is actually fiction
400 	 * (but still we want to give the user that illusion >;).
401 	 */
402 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
403 	right = ((dl_se->deadline - t) >> DL_SCALE) *
404 		(pi_se->dl_runtime >> DL_SCALE);
405 
406 	return dl_time_before(right, left);
407 }
408 
409 /*
410  * When a -deadline entity is queued back on the runqueue, its runtime and
411  * deadline might need updating.
412  *
413  * The policy here is that we update the deadline of the entity only if:
414  *  - the current deadline is in the past,
415  *  - using the remaining runtime with the current deadline would make
416  *    the entity exceed its bandwidth.
417  */
418 static void update_dl_entity(struct sched_dl_entity *dl_se,
419 			     struct sched_dl_entity *pi_se)
420 {
421 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
422 	struct rq *rq = rq_of_dl_rq(dl_rq);
423 
424 	/*
425 	 * The arrival of a new instance needs special treatment, i.e.,
426 	 * the actual scheduling parameters have to be "renewed".
427 	 */
428 	if (dl_se->dl_new) {
429 		setup_new_dl_entity(dl_se, pi_se);
430 		return;
431 	}
432 
433 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
434 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
435 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
436 		dl_se->runtime = pi_se->dl_runtime;
437 	}
438 }
439 
440 /*
441  * If the entity depleted all its runtime, and if we want it to sleep
442  * while waiting for some new execution time to become available, we
443  * set the bandwidth enforcement timer to the replenishment instant
444  * and try to activate it.
445  *
446  * Notice that it is important for the caller to know if the timer
447  * actually started or not (i.e., the replenishment instant is in
448  * the future or in the past).
449  */
450 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
451 {
452 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
453 	struct rq *rq = rq_of_dl_rq(dl_rq);
454 	ktime_t now, act;
455 	ktime_t soft, hard;
456 	unsigned long range;
457 	s64 delta;
458 
459 	if (boosted)
460 		return 0;
461 	/*
462 	 * We want the timer to fire at the deadline, but considering
463 	 * that it is actually coming from rq->clock and not from
464 	 * hrtimer's time base reading.
465 	 */
466 	act = ns_to_ktime(dl_se->deadline);
467 	now = hrtimer_cb_get_time(&dl_se->dl_timer);
468 	delta = ktime_to_ns(now) - rq_clock(rq);
469 	act = ktime_add_ns(act, delta);
470 
471 	/*
472 	 * If the expiry time already passed, e.g., because the value
473 	 * chosen as the deadline is too small, don't even try to
474 	 * start the timer in the past!
475 	 */
476 	if (ktime_us_delta(act, now) < 0)
477 		return 0;
478 
479 	hrtimer_set_expires(&dl_se->dl_timer, act);
480 
481 	soft = hrtimer_get_softexpires(&dl_se->dl_timer);
482 	hard = hrtimer_get_expires(&dl_se->dl_timer);
483 	range = ktime_to_ns(ktime_sub(hard, soft));
484 	__hrtimer_start_range_ns(&dl_se->dl_timer, soft,
485 				 range, HRTIMER_MODE_ABS, 0);
486 
487 	return hrtimer_active(&dl_se->dl_timer);
488 }
489 
490 /*
491  * This is the bandwidth enforcement timer callback. If here, we know
492  * a task is not on its dl_rq, since the fact that the timer was running
493  * means the task is throttled and needs a runtime replenishment.
494  *
495  * However, what we actually do depends on the fact the task is active,
496  * (it is on its rq) or has been removed from there by a call to
497  * dequeue_task_dl(). In the former case we must issue the runtime
498  * replenishment and add the task back to the dl_rq; in the latter, we just
499  * do nothing but clearing dl_throttled, so that runtime and deadline
500  * updating (and the queueing back to dl_rq) will be done by the
501  * next call to enqueue_task_dl().
502  */
503 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
504 {
505 	struct sched_dl_entity *dl_se = container_of(timer,
506 						     struct sched_dl_entity,
507 						     dl_timer);
508 	struct task_struct *p = dl_task_of(dl_se);
509 	struct rq *rq;
510 again:
511 	rq = task_rq(p);
512 	raw_spin_lock(&rq->lock);
513 
514 	if (rq != task_rq(p)) {
515 		/* Task was moved, retrying. */
516 		raw_spin_unlock(&rq->lock);
517 		goto again;
518 	}
519 
520 	/*
521 	 * We need to take care of several possible races here:
522 	 *
523 	 *   - the task might have changed its scheduling policy
524 	 *     to something different than SCHED_DEADLINE
525 	 *   - the task might have changed its reservation parameters
526 	 *     (through sched_setattr())
527 	 *   - the task might have been boosted by someone else and
528 	 *     might be in the boosting/deboosting path
529 	 *
530 	 * In all this cases we bail out, as the task is already
531 	 * in the runqueue or is going to be enqueued back anyway.
532 	 */
533 	if (!dl_task(p) || dl_se->dl_new ||
534 	    dl_se->dl_boosted || !dl_se->dl_throttled)
535 		goto unlock;
536 
537 	sched_clock_tick();
538 	update_rq_clock(rq);
539 	dl_se->dl_throttled = 0;
540 	dl_se->dl_yielded = 0;
541 	if (task_on_rq_queued(p)) {
542 		enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
543 		if (dl_task(rq->curr))
544 			check_preempt_curr_dl(rq, p, 0);
545 		else
546 			resched_curr(rq);
547 #ifdef CONFIG_SMP
548 		/*
549 		 * Queueing this task back might have overloaded rq,
550 		 * check if we need to kick someone away.
551 		 */
552 		if (has_pushable_dl_tasks(rq))
553 			push_dl_task(rq);
554 #endif
555 	}
556 unlock:
557 	raw_spin_unlock(&rq->lock);
558 
559 	return HRTIMER_NORESTART;
560 }
561 
562 void init_dl_task_timer(struct sched_dl_entity *dl_se)
563 {
564 	struct hrtimer *timer = &dl_se->dl_timer;
565 
566 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
567 	timer->function = dl_task_timer;
568 }
569 
570 static
571 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
572 {
573 	return (dl_se->runtime <= 0);
574 }
575 
576 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
577 
578 /*
579  * Update the current task's runtime statistics (provided it is still
580  * a -deadline task and has not been removed from the dl_rq).
581  */
582 static void update_curr_dl(struct rq *rq)
583 {
584 	struct task_struct *curr = rq->curr;
585 	struct sched_dl_entity *dl_se = &curr->dl;
586 	u64 delta_exec;
587 
588 	if (!dl_task(curr) || !on_dl_rq(dl_se))
589 		return;
590 
591 	/*
592 	 * Consumed budget is computed considering the time as
593 	 * observed by schedulable tasks (excluding time spent
594 	 * in hardirq context, etc.). Deadlines are instead
595 	 * computed using hard walltime. This seems to be the more
596 	 * natural solution, but the full ramifications of this
597 	 * approach need further study.
598 	 */
599 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
600 	if (unlikely((s64)delta_exec <= 0))
601 		return;
602 
603 	schedstat_set(curr->se.statistics.exec_max,
604 		      max(curr->se.statistics.exec_max, delta_exec));
605 
606 	curr->se.sum_exec_runtime += delta_exec;
607 	account_group_exec_runtime(curr, delta_exec);
608 
609 	curr->se.exec_start = rq_clock_task(rq);
610 	cpuacct_charge(curr, delta_exec);
611 
612 	sched_rt_avg_update(rq, delta_exec);
613 
614 	dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
615 	if (dl_runtime_exceeded(rq, dl_se)) {
616 		__dequeue_task_dl(rq, curr, 0);
617 		if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
618 			dl_se->dl_throttled = 1;
619 		else
620 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
621 
622 		if (!is_leftmost(curr, &rq->dl))
623 			resched_curr(rq);
624 	}
625 
626 	/*
627 	 * Because -- for now -- we share the rt bandwidth, we need to
628 	 * account our runtime there too, otherwise actual rt tasks
629 	 * would be able to exceed the shared quota.
630 	 *
631 	 * Account to the root rt group for now.
632 	 *
633 	 * The solution we're working towards is having the RT groups scheduled
634 	 * using deadline servers -- however there's a few nasties to figure
635 	 * out before that can happen.
636 	 */
637 	if (rt_bandwidth_enabled()) {
638 		struct rt_rq *rt_rq = &rq->rt;
639 
640 		raw_spin_lock(&rt_rq->rt_runtime_lock);
641 		/*
642 		 * We'll let actual RT tasks worry about the overflow here, we
643 		 * have our own CBS to keep us inline; only account when RT
644 		 * bandwidth is relevant.
645 		 */
646 		if (sched_rt_bandwidth_account(rt_rq))
647 			rt_rq->rt_time += delta_exec;
648 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
649 	}
650 }
651 
652 #ifdef CONFIG_SMP
653 
654 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
655 
656 static inline u64 next_deadline(struct rq *rq)
657 {
658 	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
659 
660 	if (next && dl_prio(next->prio))
661 		return next->dl.deadline;
662 	else
663 		return 0;
664 }
665 
666 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
667 {
668 	struct rq *rq = rq_of_dl_rq(dl_rq);
669 
670 	if (dl_rq->earliest_dl.curr == 0 ||
671 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
672 		/*
673 		 * If the dl_rq had no -deadline tasks, or if the new task
674 		 * has shorter deadline than the current one on dl_rq, we
675 		 * know that the previous earliest becomes our next earliest,
676 		 * as the new task becomes the earliest itself.
677 		 */
678 		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
679 		dl_rq->earliest_dl.curr = deadline;
680 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
681 	} else if (dl_rq->earliest_dl.next == 0 ||
682 		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
683 		/*
684 		 * On the other hand, if the new -deadline task has a
685 		 * a later deadline than the earliest one on dl_rq, but
686 		 * it is earlier than the next (if any), we must
687 		 * recompute the next-earliest.
688 		 */
689 		dl_rq->earliest_dl.next = next_deadline(rq);
690 	}
691 }
692 
693 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
694 {
695 	struct rq *rq = rq_of_dl_rq(dl_rq);
696 
697 	/*
698 	 * Since we may have removed our earliest (and/or next earliest)
699 	 * task we must recompute them.
700 	 */
701 	if (!dl_rq->dl_nr_running) {
702 		dl_rq->earliest_dl.curr = 0;
703 		dl_rq->earliest_dl.next = 0;
704 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
705 	} else {
706 		struct rb_node *leftmost = dl_rq->rb_leftmost;
707 		struct sched_dl_entity *entry;
708 
709 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
710 		dl_rq->earliest_dl.curr = entry->deadline;
711 		dl_rq->earliest_dl.next = next_deadline(rq);
712 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
713 	}
714 }
715 
716 #else
717 
718 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
719 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
720 
721 #endif /* CONFIG_SMP */
722 
723 static inline
724 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
725 {
726 	int prio = dl_task_of(dl_se)->prio;
727 	u64 deadline = dl_se->deadline;
728 
729 	WARN_ON(!dl_prio(prio));
730 	dl_rq->dl_nr_running++;
731 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
732 
733 	inc_dl_deadline(dl_rq, deadline);
734 	inc_dl_migration(dl_se, dl_rq);
735 }
736 
737 static inline
738 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
739 {
740 	int prio = dl_task_of(dl_se)->prio;
741 
742 	WARN_ON(!dl_prio(prio));
743 	WARN_ON(!dl_rq->dl_nr_running);
744 	dl_rq->dl_nr_running--;
745 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
746 
747 	dec_dl_deadline(dl_rq, dl_se->deadline);
748 	dec_dl_migration(dl_se, dl_rq);
749 }
750 
751 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
752 {
753 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
754 	struct rb_node **link = &dl_rq->rb_root.rb_node;
755 	struct rb_node *parent = NULL;
756 	struct sched_dl_entity *entry;
757 	int leftmost = 1;
758 
759 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
760 
761 	while (*link) {
762 		parent = *link;
763 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
764 		if (dl_time_before(dl_se->deadline, entry->deadline))
765 			link = &parent->rb_left;
766 		else {
767 			link = &parent->rb_right;
768 			leftmost = 0;
769 		}
770 	}
771 
772 	if (leftmost)
773 		dl_rq->rb_leftmost = &dl_se->rb_node;
774 
775 	rb_link_node(&dl_se->rb_node, parent, link);
776 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
777 
778 	inc_dl_tasks(dl_se, dl_rq);
779 }
780 
781 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
782 {
783 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
784 
785 	if (RB_EMPTY_NODE(&dl_se->rb_node))
786 		return;
787 
788 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
789 		struct rb_node *next_node;
790 
791 		next_node = rb_next(&dl_se->rb_node);
792 		dl_rq->rb_leftmost = next_node;
793 	}
794 
795 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
796 	RB_CLEAR_NODE(&dl_se->rb_node);
797 
798 	dec_dl_tasks(dl_se, dl_rq);
799 }
800 
801 static void
802 enqueue_dl_entity(struct sched_dl_entity *dl_se,
803 		  struct sched_dl_entity *pi_se, int flags)
804 {
805 	BUG_ON(on_dl_rq(dl_se));
806 
807 	/*
808 	 * If this is a wakeup or a new instance, the scheduling
809 	 * parameters of the task might need updating. Otherwise,
810 	 * we want a replenishment of its runtime.
811 	 */
812 	if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
813 		update_dl_entity(dl_se, pi_se);
814 	else if (flags & ENQUEUE_REPLENISH)
815 		replenish_dl_entity(dl_se, pi_se);
816 
817 	__enqueue_dl_entity(dl_se);
818 }
819 
820 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
821 {
822 	__dequeue_dl_entity(dl_se);
823 }
824 
825 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
826 {
827 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
828 	struct sched_dl_entity *pi_se = &p->dl;
829 
830 	/*
831 	 * Use the scheduling parameters of the top pi-waiter
832 	 * task if we have one and its (relative) deadline is
833 	 * smaller than our one... OTW we keep our runtime and
834 	 * deadline.
835 	 */
836 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
837 		pi_se = &pi_task->dl;
838 	} else if (!dl_prio(p->normal_prio)) {
839 		/*
840 		 * Special case in which we have a !SCHED_DEADLINE task
841 		 * that is going to be deboosted, but exceedes its
842 		 * runtime while doing so. No point in replenishing
843 		 * it, as it's going to return back to its original
844 		 * scheduling class after this.
845 		 */
846 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
847 		return;
848 	}
849 
850 	/*
851 	 * If p is throttled, we do nothing. In fact, if it exhausted
852 	 * its budget it needs a replenishment and, since it now is on
853 	 * its rq, the bandwidth timer callback (which clearly has not
854 	 * run yet) will take care of this.
855 	 */
856 	if (p->dl.dl_throttled)
857 		return;
858 
859 	enqueue_dl_entity(&p->dl, pi_se, flags);
860 
861 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
862 		enqueue_pushable_dl_task(rq, p);
863 }
864 
865 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
866 {
867 	dequeue_dl_entity(&p->dl);
868 	dequeue_pushable_dl_task(rq, p);
869 }
870 
871 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
872 {
873 	update_curr_dl(rq);
874 	__dequeue_task_dl(rq, p, flags);
875 }
876 
877 /*
878  * Yield task semantic for -deadline tasks is:
879  *
880  *   get off from the CPU until our next instance, with
881  *   a new runtime. This is of little use now, since we
882  *   don't have a bandwidth reclaiming mechanism. Anyway,
883  *   bandwidth reclaiming is planned for the future, and
884  *   yield_task_dl will indicate that some spare budget
885  *   is available for other task instances to use it.
886  */
887 static void yield_task_dl(struct rq *rq)
888 {
889 	struct task_struct *p = rq->curr;
890 
891 	/*
892 	 * We make the task go to sleep until its current deadline by
893 	 * forcing its runtime to zero. This way, update_curr_dl() stops
894 	 * it and the bandwidth timer will wake it up and will give it
895 	 * new scheduling parameters (thanks to dl_yielded=1).
896 	 */
897 	if (p->dl.runtime > 0) {
898 		rq->curr->dl.dl_yielded = 1;
899 		p->dl.runtime = 0;
900 	}
901 	update_curr_dl(rq);
902 }
903 
904 #ifdef CONFIG_SMP
905 
906 static int find_later_rq(struct task_struct *task);
907 
908 static int
909 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
910 {
911 	struct task_struct *curr;
912 	struct rq *rq;
913 
914 	if (sd_flag != SD_BALANCE_WAKE)
915 		goto out;
916 
917 	rq = cpu_rq(cpu);
918 
919 	rcu_read_lock();
920 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
921 
922 	/*
923 	 * If we are dealing with a -deadline task, we must
924 	 * decide where to wake it up.
925 	 * If it has a later deadline and the current task
926 	 * on this rq can't move (provided the waking task
927 	 * can!) we prefer to send it somewhere else. On the
928 	 * other hand, if it has a shorter deadline, we
929 	 * try to make it stay here, it might be important.
930 	 */
931 	if (unlikely(dl_task(curr)) &&
932 	    (curr->nr_cpus_allowed < 2 ||
933 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
934 	    (p->nr_cpus_allowed > 1)) {
935 		int target = find_later_rq(p);
936 
937 		if (target != -1)
938 			cpu = target;
939 	}
940 	rcu_read_unlock();
941 
942 out:
943 	return cpu;
944 }
945 
946 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
947 {
948 	/*
949 	 * Current can't be migrated, useless to reschedule,
950 	 * let's hope p can move out.
951 	 */
952 	if (rq->curr->nr_cpus_allowed == 1 ||
953 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
954 		return;
955 
956 	/*
957 	 * p is migratable, so let's not schedule it and
958 	 * see if it is pushed or pulled somewhere else.
959 	 */
960 	if (p->nr_cpus_allowed != 1 &&
961 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
962 		return;
963 
964 	resched_curr(rq);
965 }
966 
967 static int pull_dl_task(struct rq *this_rq);
968 
969 #endif /* CONFIG_SMP */
970 
971 /*
972  * Only called when both the current and waking task are -deadline
973  * tasks.
974  */
975 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
976 				  int flags)
977 {
978 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
979 		resched_curr(rq);
980 		return;
981 	}
982 
983 #ifdef CONFIG_SMP
984 	/*
985 	 * In the unlikely case current and p have the same deadline
986 	 * let us try to decide what's the best thing to do...
987 	 */
988 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
989 	    !test_tsk_need_resched(rq->curr))
990 		check_preempt_equal_dl(rq, p);
991 #endif /* CONFIG_SMP */
992 }
993 
994 #ifdef CONFIG_SCHED_HRTICK
995 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
996 {
997 	hrtick_start(rq, p->dl.runtime);
998 }
999 #else /* !CONFIG_SCHED_HRTICK */
1000 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1001 {
1002 }
1003 #endif
1004 
1005 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1006 						   struct dl_rq *dl_rq)
1007 {
1008 	struct rb_node *left = dl_rq->rb_leftmost;
1009 
1010 	if (!left)
1011 		return NULL;
1012 
1013 	return rb_entry(left, struct sched_dl_entity, rb_node);
1014 }
1015 
1016 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1017 {
1018 	struct sched_dl_entity *dl_se;
1019 	struct task_struct *p;
1020 	struct dl_rq *dl_rq;
1021 
1022 	dl_rq = &rq->dl;
1023 
1024 	if (need_pull_dl_task(rq, prev)) {
1025 		pull_dl_task(rq);
1026 		/*
1027 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1028 		 * means a stop task can slip in, in which case we need to
1029 		 * re-start task selection.
1030 		 */
1031 		if (rq->stop && task_on_rq_queued(rq->stop))
1032 			return RETRY_TASK;
1033 	}
1034 
1035 	/*
1036 	 * When prev is DL, we may throttle it in put_prev_task().
1037 	 * So, we update time before we check for dl_nr_running.
1038 	 */
1039 	if (prev->sched_class == &dl_sched_class)
1040 		update_curr_dl(rq);
1041 
1042 	if (unlikely(!dl_rq->dl_nr_running))
1043 		return NULL;
1044 
1045 	put_prev_task(rq, prev);
1046 
1047 	dl_se = pick_next_dl_entity(rq, dl_rq);
1048 	BUG_ON(!dl_se);
1049 
1050 	p = dl_task_of(dl_se);
1051 	p->se.exec_start = rq_clock_task(rq);
1052 
1053 	/* Running task will never be pushed. */
1054        dequeue_pushable_dl_task(rq, p);
1055 
1056 	if (hrtick_enabled(rq))
1057 		start_hrtick_dl(rq, p);
1058 
1059 	set_post_schedule(rq);
1060 
1061 	return p;
1062 }
1063 
1064 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1065 {
1066 	update_curr_dl(rq);
1067 
1068 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1069 		enqueue_pushable_dl_task(rq, p);
1070 }
1071 
1072 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1073 {
1074 	update_curr_dl(rq);
1075 
1076 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1077 		start_hrtick_dl(rq, p);
1078 }
1079 
1080 static void task_fork_dl(struct task_struct *p)
1081 {
1082 	/*
1083 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1084 	 * sched_fork()
1085 	 */
1086 }
1087 
1088 static void task_dead_dl(struct task_struct *p)
1089 {
1090 	struct hrtimer *timer = &p->dl.dl_timer;
1091 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1092 
1093 	/*
1094 	 * Since we are TASK_DEAD we won't slip out of the domain!
1095 	 */
1096 	raw_spin_lock_irq(&dl_b->lock);
1097 	dl_b->total_bw -= p->dl.dl_bw;
1098 	raw_spin_unlock_irq(&dl_b->lock);
1099 
1100 	hrtimer_cancel(timer);
1101 }
1102 
1103 static void set_curr_task_dl(struct rq *rq)
1104 {
1105 	struct task_struct *p = rq->curr;
1106 
1107 	p->se.exec_start = rq_clock_task(rq);
1108 
1109 	/* You can't push away the running task */
1110 	dequeue_pushable_dl_task(rq, p);
1111 }
1112 
1113 #ifdef CONFIG_SMP
1114 
1115 /* Only try algorithms three times */
1116 #define DL_MAX_TRIES 3
1117 
1118 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1119 {
1120 	if (!task_running(rq, p) &&
1121 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1122 		return 1;
1123 	return 0;
1124 }
1125 
1126 /* Returns the second earliest -deadline task, NULL otherwise */
1127 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1128 {
1129 	struct rb_node *next_node = rq->dl.rb_leftmost;
1130 	struct sched_dl_entity *dl_se;
1131 	struct task_struct *p = NULL;
1132 
1133 next_node:
1134 	next_node = rb_next(next_node);
1135 	if (next_node) {
1136 		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1137 		p = dl_task_of(dl_se);
1138 
1139 		if (pick_dl_task(rq, p, cpu))
1140 			return p;
1141 
1142 		goto next_node;
1143 	}
1144 
1145 	return NULL;
1146 }
1147 
1148 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1149 
1150 static int find_later_rq(struct task_struct *task)
1151 {
1152 	struct sched_domain *sd;
1153 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1154 	int this_cpu = smp_processor_id();
1155 	int best_cpu, cpu = task_cpu(task);
1156 
1157 	/* Make sure the mask is initialized first */
1158 	if (unlikely(!later_mask))
1159 		return -1;
1160 
1161 	if (task->nr_cpus_allowed == 1)
1162 		return -1;
1163 
1164 	/*
1165 	 * We have to consider system topology and task affinity
1166 	 * first, then we can look for a suitable cpu.
1167 	 */
1168 	cpumask_copy(later_mask, task_rq(task)->rd->span);
1169 	cpumask_and(later_mask, later_mask, cpu_active_mask);
1170 	cpumask_and(later_mask, later_mask, &task->cpus_allowed);
1171 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1172 			task, later_mask);
1173 	if (best_cpu == -1)
1174 		return -1;
1175 
1176 	/*
1177 	 * If we are here, some target has been found,
1178 	 * the most suitable of which is cached in best_cpu.
1179 	 * This is, among the runqueues where the current tasks
1180 	 * have later deadlines than the task's one, the rq
1181 	 * with the latest possible one.
1182 	 *
1183 	 * Now we check how well this matches with task's
1184 	 * affinity and system topology.
1185 	 *
1186 	 * The last cpu where the task run is our first
1187 	 * guess, since it is most likely cache-hot there.
1188 	 */
1189 	if (cpumask_test_cpu(cpu, later_mask))
1190 		return cpu;
1191 	/*
1192 	 * Check if this_cpu is to be skipped (i.e., it is
1193 	 * not in the mask) or not.
1194 	 */
1195 	if (!cpumask_test_cpu(this_cpu, later_mask))
1196 		this_cpu = -1;
1197 
1198 	rcu_read_lock();
1199 	for_each_domain(cpu, sd) {
1200 		if (sd->flags & SD_WAKE_AFFINE) {
1201 
1202 			/*
1203 			 * If possible, preempting this_cpu is
1204 			 * cheaper than migrating.
1205 			 */
1206 			if (this_cpu != -1 &&
1207 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1208 				rcu_read_unlock();
1209 				return this_cpu;
1210 			}
1211 
1212 			/*
1213 			 * Last chance: if best_cpu is valid and is
1214 			 * in the mask, that becomes our choice.
1215 			 */
1216 			if (best_cpu < nr_cpu_ids &&
1217 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1218 				rcu_read_unlock();
1219 				return best_cpu;
1220 			}
1221 		}
1222 	}
1223 	rcu_read_unlock();
1224 
1225 	/*
1226 	 * At this point, all our guesses failed, we just return
1227 	 * 'something', and let the caller sort the things out.
1228 	 */
1229 	if (this_cpu != -1)
1230 		return this_cpu;
1231 
1232 	cpu = cpumask_any(later_mask);
1233 	if (cpu < nr_cpu_ids)
1234 		return cpu;
1235 
1236 	return -1;
1237 }
1238 
1239 /* Locks the rq it finds */
1240 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1241 {
1242 	struct rq *later_rq = NULL;
1243 	int tries;
1244 	int cpu;
1245 
1246 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1247 		cpu = find_later_rq(task);
1248 
1249 		if ((cpu == -1) || (cpu == rq->cpu))
1250 			break;
1251 
1252 		later_rq = cpu_rq(cpu);
1253 
1254 		/* Retry if something changed. */
1255 		if (double_lock_balance(rq, later_rq)) {
1256 			if (unlikely(task_rq(task) != rq ||
1257 				     !cpumask_test_cpu(later_rq->cpu,
1258 				                       &task->cpus_allowed) ||
1259 				     task_running(rq, task) ||
1260 				     !task_on_rq_queued(task))) {
1261 				double_unlock_balance(rq, later_rq);
1262 				later_rq = NULL;
1263 				break;
1264 			}
1265 		}
1266 
1267 		/*
1268 		 * If the rq we found has no -deadline task, or
1269 		 * its earliest one has a later deadline than our
1270 		 * task, the rq is a good one.
1271 		 */
1272 		if (!later_rq->dl.dl_nr_running ||
1273 		    dl_time_before(task->dl.deadline,
1274 				   later_rq->dl.earliest_dl.curr))
1275 			break;
1276 
1277 		/* Otherwise we try again. */
1278 		double_unlock_balance(rq, later_rq);
1279 		later_rq = NULL;
1280 	}
1281 
1282 	return later_rq;
1283 }
1284 
1285 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1286 {
1287 	struct task_struct *p;
1288 
1289 	if (!has_pushable_dl_tasks(rq))
1290 		return NULL;
1291 
1292 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1293 		     struct task_struct, pushable_dl_tasks);
1294 
1295 	BUG_ON(rq->cpu != task_cpu(p));
1296 	BUG_ON(task_current(rq, p));
1297 	BUG_ON(p->nr_cpus_allowed <= 1);
1298 
1299 	BUG_ON(!task_on_rq_queued(p));
1300 	BUG_ON(!dl_task(p));
1301 
1302 	return p;
1303 }
1304 
1305 /*
1306  * See if the non running -deadline tasks on this rq
1307  * can be sent to some other CPU where they can preempt
1308  * and start executing.
1309  */
1310 static int push_dl_task(struct rq *rq)
1311 {
1312 	struct task_struct *next_task;
1313 	struct rq *later_rq;
1314 	int ret = 0;
1315 
1316 	if (!rq->dl.overloaded)
1317 		return 0;
1318 
1319 	next_task = pick_next_pushable_dl_task(rq);
1320 	if (!next_task)
1321 		return 0;
1322 
1323 retry:
1324 	if (unlikely(next_task == rq->curr)) {
1325 		WARN_ON(1);
1326 		return 0;
1327 	}
1328 
1329 	/*
1330 	 * If next_task preempts rq->curr, and rq->curr
1331 	 * can move away, it makes sense to just reschedule
1332 	 * without going further in pushing next_task.
1333 	 */
1334 	if (dl_task(rq->curr) &&
1335 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1336 	    rq->curr->nr_cpus_allowed > 1) {
1337 		resched_curr(rq);
1338 		return 0;
1339 	}
1340 
1341 	/* We might release rq lock */
1342 	get_task_struct(next_task);
1343 
1344 	/* Will lock the rq it'll find */
1345 	later_rq = find_lock_later_rq(next_task, rq);
1346 	if (!later_rq) {
1347 		struct task_struct *task;
1348 
1349 		/*
1350 		 * We must check all this again, since
1351 		 * find_lock_later_rq releases rq->lock and it is
1352 		 * then possible that next_task has migrated.
1353 		 */
1354 		task = pick_next_pushable_dl_task(rq);
1355 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1356 			/*
1357 			 * The task is still there. We don't try
1358 			 * again, some other cpu will pull it when ready.
1359 			 */
1360 			goto out;
1361 		}
1362 
1363 		if (!task)
1364 			/* No more tasks */
1365 			goto out;
1366 
1367 		put_task_struct(next_task);
1368 		next_task = task;
1369 		goto retry;
1370 	}
1371 
1372 	deactivate_task(rq, next_task, 0);
1373 	set_task_cpu(next_task, later_rq->cpu);
1374 	activate_task(later_rq, next_task, 0);
1375 	ret = 1;
1376 
1377 	resched_curr(later_rq);
1378 
1379 	double_unlock_balance(rq, later_rq);
1380 
1381 out:
1382 	put_task_struct(next_task);
1383 
1384 	return ret;
1385 }
1386 
1387 static void push_dl_tasks(struct rq *rq)
1388 {
1389 	/* Terminates as it moves a -deadline task */
1390 	while (push_dl_task(rq))
1391 		;
1392 }
1393 
1394 static int pull_dl_task(struct rq *this_rq)
1395 {
1396 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1397 	struct task_struct *p;
1398 	struct rq *src_rq;
1399 	u64 dmin = LONG_MAX;
1400 
1401 	if (likely(!dl_overloaded(this_rq)))
1402 		return 0;
1403 
1404 	/*
1405 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1406 	 * see overloaded we must also see the dlo_mask bit.
1407 	 */
1408 	smp_rmb();
1409 
1410 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1411 		if (this_cpu == cpu)
1412 			continue;
1413 
1414 		src_rq = cpu_rq(cpu);
1415 
1416 		/*
1417 		 * It looks racy, abd it is! However, as in sched_rt.c,
1418 		 * we are fine with this.
1419 		 */
1420 		if (this_rq->dl.dl_nr_running &&
1421 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1422 				   src_rq->dl.earliest_dl.next))
1423 			continue;
1424 
1425 		/* Might drop this_rq->lock */
1426 		double_lock_balance(this_rq, src_rq);
1427 
1428 		/*
1429 		 * If there are no more pullable tasks on the
1430 		 * rq, we're done with it.
1431 		 */
1432 		if (src_rq->dl.dl_nr_running <= 1)
1433 			goto skip;
1434 
1435 		p = pick_next_earliest_dl_task(src_rq, this_cpu);
1436 
1437 		/*
1438 		 * We found a task to be pulled if:
1439 		 *  - it preempts our current (if there's one),
1440 		 *  - it will preempt the last one we pulled (if any).
1441 		 */
1442 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1443 		    (!this_rq->dl.dl_nr_running ||
1444 		     dl_time_before(p->dl.deadline,
1445 				    this_rq->dl.earliest_dl.curr))) {
1446 			WARN_ON(p == src_rq->curr);
1447 			WARN_ON(!task_on_rq_queued(p));
1448 
1449 			/*
1450 			 * Then we pull iff p has actually an earlier
1451 			 * deadline than the current task of its runqueue.
1452 			 */
1453 			if (dl_time_before(p->dl.deadline,
1454 					   src_rq->curr->dl.deadline))
1455 				goto skip;
1456 
1457 			ret = 1;
1458 
1459 			deactivate_task(src_rq, p, 0);
1460 			set_task_cpu(p, this_cpu);
1461 			activate_task(this_rq, p, 0);
1462 			dmin = p->dl.deadline;
1463 
1464 			/* Is there any other task even earlier? */
1465 		}
1466 skip:
1467 		double_unlock_balance(this_rq, src_rq);
1468 	}
1469 
1470 	return ret;
1471 }
1472 
1473 static void post_schedule_dl(struct rq *rq)
1474 {
1475 	push_dl_tasks(rq);
1476 }
1477 
1478 /*
1479  * Since the task is not running and a reschedule is not going to happen
1480  * anytime soon on its runqueue, we try pushing it away now.
1481  */
1482 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1483 {
1484 	if (!task_running(rq, p) &&
1485 	    !test_tsk_need_resched(rq->curr) &&
1486 	    has_pushable_dl_tasks(rq) &&
1487 	    p->nr_cpus_allowed > 1 &&
1488 	    dl_task(rq->curr) &&
1489 	    (rq->curr->nr_cpus_allowed < 2 ||
1490 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1491 		push_dl_tasks(rq);
1492 	}
1493 }
1494 
1495 static void set_cpus_allowed_dl(struct task_struct *p,
1496 				const struct cpumask *new_mask)
1497 {
1498 	struct rq *rq;
1499 	struct root_domain *src_rd;
1500 	int weight;
1501 
1502 	BUG_ON(!dl_task(p));
1503 
1504 	rq = task_rq(p);
1505 	src_rd = rq->rd;
1506 	/*
1507 	 * Migrating a SCHED_DEADLINE task between exclusive
1508 	 * cpusets (different root_domains) entails a bandwidth
1509 	 * update. We already made space for us in the destination
1510 	 * domain (see cpuset_can_attach()).
1511 	 */
1512 	if (!cpumask_intersects(src_rd->span, new_mask)) {
1513 		struct dl_bw *src_dl_b;
1514 
1515 		src_dl_b = dl_bw_of(cpu_of(rq));
1516 		/*
1517 		 * We now free resources of the root_domain we are migrating
1518 		 * off. In the worst case, sched_setattr() may temporary fail
1519 		 * until we complete the update.
1520 		 */
1521 		raw_spin_lock(&src_dl_b->lock);
1522 		__dl_clear(src_dl_b, p->dl.dl_bw);
1523 		raw_spin_unlock(&src_dl_b->lock);
1524 	}
1525 
1526 	/*
1527 	 * Update only if the task is actually running (i.e.,
1528 	 * it is on the rq AND it is not throttled).
1529 	 */
1530 	if (!on_dl_rq(&p->dl))
1531 		return;
1532 
1533 	weight = cpumask_weight(new_mask);
1534 
1535 	/*
1536 	 * Only update if the process changes its state from whether it
1537 	 * can migrate or not.
1538 	 */
1539 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1540 		return;
1541 
1542 	/*
1543 	 * The process used to be able to migrate OR it can now migrate
1544 	 */
1545 	if (weight <= 1) {
1546 		if (!task_current(rq, p))
1547 			dequeue_pushable_dl_task(rq, p);
1548 		BUG_ON(!rq->dl.dl_nr_migratory);
1549 		rq->dl.dl_nr_migratory--;
1550 	} else {
1551 		if (!task_current(rq, p))
1552 			enqueue_pushable_dl_task(rq, p);
1553 		rq->dl.dl_nr_migratory++;
1554 	}
1555 
1556 	update_dl_migration(&rq->dl);
1557 }
1558 
1559 /* Assumes rq->lock is held */
1560 static void rq_online_dl(struct rq *rq)
1561 {
1562 	if (rq->dl.overloaded)
1563 		dl_set_overload(rq);
1564 
1565 	if (rq->dl.dl_nr_running > 0)
1566 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1567 }
1568 
1569 /* Assumes rq->lock is held */
1570 static void rq_offline_dl(struct rq *rq)
1571 {
1572 	if (rq->dl.overloaded)
1573 		dl_clear_overload(rq);
1574 
1575 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1576 }
1577 
1578 void init_sched_dl_class(void)
1579 {
1580 	unsigned int i;
1581 
1582 	for_each_possible_cpu(i)
1583 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1584 					GFP_KERNEL, cpu_to_node(i));
1585 }
1586 
1587 #endif /* CONFIG_SMP */
1588 
1589 /*
1590  *  Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
1591  */
1592 static void cancel_dl_timer(struct rq *rq, struct task_struct *p)
1593 {
1594 	struct hrtimer *dl_timer = &p->dl.dl_timer;
1595 
1596 	/* Nobody will change task's class if pi_lock is held */
1597 	lockdep_assert_held(&p->pi_lock);
1598 
1599 	if (hrtimer_active(dl_timer)) {
1600 		int ret = hrtimer_try_to_cancel(dl_timer);
1601 
1602 		if (unlikely(ret == -1)) {
1603 			/*
1604 			 * Note, p may migrate OR new deadline tasks
1605 			 * may appear in rq when we are unlocking it.
1606 			 * A caller of us must be fine with that.
1607 			 */
1608 			raw_spin_unlock(&rq->lock);
1609 			hrtimer_cancel(dl_timer);
1610 			raw_spin_lock(&rq->lock);
1611 		}
1612 	}
1613 }
1614 
1615 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1616 {
1617 	cancel_dl_timer(rq, p);
1618 
1619 	__dl_clear_params(p);
1620 
1621 	/*
1622 	 * Since this might be the only -deadline task on the rq,
1623 	 * this is the right place to try to pull some other one
1624 	 * from an overloaded cpu, if any.
1625 	 */
1626 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1627 		return;
1628 
1629 	if (pull_dl_task(rq))
1630 		resched_curr(rq);
1631 }
1632 
1633 /*
1634  * When switching to -deadline, we may overload the rq, then
1635  * we try to push someone off, if possible.
1636  */
1637 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1638 {
1639 	int check_resched = 1;
1640 
1641 	/*
1642 	 * If p is throttled, don't consider the possibility
1643 	 * of preempting rq->curr, the check will be done right
1644 	 * after its runtime will get replenished.
1645 	 */
1646 	if (unlikely(p->dl.dl_throttled))
1647 		return;
1648 
1649 	if (task_on_rq_queued(p) && rq->curr != p) {
1650 #ifdef CONFIG_SMP
1651 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
1652 			push_dl_task(rq) && rq != task_rq(p))
1653 			/* Only reschedule if pushing failed */
1654 			check_resched = 0;
1655 #endif /* CONFIG_SMP */
1656 		if (check_resched) {
1657 			if (dl_task(rq->curr))
1658 				check_preempt_curr_dl(rq, p, 0);
1659 			else
1660 				resched_curr(rq);
1661 		}
1662 	}
1663 }
1664 
1665 /*
1666  * If the scheduling parameters of a -deadline task changed,
1667  * a push or pull operation might be needed.
1668  */
1669 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1670 			    int oldprio)
1671 {
1672 	if (task_on_rq_queued(p) || rq->curr == p) {
1673 #ifdef CONFIG_SMP
1674 		/*
1675 		 * This might be too much, but unfortunately
1676 		 * we don't have the old deadline value, and
1677 		 * we can't argue if the task is increasing
1678 		 * or lowering its prio, so...
1679 		 */
1680 		if (!rq->dl.overloaded)
1681 			pull_dl_task(rq);
1682 
1683 		/*
1684 		 * If we now have a earlier deadline task than p,
1685 		 * then reschedule, provided p is still on this
1686 		 * runqueue.
1687 		 */
1688 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1689 		    rq->curr == p)
1690 			resched_curr(rq);
1691 #else
1692 		/*
1693 		 * Again, we don't know if p has a earlier
1694 		 * or later deadline, so let's blindly set a
1695 		 * (maybe not needed) rescheduling point.
1696 		 */
1697 		resched_curr(rq);
1698 #endif /* CONFIG_SMP */
1699 	} else
1700 		switched_to_dl(rq, p);
1701 }
1702 
1703 const struct sched_class dl_sched_class = {
1704 	.next			= &rt_sched_class,
1705 	.enqueue_task		= enqueue_task_dl,
1706 	.dequeue_task		= dequeue_task_dl,
1707 	.yield_task		= yield_task_dl,
1708 
1709 	.check_preempt_curr	= check_preempt_curr_dl,
1710 
1711 	.pick_next_task		= pick_next_task_dl,
1712 	.put_prev_task		= put_prev_task_dl,
1713 
1714 #ifdef CONFIG_SMP
1715 	.select_task_rq		= select_task_rq_dl,
1716 	.set_cpus_allowed       = set_cpus_allowed_dl,
1717 	.rq_online              = rq_online_dl,
1718 	.rq_offline             = rq_offline_dl,
1719 	.post_schedule		= post_schedule_dl,
1720 	.task_woken		= task_woken_dl,
1721 #endif
1722 
1723 	.set_curr_task		= set_curr_task_dl,
1724 	.task_tick		= task_tick_dl,
1725 	.task_fork              = task_fork_dl,
1726 	.task_dead		= task_dead_dl,
1727 
1728 	.prio_changed           = prio_changed_dl,
1729 	.switched_from		= switched_from_dl,
1730 	.switched_to		= switched_to_dl,
1731 
1732 	.update_curr		= update_curr_dl,
1733 };
1734 
1735 #ifdef CONFIG_SCHED_DEBUG
1736 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1737 
1738 void print_dl_stats(struct seq_file *m, int cpu)
1739 {
1740 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1741 }
1742 #endif /* CONFIG_SCHED_DEBUG */
1743