xref: /linux/kernel/sched/deadline.c (revision 8f2146159b3a24d4fde0479c5e19f31908419004)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 #include <linux/sched/clock.h>
21 #include <uapi/linux/sched/types.h>
22 #include "sched.h"
23 #include "pelt.h"
24 
25 /*
26  * Default limits for DL period; on the top end we guard against small util
27  * tasks still getting ridiculously long effective runtimes, on the bottom end we
28  * guard against timer DoS.
29  */
30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
31 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
32 #ifdef CONFIG_SYSCTL
33 static const struct ctl_table sched_dl_sysctls[] = {
34 	{
35 		.procname       = "sched_deadline_period_max_us",
36 		.data           = &sysctl_sched_dl_period_max,
37 		.maxlen         = sizeof(unsigned int),
38 		.mode           = 0644,
39 		.proc_handler   = proc_douintvec_minmax,
40 		.extra1         = (void *)&sysctl_sched_dl_period_min,
41 	},
42 	{
43 		.procname       = "sched_deadline_period_min_us",
44 		.data           = &sysctl_sched_dl_period_min,
45 		.maxlen         = sizeof(unsigned int),
46 		.mode           = 0644,
47 		.proc_handler   = proc_douintvec_minmax,
48 		.extra2         = (void *)&sysctl_sched_dl_period_max,
49 	},
50 };
51 
52 static int __init sched_dl_sysctl_init(void)
53 {
54 	register_sysctl_init("kernel", sched_dl_sysctls);
55 	return 0;
56 }
57 late_initcall(sched_dl_sysctl_init);
58 #endif /* CONFIG_SYSCTL */
59 
60 static bool dl_server(struct sched_dl_entity *dl_se)
61 {
62 	return dl_se->dl_server;
63 }
64 
65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
66 {
67 	BUG_ON(dl_server(dl_se));
68 	return container_of(dl_se, struct task_struct, dl);
69 }
70 
71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
72 {
73 	return container_of(dl_rq, struct rq, dl);
74 }
75 
76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
77 {
78 	struct rq *rq = dl_se->rq;
79 
80 	if (!dl_server(dl_se))
81 		rq = task_rq(dl_task_of(dl_se));
82 
83 	return rq;
84 }
85 
86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
87 {
88 	return &rq_of_dl_se(dl_se)->dl;
89 }
90 
91 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
92 {
93 	return !RB_EMPTY_NODE(&dl_se->rb_node);
94 }
95 
96 #ifdef CONFIG_RT_MUTEXES
97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
98 {
99 	return dl_se->pi_se;
100 }
101 
102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
103 {
104 	return pi_of(dl_se) != dl_se;
105 }
106 #else /* !CONFIG_RT_MUTEXES: */
107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
108 {
109 	return dl_se;
110 }
111 
112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
113 {
114 	return false;
115 }
116 #endif /* !CONFIG_RT_MUTEXES */
117 
118 static inline struct dl_bw *dl_bw_of(int i)
119 {
120 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
121 			 "sched RCU must be held");
122 	return &cpu_rq(i)->rd->dl_bw;
123 }
124 
125 static inline int dl_bw_cpus(int i)
126 {
127 	struct root_domain *rd = cpu_rq(i)->rd;
128 	int cpus;
129 
130 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
131 			 "sched RCU must be held");
132 
133 	if (cpumask_subset(rd->span, cpu_active_mask))
134 		return cpumask_weight(rd->span);
135 
136 	cpus = 0;
137 
138 	for_each_cpu_and(i, rd->span, cpu_active_mask)
139 		cpus++;
140 
141 	return cpus;
142 }
143 
144 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
145 {
146 	unsigned long cap = 0;
147 	int i;
148 
149 	for_each_cpu_and(i, mask, cpu_active_mask)
150 		cap += arch_scale_cpu_capacity(i);
151 
152 	return cap;
153 }
154 
155 /*
156  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
157  * of the CPU the task is running on rather rd's \Sum CPU capacity.
158  */
159 static inline unsigned long dl_bw_capacity(int i)
160 {
161 	if (!sched_asym_cpucap_active() &&
162 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
163 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
164 	} else {
165 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
166 				 "sched RCU must be held");
167 
168 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
169 	}
170 }
171 
172 bool dl_bw_visited(int cpu, u64 cookie)
173 {
174 	struct root_domain *rd = cpu_rq(cpu)->rd;
175 
176 	if (rd->visit_cookie == cookie)
177 		return true;
178 
179 	rd->visit_cookie = cookie;
180 	return false;
181 }
182 
183 static inline
184 void __dl_update(struct dl_bw *dl_b, s64 bw)
185 {
186 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
187 	int i;
188 
189 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
190 			 "sched RCU must be held");
191 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
192 		struct rq *rq = cpu_rq(i);
193 
194 		rq->dl.extra_bw += bw;
195 	}
196 }
197 
198 static inline
199 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
200 {
201 	dl_b->total_bw -= tsk_bw;
202 	__dl_update(dl_b, (s32)tsk_bw / cpus);
203 }
204 
205 static inline
206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
207 {
208 	dl_b->total_bw += tsk_bw;
209 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
210 }
211 
212 static inline bool
213 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
214 {
215 	return dl_b->bw != -1 &&
216 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
217 }
218 
219 static inline
220 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
221 {
222 	u64 old = dl_rq->running_bw;
223 
224 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
225 	dl_rq->running_bw += dl_bw;
226 	WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
227 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
228 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
229 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
230 }
231 
232 static inline
233 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
234 {
235 	u64 old = dl_rq->running_bw;
236 
237 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
238 	dl_rq->running_bw -= dl_bw;
239 	WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
240 	if (dl_rq->running_bw > old)
241 		dl_rq->running_bw = 0;
242 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
243 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
244 }
245 
246 static inline
247 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 	u64 old = dl_rq->this_bw;
250 
251 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 	dl_rq->this_bw += dl_bw;
253 	WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
254 }
255 
256 static inline
257 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
258 {
259 	u64 old = dl_rq->this_bw;
260 
261 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
262 	dl_rq->this_bw -= dl_bw;
263 	WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
264 	if (dl_rq->this_bw > old)
265 		dl_rq->this_bw = 0;
266 	WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
267 }
268 
269 static inline
270 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
271 {
272 	if (!dl_entity_is_special(dl_se))
273 		__add_rq_bw(dl_se->dl_bw, dl_rq);
274 }
275 
276 static inline
277 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
278 {
279 	if (!dl_entity_is_special(dl_se))
280 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
281 }
282 
283 static inline
284 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
285 {
286 	if (!dl_entity_is_special(dl_se))
287 		__add_running_bw(dl_se->dl_bw, dl_rq);
288 }
289 
290 static inline
291 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
292 {
293 	if (!dl_entity_is_special(dl_se))
294 		__sub_running_bw(dl_se->dl_bw, dl_rq);
295 }
296 
297 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
298 {
299 	if (dl_se->dl_non_contending) {
300 		sub_running_bw(dl_se, &rq->dl);
301 		dl_se->dl_non_contending = 0;
302 
303 		/*
304 		 * If the timer handler is currently running and the
305 		 * timer cannot be canceled, inactive_task_timer()
306 		 * will see that dl_not_contending is not set, and
307 		 * will not touch the rq's active utilization,
308 		 * so we are still safe.
309 		 */
310 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
311 			if (!dl_server(dl_se))
312 				put_task_struct(dl_task_of(dl_se));
313 		}
314 	}
315 	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
316 	__add_rq_bw(new_bw, &rq->dl);
317 }
318 
319 static __always_inline
320 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
321 {
322 	/*
323 	 * If the timer callback was running (hrtimer_try_to_cancel == -1),
324 	 * it will eventually call put_task_struct().
325 	 */
326 	if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
327 		put_task_struct(dl_task_of(dl_se));
328 }
329 
330 static __always_inline
331 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
332 {
333 	cancel_dl_timer(dl_se, &dl_se->dl_timer);
334 }
335 
336 static __always_inline
337 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
338 {
339 	cancel_dl_timer(dl_se, &dl_se->inactive_timer);
340 }
341 
342 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
343 {
344 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
345 
346 	if (task_on_rq_queued(p))
347 		return;
348 
349 	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
350 }
351 
352 static void __dl_clear_params(struct sched_dl_entity *dl_se);
353 
354 /*
355  * The utilization of a task cannot be immediately removed from
356  * the rq active utilization (running_bw) when the task blocks.
357  * Instead, we have to wait for the so called "0-lag time".
358  *
359  * If a task blocks before the "0-lag time", a timer (the inactive
360  * timer) is armed, and running_bw is decreased when the timer
361  * fires.
362  *
363  * If the task wakes up again before the inactive timer fires,
364  * the timer is canceled, whereas if the task wakes up after the
365  * inactive timer fired (and running_bw has been decreased) the
366  * task's utilization has to be added to running_bw again.
367  * A flag in the deadline scheduling entity (dl_non_contending)
368  * is used to avoid race conditions between the inactive timer handler
369  * and task wakeups.
370  *
371  * The following diagram shows how running_bw is updated. A task is
372  * "ACTIVE" when its utilization contributes to running_bw; an
373  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
374  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
375  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
376  * time already passed, which does not contribute to running_bw anymore.
377  *                              +------------------+
378  *             wakeup           |    ACTIVE        |
379  *          +------------------>+   contending     |
380  *          | add_running_bw    |                  |
381  *          |                   +----+------+------+
382  *          |                        |      ^
383  *          |                dequeue |      |
384  * +--------+-------+                |      |
385  * |                |   t >= 0-lag   |      | wakeup
386  * |    INACTIVE    |<---------------+      |
387  * |                | sub_running_bw |      |
388  * +--------+-------+                |      |
389  *          ^                        |      |
390  *          |              t < 0-lag |      |
391  *          |                        |      |
392  *          |                        V      |
393  *          |                   +----+------+------+
394  *          | sub_running_bw    |    ACTIVE        |
395  *          +-------------------+                  |
396  *            inactive timer    |  non contending  |
397  *            fired             +------------------+
398  *
399  * The task_non_contending() function is invoked when a task
400  * blocks, and checks if the 0-lag time already passed or
401  * not (in the first case, it directly updates running_bw;
402  * in the second case, it arms the inactive timer).
403  *
404  * The task_contending() function is invoked when a task wakes
405  * up, and checks if the task is still in the "ACTIVE non contending"
406  * state or not (in the second case, it updates running_bw).
407  */
408 static void task_non_contending(struct sched_dl_entity *dl_se)
409 {
410 	struct hrtimer *timer = &dl_se->inactive_timer;
411 	struct rq *rq = rq_of_dl_se(dl_se);
412 	struct dl_rq *dl_rq = &rq->dl;
413 	s64 zerolag_time;
414 
415 	/*
416 	 * If this is a non-deadline task that has been boosted,
417 	 * do nothing
418 	 */
419 	if (dl_se->dl_runtime == 0)
420 		return;
421 
422 	if (dl_entity_is_special(dl_se))
423 		return;
424 
425 	WARN_ON(dl_se->dl_non_contending);
426 
427 	zerolag_time = dl_se->deadline -
428 		 div64_long((dl_se->runtime * dl_se->dl_period),
429 			dl_se->dl_runtime);
430 
431 	/*
432 	 * Using relative times instead of the absolute "0-lag time"
433 	 * allows to simplify the code
434 	 */
435 	zerolag_time -= rq_clock(rq);
436 
437 	/*
438 	 * If the "0-lag time" already passed, decrease the active
439 	 * utilization now, instead of starting a timer
440 	 */
441 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
442 		if (dl_server(dl_se)) {
443 			sub_running_bw(dl_se, dl_rq);
444 		} else {
445 			struct task_struct *p = dl_task_of(dl_se);
446 
447 			if (dl_task(p))
448 				sub_running_bw(dl_se, dl_rq);
449 
450 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
451 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
452 
453 				if (READ_ONCE(p->__state) == TASK_DEAD)
454 					sub_rq_bw(dl_se, &rq->dl);
455 				raw_spin_lock(&dl_b->lock);
456 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
457 				raw_spin_unlock(&dl_b->lock);
458 				__dl_clear_params(dl_se);
459 			}
460 		}
461 
462 		return;
463 	}
464 
465 	dl_se->dl_non_contending = 1;
466 	if (!dl_server(dl_se))
467 		get_task_struct(dl_task_of(dl_se));
468 
469 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
470 }
471 
472 static void task_contending(struct sched_dl_entity *dl_se, int flags)
473 {
474 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
475 
476 	/*
477 	 * If this is a non-deadline task that has been boosted,
478 	 * do nothing
479 	 */
480 	if (dl_se->dl_runtime == 0)
481 		return;
482 
483 	if (flags & ENQUEUE_MIGRATED)
484 		add_rq_bw(dl_se, dl_rq);
485 
486 	if (dl_se->dl_non_contending) {
487 		dl_se->dl_non_contending = 0;
488 		/*
489 		 * If the timer handler is currently running and the
490 		 * timer cannot be canceled, inactive_task_timer()
491 		 * will see that dl_not_contending is not set, and
492 		 * will not touch the rq's active utilization,
493 		 * so we are still safe.
494 		 */
495 		cancel_inactive_timer(dl_se);
496 	} else {
497 		/*
498 		 * Since "dl_non_contending" is not set, the
499 		 * task's utilization has already been removed from
500 		 * active utilization (either when the task blocked,
501 		 * when the "inactive timer" fired).
502 		 * So, add it back.
503 		 */
504 		add_running_bw(dl_se, dl_rq);
505 	}
506 }
507 
508 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
509 {
510 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
511 }
512 
513 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
514 
515 void init_dl_bw(struct dl_bw *dl_b)
516 {
517 	raw_spin_lock_init(&dl_b->lock);
518 	if (global_rt_runtime() == RUNTIME_INF)
519 		dl_b->bw = -1;
520 	else
521 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
522 	dl_b->total_bw = 0;
523 }
524 
525 void init_dl_rq(struct dl_rq *dl_rq)
526 {
527 	dl_rq->root = RB_ROOT_CACHED;
528 
529 	/* zero means no -deadline tasks */
530 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
531 
532 	dl_rq->overloaded = 0;
533 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
534 
535 	dl_rq->running_bw = 0;
536 	dl_rq->this_bw = 0;
537 	init_dl_rq_bw_ratio(dl_rq);
538 }
539 
540 static inline int dl_overloaded(struct rq *rq)
541 {
542 	return atomic_read(&rq->rd->dlo_count);
543 }
544 
545 static inline void dl_set_overload(struct rq *rq)
546 {
547 	if (!rq->online)
548 		return;
549 
550 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
551 	/*
552 	 * Must be visible before the overload count is
553 	 * set (as in sched_rt.c).
554 	 *
555 	 * Matched by the barrier in pull_dl_task().
556 	 */
557 	smp_wmb();
558 	atomic_inc(&rq->rd->dlo_count);
559 }
560 
561 static inline void dl_clear_overload(struct rq *rq)
562 {
563 	if (!rq->online)
564 		return;
565 
566 	atomic_dec(&rq->rd->dlo_count);
567 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
568 }
569 
570 #define __node_2_pdl(node) \
571 	rb_entry((node), struct task_struct, pushable_dl_tasks)
572 
573 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
574 {
575 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
576 }
577 
578 static inline int has_pushable_dl_tasks(struct rq *rq)
579 {
580 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
581 }
582 
583 /*
584  * The list of pushable -deadline task is not a plist, like in
585  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
586  */
587 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
588 {
589 	struct rb_node *leftmost;
590 
591 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
592 
593 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
594 				 &rq->dl.pushable_dl_tasks_root,
595 				 __pushable_less);
596 	if (leftmost)
597 		rq->dl.earliest_dl.next = p->dl.deadline;
598 
599 	if (!rq->dl.overloaded) {
600 		dl_set_overload(rq);
601 		rq->dl.overloaded = 1;
602 	}
603 }
604 
605 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
606 {
607 	struct dl_rq *dl_rq = &rq->dl;
608 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
609 	struct rb_node *leftmost;
610 
611 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
612 		return;
613 
614 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
615 	if (leftmost)
616 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
617 
618 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
619 
620 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
621 		dl_clear_overload(rq);
622 		rq->dl.overloaded = 0;
623 	}
624 }
625 
626 static int push_dl_task(struct rq *rq);
627 
628 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
629 {
630 	return rq->online && dl_task(prev);
631 }
632 
633 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
634 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
635 
636 static void push_dl_tasks(struct rq *);
637 static void pull_dl_task(struct rq *);
638 
639 static inline void deadline_queue_push_tasks(struct rq *rq)
640 {
641 	if (!has_pushable_dl_tasks(rq))
642 		return;
643 
644 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
645 }
646 
647 static inline void deadline_queue_pull_task(struct rq *rq)
648 {
649 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
650 }
651 
652 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
653 
654 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
655 {
656 	struct rq *later_rq = NULL;
657 	struct dl_bw *dl_b;
658 
659 	later_rq = find_lock_later_rq(p, rq);
660 	if (!later_rq) {
661 		int cpu;
662 
663 		/*
664 		 * If we cannot preempt any rq, fall back to pick any
665 		 * online CPU:
666 		 */
667 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
668 		if (cpu >= nr_cpu_ids) {
669 			/*
670 			 * Failed to find any suitable CPU.
671 			 * The task will never come back!
672 			 */
673 			WARN_ON_ONCE(dl_bandwidth_enabled());
674 
675 			/*
676 			 * If admission control is disabled we
677 			 * try a little harder to let the task
678 			 * run.
679 			 */
680 			cpu = cpumask_any(cpu_active_mask);
681 		}
682 		later_rq = cpu_rq(cpu);
683 		double_lock_balance(rq, later_rq);
684 	}
685 
686 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
687 		/*
688 		 * Inactive timer is armed (or callback is running, but
689 		 * waiting for us to release rq locks). In any case, when it
690 		 * will fire (or continue), it will see running_bw of this
691 		 * task migrated to later_rq (and correctly handle it).
692 		 */
693 		sub_running_bw(&p->dl, &rq->dl);
694 		sub_rq_bw(&p->dl, &rq->dl);
695 
696 		add_rq_bw(&p->dl, &later_rq->dl);
697 		add_running_bw(&p->dl, &later_rq->dl);
698 	} else {
699 		sub_rq_bw(&p->dl, &rq->dl);
700 		add_rq_bw(&p->dl, &later_rq->dl);
701 	}
702 
703 	/*
704 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
705 	 * since p is still hanging out in the old (now moved to default) root
706 	 * domain.
707 	 */
708 	dl_b = &rq->rd->dl_bw;
709 	raw_spin_lock(&dl_b->lock);
710 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
711 	raw_spin_unlock(&dl_b->lock);
712 
713 	dl_b = &later_rq->rd->dl_bw;
714 	raw_spin_lock(&dl_b->lock);
715 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
716 	raw_spin_unlock(&dl_b->lock);
717 
718 	set_task_cpu(p, later_rq->cpu);
719 	double_unlock_balance(later_rq, rq);
720 
721 	return later_rq;
722 }
723 
724 static void
725 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
726 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
727 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
728 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
729 
730 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
731 					    struct rq *rq)
732 {
733 	/* for non-boosted task, pi_of(dl_se) == dl_se */
734 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
735 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
736 
737 	/*
738 	 * If it is a deferred reservation, and the server
739 	 * is not handling an starvation case, defer it.
740 	 */
741 	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
742 		dl_se->dl_throttled = 1;
743 		dl_se->dl_defer_armed = 1;
744 	}
745 }
746 
747 /*
748  * We are being explicitly informed that a new instance is starting,
749  * and this means that:
750  *  - the absolute deadline of the entity has to be placed at
751  *    current time + relative deadline;
752  *  - the runtime of the entity has to be set to the maximum value.
753  *
754  * The capability of specifying such event is useful whenever a -deadline
755  * entity wants to (try to!) synchronize its behaviour with the scheduler's
756  * one, and to (try to!) reconcile itself with its own scheduling
757  * parameters.
758  */
759 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
760 {
761 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
762 	struct rq *rq = rq_of_dl_rq(dl_rq);
763 
764 	update_rq_clock(rq);
765 
766 	WARN_ON(is_dl_boosted(dl_se));
767 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
768 
769 	/*
770 	 * We are racing with the deadline timer. So, do nothing because
771 	 * the deadline timer handler will take care of properly recharging
772 	 * the runtime and postponing the deadline
773 	 */
774 	if (dl_se->dl_throttled)
775 		return;
776 
777 	/*
778 	 * We use the regular wall clock time to set deadlines in the
779 	 * future; in fact, we must consider execution overheads (time
780 	 * spent on hardirq context, etc.).
781 	 */
782 	replenish_dl_new_period(dl_se, rq);
783 }
784 
785 static int start_dl_timer(struct sched_dl_entity *dl_se);
786 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
787 
788 /*
789  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
790  * possibility of a entity lasting more than what it declared, and thus
791  * exhausting its runtime.
792  *
793  * Here we are interested in making runtime overrun possible, but we do
794  * not want a entity which is misbehaving to affect the scheduling of all
795  * other entities.
796  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
797  * is used, in order to confine each entity within its own bandwidth.
798  *
799  * This function deals exactly with that, and ensures that when the runtime
800  * of a entity is replenished, its deadline is also postponed. That ensures
801  * the overrunning entity can't interfere with other entity in the system and
802  * can't make them miss their deadlines. Reasons why this kind of overruns
803  * could happen are, typically, a entity voluntarily trying to overcome its
804  * runtime, or it just underestimated it during sched_setattr().
805  */
806 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
807 {
808 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
809 	struct rq *rq = rq_of_dl_rq(dl_rq);
810 
811 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
812 
813 	/*
814 	 * This could be the case for a !-dl task that is boosted.
815 	 * Just go with full inherited parameters.
816 	 *
817 	 * Or, it could be the case of a deferred reservation that
818 	 * was not able to consume its runtime in background and
819 	 * reached this point with current u > U.
820 	 *
821 	 * In both cases, set a new period.
822 	 */
823 	if (dl_se->dl_deadline == 0 ||
824 	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
825 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
826 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
827 	}
828 
829 	if (dl_se->dl_yielded && dl_se->runtime > 0)
830 		dl_se->runtime = 0;
831 
832 	/*
833 	 * We keep moving the deadline away until we get some
834 	 * available runtime for the entity. This ensures correct
835 	 * handling of situations where the runtime overrun is
836 	 * arbitrary large.
837 	 */
838 	while (dl_se->runtime <= 0) {
839 		dl_se->deadline += pi_of(dl_se)->dl_period;
840 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
841 	}
842 
843 	/*
844 	 * At this point, the deadline really should be "in
845 	 * the future" with respect to rq->clock. If it's
846 	 * not, we are, for some reason, lagging too much!
847 	 * Anyway, after having warn userspace abut that,
848 	 * we still try to keep the things running by
849 	 * resetting the deadline and the budget of the
850 	 * entity.
851 	 */
852 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
853 		printk_deferred_once("sched: DL replenish lagged too much\n");
854 		replenish_dl_new_period(dl_se, rq);
855 	}
856 
857 	if (dl_se->dl_yielded)
858 		dl_se->dl_yielded = 0;
859 	if (dl_se->dl_throttled)
860 		dl_se->dl_throttled = 0;
861 
862 	/*
863 	 * If this is the replenishment of a deferred reservation,
864 	 * clear the flag and return.
865 	 */
866 	if (dl_se->dl_defer_armed) {
867 		dl_se->dl_defer_armed = 0;
868 		return;
869 	}
870 
871 	/*
872 	 * A this point, if the deferred server is not armed, and the deadline
873 	 * is in the future, if it is not running already, throttle the server
874 	 * and arm the defer timer.
875 	 */
876 	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
877 	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
878 		if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
879 
880 			/*
881 			 * Set dl_se->dl_defer_armed and dl_throttled variables to
882 			 * inform the start_dl_timer() that this is a deferred
883 			 * activation.
884 			 */
885 			dl_se->dl_defer_armed = 1;
886 			dl_se->dl_throttled = 1;
887 			if (!start_dl_timer(dl_se)) {
888 				/*
889 				 * If for whatever reason (delays), a previous timer was
890 				 * queued but not serviced, cancel it and clean the
891 				 * deferrable server variables intended for start_dl_timer().
892 				 */
893 				hrtimer_try_to_cancel(&dl_se->dl_timer);
894 				dl_se->dl_defer_armed = 0;
895 				dl_se->dl_throttled = 0;
896 			}
897 		}
898 	}
899 }
900 
901 /*
902  * Here we check if --at time t-- an entity (which is probably being
903  * [re]activated or, in general, enqueued) can use its remaining runtime
904  * and its current deadline _without_ exceeding the bandwidth it is
905  * assigned (function returns true if it can't). We are in fact applying
906  * one of the CBS rules: when a task wakes up, if the residual runtime
907  * over residual deadline fits within the allocated bandwidth, then we
908  * can keep the current (absolute) deadline and residual budget without
909  * disrupting the schedulability of the system. Otherwise, we should
910  * refill the runtime and set the deadline a period in the future,
911  * because keeping the current (absolute) deadline of the task would
912  * result in breaking guarantees promised to other tasks (refer to
913  * Documentation/scheduler/sched-deadline.rst for more information).
914  *
915  * This function returns true if:
916  *
917  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
918  *
919  * IOW we can't recycle current parameters.
920  *
921  * Notice that the bandwidth check is done against the deadline. For
922  * task with deadline equal to period this is the same of using
923  * dl_period instead of dl_deadline in the equation above.
924  */
925 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
926 {
927 	u64 left, right;
928 
929 	/*
930 	 * left and right are the two sides of the equation above,
931 	 * after a bit of shuffling to use multiplications instead
932 	 * of divisions.
933 	 *
934 	 * Note that none of the time values involved in the two
935 	 * multiplications are absolute: dl_deadline and dl_runtime
936 	 * are the relative deadline and the maximum runtime of each
937 	 * instance, runtime is the runtime left for the last instance
938 	 * and (deadline - t), since t is rq->clock, is the time left
939 	 * to the (absolute) deadline. Even if overflowing the u64 type
940 	 * is very unlikely to occur in both cases, here we scale down
941 	 * as we want to avoid that risk at all. Scaling down by 10
942 	 * means that we reduce granularity to 1us. We are fine with it,
943 	 * since this is only a true/false check and, anyway, thinking
944 	 * of anything below microseconds resolution is actually fiction
945 	 * (but still we want to give the user that illusion >;).
946 	 */
947 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
948 	right = ((dl_se->deadline - t) >> DL_SCALE) *
949 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
950 
951 	return dl_time_before(right, left);
952 }
953 
954 /*
955  * Revised wakeup rule [1]: For self-suspending tasks, rather then
956  * re-initializing task's runtime and deadline, the revised wakeup
957  * rule adjusts the task's runtime to avoid the task to overrun its
958  * density.
959  *
960  * Reasoning: a task may overrun the density if:
961  *    runtime / (deadline - t) > dl_runtime / dl_deadline
962  *
963  * Therefore, runtime can be adjusted to:
964  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
965  *
966  * In such way that runtime will be equal to the maximum density
967  * the task can use without breaking any rule.
968  *
969  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
970  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
971  */
972 static void
973 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
974 {
975 	u64 laxity = dl_se->deadline - rq_clock(rq);
976 
977 	/*
978 	 * If the task has deadline < period, and the deadline is in the past,
979 	 * it should already be throttled before this check.
980 	 *
981 	 * See update_dl_entity() comments for further details.
982 	 */
983 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
984 
985 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
986 }
987 
988 /*
989  * Regarding the deadline, a task with implicit deadline has a relative
990  * deadline == relative period. A task with constrained deadline has a
991  * relative deadline <= relative period.
992  *
993  * We support constrained deadline tasks. However, there are some restrictions
994  * applied only for tasks which do not have an implicit deadline. See
995  * update_dl_entity() to know more about such restrictions.
996  *
997  * The dl_is_implicit() returns true if the task has an implicit deadline.
998  */
999 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1000 {
1001 	return dl_se->dl_deadline == dl_se->dl_period;
1002 }
1003 
1004 /*
1005  * When a deadline entity is placed in the runqueue, its runtime and deadline
1006  * might need to be updated. This is done by a CBS wake up rule. There are two
1007  * different rules: 1) the original CBS; and 2) the Revisited CBS.
1008  *
1009  * When the task is starting a new period, the Original CBS is used. In this
1010  * case, the runtime is replenished and a new absolute deadline is set.
1011  *
1012  * When a task is queued before the begin of the next period, using the
1013  * remaining runtime and deadline could make the entity to overflow, see
1014  * dl_entity_overflow() to find more about runtime overflow. When such case
1015  * is detected, the runtime and deadline need to be updated.
1016  *
1017  * If the task has an implicit deadline, i.e., deadline == period, the Original
1018  * CBS is applied. The runtime is replenished and a new absolute deadline is
1019  * set, as in the previous cases.
1020  *
1021  * However, the Original CBS does not work properly for tasks with
1022  * deadline < period, which are said to have a constrained deadline. By
1023  * applying the Original CBS, a constrained deadline task would be able to run
1024  * runtime/deadline in a period. With deadline < period, the task would
1025  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1026  *
1027  * In order to prevent this misbehave, the Revisited CBS is used for
1028  * constrained deadline tasks when a runtime overflow is detected. In the
1029  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1030  * the remaining runtime of the task is reduced to avoid runtime overflow.
1031  * Please refer to the comments update_dl_revised_wakeup() function to find
1032  * more about the Revised CBS rule.
1033  */
1034 static void update_dl_entity(struct sched_dl_entity *dl_se)
1035 {
1036 	struct rq *rq = rq_of_dl_se(dl_se);
1037 
1038 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1039 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1040 
1041 		if (unlikely(!dl_is_implicit(dl_se) &&
1042 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1043 			     !is_dl_boosted(dl_se))) {
1044 			update_dl_revised_wakeup(dl_se, rq);
1045 			return;
1046 		}
1047 
1048 		replenish_dl_new_period(dl_se, rq);
1049 	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1050 		/*
1051 		 * The server can still use its previous deadline, so check if
1052 		 * it left the dl_defer_running state.
1053 		 */
1054 		if (!dl_se->dl_defer_running) {
1055 			dl_se->dl_defer_armed = 1;
1056 			dl_se->dl_throttled = 1;
1057 		}
1058 	}
1059 }
1060 
1061 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1062 {
1063 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1064 }
1065 
1066 /*
1067  * If the entity depleted all its runtime, and if we want it to sleep
1068  * while waiting for some new execution time to become available, we
1069  * set the bandwidth replenishment timer to the replenishment instant
1070  * and try to activate it.
1071  *
1072  * Notice that it is important for the caller to know if the timer
1073  * actually started or not (i.e., the replenishment instant is in
1074  * the future or in the past).
1075  */
1076 static int start_dl_timer(struct sched_dl_entity *dl_se)
1077 {
1078 	struct hrtimer *timer = &dl_se->dl_timer;
1079 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1080 	struct rq *rq = rq_of_dl_rq(dl_rq);
1081 	ktime_t now, act;
1082 	s64 delta;
1083 
1084 	lockdep_assert_rq_held(rq);
1085 
1086 	/*
1087 	 * We want the timer to fire at the deadline, but considering
1088 	 * that it is actually coming from rq->clock and not from
1089 	 * hrtimer's time base reading.
1090 	 *
1091 	 * The deferred reservation will have its timer set to
1092 	 * (deadline - runtime). At that point, the CBS rule will decide
1093 	 * if the current deadline can be used, or if a replenishment is
1094 	 * required to avoid add too much pressure on the system
1095 	 * (current u > U).
1096 	 */
1097 	if (dl_se->dl_defer_armed) {
1098 		WARN_ON_ONCE(!dl_se->dl_throttled);
1099 		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1100 	} else {
1101 		/* act = deadline - rel-deadline + period */
1102 		act = ns_to_ktime(dl_next_period(dl_se));
1103 	}
1104 
1105 	now = hrtimer_cb_get_time(timer);
1106 	delta = ktime_to_ns(now) - rq_clock(rq);
1107 	act = ktime_add_ns(act, delta);
1108 
1109 	/*
1110 	 * If the expiry time already passed, e.g., because the value
1111 	 * chosen as the deadline is too small, don't even try to
1112 	 * start the timer in the past!
1113 	 */
1114 	if (ktime_us_delta(act, now) < 0)
1115 		return 0;
1116 
1117 	/*
1118 	 * !enqueued will guarantee another callback; even if one is already in
1119 	 * progress. This ensures a balanced {get,put}_task_struct().
1120 	 *
1121 	 * The race against __run_timer() clearing the enqueued state is
1122 	 * harmless because we're holding task_rq()->lock, therefore the timer
1123 	 * expiring after we've done the check will wait on its task_rq_lock()
1124 	 * and observe our state.
1125 	 */
1126 	if (!hrtimer_is_queued(timer)) {
1127 		if (!dl_server(dl_se))
1128 			get_task_struct(dl_task_of(dl_se));
1129 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1130 	}
1131 
1132 	return 1;
1133 }
1134 
1135 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1136 {
1137 	/*
1138 	 * Queueing this task back might have overloaded rq, check if we need
1139 	 * to kick someone away.
1140 	 */
1141 	if (has_pushable_dl_tasks(rq)) {
1142 		/*
1143 		 * Nothing relies on rq->lock after this, so its safe to drop
1144 		 * rq->lock.
1145 		 */
1146 		rq_unpin_lock(rq, rf);
1147 		push_dl_task(rq);
1148 		rq_repin_lock(rq, rf);
1149 	}
1150 }
1151 
1152 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1153 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1154 
1155 static bool dl_server_stopped(struct sched_dl_entity *dl_se);
1156 
1157 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1158 {
1159 	struct rq *rq = rq_of_dl_se(dl_se);
1160 	u64 fw;
1161 
1162 	scoped_guard (rq_lock, rq) {
1163 		struct rq_flags *rf = &scope.rf;
1164 
1165 		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1166 			return HRTIMER_NORESTART;
1167 
1168 		sched_clock_tick();
1169 		update_rq_clock(rq);
1170 
1171 		if (!dl_se->dl_runtime)
1172 			return HRTIMER_NORESTART;
1173 
1174 		if (!dl_se->server_has_tasks(dl_se)) {
1175 			replenish_dl_entity(dl_se);
1176 			dl_server_stopped(dl_se);
1177 			return HRTIMER_NORESTART;
1178 		}
1179 
1180 		if (dl_se->dl_defer_armed) {
1181 			/*
1182 			 * First check if the server could consume runtime in background.
1183 			 * If so, it is possible to push the defer timer for this amount
1184 			 * of time. The dl_server_min_res serves as a limit to avoid
1185 			 * forwarding the timer for a too small amount of time.
1186 			 */
1187 			if (dl_time_before(rq_clock(dl_se->rq),
1188 					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1189 
1190 				/* reset the defer timer */
1191 				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1192 
1193 				hrtimer_forward_now(timer, ns_to_ktime(fw));
1194 				return HRTIMER_RESTART;
1195 			}
1196 
1197 			dl_se->dl_defer_running = 1;
1198 		}
1199 
1200 		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1201 
1202 		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1203 			resched_curr(rq);
1204 
1205 		__push_dl_task(rq, rf);
1206 	}
1207 
1208 	return HRTIMER_NORESTART;
1209 }
1210 
1211 /*
1212  * This is the bandwidth enforcement timer callback. If here, we know
1213  * a task is not on its dl_rq, since the fact that the timer was running
1214  * means the task is throttled and needs a runtime replenishment.
1215  *
1216  * However, what we actually do depends on the fact the task is active,
1217  * (it is on its rq) or has been removed from there by a call to
1218  * dequeue_task_dl(). In the former case we must issue the runtime
1219  * replenishment and add the task back to the dl_rq; in the latter, we just
1220  * do nothing but clearing dl_throttled, so that runtime and deadline
1221  * updating (and the queueing back to dl_rq) will be done by the
1222  * next call to enqueue_task_dl().
1223  */
1224 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1225 {
1226 	struct sched_dl_entity *dl_se = container_of(timer,
1227 						     struct sched_dl_entity,
1228 						     dl_timer);
1229 	struct task_struct *p;
1230 	struct rq_flags rf;
1231 	struct rq *rq;
1232 
1233 	if (dl_server(dl_se))
1234 		return dl_server_timer(timer, dl_se);
1235 
1236 	p = dl_task_of(dl_se);
1237 	rq = task_rq_lock(p, &rf);
1238 
1239 	/*
1240 	 * The task might have changed its scheduling policy to something
1241 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1242 	 */
1243 	if (!dl_task(p))
1244 		goto unlock;
1245 
1246 	/*
1247 	 * The task might have been boosted by someone else and might be in the
1248 	 * boosting/deboosting path, its not throttled.
1249 	 */
1250 	if (is_dl_boosted(dl_se))
1251 		goto unlock;
1252 
1253 	/*
1254 	 * Spurious timer due to start_dl_timer() race; or we already received
1255 	 * a replenishment from rt_mutex_setprio().
1256 	 */
1257 	if (!dl_se->dl_throttled)
1258 		goto unlock;
1259 
1260 	sched_clock_tick();
1261 	update_rq_clock(rq);
1262 
1263 	/*
1264 	 * If the throttle happened during sched-out; like:
1265 	 *
1266 	 *   schedule()
1267 	 *     deactivate_task()
1268 	 *       dequeue_task_dl()
1269 	 *         update_curr_dl()
1270 	 *           start_dl_timer()
1271 	 *         __dequeue_task_dl()
1272 	 *     prev->on_rq = 0;
1273 	 *
1274 	 * We can be both throttled and !queued. Replenish the counter
1275 	 * but do not enqueue -- wait for our wakeup to do that.
1276 	 */
1277 	if (!task_on_rq_queued(p)) {
1278 		replenish_dl_entity(dl_se);
1279 		goto unlock;
1280 	}
1281 
1282 	if (unlikely(!rq->online)) {
1283 		/*
1284 		 * If the runqueue is no longer available, migrate the
1285 		 * task elsewhere. This necessarily changes rq.
1286 		 */
1287 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1288 		rq = dl_task_offline_migration(rq, p);
1289 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1290 		update_rq_clock(rq);
1291 
1292 		/*
1293 		 * Now that the task has been migrated to the new RQ and we
1294 		 * have that locked, proceed as normal and enqueue the task
1295 		 * there.
1296 		 */
1297 	}
1298 
1299 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1300 	if (dl_task(rq->donor))
1301 		wakeup_preempt_dl(rq, p, 0);
1302 	else
1303 		resched_curr(rq);
1304 
1305 	__push_dl_task(rq, &rf);
1306 
1307 unlock:
1308 	task_rq_unlock(rq, p, &rf);
1309 
1310 	/*
1311 	 * This can free the task_struct, including this hrtimer, do not touch
1312 	 * anything related to that after this.
1313 	 */
1314 	put_task_struct(p);
1315 
1316 	return HRTIMER_NORESTART;
1317 }
1318 
1319 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1320 {
1321 	struct hrtimer *timer = &dl_se->dl_timer;
1322 
1323 	hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1324 }
1325 
1326 /*
1327  * During the activation, CBS checks if it can reuse the current task's
1328  * runtime and period. If the deadline of the task is in the past, CBS
1329  * cannot use the runtime, and so it replenishes the task. This rule
1330  * works fine for implicit deadline tasks (deadline == period), and the
1331  * CBS was designed for implicit deadline tasks. However, a task with
1332  * constrained deadline (deadline < period) might be awakened after the
1333  * deadline, but before the next period. In this case, replenishing the
1334  * task would allow it to run for runtime / deadline. As in this case
1335  * deadline < period, CBS enables a task to run for more than the
1336  * runtime / period. In a very loaded system, this can cause a domino
1337  * effect, making other tasks miss their deadlines.
1338  *
1339  * To avoid this problem, in the activation of a constrained deadline
1340  * task after the deadline but before the next period, throttle the
1341  * task and set the replenishing timer to the begin of the next period,
1342  * unless it is boosted.
1343  */
1344 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1345 {
1346 	struct rq *rq = rq_of_dl_se(dl_se);
1347 
1348 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1349 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1350 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1351 			return;
1352 		dl_se->dl_throttled = 1;
1353 		if (dl_se->runtime > 0)
1354 			dl_se->runtime = 0;
1355 	}
1356 }
1357 
1358 static
1359 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1360 {
1361 	return (dl_se->runtime <= 0);
1362 }
1363 
1364 /*
1365  * This function implements the GRUB accounting rule. According to the
1366  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1367  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1368  * where u is the utilization of the task, Umax is the maximum reclaimable
1369  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1370  * as the difference between the "total runqueue utilization" and the
1371  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1372  * reclaimable utilization.
1373  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1374  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1375  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1376  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1377  * Since delta is a 64 bit variable, to have an overflow its value should be
1378  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1379  * not an issue here.
1380  */
1381 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1382 {
1383 	u64 u_act;
1384 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1385 
1386 	/*
1387 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1388 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1389 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1390 	 * negative leading to wrong results.
1391 	 */
1392 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1393 		u_act = dl_se->dl_bw;
1394 	else
1395 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1396 
1397 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1398 	return (delta * u_act) >> BW_SHIFT;
1399 }
1400 
1401 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1402 {
1403 	s64 scaled_delta_exec;
1404 
1405 	/*
1406 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1407 	 * spare reclaimed bandwidth is used to clock down frequency.
1408 	 *
1409 	 * For the others, we still need to scale reservation parameters
1410 	 * according to current frequency and CPU maximum capacity.
1411 	 */
1412 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1413 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1414 	} else {
1415 		int cpu = cpu_of(rq);
1416 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1417 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1418 
1419 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1420 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1421 	}
1422 
1423 	return scaled_delta_exec;
1424 }
1425 
1426 static inline void
1427 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1428 			int flags);
1429 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1430 {
1431 	s64 scaled_delta_exec;
1432 
1433 	if (unlikely(delta_exec <= 0)) {
1434 		if (unlikely(dl_se->dl_yielded))
1435 			goto throttle;
1436 		return;
1437 	}
1438 
1439 	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1440 		return;
1441 
1442 	if (dl_entity_is_special(dl_se))
1443 		return;
1444 
1445 	scaled_delta_exec = delta_exec;
1446 	if (!dl_server(dl_se))
1447 		scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1448 
1449 	dl_se->runtime -= scaled_delta_exec;
1450 
1451 	/*
1452 	 * The fair server can consume its runtime while throttled (not queued/
1453 	 * running as regular CFS).
1454 	 *
1455 	 * If the server consumes its entire runtime in this state. The server
1456 	 * is not required for the current period. Thus, reset the server by
1457 	 * starting a new period, pushing the activation.
1458 	 */
1459 	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1460 		/*
1461 		 * If the server was previously activated - the starving condition
1462 		 * took place, it this point it went away because the fair scheduler
1463 		 * was able to get runtime in background. So return to the initial
1464 		 * state.
1465 		 */
1466 		dl_se->dl_defer_running = 0;
1467 
1468 		hrtimer_try_to_cancel(&dl_se->dl_timer);
1469 
1470 		replenish_dl_new_period(dl_se, dl_se->rq);
1471 
1472 		/*
1473 		 * Not being able to start the timer seems problematic. If it could not
1474 		 * be started for whatever reason, we need to "unthrottle" the DL server
1475 		 * and queue right away. Otherwise nothing might queue it. That's similar
1476 		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1477 		 */
1478 		WARN_ON_ONCE(!start_dl_timer(dl_se));
1479 
1480 		return;
1481 	}
1482 
1483 throttle:
1484 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1485 		dl_se->dl_throttled = 1;
1486 
1487 		/* If requested, inform the user about runtime overruns. */
1488 		if (dl_runtime_exceeded(dl_se) &&
1489 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1490 			dl_se->dl_overrun = 1;
1491 
1492 		dequeue_dl_entity(dl_se, 0);
1493 		if (!dl_server(dl_se)) {
1494 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1495 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1496 		}
1497 
1498 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1499 			if (dl_server(dl_se))
1500 				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1501 			else
1502 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1503 		}
1504 
1505 		if (!is_leftmost(dl_se, &rq->dl))
1506 			resched_curr(rq);
1507 	}
1508 
1509 	/*
1510 	 * The fair server (sole dl_server) does not account for real-time
1511 	 * workload because it is running fair work.
1512 	 */
1513 	if (dl_se == &rq->fair_server)
1514 		return;
1515 
1516 #ifdef CONFIG_RT_GROUP_SCHED
1517 	/*
1518 	 * Because -- for now -- we share the rt bandwidth, we need to
1519 	 * account our runtime there too, otherwise actual rt tasks
1520 	 * would be able to exceed the shared quota.
1521 	 *
1522 	 * Account to the root rt group for now.
1523 	 *
1524 	 * The solution we're working towards is having the RT groups scheduled
1525 	 * using deadline servers -- however there's a few nasties to figure
1526 	 * out before that can happen.
1527 	 */
1528 	if (rt_bandwidth_enabled()) {
1529 		struct rt_rq *rt_rq = &rq->rt;
1530 
1531 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1532 		/*
1533 		 * We'll let actual RT tasks worry about the overflow here, we
1534 		 * have our own CBS to keep us inline; only account when RT
1535 		 * bandwidth is relevant.
1536 		 */
1537 		if (sched_rt_bandwidth_account(rt_rq))
1538 			rt_rq->rt_time += delta_exec;
1539 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1540 	}
1541 #endif /* CONFIG_RT_GROUP_SCHED */
1542 }
1543 
1544 /*
1545  * In the non-defer mode, the idle time is not accounted, as the
1546  * server provides a guarantee.
1547  *
1548  * If the dl_server is in defer mode, the idle time is also considered
1549  * as time available for the fair server, avoiding a penalty for the
1550  * rt scheduler that did not consumed that time.
1551  */
1552 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1553 {
1554 	s64 delta_exec;
1555 
1556 	if (!rq->fair_server.dl_defer)
1557 		return;
1558 
1559 	/* no need to discount more */
1560 	if (rq->fair_server.runtime < 0)
1561 		return;
1562 
1563 	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1564 	if (delta_exec < 0)
1565 		return;
1566 
1567 	rq->fair_server.runtime -= delta_exec;
1568 
1569 	if (rq->fair_server.runtime < 0) {
1570 		rq->fair_server.dl_defer_running = 0;
1571 		rq->fair_server.runtime = 0;
1572 	}
1573 
1574 	p->se.exec_start = rq_clock_task(rq);
1575 }
1576 
1577 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1578 {
1579 	/* 0 runtime = fair server disabled */
1580 	if (dl_se->dl_runtime) {
1581 		dl_se->dl_server_idle = 0;
1582 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1583 	}
1584 }
1585 
1586 void dl_server_start(struct sched_dl_entity *dl_se)
1587 {
1588 	struct rq *rq = dl_se->rq;
1589 
1590 	if (!dl_server(dl_se) || dl_se->dl_server_active)
1591 		return;
1592 
1593 	dl_se->dl_server_active = 1;
1594 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1595 	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1596 		resched_curr(dl_se->rq);
1597 }
1598 
1599 void dl_server_stop(struct sched_dl_entity *dl_se)
1600 {
1601 	if (!dl_server(dl_se) || !dl_server_active(dl_se))
1602 		return;
1603 
1604 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1605 	hrtimer_try_to_cancel(&dl_se->dl_timer);
1606 	dl_se->dl_defer_armed = 0;
1607 	dl_se->dl_throttled = 0;
1608 	dl_se->dl_server_active = 0;
1609 }
1610 
1611 static bool dl_server_stopped(struct sched_dl_entity *dl_se)
1612 {
1613 	if (!dl_se->dl_server_active)
1614 		return false;
1615 
1616 	if (dl_se->dl_server_idle) {
1617 		dl_server_stop(dl_se);
1618 		return true;
1619 	}
1620 
1621 	dl_se->dl_server_idle = 1;
1622 	return false;
1623 }
1624 
1625 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1626 		    dl_server_has_tasks_f has_tasks,
1627 		    dl_server_pick_f pick_task)
1628 {
1629 	dl_se->rq = rq;
1630 	dl_se->server_has_tasks = has_tasks;
1631 	dl_se->server_pick_task = pick_task;
1632 }
1633 
1634 void sched_init_dl_servers(void)
1635 {
1636 	int cpu;
1637 	struct rq *rq;
1638 	struct sched_dl_entity *dl_se;
1639 
1640 	for_each_online_cpu(cpu) {
1641 		u64 runtime =  50 * NSEC_PER_MSEC;
1642 		u64 period = 1000 * NSEC_PER_MSEC;
1643 
1644 		rq = cpu_rq(cpu);
1645 
1646 		guard(rq_lock_irq)(rq);
1647 
1648 		dl_se = &rq->fair_server;
1649 
1650 		WARN_ON(dl_server(dl_se));
1651 
1652 		dl_server_apply_params(dl_se, runtime, period, 1);
1653 
1654 		dl_se->dl_server = 1;
1655 		dl_se->dl_defer = 1;
1656 		setup_new_dl_entity(dl_se);
1657 	}
1658 }
1659 
1660 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1661 {
1662 	u64 new_bw = dl_se->dl_bw;
1663 	int cpu = cpu_of(rq);
1664 	struct dl_bw *dl_b;
1665 
1666 	dl_b = dl_bw_of(cpu_of(rq));
1667 	guard(raw_spinlock)(&dl_b->lock);
1668 
1669 	if (!dl_bw_cpus(cpu))
1670 		return;
1671 
1672 	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1673 }
1674 
1675 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1676 {
1677 	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1678 	u64 new_bw = to_ratio(period, runtime);
1679 	struct rq *rq = dl_se->rq;
1680 	int cpu = cpu_of(rq);
1681 	struct dl_bw *dl_b;
1682 	unsigned long cap;
1683 	int retval = 0;
1684 	int cpus;
1685 
1686 	dl_b = dl_bw_of(cpu);
1687 	guard(raw_spinlock)(&dl_b->lock);
1688 
1689 	cpus = dl_bw_cpus(cpu);
1690 	cap = dl_bw_capacity(cpu);
1691 
1692 	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1693 		return -EBUSY;
1694 
1695 	if (init) {
1696 		__add_rq_bw(new_bw, &rq->dl);
1697 		__dl_add(dl_b, new_bw, cpus);
1698 	} else {
1699 		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1700 		__dl_add(dl_b, new_bw, cpus);
1701 
1702 		dl_rq_change_utilization(rq, dl_se, new_bw);
1703 	}
1704 
1705 	dl_se->dl_runtime = runtime;
1706 	dl_se->dl_deadline = period;
1707 	dl_se->dl_period = period;
1708 
1709 	dl_se->runtime = 0;
1710 	dl_se->deadline = 0;
1711 
1712 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1713 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1714 
1715 	return retval;
1716 }
1717 
1718 /*
1719  * Update the current task's runtime statistics (provided it is still
1720  * a -deadline task and has not been removed from the dl_rq).
1721  */
1722 static void update_curr_dl(struct rq *rq)
1723 {
1724 	struct task_struct *donor = rq->donor;
1725 	struct sched_dl_entity *dl_se = &donor->dl;
1726 	s64 delta_exec;
1727 
1728 	if (!dl_task(donor) || !on_dl_rq(dl_se))
1729 		return;
1730 
1731 	/*
1732 	 * Consumed budget is computed considering the time as
1733 	 * observed by schedulable tasks (excluding time spent
1734 	 * in hardirq context, etc.). Deadlines are instead
1735 	 * computed using hard walltime. This seems to be the more
1736 	 * natural solution, but the full ramifications of this
1737 	 * approach need further study.
1738 	 */
1739 	delta_exec = update_curr_common(rq);
1740 	update_curr_dl_se(rq, dl_se, delta_exec);
1741 }
1742 
1743 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1744 {
1745 	struct sched_dl_entity *dl_se = container_of(timer,
1746 						     struct sched_dl_entity,
1747 						     inactive_timer);
1748 	struct task_struct *p = NULL;
1749 	struct rq_flags rf;
1750 	struct rq *rq;
1751 
1752 	if (!dl_server(dl_se)) {
1753 		p = dl_task_of(dl_se);
1754 		rq = task_rq_lock(p, &rf);
1755 	} else {
1756 		rq = dl_se->rq;
1757 		rq_lock(rq, &rf);
1758 	}
1759 
1760 	sched_clock_tick();
1761 	update_rq_clock(rq);
1762 
1763 	if (dl_server(dl_se))
1764 		goto no_task;
1765 
1766 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1767 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1768 
1769 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1770 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1771 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1772 			dl_se->dl_non_contending = 0;
1773 		}
1774 
1775 		raw_spin_lock(&dl_b->lock);
1776 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1777 		raw_spin_unlock(&dl_b->lock);
1778 		__dl_clear_params(dl_se);
1779 
1780 		goto unlock;
1781 	}
1782 
1783 no_task:
1784 	if (dl_se->dl_non_contending == 0)
1785 		goto unlock;
1786 
1787 	sub_running_bw(dl_se, &rq->dl);
1788 	dl_se->dl_non_contending = 0;
1789 unlock:
1790 
1791 	if (!dl_server(dl_se)) {
1792 		task_rq_unlock(rq, p, &rf);
1793 		put_task_struct(p);
1794 	} else {
1795 		rq_unlock(rq, &rf);
1796 	}
1797 
1798 	return HRTIMER_NORESTART;
1799 }
1800 
1801 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1802 {
1803 	struct hrtimer *timer = &dl_se->inactive_timer;
1804 
1805 	hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1806 }
1807 
1808 #define __node_2_dle(node) \
1809 	rb_entry((node), struct sched_dl_entity, rb_node)
1810 
1811 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1812 {
1813 	struct rq *rq = rq_of_dl_rq(dl_rq);
1814 
1815 	if (dl_rq->earliest_dl.curr == 0 ||
1816 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1817 		if (dl_rq->earliest_dl.curr == 0)
1818 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1819 		dl_rq->earliest_dl.curr = deadline;
1820 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1821 	}
1822 }
1823 
1824 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1825 {
1826 	struct rq *rq = rq_of_dl_rq(dl_rq);
1827 
1828 	/*
1829 	 * Since we may have removed our earliest (and/or next earliest)
1830 	 * task we must recompute them.
1831 	 */
1832 	if (!dl_rq->dl_nr_running) {
1833 		dl_rq->earliest_dl.curr = 0;
1834 		dl_rq->earliest_dl.next = 0;
1835 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1836 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1837 	} else {
1838 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1839 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1840 
1841 		dl_rq->earliest_dl.curr = entry->deadline;
1842 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1843 	}
1844 }
1845 
1846 static inline
1847 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1848 {
1849 	u64 deadline = dl_se->deadline;
1850 
1851 	dl_rq->dl_nr_running++;
1852 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1853 
1854 	inc_dl_deadline(dl_rq, deadline);
1855 }
1856 
1857 static inline
1858 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1859 {
1860 	WARN_ON(!dl_rq->dl_nr_running);
1861 	dl_rq->dl_nr_running--;
1862 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1863 
1864 	dec_dl_deadline(dl_rq, dl_se->deadline);
1865 }
1866 
1867 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1868 {
1869 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1870 }
1871 
1872 static __always_inline struct sched_statistics *
1873 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1874 {
1875 	if (!schedstat_enabled())
1876 		return NULL;
1877 
1878 	if (dl_server(dl_se))
1879 		return NULL;
1880 
1881 	return &dl_task_of(dl_se)->stats;
1882 }
1883 
1884 static inline void
1885 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1886 {
1887 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1888 	if (stats)
1889 		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1890 }
1891 
1892 static inline void
1893 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1894 {
1895 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1896 	if (stats)
1897 		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1898 }
1899 
1900 static inline void
1901 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1902 {
1903 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1904 	if (stats)
1905 		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1906 }
1907 
1908 static inline void
1909 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1910 			int flags)
1911 {
1912 	if (!schedstat_enabled())
1913 		return;
1914 
1915 	if (flags & ENQUEUE_WAKEUP)
1916 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1917 }
1918 
1919 static inline void
1920 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1921 			int flags)
1922 {
1923 	struct task_struct *p = dl_task_of(dl_se);
1924 
1925 	if (!schedstat_enabled())
1926 		return;
1927 
1928 	if ((flags & DEQUEUE_SLEEP)) {
1929 		unsigned int state;
1930 
1931 		state = READ_ONCE(p->__state);
1932 		if (state & TASK_INTERRUPTIBLE)
1933 			__schedstat_set(p->stats.sleep_start,
1934 					rq_clock(rq_of_dl_rq(dl_rq)));
1935 
1936 		if (state & TASK_UNINTERRUPTIBLE)
1937 			__schedstat_set(p->stats.block_start,
1938 					rq_clock(rq_of_dl_rq(dl_rq)));
1939 	}
1940 }
1941 
1942 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1943 {
1944 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1945 
1946 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1947 
1948 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1949 
1950 	inc_dl_tasks(dl_se, dl_rq);
1951 }
1952 
1953 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1954 {
1955 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1956 
1957 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1958 		return;
1959 
1960 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1961 
1962 	RB_CLEAR_NODE(&dl_se->rb_node);
1963 
1964 	dec_dl_tasks(dl_se, dl_rq);
1965 }
1966 
1967 static void
1968 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1969 {
1970 	WARN_ON_ONCE(on_dl_rq(dl_se));
1971 
1972 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1973 
1974 	/*
1975 	 * Check if a constrained deadline task was activated
1976 	 * after the deadline but before the next period.
1977 	 * If that is the case, the task will be throttled and
1978 	 * the replenishment timer will be set to the next period.
1979 	 */
1980 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1981 		dl_check_constrained_dl(dl_se);
1982 
1983 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1984 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1985 
1986 		add_rq_bw(dl_se, dl_rq);
1987 		add_running_bw(dl_se, dl_rq);
1988 	}
1989 
1990 	/*
1991 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1992 	 * its budget it needs a replenishment and, since it now is on
1993 	 * its rq, the bandwidth timer callback (which clearly has not
1994 	 * run yet) will take care of this.
1995 	 * However, the active utilization does not depend on the fact
1996 	 * that the task is on the runqueue or not (but depends on the
1997 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1998 	 * In other words, even if a task is throttled its utilization must
1999 	 * be counted in the active utilization; hence, we need to call
2000 	 * add_running_bw().
2001 	 */
2002 	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2003 		if (flags & ENQUEUE_WAKEUP)
2004 			task_contending(dl_se, flags);
2005 
2006 		return;
2007 	}
2008 
2009 	/*
2010 	 * If this is a wakeup or a new instance, the scheduling
2011 	 * parameters of the task might need updating. Otherwise,
2012 	 * we want a replenishment of its runtime.
2013 	 */
2014 	if (flags & ENQUEUE_WAKEUP) {
2015 		task_contending(dl_se, flags);
2016 		update_dl_entity(dl_se);
2017 	} else if (flags & ENQUEUE_REPLENISH) {
2018 		replenish_dl_entity(dl_se);
2019 	} else if ((flags & ENQUEUE_RESTORE) &&
2020 		   !is_dl_boosted(dl_se) &&
2021 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2022 		setup_new_dl_entity(dl_se);
2023 	}
2024 
2025 	/*
2026 	 * If the reservation is still throttled, e.g., it got replenished but is a
2027 	 * deferred task and still got to wait, don't enqueue.
2028 	 */
2029 	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2030 		return;
2031 
2032 	/*
2033 	 * We're about to enqueue, make sure we're not ->dl_throttled!
2034 	 * In case the timer was not started, say because the defer time
2035 	 * has passed, mark as not throttled and mark unarmed.
2036 	 * Also cancel earlier timers, since letting those run is pointless.
2037 	 */
2038 	if (dl_se->dl_throttled) {
2039 		hrtimer_try_to_cancel(&dl_se->dl_timer);
2040 		dl_se->dl_defer_armed = 0;
2041 		dl_se->dl_throttled = 0;
2042 	}
2043 
2044 	__enqueue_dl_entity(dl_se);
2045 }
2046 
2047 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2048 {
2049 	__dequeue_dl_entity(dl_se);
2050 
2051 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2052 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2053 
2054 		sub_running_bw(dl_se, dl_rq);
2055 		sub_rq_bw(dl_se, dl_rq);
2056 	}
2057 
2058 	/*
2059 	 * This check allows to start the inactive timer (or to immediately
2060 	 * decrease the active utilization, if needed) in two cases:
2061 	 * when the task blocks and when it is terminating
2062 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2063 	 * way, because from GRUB's point of view the same thing is happening
2064 	 * (the task moves from "active contending" to "active non contending"
2065 	 * or "inactive")
2066 	 */
2067 	if (flags & DEQUEUE_SLEEP)
2068 		task_non_contending(dl_se);
2069 }
2070 
2071 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2072 {
2073 	if (is_dl_boosted(&p->dl)) {
2074 		/*
2075 		 * Because of delays in the detection of the overrun of a
2076 		 * thread's runtime, it might be the case that a thread
2077 		 * goes to sleep in a rt mutex with negative runtime. As
2078 		 * a consequence, the thread will be throttled.
2079 		 *
2080 		 * While waiting for the mutex, this thread can also be
2081 		 * boosted via PI, resulting in a thread that is throttled
2082 		 * and boosted at the same time.
2083 		 *
2084 		 * In this case, the boost overrides the throttle.
2085 		 */
2086 		if (p->dl.dl_throttled) {
2087 			/*
2088 			 * The replenish timer needs to be canceled. No
2089 			 * problem if it fires concurrently: boosted threads
2090 			 * are ignored in dl_task_timer().
2091 			 */
2092 			cancel_replenish_timer(&p->dl);
2093 			p->dl.dl_throttled = 0;
2094 		}
2095 	} else if (!dl_prio(p->normal_prio)) {
2096 		/*
2097 		 * Special case in which we have a !SCHED_DEADLINE task that is going
2098 		 * to be deboosted, but exceeds its runtime while doing so. No point in
2099 		 * replenishing it, as it's going to return back to its original
2100 		 * scheduling class after this. If it has been throttled, we need to
2101 		 * clear the flag, otherwise the task may wake up as throttled after
2102 		 * being boosted again with no means to replenish the runtime and clear
2103 		 * the throttle.
2104 		 */
2105 		p->dl.dl_throttled = 0;
2106 		if (!(flags & ENQUEUE_REPLENISH))
2107 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2108 					     task_pid_nr(p));
2109 
2110 		return;
2111 	}
2112 
2113 	check_schedstat_required();
2114 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2115 
2116 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2117 		flags |= ENQUEUE_MIGRATING;
2118 
2119 	enqueue_dl_entity(&p->dl, flags);
2120 
2121 	if (dl_server(&p->dl))
2122 		return;
2123 
2124 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2125 		enqueue_pushable_dl_task(rq, p);
2126 }
2127 
2128 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2129 {
2130 	update_curr_dl(rq);
2131 
2132 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2133 		flags |= DEQUEUE_MIGRATING;
2134 
2135 	dequeue_dl_entity(&p->dl, flags);
2136 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2137 		dequeue_pushable_dl_task(rq, p);
2138 
2139 	return true;
2140 }
2141 
2142 /*
2143  * Yield task semantic for -deadline tasks is:
2144  *
2145  *   get off from the CPU until our next instance, with
2146  *   a new runtime. This is of little use now, since we
2147  *   don't have a bandwidth reclaiming mechanism. Anyway,
2148  *   bandwidth reclaiming is planned for the future, and
2149  *   yield_task_dl will indicate that some spare budget
2150  *   is available for other task instances to use it.
2151  */
2152 static void yield_task_dl(struct rq *rq)
2153 {
2154 	/*
2155 	 * We make the task go to sleep until its current deadline by
2156 	 * forcing its runtime to zero. This way, update_curr_dl() stops
2157 	 * it and the bandwidth timer will wake it up and will give it
2158 	 * new scheduling parameters (thanks to dl_yielded=1).
2159 	 */
2160 	rq->curr->dl.dl_yielded = 1;
2161 
2162 	update_rq_clock(rq);
2163 	update_curr_dl(rq);
2164 	/*
2165 	 * Tell update_rq_clock() that we've just updated,
2166 	 * so we don't do microscopic update in schedule()
2167 	 * and double the fastpath cost.
2168 	 */
2169 	rq_clock_skip_update(rq);
2170 }
2171 
2172 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2173 						 struct rq *rq)
2174 {
2175 	return (!rq->dl.dl_nr_running ||
2176 		dl_time_before(p->dl.deadline,
2177 			       rq->dl.earliest_dl.curr));
2178 }
2179 
2180 static int find_later_rq(struct task_struct *task);
2181 
2182 static int
2183 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2184 {
2185 	struct task_struct *curr, *donor;
2186 	bool select_rq;
2187 	struct rq *rq;
2188 
2189 	if (!(flags & WF_TTWU))
2190 		goto out;
2191 
2192 	rq = cpu_rq(cpu);
2193 
2194 	rcu_read_lock();
2195 	curr = READ_ONCE(rq->curr); /* unlocked access */
2196 	donor = READ_ONCE(rq->donor);
2197 
2198 	/*
2199 	 * If we are dealing with a -deadline task, we must
2200 	 * decide where to wake it up.
2201 	 * If it has a later deadline and the current task
2202 	 * on this rq can't move (provided the waking task
2203 	 * can!) we prefer to send it somewhere else. On the
2204 	 * other hand, if it has a shorter deadline, we
2205 	 * try to make it stay here, it might be important.
2206 	 */
2207 	select_rq = unlikely(dl_task(donor)) &&
2208 		    (curr->nr_cpus_allowed < 2 ||
2209 		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
2210 		    p->nr_cpus_allowed > 1;
2211 
2212 	/*
2213 	 * Take the capacity of the CPU into account to
2214 	 * ensure it fits the requirement of the task.
2215 	 */
2216 	if (sched_asym_cpucap_active())
2217 		select_rq |= !dl_task_fits_capacity(p, cpu);
2218 
2219 	if (select_rq) {
2220 		int target = find_later_rq(p);
2221 
2222 		if (target != -1 &&
2223 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
2224 			cpu = target;
2225 	}
2226 	rcu_read_unlock();
2227 
2228 out:
2229 	return cpu;
2230 }
2231 
2232 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2233 {
2234 	struct rq_flags rf;
2235 	struct rq *rq;
2236 
2237 	if (READ_ONCE(p->__state) != TASK_WAKING)
2238 		return;
2239 
2240 	rq = task_rq(p);
2241 	/*
2242 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2243 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2244 	 * rq->lock is not... So, lock it
2245 	 */
2246 	rq_lock(rq, &rf);
2247 	if (p->dl.dl_non_contending) {
2248 		update_rq_clock(rq);
2249 		sub_running_bw(&p->dl, &rq->dl);
2250 		p->dl.dl_non_contending = 0;
2251 		/*
2252 		 * If the timer handler is currently running and the
2253 		 * timer cannot be canceled, inactive_task_timer()
2254 		 * will see that dl_not_contending is not set, and
2255 		 * will not touch the rq's active utilization,
2256 		 * so we are still safe.
2257 		 */
2258 		cancel_inactive_timer(&p->dl);
2259 	}
2260 	sub_rq_bw(&p->dl, &rq->dl);
2261 	rq_unlock(rq, &rf);
2262 }
2263 
2264 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2265 {
2266 	/*
2267 	 * Current can't be migrated, useless to reschedule,
2268 	 * let's hope p can move out.
2269 	 */
2270 	if (rq->curr->nr_cpus_allowed == 1 ||
2271 	    !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2272 		return;
2273 
2274 	/*
2275 	 * p is migratable, so let's not schedule it and
2276 	 * see if it is pushed or pulled somewhere else.
2277 	 */
2278 	if (p->nr_cpus_allowed != 1 &&
2279 	    cpudl_find(&rq->rd->cpudl, p, NULL))
2280 		return;
2281 
2282 	resched_curr(rq);
2283 }
2284 
2285 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2286 {
2287 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2288 		/*
2289 		 * This is OK, because current is on_cpu, which avoids it being
2290 		 * picked for load-balance and preemption/IRQs are still
2291 		 * disabled avoiding further scheduler activity on it and we've
2292 		 * not yet started the picking loop.
2293 		 */
2294 		rq_unpin_lock(rq, rf);
2295 		pull_dl_task(rq);
2296 		rq_repin_lock(rq, rf);
2297 	}
2298 
2299 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2300 }
2301 
2302 /*
2303  * Only called when both the current and waking task are -deadline
2304  * tasks.
2305  */
2306 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2307 				  int flags)
2308 {
2309 	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2310 		resched_curr(rq);
2311 		return;
2312 	}
2313 
2314 	/*
2315 	 * In the unlikely case current and p have the same deadline
2316 	 * let us try to decide what's the best thing to do...
2317 	 */
2318 	if ((p->dl.deadline == rq->donor->dl.deadline) &&
2319 	    !test_tsk_need_resched(rq->curr))
2320 		check_preempt_equal_dl(rq, p);
2321 }
2322 
2323 #ifdef CONFIG_SCHED_HRTICK
2324 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2325 {
2326 	hrtick_start(rq, dl_se->runtime);
2327 }
2328 #else /* !CONFIG_SCHED_HRTICK: */
2329 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2330 {
2331 }
2332 #endif /* !CONFIG_SCHED_HRTICK */
2333 
2334 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2335 {
2336 	struct sched_dl_entity *dl_se = &p->dl;
2337 	struct dl_rq *dl_rq = &rq->dl;
2338 
2339 	p->se.exec_start = rq_clock_task(rq);
2340 	if (on_dl_rq(&p->dl))
2341 		update_stats_wait_end_dl(dl_rq, dl_se);
2342 
2343 	/* You can't push away the running task */
2344 	dequeue_pushable_dl_task(rq, p);
2345 
2346 	if (!first)
2347 		return;
2348 
2349 	if (rq->donor->sched_class != &dl_sched_class)
2350 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2351 
2352 	deadline_queue_push_tasks(rq);
2353 
2354 	if (hrtick_enabled_dl(rq))
2355 		start_hrtick_dl(rq, &p->dl);
2356 }
2357 
2358 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2359 {
2360 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2361 
2362 	if (!left)
2363 		return NULL;
2364 
2365 	return __node_2_dle(left);
2366 }
2367 
2368 /*
2369  * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2370  * @rq: The runqueue to pick the next task from.
2371  */
2372 static struct task_struct *__pick_task_dl(struct rq *rq)
2373 {
2374 	struct sched_dl_entity *dl_se;
2375 	struct dl_rq *dl_rq = &rq->dl;
2376 	struct task_struct *p;
2377 
2378 again:
2379 	if (!sched_dl_runnable(rq))
2380 		return NULL;
2381 
2382 	dl_se = pick_next_dl_entity(dl_rq);
2383 	WARN_ON_ONCE(!dl_se);
2384 
2385 	if (dl_server(dl_se)) {
2386 		p = dl_se->server_pick_task(dl_se);
2387 		if (!p) {
2388 			if (!dl_server_stopped(dl_se)) {
2389 				dl_se->dl_yielded = 1;
2390 				update_curr_dl_se(rq, dl_se, 0);
2391 			}
2392 			goto again;
2393 		}
2394 		rq->dl_server = dl_se;
2395 	} else {
2396 		p = dl_task_of(dl_se);
2397 	}
2398 
2399 	return p;
2400 }
2401 
2402 static struct task_struct *pick_task_dl(struct rq *rq)
2403 {
2404 	return __pick_task_dl(rq);
2405 }
2406 
2407 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2408 {
2409 	struct sched_dl_entity *dl_se = &p->dl;
2410 	struct dl_rq *dl_rq = &rq->dl;
2411 
2412 	if (on_dl_rq(&p->dl))
2413 		update_stats_wait_start_dl(dl_rq, dl_se);
2414 
2415 	update_curr_dl(rq);
2416 
2417 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2418 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2419 		enqueue_pushable_dl_task(rq, p);
2420 }
2421 
2422 /*
2423  * scheduler tick hitting a task of our scheduling class.
2424  *
2425  * NOTE: This function can be called remotely by the tick offload that
2426  * goes along full dynticks. Therefore no local assumption can be made
2427  * and everything must be accessed through the @rq and @curr passed in
2428  * parameters.
2429  */
2430 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2431 {
2432 	update_curr_dl(rq);
2433 
2434 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2435 	/*
2436 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2437 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2438 	 * be set and schedule() will start a new hrtick for the next task.
2439 	 */
2440 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2441 	    is_leftmost(&p->dl, &rq->dl))
2442 		start_hrtick_dl(rq, &p->dl);
2443 }
2444 
2445 static void task_fork_dl(struct task_struct *p)
2446 {
2447 	/*
2448 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2449 	 * sched_fork()
2450 	 */
2451 }
2452 
2453 /* Only try algorithms three times */
2454 #define DL_MAX_TRIES 3
2455 
2456 /*
2457  * Return the earliest pushable rq's task, which is suitable to be executed
2458  * on the CPU, NULL otherwise:
2459  */
2460 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2461 {
2462 	struct task_struct *p = NULL;
2463 	struct rb_node *next_node;
2464 
2465 	if (!has_pushable_dl_tasks(rq))
2466 		return NULL;
2467 
2468 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2469 	while (next_node) {
2470 		p = __node_2_pdl(next_node);
2471 
2472 		if (task_is_pushable(rq, p, cpu))
2473 			return p;
2474 
2475 		next_node = rb_next(next_node);
2476 	}
2477 
2478 	return NULL;
2479 }
2480 
2481 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2482 
2483 static int find_later_rq(struct task_struct *task)
2484 {
2485 	struct sched_domain *sd;
2486 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2487 	int this_cpu = smp_processor_id();
2488 	int cpu = task_cpu(task);
2489 
2490 	/* Make sure the mask is initialized first */
2491 	if (unlikely(!later_mask))
2492 		return -1;
2493 
2494 	if (task->nr_cpus_allowed == 1)
2495 		return -1;
2496 
2497 	/*
2498 	 * We have to consider system topology and task affinity
2499 	 * first, then we can look for a suitable CPU.
2500 	 */
2501 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2502 		return -1;
2503 
2504 	/*
2505 	 * If we are here, some targets have been found, including
2506 	 * the most suitable which is, among the runqueues where the
2507 	 * current tasks have later deadlines than the task's one, the
2508 	 * rq with the latest possible one.
2509 	 *
2510 	 * Now we check how well this matches with task's
2511 	 * affinity and system topology.
2512 	 *
2513 	 * The last CPU where the task run is our first
2514 	 * guess, since it is most likely cache-hot there.
2515 	 */
2516 	if (cpumask_test_cpu(cpu, later_mask))
2517 		return cpu;
2518 	/*
2519 	 * Check if this_cpu is to be skipped (i.e., it is
2520 	 * not in the mask) or not.
2521 	 */
2522 	if (!cpumask_test_cpu(this_cpu, later_mask))
2523 		this_cpu = -1;
2524 
2525 	rcu_read_lock();
2526 	for_each_domain(cpu, sd) {
2527 		if (sd->flags & SD_WAKE_AFFINE) {
2528 			int best_cpu;
2529 
2530 			/*
2531 			 * If possible, preempting this_cpu is
2532 			 * cheaper than migrating.
2533 			 */
2534 			if (this_cpu != -1 &&
2535 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2536 				rcu_read_unlock();
2537 				return this_cpu;
2538 			}
2539 
2540 			best_cpu = cpumask_any_and_distribute(later_mask,
2541 							      sched_domain_span(sd));
2542 			/*
2543 			 * Last chance: if a CPU being in both later_mask
2544 			 * and current sd span is valid, that becomes our
2545 			 * choice. Of course, the latest possible CPU is
2546 			 * already under consideration through later_mask.
2547 			 */
2548 			if (best_cpu < nr_cpu_ids) {
2549 				rcu_read_unlock();
2550 				return best_cpu;
2551 			}
2552 		}
2553 	}
2554 	rcu_read_unlock();
2555 
2556 	/*
2557 	 * At this point, all our guesses failed, we just return
2558 	 * 'something', and let the caller sort the things out.
2559 	 */
2560 	if (this_cpu != -1)
2561 		return this_cpu;
2562 
2563 	cpu = cpumask_any_distribute(later_mask);
2564 	if (cpu < nr_cpu_ids)
2565 		return cpu;
2566 
2567 	return -1;
2568 }
2569 
2570 /* Locks the rq it finds */
2571 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2572 {
2573 	struct rq *later_rq = NULL;
2574 	int tries;
2575 	int cpu;
2576 
2577 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2578 		cpu = find_later_rq(task);
2579 
2580 		if ((cpu == -1) || (cpu == rq->cpu))
2581 			break;
2582 
2583 		later_rq = cpu_rq(cpu);
2584 
2585 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2586 			/*
2587 			 * Target rq has tasks of equal or earlier deadline,
2588 			 * retrying does not release any lock and is unlikely
2589 			 * to yield a different result.
2590 			 */
2591 			later_rq = NULL;
2592 			break;
2593 		}
2594 
2595 		/* Retry if something changed. */
2596 		if (double_lock_balance(rq, later_rq)) {
2597 			if (unlikely(task_rq(task) != rq ||
2598 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2599 				     task_on_cpu(rq, task) ||
2600 				     !dl_task(task) ||
2601 				     is_migration_disabled(task) ||
2602 				     !task_on_rq_queued(task))) {
2603 				double_unlock_balance(rq, later_rq);
2604 				later_rq = NULL;
2605 				break;
2606 			}
2607 		}
2608 
2609 		/*
2610 		 * If the rq we found has no -deadline task, or
2611 		 * its earliest one has a later deadline than our
2612 		 * task, the rq is a good one.
2613 		 */
2614 		if (dl_task_is_earliest_deadline(task, later_rq))
2615 			break;
2616 
2617 		/* Otherwise we try again. */
2618 		double_unlock_balance(rq, later_rq);
2619 		later_rq = NULL;
2620 	}
2621 
2622 	return later_rq;
2623 }
2624 
2625 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2626 {
2627 	struct task_struct *p;
2628 
2629 	if (!has_pushable_dl_tasks(rq))
2630 		return NULL;
2631 
2632 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2633 
2634 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2635 	WARN_ON_ONCE(task_current(rq, p));
2636 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2637 
2638 	WARN_ON_ONCE(!task_on_rq_queued(p));
2639 	WARN_ON_ONCE(!dl_task(p));
2640 
2641 	return p;
2642 }
2643 
2644 /*
2645  * See if the non running -deadline tasks on this rq
2646  * can be sent to some other CPU where they can preempt
2647  * and start executing.
2648  */
2649 static int push_dl_task(struct rq *rq)
2650 {
2651 	struct task_struct *next_task;
2652 	struct rq *later_rq;
2653 	int ret = 0;
2654 
2655 	next_task = pick_next_pushable_dl_task(rq);
2656 	if (!next_task)
2657 		return 0;
2658 
2659 retry:
2660 	/*
2661 	 * If next_task preempts rq->curr, and rq->curr
2662 	 * can move away, it makes sense to just reschedule
2663 	 * without going further in pushing next_task.
2664 	 */
2665 	if (dl_task(rq->donor) &&
2666 	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2667 	    rq->curr->nr_cpus_allowed > 1) {
2668 		resched_curr(rq);
2669 		return 0;
2670 	}
2671 
2672 	if (is_migration_disabled(next_task))
2673 		return 0;
2674 
2675 	if (WARN_ON(next_task == rq->curr))
2676 		return 0;
2677 
2678 	/* We might release rq lock */
2679 	get_task_struct(next_task);
2680 
2681 	/* Will lock the rq it'll find */
2682 	later_rq = find_lock_later_rq(next_task, rq);
2683 	if (!later_rq) {
2684 		struct task_struct *task;
2685 
2686 		/*
2687 		 * We must check all this again, since
2688 		 * find_lock_later_rq releases rq->lock and it is
2689 		 * then possible that next_task has migrated.
2690 		 */
2691 		task = pick_next_pushable_dl_task(rq);
2692 		if (task == next_task) {
2693 			/*
2694 			 * The task is still there. We don't try
2695 			 * again, some other CPU will pull it when ready.
2696 			 */
2697 			goto out;
2698 		}
2699 
2700 		if (!task)
2701 			/* No more tasks */
2702 			goto out;
2703 
2704 		put_task_struct(next_task);
2705 		next_task = task;
2706 		goto retry;
2707 	}
2708 
2709 	move_queued_task_locked(rq, later_rq, next_task);
2710 	ret = 1;
2711 
2712 	resched_curr(later_rq);
2713 
2714 	double_unlock_balance(rq, later_rq);
2715 
2716 out:
2717 	put_task_struct(next_task);
2718 
2719 	return ret;
2720 }
2721 
2722 static void push_dl_tasks(struct rq *rq)
2723 {
2724 	/* push_dl_task() will return true if it moved a -deadline task */
2725 	while (push_dl_task(rq))
2726 		;
2727 }
2728 
2729 static void pull_dl_task(struct rq *this_rq)
2730 {
2731 	int this_cpu = this_rq->cpu, cpu;
2732 	struct task_struct *p, *push_task;
2733 	bool resched = false;
2734 	struct rq *src_rq;
2735 	u64 dmin = LONG_MAX;
2736 
2737 	if (likely(!dl_overloaded(this_rq)))
2738 		return;
2739 
2740 	/*
2741 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2742 	 * see overloaded we must also see the dlo_mask bit.
2743 	 */
2744 	smp_rmb();
2745 
2746 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2747 		if (this_cpu == cpu)
2748 			continue;
2749 
2750 		src_rq = cpu_rq(cpu);
2751 
2752 		/*
2753 		 * It looks racy, and it is! However, as in sched_rt.c,
2754 		 * we are fine with this.
2755 		 */
2756 		if (this_rq->dl.dl_nr_running &&
2757 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2758 				   src_rq->dl.earliest_dl.next))
2759 			continue;
2760 
2761 		/* Might drop this_rq->lock */
2762 		push_task = NULL;
2763 		double_lock_balance(this_rq, src_rq);
2764 
2765 		/*
2766 		 * If there are no more pullable tasks on the
2767 		 * rq, we're done with it.
2768 		 */
2769 		if (src_rq->dl.dl_nr_running <= 1)
2770 			goto skip;
2771 
2772 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2773 
2774 		/*
2775 		 * We found a task to be pulled if:
2776 		 *  - it preempts our current (if there's one),
2777 		 *  - it will preempt the last one we pulled (if any).
2778 		 */
2779 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2780 		    dl_task_is_earliest_deadline(p, this_rq)) {
2781 			WARN_ON(p == src_rq->curr);
2782 			WARN_ON(!task_on_rq_queued(p));
2783 
2784 			/*
2785 			 * Then we pull iff p has actually an earlier
2786 			 * deadline than the current task of its runqueue.
2787 			 */
2788 			if (dl_time_before(p->dl.deadline,
2789 					   src_rq->donor->dl.deadline))
2790 				goto skip;
2791 
2792 			if (is_migration_disabled(p)) {
2793 				push_task = get_push_task(src_rq);
2794 			} else {
2795 				move_queued_task_locked(src_rq, this_rq, p);
2796 				dmin = p->dl.deadline;
2797 				resched = true;
2798 			}
2799 
2800 			/* Is there any other task even earlier? */
2801 		}
2802 skip:
2803 		double_unlock_balance(this_rq, src_rq);
2804 
2805 		if (push_task) {
2806 			preempt_disable();
2807 			raw_spin_rq_unlock(this_rq);
2808 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2809 					    push_task, &src_rq->push_work);
2810 			preempt_enable();
2811 			raw_spin_rq_lock(this_rq);
2812 		}
2813 	}
2814 
2815 	if (resched)
2816 		resched_curr(this_rq);
2817 }
2818 
2819 /*
2820  * Since the task is not running and a reschedule is not going to happen
2821  * anytime soon on its runqueue, we try pushing it away now.
2822  */
2823 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2824 {
2825 	if (!task_on_cpu(rq, p) &&
2826 	    !test_tsk_need_resched(rq->curr) &&
2827 	    p->nr_cpus_allowed > 1 &&
2828 	    dl_task(rq->donor) &&
2829 	    (rq->curr->nr_cpus_allowed < 2 ||
2830 	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2831 		push_dl_tasks(rq);
2832 	}
2833 }
2834 
2835 static void set_cpus_allowed_dl(struct task_struct *p,
2836 				struct affinity_context *ctx)
2837 {
2838 	struct root_domain *src_rd;
2839 	struct rq *rq;
2840 
2841 	WARN_ON_ONCE(!dl_task(p));
2842 
2843 	rq = task_rq(p);
2844 	src_rd = rq->rd;
2845 	/*
2846 	 * Migrating a SCHED_DEADLINE task between exclusive
2847 	 * cpusets (different root_domains) entails a bandwidth
2848 	 * update. We already made space for us in the destination
2849 	 * domain (see cpuset_can_attach()).
2850 	 */
2851 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2852 		struct dl_bw *src_dl_b;
2853 
2854 		src_dl_b = dl_bw_of(cpu_of(rq));
2855 		/*
2856 		 * We now free resources of the root_domain we are migrating
2857 		 * off. In the worst case, sched_setattr() may temporary fail
2858 		 * until we complete the update.
2859 		 */
2860 		raw_spin_lock(&src_dl_b->lock);
2861 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2862 		raw_spin_unlock(&src_dl_b->lock);
2863 	}
2864 
2865 	set_cpus_allowed_common(p, ctx);
2866 }
2867 
2868 /* Assumes rq->lock is held */
2869 static void rq_online_dl(struct rq *rq)
2870 {
2871 	if (rq->dl.overloaded)
2872 		dl_set_overload(rq);
2873 
2874 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2875 	if (rq->dl.dl_nr_running > 0)
2876 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2877 }
2878 
2879 /* Assumes rq->lock is held */
2880 static void rq_offline_dl(struct rq *rq)
2881 {
2882 	if (rq->dl.overloaded)
2883 		dl_clear_overload(rq);
2884 
2885 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2886 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2887 }
2888 
2889 void __init init_sched_dl_class(void)
2890 {
2891 	unsigned int i;
2892 
2893 	for_each_possible_cpu(i)
2894 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2895 					GFP_KERNEL, cpu_to_node(i));
2896 }
2897 
2898 void dl_add_task_root_domain(struct task_struct *p)
2899 {
2900 	struct rq_flags rf;
2901 	struct rq *rq;
2902 	struct dl_bw *dl_b;
2903 
2904 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2905 	if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
2906 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2907 		return;
2908 	}
2909 
2910 	rq = __task_rq_lock(p, &rf);
2911 
2912 	dl_b = &rq->rd->dl_bw;
2913 	raw_spin_lock(&dl_b->lock);
2914 
2915 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2916 
2917 	raw_spin_unlock(&dl_b->lock);
2918 
2919 	task_rq_unlock(rq, p, &rf);
2920 }
2921 
2922 void dl_clear_root_domain(struct root_domain *rd)
2923 {
2924 	int i;
2925 
2926 	guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
2927 
2928 	/*
2929 	 * Reset total_bw to zero and extra_bw to max_bw so that next
2930 	 * loop will add dl-servers contributions back properly,
2931 	 */
2932 	rd->dl_bw.total_bw = 0;
2933 	for_each_cpu(i, rd->span)
2934 		cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
2935 
2936 	/*
2937 	 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
2938 	 * them, we need to account for them here explicitly.
2939 	 */
2940 	for_each_cpu(i, rd->span) {
2941 		struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
2942 
2943 		if (dl_server(dl_se) && cpu_active(i))
2944 			__dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
2945 	}
2946 }
2947 
2948 void dl_clear_root_domain_cpu(int cpu)
2949 {
2950 	dl_clear_root_domain(cpu_rq(cpu)->rd);
2951 }
2952 
2953 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2954 {
2955 	/*
2956 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2957 	 * time is in the future). If the task switches back to dl before
2958 	 * the "inactive timer" fires, it can continue to consume its current
2959 	 * runtime using its current deadline. If it stays outside of
2960 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2961 	 * will reset the task parameters.
2962 	 */
2963 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2964 		task_non_contending(&p->dl);
2965 
2966 	/*
2967 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2968 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2969 	 */
2970 	dec_dl_tasks_cs(p);
2971 
2972 	if (!task_on_rq_queued(p)) {
2973 		/*
2974 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2975 		 * might migrate away from this rq while continuing to run on
2976 		 * some other class. We need to remove its contribution from
2977 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2978 		 */
2979 		if (p->dl.dl_non_contending)
2980 			sub_running_bw(&p->dl, &rq->dl);
2981 		sub_rq_bw(&p->dl, &rq->dl);
2982 	}
2983 
2984 	/*
2985 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2986 	 * at the 0-lag time, because the task could have been migrated
2987 	 * while SCHED_OTHER in the meanwhile.
2988 	 */
2989 	if (p->dl.dl_non_contending)
2990 		p->dl.dl_non_contending = 0;
2991 
2992 	/*
2993 	 * Since this might be the only -deadline task on the rq,
2994 	 * this is the right place to try to pull some other one
2995 	 * from an overloaded CPU, if any.
2996 	 */
2997 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2998 		return;
2999 
3000 	deadline_queue_pull_task(rq);
3001 }
3002 
3003 /*
3004  * When switching to -deadline, we may overload the rq, then
3005  * we try to push someone off, if possible.
3006  */
3007 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3008 {
3009 	cancel_inactive_timer(&p->dl);
3010 
3011 	/*
3012 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3013 	 * track of that on its cpuset (for correct bandwidth tracking).
3014 	 */
3015 	inc_dl_tasks_cs(p);
3016 
3017 	/* If p is not queued we will update its parameters at next wakeup. */
3018 	if (!task_on_rq_queued(p)) {
3019 		add_rq_bw(&p->dl, &rq->dl);
3020 
3021 		return;
3022 	}
3023 
3024 	if (rq->donor != p) {
3025 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3026 			deadline_queue_push_tasks(rq);
3027 		if (dl_task(rq->donor))
3028 			wakeup_preempt_dl(rq, p, 0);
3029 		else
3030 			resched_curr(rq);
3031 	} else {
3032 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3033 	}
3034 }
3035 
3036 /*
3037  * If the scheduling parameters of a -deadline task changed,
3038  * a push or pull operation might be needed.
3039  */
3040 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3041 			    int oldprio)
3042 {
3043 	if (!task_on_rq_queued(p))
3044 		return;
3045 
3046 	/*
3047 	 * This might be too much, but unfortunately
3048 	 * we don't have the old deadline value, and
3049 	 * we can't argue if the task is increasing
3050 	 * or lowering its prio, so...
3051 	 */
3052 	if (!rq->dl.overloaded)
3053 		deadline_queue_pull_task(rq);
3054 
3055 	if (task_current_donor(rq, p)) {
3056 		/*
3057 		 * If we now have a earlier deadline task than p,
3058 		 * then reschedule, provided p is still on this
3059 		 * runqueue.
3060 		 */
3061 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3062 			resched_curr(rq);
3063 	} else {
3064 		/*
3065 		 * Current may not be deadline in case p was throttled but we
3066 		 * have just replenished it (e.g. rt_mutex_setprio()).
3067 		 *
3068 		 * Otherwise, if p was given an earlier deadline, reschedule.
3069 		 */
3070 		if (!dl_task(rq->curr) ||
3071 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3072 			resched_curr(rq);
3073 	}
3074 }
3075 
3076 #ifdef CONFIG_SCHED_CORE
3077 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3078 {
3079 	return p->dl.dl_throttled;
3080 }
3081 #endif
3082 
3083 DEFINE_SCHED_CLASS(dl) = {
3084 
3085 	.enqueue_task		= enqueue_task_dl,
3086 	.dequeue_task		= dequeue_task_dl,
3087 	.yield_task		= yield_task_dl,
3088 
3089 	.wakeup_preempt		= wakeup_preempt_dl,
3090 
3091 	.pick_task		= pick_task_dl,
3092 	.put_prev_task		= put_prev_task_dl,
3093 	.set_next_task		= set_next_task_dl,
3094 
3095 	.balance		= balance_dl,
3096 	.select_task_rq		= select_task_rq_dl,
3097 	.migrate_task_rq	= migrate_task_rq_dl,
3098 	.set_cpus_allowed       = set_cpus_allowed_dl,
3099 	.rq_online              = rq_online_dl,
3100 	.rq_offline             = rq_offline_dl,
3101 	.task_woken		= task_woken_dl,
3102 	.find_lock_rq		= find_lock_later_rq,
3103 
3104 	.task_tick		= task_tick_dl,
3105 	.task_fork              = task_fork_dl,
3106 
3107 	.prio_changed           = prio_changed_dl,
3108 	.switched_from		= switched_from_dl,
3109 	.switched_to		= switched_to_dl,
3110 
3111 	.update_curr		= update_curr_dl,
3112 #ifdef CONFIG_SCHED_CORE
3113 	.task_is_throttled	= task_is_throttled_dl,
3114 #endif
3115 };
3116 
3117 /*
3118  * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3119  * sched_domains_mutex.
3120  */
3121 u64 dl_cookie;
3122 
3123 int sched_dl_global_validate(void)
3124 {
3125 	u64 runtime = global_rt_runtime();
3126 	u64 period = global_rt_period();
3127 	u64 new_bw = to_ratio(period, runtime);
3128 	u64 cookie = ++dl_cookie;
3129 	struct dl_bw *dl_b;
3130 	int cpu, cpus, ret = 0;
3131 	unsigned long flags;
3132 
3133 	/*
3134 	 * Here we want to check the bandwidth not being set to some
3135 	 * value smaller than the currently allocated bandwidth in
3136 	 * any of the root_domains.
3137 	 */
3138 	for_each_online_cpu(cpu) {
3139 		rcu_read_lock_sched();
3140 
3141 		if (dl_bw_visited(cpu, cookie))
3142 			goto next;
3143 
3144 		dl_b = dl_bw_of(cpu);
3145 		cpus = dl_bw_cpus(cpu);
3146 
3147 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3148 		if (new_bw * cpus < dl_b->total_bw)
3149 			ret = -EBUSY;
3150 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3151 
3152 next:
3153 		rcu_read_unlock_sched();
3154 
3155 		if (ret)
3156 			break;
3157 	}
3158 
3159 	return ret;
3160 }
3161 
3162 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3163 {
3164 	if (global_rt_runtime() == RUNTIME_INF) {
3165 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3166 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3167 	} else {
3168 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3169 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3170 		dl_rq->max_bw = dl_rq->extra_bw =
3171 			to_ratio(global_rt_period(), global_rt_runtime());
3172 	}
3173 }
3174 
3175 void sched_dl_do_global(void)
3176 {
3177 	u64 new_bw = -1;
3178 	u64 cookie = ++dl_cookie;
3179 	struct dl_bw *dl_b;
3180 	int cpu;
3181 	unsigned long flags;
3182 
3183 	if (global_rt_runtime() != RUNTIME_INF)
3184 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3185 
3186 	for_each_possible_cpu(cpu)
3187 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3188 
3189 	for_each_possible_cpu(cpu) {
3190 		rcu_read_lock_sched();
3191 
3192 		if (dl_bw_visited(cpu, cookie)) {
3193 			rcu_read_unlock_sched();
3194 			continue;
3195 		}
3196 
3197 		dl_b = dl_bw_of(cpu);
3198 
3199 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3200 		dl_b->bw = new_bw;
3201 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3202 
3203 		rcu_read_unlock_sched();
3204 	}
3205 }
3206 
3207 /*
3208  * We must be sure that accepting a new task (or allowing changing the
3209  * parameters of an existing one) is consistent with the bandwidth
3210  * constraints. If yes, this function also accordingly updates the currently
3211  * allocated bandwidth to reflect the new situation.
3212  *
3213  * This function is called while holding p's rq->lock.
3214  */
3215 int sched_dl_overflow(struct task_struct *p, int policy,
3216 		      const struct sched_attr *attr)
3217 {
3218 	u64 period = attr->sched_period ?: attr->sched_deadline;
3219 	u64 runtime = attr->sched_runtime;
3220 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3221 	int cpus, err = -1, cpu = task_cpu(p);
3222 	struct dl_bw *dl_b = dl_bw_of(cpu);
3223 	unsigned long cap;
3224 
3225 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3226 		return 0;
3227 
3228 	/* !deadline task may carry old deadline bandwidth */
3229 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3230 		return 0;
3231 
3232 	/*
3233 	 * Either if a task, enters, leave, or stays -deadline but changes
3234 	 * its parameters, we may need to update accordingly the total
3235 	 * allocated bandwidth of the container.
3236 	 */
3237 	raw_spin_lock(&dl_b->lock);
3238 	cpus = dl_bw_cpus(cpu);
3239 	cap = dl_bw_capacity(cpu);
3240 
3241 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3242 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3243 		if (hrtimer_active(&p->dl.inactive_timer))
3244 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3245 		__dl_add(dl_b, new_bw, cpus);
3246 		err = 0;
3247 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3248 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3249 		/*
3250 		 * XXX this is slightly incorrect: when the task
3251 		 * utilization decreases, we should delay the total
3252 		 * utilization change until the task's 0-lag point.
3253 		 * But this would require to set the task's "inactive
3254 		 * timer" when the task is not inactive.
3255 		 */
3256 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3257 		__dl_add(dl_b, new_bw, cpus);
3258 		dl_change_utilization(p, new_bw);
3259 		err = 0;
3260 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3261 		/*
3262 		 * Do not decrease the total deadline utilization here,
3263 		 * switched_from_dl() will take care to do it at the correct
3264 		 * (0-lag) time.
3265 		 */
3266 		err = 0;
3267 	}
3268 	raw_spin_unlock(&dl_b->lock);
3269 
3270 	return err;
3271 }
3272 
3273 /*
3274  * This function initializes the sched_dl_entity of a newly becoming
3275  * SCHED_DEADLINE task.
3276  *
3277  * Only the static values are considered here, the actual runtime and the
3278  * absolute deadline will be properly calculated when the task is enqueued
3279  * for the first time with its new policy.
3280  */
3281 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3282 {
3283 	struct sched_dl_entity *dl_se = &p->dl;
3284 
3285 	dl_se->dl_runtime = attr->sched_runtime;
3286 	dl_se->dl_deadline = attr->sched_deadline;
3287 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3288 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3289 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3290 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3291 }
3292 
3293 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3294 {
3295 	struct sched_dl_entity *dl_se = &p->dl;
3296 
3297 	attr->sched_priority = p->rt_priority;
3298 	attr->sched_runtime = dl_se->dl_runtime;
3299 	attr->sched_deadline = dl_se->dl_deadline;
3300 	attr->sched_period = dl_se->dl_period;
3301 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3302 	attr->sched_flags |= dl_se->flags;
3303 }
3304 
3305 /*
3306  * This function validates the new parameters of a -deadline task.
3307  * We ask for the deadline not being zero, and greater or equal
3308  * than the runtime, as well as the period of being zero or
3309  * greater than deadline. Furthermore, we have to be sure that
3310  * user parameters are above the internal resolution of 1us (we
3311  * check sched_runtime only since it is always the smaller one) and
3312  * below 2^63 ns (we have to check both sched_deadline and
3313  * sched_period, as the latter can be zero).
3314  */
3315 bool __checkparam_dl(const struct sched_attr *attr)
3316 {
3317 	u64 period, max, min;
3318 
3319 	/* special dl tasks don't actually use any parameter */
3320 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3321 		return true;
3322 
3323 	/* deadline != 0 */
3324 	if (attr->sched_deadline == 0)
3325 		return false;
3326 
3327 	/*
3328 	 * Since we truncate DL_SCALE bits, make sure we're at least
3329 	 * that big.
3330 	 */
3331 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3332 		return false;
3333 
3334 	/*
3335 	 * Since we use the MSB for wrap-around and sign issues, make
3336 	 * sure it's not set (mind that period can be equal to zero).
3337 	 */
3338 	if (attr->sched_deadline & (1ULL << 63) ||
3339 	    attr->sched_period & (1ULL << 63))
3340 		return false;
3341 
3342 	period = attr->sched_period;
3343 	if (!period)
3344 		period = attr->sched_deadline;
3345 
3346 	/* runtime <= deadline <= period (if period != 0) */
3347 	if (period < attr->sched_deadline ||
3348 	    attr->sched_deadline < attr->sched_runtime)
3349 		return false;
3350 
3351 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3352 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3353 
3354 	if (period < min || period > max)
3355 		return false;
3356 
3357 	return true;
3358 }
3359 
3360 /*
3361  * This function clears the sched_dl_entity static params.
3362  */
3363 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3364 {
3365 	dl_se->dl_runtime		= 0;
3366 	dl_se->dl_deadline		= 0;
3367 	dl_se->dl_period		= 0;
3368 	dl_se->flags			= 0;
3369 	dl_se->dl_bw			= 0;
3370 	dl_se->dl_density		= 0;
3371 
3372 	dl_se->dl_throttled		= 0;
3373 	dl_se->dl_yielded		= 0;
3374 	dl_se->dl_non_contending	= 0;
3375 	dl_se->dl_overrun		= 0;
3376 	dl_se->dl_server		= 0;
3377 
3378 #ifdef CONFIG_RT_MUTEXES
3379 	dl_se->pi_se			= dl_se;
3380 #endif
3381 }
3382 
3383 void init_dl_entity(struct sched_dl_entity *dl_se)
3384 {
3385 	RB_CLEAR_NODE(&dl_se->rb_node);
3386 	init_dl_task_timer(dl_se);
3387 	init_dl_inactive_task_timer(dl_se);
3388 	__dl_clear_params(dl_se);
3389 }
3390 
3391 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3392 {
3393 	struct sched_dl_entity *dl_se = &p->dl;
3394 
3395 	if (dl_se->dl_runtime != attr->sched_runtime ||
3396 	    dl_se->dl_deadline != attr->sched_deadline ||
3397 	    dl_se->dl_period != attr->sched_period ||
3398 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3399 		return true;
3400 
3401 	return false;
3402 }
3403 
3404 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3405 				 const struct cpumask *trial)
3406 {
3407 	unsigned long flags, cap;
3408 	struct dl_bw *cur_dl_b;
3409 	int ret = 1;
3410 
3411 	rcu_read_lock_sched();
3412 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3413 	cap = __dl_bw_capacity(trial);
3414 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3415 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3416 		ret = 0;
3417 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3418 	rcu_read_unlock_sched();
3419 
3420 	return ret;
3421 }
3422 
3423 enum dl_bw_request {
3424 	dl_bw_req_deactivate = 0,
3425 	dl_bw_req_alloc,
3426 	dl_bw_req_free
3427 };
3428 
3429 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3430 {
3431 	unsigned long flags, cap;
3432 	struct dl_bw *dl_b;
3433 	bool overflow = 0;
3434 	u64 fair_server_bw = 0;
3435 
3436 	rcu_read_lock_sched();
3437 	dl_b = dl_bw_of(cpu);
3438 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3439 
3440 	cap = dl_bw_capacity(cpu);
3441 	switch (req) {
3442 	case dl_bw_req_free:
3443 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3444 		break;
3445 	case dl_bw_req_alloc:
3446 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3447 
3448 		if (!overflow) {
3449 			/*
3450 			 * We reserve space in the destination
3451 			 * root_domain, as we can't fail after this point.
3452 			 * We will free resources in the source root_domain
3453 			 * later on (see set_cpus_allowed_dl()).
3454 			 */
3455 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3456 		}
3457 		break;
3458 	case dl_bw_req_deactivate:
3459 		/*
3460 		 * cpu is not off yet, but we need to do the math by
3461 		 * considering it off already (i.e., what would happen if we
3462 		 * turn cpu off?).
3463 		 */
3464 		cap -= arch_scale_cpu_capacity(cpu);
3465 
3466 		/*
3467 		 * cpu is going offline and NORMAL tasks will be moved away
3468 		 * from it. We can thus discount dl_server bandwidth
3469 		 * contribution as it won't need to be servicing tasks after
3470 		 * the cpu is off.
3471 		 */
3472 		if (cpu_rq(cpu)->fair_server.dl_server)
3473 			fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3474 
3475 		/*
3476 		 * Not much to check if no DEADLINE bandwidth is present.
3477 		 * dl_servers we can discount, as tasks will be moved out the
3478 		 * offlined CPUs anyway.
3479 		 */
3480 		if (dl_b->total_bw - fair_server_bw > 0) {
3481 			/*
3482 			 * Leaving at least one CPU for DEADLINE tasks seems a
3483 			 * wise thing to do. As said above, cpu is not offline
3484 			 * yet, so account for that.
3485 			 */
3486 			if (dl_bw_cpus(cpu) - 1)
3487 				overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3488 			else
3489 				overflow = 1;
3490 		}
3491 
3492 		break;
3493 	}
3494 
3495 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3496 	rcu_read_unlock_sched();
3497 
3498 	return overflow ? -EBUSY : 0;
3499 }
3500 
3501 int dl_bw_deactivate(int cpu)
3502 {
3503 	return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3504 }
3505 
3506 int dl_bw_alloc(int cpu, u64 dl_bw)
3507 {
3508 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3509 }
3510 
3511 void dl_bw_free(int cpu, u64 dl_bw)
3512 {
3513 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3514 }
3515 
3516 void print_dl_stats(struct seq_file *m, int cpu)
3517 {
3518 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3519 }
3520