1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 21 /* 22 * Default limits for DL period; on the top end we guard against small util 23 * tasks still getting ridiculously long effective runtimes, on the bottom end we 24 * guard against timer DoS. 25 */ 26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 27 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 28 #ifdef CONFIG_SYSCTL 29 static struct ctl_table sched_dl_sysctls[] = { 30 { 31 .procname = "sched_deadline_period_max_us", 32 .data = &sysctl_sched_dl_period_max, 33 .maxlen = sizeof(unsigned int), 34 .mode = 0644, 35 .proc_handler = proc_douintvec_minmax, 36 .extra1 = (void *)&sysctl_sched_dl_period_min, 37 }, 38 { 39 .procname = "sched_deadline_period_min_us", 40 .data = &sysctl_sched_dl_period_min, 41 .maxlen = sizeof(unsigned int), 42 .mode = 0644, 43 .proc_handler = proc_douintvec_minmax, 44 .extra2 = (void *)&sysctl_sched_dl_period_max, 45 }, 46 {} 47 }; 48 49 static int __init sched_dl_sysctl_init(void) 50 { 51 register_sysctl_init("kernel", sched_dl_sysctls); 52 return 0; 53 } 54 late_initcall(sched_dl_sysctl_init); 55 #endif 56 57 static bool dl_server(struct sched_dl_entity *dl_se) 58 { 59 return dl_se->dl_server; 60 } 61 62 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 63 { 64 BUG_ON(dl_server(dl_se)); 65 return container_of(dl_se, struct task_struct, dl); 66 } 67 68 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 69 { 70 return container_of(dl_rq, struct rq, dl); 71 } 72 73 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se) 74 { 75 struct rq *rq = dl_se->rq; 76 77 if (!dl_server(dl_se)) 78 rq = task_rq(dl_task_of(dl_se)); 79 80 return rq; 81 } 82 83 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 84 { 85 return &rq_of_dl_se(dl_se)->dl; 86 } 87 88 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 89 { 90 return !RB_EMPTY_NODE(&dl_se->rb_node); 91 } 92 93 #ifdef CONFIG_RT_MUTEXES 94 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 95 { 96 return dl_se->pi_se; 97 } 98 99 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 100 { 101 return pi_of(dl_se) != dl_se; 102 } 103 #else 104 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 105 { 106 return dl_se; 107 } 108 109 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 110 { 111 return false; 112 } 113 #endif 114 115 #ifdef CONFIG_SMP 116 static inline struct dl_bw *dl_bw_of(int i) 117 { 118 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 119 "sched RCU must be held"); 120 return &cpu_rq(i)->rd->dl_bw; 121 } 122 123 static inline int dl_bw_cpus(int i) 124 { 125 struct root_domain *rd = cpu_rq(i)->rd; 126 int cpus; 127 128 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 129 "sched RCU must be held"); 130 131 if (cpumask_subset(rd->span, cpu_active_mask)) 132 return cpumask_weight(rd->span); 133 134 cpus = 0; 135 136 for_each_cpu_and(i, rd->span, cpu_active_mask) 137 cpus++; 138 139 return cpus; 140 } 141 142 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 143 { 144 unsigned long cap = 0; 145 int i; 146 147 for_each_cpu_and(i, mask, cpu_active_mask) 148 cap += arch_scale_cpu_capacity(i); 149 150 return cap; 151 } 152 153 /* 154 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 155 * of the CPU the task is running on rather rd's \Sum CPU capacity. 156 */ 157 static inline unsigned long dl_bw_capacity(int i) 158 { 159 if (!sched_asym_cpucap_active() && 160 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) { 161 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 162 } else { 163 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 164 "sched RCU must be held"); 165 166 return __dl_bw_capacity(cpu_rq(i)->rd->span); 167 } 168 } 169 170 static inline bool dl_bw_visited(int cpu, u64 gen) 171 { 172 struct root_domain *rd = cpu_rq(cpu)->rd; 173 174 if (rd->visit_gen == gen) 175 return true; 176 177 rd->visit_gen = gen; 178 return false; 179 } 180 181 static inline 182 void __dl_update(struct dl_bw *dl_b, s64 bw) 183 { 184 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 185 int i; 186 187 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 188 "sched RCU must be held"); 189 for_each_cpu_and(i, rd->span, cpu_active_mask) { 190 struct rq *rq = cpu_rq(i); 191 192 rq->dl.extra_bw += bw; 193 } 194 } 195 #else 196 static inline struct dl_bw *dl_bw_of(int i) 197 { 198 return &cpu_rq(i)->dl.dl_bw; 199 } 200 201 static inline int dl_bw_cpus(int i) 202 { 203 return 1; 204 } 205 206 static inline unsigned long dl_bw_capacity(int i) 207 { 208 return SCHED_CAPACITY_SCALE; 209 } 210 211 static inline bool dl_bw_visited(int cpu, u64 gen) 212 { 213 return false; 214 } 215 216 static inline 217 void __dl_update(struct dl_bw *dl_b, s64 bw) 218 { 219 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 220 221 dl->extra_bw += bw; 222 } 223 #endif 224 225 static inline 226 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 227 { 228 dl_b->total_bw -= tsk_bw; 229 __dl_update(dl_b, (s32)tsk_bw / cpus); 230 } 231 232 static inline 233 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 234 { 235 dl_b->total_bw += tsk_bw; 236 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 237 } 238 239 static inline bool 240 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 241 { 242 return dl_b->bw != -1 && 243 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 244 } 245 246 static inline 247 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 248 { 249 u64 old = dl_rq->running_bw; 250 251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 252 dl_rq->running_bw += dl_bw; 253 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 254 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 255 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 256 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 257 } 258 259 static inline 260 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 261 { 262 u64 old = dl_rq->running_bw; 263 264 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 265 dl_rq->running_bw -= dl_bw; 266 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 267 if (dl_rq->running_bw > old) 268 dl_rq->running_bw = 0; 269 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 270 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 271 } 272 273 static inline 274 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 275 { 276 u64 old = dl_rq->this_bw; 277 278 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 279 dl_rq->this_bw += dl_bw; 280 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 281 } 282 283 static inline 284 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 285 { 286 u64 old = dl_rq->this_bw; 287 288 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 289 dl_rq->this_bw -= dl_bw; 290 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 291 if (dl_rq->this_bw > old) 292 dl_rq->this_bw = 0; 293 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 294 } 295 296 static inline 297 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 298 { 299 if (!dl_entity_is_special(dl_se)) 300 __add_rq_bw(dl_se->dl_bw, dl_rq); 301 } 302 303 static inline 304 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 305 { 306 if (!dl_entity_is_special(dl_se)) 307 __sub_rq_bw(dl_se->dl_bw, dl_rq); 308 } 309 310 static inline 311 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 312 { 313 if (!dl_entity_is_special(dl_se)) 314 __add_running_bw(dl_se->dl_bw, dl_rq); 315 } 316 317 static inline 318 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 319 { 320 if (!dl_entity_is_special(dl_se)) 321 __sub_running_bw(dl_se->dl_bw, dl_rq); 322 } 323 324 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 325 { 326 struct rq *rq; 327 328 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 329 330 if (task_on_rq_queued(p)) 331 return; 332 333 rq = task_rq(p); 334 if (p->dl.dl_non_contending) { 335 sub_running_bw(&p->dl, &rq->dl); 336 p->dl.dl_non_contending = 0; 337 /* 338 * If the timer handler is currently running and the 339 * timer cannot be canceled, inactive_task_timer() 340 * will see that dl_not_contending is not set, and 341 * will not touch the rq's active utilization, 342 * so we are still safe. 343 */ 344 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 345 put_task_struct(p); 346 } 347 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 348 __add_rq_bw(new_bw, &rq->dl); 349 } 350 351 static void __dl_clear_params(struct sched_dl_entity *dl_se); 352 353 /* 354 * The utilization of a task cannot be immediately removed from 355 * the rq active utilization (running_bw) when the task blocks. 356 * Instead, we have to wait for the so called "0-lag time". 357 * 358 * If a task blocks before the "0-lag time", a timer (the inactive 359 * timer) is armed, and running_bw is decreased when the timer 360 * fires. 361 * 362 * If the task wakes up again before the inactive timer fires, 363 * the timer is canceled, whereas if the task wakes up after the 364 * inactive timer fired (and running_bw has been decreased) the 365 * task's utilization has to be added to running_bw again. 366 * A flag in the deadline scheduling entity (dl_non_contending) 367 * is used to avoid race conditions between the inactive timer handler 368 * and task wakeups. 369 * 370 * The following diagram shows how running_bw is updated. A task is 371 * "ACTIVE" when its utilization contributes to running_bw; an 372 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 373 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 374 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 375 * time already passed, which does not contribute to running_bw anymore. 376 * +------------------+ 377 * wakeup | ACTIVE | 378 * +------------------>+ contending | 379 * | add_running_bw | | 380 * | +----+------+------+ 381 * | | ^ 382 * | dequeue | | 383 * +--------+-------+ | | 384 * | | t >= 0-lag | | wakeup 385 * | INACTIVE |<---------------+ | 386 * | | sub_running_bw | | 387 * +--------+-------+ | | 388 * ^ | | 389 * | t < 0-lag | | 390 * | | | 391 * | V | 392 * | +----+------+------+ 393 * | sub_running_bw | ACTIVE | 394 * +-------------------+ | 395 * inactive timer | non contending | 396 * fired +------------------+ 397 * 398 * The task_non_contending() function is invoked when a task 399 * blocks, and checks if the 0-lag time already passed or 400 * not (in the first case, it directly updates running_bw; 401 * in the second case, it arms the inactive timer). 402 * 403 * The task_contending() function is invoked when a task wakes 404 * up, and checks if the task is still in the "ACTIVE non contending" 405 * state or not (in the second case, it updates running_bw). 406 */ 407 static void task_non_contending(struct sched_dl_entity *dl_se) 408 { 409 struct hrtimer *timer = &dl_se->inactive_timer; 410 struct rq *rq = rq_of_dl_se(dl_se); 411 struct dl_rq *dl_rq = &rq->dl; 412 s64 zerolag_time; 413 414 /* 415 * If this is a non-deadline task that has been boosted, 416 * do nothing 417 */ 418 if (dl_se->dl_runtime == 0) 419 return; 420 421 if (dl_entity_is_special(dl_se)) 422 return; 423 424 WARN_ON(dl_se->dl_non_contending); 425 426 zerolag_time = dl_se->deadline - 427 div64_long((dl_se->runtime * dl_se->dl_period), 428 dl_se->dl_runtime); 429 430 /* 431 * Using relative times instead of the absolute "0-lag time" 432 * allows to simplify the code 433 */ 434 zerolag_time -= rq_clock(rq); 435 436 /* 437 * If the "0-lag time" already passed, decrease the active 438 * utilization now, instead of starting a timer 439 */ 440 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 441 if (dl_server(dl_se)) { 442 sub_running_bw(dl_se, dl_rq); 443 } else { 444 struct task_struct *p = dl_task_of(dl_se); 445 446 if (dl_task(p)) 447 sub_running_bw(dl_se, dl_rq); 448 449 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 450 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 451 452 if (READ_ONCE(p->__state) == TASK_DEAD) 453 sub_rq_bw(dl_se, &rq->dl); 454 raw_spin_lock(&dl_b->lock); 455 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p))); 456 raw_spin_unlock(&dl_b->lock); 457 __dl_clear_params(dl_se); 458 } 459 } 460 461 return; 462 } 463 464 dl_se->dl_non_contending = 1; 465 if (!dl_server(dl_se)) 466 get_task_struct(dl_task_of(dl_se)); 467 468 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 469 } 470 471 static void task_contending(struct sched_dl_entity *dl_se, int flags) 472 { 473 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 474 475 /* 476 * If this is a non-deadline task that has been boosted, 477 * do nothing 478 */ 479 if (dl_se->dl_runtime == 0) 480 return; 481 482 if (flags & ENQUEUE_MIGRATED) 483 add_rq_bw(dl_se, dl_rq); 484 485 if (dl_se->dl_non_contending) { 486 dl_se->dl_non_contending = 0; 487 /* 488 * If the timer handler is currently running and the 489 * timer cannot be canceled, inactive_task_timer() 490 * will see that dl_not_contending is not set, and 491 * will not touch the rq's active utilization, 492 * so we are still safe. 493 */ 494 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) { 495 if (!dl_server(dl_se)) 496 put_task_struct(dl_task_of(dl_se)); 497 } 498 } else { 499 /* 500 * Since "dl_non_contending" is not set, the 501 * task's utilization has already been removed from 502 * active utilization (either when the task blocked, 503 * when the "inactive timer" fired). 504 * So, add it back. 505 */ 506 add_running_bw(dl_se, dl_rq); 507 } 508 } 509 510 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 511 { 512 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 513 } 514 515 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 516 517 void init_dl_bw(struct dl_bw *dl_b) 518 { 519 raw_spin_lock_init(&dl_b->lock); 520 if (global_rt_runtime() == RUNTIME_INF) 521 dl_b->bw = -1; 522 else 523 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 524 dl_b->total_bw = 0; 525 } 526 527 void init_dl_rq(struct dl_rq *dl_rq) 528 { 529 dl_rq->root = RB_ROOT_CACHED; 530 531 #ifdef CONFIG_SMP 532 /* zero means no -deadline tasks */ 533 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 534 535 dl_rq->overloaded = 0; 536 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 537 #else 538 init_dl_bw(&dl_rq->dl_bw); 539 #endif 540 541 dl_rq->running_bw = 0; 542 dl_rq->this_bw = 0; 543 init_dl_rq_bw_ratio(dl_rq); 544 } 545 546 #ifdef CONFIG_SMP 547 548 static inline int dl_overloaded(struct rq *rq) 549 { 550 return atomic_read(&rq->rd->dlo_count); 551 } 552 553 static inline void dl_set_overload(struct rq *rq) 554 { 555 if (!rq->online) 556 return; 557 558 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 559 /* 560 * Must be visible before the overload count is 561 * set (as in sched_rt.c). 562 * 563 * Matched by the barrier in pull_dl_task(). 564 */ 565 smp_wmb(); 566 atomic_inc(&rq->rd->dlo_count); 567 } 568 569 static inline void dl_clear_overload(struct rq *rq) 570 { 571 if (!rq->online) 572 return; 573 574 atomic_dec(&rq->rd->dlo_count); 575 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 576 } 577 578 #define __node_2_pdl(node) \ 579 rb_entry((node), struct task_struct, pushable_dl_tasks) 580 581 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 582 { 583 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 584 } 585 586 static inline int has_pushable_dl_tasks(struct rq *rq) 587 { 588 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 589 } 590 591 /* 592 * The list of pushable -deadline task is not a plist, like in 593 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 594 */ 595 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 596 { 597 struct rb_node *leftmost; 598 599 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 600 601 leftmost = rb_add_cached(&p->pushable_dl_tasks, 602 &rq->dl.pushable_dl_tasks_root, 603 __pushable_less); 604 if (leftmost) 605 rq->dl.earliest_dl.next = p->dl.deadline; 606 607 if (!rq->dl.overloaded) { 608 dl_set_overload(rq); 609 rq->dl.overloaded = 1; 610 } 611 } 612 613 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 614 { 615 struct dl_rq *dl_rq = &rq->dl; 616 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 617 struct rb_node *leftmost; 618 619 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 620 return; 621 622 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 623 if (leftmost) 624 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 625 626 RB_CLEAR_NODE(&p->pushable_dl_tasks); 627 628 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { 629 dl_clear_overload(rq); 630 rq->dl.overloaded = 0; 631 } 632 } 633 634 static int push_dl_task(struct rq *rq); 635 636 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 637 { 638 return rq->online && dl_task(prev); 639 } 640 641 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 642 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 643 644 static void push_dl_tasks(struct rq *); 645 static void pull_dl_task(struct rq *); 646 647 static inline void deadline_queue_push_tasks(struct rq *rq) 648 { 649 if (!has_pushable_dl_tasks(rq)) 650 return; 651 652 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 653 } 654 655 static inline void deadline_queue_pull_task(struct rq *rq) 656 { 657 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 658 } 659 660 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 661 662 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 663 { 664 struct rq *later_rq = NULL; 665 struct dl_bw *dl_b; 666 667 later_rq = find_lock_later_rq(p, rq); 668 if (!later_rq) { 669 int cpu; 670 671 /* 672 * If we cannot preempt any rq, fall back to pick any 673 * online CPU: 674 */ 675 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 676 if (cpu >= nr_cpu_ids) { 677 /* 678 * Failed to find any suitable CPU. 679 * The task will never come back! 680 */ 681 WARN_ON_ONCE(dl_bandwidth_enabled()); 682 683 /* 684 * If admission control is disabled we 685 * try a little harder to let the task 686 * run. 687 */ 688 cpu = cpumask_any(cpu_active_mask); 689 } 690 later_rq = cpu_rq(cpu); 691 double_lock_balance(rq, later_rq); 692 } 693 694 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 695 /* 696 * Inactive timer is armed (or callback is running, but 697 * waiting for us to release rq locks). In any case, when it 698 * will fire (or continue), it will see running_bw of this 699 * task migrated to later_rq (and correctly handle it). 700 */ 701 sub_running_bw(&p->dl, &rq->dl); 702 sub_rq_bw(&p->dl, &rq->dl); 703 704 add_rq_bw(&p->dl, &later_rq->dl); 705 add_running_bw(&p->dl, &later_rq->dl); 706 } else { 707 sub_rq_bw(&p->dl, &rq->dl); 708 add_rq_bw(&p->dl, &later_rq->dl); 709 } 710 711 /* 712 * And we finally need to fixup root_domain(s) bandwidth accounting, 713 * since p is still hanging out in the old (now moved to default) root 714 * domain. 715 */ 716 dl_b = &rq->rd->dl_bw; 717 raw_spin_lock(&dl_b->lock); 718 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 719 raw_spin_unlock(&dl_b->lock); 720 721 dl_b = &later_rq->rd->dl_bw; 722 raw_spin_lock(&dl_b->lock); 723 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 724 raw_spin_unlock(&dl_b->lock); 725 726 set_task_cpu(p, later_rq->cpu); 727 double_unlock_balance(later_rq, rq); 728 729 return later_rq; 730 } 731 732 #else 733 734 static inline 735 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 736 { 737 } 738 739 static inline 740 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 741 { 742 } 743 744 static inline 745 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 746 { 747 } 748 749 static inline 750 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 751 { 752 } 753 754 static inline void deadline_queue_push_tasks(struct rq *rq) 755 { 756 } 757 758 static inline void deadline_queue_pull_task(struct rq *rq) 759 { 760 } 761 #endif /* CONFIG_SMP */ 762 763 static void 764 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags); 765 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 766 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags); 767 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 768 769 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 770 struct rq *rq) 771 { 772 /* for non-boosted task, pi_of(dl_se) == dl_se */ 773 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 774 dl_se->runtime = pi_of(dl_se)->dl_runtime; 775 } 776 777 /* 778 * We are being explicitly informed that a new instance is starting, 779 * and this means that: 780 * - the absolute deadline of the entity has to be placed at 781 * current time + relative deadline; 782 * - the runtime of the entity has to be set to the maximum value. 783 * 784 * The capability of specifying such event is useful whenever a -deadline 785 * entity wants to (try to!) synchronize its behaviour with the scheduler's 786 * one, and to (try to!) reconcile itself with its own scheduling 787 * parameters. 788 */ 789 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 790 { 791 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 792 struct rq *rq = rq_of_dl_rq(dl_rq); 793 794 WARN_ON(is_dl_boosted(dl_se)); 795 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 796 797 /* 798 * We are racing with the deadline timer. So, do nothing because 799 * the deadline timer handler will take care of properly recharging 800 * the runtime and postponing the deadline 801 */ 802 if (dl_se->dl_throttled) 803 return; 804 805 /* 806 * We use the regular wall clock time to set deadlines in the 807 * future; in fact, we must consider execution overheads (time 808 * spent on hardirq context, etc.). 809 */ 810 replenish_dl_new_period(dl_se, rq); 811 } 812 813 /* 814 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 815 * possibility of a entity lasting more than what it declared, and thus 816 * exhausting its runtime. 817 * 818 * Here we are interested in making runtime overrun possible, but we do 819 * not want a entity which is misbehaving to affect the scheduling of all 820 * other entities. 821 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 822 * is used, in order to confine each entity within its own bandwidth. 823 * 824 * This function deals exactly with that, and ensures that when the runtime 825 * of a entity is replenished, its deadline is also postponed. That ensures 826 * the overrunning entity can't interfere with other entity in the system and 827 * can't make them miss their deadlines. Reasons why this kind of overruns 828 * could happen are, typically, a entity voluntarily trying to overcome its 829 * runtime, or it just underestimated it during sched_setattr(). 830 */ 831 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 832 { 833 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 834 struct rq *rq = rq_of_dl_rq(dl_rq); 835 836 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 837 838 /* 839 * This could be the case for a !-dl task that is boosted. 840 * Just go with full inherited parameters. 841 */ 842 if (dl_se->dl_deadline == 0) 843 replenish_dl_new_period(dl_se, rq); 844 845 if (dl_se->dl_yielded && dl_se->runtime > 0) 846 dl_se->runtime = 0; 847 848 /* 849 * We keep moving the deadline away until we get some 850 * available runtime for the entity. This ensures correct 851 * handling of situations where the runtime overrun is 852 * arbitrary large. 853 */ 854 while (dl_se->runtime <= 0) { 855 dl_se->deadline += pi_of(dl_se)->dl_period; 856 dl_se->runtime += pi_of(dl_se)->dl_runtime; 857 } 858 859 /* 860 * At this point, the deadline really should be "in 861 * the future" with respect to rq->clock. If it's 862 * not, we are, for some reason, lagging too much! 863 * Anyway, after having warn userspace abut that, 864 * we still try to keep the things running by 865 * resetting the deadline and the budget of the 866 * entity. 867 */ 868 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 869 printk_deferred_once("sched: DL replenish lagged too much\n"); 870 replenish_dl_new_period(dl_se, rq); 871 } 872 873 if (dl_se->dl_yielded) 874 dl_se->dl_yielded = 0; 875 if (dl_se->dl_throttled) 876 dl_se->dl_throttled = 0; 877 } 878 879 /* 880 * Here we check if --at time t-- an entity (which is probably being 881 * [re]activated or, in general, enqueued) can use its remaining runtime 882 * and its current deadline _without_ exceeding the bandwidth it is 883 * assigned (function returns true if it can't). We are in fact applying 884 * one of the CBS rules: when a task wakes up, if the residual runtime 885 * over residual deadline fits within the allocated bandwidth, then we 886 * can keep the current (absolute) deadline and residual budget without 887 * disrupting the schedulability of the system. Otherwise, we should 888 * refill the runtime and set the deadline a period in the future, 889 * because keeping the current (absolute) deadline of the task would 890 * result in breaking guarantees promised to other tasks (refer to 891 * Documentation/scheduler/sched-deadline.rst for more information). 892 * 893 * This function returns true if: 894 * 895 * runtime / (deadline - t) > dl_runtime / dl_deadline , 896 * 897 * IOW we can't recycle current parameters. 898 * 899 * Notice that the bandwidth check is done against the deadline. For 900 * task with deadline equal to period this is the same of using 901 * dl_period instead of dl_deadline in the equation above. 902 */ 903 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 904 { 905 u64 left, right; 906 907 /* 908 * left and right are the two sides of the equation above, 909 * after a bit of shuffling to use multiplications instead 910 * of divisions. 911 * 912 * Note that none of the time values involved in the two 913 * multiplications are absolute: dl_deadline and dl_runtime 914 * are the relative deadline and the maximum runtime of each 915 * instance, runtime is the runtime left for the last instance 916 * and (deadline - t), since t is rq->clock, is the time left 917 * to the (absolute) deadline. Even if overflowing the u64 type 918 * is very unlikely to occur in both cases, here we scale down 919 * as we want to avoid that risk at all. Scaling down by 10 920 * means that we reduce granularity to 1us. We are fine with it, 921 * since this is only a true/false check and, anyway, thinking 922 * of anything below microseconds resolution is actually fiction 923 * (but still we want to give the user that illusion >;). 924 */ 925 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 926 right = ((dl_se->deadline - t) >> DL_SCALE) * 927 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 928 929 return dl_time_before(right, left); 930 } 931 932 /* 933 * Revised wakeup rule [1]: For self-suspending tasks, rather then 934 * re-initializing task's runtime and deadline, the revised wakeup 935 * rule adjusts the task's runtime to avoid the task to overrun its 936 * density. 937 * 938 * Reasoning: a task may overrun the density if: 939 * runtime / (deadline - t) > dl_runtime / dl_deadline 940 * 941 * Therefore, runtime can be adjusted to: 942 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 943 * 944 * In such way that runtime will be equal to the maximum density 945 * the task can use without breaking any rule. 946 * 947 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 948 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 949 */ 950 static void 951 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 952 { 953 u64 laxity = dl_se->deadline - rq_clock(rq); 954 955 /* 956 * If the task has deadline < period, and the deadline is in the past, 957 * it should already be throttled before this check. 958 * 959 * See update_dl_entity() comments for further details. 960 */ 961 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 962 963 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 964 } 965 966 /* 967 * Regarding the deadline, a task with implicit deadline has a relative 968 * deadline == relative period. A task with constrained deadline has a 969 * relative deadline <= relative period. 970 * 971 * We support constrained deadline tasks. However, there are some restrictions 972 * applied only for tasks which do not have an implicit deadline. See 973 * update_dl_entity() to know more about such restrictions. 974 * 975 * The dl_is_implicit() returns true if the task has an implicit deadline. 976 */ 977 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 978 { 979 return dl_se->dl_deadline == dl_se->dl_period; 980 } 981 982 /* 983 * When a deadline entity is placed in the runqueue, its runtime and deadline 984 * might need to be updated. This is done by a CBS wake up rule. There are two 985 * different rules: 1) the original CBS; and 2) the Revisited CBS. 986 * 987 * When the task is starting a new period, the Original CBS is used. In this 988 * case, the runtime is replenished and a new absolute deadline is set. 989 * 990 * When a task is queued before the begin of the next period, using the 991 * remaining runtime and deadline could make the entity to overflow, see 992 * dl_entity_overflow() to find more about runtime overflow. When such case 993 * is detected, the runtime and deadline need to be updated. 994 * 995 * If the task has an implicit deadline, i.e., deadline == period, the Original 996 * CBS is applied. the runtime is replenished and a new absolute deadline is 997 * set, as in the previous cases. 998 * 999 * However, the Original CBS does not work properly for tasks with 1000 * deadline < period, which are said to have a constrained deadline. By 1001 * applying the Original CBS, a constrained deadline task would be able to run 1002 * runtime/deadline in a period. With deadline < period, the task would 1003 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1004 * 1005 * In order to prevent this misbehave, the Revisited CBS is used for 1006 * constrained deadline tasks when a runtime overflow is detected. In the 1007 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1008 * the remaining runtime of the task is reduced to avoid runtime overflow. 1009 * Please refer to the comments update_dl_revised_wakeup() function to find 1010 * more about the Revised CBS rule. 1011 */ 1012 static void update_dl_entity(struct sched_dl_entity *dl_se) 1013 { 1014 struct rq *rq = rq_of_dl_se(dl_se); 1015 1016 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1017 dl_entity_overflow(dl_se, rq_clock(rq))) { 1018 1019 if (unlikely(!dl_is_implicit(dl_se) && 1020 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1021 !is_dl_boosted(dl_se))) { 1022 update_dl_revised_wakeup(dl_se, rq); 1023 return; 1024 } 1025 1026 replenish_dl_new_period(dl_se, rq); 1027 } 1028 } 1029 1030 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1031 { 1032 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1033 } 1034 1035 /* 1036 * If the entity depleted all its runtime, and if we want it to sleep 1037 * while waiting for some new execution time to become available, we 1038 * set the bandwidth replenishment timer to the replenishment instant 1039 * and try to activate it. 1040 * 1041 * Notice that it is important for the caller to know if the timer 1042 * actually started or not (i.e., the replenishment instant is in 1043 * the future or in the past). 1044 */ 1045 static int start_dl_timer(struct sched_dl_entity *dl_se) 1046 { 1047 struct hrtimer *timer = &dl_se->dl_timer; 1048 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1049 struct rq *rq = rq_of_dl_rq(dl_rq); 1050 ktime_t now, act; 1051 s64 delta; 1052 1053 lockdep_assert_rq_held(rq); 1054 1055 /* 1056 * We want the timer to fire at the deadline, but considering 1057 * that it is actually coming from rq->clock and not from 1058 * hrtimer's time base reading. 1059 */ 1060 act = ns_to_ktime(dl_next_period(dl_se)); 1061 now = hrtimer_cb_get_time(timer); 1062 delta = ktime_to_ns(now) - rq_clock(rq); 1063 act = ktime_add_ns(act, delta); 1064 1065 /* 1066 * If the expiry time already passed, e.g., because the value 1067 * chosen as the deadline is too small, don't even try to 1068 * start the timer in the past! 1069 */ 1070 if (ktime_us_delta(act, now) < 0) 1071 return 0; 1072 1073 /* 1074 * !enqueued will guarantee another callback; even if one is already in 1075 * progress. This ensures a balanced {get,put}_task_struct(). 1076 * 1077 * The race against __run_timer() clearing the enqueued state is 1078 * harmless because we're holding task_rq()->lock, therefore the timer 1079 * expiring after we've done the check will wait on its task_rq_lock() 1080 * and observe our state. 1081 */ 1082 if (!hrtimer_is_queued(timer)) { 1083 if (!dl_server(dl_se)) 1084 get_task_struct(dl_task_of(dl_se)); 1085 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1086 } 1087 1088 return 1; 1089 } 1090 1091 static void __push_dl_task(struct rq *rq, struct rq_flags *rf) 1092 { 1093 #ifdef CONFIG_SMP 1094 /* 1095 * Queueing this task back might have overloaded rq, check if we need 1096 * to kick someone away. 1097 */ 1098 if (has_pushable_dl_tasks(rq)) { 1099 /* 1100 * Nothing relies on rq->lock after this, so its safe to drop 1101 * rq->lock. 1102 */ 1103 rq_unpin_lock(rq, rf); 1104 push_dl_task(rq); 1105 rq_repin_lock(rq, rf); 1106 } 1107 #endif 1108 } 1109 1110 /* 1111 * This is the bandwidth enforcement timer callback. If here, we know 1112 * a task is not on its dl_rq, since the fact that the timer was running 1113 * means the task is throttled and needs a runtime replenishment. 1114 * 1115 * However, what we actually do depends on the fact the task is active, 1116 * (it is on its rq) or has been removed from there by a call to 1117 * dequeue_task_dl(). In the former case we must issue the runtime 1118 * replenishment and add the task back to the dl_rq; in the latter, we just 1119 * do nothing but clearing dl_throttled, so that runtime and deadline 1120 * updating (and the queueing back to dl_rq) will be done by the 1121 * next call to enqueue_task_dl(). 1122 */ 1123 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1124 { 1125 struct sched_dl_entity *dl_se = container_of(timer, 1126 struct sched_dl_entity, 1127 dl_timer); 1128 struct task_struct *p; 1129 struct rq_flags rf; 1130 struct rq *rq; 1131 1132 if (dl_server(dl_se)) { 1133 struct rq *rq = rq_of_dl_se(dl_se); 1134 struct rq_flags rf; 1135 1136 rq_lock(rq, &rf); 1137 if (dl_se->dl_throttled) { 1138 sched_clock_tick(); 1139 update_rq_clock(rq); 1140 1141 if (dl_se->server_has_tasks(dl_se)) { 1142 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1143 resched_curr(rq); 1144 __push_dl_task(rq, &rf); 1145 } else { 1146 replenish_dl_entity(dl_se); 1147 } 1148 1149 } 1150 rq_unlock(rq, &rf); 1151 1152 return HRTIMER_NORESTART; 1153 } 1154 1155 p = dl_task_of(dl_se); 1156 rq = task_rq_lock(p, &rf); 1157 1158 /* 1159 * The task might have changed its scheduling policy to something 1160 * different than SCHED_DEADLINE (through switched_from_dl()). 1161 */ 1162 if (!dl_task(p)) 1163 goto unlock; 1164 1165 /* 1166 * The task might have been boosted by someone else and might be in the 1167 * boosting/deboosting path, its not throttled. 1168 */ 1169 if (is_dl_boosted(dl_se)) 1170 goto unlock; 1171 1172 /* 1173 * Spurious timer due to start_dl_timer() race; or we already received 1174 * a replenishment from rt_mutex_setprio(). 1175 */ 1176 if (!dl_se->dl_throttled) 1177 goto unlock; 1178 1179 sched_clock_tick(); 1180 update_rq_clock(rq); 1181 1182 /* 1183 * If the throttle happened during sched-out; like: 1184 * 1185 * schedule() 1186 * deactivate_task() 1187 * dequeue_task_dl() 1188 * update_curr_dl() 1189 * start_dl_timer() 1190 * __dequeue_task_dl() 1191 * prev->on_rq = 0; 1192 * 1193 * We can be both throttled and !queued. Replenish the counter 1194 * but do not enqueue -- wait for our wakeup to do that. 1195 */ 1196 if (!task_on_rq_queued(p)) { 1197 replenish_dl_entity(dl_se); 1198 goto unlock; 1199 } 1200 1201 #ifdef CONFIG_SMP 1202 if (unlikely(!rq->online)) { 1203 /* 1204 * If the runqueue is no longer available, migrate the 1205 * task elsewhere. This necessarily changes rq. 1206 */ 1207 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1208 rq = dl_task_offline_migration(rq, p); 1209 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1210 update_rq_clock(rq); 1211 1212 /* 1213 * Now that the task has been migrated to the new RQ and we 1214 * have that locked, proceed as normal and enqueue the task 1215 * there. 1216 */ 1217 } 1218 #endif 1219 1220 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1221 if (dl_task(rq->curr)) 1222 wakeup_preempt_dl(rq, p, 0); 1223 else 1224 resched_curr(rq); 1225 1226 __push_dl_task(rq, &rf); 1227 1228 unlock: 1229 task_rq_unlock(rq, p, &rf); 1230 1231 /* 1232 * This can free the task_struct, including this hrtimer, do not touch 1233 * anything related to that after this. 1234 */ 1235 put_task_struct(p); 1236 1237 return HRTIMER_NORESTART; 1238 } 1239 1240 static void init_dl_task_timer(struct sched_dl_entity *dl_se) 1241 { 1242 struct hrtimer *timer = &dl_se->dl_timer; 1243 1244 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1245 timer->function = dl_task_timer; 1246 } 1247 1248 /* 1249 * During the activation, CBS checks if it can reuse the current task's 1250 * runtime and period. If the deadline of the task is in the past, CBS 1251 * cannot use the runtime, and so it replenishes the task. This rule 1252 * works fine for implicit deadline tasks (deadline == period), and the 1253 * CBS was designed for implicit deadline tasks. However, a task with 1254 * constrained deadline (deadline < period) might be awakened after the 1255 * deadline, but before the next period. In this case, replenishing the 1256 * task would allow it to run for runtime / deadline. As in this case 1257 * deadline < period, CBS enables a task to run for more than the 1258 * runtime / period. In a very loaded system, this can cause a domino 1259 * effect, making other tasks miss their deadlines. 1260 * 1261 * To avoid this problem, in the activation of a constrained deadline 1262 * task after the deadline but before the next period, throttle the 1263 * task and set the replenishing timer to the begin of the next period, 1264 * unless it is boosted. 1265 */ 1266 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1267 { 1268 struct rq *rq = rq_of_dl_se(dl_se); 1269 1270 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1271 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1272 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) 1273 return; 1274 dl_se->dl_throttled = 1; 1275 if (dl_se->runtime > 0) 1276 dl_se->runtime = 0; 1277 } 1278 } 1279 1280 static 1281 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1282 { 1283 return (dl_se->runtime <= 0); 1284 } 1285 1286 /* 1287 * This function implements the GRUB accounting rule. According to the 1288 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1289 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1290 * where u is the utilization of the task, Umax is the maximum reclaimable 1291 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1292 * as the difference between the "total runqueue utilization" and the 1293 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1294 * reclaimable utilization. 1295 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1296 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1297 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1298 * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1299 * Since delta is a 64 bit variable, to have an overflow its value should be 1300 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1301 * not an issue here. 1302 */ 1303 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1304 { 1305 u64 u_act; 1306 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1307 1308 /* 1309 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1310 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1311 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1312 * negative leading to wrong results. 1313 */ 1314 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1315 u_act = dl_se->dl_bw; 1316 else 1317 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1318 1319 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1320 return (delta * u_act) >> BW_SHIFT; 1321 } 1322 1323 static inline void 1324 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1325 int flags); 1326 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1327 { 1328 s64 scaled_delta_exec; 1329 1330 if (unlikely(delta_exec <= 0)) { 1331 if (unlikely(dl_se->dl_yielded)) 1332 goto throttle; 1333 return; 1334 } 1335 1336 if (dl_entity_is_special(dl_se)) 1337 return; 1338 1339 /* 1340 * For tasks that participate in GRUB, we implement GRUB-PA: the 1341 * spare reclaimed bandwidth is used to clock down frequency. 1342 * 1343 * For the others, we still need to scale reservation parameters 1344 * according to current frequency and CPU maximum capacity. 1345 */ 1346 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1347 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se); 1348 } else { 1349 int cpu = cpu_of(rq); 1350 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1351 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1352 1353 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1354 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1355 } 1356 1357 dl_se->runtime -= scaled_delta_exec; 1358 1359 throttle: 1360 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1361 dl_se->dl_throttled = 1; 1362 1363 /* If requested, inform the user about runtime overruns. */ 1364 if (dl_runtime_exceeded(dl_se) && 1365 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1366 dl_se->dl_overrun = 1; 1367 1368 dequeue_dl_entity(dl_se, 0); 1369 if (!dl_server(dl_se)) { 1370 update_stats_dequeue_dl(&rq->dl, dl_se, 0); 1371 dequeue_pushable_dl_task(rq, dl_task_of(dl_se)); 1372 } 1373 1374 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) { 1375 if (dl_server(dl_se)) 1376 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1377 else 1378 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH); 1379 } 1380 1381 if (!is_leftmost(dl_se, &rq->dl)) 1382 resched_curr(rq); 1383 } 1384 1385 /* 1386 * Because -- for now -- we share the rt bandwidth, we need to 1387 * account our runtime there too, otherwise actual rt tasks 1388 * would be able to exceed the shared quota. 1389 * 1390 * Account to the root rt group for now. 1391 * 1392 * The solution we're working towards is having the RT groups scheduled 1393 * using deadline servers -- however there's a few nasties to figure 1394 * out before that can happen. 1395 */ 1396 if (rt_bandwidth_enabled()) { 1397 struct rt_rq *rt_rq = &rq->rt; 1398 1399 raw_spin_lock(&rt_rq->rt_runtime_lock); 1400 /* 1401 * We'll let actual RT tasks worry about the overflow here, we 1402 * have our own CBS to keep us inline; only account when RT 1403 * bandwidth is relevant. 1404 */ 1405 if (sched_rt_bandwidth_account(rt_rq)) 1406 rt_rq->rt_time += delta_exec; 1407 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1408 } 1409 } 1410 1411 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec) 1412 { 1413 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1414 } 1415 1416 void dl_server_start(struct sched_dl_entity *dl_se) 1417 { 1418 if (!dl_server(dl_se)) { 1419 dl_se->dl_server = 1; 1420 setup_new_dl_entity(dl_se); 1421 } 1422 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP); 1423 } 1424 1425 void dl_server_stop(struct sched_dl_entity *dl_se) 1426 { 1427 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP); 1428 } 1429 1430 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 1431 dl_server_has_tasks_f has_tasks, 1432 dl_server_pick_f pick) 1433 { 1434 dl_se->rq = rq; 1435 dl_se->server_has_tasks = has_tasks; 1436 dl_se->server_pick = pick; 1437 } 1438 1439 /* 1440 * Update the current task's runtime statistics (provided it is still 1441 * a -deadline task and has not been removed from the dl_rq). 1442 */ 1443 static void update_curr_dl(struct rq *rq) 1444 { 1445 struct task_struct *curr = rq->curr; 1446 struct sched_dl_entity *dl_se = &curr->dl; 1447 s64 delta_exec; 1448 1449 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1450 return; 1451 1452 /* 1453 * Consumed budget is computed considering the time as 1454 * observed by schedulable tasks (excluding time spent 1455 * in hardirq context, etc.). Deadlines are instead 1456 * computed using hard walltime. This seems to be the more 1457 * natural solution, but the full ramifications of this 1458 * approach need further study. 1459 */ 1460 delta_exec = update_curr_common(rq); 1461 update_curr_dl_se(rq, dl_se, delta_exec); 1462 } 1463 1464 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1465 { 1466 struct sched_dl_entity *dl_se = container_of(timer, 1467 struct sched_dl_entity, 1468 inactive_timer); 1469 struct task_struct *p = NULL; 1470 struct rq_flags rf; 1471 struct rq *rq; 1472 1473 if (!dl_server(dl_se)) { 1474 p = dl_task_of(dl_se); 1475 rq = task_rq_lock(p, &rf); 1476 } else { 1477 rq = dl_se->rq; 1478 rq_lock(rq, &rf); 1479 } 1480 1481 sched_clock_tick(); 1482 update_rq_clock(rq); 1483 1484 if (dl_server(dl_se)) 1485 goto no_task; 1486 1487 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1488 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1489 1490 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1491 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1492 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1493 dl_se->dl_non_contending = 0; 1494 } 1495 1496 raw_spin_lock(&dl_b->lock); 1497 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1498 raw_spin_unlock(&dl_b->lock); 1499 __dl_clear_params(dl_se); 1500 1501 goto unlock; 1502 } 1503 1504 no_task: 1505 if (dl_se->dl_non_contending == 0) 1506 goto unlock; 1507 1508 sub_running_bw(dl_se, &rq->dl); 1509 dl_se->dl_non_contending = 0; 1510 unlock: 1511 1512 if (!dl_server(dl_se)) { 1513 task_rq_unlock(rq, p, &rf); 1514 put_task_struct(p); 1515 } else { 1516 rq_unlock(rq, &rf); 1517 } 1518 1519 return HRTIMER_NORESTART; 1520 } 1521 1522 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1523 { 1524 struct hrtimer *timer = &dl_se->inactive_timer; 1525 1526 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1527 timer->function = inactive_task_timer; 1528 } 1529 1530 #define __node_2_dle(node) \ 1531 rb_entry((node), struct sched_dl_entity, rb_node) 1532 1533 #ifdef CONFIG_SMP 1534 1535 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1536 { 1537 struct rq *rq = rq_of_dl_rq(dl_rq); 1538 1539 if (dl_rq->earliest_dl.curr == 0 || 1540 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1541 if (dl_rq->earliest_dl.curr == 0) 1542 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1543 dl_rq->earliest_dl.curr = deadline; 1544 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1545 } 1546 } 1547 1548 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1549 { 1550 struct rq *rq = rq_of_dl_rq(dl_rq); 1551 1552 /* 1553 * Since we may have removed our earliest (and/or next earliest) 1554 * task we must recompute them. 1555 */ 1556 if (!dl_rq->dl_nr_running) { 1557 dl_rq->earliest_dl.curr = 0; 1558 dl_rq->earliest_dl.next = 0; 1559 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1560 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1561 } else { 1562 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1563 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1564 1565 dl_rq->earliest_dl.curr = entry->deadline; 1566 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1567 } 1568 } 1569 1570 #else 1571 1572 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1573 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1574 1575 #endif /* CONFIG_SMP */ 1576 1577 static inline 1578 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1579 { 1580 u64 deadline = dl_se->deadline; 1581 1582 dl_rq->dl_nr_running++; 1583 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1584 1585 inc_dl_deadline(dl_rq, deadline); 1586 } 1587 1588 static inline 1589 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1590 { 1591 WARN_ON(!dl_rq->dl_nr_running); 1592 dl_rq->dl_nr_running--; 1593 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1594 1595 dec_dl_deadline(dl_rq, dl_se->deadline); 1596 } 1597 1598 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1599 { 1600 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1601 } 1602 1603 static inline struct sched_statistics * 1604 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1605 { 1606 return &dl_task_of(dl_se)->stats; 1607 } 1608 1609 static inline void 1610 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1611 { 1612 struct sched_statistics *stats; 1613 1614 if (!schedstat_enabled()) 1615 return; 1616 1617 stats = __schedstats_from_dl_se(dl_se); 1618 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1619 } 1620 1621 static inline void 1622 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1623 { 1624 struct sched_statistics *stats; 1625 1626 if (!schedstat_enabled()) 1627 return; 1628 1629 stats = __schedstats_from_dl_se(dl_se); 1630 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1631 } 1632 1633 static inline void 1634 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1635 { 1636 struct sched_statistics *stats; 1637 1638 if (!schedstat_enabled()) 1639 return; 1640 1641 stats = __schedstats_from_dl_se(dl_se); 1642 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1643 } 1644 1645 static inline void 1646 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1647 int flags) 1648 { 1649 if (!schedstat_enabled()) 1650 return; 1651 1652 if (flags & ENQUEUE_WAKEUP) 1653 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1654 } 1655 1656 static inline void 1657 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1658 int flags) 1659 { 1660 struct task_struct *p = dl_task_of(dl_se); 1661 1662 if (!schedstat_enabled()) 1663 return; 1664 1665 if ((flags & DEQUEUE_SLEEP)) { 1666 unsigned int state; 1667 1668 state = READ_ONCE(p->__state); 1669 if (state & TASK_INTERRUPTIBLE) 1670 __schedstat_set(p->stats.sleep_start, 1671 rq_clock(rq_of_dl_rq(dl_rq))); 1672 1673 if (state & TASK_UNINTERRUPTIBLE) 1674 __schedstat_set(p->stats.block_start, 1675 rq_clock(rq_of_dl_rq(dl_rq))); 1676 } 1677 } 1678 1679 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1680 { 1681 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1682 1683 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1684 1685 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1686 1687 inc_dl_tasks(dl_se, dl_rq); 1688 } 1689 1690 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1691 { 1692 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1693 1694 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1695 return; 1696 1697 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1698 1699 RB_CLEAR_NODE(&dl_se->rb_node); 1700 1701 dec_dl_tasks(dl_se, dl_rq); 1702 } 1703 1704 static void 1705 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1706 { 1707 WARN_ON_ONCE(on_dl_rq(dl_se)); 1708 1709 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1710 1711 /* 1712 * Check if a constrained deadline task was activated 1713 * after the deadline but before the next period. 1714 * If that is the case, the task will be throttled and 1715 * the replenishment timer will be set to the next period. 1716 */ 1717 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) 1718 dl_check_constrained_dl(dl_se); 1719 1720 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { 1721 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1722 1723 add_rq_bw(dl_se, dl_rq); 1724 add_running_bw(dl_se, dl_rq); 1725 } 1726 1727 /* 1728 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1729 * its budget it needs a replenishment and, since it now is on 1730 * its rq, the bandwidth timer callback (which clearly has not 1731 * run yet) will take care of this. 1732 * However, the active utilization does not depend on the fact 1733 * that the task is on the runqueue or not (but depends on the 1734 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1735 * In other words, even if a task is throttled its utilization must 1736 * be counted in the active utilization; hence, we need to call 1737 * add_running_bw(). 1738 */ 1739 if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1740 if (flags & ENQUEUE_WAKEUP) 1741 task_contending(dl_se, flags); 1742 1743 return; 1744 } 1745 1746 /* 1747 * If this is a wakeup or a new instance, the scheduling 1748 * parameters of the task might need updating. Otherwise, 1749 * we want a replenishment of its runtime. 1750 */ 1751 if (flags & ENQUEUE_WAKEUP) { 1752 task_contending(dl_se, flags); 1753 update_dl_entity(dl_se); 1754 } else if (flags & ENQUEUE_REPLENISH) { 1755 replenish_dl_entity(dl_se); 1756 } else if ((flags & ENQUEUE_RESTORE) && 1757 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) { 1758 setup_new_dl_entity(dl_se); 1759 } 1760 1761 __enqueue_dl_entity(dl_se); 1762 } 1763 1764 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1765 { 1766 __dequeue_dl_entity(dl_se); 1767 1768 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { 1769 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1770 1771 sub_running_bw(dl_se, dl_rq); 1772 sub_rq_bw(dl_se, dl_rq); 1773 } 1774 1775 /* 1776 * This check allows to start the inactive timer (or to immediately 1777 * decrease the active utilization, if needed) in two cases: 1778 * when the task blocks and when it is terminating 1779 * (p->state == TASK_DEAD). We can handle the two cases in the same 1780 * way, because from GRUB's point of view the same thing is happening 1781 * (the task moves from "active contending" to "active non contending" 1782 * or "inactive") 1783 */ 1784 if (flags & DEQUEUE_SLEEP) 1785 task_non_contending(dl_se); 1786 } 1787 1788 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1789 { 1790 if (is_dl_boosted(&p->dl)) { 1791 /* 1792 * Because of delays in the detection of the overrun of a 1793 * thread's runtime, it might be the case that a thread 1794 * goes to sleep in a rt mutex with negative runtime. As 1795 * a consequence, the thread will be throttled. 1796 * 1797 * While waiting for the mutex, this thread can also be 1798 * boosted via PI, resulting in a thread that is throttled 1799 * and boosted at the same time. 1800 * 1801 * In this case, the boost overrides the throttle. 1802 */ 1803 if (p->dl.dl_throttled) { 1804 /* 1805 * The replenish timer needs to be canceled. No 1806 * problem if it fires concurrently: boosted threads 1807 * are ignored in dl_task_timer(). 1808 */ 1809 hrtimer_try_to_cancel(&p->dl.dl_timer); 1810 p->dl.dl_throttled = 0; 1811 } 1812 } else if (!dl_prio(p->normal_prio)) { 1813 /* 1814 * Special case in which we have a !SCHED_DEADLINE task that is going 1815 * to be deboosted, but exceeds its runtime while doing so. No point in 1816 * replenishing it, as it's going to return back to its original 1817 * scheduling class after this. If it has been throttled, we need to 1818 * clear the flag, otherwise the task may wake up as throttled after 1819 * being boosted again with no means to replenish the runtime and clear 1820 * the throttle. 1821 */ 1822 p->dl.dl_throttled = 0; 1823 if (!(flags & ENQUEUE_REPLENISH)) 1824 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 1825 task_pid_nr(p)); 1826 1827 return; 1828 } 1829 1830 check_schedstat_required(); 1831 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 1832 1833 if (p->on_rq == TASK_ON_RQ_MIGRATING) 1834 flags |= ENQUEUE_MIGRATING; 1835 1836 enqueue_dl_entity(&p->dl, flags); 1837 1838 if (dl_server(&p->dl)) 1839 return; 1840 1841 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) 1842 enqueue_pushable_dl_task(rq, p); 1843 } 1844 1845 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1846 { 1847 update_curr_dl(rq); 1848 1849 if (p->on_rq == TASK_ON_RQ_MIGRATING) 1850 flags |= DEQUEUE_MIGRATING; 1851 1852 dequeue_dl_entity(&p->dl, flags); 1853 if (!p->dl.dl_throttled && !dl_server(&p->dl)) 1854 dequeue_pushable_dl_task(rq, p); 1855 } 1856 1857 /* 1858 * Yield task semantic for -deadline tasks is: 1859 * 1860 * get off from the CPU until our next instance, with 1861 * a new runtime. This is of little use now, since we 1862 * don't have a bandwidth reclaiming mechanism. Anyway, 1863 * bandwidth reclaiming is planned for the future, and 1864 * yield_task_dl will indicate that some spare budget 1865 * is available for other task instances to use it. 1866 */ 1867 static void yield_task_dl(struct rq *rq) 1868 { 1869 /* 1870 * We make the task go to sleep until its current deadline by 1871 * forcing its runtime to zero. This way, update_curr_dl() stops 1872 * it and the bandwidth timer will wake it up and will give it 1873 * new scheduling parameters (thanks to dl_yielded=1). 1874 */ 1875 rq->curr->dl.dl_yielded = 1; 1876 1877 update_rq_clock(rq); 1878 update_curr_dl(rq); 1879 /* 1880 * Tell update_rq_clock() that we've just updated, 1881 * so we don't do microscopic update in schedule() 1882 * and double the fastpath cost. 1883 */ 1884 rq_clock_skip_update(rq); 1885 } 1886 1887 #ifdef CONFIG_SMP 1888 1889 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 1890 struct rq *rq) 1891 { 1892 return (!rq->dl.dl_nr_running || 1893 dl_time_before(p->dl.deadline, 1894 rq->dl.earliest_dl.curr)); 1895 } 1896 1897 static int find_later_rq(struct task_struct *task); 1898 1899 static int 1900 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 1901 { 1902 struct task_struct *curr; 1903 bool select_rq; 1904 struct rq *rq; 1905 1906 if (!(flags & WF_TTWU)) 1907 goto out; 1908 1909 rq = cpu_rq(cpu); 1910 1911 rcu_read_lock(); 1912 curr = READ_ONCE(rq->curr); /* unlocked access */ 1913 1914 /* 1915 * If we are dealing with a -deadline task, we must 1916 * decide where to wake it up. 1917 * If it has a later deadline and the current task 1918 * on this rq can't move (provided the waking task 1919 * can!) we prefer to send it somewhere else. On the 1920 * other hand, if it has a shorter deadline, we 1921 * try to make it stay here, it might be important. 1922 */ 1923 select_rq = unlikely(dl_task(curr)) && 1924 (curr->nr_cpus_allowed < 2 || 1925 !dl_entity_preempt(&p->dl, &curr->dl)) && 1926 p->nr_cpus_allowed > 1; 1927 1928 /* 1929 * Take the capacity of the CPU into account to 1930 * ensure it fits the requirement of the task. 1931 */ 1932 if (sched_asym_cpucap_active()) 1933 select_rq |= !dl_task_fits_capacity(p, cpu); 1934 1935 if (select_rq) { 1936 int target = find_later_rq(p); 1937 1938 if (target != -1 && 1939 dl_task_is_earliest_deadline(p, cpu_rq(target))) 1940 cpu = target; 1941 } 1942 rcu_read_unlock(); 1943 1944 out: 1945 return cpu; 1946 } 1947 1948 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1949 { 1950 struct rq_flags rf; 1951 struct rq *rq; 1952 1953 if (READ_ONCE(p->__state) != TASK_WAKING) 1954 return; 1955 1956 rq = task_rq(p); 1957 /* 1958 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1959 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1960 * rq->lock is not... So, lock it 1961 */ 1962 rq_lock(rq, &rf); 1963 if (p->dl.dl_non_contending) { 1964 update_rq_clock(rq); 1965 sub_running_bw(&p->dl, &rq->dl); 1966 p->dl.dl_non_contending = 0; 1967 /* 1968 * If the timer handler is currently running and the 1969 * timer cannot be canceled, inactive_task_timer() 1970 * will see that dl_not_contending is not set, and 1971 * will not touch the rq's active utilization, 1972 * so we are still safe. 1973 */ 1974 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1975 put_task_struct(p); 1976 } 1977 sub_rq_bw(&p->dl, &rq->dl); 1978 rq_unlock(rq, &rf); 1979 } 1980 1981 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1982 { 1983 /* 1984 * Current can't be migrated, useless to reschedule, 1985 * let's hope p can move out. 1986 */ 1987 if (rq->curr->nr_cpus_allowed == 1 || 1988 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1989 return; 1990 1991 /* 1992 * p is migratable, so let's not schedule it and 1993 * see if it is pushed or pulled somewhere else. 1994 */ 1995 if (p->nr_cpus_allowed != 1 && 1996 cpudl_find(&rq->rd->cpudl, p, NULL)) 1997 return; 1998 1999 resched_curr(rq); 2000 } 2001 2002 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2003 { 2004 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2005 /* 2006 * This is OK, because current is on_cpu, which avoids it being 2007 * picked for load-balance and preemption/IRQs are still 2008 * disabled avoiding further scheduler activity on it and we've 2009 * not yet started the picking loop. 2010 */ 2011 rq_unpin_lock(rq, rf); 2012 pull_dl_task(rq); 2013 rq_repin_lock(rq, rf); 2014 } 2015 2016 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2017 } 2018 #endif /* CONFIG_SMP */ 2019 2020 /* 2021 * Only called when both the current and waking task are -deadline 2022 * tasks. 2023 */ 2024 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, 2025 int flags) 2026 { 2027 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 2028 resched_curr(rq); 2029 return; 2030 } 2031 2032 #ifdef CONFIG_SMP 2033 /* 2034 * In the unlikely case current and p have the same deadline 2035 * let us try to decide what's the best thing to do... 2036 */ 2037 if ((p->dl.deadline == rq->curr->dl.deadline) && 2038 !test_tsk_need_resched(rq->curr)) 2039 check_preempt_equal_dl(rq, p); 2040 #endif /* CONFIG_SMP */ 2041 } 2042 2043 #ifdef CONFIG_SCHED_HRTICK 2044 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2045 { 2046 hrtick_start(rq, dl_se->runtime); 2047 } 2048 #else /* !CONFIG_SCHED_HRTICK */ 2049 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2050 { 2051 } 2052 #endif 2053 2054 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2055 { 2056 struct sched_dl_entity *dl_se = &p->dl; 2057 struct dl_rq *dl_rq = &rq->dl; 2058 2059 p->se.exec_start = rq_clock_task(rq); 2060 if (on_dl_rq(&p->dl)) 2061 update_stats_wait_end_dl(dl_rq, dl_se); 2062 2063 /* You can't push away the running task */ 2064 dequeue_pushable_dl_task(rq, p); 2065 2066 if (!first) 2067 return; 2068 2069 if (rq->curr->sched_class != &dl_sched_class) 2070 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2071 2072 deadline_queue_push_tasks(rq); 2073 } 2074 2075 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2076 { 2077 struct rb_node *left = rb_first_cached(&dl_rq->root); 2078 2079 if (!left) 2080 return NULL; 2081 2082 return __node_2_dle(left); 2083 } 2084 2085 static struct task_struct *pick_task_dl(struct rq *rq) 2086 { 2087 struct sched_dl_entity *dl_se; 2088 struct dl_rq *dl_rq = &rq->dl; 2089 struct task_struct *p; 2090 2091 again: 2092 if (!sched_dl_runnable(rq)) 2093 return NULL; 2094 2095 dl_se = pick_next_dl_entity(dl_rq); 2096 WARN_ON_ONCE(!dl_se); 2097 2098 if (dl_server(dl_se)) { 2099 p = dl_se->server_pick(dl_se); 2100 if (!p) { 2101 WARN_ON_ONCE(1); 2102 dl_se->dl_yielded = 1; 2103 update_curr_dl_se(rq, dl_se, 0); 2104 goto again; 2105 } 2106 p->dl_server = dl_se; 2107 } else { 2108 p = dl_task_of(dl_se); 2109 } 2110 2111 return p; 2112 } 2113 2114 static struct task_struct *pick_next_task_dl(struct rq *rq) 2115 { 2116 struct task_struct *p; 2117 2118 p = pick_task_dl(rq); 2119 if (!p) 2120 return p; 2121 2122 if (!p->dl_server) 2123 set_next_task_dl(rq, p, true); 2124 2125 if (hrtick_enabled(rq)) 2126 start_hrtick_dl(rq, &p->dl); 2127 2128 return p; 2129 } 2130 2131 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 2132 { 2133 struct sched_dl_entity *dl_se = &p->dl; 2134 struct dl_rq *dl_rq = &rq->dl; 2135 2136 if (on_dl_rq(&p->dl)) 2137 update_stats_wait_start_dl(dl_rq, dl_se); 2138 2139 update_curr_dl(rq); 2140 2141 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2142 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2143 enqueue_pushable_dl_task(rq, p); 2144 } 2145 2146 /* 2147 * scheduler tick hitting a task of our scheduling class. 2148 * 2149 * NOTE: This function can be called remotely by the tick offload that 2150 * goes along full dynticks. Therefore no local assumption can be made 2151 * and everything must be accessed through the @rq and @curr passed in 2152 * parameters. 2153 */ 2154 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2155 { 2156 update_curr_dl(rq); 2157 2158 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2159 /* 2160 * Even when we have runtime, update_curr_dl() might have resulted in us 2161 * not being the leftmost task anymore. In that case NEED_RESCHED will 2162 * be set and schedule() will start a new hrtick for the next task. 2163 */ 2164 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2165 is_leftmost(&p->dl, &rq->dl)) 2166 start_hrtick_dl(rq, &p->dl); 2167 } 2168 2169 static void task_fork_dl(struct task_struct *p) 2170 { 2171 /* 2172 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2173 * sched_fork() 2174 */ 2175 } 2176 2177 #ifdef CONFIG_SMP 2178 2179 /* Only try algorithms three times */ 2180 #define DL_MAX_TRIES 3 2181 2182 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 2183 { 2184 if (!task_on_cpu(rq, p) && 2185 cpumask_test_cpu(cpu, &p->cpus_mask)) 2186 return 1; 2187 return 0; 2188 } 2189 2190 /* 2191 * Return the earliest pushable rq's task, which is suitable to be executed 2192 * on the CPU, NULL otherwise: 2193 */ 2194 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2195 { 2196 struct task_struct *p = NULL; 2197 struct rb_node *next_node; 2198 2199 if (!has_pushable_dl_tasks(rq)) 2200 return NULL; 2201 2202 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2203 2204 next_node: 2205 if (next_node) { 2206 p = __node_2_pdl(next_node); 2207 2208 if (pick_dl_task(rq, p, cpu)) 2209 return p; 2210 2211 next_node = rb_next(next_node); 2212 goto next_node; 2213 } 2214 2215 return NULL; 2216 } 2217 2218 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2219 2220 static int find_later_rq(struct task_struct *task) 2221 { 2222 struct sched_domain *sd; 2223 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2224 int this_cpu = smp_processor_id(); 2225 int cpu = task_cpu(task); 2226 2227 /* Make sure the mask is initialized first */ 2228 if (unlikely(!later_mask)) 2229 return -1; 2230 2231 if (task->nr_cpus_allowed == 1) 2232 return -1; 2233 2234 /* 2235 * We have to consider system topology and task affinity 2236 * first, then we can look for a suitable CPU. 2237 */ 2238 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2239 return -1; 2240 2241 /* 2242 * If we are here, some targets have been found, including 2243 * the most suitable which is, among the runqueues where the 2244 * current tasks have later deadlines than the task's one, the 2245 * rq with the latest possible one. 2246 * 2247 * Now we check how well this matches with task's 2248 * affinity and system topology. 2249 * 2250 * The last CPU where the task run is our first 2251 * guess, since it is most likely cache-hot there. 2252 */ 2253 if (cpumask_test_cpu(cpu, later_mask)) 2254 return cpu; 2255 /* 2256 * Check if this_cpu is to be skipped (i.e., it is 2257 * not in the mask) or not. 2258 */ 2259 if (!cpumask_test_cpu(this_cpu, later_mask)) 2260 this_cpu = -1; 2261 2262 rcu_read_lock(); 2263 for_each_domain(cpu, sd) { 2264 if (sd->flags & SD_WAKE_AFFINE) { 2265 int best_cpu; 2266 2267 /* 2268 * If possible, preempting this_cpu is 2269 * cheaper than migrating. 2270 */ 2271 if (this_cpu != -1 && 2272 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2273 rcu_read_unlock(); 2274 return this_cpu; 2275 } 2276 2277 best_cpu = cpumask_any_and_distribute(later_mask, 2278 sched_domain_span(sd)); 2279 /* 2280 * Last chance: if a CPU being in both later_mask 2281 * and current sd span is valid, that becomes our 2282 * choice. Of course, the latest possible CPU is 2283 * already under consideration through later_mask. 2284 */ 2285 if (best_cpu < nr_cpu_ids) { 2286 rcu_read_unlock(); 2287 return best_cpu; 2288 } 2289 } 2290 } 2291 rcu_read_unlock(); 2292 2293 /* 2294 * At this point, all our guesses failed, we just return 2295 * 'something', and let the caller sort the things out. 2296 */ 2297 if (this_cpu != -1) 2298 return this_cpu; 2299 2300 cpu = cpumask_any_distribute(later_mask); 2301 if (cpu < nr_cpu_ids) 2302 return cpu; 2303 2304 return -1; 2305 } 2306 2307 /* Locks the rq it finds */ 2308 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2309 { 2310 struct rq *later_rq = NULL; 2311 int tries; 2312 int cpu; 2313 2314 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2315 cpu = find_later_rq(task); 2316 2317 if ((cpu == -1) || (cpu == rq->cpu)) 2318 break; 2319 2320 later_rq = cpu_rq(cpu); 2321 2322 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2323 /* 2324 * Target rq has tasks of equal or earlier deadline, 2325 * retrying does not release any lock and is unlikely 2326 * to yield a different result. 2327 */ 2328 later_rq = NULL; 2329 break; 2330 } 2331 2332 /* Retry if something changed. */ 2333 if (double_lock_balance(rq, later_rq)) { 2334 if (unlikely(task_rq(task) != rq || 2335 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2336 task_on_cpu(rq, task) || 2337 !dl_task(task) || 2338 is_migration_disabled(task) || 2339 !task_on_rq_queued(task))) { 2340 double_unlock_balance(rq, later_rq); 2341 later_rq = NULL; 2342 break; 2343 } 2344 } 2345 2346 /* 2347 * If the rq we found has no -deadline task, or 2348 * its earliest one has a later deadline than our 2349 * task, the rq is a good one. 2350 */ 2351 if (dl_task_is_earliest_deadline(task, later_rq)) 2352 break; 2353 2354 /* Otherwise we try again. */ 2355 double_unlock_balance(rq, later_rq); 2356 later_rq = NULL; 2357 } 2358 2359 return later_rq; 2360 } 2361 2362 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2363 { 2364 struct task_struct *p; 2365 2366 if (!has_pushable_dl_tasks(rq)) 2367 return NULL; 2368 2369 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2370 2371 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2372 WARN_ON_ONCE(task_current(rq, p)); 2373 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2374 2375 WARN_ON_ONCE(!task_on_rq_queued(p)); 2376 WARN_ON_ONCE(!dl_task(p)); 2377 2378 return p; 2379 } 2380 2381 /* 2382 * See if the non running -deadline tasks on this rq 2383 * can be sent to some other CPU where they can preempt 2384 * and start executing. 2385 */ 2386 static int push_dl_task(struct rq *rq) 2387 { 2388 struct task_struct *next_task; 2389 struct rq *later_rq; 2390 int ret = 0; 2391 2392 next_task = pick_next_pushable_dl_task(rq); 2393 if (!next_task) 2394 return 0; 2395 2396 retry: 2397 /* 2398 * If next_task preempts rq->curr, and rq->curr 2399 * can move away, it makes sense to just reschedule 2400 * without going further in pushing next_task. 2401 */ 2402 if (dl_task(rq->curr) && 2403 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2404 rq->curr->nr_cpus_allowed > 1) { 2405 resched_curr(rq); 2406 return 0; 2407 } 2408 2409 if (is_migration_disabled(next_task)) 2410 return 0; 2411 2412 if (WARN_ON(next_task == rq->curr)) 2413 return 0; 2414 2415 /* We might release rq lock */ 2416 get_task_struct(next_task); 2417 2418 /* Will lock the rq it'll find */ 2419 later_rq = find_lock_later_rq(next_task, rq); 2420 if (!later_rq) { 2421 struct task_struct *task; 2422 2423 /* 2424 * We must check all this again, since 2425 * find_lock_later_rq releases rq->lock and it is 2426 * then possible that next_task has migrated. 2427 */ 2428 task = pick_next_pushable_dl_task(rq); 2429 if (task == next_task) { 2430 /* 2431 * The task is still there. We don't try 2432 * again, some other CPU will pull it when ready. 2433 */ 2434 goto out; 2435 } 2436 2437 if (!task) 2438 /* No more tasks */ 2439 goto out; 2440 2441 put_task_struct(next_task); 2442 next_task = task; 2443 goto retry; 2444 } 2445 2446 deactivate_task(rq, next_task, 0); 2447 set_task_cpu(next_task, later_rq->cpu); 2448 activate_task(later_rq, next_task, 0); 2449 ret = 1; 2450 2451 resched_curr(later_rq); 2452 2453 double_unlock_balance(rq, later_rq); 2454 2455 out: 2456 put_task_struct(next_task); 2457 2458 return ret; 2459 } 2460 2461 static void push_dl_tasks(struct rq *rq) 2462 { 2463 /* push_dl_task() will return true if it moved a -deadline task */ 2464 while (push_dl_task(rq)) 2465 ; 2466 } 2467 2468 static void pull_dl_task(struct rq *this_rq) 2469 { 2470 int this_cpu = this_rq->cpu, cpu; 2471 struct task_struct *p, *push_task; 2472 bool resched = false; 2473 struct rq *src_rq; 2474 u64 dmin = LONG_MAX; 2475 2476 if (likely(!dl_overloaded(this_rq))) 2477 return; 2478 2479 /* 2480 * Match the barrier from dl_set_overloaded; this guarantees that if we 2481 * see overloaded we must also see the dlo_mask bit. 2482 */ 2483 smp_rmb(); 2484 2485 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2486 if (this_cpu == cpu) 2487 continue; 2488 2489 src_rq = cpu_rq(cpu); 2490 2491 /* 2492 * It looks racy, abd it is! However, as in sched_rt.c, 2493 * we are fine with this. 2494 */ 2495 if (this_rq->dl.dl_nr_running && 2496 dl_time_before(this_rq->dl.earliest_dl.curr, 2497 src_rq->dl.earliest_dl.next)) 2498 continue; 2499 2500 /* Might drop this_rq->lock */ 2501 push_task = NULL; 2502 double_lock_balance(this_rq, src_rq); 2503 2504 /* 2505 * If there are no more pullable tasks on the 2506 * rq, we're done with it. 2507 */ 2508 if (src_rq->dl.dl_nr_running <= 1) 2509 goto skip; 2510 2511 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2512 2513 /* 2514 * We found a task to be pulled if: 2515 * - it preempts our current (if there's one), 2516 * - it will preempt the last one we pulled (if any). 2517 */ 2518 if (p && dl_time_before(p->dl.deadline, dmin) && 2519 dl_task_is_earliest_deadline(p, this_rq)) { 2520 WARN_ON(p == src_rq->curr); 2521 WARN_ON(!task_on_rq_queued(p)); 2522 2523 /* 2524 * Then we pull iff p has actually an earlier 2525 * deadline than the current task of its runqueue. 2526 */ 2527 if (dl_time_before(p->dl.deadline, 2528 src_rq->curr->dl.deadline)) 2529 goto skip; 2530 2531 if (is_migration_disabled(p)) { 2532 push_task = get_push_task(src_rq); 2533 } else { 2534 deactivate_task(src_rq, p, 0); 2535 set_task_cpu(p, this_cpu); 2536 activate_task(this_rq, p, 0); 2537 dmin = p->dl.deadline; 2538 resched = true; 2539 } 2540 2541 /* Is there any other task even earlier? */ 2542 } 2543 skip: 2544 double_unlock_balance(this_rq, src_rq); 2545 2546 if (push_task) { 2547 preempt_disable(); 2548 raw_spin_rq_unlock(this_rq); 2549 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2550 push_task, &src_rq->push_work); 2551 preempt_enable(); 2552 raw_spin_rq_lock(this_rq); 2553 } 2554 } 2555 2556 if (resched) 2557 resched_curr(this_rq); 2558 } 2559 2560 /* 2561 * Since the task is not running and a reschedule is not going to happen 2562 * anytime soon on its runqueue, we try pushing it away now. 2563 */ 2564 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2565 { 2566 if (!task_on_cpu(rq, p) && 2567 !test_tsk_need_resched(rq->curr) && 2568 p->nr_cpus_allowed > 1 && 2569 dl_task(rq->curr) && 2570 (rq->curr->nr_cpus_allowed < 2 || 2571 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2572 push_dl_tasks(rq); 2573 } 2574 } 2575 2576 static void set_cpus_allowed_dl(struct task_struct *p, 2577 struct affinity_context *ctx) 2578 { 2579 struct root_domain *src_rd; 2580 struct rq *rq; 2581 2582 WARN_ON_ONCE(!dl_task(p)); 2583 2584 rq = task_rq(p); 2585 src_rd = rq->rd; 2586 /* 2587 * Migrating a SCHED_DEADLINE task between exclusive 2588 * cpusets (different root_domains) entails a bandwidth 2589 * update. We already made space for us in the destination 2590 * domain (see cpuset_can_attach()). 2591 */ 2592 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 2593 struct dl_bw *src_dl_b; 2594 2595 src_dl_b = dl_bw_of(cpu_of(rq)); 2596 /* 2597 * We now free resources of the root_domain we are migrating 2598 * off. In the worst case, sched_setattr() may temporary fail 2599 * until we complete the update. 2600 */ 2601 raw_spin_lock(&src_dl_b->lock); 2602 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2603 raw_spin_unlock(&src_dl_b->lock); 2604 } 2605 2606 set_cpus_allowed_common(p, ctx); 2607 } 2608 2609 /* Assumes rq->lock is held */ 2610 static void rq_online_dl(struct rq *rq) 2611 { 2612 if (rq->dl.overloaded) 2613 dl_set_overload(rq); 2614 2615 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2616 if (rq->dl.dl_nr_running > 0) 2617 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2618 } 2619 2620 /* Assumes rq->lock is held */ 2621 static void rq_offline_dl(struct rq *rq) 2622 { 2623 if (rq->dl.overloaded) 2624 dl_clear_overload(rq); 2625 2626 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2627 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2628 } 2629 2630 void __init init_sched_dl_class(void) 2631 { 2632 unsigned int i; 2633 2634 for_each_possible_cpu(i) 2635 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2636 GFP_KERNEL, cpu_to_node(i)); 2637 } 2638 2639 void dl_add_task_root_domain(struct task_struct *p) 2640 { 2641 struct rq_flags rf; 2642 struct rq *rq; 2643 struct dl_bw *dl_b; 2644 2645 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2646 if (!dl_task(p)) { 2647 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2648 return; 2649 } 2650 2651 rq = __task_rq_lock(p, &rf); 2652 2653 dl_b = &rq->rd->dl_bw; 2654 raw_spin_lock(&dl_b->lock); 2655 2656 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2657 2658 raw_spin_unlock(&dl_b->lock); 2659 2660 task_rq_unlock(rq, p, &rf); 2661 } 2662 2663 void dl_clear_root_domain(struct root_domain *rd) 2664 { 2665 unsigned long flags; 2666 2667 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2668 rd->dl_bw.total_bw = 0; 2669 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2670 } 2671 2672 #endif /* CONFIG_SMP */ 2673 2674 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2675 { 2676 /* 2677 * task_non_contending() can start the "inactive timer" (if the 0-lag 2678 * time is in the future). If the task switches back to dl before 2679 * the "inactive timer" fires, it can continue to consume its current 2680 * runtime using its current deadline. If it stays outside of 2681 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2682 * will reset the task parameters. 2683 */ 2684 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2685 task_non_contending(&p->dl); 2686 2687 /* 2688 * In case a task is setscheduled out from SCHED_DEADLINE we need to 2689 * keep track of that on its cpuset (for correct bandwidth tracking). 2690 */ 2691 dec_dl_tasks_cs(p); 2692 2693 if (!task_on_rq_queued(p)) { 2694 /* 2695 * Inactive timer is armed. However, p is leaving DEADLINE and 2696 * might migrate away from this rq while continuing to run on 2697 * some other class. We need to remove its contribution from 2698 * this rq running_bw now, or sub_rq_bw (below) will complain. 2699 */ 2700 if (p->dl.dl_non_contending) 2701 sub_running_bw(&p->dl, &rq->dl); 2702 sub_rq_bw(&p->dl, &rq->dl); 2703 } 2704 2705 /* 2706 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2707 * at the 0-lag time, because the task could have been migrated 2708 * while SCHED_OTHER in the meanwhile. 2709 */ 2710 if (p->dl.dl_non_contending) 2711 p->dl.dl_non_contending = 0; 2712 2713 /* 2714 * Since this might be the only -deadline task on the rq, 2715 * this is the right place to try to pull some other one 2716 * from an overloaded CPU, if any. 2717 */ 2718 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2719 return; 2720 2721 deadline_queue_pull_task(rq); 2722 } 2723 2724 /* 2725 * When switching to -deadline, we may overload the rq, then 2726 * we try to push someone off, if possible. 2727 */ 2728 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2729 { 2730 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2731 put_task_struct(p); 2732 2733 /* 2734 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 2735 * track of that on its cpuset (for correct bandwidth tracking). 2736 */ 2737 inc_dl_tasks_cs(p); 2738 2739 /* If p is not queued we will update its parameters at next wakeup. */ 2740 if (!task_on_rq_queued(p)) { 2741 add_rq_bw(&p->dl, &rq->dl); 2742 2743 return; 2744 } 2745 2746 if (rq->curr != p) { 2747 #ifdef CONFIG_SMP 2748 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2749 deadline_queue_push_tasks(rq); 2750 #endif 2751 if (dl_task(rq->curr)) 2752 wakeup_preempt_dl(rq, p, 0); 2753 else 2754 resched_curr(rq); 2755 } else { 2756 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2757 } 2758 } 2759 2760 /* 2761 * If the scheduling parameters of a -deadline task changed, 2762 * a push or pull operation might be needed. 2763 */ 2764 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2765 int oldprio) 2766 { 2767 if (!task_on_rq_queued(p)) 2768 return; 2769 2770 #ifdef CONFIG_SMP 2771 /* 2772 * This might be too much, but unfortunately 2773 * we don't have the old deadline value, and 2774 * we can't argue if the task is increasing 2775 * or lowering its prio, so... 2776 */ 2777 if (!rq->dl.overloaded) 2778 deadline_queue_pull_task(rq); 2779 2780 if (task_current(rq, p)) { 2781 /* 2782 * If we now have a earlier deadline task than p, 2783 * then reschedule, provided p is still on this 2784 * runqueue. 2785 */ 2786 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2787 resched_curr(rq); 2788 } else { 2789 /* 2790 * Current may not be deadline in case p was throttled but we 2791 * have just replenished it (e.g. rt_mutex_setprio()). 2792 * 2793 * Otherwise, if p was given an earlier deadline, reschedule. 2794 */ 2795 if (!dl_task(rq->curr) || 2796 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 2797 resched_curr(rq); 2798 } 2799 #else 2800 /* 2801 * We don't know if p has a earlier or later deadline, so let's blindly 2802 * set a (maybe not needed) rescheduling point. 2803 */ 2804 resched_curr(rq); 2805 #endif 2806 } 2807 2808 #ifdef CONFIG_SCHED_CORE 2809 static int task_is_throttled_dl(struct task_struct *p, int cpu) 2810 { 2811 return p->dl.dl_throttled; 2812 } 2813 #endif 2814 2815 DEFINE_SCHED_CLASS(dl) = { 2816 2817 .enqueue_task = enqueue_task_dl, 2818 .dequeue_task = dequeue_task_dl, 2819 .yield_task = yield_task_dl, 2820 2821 .wakeup_preempt = wakeup_preempt_dl, 2822 2823 .pick_next_task = pick_next_task_dl, 2824 .put_prev_task = put_prev_task_dl, 2825 .set_next_task = set_next_task_dl, 2826 2827 #ifdef CONFIG_SMP 2828 .balance = balance_dl, 2829 .pick_task = pick_task_dl, 2830 .select_task_rq = select_task_rq_dl, 2831 .migrate_task_rq = migrate_task_rq_dl, 2832 .set_cpus_allowed = set_cpus_allowed_dl, 2833 .rq_online = rq_online_dl, 2834 .rq_offline = rq_offline_dl, 2835 .task_woken = task_woken_dl, 2836 .find_lock_rq = find_lock_later_rq, 2837 #endif 2838 2839 .task_tick = task_tick_dl, 2840 .task_fork = task_fork_dl, 2841 2842 .prio_changed = prio_changed_dl, 2843 .switched_from = switched_from_dl, 2844 .switched_to = switched_to_dl, 2845 2846 .update_curr = update_curr_dl, 2847 #ifdef CONFIG_SCHED_CORE 2848 .task_is_throttled = task_is_throttled_dl, 2849 #endif 2850 }; 2851 2852 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */ 2853 static u64 dl_generation; 2854 2855 int sched_dl_global_validate(void) 2856 { 2857 u64 runtime = global_rt_runtime(); 2858 u64 period = global_rt_period(); 2859 u64 new_bw = to_ratio(period, runtime); 2860 u64 gen = ++dl_generation; 2861 struct dl_bw *dl_b; 2862 int cpu, cpus, ret = 0; 2863 unsigned long flags; 2864 2865 /* 2866 * Here we want to check the bandwidth not being set to some 2867 * value smaller than the currently allocated bandwidth in 2868 * any of the root_domains. 2869 */ 2870 for_each_possible_cpu(cpu) { 2871 rcu_read_lock_sched(); 2872 2873 if (dl_bw_visited(cpu, gen)) 2874 goto next; 2875 2876 dl_b = dl_bw_of(cpu); 2877 cpus = dl_bw_cpus(cpu); 2878 2879 raw_spin_lock_irqsave(&dl_b->lock, flags); 2880 if (new_bw * cpus < dl_b->total_bw) 2881 ret = -EBUSY; 2882 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2883 2884 next: 2885 rcu_read_unlock_sched(); 2886 2887 if (ret) 2888 break; 2889 } 2890 2891 return ret; 2892 } 2893 2894 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2895 { 2896 if (global_rt_runtime() == RUNTIME_INF) { 2897 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2898 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 2899 } else { 2900 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2901 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2902 dl_rq->max_bw = dl_rq->extra_bw = 2903 to_ratio(global_rt_period(), global_rt_runtime()); 2904 } 2905 } 2906 2907 void sched_dl_do_global(void) 2908 { 2909 u64 new_bw = -1; 2910 u64 gen = ++dl_generation; 2911 struct dl_bw *dl_b; 2912 int cpu; 2913 unsigned long flags; 2914 2915 if (global_rt_runtime() != RUNTIME_INF) 2916 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2917 2918 for_each_possible_cpu(cpu) { 2919 rcu_read_lock_sched(); 2920 2921 if (dl_bw_visited(cpu, gen)) { 2922 rcu_read_unlock_sched(); 2923 continue; 2924 } 2925 2926 dl_b = dl_bw_of(cpu); 2927 2928 raw_spin_lock_irqsave(&dl_b->lock, flags); 2929 dl_b->bw = new_bw; 2930 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2931 2932 rcu_read_unlock_sched(); 2933 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2934 } 2935 } 2936 2937 /* 2938 * We must be sure that accepting a new task (or allowing changing the 2939 * parameters of an existing one) is consistent with the bandwidth 2940 * constraints. If yes, this function also accordingly updates the currently 2941 * allocated bandwidth to reflect the new situation. 2942 * 2943 * This function is called while holding p's rq->lock. 2944 */ 2945 int sched_dl_overflow(struct task_struct *p, int policy, 2946 const struct sched_attr *attr) 2947 { 2948 u64 period = attr->sched_period ?: attr->sched_deadline; 2949 u64 runtime = attr->sched_runtime; 2950 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2951 int cpus, err = -1, cpu = task_cpu(p); 2952 struct dl_bw *dl_b = dl_bw_of(cpu); 2953 unsigned long cap; 2954 2955 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2956 return 0; 2957 2958 /* !deadline task may carry old deadline bandwidth */ 2959 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2960 return 0; 2961 2962 /* 2963 * Either if a task, enters, leave, or stays -deadline but changes 2964 * its parameters, we may need to update accordingly the total 2965 * allocated bandwidth of the container. 2966 */ 2967 raw_spin_lock(&dl_b->lock); 2968 cpus = dl_bw_cpus(cpu); 2969 cap = dl_bw_capacity(cpu); 2970 2971 if (dl_policy(policy) && !task_has_dl_policy(p) && 2972 !__dl_overflow(dl_b, cap, 0, new_bw)) { 2973 if (hrtimer_active(&p->dl.inactive_timer)) 2974 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2975 __dl_add(dl_b, new_bw, cpus); 2976 err = 0; 2977 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2978 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 2979 /* 2980 * XXX this is slightly incorrect: when the task 2981 * utilization decreases, we should delay the total 2982 * utilization change until the task's 0-lag point. 2983 * But this would require to set the task's "inactive 2984 * timer" when the task is not inactive. 2985 */ 2986 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2987 __dl_add(dl_b, new_bw, cpus); 2988 dl_change_utilization(p, new_bw); 2989 err = 0; 2990 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2991 /* 2992 * Do not decrease the total deadline utilization here, 2993 * switched_from_dl() will take care to do it at the correct 2994 * (0-lag) time. 2995 */ 2996 err = 0; 2997 } 2998 raw_spin_unlock(&dl_b->lock); 2999 3000 return err; 3001 } 3002 3003 /* 3004 * This function initializes the sched_dl_entity of a newly becoming 3005 * SCHED_DEADLINE task. 3006 * 3007 * Only the static values are considered here, the actual runtime and the 3008 * absolute deadline will be properly calculated when the task is enqueued 3009 * for the first time with its new policy. 3010 */ 3011 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3012 { 3013 struct sched_dl_entity *dl_se = &p->dl; 3014 3015 dl_se->dl_runtime = attr->sched_runtime; 3016 dl_se->dl_deadline = attr->sched_deadline; 3017 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3018 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 3019 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3020 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3021 } 3022 3023 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3024 { 3025 struct sched_dl_entity *dl_se = &p->dl; 3026 3027 attr->sched_priority = p->rt_priority; 3028 attr->sched_runtime = dl_se->dl_runtime; 3029 attr->sched_deadline = dl_se->dl_deadline; 3030 attr->sched_period = dl_se->dl_period; 3031 attr->sched_flags &= ~SCHED_DL_FLAGS; 3032 attr->sched_flags |= dl_se->flags; 3033 } 3034 3035 /* 3036 * This function validates the new parameters of a -deadline task. 3037 * We ask for the deadline not being zero, and greater or equal 3038 * than the runtime, as well as the period of being zero or 3039 * greater than deadline. Furthermore, we have to be sure that 3040 * user parameters are above the internal resolution of 1us (we 3041 * check sched_runtime only since it is always the smaller one) and 3042 * below 2^63 ns (we have to check both sched_deadline and 3043 * sched_period, as the latter can be zero). 3044 */ 3045 bool __checkparam_dl(const struct sched_attr *attr) 3046 { 3047 u64 period, max, min; 3048 3049 /* special dl tasks don't actually use any parameter */ 3050 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3051 return true; 3052 3053 /* deadline != 0 */ 3054 if (attr->sched_deadline == 0) 3055 return false; 3056 3057 /* 3058 * Since we truncate DL_SCALE bits, make sure we're at least 3059 * that big. 3060 */ 3061 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3062 return false; 3063 3064 /* 3065 * Since we use the MSB for wrap-around and sign issues, make 3066 * sure it's not set (mind that period can be equal to zero). 3067 */ 3068 if (attr->sched_deadline & (1ULL << 63) || 3069 attr->sched_period & (1ULL << 63)) 3070 return false; 3071 3072 period = attr->sched_period; 3073 if (!period) 3074 period = attr->sched_deadline; 3075 3076 /* runtime <= deadline <= period (if period != 0) */ 3077 if (period < attr->sched_deadline || 3078 attr->sched_deadline < attr->sched_runtime) 3079 return false; 3080 3081 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3082 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3083 3084 if (period < min || period > max) 3085 return false; 3086 3087 return true; 3088 } 3089 3090 /* 3091 * This function clears the sched_dl_entity static params. 3092 */ 3093 static void __dl_clear_params(struct sched_dl_entity *dl_se) 3094 { 3095 dl_se->dl_runtime = 0; 3096 dl_se->dl_deadline = 0; 3097 dl_se->dl_period = 0; 3098 dl_se->flags = 0; 3099 dl_se->dl_bw = 0; 3100 dl_se->dl_density = 0; 3101 3102 dl_se->dl_throttled = 0; 3103 dl_se->dl_yielded = 0; 3104 dl_se->dl_non_contending = 0; 3105 dl_se->dl_overrun = 0; 3106 dl_se->dl_server = 0; 3107 3108 #ifdef CONFIG_RT_MUTEXES 3109 dl_se->pi_se = dl_se; 3110 #endif 3111 } 3112 3113 void init_dl_entity(struct sched_dl_entity *dl_se) 3114 { 3115 RB_CLEAR_NODE(&dl_se->rb_node); 3116 init_dl_task_timer(dl_se); 3117 init_dl_inactive_task_timer(dl_se); 3118 __dl_clear_params(dl_se); 3119 } 3120 3121 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3122 { 3123 struct sched_dl_entity *dl_se = &p->dl; 3124 3125 if (dl_se->dl_runtime != attr->sched_runtime || 3126 dl_se->dl_deadline != attr->sched_deadline || 3127 dl_se->dl_period != attr->sched_period || 3128 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3129 return true; 3130 3131 return false; 3132 } 3133 3134 #ifdef CONFIG_SMP 3135 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3136 const struct cpumask *trial) 3137 { 3138 unsigned long flags, cap; 3139 struct dl_bw *cur_dl_b; 3140 int ret = 1; 3141 3142 rcu_read_lock_sched(); 3143 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3144 cap = __dl_bw_capacity(trial); 3145 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3146 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3147 ret = 0; 3148 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3149 rcu_read_unlock_sched(); 3150 3151 return ret; 3152 } 3153 3154 enum dl_bw_request { 3155 dl_bw_req_check_overflow = 0, 3156 dl_bw_req_alloc, 3157 dl_bw_req_free 3158 }; 3159 3160 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3161 { 3162 unsigned long flags; 3163 struct dl_bw *dl_b; 3164 bool overflow = 0; 3165 3166 rcu_read_lock_sched(); 3167 dl_b = dl_bw_of(cpu); 3168 raw_spin_lock_irqsave(&dl_b->lock, flags); 3169 3170 if (req == dl_bw_req_free) { 3171 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3172 } else { 3173 unsigned long cap = dl_bw_capacity(cpu); 3174 3175 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3176 3177 if (req == dl_bw_req_alloc && !overflow) { 3178 /* 3179 * We reserve space in the destination 3180 * root_domain, as we can't fail after this point. 3181 * We will free resources in the source root_domain 3182 * later on (see set_cpus_allowed_dl()). 3183 */ 3184 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3185 } 3186 } 3187 3188 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3189 rcu_read_unlock_sched(); 3190 3191 return overflow ? -EBUSY : 0; 3192 } 3193 3194 int dl_bw_check_overflow(int cpu) 3195 { 3196 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0); 3197 } 3198 3199 int dl_bw_alloc(int cpu, u64 dl_bw) 3200 { 3201 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3202 } 3203 3204 void dl_bw_free(int cpu, u64 dl_bw) 3205 { 3206 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3207 } 3208 #endif 3209 3210 #ifdef CONFIG_SCHED_DEBUG 3211 void print_dl_stats(struct seq_file *m, int cpu) 3212 { 3213 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3214 } 3215 #endif /* CONFIG_SCHED_DEBUG */ 3216