1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 #include <linux/sched/clock.h> 21 #include <uapi/linux/sched/types.h> 22 #include "sched.h" 23 #include "pelt.h" 24 25 /* 26 * Default limits for DL period; on the top end we guard against small util 27 * tasks still getting ridiculously long effective runtimes, on the bottom end we 28 * guard against timer DoS. 29 */ 30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 32 #ifdef CONFIG_SYSCTL 33 static const struct ctl_table sched_dl_sysctls[] = { 34 { 35 .procname = "sched_deadline_period_max_us", 36 .data = &sysctl_sched_dl_period_max, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = proc_douintvec_minmax, 40 .extra1 = (void *)&sysctl_sched_dl_period_min, 41 }, 42 { 43 .procname = "sched_deadline_period_min_us", 44 .data = &sysctl_sched_dl_period_min, 45 .maxlen = sizeof(unsigned int), 46 .mode = 0644, 47 .proc_handler = proc_douintvec_minmax, 48 .extra2 = (void *)&sysctl_sched_dl_period_max, 49 }, 50 }; 51 52 static int __init sched_dl_sysctl_init(void) 53 { 54 register_sysctl_init("kernel", sched_dl_sysctls); 55 return 0; 56 } 57 late_initcall(sched_dl_sysctl_init); 58 #endif /* CONFIG_SYSCTL */ 59 60 static bool dl_server(struct sched_dl_entity *dl_se) 61 { 62 return dl_se->dl_server; 63 } 64 65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 66 { 67 BUG_ON(dl_server(dl_se)); 68 return container_of(dl_se, struct task_struct, dl); 69 } 70 71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 72 { 73 return container_of(dl_rq, struct rq, dl); 74 } 75 76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se) 77 { 78 struct rq *rq = dl_se->rq; 79 80 if (!dl_server(dl_se)) 81 rq = task_rq(dl_task_of(dl_se)); 82 83 return rq; 84 } 85 86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 87 { 88 return &rq_of_dl_se(dl_se)->dl; 89 } 90 91 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 92 { 93 return !RB_EMPTY_NODE(&dl_se->rb_node); 94 } 95 96 #ifdef CONFIG_RT_MUTEXES 97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 98 { 99 return dl_se->pi_se; 100 } 101 102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 103 { 104 return pi_of(dl_se) != dl_se; 105 } 106 #else /* !CONFIG_RT_MUTEXES: */ 107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 108 { 109 return dl_se; 110 } 111 112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 113 { 114 return false; 115 } 116 #endif /* !CONFIG_RT_MUTEXES */ 117 118 static inline struct dl_bw *dl_bw_of(int i) 119 { 120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 121 "sched RCU must be held"); 122 return &cpu_rq(i)->rd->dl_bw; 123 } 124 125 static inline int dl_bw_cpus(int i) 126 { 127 struct root_domain *rd = cpu_rq(i)->rd; 128 int cpus; 129 130 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 131 "sched RCU must be held"); 132 133 if (cpumask_subset(rd->span, cpu_active_mask)) 134 return cpumask_weight(rd->span); 135 136 cpus = 0; 137 138 for_each_cpu_and(i, rd->span, cpu_active_mask) 139 cpus++; 140 141 return cpus; 142 } 143 144 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 145 { 146 unsigned long cap = 0; 147 int i; 148 149 for_each_cpu_and(i, mask, cpu_active_mask) 150 cap += arch_scale_cpu_capacity(i); 151 152 return cap; 153 } 154 155 /* 156 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 157 * of the CPU the task is running on rather rd's \Sum CPU capacity. 158 */ 159 static inline unsigned long dl_bw_capacity(int i) 160 { 161 if (!sched_asym_cpucap_active() && 162 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) { 163 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 164 } else { 165 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 166 "sched RCU must be held"); 167 168 return __dl_bw_capacity(cpu_rq(i)->rd->span); 169 } 170 } 171 172 bool dl_bw_visited(int cpu, u64 cookie) 173 { 174 struct root_domain *rd = cpu_rq(cpu)->rd; 175 176 if (rd->visit_cookie == cookie) 177 return true; 178 179 rd->visit_cookie = cookie; 180 return false; 181 } 182 183 static inline 184 void __dl_update(struct dl_bw *dl_b, s64 bw) 185 { 186 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 187 int i; 188 189 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 190 "sched RCU must be held"); 191 for_each_cpu_and(i, rd->span, cpu_active_mask) { 192 struct rq *rq = cpu_rq(i); 193 194 rq->dl.extra_bw += bw; 195 } 196 } 197 198 static inline 199 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 200 { 201 dl_b->total_bw -= tsk_bw; 202 __dl_update(dl_b, (s32)tsk_bw / cpus); 203 } 204 205 static inline 206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 207 { 208 dl_b->total_bw += tsk_bw; 209 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 210 } 211 212 static inline bool 213 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 214 { 215 return dl_b->bw != -1 && 216 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 217 } 218 219 static inline 220 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 221 { 222 u64 old = dl_rq->running_bw; 223 224 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 225 dl_rq->running_bw += dl_bw; 226 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */ 227 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 228 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 229 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 230 } 231 232 static inline 233 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 234 { 235 u64 old = dl_rq->running_bw; 236 237 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 238 dl_rq->running_bw -= dl_bw; 239 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */ 240 if (dl_rq->running_bw > old) 241 dl_rq->running_bw = 0; 242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 244 } 245 246 static inline 247 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 248 { 249 u64 old = dl_rq->this_bw; 250 251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 252 dl_rq->this_bw += dl_bw; 253 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */ 254 } 255 256 static inline 257 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 258 { 259 u64 old = dl_rq->this_bw; 260 261 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 262 dl_rq->this_bw -= dl_bw; 263 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */ 264 if (dl_rq->this_bw > old) 265 dl_rq->this_bw = 0; 266 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 267 } 268 269 static inline 270 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 271 { 272 if (!dl_entity_is_special(dl_se)) 273 __add_rq_bw(dl_se->dl_bw, dl_rq); 274 } 275 276 static inline 277 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 278 { 279 if (!dl_entity_is_special(dl_se)) 280 __sub_rq_bw(dl_se->dl_bw, dl_rq); 281 } 282 283 static inline 284 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 285 { 286 if (!dl_entity_is_special(dl_se)) 287 __add_running_bw(dl_se->dl_bw, dl_rq); 288 } 289 290 static inline 291 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 292 { 293 if (!dl_entity_is_special(dl_se)) 294 __sub_running_bw(dl_se->dl_bw, dl_rq); 295 } 296 297 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw) 298 { 299 if (dl_se->dl_non_contending) { 300 sub_running_bw(dl_se, &rq->dl); 301 dl_se->dl_non_contending = 0; 302 303 /* 304 * If the timer handler is currently running and the 305 * timer cannot be canceled, inactive_task_timer() 306 * will see that dl_not_contending is not set, and 307 * will not touch the rq's active utilization, 308 * so we are still safe. 309 */ 310 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) { 311 if (!dl_server(dl_se)) 312 put_task_struct(dl_task_of(dl_se)); 313 } 314 } 315 __sub_rq_bw(dl_se->dl_bw, &rq->dl); 316 __add_rq_bw(new_bw, &rq->dl); 317 } 318 319 static __always_inline 320 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer) 321 { 322 /* 323 * If the timer callback was running (hrtimer_try_to_cancel == -1), 324 * it will eventually call put_task_struct(). 325 */ 326 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se)) 327 put_task_struct(dl_task_of(dl_se)); 328 } 329 330 static __always_inline 331 void cancel_replenish_timer(struct sched_dl_entity *dl_se) 332 { 333 cancel_dl_timer(dl_se, &dl_se->dl_timer); 334 } 335 336 static __always_inline 337 void cancel_inactive_timer(struct sched_dl_entity *dl_se) 338 { 339 cancel_dl_timer(dl_se, &dl_se->inactive_timer); 340 } 341 342 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 343 { 344 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 345 346 if (task_on_rq_queued(p)) 347 return; 348 349 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw); 350 } 351 352 static void __dl_clear_params(struct sched_dl_entity *dl_se); 353 354 /* 355 * The utilization of a task cannot be immediately removed from 356 * the rq active utilization (running_bw) when the task blocks. 357 * Instead, we have to wait for the so called "0-lag time". 358 * 359 * If a task blocks before the "0-lag time", a timer (the inactive 360 * timer) is armed, and running_bw is decreased when the timer 361 * fires. 362 * 363 * If the task wakes up again before the inactive timer fires, 364 * the timer is canceled, whereas if the task wakes up after the 365 * inactive timer fired (and running_bw has been decreased) the 366 * task's utilization has to be added to running_bw again. 367 * A flag in the deadline scheduling entity (dl_non_contending) 368 * is used to avoid race conditions between the inactive timer handler 369 * and task wakeups. 370 * 371 * The following diagram shows how running_bw is updated. A task is 372 * "ACTIVE" when its utilization contributes to running_bw; an 373 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 374 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 375 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 376 * time already passed, which does not contribute to running_bw anymore. 377 * +------------------+ 378 * wakeup | ACTIVE | 379 * +------------------>+ contending | 380 * | add_running_bw | | 381 * | +----+------+------+ 382 * | | ^ 383 * | dequeue | | 384 * +--------+-------+ | | 385 * | | t >= 0-lag | | wakeup 386 * | INACTIVE |<---------------+ | 387 * | | sub_running_bw | | 388 * +--------+-------+ | | 389 * ^ | | 390 * | t < 0-lag | | 391 * | | | 392 * | V | 393 * | +----+------+------+ 394 * | sub_running_bw | ACTIVE | 395 * +-------------------+ | 396 * inactive timer | non contending | 397 * fired +------------------+ 398 * 399 * The task_non_contending() function is invoked when a task 400 * blocks, and checks if the 0-lag time already passed or 401 * not (in the first case, it directly updates running_bw; 402 * in the second case, it arms the inactive timer). 403 * 404 * The task_contending() function is invoked when a task wakes 405 * up, and checks if the task is still in the "ACTIVE non contending" 406 * state or not (in the second case, it updates running_bw). 407 */ 408 static void task_non_contending(struct sched_dl_entity *dl_se) 409 { 410 struct hrtimer *timer = &dl_se->inactive_timer; 411 struct rq *rq = rq_of_dl_se(dl_se); 412 struct dl_rq *dl_rq = &rq->dl; 413 s64 zerolag_time; 414 415 /* 416 * If this is a non-deadline task that has been boosted, 417 * do nothing 418 */ 419 if (dl_se->dl_runtime == 0) 420 return; 421 422 if (dl_entity_is_special(dl_se)) 423 return; 424 425 WARN_ON(dl_se->dl_non_contending); 426 427 zerolag_time = dl_se->deadline - 428 div64_long((dl_se->runtime * dl_se->dl_period), 429 dl_se->dl_runtime); 430 431 /* 432 * Using relative times instead of the absolute "0-lag time" 433 * allows to simplify the code 434 */ 435 zerolag_time -= rq_clock(rq); 436 437 /* 438 * If the "0-lag time" already passed, decrease the active 439 * utilization now, instead of starting a timer 440 */ 441 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 442 if (dl_server(dl_se)) { 443 sub_running_bw(dl_se, dl_rq); 444 } else { 445 struct task_struct *p = dl_task_of(dl_se); 446 447 if (dl_task(p)) 448 sub_running_bw(dl_se, dl_rq); 449 450 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 451 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 452 453 if (READ_ONCE(p->__state) == TASK_DEAD) 454 sub_rq_bw(dl_se, &rq->dl); 455 raw_spin_lock(&dl_b->lock); 456 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p))); 457 raw_spin_unlock(&dl_b->lock); 458 __dl_clear_params(dl_se); 459 } 460 } 461 462 return; 463 } 464 465 dl_se->dl_non_contending = 1; 466 if (!dl_server(dl_se)) 467 get_task_struct(dl_task_of(dl_se)); 468 469 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 470 } 471 472 static void task_contending(struct sched_dl_entity *dl_se, int flags) 473 { 474 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 475 476 /* 477 * If this is a non-deadline task that has been boosted, 478 * do nothing 479 */ 480 if (dl_se->dl_runtime == 0) 481 return; 482 483 if (flags & ENQUEUE_MIGRATED) 484 add_rq_bw(dl_se, dl_rq); 485 486 if (dl_se->dl_non_contending) { 487 dl_se->dl_non_contending = 0; 488 /* 489 * If the timer handler is currently running and the 490 * timer cannot be canceled, inactive_task_timer() 491 * will see that dl_not_contending is not set, and 492 * will not touch the rq's active utilization, 493 * so we are still safe. 494 */ 495 cancel_inactive_timer(dl_se); 496 } else { 497 /* 498 * Since "dl_non_contending" is not set, the 499 * task's utilization has already been removed from 500 * active utilization (either when the task blocked, 501 * when the "inactive timer" fired). 502 * So, add it back. 503 */ 504 add_running_bw(dl_se, dl_rq); 505 } 506 } 507 508 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 509 { 510 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 511 } 512 513 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 514 515 void init_dl_bw(struct dl_bw *dl_b) 516 { 517 raw_spin_lock_init(&dl_b->lock); 518 if (global_rt_runtime() == RUNTIME_INF) 519 dl_b->bw = -1; 520 else 521 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 522 dl_b->total_bw = 0; 523 } 524 525 void init_dl_rq(struct dl_rq *dl_rq) 526 { 527 dl_rq->root = RB_ROOT_CACHED; 528 529 /* zero means no -deadline tasks */ 530 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 531 532 dl_rq->overloaded = 0; 533 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 534 535 dl_rq->running_bw = 0; 536 dl_rq->this_bw = 0; 537 init_dl_rq_bw_ratio(dl_rq); 538 } 539 540 static inline int dl_overloaded(struct rq *rq) 541 { 542 return atomic_read(&rq->rd->dlo_count); 543 } 544 545 static inline void dl_set_overload(struct rq *rq) 546 { 547 if (!rq->online) 548 return; 549 550 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 551 /* 552 * Must be visible before the overload count is 553 * set (as in sched_rt.c). 554 * 555 * Matched by the barrier in pull_dl_task(). 556 */ 557 smp_wmb(); 558 atomic_inc(&rq->rd->dlo_count); 559 } 560 561 static inline void dl_clear_overload(struct rq *rq) 562 { 563 if (!rq->online) 564 return; 565 566 atomic_dec(&rq->rd->dlo_count); 567 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 568 } 569 570 #define __node_2_pdl(node) \ 571 rb_entry((node), struct task_struct, pushable_dl_tasks) 572 573 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 574 { 575 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 576 } 577 578 static inline int has_pushable_dl_tasks(struct rq *rq) 579 { 580 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 581 } 582 583 /* 584 * The list of pushable -deadline task is not a plist, like in 585 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 586 */ 587 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 588 { 589 struct rb_node *leftmost; 590 591 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 592 593 leftmost = rb_add_cached(&p->pushable_dl_tasks, 594 &rq->dl.pushable_dl_tasks_root, 595 __pushable_less); 596 if (leftmost) 597 rq->dl.earliest_dl.next = p->dl.deadline; 598 599 if (!rq->dl.overloaded) { 600 dl_set_overload(rq); 601 rq->dl.overloaded = 1; 602 } 603 } 604 605 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 606 { 607 struct dl_rq *dl_rq = &rq->dl; 608 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 609 struct rb_node *leftmost; 610 611 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 612 return; 613 614 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 615 if (leftmost) 616 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 617 618 RB_CLEAR_NODE(&p->pushable_dl_tasks); 619 620 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { 621 dl_clear_overload(rq); 622 rq->dl.overloaded = 0; 623 } 624 } 625 626 static int push_dl_task(struct rq *rq); 627 628 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 629 { 630 return rq->online && dl_task(prev); 631 } 632 633 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 634 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 635 636 static void push_dl_tasks(struct rq *); 637 static void pull_dl_task(struct rq *); 638 639 static inline void deadline_queue_push_tasks(struct rq *rq) 640 { 641 if (!has_pushable_dl_tasks(rq)) 642 return; 643 644 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 645 } 646 647 static inline void deadline_queue_pull_task(struct rq *rq) 648 { 649 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 650 } 651 652 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 653 654 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 655 { 656 struct rq *later_rq = NULL; 657 struct dl_bw *dl_b; 658 659 later_rq = find_lock_later_rq(p, rq); 660 if (!later_rq) { 661 int cpu; 662 663 /* 664 * If we cannot preempt any rq, fall back to pick any 665 * online CPU: 666 */ 667 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 668 if (cpu >= nr_cpu_ids) { 669 /* 670 * Failed to find any suitable CPU. 671 * The task will never come back! 672 */ 673 WARN_ON_ONCE(dl_bandwidth_enabled()); 674 675 /* 676 * If admission control is disabled we 677 * try a little harder to let the task 678 * run. 679 */ 680 cpu = cpumask_any(cpu_active_mask); 681 } 682 later_rq = cpu_rq(cpu); 683 double_lock_balance(rq, later_rq); 684 } 685 686 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 687 /* 688 * Inactive timer is armed (or callback is running, but 689 * waiting for us to release rq locks). In any case, when it 690 * will fire (or continue), it will see running_bw of this 691 * task migrated to later_rq (and correctly handle it). 692 */ 693 sub_running_bw(&p->dl, &rq->dl); 694 sub_rq_bw(&p->dl, &rq->dl); 695 696 add_rq_bw(&p->dl, &later_rq->dl); 697 add_running_bw(&p->dl, &later_rq->dl); 698 } else { 699 sub_rq_bw(&p->dl, &rq->dl); 700 add_rq_bw(&p->dl, &later_rq->dl); 701 } 702 703 /* 704 * And we finally need to fix up root_domain(s) bandwidth accounting, 705 * since p is still hanging out in the old (now moved to default) root 706 * domain. 707 */ 708 dl_b = &rq->rd->dl_bw; 709 raw_spin_lock(&dl_b->lock); 710 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 711 raw_spin_unlock(&dl_b->lock); 712 713 dl_b = &later_rq->rd->dl_bw; 714 raw_spin_lock(&dl_b->lock); 715 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 716 raw_spin_unlock(&dl_b->lock); 717 718 set_task_cpu(p, later_rq->cpu); 719 double_unlock_balance(later_rq, rq); 720 721 return later_rq; 722 } 723 724 static void 725 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags); 726 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 727 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags); 728 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 729 730 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 731 struct rq *rq) 732 { 733 /* for non-boosted task, pi_of(dl_se) == dl_se */ 734 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 735 dl_se->runtime = pi_of(dl_se)->dl_runtime; 736 737 /* 738 * If it is a deferred reservation, and the server 739 * is not handling an starvation case, defer it. 740 */ 741 if (dl_se->dl_defer && !dl_se->dl_defer_running) { 742 dl_se->dl_throttled = 1; 743 dl_se->dl_defer_armed = 1; 744 } 745 } 746 747 /* 748 * We are being explicitly informed that a new instance is starting, 749 * and this means that: 750 * - the absolute deadline of the entity has to be placed at 751 * current time + relative deadline; 752 * - the runtime of the entity has to be set to the maximum value. 753 * 754 * The capability of specifying such event is useful whenever a -deadline 755 * entity wants to (try to!) synchronize its behaviour with the scheduler's 756 * one, and to (try to!) reconcile itself with its own scheduling 757 * parameters. 758 */ 759 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 760 { 761 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 762 struct rq *rq = rq_of_dl_rq(dl_rq); 763 764 WARN_ON(is_dl_boosted(dl_se)); 765 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 766 767 /* 768 * We are racing with the deadline timer. So, do nothing because 769 * the deadline timer handler will take care of properly recharging 770 * the runtime and postponing the deadline 771 */ 772 if (dl_se->dl_throttled) 773 return; 774 775 /* 776 * We use the regular wall clock time to set deadlines in the 777 * future; in fact, we must consider execution overheads (time 778 * spent on hardirq context, etc.). 779 */ 780 replenish_dl_new_period(dl_se, rq); 781 } 782 783 static int start_dl_timer(struct sched_dl_entity *dl_se); 784 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t); 785 786 /* 787 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 788 * possibility of a entity lasting more than what it declared, and thus 789 * exhausting its runtime. 790 * 791 * Here we are interested in making runtime overrun possible, but we do 792 * not want a entity which is misbehaving to affect the scheduling of all 793 * other entities. 794 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 795 * is used, in order to confine each entity within its own bandwidth. 796 * 797 * This function deals exactly with that, and ensures that when the runtime 798 * of a entity is replenished, its deadline is also postponed. That ensures 799 * the overrunning entity can't interfere with other entity in the system and 800 * can't make them miss their deadlines. Reasons why this kind of overruns 801 * could happen are, typically, a entity voluntarily trying to overcome its 802 * runtime, or it just underestimated it during sched_setattr(). 803 */ 804 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 805 { 806 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 807 struct rq *rq = rq_of_dl_rq(dl_rq); 808 809 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 810 811 /* 812 * This could be the case for a !-dl task that is boosted. 813 * Just go with full inherited parameters. 814 * 815 * Or, it could be the case of a deferred reservation that 816 * was not able to consume its runtime in background and 817 * reached this point with current u > U. 818 * 819 * In both cases, set a new period. 820 */ 821 if (dl_se->dl_deadline == 0 || 822 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) { 823 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 824 dl_se->runtime = pi_of(dl_se)->dl_runtime; 825 } 826 827 if (dl_se->dl_yielded && dl_se->runtime > 0) 828 dl_se->runtime = 0; 829 830 /* 831 * We keep moving the deadline away until we get some 832 * available runtime for the entity. This ensures correct 833 * handling of situations where the runtime overrun is 834 * arbitrary large. 835 */ 836 while (dl_se->runtime <= 0) { 837 dl_se->deadline += pi_of(dl_se)->dl_period; 838 dl_se->runtime += pi_of(dl_se)->dl_runtime; 839 } 840 841 /* 842 * At this point, the deadline really should be "in 843 * the future" with respect to rq->clock. If it's 844 * not, we are, for some reason, lagging too much! 845 * Anyway, after having warn userspace abut that, 846 * we still try to keep the things running by 847 * resetting the deadline and the budget of the 848 * entity. 849 */ 850 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 851 printk_deferred_once("sched: DL replenish lagged too much\n"); 852 replenish_dl_new_period(dl_se, rq); 853 } 854 855 if (dl_se->dl_yielded) 856 dl_se->dl_yielded = 0; 857 if (dl_se->dl_throttled) 858 dl_se->dl_throttled = 0; 859 860 /* 861 * If this is the replenishment of a deferred reservation, 862 * clear the flag and return. 863 */ 864 if (dl_se->dl_defer_armed) { 865 dl_se->dl_defer_armed = 0; 866 return; 867 } 868 869 /* 870 * A this point, if the deferred server is not armed, and the deadline 871 * is in the future, if it is not running already, throttle the server 872 * and arm the defer timer. 873 */ 874 if (dl_se->dl_defer && !dl_se->dl_defer_running && 875 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) { 876 if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) { 877 878 /* 879 * Set dl_se->dl_defer_armed and dl_throttled variables to 880 * inform the start_dl_timer() that this is a deferred 881 * activation. 882 */ 883 dl_se->dl_defer_armed = 1; 884 dl_se->dl_throttled = 1; 885 if (!start_dl_timer(dl_se)) { 886 /* 887 * If for whatever reason (delays), a previous timer was 888 * queued but not serviced, cancel it and clean the 889 * deferrable server variables intended for start_dl_timer(). 890 */ 891 hrtimer_try_to_cancel(&dl_se->dl_timer); 892 dl_se->dl_defer_armed = 0; 893 dl_se->dl_throttled = 0; 894 } 895 } 896 } 897 } 898 899 /* 900 * Here we check if --at time t-- an entity (which is probably being 901 * [re]activated or, in general, enqueued) can use its remaining runtime 902 * and its current deadline _without_ exceeding the bandwidth it is 903 * assigned (function returns true if it can't). We are in fact applying 904 * one of the CBS rules: when a task wakes up, if the residual runtime 905 * over residual deadline fits within the allocated bandwidth, then we 906 * can keep the current (absolute) deadline and residual budget without 907 * disrupting the schedulability of the system. Otherwise, we should 908 * refill the runtime and set the deadline a period in the future, 909 * because keeping the current (absolute) deadline of the task would 910 * result in breaking guarantees promised to other tasks (refer to 911 * Documentation/scheduler/sched-deadline.rst for more information). 912 * 913 * This function returns true if: 914 * 915 * runtime / (deadline - t) > dl_runtime / dl_deadline , 916 * 917 * IOW we can't recycle current parameters. 918 * 919 * Notice that the bandwidth check is done against the deadline. For 920 * task with deadline equal to period this is the same of using 921 * dl_period instead of dl_deadline in the equation above. 922 */ 923 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 924 { 925 u64 left, right; 926 927 /* 928 * left and right are the two sides of the equation above, 929 * after a bit of shuffling to use multiplications instead 930 * of divisions. 931 * 932 * Note that none of the time values involved in the two 933 * multiplications are absolute: dl_deadline and dl_runtime 934 * are the relative deadline and the maximum runtime of each 935 * instance, runtime is the runtime left for the last instance 936 * and (deadline - t), since t is rq->clock, is the time left 937 * to the (absolute) deadline. Even if overflowing the u64 type 938 * is very unlikely to occur in both cases, here we scale down 939 * as we want to avoid that risk at all. Scaling down by 10 940 * means that we reduce granularity to 1us. We are fine with it, 941 * since this is only a true/false check and, anyway, thinking 942 * of anything below microseconds resolution is actually fiction 943 * (but still we want to give the user that illusion >;). 944 */ 945 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 946 right = ((dl_se->deadline - t) >> DL_SCALE) * 947 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 948 949 return dl_time_before(right, left); 950 } 951 952 /* 953 * Revised wakeup rule [1]: For self-suspending tasks, rather then 954 * re-initializing task's runtime and deadline, the revised wakeup 955 * rule adjusts the task's runtime to avoid the task to overrun its 956 * density. 957 * 958 * Reasoning: a task may overrun the density if: 959 * runtime / (deadline - t) > dl_runtime / dl_deadline 960 * 961 * Therefore, runtime can be adjusted to: 962 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 963 * 964 * In such way that runtime will be equal to the maximum density 965 * the task can use without breaking any rule. 966 * 967 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 968 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 969 */ 970 static void 971 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 972 { 973 u64 laxity = dl_se->deadline - rq_clock(rq); 974 975 /* 976 * If the task has deadline < period, and the deadline is in the past, 977 * it should already be throttled before this check. 978 * 979 * See update_dl_entity() comments for further details. 980 */ 981 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 982 983 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 984 } 985 986 /* 987 * Regarding the deadline, a task with implicit deadline has a relative 988 * deadline == relative period. A task with constrained deadline has a 989 * relative deadline <= relative period. 990 * 991 * We support constrained deadline tasks. However, there are some restrictions 992 * applied only for tasks which do not have an implicit deadline. See 993 * update_dl_entity() to know more about such restrictions. 994 * 995 * The dl_is_implicit() returns true if the task has an implicit deadline. 996 */ 997 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 998 { 999 return dl_se->dl_deadline == dl_se->dl_period; 1000 } 1001 1002 /* 1003 * When a deadline entity is placed in the runqueue, its runtime and deadline 1004 * might need to be updated. This is done by a CBS wake up rule. There are two 1005 * different rules: 1) the original CBS; and 2) the Revisited CBS. 1006 * 1007 * When the task is starting a new period, the Original CBS is used. In this 1008 * case, the runtime is replenished and a new absolute deadline is set. 1009 * 1010 * When a task is queued before the begin of the next period, using the 1011 * remaining runtime and deadline could make the entity to overflow, see 1012 * dl_entity_overflow() to find more about runtime overflow. When such case 1013 * is detected, the runtime and deadline need to be updated. 1014 * 1015 * If the task has an implicit deadline, i.e., deadline == period, the Original 1016 * CBS is applied. The runtime is replenished and a new absolute deadline is 1017 * set, as in the previous cases. 1018 * 1019 * However, the Original CBS does not work properly for tasks with 1020 * deadline < period, which are said to have a constrained deadline. By 1021 * applying the Original CBS, a constrained deadline task would be able to run 1022 * runtime/deadline in a period. With deadline < period, the task would 1023 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1024 * 1025 * In order to prevent this misbehave, the Revisited CBS is used for 1026 * constrained deadline tasks when a runtime overflow is detected. In the 1027 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1028 * the remaining runtime of the task is reduced to avoid runtime overflow. 1029 * Please refer to the comments update_dl_revised_wakeup() function to find 1030 * more about the Revised CBS rule. 1031 */ 1032 static void update_dl_entity(struct sched_dl_entity *dl_se) 1033 { 1034 struct rq *rq = rq_of_dl_se(dl_se); 1035 1036 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1037 dl_entity_overflow(dl_se, rq_clock(rq))) { 1038 1039 if (unlikely(!dl_is_implicit(dl_se) && 1040 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1041 !is_dl_boosted(dl_se))) { 1042 update_dl_revised_wakeup(dl_se, rq); 1043 return; 1044 } 1045 1046 replenish_dl_new_period(dl_se, rq); 1047 } else if (dl_server(dl_se) && dl_se->dl_defer) { 1048 /* 1049 * The server can still use its previous deadline, so check if 1050 * it left the dl_defer_running state. 1051 */ 1052 if (!dl_se->dl_defer_running) { 1053 dl_se->dl_defer_armed = 1; 1054 dl_se->dl_throttled = 1; 1055 } 1056 } 1057 } 1058 1059 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1060 { 1061 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1062 } 1063 1064 /* 1065 * If the entity depleted all its runtime, and if we want it to sleep 1066 * while waiting for some new execution time to become available, we 1067 * set the bandwidth replenishment timer to the replenishment instant 1068 * and try to activate it. 1069 * 1070 * Notice that it is important for the caller to know if the timer 1071 * actually started or not (i.e., the replenishment instant is in 1072 * the future or in the past). 1073 */ 1074 static int start_dl_timer(struct sched_dl_entity *dl_se) 1075 { 1076 struct hrtimer *timer = &dl_se->dl_timer; 1077 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1078 struct rq *rq = rq_of_dl_rq(dl_rq); 1079 ktime_t now, act; 1080 s64 delta; 1081 1082 lockdep_assert_rq_held(rq); 1083 1084 /* 1085 * We want the timer to fire at the deadline, but considering 1086 * that it is actually coming from rq->clock and not from 1087 * hrtimer's time base reading. 1088 * 1089 * The deferred reservation will have its timer set to 1090 * (deadline - runtime). At that point, the CBS rule will decide 1091 * if the current deadline can be used, or if a replenishment is 1092 * required to avoid add too much pressure on the system 1093 * (current u > U). 1094 */ 1095 if (dl_se->dl_defer_armed) { 1096 WARN_ON_ONCE(!dl_se->dl_throttled); 1097 act = ns_to_ktime(dl_se->deadline - dl_se->runtime); 1098 } else { 1099 /* act = deadline - rel-deadline + period */ 1100 act = ns_to_ktime(dl_next_period(dl_se)); 1101 } 1102 1103 now = hrtimer_cb_get_time(timer); 1104 delta = ktime_to_ns(now) - rq_clock(rq); 1105 act = ktime_add_ns(act, delta); 1106 1107 /* 1108 * If the expiry time already passed, e.g., because the value 1109 * chosen as the deadline is too small, don't even try to 1110 * start the timer in the past! 1111 */ 1112 if (ktime_us_delta(act, now) < 0) 1113 return 0; 1114 1115 /* 1116 * !enqueued will guarantee another callback; even if one is already in 1117 * progress. This ensures a balanced {get,put}_task_struct(). 1118 * 1119 * The race against __run_timer() clearing the enqueued state is 1120 * harmless because we're holding task_rq()->lock, therefore the timer 1121 * expiring after we've done the check will wait on its task_rq_lock() 1122 * and observe our state. 1123 */ 1124 if (!hrtimer_is_queued(timer)) { 1125 if (!dl_server(dl_se)) 1126 get_task_struct(dl_task_of(dl_se)); 1127 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1128 } 1129 1130 return 1; 1131 } 1132 1133 static void __push_dl_task(struct rq *rq, struct rq_flags *rf) 1134 { 1135 /* 1136 * Queueing this task back might have overloaded rq, check if we need 1137 * to kick someone away. 1138 */ 1139 if (has_pushable_dl_tasks(rq)) { 1140 /* 1141 * Nothing relies on rq->lock after this, so its safe to drop 1142 * rq->lock. 1143 */ 1144 rq_unpin_lock(rq, rf); 1145 push_dl_task(rq); 1146 rq_repin_lock(rq, rf); 1147 } 1148 } 1149 1150 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */ 1151 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC; 1152 1153 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se) 1154 { 1155 struct rq *rq = rq_of_dl_se(dl_se); 1156 u64 fw; 1157 1158 scoped_guard (rq_lock, rq) { 1159 struct rq_flags *rf = &scope.rf; 1160 1161 if (!dl_se->dl_throttled || !dl_se->dl_runtime) 1162 return HRTIMER_NORESTART; 1163 1164 sched_clock_tick(); 1165 update_rq_clock(rq); 1166 1167 if (!dl_se->dl_runtime) 1168 return HRTIMER_NORESTART; 1169 1170 if (!dl_se->server_has_tasks(dl_se)) { 1171 replenish_dl_entity(dl_se); 1172 return HRTIMER_NORESTART; 1173 } 1174 1175 if (dl_se->dl_defer_armed) { 1176 /* 1177 * First check if the server could consume runtime in background. 1178 * If so, it is possible to push the defer timer for this amount 1179 * of time. The dl_server_min_res serves as a limit to avoid 1180 * forwarding the timer for a too small amount of time. 1181 */ 1182 if (dl_time_before(rq_clock(dl_se->rq), 1183 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) { 1184 1185 /* reset the defer timer */ 1186 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime; 1187 1188 hrtimer_forward_now(timer, ns_to_ktime(fw)); 1189 return HRTIMER_RESTART; 1190 } 1191 1192 dl_se->dl_defer_running = 1; 1193 } 1194 1195 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1196 1197 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl)) 1198 resched_curr(rq); 1199 1200 __push_dl_task(rq, rf); 1201 } 1202 1203 return HRTIMER_NORESTART; 1204 } 1205 1206 /* 1207 * This is the bandwidth enforcement timer callback. If here, we know 1208 * a task is not on its dl_rq, since the fact that the timer was running 1209 * means the task is throttled and needs a runtime replenishment. 1210 * 1211 * However, what we actually do depends on the fact the task is active, 1212 * (it is on its rq) or has been removed from there by a call to 1213 * dequeue_task_dl(). In the former case we must issue the runtime 1214 * replenishment and add the task back to the dl_rq; in the latter, we just 1215 * do nothing but clearing dl_throttled, so that runtime and deadline 1216 * updating (and the queueing back to dl_rq) will be done by the 1217 * next call to enqueue_task_dl(). 1218 */ 1219 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1220 { 1221 struct sched_dl_entity *dl_se = container_of(timer, 1222 struct sched_dl_entity, 1223 dl_timer); 1224 struct task_struct *p; 1225 struct rq_flags rf; 1226 struct rq *rq; 1227 1228 if (dl_server(dl_se)) 1229 return dl_server_timer(timer, dl_se); 1230 1231 p = dl_task_of(dl_se); 1232 rq = task_rq_lock(p, &rf); 1233 1234 /* 1235 * The task might have changed its scheduling policy to something 1236 * different than SCHED_DEADLINE (through switched_from_dl()). 1237 */ 1238 if (!dl_task(p)) 1239 goto unlock; 1240 1241 /* 1242 * The task might have been boosted by someone else and might be in the 1243 * boosting/deboosting path, its not throttled. 1244 */ 1245 if (is_dl_boosted(dl_se)) 1246 goto unlock; 1247 1248 /* 1249 * Spurious timer due to start_dl_timer() race; or we already received 1250 * a replenishment from rt_mutex_setprio(). 1251 */ 1252 if (!dl_se->dl_throttled) 1253 goto unlock; 1254 1255 sched_clock_tick(); 1256 update_rq_clock(rq); 1257 1258 /* 1259 * If the throttle happened during sched-out; like: 1260 * 1261 * schedule() 1262 * deactivate_task() 1263 * dequeue_task_dl() 1264 * update_curr_dl() 1265 * start_dl_timer() 1266 * __dequeue_task_dl() 1267 * prev->on_rq = 0; 1268 * 1269 * We can be both throttled and !queued. Replenish the counter 1270 * but do not enqueue -- wait for our wakeup to do that. 1271 */ 1272 if (!task_on_rq_queued(p)) { 1273 replenish_dl_entity(dl_se); 1274 goto unlock; 1275 } 1276 1277 if (unlikely(!rq->online)) { 1278 /* 1279 * If the runqueue is no longer available, migrate the 1280 * task elsewhere. This necessarily changes rq. 1281 */ 1282 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1283 rq = dl_task_offline_migration(rq, p); 1284 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1285 update_rq_clock(rq); 1286 1287 /* 1288 * Now that the task has been migrated to the new RQ and we 1289 * have that locked, proceed as normal and enqueue the task 1290 * there. 1291 */ 1292 } 1293 1294 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1295 if (dl_task(rq->donor)) 1296 wakeup_preempt_dl(rq, p, 0); 1297 else 1298 resched_curr(rq); 1299 1300 __push_dl_task(rq, &rf); 1301 1302 unlock: 1303 task_rq_unlock(rq, p, &rf); 1304 1305 /* 1306 * This can free the task_struct, including this hrtimer, do not touch 1307 * anything related to that after this. 1308 */ 1309 put_task_struct(p); 1310 1311 return HRTIMER_NORESTART; 1312 } 1313 1314 static void init_dl_task_timer(struct sched_dl_entity *dl_se) 1315 { 1316 struct hrtimer *timer = &dl_se->dl_timer; 1317 1318 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1319 } 1320 1321 /* 1322 * During the activation, CBS checks if it can reuse the current task's 1323 * runtime and period. If the deadline of the task is in the past, CBS 1324 * cannot use the runtime, and so it replenishes the task. This rule 1325 * works fine for implicit deadline tasks (deadline == period), and the 1326 * CBS was designed for implicit deadline tasks. However, a task with 1327 * constrained deadline (deadline < period) might be awakened after the 1328 * deadline, but before the next period. In this case, replenishing the 1329 * task would allow it to run for runtime / deadline. As in this case 1330 * deadline < period, CBS enables a task to run for more than the 1331 * runtime / period. In a very loaded system, this can cause a domino 1332 * effect, making other tasks miss their deadlines. 1333 * 1334 * To avoid this problem, in the activation of a constrained deadline 1335 * task after the deadline but before the next period, throttle the 1336 * task and set the replenishing timer to the begin of the next period, 1337 * unless it is boosted. 1338 */ 1339 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1340 { 1341 struct rq *rq = rq_of_dl_se(dl_se); 1342 1343 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1344 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1345 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) 1346 return; 1347 dl_se->dl_throttled = 1; 1348 if (dl_se->runtime > 0) 1349 dl_se->runtime = 0; 1350 } 1351 } 1352 1353 static 1354 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1355 { 1356 return (dl_se->runtime <= 0); 1357 } 1358 1359 /* 1360 * This function implements the GRUB accounting rule. According to the 1361 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1362 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1363 * where u is the utilization of the task, Umax is the maximum reclaimable 1364 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1365 * as the difference between the "total runqueue utilization" and the 1366 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1367 * reclaimable utilization. 1368 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1369 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1370 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1371 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1372 * Since delta is a 64 bit variable, to have an overflow its value should be 1373 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1374 * not an issue here. 1375 */ 1376 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1377 { 1378 u64 u_act; 1379 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1380 1381 /* 1382 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1383 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1384 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1385 * negative leading to wrong results. 1386 */ 1387 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1388 u_act = dl_se->dl_bw; 1389 else 1390 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1391 1392 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1393 return (delta * u_act) >> BW_SHIFT; 1394 } 1395 1396 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1397 { 1398 s64 scaled_delta_exec; 1399 1400 /* 1401 * For tasks that participate in GRUB, we implement GRUB-PA: the 1402 * spare reclaimed bandwidth is used to clock down frequency. 1403 * 1404 * For the others, we still need to scale reservation parameters 1405 * according to current frequency and CPU maximum capacity. 1406 */ 1407 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1408 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se); 1409 } else { 1410 int cpu = cpu_of(rq); 1411 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1412 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1413 1414 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1415 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1416 } 1417 1418 return scaled_delta_exec; 1419 } 1420 1421 static inline void 1422 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1423 int flags); 1424 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1425 { 1426 s64 scaled_delta_exec; 1427 1428 if (unlikely(delta_exec <= 0)) { 1429 if (unlikely(dl_se->dl_yielded)) 1430 goto throttle; 1431 return; 1432 } 1433 1434 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer) 1435 return; 1436 1437 if (dl_entity_is_special(dl_se)) 1438 return; 1439 1440 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec); 1441 1442 dl_se->runtime -= scaled_delta_exec; 1443 1444 /* 1445 * The fair server can consume its runtime while throttled (not queued/ 1446 * running as regular CFS). 1447 * 1448 * If the server consumes its entire runtime in this state. The server 1449 * is not required for the current period. Thus, reset the server by 1450 * starting a new period, pushing the activation. 1451 */ 1452 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) { 1453 /* 1454 * If the server was previously activated - the starving condition 1455 * took place, it this point it went away because the fair scheduler 1456 * was able to get runtime in background. So return to the initial 1457 * state. 1458 */ 1459 dl_se->dl_defer_running = 0; 1460 1461 hrtimer_try_to_cancel(&dl_se->dl_timer); 1462 1463 replenish_dl_new_period(dl_se, dl_se->rq); 1464 1465 /* 1466 * Not being able to start the timer seems problematic. If it could not 1467 * be started for whatever reason, we need to "unthrottle" the DL server 1468 * and queue right away. Otherwise nothing might queue it. That's similar 1469 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn. 1470 */ 1471 WARN_ON_ONCE(!start_dl_timer(dl_se)); 1472 1473 return; 1474 } 1475 1476 throttle: 1477 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1478 dl_se->dl_throttled = 1; 1479 1480 /* If requested, inform the user about runtime overruns. */ 1481 if (dl_runtime_exceeded(dl_se) && 1482 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1483 dl_se->dl_overrun = 1; 1484 1485 dequeue_dl_entity(dl_se, 0); 1486 if (!dl_server(dl_se)) { 1487 update_stats_dequeue_dl(&rq->dl, dl_se, 0); 1488 dequeue_pushable_dl_task(rq, dl_task_of(dl_se)); 1489 } 1490 1491 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) { 1492 if (dl_server(dl_se)) 1493 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1494 else 1495 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH); 1496 } 1497 1498 if (!is_leftmost(dl_se, &rq->dl)) 1499 resched_curr(rq); 1500 } 1501 1502 /* 1503 * The fair server (sole dl_server) does not account for real-time 1504 * workload because it is running fair work. 1505 */ 1506 if (dl_se == &rq->fair_server) 1507 return; 1508 1509 #ifdef CONFIG_RT_GROUP_SCHED 1510 /* 1511 * Because -- for now -- we share the rt bandwidth, we need to 1512 * account our runtime there too, otherwise actual rt tasks 1513 * would be able to exceed the shared quota. 1514 * 1515 * Account to the root rt group for now. 1516 * 1517 * The solution we're working towards is having the RT groups scheduled 1518 * using deadline servers -- however there's a few nasties to figure 1519 * out before that can happen. 1520 */ 1521 if (rt_bandwidth_enabled()) { 1522 struct rt_rq *rt_rq = &rq->rt; 1523 1524 raw_spin_lock(&rt_rq->rt_runtime_lock); 1525 /* 1526 * We'll let actual RT tasks worry about the overflow here, we 1527 * have our own CBS to keep us inline; only account when RT 1528 * bandwidth is relevant. 1529 */ 1530 if (sched_rt_bandwidth_account(rt_rq)) 1531 rt_rq->rt_time += delta_exec; 1532 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1533 } 1534 #endif /* CONFIG_RT_GROUP_SCHED */ 1535 } 1536 1537 /* 1538 * In the non-defer mode, the idle time is not accounted, as the 1539 * server provides a guarantee. 1540 * 1541 * If the dl_server is in defer mode, the idle time is also considered 1542 * as time available for the fair server, avoiding a penalty for the 1543 * rt scheduler that did not consumed that time. 1544 */ 1545 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p) 1546 { 1547 s64 delta_exec, scaled_delta_exec; 1548 1549 if (!rq->fair_server.dl_defer) 1550 return; 1551 1552 /* no need to discount more */ 1553 if (rq->fair_server.runtime < 0) 1554 return; 1555 1556 delta_exec = rq_clock_task(rq) - p->se.exec_start; 1557 if (delta_exec < 0) 1558 return; 1559 1560 scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec); 1561 1562 rq->fair_server.runtime -= scaled_delta_exec; 1563 1564 if (rq->fair_server.runtime < 0) { 1565 rq->fair_server.dl_defer_running = 0; 1566 rq->fair_server.runtime = 0; 1567 } 1568 1569 p->se.exec_start = rq_clock_task(rq); 1570 } 1571 1572 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec) 1573 { 1574 /* 0 runtime = fair server disabled */ 1575 if (dl_se->dl_runtime) 1576 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1577 } 1578 1579 void dl_server_start(struct sched_dl_entity *dl_se) 1580 { 1581 struct rq *rq = dl_se->rq; 1582 1583 /* 1584 * XXX: the apply do not work fine at the init phase for the 1585 * fair server because things are not yet set. We need to improve 1586 * this before getting generic. 1587 */ 1588 if (!dl_server(dl_se)) { 1589 u64 runtime = 50 * NSEC_PER_MSEC; 1590 u64 period = 1000 * NSEC_PER_MSEC; 1591 1592 dl_server_apply_params(dl_se, runtime, period, 1); 1593 1594 dl_se->dl_server = 1; 1595 dl_se->dl_defer = 1; 1596 setup_new_dl_entity(dl_se); 1597 } 1598 1599 if (!dl_se->dl_runtime) 1600 return; 1601 1602 dl_se->dl_server_active = 1; 1603 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP); 1604 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl)) 1605 resched_curr(dl_se->rq); 1606 } 1607 1608 void dl_server_stop(struct sched_dl_entity *dl_se) 1609 { 1610 if (!dl_se->dl_runtime) 1611 return; 1612 1613 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP); 1614 hrtimer_try_to_cancel(&dl_se->dl_timer); 1615 dl_se->dl_defer_armed = 0; 1616 dl_se->dl_throttled = 0; 1617 dl_se->dl_server_active = 0; 1618 } 1619 1620 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 1621 dl_server_has_tasks_f has_tasks, 1622 dl_server_pick_f pick_task) 1623 { 1624 dl_se->rq = rq; 1625 dl_se->server_has_tasks = has_tasks; 1626 dl_se->server_pick_task = pick_task; 1627 } 1628 1629 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq) 1630 { 1631 u64 new_bw = dl_se->dl_bw; 1632 int cpu = cpu_of(rq); 1633 struct dl_bw *dl_b; 1634 1635 dl_b = dl_bw_of(cpu_of(rq)); 1636 guard(raw_spinlock)(&dl_b->lock); 1637 1638 if (!dl_bw_cpus(cpu)) 1639 return; 1640 1641 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu)); 1642 } 1643 1644 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init) 1645 { 1646 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1647 u64 new_bw = to_ratio(period, runtime); 1648 struct rq *rq = dl_se->rq; 1649 int cpu = cpu_of(rq); 1650 struct dl_bw *dl_b; 1651 unsigned long cap; 1652 int retval = 0; 1653 int cpus; 1654 1655 dl_b = dl_bw_of(cpu); 1656 guard(raw_spinlock)(&dl_b->lock); 1657 1658 cpus = dl_bw_cpus(cpu); 1659 cap = dl_bw_capacity(cpu); 1660 1661 if (__dl_overflow(dl_b, cap, old_bw, new_bw)) 1662 return -EBUSY; 1663 1664 if (init) { 1665 __add_rq_bw(new_bw, &rq->dl); 1666 __dl_add(dl_b, new_bw, cpus); 1667 } else { 1668 __dl_sub(dl_b, dl_se->dl_bw, cpus); 1669 __dl_add(dl_b, new_bw, cpus); 1670 1671 dl_rq_change_utilization(rq, dl_se, new_bw); 1672 } 1673 1674 dl_se->dl_runtime = runtime; 1675 dl_se->dl_deadline = period; 1676 dl_se->dl_period = period; 1677 1678 dl_se->runtime = 0; 1679 dl_se->deadline = 0; 1680 1681 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1682 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 1683 1684 return retval; 1685 } 1686 1687 /* 1688 * Update the current task's runtime statistics (provided it is still 1689 * a -deadline task and has not been removed from the dl_rq). 1690 */ 1691 static void update_curr_dl(struct rq *rq) 1692 { 1693 struct task_struct *donor = rq->donor; 1694 struct sched_dl_entity *dl_se = &donor->dl; 1695 s64 delta_exec; 1696 1697 if (!dl_task(donor) || !on_dl_rq(dl_se)) 1698 return; 1699 1700 /* 1701 * Consumed budget is computed considering the time as 1702 * observed by schedulable tasks (excluding time spent 1703 * in hardirq context, etc.). Deadlines are instead 1704 * computed using hard walltime. This seems to be the more 1705 * natural solution, but the full ramifications of this 1706 * approach need further study. 1707 */ 1708 delta_exec = update_curr_common(rq); 1709 update_curr_dl_se(rq, dl_se, delta_exec); 1710 } 1711 1712 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1713 { 1714 struct sched_dl_entity *dl_se = container_of(timer, 1715 struct sched_dl_entity, 1716 inactive_timer); 1717 struct task_struct *p = NULL; 1718 struct rq_flags rf; 1719 struct rq *rq; 1720 1721 if (!dl_server(dl_se)) { 1722 p = dl_task_of(dl_se); 1723 rq = task_rq_lock(p, &rf); 1724 } else { 1725 rq = dl_se->rq; 1726 rq_lock(rq, &rf); 1727 } 1728 1729 sched_clock_tick(); 1730 update_rq_clock(rq); 1731 1732 if (dl_server(dl_se)) 1733 goto no_task; 1734 1735 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1736 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1737 1738 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1739 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1740 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1741 dl_se->dl_non_contending = 0; 1742 } 1743 1744 raw_spin_lock(&dl_b->lock); 1745 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1746 raw_spin_unlock(&dl_b->lock); 1747 __dl_clear_params(dl_se); 1748 1749 goto unlock; 1750 } 1751 1752 no_task: 1753 if (dl_se->dl_non_contending == 0) 1754 goto unlock; 1755 1756 sub_running_bw(dl_se, &rq->dl); 1757 dl_se->dl_non_contending = 0; 1758 unlock: 1759 1760 if (!dl_server(dl_se)) { 1761 task_rq_unlock(rq, p, &rf); 1762 put_task_struct(p); 1763 } else { 1764 rq_unlock(rq, &rf); 1765 } 1766 1767 return HRTIMER_NORESTART; 1768 } 1769 1770 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1771 { 1772 struct hrtimer *timer = &dl_se->inactive_timer; 1773 1774 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1775 } 1776 1777 #define __node_2_dle(node) \ 1778 rb_entry((node), struct sched_dl_entity, rb_node) 1779 1780 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1781 { 1782 struct rq *rq = rq_of_dl_rq(dl_rq); 1783 1784 if (dl_rq->earliest_dl.curr == 0 || 1785 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1786 if (dl_rq->earliest_dl.curr == 0) 1787 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1788 dl_rq->earliest_dl.curr = deadline; 1789 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1790 } 1791 } 1792 1793 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1794 { 1795 struct rq *rq = rq_of_dl_rq(dl_rq); 1796 1797 /* 1798 * Since we may have removed our earliest (and/or next earliest) 1799 * task we must recompute them. 1800 */ 1801 if (!dl_rq->dl_nr_running) { 1802 dl_rq->earliest_dl.curr = 0; 1803 dl_rq->earliest_dl.next = 0; 1804 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1805 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1806 } else { 1807 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1808 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1809 1810 dl_rq->earliest_dl.curr = entry->deadline; 1811 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1812 } 1813 } 1814 1815 static inline 1816 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1817 { 1818 u64 deadline = dl_se->deadline; 1819 1820 dl_rq->dl_nr_running++; 1821 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1822 1823 inc_dl_deadline(dl_rq, deadline); 1824 } 1825 1826 static inline 1827 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1828 { 1829 WARN_ON(!dl_rq->dl_nr_running); 1830 dl_rq->dl_nr_running--; 1831 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1832 1833 dec_dl_deadline(dl_rq, dl_se->deadline); 1834 } 1835 1836 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1837 { 1838 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1839 } 1840 1841 static __always_inline struct sched_statistics * 1842 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1843 { 1844 if (!schedstat_enabled()) 1845 return NULL; 1846 1847 if (dl_server(dl_se)) 1848 return NULL; 1849 1850 return &dl_task_of(dl_se)->stats; 1851 } 1852 1853 static inline void 1854 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1855 { 1856 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1857 if (stats) 1858 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1859 } 1860 1861 static inline void 1862 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1863 { 1864 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1865 if (stats) 1866 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1867 } 1868 1869 static inline void 1870 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1871 { 1872 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1873 if (stats) 1874 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1875 } 1876 1877 static inline void 1878 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1879 int flags) 1880 { 1881 if (!schedstat_enabled()) 1882 return; 1883 1884 if (flags & ENQUEUE_WAKEUP) 1885 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1886 } 1887 1888 static inline void 1889 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1890 int flags) 1891 { 1892 struct task_struct *p = dl_task_of(dl_se); 1893 1894 if (!schedstat_enabled()) 1895 return; 1896 1897 if ((flags & DEQUEUE_SLEEP)) { 1898 unsigned int state; 1899 1900 state = READ_ONCE(p->__state); 1901 if (state & TASK_INTERRUPTIBLE) 1902 __schedstat_set(p->stats.sleep_start, 1903 rq_clock(rq_of_dl_rq(dl_rq))); 1904 1905 if (state & TASK_UNINTERRUPTIBLE) 1906 __schedstat_set(p->stats.block_start, 1907 rq_clock(rq_of_dl_rq(dl_rq))); 1908 } 1909 } 1910 1911 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1912 { 1913 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1914 1915 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1916 1917 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1918 1919 inc_dl_tasks(dl_se, dl_rq); 1920 } 1921 1922 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1923 { 1924 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1925 1926 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1927 return; 1928 1929 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1930 1931 RB_CLEAR_NODE(&dl_se->rb_node); 1932 1933 dec_dl_tasks(dl_se, dl_rq); 1934 } 1935 1936 static void 1937 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1938 { 1939 WARN_ON_ONCE(on_dl_rq(dl_se)); 1940 1941 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1942 1943 /* 1944 * Check if a constrained deadline task was activated 1945 * after the deadline but before the next period. 1946 * If that is the case, the task will be throttled and 1947 * the replenishment timer will be set to the next period. 1948 */ 1949 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) 1950 dl_check_constrained_dl(dl_se); 1951 1952 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { 1953 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1954 1955 add_rq_bw(dl_se, dl_rq); 1956 add_running_bw(dl_se, dl_rq); 1957 } 1958 1959 /* 1960 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1961 * its budget it needs a replenishment and, since it now is on 1962 * its rq, the bandwidth timer callback (which clearly has not 1963 * run yet) will take care of this. 1964 * However, the active utilization does not depend on the fact 1965 * that the task is on the runqueue or not (but depends on the 1966 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1967 * In other words, even if a task is throttled its utilization must 1968 * be counted in the active utilization; hence, we need to call 1969 * add_running_bw(). 1970 */ 1971 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1972 if (flags & ENQUEUE_WAKEUP) 1973 task_contending(dl_se, flags); 1974 1975 return; 1976 } 1977 1978 /* 1979 * If this is a wakeup or a new instance, the scheduling 1980 * parameters of the task might need updating. Otherwise, 1981 * we want a replenishment of its runtime. 1982 */ 1983 if (flags & ENQUEUE_WAKEUP) { 1984 task_contending(dl_se, flags); 1985 update_dl_entity(dl_se); 1986 } else if (flags & ENQUEUE_REPLENISH) { 1987 replenish_dl_entity(dl_se); 1988 } else if ((flags & ENQUEUE_RESTORE) && 1989 !is_dl_boosted(dl_se) && 1990 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) { 1991 setup_new_dl_entity(dl_se); 1992 } 1993 1994 /* 1995 * If the reservation is still throttled, e.g., it got replenished but is a 1996 * deferred task and still got to wait, don't enqueue. 1997 */ 1998 if (dl_se->dl_throttled && start_dl_timer(dl_se)) 1999 return; 2000 2001 /* 2002 * We're about to enqueue, make sure we're not ->dl_throttled! 2003 * In case the timer was not started, say because the defer time 2004 * has passed, mark as not throttled and mark unarmed. 2005 * Also cancel earlier timers, since letting those run is pointless. 2006 */ 2007 if (dl_se->dl_throttled) { 2008 hrtimer_try_to_cancel(&dl_se->dl_timer); 2009 dl_se->dl_defer_armed = 0; 2010 dl_se->dl_throttled = 0; 2011 } 2012 2013 __enqueue_dl_entity(dl_se); 2014 } 2015 2016 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2017 { 2018 __dequeue_dl_entity(dl_se); 2019 2020 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { 2021 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2022 2023 sub_running_bw(dl_se, dl_rq); 2024 sub_rq_bw(dl_se, dl_rq); 2025 } 2026 2027 /* 2028 * This check allows to start the inactive timer (or to immediately 2029 * decrease the active utilization, if needed) in two cases: 2030 * when the task blocks and when it is terminating 2031 * (p->state == TASK_DEAD). We can handle the two cases in the same 2032 * way, because from GRUB's point of view the same thing is happening 2033 * (the task moves from "active contending" to "active non contending" 2034 * or "inactive") 2035 */ 2036 if (flags & DEQUEUE_SLEEP) 2037 task_non_contending(dl_se); 2038 } 2039 2040 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2041 { 2042 if (is_dl_boosted(&p->dl)) { 2043 /* 2044 * Because of delays in the detection of the overrun of a 2045 * thread's runtime, it might be the case that a thread 2046 * goes to sleep in a rt mutex with negative runtime. As 2047 * a consequence, the thread will be throttled. 2048 * 2049 * While waiting for the mutex, this thread can also be 2050 * boosted via PI, resulting in a thread that is throttled 2051 * and boosted at the same time. 2052 * 2053 * In this case, the boost overrides the throttle. 2054 */ 2055 if (p->dl.dl_throttled) { 2056 /* 2057 * The replenish timer needs to be canceled. No 2058 * problem if it fires concurrently: boosted threads 2059 * are ignored in dl_task_timer(). 2060 */ 2061 cancel_replenish_timer(&p->dl); 2062 p->dl.dl_throttled = 0; 2063 } 2064 } else if (!dl_prio(p->normal_prio)) { 2065 /* 2066 * Special case in which we have a !SCHED_DEADLINE task that is going 2067 * to be deboosted, but exceeds its runtime while doing so. No point in 2068 * replenishing it, as it's going to return back to its original 2069 * scheduling class after this. If it has been throttled, we need to 2070 * clear the flag, otherwise the task may wake up as throttled after 2071 * being boosted again with no means to replenish the runtime and clear 2072 * the throttle. 2073 */ 2074 p->dl.dl_throttled = 0; 2075 if (!(flags & ENQUEUE_REPLENISH)) 2076 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 2077 task_pid_nr(p)); 2078 2079 return; 2080 } 2081 2082 check_schedstat_required(); 2083 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 2084 2085 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2086 flags |= ENQUEUE_MIGRATING; 2087 2088 enqueue_dl_entity(&p->dl, flags); 2089 2090 if (dl_server(&p->dl)) 2091 return; 2092 2093 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) 2094 enqueue_pushable_dl_task(rq, p); 2095 } 2096 2097 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2098 { 2099 update_curr_dl(rq); 2100 2101 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2102 flags |= DEQUEUE_MIGRATING; 2103 2104 dequeue_dl_entity(&p->dl, flags); 2105 if (!p->dl.dl_throttled && !dl_server(&p->dl)) 2106 dequeue_pushable_dl_task(rq, p); 2107 2108 return true; 2109 } 2110 2111 /* 2112 * Yield task semantic for -deadline tasks is: 2113 * 2114 * get off from the CPU until our next instance, with 2115 * a new runtime. This is of little use now, since we 2116 * don't have a bandwidth reclaiming mechanism. Anyway, 2117 * bandwidth reclaiming is planned for the future, and 2118 * yield_task_dl will indicate that some spare budget 2119 * is available for other task instances to use it. 2120 */ 2121 static void yield_task_dl(struct rq *rq) 2122 { 2123 /* 2124 * We make the task go to sleep until its current deadline by 2125 * forcing its runtime to zero. This way, update_curr_dl() stops 2126 * it and the bandwidth timer will wake it up and will give it 2127 * new scheduling parameters (thanks to dl_yielded=1). 2128 */ 2129 rq->curr->dl.dl_yielded = 1; 2130 2131 update_rq_clock(rq); 2132 update_curr_dl(rq); 2133 /* 2134 * Tell update_rq_clock() that we've just updated, 2135 * so we don't do microscopic update in schedule() 2136 * and double the fastpath cost. 2137 */ 2138 rq_clock_skip_update(rq); 2139 } 2140 2141 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 2142 struct rq *rq) 2143 { 2144 return (!rq->dl.dl_nr_running || 2145 dl_time_before(p->dl.deadline, 2146 rq->dl.earliest_dl.curr)); 2147 } 2148 2149 static int find_later_rq(struct task_struct *task); 2150 2151 static int 2152 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 2153 { 2154 struct task_struct *curr, *donor; 2155 bool select_rq; 2156 struct rq *rq; 2157 2158 if (!(flags & WF_TTWU)) 2159 goto out; 2160 2161 rq = cpu_rq(cpu); 2162 2163 rcu_read_lock(); 2164 curr = READ_ONCE(rq->curr); /* unlocked access */ 2165 donor = READ_ONCE(rq->donor); 2166 2167 /* 2168 * If we are dealing with a -deadline task, we must 2169 * decide where to wake it up. 2170 * If it has a later deadline and the current task 2171 * on this rq can't move (provided the waking task 2172 * can!) we prefer to send it somewhere else. On the 2173 * other hand, if it has a shorter deadline, we 2174 * try to make it stay here, it might be important. 2175 */ 2176 select_rq = unlikely(dl_task(donor)) && 2177 (curr->nr_cpus_allowed < 2 || 2178 !dl_entity_preempt(&p->dl, &donor->dl)) && 2179 p->nr_cpus_allowed > 1; 2180 2181 /* 2182 * Take the capacity of the CPU into account to 2183 * ensure it fits the requirement of the task. 2184 */ 2185 if (sched_asym_cpucap_active()) 2186 select_rq |= !dl_task_fits_capacity(p, cpu); 2187 2188 if (select_rq) { 2189 int target = find_later_rq(p); 2190 2191 if (target != -1 && 2192 dl_task_is_earliest_deadline(p, cpu_rq(target))) 2193 cpu = target; 2194 } 2195 rcu_read_unlock(); 2196 2197 out: 2198 return cpu; 2199 } 2200 2201 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 2202 { 2203 struct rq_flags rf; 2204 struct rq *rq; 2205 2206 if (READ_ONCE(p->__state) != TASK_WAKING) 2207 return; 2208 2209 rq = task_rq(p); 2210 /* 2211 * Since p->state == TASK_WAKING, set_task_cpu() has been called 2212 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 2213 * rq->lock is not... So, lock it 2214 */ 2215 rq_lock(rq, &rf); 2216 if (p->dl.dl_non_contending) { 2217 update_rq_clock(rq); 2218 sub_running_bw(&p->dl, &rq->dl); 2219 p->dl.dl_non_contending = 0; 2220 /* 2221 * If the timer handler is currently running and the 2222 * timer cannot be canceled, inactive_task_timer() 2223 * will see that dl_not_contending is not set, and 2224 * will not touch the rq's active utilization, 2225 * so we are still safe. 2226 */ 2227 cancel_inactive_timer(&p->dl); 2228 } 2229 sub_rq_bw(&p->dl, &rq->dl); 2230 rq_unlock(rq, &rf); 2231 } 2232 2233 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 2234 { 2235 /* 2236 * Current can't be migrated, useless to reschedule, 2237 * let's hope p can move out. 2238 */ 2239 if (rq->curr->nr_cpus_allowed == 1 || 2240 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL)) 2241 return; 2242 2243 /* 2244 * p is migratable, so let's not schedule it and 2245 * see if it is pushed or pulled somewhere else. 2246 */ 2247 if (p->nr_cpus_allowed != 1 && 2248 cpudl_find(&rq->rd->cpudl, p, NULL)) 2249 return; 2250 2251 resched_curr(rq); 2252 } 2253 2254 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2255 { 2256 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2257 /* 2258 * This is OK, because current is on_cpu, which avoids it being 2259 * picked for load-balance and preemption/IRQs are still 2260 * disabled avoiding further scheduler activity on it and we've 2261 * not yet started the picking loop. 2262 */ 2263 rq_unpin_lock(rq, rf); 2264 pull_dl_task(rq); 2265 rq_repin_lock(rq, rf); 2266 } 2267 2268 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2269 } 2270 2271 /* 2272 * Only called when both the current and waking task are -deadline 2273 * tasks. 2274 */ 2275 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, 2276 int flags) 2277 { 2278 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) { 2279 resched_curr(rq); 2280 return; 2281 } 2282 2283 /* 2284 * In the unlikely case current and p have the same deadline 2285 * let us try to decide what's the best thing to do... 2286 */ 2287 if ((p->dl.deadline == rq->donor->dl.deadline) && 2288 !test_tsk_need_resched(rq->curr)) 2289 check_preempt_equal_dl(rq, p); 2290 } 2291 2292 #ifdef CONFIG_SCHED_HRTICK 2293 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2294 { 2295 hrtick_start(rq, dl_se->runtime); 2296 } 2297 #else /* !CONFIG_SCHED_HRTICK: */ 2298 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2299 { 2300 } 2301 #endif /* !CONFIG_SCHED_HRTICK */ 2302 2303 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2304 { 2305 struct sched_dl_entity *dl_se = &p->dl; 2306 struct dl_rq *dl_rq = &rq->dl; 2307 2308 p->se.exec_start = rq_clock_task(rq); 2309 if (on_dl_rq(&p->dl)) 2310 update_stats_wait_end_dl(dl_rq, dl_se); 2311 2312 /* You can't push away the running task */ 2313 dequeue_pushable_dl_task(rq, p); 2314 2315 if (!first) 2316 return; 2317 2318 if (rq->donor->sched_class != &dl_sched_class) 2319 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2320 2321 deadline_queue_push_tasks(rq); 2322 2323 if (hrtick_enabled_dl(rq)) 2324 start_hrtick_dl(rq, &p->dl); 2325 } 2326 2327 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2328 { 2329 struct rb_node *left = rb_first_cached(&dl_rq->root); 2330 2331 if (!left) 2332 return NULL; 2333 2334 return __node_2_dle(left); 2335 } 2336 2337 /* 2338 * __pick_next_task_dl - Helper to pick the next -deadline task to run. 2339 * @rq: The runqueue to pick the next task from. 2340 */ 2341 static struct task_struct *__pick_task_dl(struct rq *rq) 2342 { 2343 struct sched_dl_entity *dl_se; 2344 struct dl_rq *dl_rq = &rq->dl; 2345 struct task_struct *p; 2346 2347 again: 2348 if (!sched_dl_runnable(rq)) 2349 return NULL; 2350 2351 dl_se = pick_next_dl_entity(dl_rq); 2352 WARN_ON_ONCE(!dl_se); 2353 2354 if (dl_server(dl_se)) { 2355 p = dl_se->server_pick_task(dl_se); 2356 if (!p) { 2357 if (dl_server_active(dl_se)) { 2358 dl_se->dl_yielded = 1; 2359 update_curr_dl_se(rq, dl_se, 0); 2360 } 2361 goto again; 2362 } 2363 rq->dl_server = dl_se; 2364 } else { 2365 p = dl_task_of(dl_se); 2366 } 2367 2368 return p; 2369 } 2370 2371 static struct task_struct *pick_task_dl(struct rq *rq) 2372 { 2373 return __pick_task_dl(rq); 2374 } 2375 2376 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next) 2377 { 2378 struct sched_dl_entity *dl_se = &p->dl; 2379 struct dl_rq *dl_rq = &rq->dl; 2380 2381 if (on_dl_rq(&p->dl)) 2382 update_stats_wait_start_dl(dl_rq, dl_se); 2383 2384 update_curr_dl(rq); 2385 2386 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2387 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2388 enqueue_pushable_dl_task(rq, p); 2389 } 2390 2391 /* 2392 * scheduler tick hitting a task of our scheduling class. 2393 * 2394 * NOTE: This function can be called remotely by the tick offload that 2395 * goes along full dynticks. Therefore no local assumption can be made 2396 * and everything must be accessed through the @rq and @curr passed in 2397 * parameters. 2398 */ 2399 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2400 { 2401 update_curr_dl(rq); 2402 2403 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2404 /* 2405 * Even when we have runtime, update_curr_dl() might have resulted in us 2406 * not being the leftmost task anymore. In that case NEED_RESCHED will 2407 * be set and schedule() will start a new hrtick for the next task. 2408 */ 2409 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2410 is_leftmost(&p->dl, &rq->dl)) 2411 start_hrtick_dl(rq, &p->dl); 2412 } 2413 2414 static void task_fork_dl(struct task_struct *p) 2415 { 2416 /* 2417 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2418 * sched_fork() 2419 */ 2420 } 2421 2422 /* Only try algorithms three times */ 2423 #define DL_MAX_TRIES 3 2424 2425 /* 2426 * Return the earliest pushable rq's task, which is suitable to be executed 2427 * on the CPU, NULL otherwise: 2428 */ 2429 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2430 { 2431 struct task_struct *p = NULL; 2432 struct rb_node *next_node; 2433 2434 if (!has_pushable_dl_tasks(rq)) 2435 return NULL; 2436 2437 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2438 while (next_node) { 2439 p = __node_2_pdl(next_node); 2440 2441 if (task_is_pushable(rq, p, cpu)) 2442 return p; 2443 2444 next_node = rb_next(next_node); 2445 } 2446 2447 return NULL; 2448 } 2449 2450 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2451 2452 static int find_later_rq(struct task_struct *task) 2453 { 2454 struct sched_domain *sd; 2455 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2456 int this_cpu = smp_processor_id(); 2457 int cpu = task_cpu(task); 2458 2459 /* Make sure the mask is initialized first */ 2460 if (unlikely(!later_mask)) 2461 return -1; 2462 2463 if (task->nr_cpus_allowed == 1) 2464 return -1; 2465 2466 /* 2467 * We have to consider system topology and task affinity 2468 * first, then we can look for a suitable CPU. 2469 */ 2470 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2471 return -1; 2472 2473 /* 2474 * If we are here, some targets have been found, including 2475 * the most suitable which is, among the runqueues where the 2476 * current tasks have later deadlines than the task's one, the 2477 * rq with the latest possible one. 2478 * 2479 * Now we check how well this matches with task's 2480 * affinity and system topology. 2481 * 2482 * The last CPU where the task run is our first 2483 * guess, since it is most likely cache-hot there. 2484 */ 2485 if (cpumask_test_cpu(cpu, later_mask)) 2486 return cpu; 2487 /* 2488 * Check if this_cpu is to be skipped (i.e., it is 2489 * not in the mask) or not. 2490 */ 2491 if (!cpumask_test_cpu(this_cpu, later_mask)) 2492 this_cpu = -1; 2493 2494 rcu_read_lock(); 2495 for_each_domain(cpu, sd) { 2496 if (sd->flags & SD_WAKE_AFFINE) { 2497 int best_cpu; 2498 2499 /* 2500 * If possible, preempting this_cpu is 2501 * cheaper than migrating. 2502 */ 2503 if (this_cpu != -1 && 2504 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2505 rcu_read_unlock(); 2506 return this_cpu; 2507 } 2508 2509 best_cpu = cpumask_any_and_distribute(later_mask, 2510 sched_domain_span(sd)); 2511 /* 2512 * Last chance: if a CPU being in both later_mask 2513 * and current sd span is valid, that becomes our 2514 * choice. Of course, the latest possible CPU is 2515 * already under consideration through later_mask. 2516 */ 2517 if (best_cpu < nr_cpu_ids) { 2518 rcu_read_unlock(); 2519 return best_cpu; 2520 } 2521 } 2522 } 2523 rcu_read_unlock(); 2524 2525 /* 2526 * At this point, all our guesses failed, we just return 2527 * 'something', and let the caller sort the things out. 2528 */ 2529 if (this_cpu != -1) 2530 return this_cpu; 2531 2532 cpu = cpumask_any_distribute(later_mask); 2533 if (cpu < nr_cpu_ids) 2534 return cpu; 2535 2536 return -1; 2537 } 2538 2539 /* Locks the rq it finds */ 2540 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2541 { 2542 struct rq *later_rq = NULL; 2543 int tries; 2544 int cpu; 2545 2546 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2547 cpu = find_later_rq(task); 2548 2549 if ((cpu == -1) || (cpu == rq->cpu)) 2550 break; 2551 2552 later_rq = cpu_rq(cpu); 2553 2554 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2555 /* 2556 * Target rq has tasks of equal or earlier deadline, 2557 * retrying does not release any lock and is unlikely 2558 * to yield a different result. 2559 */ 2560 later_rq = NULL; 2561 break; 2562 } 2563 2564 /* Retry if something changed. */ 2565 if (double_lock_balance(rq, later_rq)) { 2566 if (unlikely(task_rq(task) != rq || 2567 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2568 task_on_cpu(rq, task) || 2569 !dl_task(task) || 2570 is_migration_disabled(task) || 2571 !task_on_rq_queued(task))) { 2572 double_unlock_balance(rq, later_rq); 2573 later_rq = NULL; 2574 break; 2575 } 2576 } 2577 2578 /* 2579 * If the rq we found has no -deadline task, or 2580 * its earliest one has a later deadline than our 2581 * task, the rq is a good one. 2582 */ 2583 if (dl_task_is_earliest_deadline(task, later_rq)) 2584 break; 2585 2586 /* Otherwise we try again. */ 2587 double_unlock_balance(rq, later_rq); 2588 later_rq = NULL; 2589 } 2590 2591 return later_rq; 2592 } 2593 2594 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2595 { 2596 struct task_struct *p; 2597 2598 if (!has_pushable_dl_tasks(rq)) 2599 return NULL; 2600 2601 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2602 2603 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2604 WARN_ON_ONCE(task_current(rq, p)); 2605 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2606 2607 WARN_ON_ONCE(!task_on_rq_queued(p)); 2608 WARN_ON_ONCE(!dl_task(p)); 2609 2610 return p; 2611 } 2612 2613 /* 2614 * See if the non running -deadline tasks on this rq 2615 * can be sent to some other CPU where they can preempt 2616 * and start executing. 2617 */ 2618 static int push_dl_task(struct rq *rq) 2619 { 2620 struct task_struct *next_task; 2621 struct rq *later_rq; 2622 int ret = 0; 2623 2624 next_task = pick_next_pushable_dl_task(rq); 2625 if (!next_task) 2626 return 0; 2627 2628 retry: 2629 /* 2630 * If next_task preempts rq->curr, and rq->curr 2631 * can move away, it makes sense to just reschedule 2632 * without going further in pushing next_task. 2633 */ 2634 if (dl_task(rq->donor) && 2635 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) && 2636 rq->curr->nr_cpus_allowed > 1) { 2637 resched_curr(rq); 2638 return 0; 2639 } 2640 2641 if (is_migration_disabled(next_task)) 2642 return 0; 2643 2644 if (WARN_ON(next_task == rq->curr)) 2645 return 0; 2646 2647 /* We might release rq lock */ 2648 get_task_struct(next_task); 2649 2650 /* Will lock the rq it'll find */ 2651 later_rq = find_lock_later_rq(next_task, rq); 2652 if (!later_rq) { 2653 struct task_struct *task; 2654 2655 /* 2656 * We must check all this again, since 2657 * find_lock_later_rq releases rq->lock and it is 2658 * then possible that next_task has migrated. 2659 */ 2660 task = pick_next_pushable_dl_task(rq); 2661 if (task == next_task) { 2662 /* 2663 * The task is still there. We don't try 2664 * again, some other CPU will pull it when ready. 2665 */ 2666 goto out; 2667 } 2668 2669 if (!task) 2670 /* No more tasks */ 2671 goto out; 2672 2673 put_task_struct(next_task); 2674 next_task = task; 2675 goto retry; 2676 } 2677 2678 move_queued_task_locked(rq, later_rq, next_task); 2679 ret = 1; 2680 2681 resched_curr(later_rq); 2682 2683 double_unlock_balance(rq, later_rq); 2684 2685 out: 2686 put_task_struct(next_task); 2687 2688 return ret; 2689 } 2690 2691 static void push_dl_tasks(struct rq *rq) 2692 { 2693 /* push_dl_task() will return true if it moved a -deadline task */ 2694 while (push_dl_task(rq)) 2695 ; 2696 } 2697 2698 static void pull_dl_task(struct rq *this_rq) 2699 { 2700 int this_cpu = this_rq->cpu, cpu; 2701 struct task_struct *p, *push_task; 2702 bool resched = false; 2703 struct rq *src_rq; 2704 u64 dmin = LONG_MAX; 2705 2706 if (likely(!dl_overloaded(this_rq))) 2707 return; 2708 2709 /* 2710 * Match the barrier from dl_set_overloaded; this guarantees that if we 2711 * see overloaded we must also see the dlo_mask bit. 2712 */ 2713 smp_rmb(); 2714 2715 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2716 if (this_cpu == cpu) 2717 continue; 2718 2719 src_rq = cpu_rq(cpu); 2720 2721 /* 2722 * It looks racy, and it is! However, as in sched_rt.c, 2723 * we are fine with this. 2724 */ 2725 if (this_rq->dl.dl_nr_running && 2726 dl_time_before(this_rq->dl.earliest_dl.curr, 2727 src_rq->dl.earliest_dl.next)) 2728 continue; 2729 2730 /* Might drop this_rq->lock */ 2731 push_task = NULL; 2732 double_lock_balance(this_rq, src_rq); 2733 2734 /* 2735 * If there are no more pullable tasks on the 2736 * rq, we're done with it. 2737 */ 2738 if (src_rq->dl.dl_nr_running <= 1) 2739 goto skip; 2740 2741 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2742 2743 /* 2744 * We found a task to be pulled if: 2745 * - it preempts our current (if there's one), 2746 * - it will preempt the last one we pulled (if any). 2747 */ 2748 if (p && dl_time_before(p->dl.deadline, dmin) && 2749 dl_task_is_earliest_deadline(p, this_rq)) { 2750 WARN_ON(p == src_rq->curr); 2751 WARN_ON(!task_on_rq_queued(p)); 2752 2753 /* 2754 * Then we pull iff p has actually an earlier 2755 * deadline than the current task of its runqueue. 2756 */ 2757 if (dl_time_before(p->dl.deadline, 2758 src_rq->donor->dl.deadline)) 2759 goto skip; 2760 2761 if (is_migration_disabled(p)) { 2762 push_task = get_push_task(src_rq); 2763 } else { 2764 move_queued_task_locked(src_rq, this_rq, p); 2765 dmin = p->dl.deadline; 2766 resched = true; 2767 } 2768 2769 /* Is there any other task even earlier? */ 2770 } 2771 skip: 2772 double_unlock_balance(this_rq, src_rq); 2773 2774 if (push_task) { 2775 preempt_disable(); 2776 raw_spin_rq_unlock(this_rq); 2777 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2778 push_task, &src_rq->push_work); 2779 preempt_enable(); 2780 raw_spin_rq_lock(this_rq); 2781 } 2782 } 2783 2784 if (resched) 2785 resched_curr(this_rq); 2786 } 2787 2788 /* 2789 * Since the task is not running and a reschedule is not going to happen 2790 * anytime soon on its runqueue, we try pushing it away now. 2791 */ 2792 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2793 { 2794 if (!task_on_cpu(rq, p) && 2795 !test_tsk_need_resched(rq->curr) && 2796 p->nr_cpus_allowed > 1 && 2797 dl_task(rq->donor) && 2798 (rq->curr->nr_cpus_allowed < 2 || 2799 !dl_entity_preempt(&p->dl, &rq->donor->dl))) { 2800 push_dl_tasks(rq); 2801 } 2802 } 2803 2804 static void set_cpus_allowed_dl(struct task_struct *p, 2805 struct affinity_context *ctx) 2806 { 2807 struct root_domain *src_rd; 2808 struct rq *rq; 2809 2810 WARN_ON_ONCE(!dl_task(p)); 2811 2812 rq = task_rq(p); 2813 src_rd = rq->rd; 2814 /* 2815 * Migrating a SCHED_DEADLINE task between exclusive 2816 * cpusets (different root_domains) entails a bandwidth 2817 * update. We already made space for us in the destination 2818 * domain (see cpuset_can_attach()). 2819 */ 2820 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 2821 struct dl_bw *src_dl_b; 2822 2823 src_dl_b = dl_bw_of(cpu_of(rq)); 2824 /* 2825 * We now free resources of the root_domain we are migrating 2826 * off. In the worst case, sched_setattr() may temporary fail 2827 * until we complete the update. 2828 */ 2829 raw_spin_lock(&src_dl_b->lock); 2830 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2831 raw_spin_unlock(&src_dl_b->lock); 2832 } 2833 2834 set_cpus_allowed_common(p, ctx); 2835 } 2836 2837 /* Assumes rq->lock is held */ 2838 static void rq_online_dl(struct rq *rq) 2839 { 2840 if (rq->dl.overloaded) 2841 dl_set_overload(rq); 2842 2843 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2844 if (rq->dl.dl_nr_running > 0) 2845 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2846 } 2847 2848 /* Assumes rq->lock is held */ 2849 static void rq_offline_dl(struct rq *rq) 2850 { 2851 if (rq->dl.overloaded) 2852 dl_clear_overload(rq); 2853 2854 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2855 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2856 } 2857 2858 void __init init_sched_dl_class(void) 2859 { 2860 unsigned int i; 2861 2862 for_each_possible_cpu(i) 2863 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2864 GFP_KERNEL, cpu_to_node(i)); 2865 } 2866 2867 void dl_add_task_root_domain(struct task_struct *p) 2868 { 2869 struct rq_flags rf; 2870 struct rq *rq; 2871 struct dl_bw *dl_b; 2872 2873 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2874 if (!dl_task(p) || dl_entity_is_special(&p->dl)) { 2875 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2876 return; 2877 } 2878 2879 rq = __task_rq_lock(p, &rf); 2880 2881 dl_b = &rq->rd->dl_bw; 2882 raw_spin_lock(&dl_b->lock); 2883 2884 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2885 2886 raw_spin_unlock(&dl_b->lock); 2887 2888 task_rq_unlock(rq, p, &rf); 2889 } 2890 2891 void dl_clear_root_domain(struct root_domain *rd) 2892 { 2893 int i; 2894 2895 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock); 2896 rd->dl_bw.total_bw = 0; 2897 2898 /* 2899 * dl_servers are not tasks. Since dl_add_task_root_domain ignores 2900 * them, we need to account for them here explicitly. 2901 */ 2902 for_each_cpu(i, rd->span) { 2903 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server; 2904 2905 if (dl_server(dl_se) && cpu_active(i)) 2906 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i)); 2907 } 2908 } 2909 2910 void dl_clear_root_domain_cpu(int cpu) 2911 { 2912 dl_clear_root_domain(cpu_rq(cpu)->rd); 2913 } 2914 2915 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2916 { 2917 /* 2918 * task_non_contending() can start the "inactive timer" (if the 0-lag 2919 * time is in the future). If the task switches back to dl before 2920 * the "inactive timer" fires, it can continue to consume its current 2921 * runtime using its current deadline. If it stays outside of 2922 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2923 * will reset the task parameters. 2924 */ 2925 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2926 task_non_contending(&p->dl); 2927 2928 /* 2929 * In case a task is setscheduled out from SCHED_DEADLINE we need to 2930 * keep track of that on its cpuset (for correct bandwidth tracking). 2931 */ 2932 dec_dl_tasks_cs(p); 2933 2934 if (!task_on_rq_queued(p)) { 2935 /* 2936 * Inactive timer is armed. However, p is leaving DEADLINE and 2937 * might migrate away from this rq while continuing to run on 2938 * some other class. We need to remove its contribution from 2939 * this rq running_bw now, or sub_rq_bw (below) will complain. 2940 */ 2941 if (p->dl.dl_non_contending) 2942 sub_running_bw(&p->dl, &rq->dl); 2943 sub_rq_bw(&p->dl, &rq->dl); 2944 } 2945 2946 /* 2947 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2948 * at the 0-lag time, because the task could have been migrated 2949 * while SCHED_OTHER in the meanwhile. 2950 */ 2951 if (p->dl.dl_non_contending) 2952 p->dl.dl_non_contending = 0; 2953 2954 /* 2955 * Since this might be the only -deadline task on the rq, 2956 * this is the right place to try to pull some other one 2957 * from an overloaded CPU, if any. 2958 */ 2959 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2960 return; 2961 2962 deadline_queue_pull_task(rq); 2963 } 2964 2965 /* 2966 * When switching to -deadline, we may overload the rq, then 2967 * we try to push someone off, if possible. 2968 */ 2969 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2970 { 2971 cancel_inactive_timer(&p->dl); 2972 2973 /* 2974 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 2975 * track of that on its cpuset (for correct bandwidth tracking). 2976 */ 2977 inc_dl_tasks_cs(p); 2978 2979 /* If p is not queued we will update its parameters at next wakeup. */ 2980 if (!task_on_rq_queued(p)) { 2981 add_rq_bw(&p->dl, &rq->dl); 2982 2983 return; 2984 } 2985 2986 if (rq->donor != p) { 2987 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2988 deadline_queue_push_tasks(rq); 2989 if (dl_task(rq->donor)) 2990 wakeup_preempt_dl(rq, p, 0); 2991 else 2992 resched_curr(rq); 2993 } else { 2994 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2995 } 2996 } 2997 2998 /* 2999 * If the scheduling parameters of a -deadline task changed, 3000 * a push or pull operation might be needed. 3001 */ 3002 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 3003 int oldprio) 3004 { 3005 if (!task_on_rq_queued(p)) 3006 return; 3007 3008 /* 3009 * This might be too much, but unfortunately 3010 * we don't have the old deadline value, and 3011 * we can't argue if the task is increasing 3012 * or lowering its prio, so... 3013 */ 3014 if (!rq->dl.overloaded) 3015 deadline_queue_pull_task(rq); 3016 3017 if (task_current_donor(rq, p)) { 3018 /* 3019 * If we now have a earlier deadline task than p, 3020 * then reschedule, provided p is still on this 3021 * runqueue. 3022 */ 3023 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 3024 resched_curr(rq); 3025 } else { 3026 /* 3027 * Current may not be deadline in case p was throttled but we 3028 * have just replenished it (e.g. rt_mutex_setprio()). 3029 * 3030 * Otherwise, if p was given an earlier deadline, reschedule. 3031 */ 3032 if (!dl_task(rq->curr) || 3033 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 3034 resched_curr(rq); 3035 } 3036 } 3037 3038 #ifdef CONFIG_SCHED_CORE 3039 static int task_is_throttled_dl(struct task_struct *p, int cpu) 3040 { 3041 return p->dl.dl_throttled; 3042 } 3043 #endif 3044 3045 DEFINE_SCHED_CLASS(dl) = { 3046 3047 .enqueue_task = enqueue_task_dl, 3048 .dequeue_task = dequeue_task_dl, 3049 .yield_task = yield_task_dl, 3050 3051 .wakeup_preempt = wakeup_preempt_dl, 3052 3053 .pick_task = pick_task_dl, 3054 .put_prev_task = put_prev_task_dl, 3055 .set_next_task = set_next_task_dl, 3056 3057 .balance = balance_dl, 3058 .select_task_rq = select_task_rq_dl, 3059 .migrate_task_rq = migrate_task_rq_dl, 3060 .set_cpus_allowed = set_cpus_allowed_dl, 3061 .rq_online = rq_online_dl, 3062 .rq_offline = rq_offline_dl, 3063 .task_woken = task_woken_dl, 3064 .find_lock_rq = find_lock_later_rq, 3065 3066 .task_tick = task_tick_dl, 3067 .task_fork = task_fork_dl, 3068 3069 .prio_changed = prio_changed_dl, 3070 .switched_from = switched_from_dl, 3071 .switched_to = switched_to_dl, 3072 3073 .update_curr = update_curr_dl, 3074 #ifdef CONFIG_SCHED_CORE 3075 .task_is_throttled = task_is_throttled_dl, 3076 #endif 3077 }; 3078 3079 /* 3080 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and 3081 * sched_domains_mutex. 3082 */ 3083 u64 dl_cookie; 3084 3085 int sched_dl_global_validate(void) 3086 { 3087 u64 runtime = global_rt_runtime(); 3088 u64 period = global_rt_period(); 3089 u64 new_bw = to_ratio(period, runtime); 3090 u64 cookie = ++dl_cookie; 3091 struct dl_bw *dl_b; 3092 int cpu, cpus, ret = 0; 3093 unsigned long flags; 3094 3095 /* 3096 * Here we want to check the bandwidth not being set to some 3097 * value smaller than the currently allocated bandwidth in 3098 * any of the root_domains. 3099 */ 3100 for_each_online_cpu(cpu) { 3101 rcu_read_lock_sched(); 3102 3103 if (dl_bw_visited(cpu, cookie)) 3104 goto next; 3105 3106 dl_b = dl_bw_of(cpu); 3107 cpus = dl_bw_cpus(cpu); 3108 3109 raw_spin_lock_irqsave(&dl_b->lock, flags); 3110 if (new_bw * cpus < dl_b->total_bw) 3111 ret = -EBUSY; 3112 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3113 3114 next: 3115 rcu_read_unlock_sched(); 3116 3117 if (ret) 3118 break; 3119 } 3120 3121 return ret; 3122 } 3123 3124 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 3125 { 3126 if (global_rt_runtime() == RUNTIME_INF) { 3127 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 3128 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 3129 } else { 3130 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 3131 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 3132 dl_rq->max_bw = dl_rq->extra_bw = 3133 to_ratio(global_rt_period(), global_rt_runtime()); 3134 } 3135 } 3136 3137 void sched_dl_do_global(void) 3138 { 3139 u64 new_bw = -1; 3140 u64 cookie = ++dl_cookie; 3141 struct dl_bw *dl_b; 3142 int cpu; 3143 unsigned long flags; 3144 3145 if (global_rt_runtime() != RUNTIME_INF) 3146 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 3147 3148 for_each_possible_cpu(cpu) { 3149 rcu_read_lock_sched(); 3150 3151 if (dl_bw_visited(cpu, cookie)) { 3152 rcu_read_unlock_sched(); 3153 continue; 3154 } 3155 3156 dl_b = dl_bw_of(cpu); 3157 3158 raw_spin_lock_irqsave(&dl_b->lock, flags); 3159 dl_b->bw = new_bw; 3160 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3161 3162 rcu_read_unlock_sched(); 3163 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 3164 } 3165 } 3166 3167 /* 3168 * We must be sure that accepting a new task (or allowing changing the 3169 * parameters of an existing one) is consistent with the bandwidth 3170 * constraints. If yes, this function also accordingly updates the currently 3171 * allocated bandwidth to reflect the new situation. 3172 * 3173 * This function is called while holding p's rq->lock. 3174 */ 3175 int sched_dl_overflow(struct task_struct *p, int policy, 3176 const struct sched_attr *attr) 3177 { 3178 u64 period = attr->sched_period ?: attr->sched_deadline; 3179 u64 runtime = attr->sched_runtime; 3180 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 3181 int cpus, err = -1, cpu = task_cpu(p); 3182 struct dl_bw *dl_b = dl_bw_of(cpu); 3183 unsigned long cap; 3184 3185 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3186 return 0; 3187 3188 /* !deadline task may carry old deadline bandwidth */ 3189 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 3190 return 0; 3191 3192 /* 3193 * Either if a task, enters, leave, or stays -deadline but changes 3194 * its parameters, we may need to update accordingly the total 3195 * allocated bandwidth of the container. 3196 */ 3197 raw_spin_lock(&dl_b->lock); 3198 cpus = dl_bw_cpus(cpu); 3199 cap = dl_bw_capacity(cpu); 3200 3201 if (dl_policy(policy) && !task_has_dl_policy(p) && 3202 !__dl_overflow(dl_b, cap, 0, new_bw)) { 3203 if (hrtimer_active(&p->dl.inactive_timer)) 3204 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3205 __dl_add(dl_b, new_bw, cpus); 3206 err = 0; 3207 } else if (dl_policy(policy) && task_has_dl_policy(p) && 3208 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 3209 /* 3210 * XXX this is slightly incorrect: when the task 3211 * utilization decreases, we should delay the total 3212 * utilization change until the task's 0-lag point. 3213 * But this would require to set the task's "inactive 3214 * timer" when the task is not inactive. 3215 */ 3216 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3217 __dl_add(dl_b, new_bw, cpus); 3218 dl_change_utilization(p, new_bw); 3219 err = 0; 3220 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 3221 /* 3222 * Do not decrease the total deadline utilization here, 3223 * switched_from_dl() will take care to do it at the correct 3224 * (0-lag) time. 3225 */ 3226 err = 0; 3227 } 3228 raw_spin_unlock(&dl_b->lock); 3229 3230 return err; 3231 } 3232 3233 /* 3234 * This function initializes the sched_dl_entity of a newly becoming 3235 * SCHED_DEADLINE task. 3236 * 3237 * Only the static values are considered here, the actual runtime and the 3238 * absolute deadline will be properly calculated when the task is enqueued 3239 * for the first time with its new policy. 3240 */ 3241 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3242 { 3243 struct sched_dl_entity *dl_se = &p->dl; 3244 3245 dl_se->dl_runtime = attr->sched_runtime; 3246 dl_se->dl_deadline = attr->sched_deadline; 3247 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3248 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 3249 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3250 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3251 } 3252 3253 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3254 { 3255 struct sched_dl_entity *dl_se = &p->dl; 3256 3257 attr->sched_priority = p->rt_priority; 3258 attr->sched_runtime = dl_se->dl_runtime; 3259 attr->sched_deadline = dl_se->dl_deadline; 3260 attr->sched_period = dl_se->dl_period; 3261 attr->sched_flags &= ~SCHED_DL_FLAGS; 3262 attr->sched_flags |= dl_se->flags; 3263 } 3264 3265 /* 3266 * This function validates the new parameters of a -deadline task. 3267 * We ask for the deadline not being zero, and greater or equal 3268 * than the runtime, as well as the period of being zero or 3269 * greater than deadline. Furthermore, we have to be sure that 3270 * user parameters are above the internal resolution of 1us (we 3271 * check sched_runtime only since it is always the smaller one) and 3272 * below 2^63 ns (we have to check both sched_deadline and 3273 * sched_period, as the latter can be zero). 3274 */ 3275 bool __checkparam_dl(const struct sched_attr *attr) 3276 { 3277 u64 period, max, min; 3278 3279 /* special dl tasks don't actually use any parameter */ 3280 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3281 return true; 3282 3283 /* deadline != 0 */ 3284 if (attr->sched_deadline == 0) 3285 return false; 3286 3287 /* 3288 * Since we truncate DL_SCALE bits, make sure we're at least 3289 * that big. 3290 */ 3291 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3292 return false; 3293 3294 /* 3295 * Since we use the MSB for wrap-around and sign issues, make 3296 * sure it's not set (mind that period can be equal to zero). 3297 */ 3298 if (attr->sched_deadline & (1ULL << 63) || 3299 attr->sched_period & (1ULL << 63)) 3300 return false; 3301 3302 period = attr->sched_period; 3303 if (!period) 3304 period = attr->sched_deadline; 3305 3306 /* runtime <= deadline <= period (if period != 0) */ 3307 if (period < attr->sched_deadline || 3308 attr->sched_deadline < attr->sched_runtime) 3309 return false; 3310 3311 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3312 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3313 3314 if (period < min || period > max) 3315 return false; 3316 3317 return true; 3318 } 3319 3320 /* 3321 * This function clears the sched_dl_entity static params. 3322 */ 3323 static void __dl_clear_params(struct sched_dl_entity *dl_se) 3324 { 3325 dl_se->dl_runtime = 0; 3326 dl_se->dl_deadline = 0; 3327 dl_se->dl_period = 0; 3328 dl_se->flags = 0; 3329 dl_se->dl_bw = 0; 3330 dl_se->dl_density = 0; 3331 3332 dl_se->dl_throttled = 0; 3333 dl_se->dl_yielded = 0; 3334 dl_se->dl_non_contending = 0; 3335 dl_se->dl_overrun = 0; 3336 dl_se->dl_server = 0; 3337 3338 #ifdef CONFIG_RT_MUTEXES 3339 dl_se->pi_se = dl_se; 3340 #endif 3341 } 3342 3343 void init_dl_entity(struct sched_dl_entity *dl_se) 3344 { 3345 RB_CLEAR_NODE(&dl_se->rb_node); 3346 init_dl_task_timer(dl_se); 3347 init_dl_inactive_task_timer(dl_se); 3348 __dl_clear_params(dl_se); 3349 } 3350 3351 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3352 { 3353 struct sched_dl_entity *dl_se = &p->dl; 3354 3355 if (dl_se->dl_runtime != attr->sched_runtime || 3356 dl_se->dl_deadline != attr->sched_deadline || 3357 dl_se->dl_period != attr->sched_period || 3358 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3359 return true; 3360 3361 return false; 3362 } 3363 3364 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3365 const struct cpumask *trial) 3366 { 3367 unsigned long flags, cap; 3368 struct dl_bw *cur_dl_b; 3369 int ret = 1; 3370 3371 rcu_read_lock_sched(); 3372 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3373 cap = __dl_bw_capacity(trial); 3374 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3375 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3376 ret = 0; 3377 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3378 rcu_read_unlock_sched(); 3379 3380 return ret; 3381 } 3382 3383 enum dl_bw_request { 3384 dl_bw_req_deactivate = 0, 3385 dl_bw_req_alloc, 3386 dl_bw_req_free 3387 }; 3388 3389 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3390 { 3391 unsigned long flags, cap; 3392 struct dl_bw *dl_b; 3393 bool overflow = 0; 3394 u64 fair_server_bw = 0; 3395 3396 rcu_read_lock_sched(); 3397 dl_b = dl_bw_of(cpu); 3398 raw_spin_lock_irqsave(&dl_b->lock, flags); 3399 3400 cap = dl_bw_capacity(cpu); 3401 switch (req) { 3402 case dl_bw_req_free: 3403 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3404 break; 3405 case dl_bw_req_alloc: 3406 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3407 3408 if (!overflow) { 3409 /* 3410 * We reserve space in the destination 3411 * root_domain, as we can't fail after this point. 3412 * We will free resources in the source root_domain 3413 * later on (see set_cpus_allowed_dl()). 3414 */ 3415 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3416 } 3417 break; 3418 case dl_bw_req_deactivate: 3419 /* 3420 * cpu is not off yet, but we need to do the math by 3421 * considering it off already (i.e., what would happen if we 3422 * turn cpu off?). 3423 */ 3424 cap -= arch_scale_cpu_capacity(cpu); 3425 3426 /* 3427 * cpu is going offline and NORMAL tasks will be moved away 3428 * from it. We can thus discount dl_server bandwidth 3429 * contribution as it won't need to be servicing tasks after 3430 * the cpu is off. 3431 */ 3432 if (cpu_rq(cpu)->fair_server.dl_server) 3433 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw; 3434 3435 /* 3436 * Not much to check if no DEADLINE bandwidth is present. 3437 * dl_servers we can discount, as tasks will be moved out the 3438 * offlined CPUs anyway. 3439 */ 3440 if (dl_b->total_bw - fair_server_bw > 0) { 3441 /* 3442 * Leaving at least one CPU for DEADLINE tasks seems a 3443 * wise thing to do. As said above, cpu is not offline 3444 * yet, so account for that. 3445 */ 3446 if (dl_bw_cpus(cpu) - 1) 3447 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0); 3448 else 3449 overflow = 1; 3450 } 3451 3452 break; 3453 } 3454 3455 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3456 rcu_read_unlock_sched(); 3457 3458 return overflow ? -EBUSY : 0; 3459 } 3460 3461 int dl_bw_deactivate(int cpu) 3462 { 3463 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0); 3464 } 3465 3466 int dl_bw_alloc(int cpu, u64 dl_bw) 3467 { 3468 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3469 } 3470 3471 void dl_bw_free(int cpu, u64 dl_bw) 3472 { 3473 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3474 } 3475 3476 void print_dl_stats(struct seq_file *m, int cpu) 3477 { 3478 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3479 } 3480