xref: /linux/kernel/sched/deadline.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 	raw_spin_lock_init(&dl_b->lock);
63 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 	if (global_rt_runtime() == RUNTIME_INF)
65 		dl_b->bw = -1;
66 	else
67 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 	dl_b->total_bw = 0;
70 }
71 
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 	dl_rq->rb_root = RB_ROOT;
75 
76 #ifdef CONFIG_SMP
77 	/* zero means no -deadline tasks */
78 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79 
80 	dl_rq->dl_nr_migratory = 0;
81 	dl_rq->overloaded = 0;
82 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 	init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87 
88 #ifdef CONFIG_SMP
89 
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 	return atomic_read(&rq->rd->dlo_count);
93 }
94 
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 	if (!rq->online)
98 		return;
99 
100 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 	/*
102 	 * Must be visible before the overload count is
103 	 * set (as in sched_rt.c).
104 	 *
105 	 * Matched by the barrier in pull_dl_task().
106 	 */
107 	smp_wmb();
108 	atomic_inc(&rq->rd->dlo_count);
109 }
110 
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 	if (!rq->online)
114 		return;
115 
116 	atomic_dec(&rq->rd->dlo_count);
117 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119 
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 		if (!dl_rq->overloaded) {
124 			dl_set_overload(rq_of_dl_rq(dl_rq));
125 			dl_rq->overloaded = 1;
126 		}
127 	} else if (dl_rq->overloaded) {
128 		dl_clear_overload(rq_of_dl_rq(dl_rq));
129 		dl_rq->overloaded = 0;
130 	}
131 }
132 
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 	struct task_struct *p = dl_task_of(dl_se);
136 
137 	if (tsk_nr_cpus_allowed(p) > 1)
138 		dl_rq->dl_nr_migratory++;
139 
140 	update_dl_migration(dl_rq);
141 }
142 
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	struct task_struct *p = dl_task_of(dl_se);
146 
147 	if (tsk_nr_cpus_allowed(p) > 1)
148 		dl_rq->dl_nr_migratory--;
149 
150 	update_dl_migration(dl_rq);
151 }
152 
153 /*
154  * The list of pushable -deadline task is not a plist, like in
155  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156  */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 	struct dl_rq *dl_rq = &rq->dl;
160 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct task_struct *entry;
163 	int leftmost = 1;
164 
165 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166 
167 	while (*link) {
168 		parent = *link;
169 		entry = rb_entry(parent, struct task_struct,
170 				 pushable_dl_tasks);
171 		if (dl_entity_preempt(&p->dl, &entry->dl))
172 			link = &parent->rb_left;
173 		else {
174 			link = &parent->rb_right;
175 			leftmost = 0;
176 		}
177 	}
178 
179 	if (leftmost) {
180 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 		dl_rq->earliest_dl.next = p->dl.deadline;
182 	}
183 
184 	rb_link_node(&p->pushable_dl_tasks, parent, link);
185 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187 
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 	struct dl_rq *dl_rq = &rq->dl;
191 
192 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 		return;
194 
195 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 		struct rb_node *next_node;
197 
198 		next_node = rb_next(&p->pushable_dl_tasks);
199 		dl_rq->pushable_dl_tasks_leftmost = next_node;
200 		if (next_node) {
201 			dl_rq->earliest_dl.next = rb_entry(next_node,
202 				struct task_struct, pushable_dl_tasks)->dl.deadline;
203 		}
204 	}
205 
206 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
208 }
209 
210 static inline int has_pushable_dl_tasks(struct rq *rq)
211 {
212 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213 }
214 
215 static int push_dl_task(struct rq *rq);
216 
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218 {
219 	return dl_task(prev);
220 }
221 
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
224 
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
227 
228 static inline void queue_push_tasks(struct rq *rq)
229 {
230 	if (!has_pushable_dl_tasks(rq))
231 		return;
232 
233 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234 }
235 
236 static inline void queue_pull_task(struct rq *rq)
237 {
238 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
239 }
240 
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242 
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
244 {
245 	struct rq *later_rq = NULL;
246 
247 	later_rq = find_lock_later_rq(p, rq);
248 	if (!later_rq) {
249 		int cpu;
250 
251 		/*
252 		 * If we cannot preempt any rq, fall back to pick any
253 		 * online cpu.
254 		 */
255 		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
256 		if (cpu >= nr_cpu_ids) {
257 			/*
258 			 * Fail to find any suitable cpu.
259 			 * The task will never come back!
260 			 */
261 			BUG_ON(dl_bandwidth_enabled());
262 
263 			/*
264 			 * If admission control is disabled we
265 			 * try a little harder to let the task
266 			 * run.
267 			 */
268 			cpu = cpumask_any(cpu_active_mask);
269 		}
270 		later_rq = cpu_rq(cpu);
271 		double_lock_balance(rq, later_rq);
272 	}
273 
274 	set_task_cpu(p, later_rq->cpu);
275 	double_unlock_balance(later_rq, rq);
276 
277 	return later_rq;
278 }
279 
280 #else
281 
282 static inline
283 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
284 {
285 }
286 
287 static inline
288 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
289 {
290 }
291 
292 static inline
293 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
294 {
295 }
296 
297 static inline
298 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
299 {
300 }
301 
302 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
303 {
304 	return false;
305 }
306 
307 static inline void pull_dl_task(struct rq *rq)
308 {
309 }
310 
311 static inline void queue_push_tasks(struct rq *rq)
312 {
313 }
314 
315 static inline void queue_pull_task(struct rq *rq)
316 {
317 }
318 #endif /* CONFIG_SMP */
319 
320 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
321 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
322 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
323 				  int flags);
324 
325 /*
326  * We are being explicitly informed that a new instance is starting,
327  * and this means that:
328  *  - the absolute deadline of the entity has to be placed at
329  *    current time + relative deadline;
330  *  - the runtime of the entity has to be set to the maximum value.
331  *
332  * The capability of specifying such event is useful whenever a -deadline
333  * entity wants to (try to!) synchronize its behaviour with the scheduler's
334  * one, and to (try to!) reconcile itself with its own scheduling
335  * parameters.
336  */
337 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
338 {
339 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
340 	struct rq *rq = rq_of_dl_rq(dl_rq);
341 
342 	WARN_ON(dl_se->dl_boosted);
343 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
344 
345 	/*
346 	 * We are racing with the deadline timer. So, do nothing because
347 	 * the deadline timer handler will take care of properly recharging
348 	 * the runtime and postponing the deadline
349 	 */
350 	if (dl_se->dl_throttled)
351 		return;
352 
353 	/*
354 	 * We use the regular wall clock time to set deadlines in the
355 	 * future; in fact, we must consider execution overheads (time
356 	 * spent on hardirq context, etc.).
357 	 */
358 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
359 	dl_se->runtime = dl_se->dl_runtime;
360 }
361 
362 /*
363  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
364  * possibility of a entity lasting more than what it declared, and thus
365  * exhausting its runtime.
366  *
367  * Here we are interested in making runtime overrun possible, but we do
368  * not want a entity which is misbehaving to affect the scheduling of all
369  * other entities.
370  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
371  * is used, in order to confine each entity within its own bandwidth.
372  *
373  * This function deals exactly with that, and ensures that when the runtime
374  * of a entity is replenished, its deadline is also postponed. That ensures
375  * the overrunning entity can't interfere with other entity in the system and
376  * can't make them miss their deadlines. Reasons why this kind of overruns
377  * could happen are, typically, a entity voluntarily trying to overcome its
378  * runtime, or it just underestimated it during sched_setattr().
379  */
380 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
381 				struct sched_dl_entity *pi_se)
382 {
383 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
384 	struct rq *rq = rq_of_dl_rq(dl_rq);
385 
386 	BUG_ON(pi_se->dl_runtime <= 0);
387 
388 	/*
389 	 * This could be the case for a !-dl task that is boosted.
390 	 * Just go with full inherited parameters.
391 	 */
392 	if (dl_se->dl_deadline == 0) {
393 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
394 		dl_se->runtime = pi_se->dl_runtime;
395 	}
396 
397 	if (dl_se->dl_yielded && dl_se->runtime > 0)
398 		dl_se->runtime = 0;
399 
400 	/*
401 	 * We keep moving the deadline away until we get some
402 	 * available runtime for the entity. This ensures correct
403 	 * handling of situations where the runtime overrun is
404 	 * arbitrary large.
405 	 */
406 	while (dl_se->runtime <= 0) {
407 		dl_se->deadline += pi_se->dl_period;
408 		dl_se->runtime += pi_se->dl_runtime;
409 	}
410 
411 	/*
412 	 * At this point, the deadline really should be "in
413 	 * the future" with respect to rq->clock. If it's
414 	 * not, we are, for some reason, lagging too much!
415 	 * Anyway, after having warn userspace abut that,
416 	 * we still try to keep the things running by
417 	 * resetting the deadline and the budget of the
418 	 * entity.
419 	 */
420 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
421 		printk_deferred_once("sched: DL replenish lagged too much\n");
422 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
423 		dl_se->runtime = pi_se->dl_runtime;
424 	}
425 
426 	if (dl_se->dl_yielded)
427 		dl_se->dl_yielded = 0;
428 	if (dl_se->dl_throttled)
429 		dl_se->dl_throttled = 0;
430 }
431 
432 /*
433  * Here we check if --at time t-- an entity (which is probably being
434  * [re]activated or, in general, enqueued) can use its remaining runtime
435  * and its current deadline _without_ exceeding the bandwidth it is
436  * assigned (function returns true if it can't). We are in fact applying
437  * one of the CBS rules: when a task wakes up, if the residual runtime
438  * over residual deadline fits within the allocated bandwidth, then we
439  * can keep the current (absolute) deadline and residual budget without
440  * disrupting the schedulability of the system. Otherwise, we should
441  * refill the runtime and set the deadline a period in the future,
442  * because keeping the current (absolute) deadline of the task would
443  * result in breaking guarantees promised to other tasks (refer to
444  * Documentation/scheduler/sched-deadline.txt for more informations).
445  *
446  * This function returns true if:
447  *
448  *   runtime / (deadline - t) > dl_runtime / dl_period ,
449  *
450  * IOW we can't recycle current parameters.
451  *
452  * Notice that the bandwidth check is done against the period. For
453  * task with deadline equal to period this is the same of using
454  * dl_deadline instead of dl_period in the equation above.
455  */
456 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
457 			       struct sched_dl_entity *pi_se, u64 t)
458 {
459 	u64 left, right;
460 
461 	/*
462 	 * left and right are the two sides of the equation above,
463 	 * after a bit of shuffling to use multiplications instead
464 	 * of divisions.
465 	 *
466 	 * Note that none of the time values involved in the two
467 	 * multiplications are absolute: dl_deadline and dl_runtime
468 	 * are the relative deadline and the maximum runtime of each
469 	 * instance, runtime is the runtime left for the last instance
470 	 * and (deadline - t), since t is rq->clock, is the time left
471 	 * to the (absolute) deadline. Even if overflowing the u64 type
472 	 * is very unlikely to occur in both cases, here we scale down
473 	 * as we want to avoid that risk at all. Scaling down by 10
474 	 * means that we reduce granularity to 1us. We are fine with it,
475 	 * since this is only a true/false check and, anyway, thinking
476 	 * of anything below microseconds resolution is actually fiction
477 	 * (but still we want to give the user that illusion >;).
478 	 */
479 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
480 	right = ((dl_se->deadline - t) >> DL_SCALE) *
481 		(pi_se->dl_runtime >> DL_SCALE);
482 
483 	return dl_time_before(right, left);
484 }
485 
486 /*
487  * When a -deadline entity is queued back on the runqueue, its runtime and
488  * deadline might need updating.
489  *
490  * The policy here is that we update the deadline of the entity only if:
491  *  - the current deadline is in the past,
492  *  - using the remaining runtime with the current deadline would make
493  *    the entity exceed its bandwidth.
494  */
495 static void update_dl_entity(struct sched_dl_entity *dl_se,
496 			     struct sched_dl_entity *pi_se)
497 {
498 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
499 	struct rq *rq = rq_of_dl_rq(dl_rq);
500 
501 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
502 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
503 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
504 		dl_se->runtime = pi_se->dl_runtime;
505 	}
506 }
507 
508 /*
509  * If the entity depleted all its runtime, and if we want it to sleep
510  * while waiting for some new execution time to become available, we
511  * set the bandwidth enforcement timer to the replenishment instant
512  * and try to activate it.
513  *
514  * Notice that it is important for the caller to know if the timer
515  * actually started or not (i.e., the replenishment instant is in
516  * the future or in the past).
517  */
518 static int start_dl_timer(struct task_struct *p)
519 {
520 	struct sched_dl_entity *dl_se = &p->dl;
521 	struct hrtimer *timer = &dl_se->dl_timer;
522 	struct rq *rq = task_rq(p);
523 	ktime_t now, act;
524 	s64 delta;
525 
526 	lockdep_assert_held(&rq->lock);
527 
528 	/*
529 	 * We want the timer to fire at the deadline, but considering
530 	 * that it is actually coming from rq->clock and not from
531 	 * hrtimer's time base reading.
532 	 */
533 	act = ns_to_ktime(dl_se->deadline);
534 	now = hrtimer_cb_get_time(timer);
535 	delta = ktime_to_ns(now) - rq_clock(rq);
536 	act = ktime_add_ns(act, delta);
537 
538 	/*
539 	 * If the expiry time already passed, e.g., because the value
540 	 * chosen as the deadline is too small, don't even try to
541 	 * start the timer in the past!
542 	 */
543 	if (ktime_us_delta(act, now) < 0)
544 		return 0;
545 
546 	/*
547 	 * !enqueued will guarantee another callback; even if one is already in
548 	 * progress. This ensures a balanced {get,put}_task_struct().
549 	 *
550 	 * The race against __run_timer() clearing the enqueued state is
551 	 * harmless because we're holding task_rq()->lock, therefore the timer
552 	 * expiring after we've done the check will wait on its task_rq_lock()
553 	 * and observe our state.
554 	 */
555 	if (!hrtimer_is_queued(timer)) {
556 		get_task_struct(p);
557 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
558 	}
559 
560 	return 1;
561 }
562 
563 /*
564  * This is the bandwidth enforcement timer callback. If here, we know
565  * a task is not on its dl_rq, since the fact that the timer was running
566  * means the task is throttled and needs a runtime replenishment.
567  *
568  * However, what we actually do depends on the fact the task is active,
569  * (it is on its rq) or has been removed from there by a call to
570  * dequeue_task_dl(). In the former case we must issue the runtime
571  * replenishment and add the task back to the dl_rq; in the latter, we just
572  * do nothing but clearing dl_throttled, so that runtime and deadline
573  * updating (and the queueing back to dl_rq) will be done by the
574  * next call to enqueue_task_dl().
575  */
576 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
577 {
578 	struct sched_dl_entity *dl_se = container_of(timer,
579 						     struct sched_dl_entity,
580 						     dl_timer);
581 	struct task_struct *p = dl_task_of(dl_se);
582 	struct rq_flags rf;
583 	struct rq *rq;
584 
585 	rq = task_rq_lock(p, &rf);
586 
587 	/*
588 	 * The task might have changed its scheduling policy to something
589 	 * different than SCHED_DEADLINE (through switched_from_dl()).
590 	 */
591 	if (!dl_task(p)) {
592 		__dl_clear_params(p);
593 		goto unlock;
594 	}
595 
596 	/*
597 	 * The task might have been boosted by someone else and might be in the
598 	 * boosting/deboosting path, its not throttled.
599 	 */
600 	if (dl_se->dl_boosted)
601 		goto unlock;
602 
603 	/*
604 	 * Spurious timer due to start_dl_timer() race; or we already received
605 	 * a replenishment from rt_mutex_setprio().
606 	 */
607 	if (!dl_se->dl_throttled)
608 		goto unlock;
609 
610 	sched_clock_tick();
611 	update_rq_clock(rq);
612 
613 	/*
614 	 * If the throttle happened during sched-out; like:
615 	 *
616 	 *   schedule()
617 	 *     deactivate_task()
618 	 *       dequeue_task_dl()
619 	 *         update_curr_dl()
620 	 *           start_dl_timer()
621 	 *         __dequeue_task_dl()
622 	 *     prev->on_rq = 0;
623 	 *
624 	 * We can be both throttled and !queued. Replenish the counter
625 	 * but do not enqueue -- wait for our wakeup to do that.
626 	 */
627 	if (!task_on_rq_queued(p)) {
628 		replenish_dl_entity(dl_se, dl_se);
629 		goto unlock;
630 	}
631 
632 #ifdef CONFIG_SMP
633 	if (unlikely(!rq->online)) {
634 		/*
635 		 * If the runqueue is no longer available, migrate the
636 		 * task elsewhere. This necessarily changes rq.
637 		 */
638 		lockdep_unpin_lock(&rq->lock, rf.cookie);
639 		rq = dl_task_offline_migration(rq, p);
640 		rf.cookie = lockdep_pin_lock(&rq->lock);
641 
642 		/*
643 		 * Now that the task has been migrated to the new RQ and we
644 		 * have that locked, proceed as normal and enqueue the task
645 		 * there.
646 		 */
647 	}
648 #endif
649 
650 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
651 	if (dl_task(rq->curr))
652 		check_preempt_curr_dl(rq, p, 0);
653 	else
654 		resched_curr(rq);
655 
656 #ifdef CONFIG_SMP
657 	/*
658 	 * Queueing this task back might have overloaded rq, check if we need
659 	 * to kick someone away.
660 	 */
661 	if (has_pushable_dl_tasks(rq)) {
662 		/*
663 		 * Nothing relies on rq->lock after this, so its safe to drop
664 		 * rq->lock.
665 		 */
666 		lockdep_unpin_lock(&rq->lock, rf.cookie);
667 		push_dl_task(rq);
668 		lockdep_repin_lock(&rq->lock, rf.cookie);
669 	}
670 #endif
671 
672 unlock:
673 	task_rq_unlock(rq, p, &rf);
674 
675 	/*
676 	 * This can free the task_struct, including this hrtimer, do not touch
677 	 * anything related to that after this.
678 	 */
679 	put_task_struct(p);
680 
681 	return HRTIMER_NORESTART;
682 }
683 
684 void init_dl_task_timer(struct sched_dl_entity *dl_se)
685 {
686 	struct hrtimer *timer = &dl_se->dl_timer;
687 
688 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
689 	timer->function = dl_task_timer;
690 }
691 
692 static
693 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
694 {
695 	return (dl_se->runtime <= 0);
696 }
697 
698 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
699 
700 /*
701  * Update the current task's runtime statistics (provided it is still
702  * a -deadline task and has not been removed from the dl_rq).
703  */
704 static void update_curr_dl(struct rq *rq)
705 {
706 	struct task_struct *curr = rq->curr;
707 	struct sched_dl_entity *dl_se = &curr->dl;
708 	u64 delta_exec;
709 
710 	if (!dl_task(curr) || !on_dl_rq(dl_se))
711 		return;
712 
713 	/*
714 	 * Consumed budget is computed considering the time as
715 	 * observed by schedulable tasks (excluding time spent
716 	 * in hardirq context, etc.). Deadlines are instead
717 	 * computed using hard walltime. This seems to be the more
718 	 * natural solution, but the full ramifications of this
719 	 * approach need further study.
720 	 */
721 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
722 	if (unlikely((s64)delta_exec <= 0)) {
723 		if (unlikely(dl_se->dl_yielded))
724 			goto throttle;
725 		return;
726 	}
727 
728 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
729 	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL);
730 
731 	schedstat_set(curr->se.statistics.exec_max,
732 		      max(curr->se.statistics.exec_max, delta_exec));
733 
734 	curr->se.sum_exec_runtime += delta_exec;
735 	account_group_exec_runtime(curr, delta_exec);
736 
737 	curr->se.exec_start = rq_clock_task(rq);
738 	cpuacct_charge(curr, delta_exec);
739 
740 	sched_rt_avg_update(rq, delta_exec);
741 
742 	dl_se->runtime -= delta_exec;
743 
744 throttle:
745 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
746 		dl_se->dl_throttled = 1;
747 		__dequeue_task_dl(rq, curr, 0);
748 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
749 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
750 
751 		if (!is_leftmost(curr, &rq->dl))
752 			resched_curr(rq);
753 	}
754 
755 	/*
756 	 * Because -- for now -- we share the rt bandwidth, we need to
757 	 * account our runtime there too, otherwise actual rt tasks
758 	 * would be able to exceed the shared quota.
759 	 *
760 	 * Account to the root rt group for now.
761 	 *
762 	 * The solution we're working towards is having the RT groups scheduled
763 	 * using deadline servers -- however there's a few nasties to figure
764 	 * out before that can happen.
765 	 */
766 	if (rt_bandwidth_enabled()) {
767 		struct rt_rq *rt_rq = &rq->rt;
768 
769 		raw_spin_lock(&rt_rq->rt_runtime_lock);
770 		/*
771 		 * We'll let actual RT tasks worry about the overflow here, we
772 		 * have our own CBS to keep us inline; only account when RT
773 		 * bandwidth is relevant.
774 		 */
775 		if (sched_rt_bandwidth_account(rt_rq))
776 			rt_rq->rt_time += delta_exec;
777 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
778 	}
779 }
780 
781 #ifdef CONFIG_SMP
782 
783 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
784 {
785 	struct rq *rq = rq_of_dl_rq(dl_rq);
786 
787 	if (dl_rq->earliest_dl.curr == 0 ||
788 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
789 		dl_rq->earliest_dl.curr = deadline;
790 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
791 	}
792 }
793 
794 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
795 {
796 	struct rq *rq = rq_of_dl_rq(dl_rq);
797 
798 	/*
799 	 * Since we may have removed our earliest (and/or next earliest)
800 	 * task we must recompute them.
801 	 */
802 	if (!dl_rq->dl_nr_running) {
803 		dl_rq->earliest_dl.curr = 0;
804 		dl_rq->earliest_dl.next = 0;
805 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
806 	} else {
807 		struct rb_node *leftmost = dl_rq->rb_leftmost;
808 		struct sched_dl_entity *entry;
809 
810 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
811 		dl_rq->earliest_dl.curr = entry->deadline;
812 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
813 	}
814 }
815 
816 #else
817 
818 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
819 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
820 
821 #endif /* CONFIG_SMP */
822 
823 static inline
824 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
825 {
826 	int prio = dl_task_of(dl_se)->prio;
827 	u64 deadline = dl_se->deadline;
828 
829 	WARN_ON(!dl_prio(prio));
830 	dl_rq->dl_nr_running++;
831 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
832 
833 	inc_dl_deadline(dl_rq, deadline);
834 	inc_dl_migration(dl_se, dl_rq);
835 }
836 
837 static inline
838 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
839 {
840 	int prio = dl_task_of(dl_se)->prio;
841 
842 	WARN_ON(!dl_prio(prio));
843 	WARN_ON(!dl_rq->dl_nr_running);
844 	dl_rq->dl_nr_running--;
845 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
846 
847 	dec_dl_deadline(dl_rq, dl_se->deadline);
848 	dec_dl_migration(dl_se, dl_rq);
849 }
850 
851 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
852 {
853 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
854 	struct rb_node **link = &dl_rq->rb_root.rb_node;
855 	struct rb_node *parent = NULL;
856 	struct sched_dl_entity *entry;
857 	int leftmost = 1;
858 
859 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
860 
861 	while (*link) {
862 		parent = *link;
863 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
864 		if (dl_time_before(dl_se->deadline, entry->deadline))
865 			link = &parent->rb_left;
866 		else {
867 			link = &parent->rb_right;
868 			leftmost = 0;
869 		}
870 	}
871 
872 	if (leftmost)
873 		dl_rq->rb_leftmost = &dl_se->rb_node;
874 
875 	rb_link_node(&dl_se->rb_node, parent, link);
876 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
877 
878 	inc_dl_tasks(dl_se, dl_rq);
879 }
880 
881 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
882 {
883 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
884 
885 	if (RB_EMPTY_NODE(&dl_se->rb_node))
886 		return;
887 
888 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
889 		struct rb_node *next_node;
890 
891 		next_node = rb_next(&dl_se->rb_node);
892 		dl_rq->rb_leftmost = next_node;
893 	}
894 
895 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
896 	RB_CLEAR_NODE(&dl_se->rb_node);
897 
898 	dec_dl_tasks(dl_se, dl_rq);
899 }
900 
901 static void
902 enqueue_dl_entity(struct sched_dl_entity *dl_se,
903 		  struct sched_dl_entity *pi_se, int flags)
904 {
905 	BUG_ON(on_dl_rq(dl_se));
906 
907 	/*
908 	 * If this is a wakeup or a new instance, the scheduling
909 	 * parameters of the task might need updating. Otherwise,
910 	 * we want a replenishment of its runtime.
911 	 */
912 	if (flags & ENQUEUE_WAKEUP)
913 		update_dl_entity(dl_se, pi_se);
914 	else if (flags & ENQUEUE_REPLENISH)
915 		replenish_dl_entity(dl_se, pi_se);
916 
917 	__enqueue_dl_entity(dl_se);
918 }
919 
920 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
921 {
922 	__dequeue_dl_entity(dl_se);
923 }
924 
925 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
926 {
927 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
928 	struct sched_dl_entity *pi_se = &p->dl;
929 
930 	/*
931 	 * Use the scheduling parameters of the top pi-waiter
932 	 * task if we have one and its (absolute) deadline is
933 	 * smaller than our one... OTW we keep our runtime and
934 	 * deadline.
935 	 */
936 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
937 		pi_se = &pi_task->dl;
938 	} else if (!dl_prio(p->normal_prio)) {
939 		/*
940 		 * Special case in which we have a !SCHED_DEADLINE task
941 		 * that is going to be deboosted, but exceedes its
942 		 * runtime while doing so. No point in replenishing
943 		 * it, as it's going to return back to its original
944 		 * scheduling class after this.
945 		 */
946 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
947 		return;
948 	}
949 
950 	/*
951 	 * If p is throttled, we do nothing. In fact, if it exhausted
952 	 * its budget it needs a replenishment and, since it now is on
953 	 * its rq, the bandwidth timer callback (which clearly has not
954 	 * run yet) will take care of this.
955 	 */
956 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
957 		return;
958 
959 	enqueue_dl_entity(&p->dl, pi_se, flags);
960 
961 	if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
962 		enqueue_pushable_dl_task(rq, p);
963 }
964 
965 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
966 {
967 	dequeue_dl_entity(&p->dl);
968 	dequeue_pushable_dl_task(rq, p);
969 }
970 
971 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
972 {
973 	update_curr_dl(rq);
974 	__dequeue_task_dl(rq, p, flags);
975 }
976 
977 /*
978  * Yield task semantic for -deadline tasks is:
979  *
980  *   get off from the CPU until our next instance, with
981  *   a new runtime. This is of little use now, since we
982  *   don't have a bandwidth reclaiming mechanism. Anyway,
983  *   bandwidth reclaiming is planned for the future, and
984  *   yield_task_dl will indicate that some spare budget
985  *   is available for other task instances to use it.
986  */
987 static void yield_task_dl(struct rq *rq)
988 {
989 	/*
990 	 * We make the task go to sleep until its current deadline by
991 	 * forcing its runtime to zero. This way, update_curr_dl() stops
992 	 * it and the bandwidth timer will wake it up and will give it
993 	 * new scheduling parameters (thanks to dl_yielded=1).
994 	 */
995 	rq->curr->dl.dl_yielded = 1;
996 
997 	update_rq_clock(rq);
998 	update_curr_dl(rq);
999 	/*
1000 	 * Tell update_rq_clock() that we've just updated,
1001 	 * so we don't do microscopic update in schedule()
1002 	 * and double the fastpath cost.
1003 	 */
1004 	rq_clock_skip_update(rq, true);
1005 }
1006 
1007 #ifdef CONFIG_SMP
1008 
1009 static int find_later_rq(struct task_struct *task);
1010 
1011 static int
1012 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1013 {
1014 	struct task_struct *curr;
1015 	struct rq *rq;
1016 
1017 	if (sd_flag != SD_BALANCE_WAKE)
1018 		goto out;
1019 
1020 	rq = cpu_rq(cpu);
1021 
1022 	rcu_read_lock();
1023 	curr = READ_ONCE(rq->curr); /* unlocked access */
1024 
1025 	/*
1026 	 * If we are dealing with a -deadline task, we must
1027 	 * decide where to wake it up.
1028 	 * If it has a later deadline and the current task
1029 	 * on this rq can't move (provided the waking task
1030 	 * can!) we prefer to send it somewhere else. On the
1031 	 * other hand, if it has a shorter deadline, we
1032 	 * try to make it stay here, it might be important.
1033 	 */
1034 	if (unlikely(dl_task(curr)) &&
1035 	    (tsk_nr_cpus_allowed(curr) < 2 ||
1036 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1037 	    (tsk_nr_cpus_allowed(p) > 1)) {
1038 		int target = find_later_rq(p);
1039 
1040 		if (target != -1 &&
1041 				(dl_time_before(p->dl.deadline,
1042 					cpu_rq(target)->dl.earliest_dl.curr) ||
1043 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1044 			cpu = target;
1045 	}
1046 	rcu_read_unlock();
1047 
1048 out:
1049 	return cpu;
1050 }
1051 
1052 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1053 {
1054 	/*
1055 	 * Current can't be migrated, useless to reschedule,
1056 	 * let's hope p can move out.
1057 	 */
1058 	if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1059 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1060 		return;
1061 
1062 	/*
1063 	 * p is migratable, so let's not schedule it and
1064 	 * see if it is pushed or pulled somewhere else.
1065 	 */
1066 	if (tsk_nr_cpus_allowed(p) != 1 &&
1067 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1068 		return;
1069 
1070 	resched_curr(rq);
1071 }
1072 
1073 #endif /* CONFIG_SMP */
1074 
1075 /*
1076  * Only called when both the current and waking task are -deadline
1077  * tasks.
1078  */
1079 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1080 				  int flags)
1081 {
1082 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1083 		resched_curr(rq);
1084 		return;
1085 	}
1086 
1087 #ifdef CONFIG_SMP
1088 	/*
1089 	 * In the unlikely case current and p have the same deadline
1090 	 * let us try to decide what's the best thing to do...
1091 	 */
1092 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1093 	    !test_tsk_need_resched(rq->curr))
1094 		check_preempt_equal_dl(rq, p);
1095 #endif /* CONFIG_SMP */
1096 }
1097 
1098 #ifdef CONFIG_SCHED_HRTICK
1099 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1100 {
1101 	hrtick_start(rq, p->dl.runtime);
1102 }
1103 #else /* !CONFIG_SCHED_HRTICK */
1104 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1105 {
1106 }
1107 #endif
1108 
1109 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1110 						   struct dl_rq *dl_rq)
1111 {
1112 	struct rb_node *left = dl_rq->rb_leftmost;
1113 
1114 	if (!left)
1115 		return NULL;
1116 
1117 	return rb_entry(left, struct sched_dl_entity, rb_node);
1118 }
1119 
1120 struct task_struct *
1121 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1122 {
1123 	struct sched_dl_entity *dl_se;
1124 	struct task_struct *p;
1125 	struct dl_rq *dl_rq;
1126 
1127 	dl_rq = &rq->dl;
1128 
1129 	if (need_pull_dl_task(rq, prev)) {
1130 		/*
1131 		 * This is OK, because current is on_cpu, which avoids it being
1132 		 * picked for load-balance and preemption/IRQs are still
1133 		 * disabled avoiding further scheduler activity on it and we're
1134 		 * being very careful to re-start the picking loop.
1135 		 */
1136 		lockdep_unpin_lock(&rq->lock, cookie);
1137 		pull_dl_task(rq);
1138 		lockdep_repin_lock(&rq->lock, cookie);
1139 		/*
1140 		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1141 		 * means a stop task can slip in, in which case we need to
1142 		 * re-start task selection.
1143 		 */
1144 		if (rq->stop && task_on_rq_queued(rq->stop))
1145 			return RETRY_TASK;
1146 	}
1147 
1148 	/*
1149 	 * When prev is DL, we may throttle it in put_prev_task().
1150 	 * So, we update time before we check for dl_nr_running.
1151 	 */
1152 	if (prev->sched_class == &dl_sched_class)
1153 		update_curr_dl(rq);
1154 
1155 	if (unlikely(!dl_rq->dl_nr_running))
1156 		return NULL;
1157 
1158 	put_prev_task(rq, prev);
1159 
1160 	dl_se = pick_next_dl_entity(rq, dl_rq);
1161 	BUG_ON(!dl_se);
1162 
1163 	p = dl_task_of(dl_se);
1164 	p->se.exec_start = rq_clock_task(rq);
1165 
1166 	/* Running task will never be pushed. */
1167        dequeue_pushable_dl_task(rq, p);
1168 
1169 	if (hrtick_enabled(rq))
1170 		start_hrtick_dl(rq, p);
1171 
1172 	queue_push_tasks(rq);
1173 
1174 	return p;
1175 }
1176 
1177 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1178 {
1179 	update_curr_dl(rq);
1180 
1181 	if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1182 		enqueue_pushable_dl_task(rq, p);
1183 }
1184 
1185 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1186 {
1187 	update_curr_dl(rq);
1188 
1189 	/*
1190 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1191 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1192 	 * be set and schedule() will start a new hrtick for the next task.
1193 	 */
1194 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1195 	    is_leftmost(p, &rq->dl))
1196 		start_hrtick_dl(rq, p);
1197 }
1198 
1199 static void task_fork_dl(struct task_struct *p)
1200 {
1201 	/*
1202 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1203 	 * sched_fork()
1204 	 */
1205 }
1206 
1207 static void task_dead_dl(struct task_struct *p)
1208 {
1209 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1210 
1211 	/*
1212 	 * Since we are TASK_DEAD we won't slip out of the domain!
1213 	 */
1214 	raw_spin_lock_irq(&dl_b->lock);
1215 	/* XXX we should retain the bw until 0-lag */
1216 	dl_b->total_bw -= p->dl.dl_bw;
1217 	raw_spin_unlock_irq(&dl_b->lock);
1218 }
1219 
1220 static void set_curr_task_dl(struct rq *rq)
1221 {
1222 	struct task_struct *p = rq->curr;
1223 
1224 	p->se.exec_start = rq_clock_task(rq);
1225 
1226 	/* You can't push away the running task */
1227 	dequeue_pushable_dl_task(rq, p);
1228 }
1229 
1230 #ifdef CONFIG_SMP
1231 
1232 /* Only try algorithms three times */
1233 #define DL_MAX_TRIES 3
1234 
1235 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1236 {
1237 	if (!task_running(rq, p) &&
1238 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1239 		return 1;
1240 	return 0;
1241 }
1242 
1243 /*
1244  * Return the earliest pushable rq's task, which is suitable to be executed
1245  * on the CPU, NULL otherwise:
1246  */
1247 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1248 {
1249 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1250 	struct task_struct *p = NULL;
1251 
1252 	if (!has_pushable_dl_tasks(rq))
1253 		return NULL;
1254 
1255 next_node:
1256 	if (next_node) {
1257 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1258 
1259 		if (pick_dl_task(rq, p, cpu))
1260 			return p;
1261 
1262 		next_node = rb_next(next_node);
1263 		goto next_node;
1264 	}
1265 
1266 	return NULL;
1267 }
1268 
1269 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1270 
1271 static int find_later_rq(struct task_struct *task)
1272 {
1273 	struct sched_domain *sd;
1274 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1275 	int this_cpu = smp_processor_id();
1276 	int best_cpu, cpu = task_cpu(task);
1277 
1278 	/* Make sure the mask is initialized first */
1279 	if (unlikely(!later_mask))
1280 		return -1;
1281 
1282 	if (tsk_nr_cpus_allowed(task) == 1)
1283 		return -1;
1284 
1285 	/*
1286 	 * We have to consider system topology and task affinity
1287 	 * first, then we can look for a suitable cpu.
1288 	 */
1289 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1290 			task, later_mask);
1291 	if (best_cpu == -1)
1292 		return -1;
1293 
1294 	/*
1295 	 * If we are here, some target has been found,
1296 	 * the most suitable of which is cached in best_cpu.
1297 	 * This is, among the runqueues where the current tasks
1298 	 * have later deadlines than the task's one, the rq
1299 	 * with the latest possible one.
1300 	 *
1301 	 * Now we check how well this matches with task's
1302 	 * affinity and system topology.
1303 	 *
1304 	 * The last cpu where the task run is our first
1305 	 * guess, since it is most likely cache-hot there.
1306 	 */
1307 	if (cpumask_test_cpu(cpu, later_mask))
1308 		return cpu;
1309 	/*
1310 	 * Check if this_cpu is to be skipped (i.e., it is
1311 	 * not in the mask) or not.
1312 	 */
1313 	if (!cpumask_test_cpu(this_cpu, later_mask))
1314 		this_cpu = -1;
1315 
1316 	rcu_read_lock();
1317 	for_each_domain(cpu, sd) {
1318 		if (sd->flags & SD_WAKE_AFFINE) {
1319 
1320 			/*
1321 			 * If possible, preempting this_cpu is
1322 			 * cheaper than migrating.
1323 			 */
1324 			if (this_cpu != -1 &&
1325 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1326 				rcu_read_unlock();
1327 				return this_cpu;
1328 			}
1329 
1330 			/*
1331 			 * Last chance: if best_cpu is valid and is
1332 			 * in the mask, that becomes our choice.
1333 			 */
1334 			if (best_cpu < nr_cpu_ids &&
1335 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1336 				rcu_read_unlock();
1337 				return best_cpu;
1338 			}
1339 		}
1340 	}
1341 	rcu_read_unlock();
1342 
1343 	/*
1344 	 * At this point, all our guesses failed, we just return
1345 	 * 'something', and let the caller sort the things out.
1346 	 */
1347 	if (this_cpu != -1)
1348 		return this_cpu;
1349 
1350 	cpu = cpumask_any(later_mask);
1351 	if (cpu < nr_cpu_ids)
1352 		return cpu;
1353 
1354 	return -1;
1355 }
1356 
1357 /* Locks the rq it finds */
1358 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1359 {
1360 	struct rq *later_rq = NULL;
1361 	int tries;
1362 	int cpu;
1363 
1364 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1365 		cpu = find_later_rq(task);
1366 
1367 		if ((cpu == -1) || (cpu == rq->cpu))
1368 			break;
1369 
1370 		later_rq = cpu_rq(cpu);
1371 
1372 		if (later_rq->dl.dl_nr_running &&
1373 		    !dl_time_before(task->dl.deadline,
1374 					later_rq->dl.earliest_dl.curr)) {
1375 			/*
1376 			 * Target rq has tasks of equal or earlier deadline,
1377 			 * retrying does not release any lock and is unlikely
1378 			 * to yield a different result.
1379 			 */
1380 			later_rq = NULL;
1381 			break;
1382 		}
1383 
1384 		/* Retry if something changed. */
1385 		if (double_lock_balance(rq, later_rq)) {
1386 			if (unlikely(task_rq(task) != rq ||
1387 				     !cpumask_test_cpu(later_rq->cpu,
1388 						       tsk_cpus_allowed(task)) ||
1389 				     task_running(rq, task) ||
1390 				     !dl_task(task) ||
1391 				     !task_on_rq_queued(task))) {
1392 				double_unlock_balance(rq, later_rq);
1393 				later_rq = NULL;
1394 				break;
1395 			}
1396 		}
1397 
1398 		/*
1399 		 * If the rq we found has no -deadline task, or
1400 		 * its earliest one has a later deadline than our
1401 		 * task, the rq is a good one.
1402 		 */
1403 		if (!later_rq->dl.dl_nr_running ||
1404 		    dl_time_before(task->dl.deadline,
1405 				   later_rq->dl.earliest_dl.curr))
1406 			break;
1407 
1408 		/* Otherwise we try again. */
1409 		double_unlock_balance(rq, later_rq);
1410 		later_rq = NULL;
1411 	}
1412 
1413 	return later_rq;
1414 }
1415 
1416 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1417 {
1418 	struct task_struct *p;
1419 
1420 	if (!has_pushable_dl_tasks(rq))
1421 		return NULL;
1422 
1423 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1424 		     struct task_struct, pushable_dl_tasks);
1425 
1426 	BUG_ON(rq->cpu != task_cpu(p));
1427 	BUG_ON(task_current(rq, p));
1428 	BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1429 
1430 	BUG_ON(!task_on_rq_queued(p));
1431 	BUG_ON(!dl_task(p));
1432 
1433 	return p;
1434 }
1435 
1436 /*
1437  * See if the non running -deadline tasks on this rq
1438  * can be sent to some other CPU where they can preempt
1439  * and start executing.
1440  */
1441 static int push_dl_task(struct rq *rq)
1442 {
1443 	struct task_struct *next_task;
1444 	struct rq *later_rq;
1445 	int ret = 0;
1446 
1447 	if (!rq->dl.overloaded)
1448 		return 0;
1449 
1450 	next_task = pick_next_pushable_dl_task(rq);
1451 	if (!next_task)
1452 		return 0;
1453 
1454 retry:
1455 	if (unlikely(next_task == rq->curr)) {
1456 		WARN_ON(1);
1457 		return 0;
1458 	}
1459 
1460 	/*
1461 	 * If next_task preempts rq->curr, and rq->curr
1462 	 * can move away, it makes sense to just reschedule
1463 	 * without going further in pushing next_task.
1464 	 */
1465 	if (dl_task(rq->curr) &&
1466 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1467 	    tsk_nr_cpus_allowed(rq->curr) > 1) {
1468 		resched_curr(rq);
1469 		return 0;
1470 	}
1471 
1472 	/* We might release rq lock */
1473 	get_task_struct(next_task);
1474 
1475 	/* Will lock the rq it'll find */
1476 	later_rq = find_lock_later_rq(next_task, rq);
1477 	if (!later_rq) {
1478 		struct task_struct *task;
1479 
1480 		/*
1481 		 * We must check all this again, since
1482 		 * find_lock_later_rq releases rq->lock and it is
1483 		 * then possible that next_task has migrated.
1484 		 */
1485 		task = pick_next_pushable_dl_task(rq);
1486 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1487 			/*
1488 			 * The task is still there. We don't try
1489 			 * again, some other cpu will pull it when ready.
1490 			 */
1491 			goto out;
1492 		}
1493 
1494 		if (!task)
1495 			/* No more tasks */
1496 			goto out;
1497 
1498 		put_task_struct(next_task);
1499 		next_task = task;
1500 		goto retry;
1501 	}
1502 
1503 	deactivate_task(rq, next_task, 0);
1504 	set_task_cpu(next_task, later_rq->cpu);
1505 	activate_task(later_rq, next_task, 0);
1506 	ret = 1;
1507 
1508 	resched_curr(later_rq);
1509 
1510 	double_unlock_balance(rq, later_rq);
1511 
1512 out:
1513 	put_task_struct(next_task);
1514 
1515 	return ret;
1516 }
1517 
1518 static void push_dl_tasks(struct rq *rq)
1519 {
1520 	/* push_dl_task() will return true if it moved a -deadline task */
1521 	while (push_dl_task(rq))
1522 		;
1523 }
1524 
1525 static void pull_dl_task(struct rq *this_rq)
1526 {
1527 	int this_cpu = this_rq->cpu, cpu;
1528 	struct task_struct *p;
1529 	bool resched = false;
1530 	struct rq *src_rq;
1531 	u64 dmin = LONG_MAX;
1532 
1533 	if (likely(!dl_overloaded(this_rq)))
1534 		return;
1535 
1536 	/*
1537 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1538 	 * see overloaded we must also see the dlo_mask bit.
1539 	 */
1540 	smp_rmb();
1541 
1542 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1543 		if (this_cpu == cpu)
1544 			continue;
1545 
1546 		src_rq = cpu_rq(cpu);
1547 
1548 		/*
1549 		 * It looks racy, abd it is! However, as in sched_rt.c,
1550 		 * we are fine with this.
1551 		 */
1552 		if (this_rq->dl.dl_nr_running &&
1553 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1554 				   src_rq->dl.earliest_dl.next))
1555 			continue;
1556 
1557 		/* Might drop this_rq->lock */
1558 		double_lock_balance(this_rq, src_rq);
1559 
1560 		/*
1561 		 * If there are no more pullable tasks on the
1562 		 * rq, we're done with it.
1563 		 */
1564 		if (src_rq->dl.dl_nr_running <= 1)
1565 			goto skip;
1566 
1567 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1568 
1569 		/*
1570 		 * We found a task to be pulled if:
1571 		 *  - it preempts our current (if there's one),
1572 		 *  - it will preempt the last one we pulled (if any).
1573 		 */
1574 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1575 		    (!this_rq->dl.dl_nr_running ||
1576 		     dl_time_before(p->dl.deadline,
1577 				    this_rq->dl.earliest_dl.curr))) {
1578 			WARN_ON(p == src_rq->curr);
1579 			WARN_ON(!task_on_rq_queued(p));
1580 
1581 			/*
1582 			 * Then we pull iff p has actually an earlier
1583 			 * deadline than the current task of its runqueue.
1584 			 */
1585 			if (dl_time_before(p->dl.deadline,
1586 					   src_rq->curr->dl.deadline))
1587 				goto skip;
1588 
1589 			resched = true;
1590 
1591 			deactivate_task(src_rq, p, 0);
1592 			set_task_cpu(p, this_cpu);
1593 			activate_task(this_rq, p, 0);
1594 			dmin = p->dl.deadline;
1595 
1596 			/* Is there any other task even earlier? */
1597 		}
1598 skip:
1599 		double_unlock_balance(this_rq, src_rq);
1600 	}
1601 
1602 	if (resched)
1603 		resched_curr(this_rq);
1604 }
1605 
1606 /*
1607  * Since the task is not running and a reschedule is not going to happen
1608  * anytime soon on its runqueue, we try pushing it away now.
1609  */
1610 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1611 {
1612 	if (!task_running(rq, p) &&
1613 	    !test_tsk_need_resched(rq->curr) &&
1614 	    tsk_nr_cpus_allowed(p) > 1 &&
1615 	    dl_task(rq->curr) &&
1616 	    (tsk_nr_cpus_allowed(rq->curr) < 2 ||
1617 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1618 		push_dl_tasks(rq);
1619 	}
1620 }
1621 
1622 static void set_cpus_allowed_dl(struct task_struct *p,
1623 				const struct cpumask *new_mask)
1624 {
1625 	struct root_domain *src_rd;
1626 	struct rq *rq;
1627 
1628 	BUG_ON(!dl_task(p));
1629 
1630 	rq = task_rq(p);
1631 	src_rd = rq->rd;
1632 	/*
1633 	 * Migrating a SCHED_DEADLINE task between exclusive
1634 	 * cpusets (different root_domains) entails a bandwidth
1635 	 * update. We already made space for us in the destination
1636 	 * domain (see cpuset_can_attach()).
1637 	 */
1638 	if (!cpumask_intersects(src_rd->span, new_mask)) {
1639 		struct dl_bw *src_dl_b;
1640 
1641 		src_dl_b = dl_bw_of(cpu_of(rq));
1642 		/*
1643 		 * We now free resources of the root_domain we are migrating
1644 		 * off. In the worst case, sched_setattr() may temporary fail
1645 		 * until we complete the update.
1646 		 */
1647 		raw_spin_lock(&src_dl_b->lock);
1648 		__dl_clear(src_dl_b, p->dl.dl_bw);
1649 		raw_spin_unlock(&src_dl_b->lock);
1650 	}
1651 
1652 	set_cpus_allowed_common(p, new_mask);
1653 }
1654 
1655 /* Assumes rq->lock is held */
1656 static void rq_online_dl(struct rq *rq)
1657 {
1658 	if (rq->dl.overloaded)
1659 		dl_set_overload(rq);
1660 
1661 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1662 	if (rq->dl.dl_nr_running > 0)
1663 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
1664 }
1665 
1666 /* Assumes rq->lock is held */
1667 static void rq_offline_dl(struct rq *rq)
1668 {
1669 	if (rq->dl.overloaded)
1670 		dl_clear_overload(rq);
1671 
1672 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
1673 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1674 }
1675 
1676 void __init init_sched_dl_class(void)
1677 {
1678 	unsigned int i;
1679 
1680 	for_each_possible_cpu(i)
1681 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1682 					GFP_KERNEL, cpu_to_node(i));
1683 }
1684 
1685 #endif /* CONFIG_SMP */
1686 
1687 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1688 {
1689 	/*
1690 	 * Start the deadline timer; if we switch back to dl before this we'll
1691 	 * continue consuming our current CBS slice. If we stay outside of
1692 	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1693 	 * task.
1694 	 */
1695 	if (!start_dl_timer(p))
1696 		__dl_clear_params(p);
1697 
1698 	/*
1699 	 * Since this might be the only -deadline task on the rq,
1700 	 * this is the right place to try to pull some other one
1701 	 * from an overloaded cpu, if any.
1702 	 */
1703 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1704 		return;
1705 
1706 	queue_pull_task(rq);
1707 }
1708 
1709 /*
1710  * When switching to -deadline, we may overload the rq, then
1711  * we try to push someone off, if possible.
1712  */
1713 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1714 {
1715 
1716 	/* If p is not queued we will update its parameters at next wakeup. */
1717 	if (!task_on_rq_queued(p))
1718 		return;
1719 
1720 	/*
1721 	 * If p is boosted we already updated its params in
1722 	 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
1723 	 * p's deadline being now already after rq_clock(rq).
1724 	 */
1725 	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1726 		setup_new_dl_entity(&p->dl);
1727 
1728 	if (rq->curr != p) {
1729 #ifdef CONFIG_SMP
1730 		if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
1731 			queue_push_tasks(rq);
1732 #else
1733 		if (dl_task(rq->curr))
1734 			check_preempt_curr_dl(rq, p, 0);
1735 		else
1736 			resched_curr(rq);
1737 #endif
1738 	}
1739 }
1740 
1741 /*
1742  * If the scheduling parameters of a -deadline task changed,
1743  * a push or pull operation might be needed.
1744  */
1745 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1746 			    int oldprio)
1747 {
1748 	if (task_on_rq_queued(p) || rq->curr == p) {
1749 #ifdef CONFIG_SMP
1750 		/*
1751 		 * This might be too much, but unfortunately
1752 		 * we don't have the old deadline value, and
1753 		 * we can't argue if the task is increasing
1754 		 * or lowering its prio, so...
1755 		 */
1756 		if (!rq->dl.overloaded)
1757 			queue_pull_task(rq);
1758 
1759 		/*
1760 		 * If we now have a earlier deadline task than p,
1761 		 * then reschedule, provided p is still on this
1762 		 * runqueue.
1763 		 */
1764 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1765 			resched_curr(rq);
1766 #else
1767 		/*
1768 		 * Again, we don't know if p has a earlier
1769 		 * or later deadline, so let's blindly set a
1770 		 * (maybe not needed) rescheduling point.
1771 		 */
1772 		resched_curr(rq);
1773 #endif /* CONFIG_SMP */
1774 	}
1775 }
1776 
1777 const struct sched_class dl_sched_class = {
1778 	.next			= &rt_sched_class,
1779 	.enqueue_task		= enqueue_task_dl,
1780 	.dequeue_task		= dequeue_task_dl,
1781 	.yield_task		= yield_task_dl,
1782 
1783 	.check_preempt_curr	= check_preempt_curr_dl,
1784 
1785 	.pick_next_task		= pick_next_task_dl,
1786 	.put_prev_task		= put_prev_task_dl,
1787 
1788 #ifdef CONFIG_SMP
1789 	.select_task_rq		= select_task_rq_dl,
1790 	.set_cpus_allowed       = set_cpus_allowed_dl,
1791 	.rq_online              = rq_online_dl,
1792 	.rq_offline             = rq_offline_dl,
1793 	.task_woken		= task_woken_dl,
1794 #endif
1795 
1796 	.set_curr_task		= set_curr_task_dl,
1797 	.task_tick		= task_tick_dl,
1798 	.task_fork              = task_fork_dl,
1799 	.task_dead		= task_dead_dl,
1800 
1801 	.prio_changed           = prio_changed_dl,
1802 	.switched_from		= switched_from_dl,
1803 	.switched_to		= switched_to_dl,
1804 
1805 	.update_curr		= update_curr_dl,
1806 };
1807 
1808 #ifdef CONFIG_SCHED_DEBUG
1809 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1810 
1811 void print_dl_stats(struct seq_file *m, int cpu)
1812 {
1813 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1814 }
1815 #endif /* CONFIG_SCHED_DEBUG */
1816