xref: /linux/kernel/sched/deadline.c (revision 5fe164fb0e6e31dbcbb4b706fd76bc578e5af4c6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 
21 /*
22  * Default limits for DL period; on the top end we guard against small util
23  * tasks still getting ridiculously long effective runtimes, on the bottom end we
24  * guard against timer DoS.
25  */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 	{
31 		.procname       = "sched_deadline_period_max_us",
32 		.data           = &sysctl_sched_dl_period_max,
33 		.maxlen         = sizeof(unsigned int),
34 		.mode           = 0644,
35 		.proc_handler   = proc_douintvec_minmax,
36 		.extra1         = (void *)&sysctl_sched_dl_period_min,
37 	},
38 	{
39 		.procname       = "sched_deadline_period_min_us",
40 		.data           = &sysctl_sched_dl_period_min,
41 		.maxlen         = sizeof(unsigned int),
42 		.mode           = 0644,
43 		.proc_handler   = proc_douintvec_minmax,
44 		.extra2         = (void *)&sysctl_sched_dl_period_max,
45 	},
46 };
47 
48 static int __init sched_dl_sysctl_init(void)
49 {
50 	register_sysctl_init("kernel", sched_dl_sysctls);
51 	return 0;
52 }
53 late_initcall(sched_dl_sysctl_init);
54 #endif
55 
56 static bool dl_server(struct sched_dl_entity *dl_se)
57 {
58 	return dl_se->dl_server;
59 }
60 
61 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62 {
63 	BUG_ON(dl_server(dl_se));
64 	return container_of(dl_se, struct task_struct, dl);
65 }
66 
67 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68 {
69 	return container_of(dl_rq, struct rq, dl);
70 }
71 
72 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73 {
74 	struct rq *rq = dl_se->rq;
75 
76 	if (!dl_server(dl_se))
77 		rq = task_rq(dl_task_of(dl_se));
78 
79 	return rq;
80 }
81 
82 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83 {
84 	return &rq_of_dl_se(dl_se)->dl;
85 }
86 
87 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88 {
89 	return !RB_EMPTY_NODE(&dl_se->rb_node);
90 }
91 
92 #ifdef CONFIG_RT_MUTEXES
93 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94 {
95 	return dl_se->pi_se;
96 }
97 
98 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99 {
100 	return pi_of(dl_se) != dl_se;
101 }
102 #else
103 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104 {
105 	return dl_se;
106 }
107 
108 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109 {
110 	return false;
111 }
112 #endif
113 
114 #ifdef CONFIG_SMP
115 static inline struct dl_bw *dl_bw_of(int i)
116 {
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118 			 "sched RCU must be held");
119 	return &cpu_rq(i)->rd->dl_bw;
120 }
121 
122 static inline int dl_bw_cpus(int i)
123 {
124 	struct root_domain *rd = cpu_rq(i)->rd;
125 	int cpus;
126 
127 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128 			 "sched RCU must be held");
129 
130 	if (cpumask_subset(rd->span, cpu_active_mask))
131 		return cpumask_weight(rd->span);
132 
133 	cpus = 0;
134 
135 	for_each_cpu_and(i, rd->span, cpu_active_mask)
136 		cpus++;
137 
138 	return cpus;
139 }
140 
141 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142 {
143 	unsigned long cap = 0;
144 	int i;
145 
146 	for_each_cpu_and(i, mask, cpu_active_mask)
147 		cap += arch_scale_cpu_capacity(i);
148 
149 	return cap;
150 }
151 
152 /*
153  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154  * of the CPU the task is running on rather rd's \Sum CPU capacity.
155  */
156 static inline unsigned long dl_bw_capacity(int i)
157 {
158 	if (!sched_asym_cpucap_active() &&
159 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161 	} else {
162 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163 				 "sched RCU must be held");
164 
165 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
166 	}
167 }
168 
169 static inline bool dl_bw_visited(int cpu, u64 gen)
170 {
171 	struct root_domain *rd = cpu_rq(cpu)->rd;
172 
173 	if (rd->visit_gen == gen)
174 		return true;
175 
176 	rd->visit_gen = gen;
177 	return false;
178 }
179 
180 static inline
181 void __dl_update(struct dl_bw *dl_b, s64 bw)
182 {
183 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184 	int i;
185 
186 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187 			 "sched RCU must be held");
188 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
189 		struct rq *rq = cpu_rq(i);
190 
191 		rq->dl.extra_bw += bw;
192 	}
193 }
194 #else
195 static inline struct dl_bw *dl_bw_of(int i)
196 {
197 	return &cpu_rq(i)->dl.dl_bw;
198 }
199 
200 static inline int dl_bw_cpus(int i)
201 {
202 	return 1;
203 }
204 
205 static inline unsigned long dl_bw_capacity(int i)
206 {
207 	return SCHED_CAPACITY_SCALE;
208 }
209 
210 static inline bool dl_bw_visited(int cpu, u64 gen)
211 {
212 	return false;
213 }
214 
215 static inline
216 void __dl_update(struct dl_bw *dl_b, s64 bw)
217 {
218 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219 
220 	dl->extra_bw += bw;
221 }
222 #endif
223 
224 static inline
225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226 {
227 	dl_b->total_bw -= tsk_bw;
228 	__dl_update(dl_b, (s32)tsk_bw / cpus);
229 }
230 
231 static inline
232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233 {
234 	dl_b->total_bw += tsk_bw;
235 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
236 }
237 
238 static inline bool
239 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240 {
241 	return dl_b->bw != -1 &&
242 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243 }
244 
245 static inline
246 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247 {
248 	u64 old = dl_rq->running_bw;
249 
250 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251 	dl_rq->running_bw += dl_bw;
252 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
253 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
254 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257 
258 static inline
259 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 	u64 old = dl_rq->running_bw;
262 
263 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 	dl_rq->running_bw -= dl_bw;
265 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
266 	if (dl_rq->running_bw > old)
267 		dl_rq->running_bw = 0;
268 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
269 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270 }
271 
272 static inline
273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274 {
275 	u64 old = dl_rq->this_bw;
276 
277 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278 	dl_rq->this_bw += dl_bw;
279 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
280 }
281 
282 static inline
283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284 {
285 	u64 old = dl_rq->this_bw;
286 
287 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288 	dl_rq->this_bw -= dl_bw;
289 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
290 	if (dl_rq->this_bw > old)
291 		dl_rq->this_bw = 0;
292 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
293 }
294 
295 static inline
296 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 	if (!dl_entity_is_special(dl_se))
299 		__add_rq_bw(dl_se->dl_bw, dl_rq);
300 }
301 
302 static inline
303 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 	if (!dl_entity_is_special(dl_se))
306 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
307 }
308 
309 static inline
310 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 	if (!dl_entity_is_special(dl_se))
313 		__add_running_bw(dl_se->dl_bw, dl_rq);
314 }
315 
316 static inline
317 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318 {
319 	if (!dl_entity_is_special(dl_se))
320 		__sub_running_bw(dl_se->dl_bw, dl_rq);
321 }
322 
323 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
324 {
325 	struct rq *rq;
326 
327 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
328 
329 	if (task_on_rq_queued(p))
330 		return;
331 
332 	rq = task_rq(p);
333 	if (p->dl.dl_non_contending) {
334 		sub_running_bw(&p->dl, &rq->dl);
335 		p->dl.dl_non_contending = 0;
336 		/*
337 		 * If the timer handler is currently running and the
338 		 * timer cannot be canceled, inactive_task_timer()
339 		 * will see that dl_not_contending is not set, and
340 		 * will not touch the rq's active utilization,
341 		 * so we are still safe.
342 		 */
343 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
344 			put_task_struct(p);
345 	}
346 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
347 	__add_rq_bw(new_bw, &rq->dl);
348 }
349 
350 static void __dl_clear_params(struct sched_dl_entity *dl_se);
351 
352 /*
353  * The utilization of a task cannot be immediately removed from
354  * the rq active utilization (running_bw) when the task blocks.
355  * Instead, we have to wait for the so called "0-lag time".
356  *
357  * If a task blocks before the "0-lag time", a timer (the inactive
358  * timer) is armed, and running_bw is decreased when the timer
359  * fires.
360  *
361  * If the task wakes up again before the inactive timer fires,
362  * the timer is canceled, whereas if the task wakes up after the
363  * inactive timer fired (and running_bw has been decreased) the
364  * task's utilization has to be added to running_bw again.
365  * A flag in the deadline scheduling entity (dl_non_contending)
366  * is used to avoid race conditions between the inactive timer handler
367  * and task wakeups.
368  *
369  * The following diagram shows how running_bw is updated. A task is
370  * "ACTIVE" when its utilization contributes to running_bw; an
371  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
372  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
373  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
374  * time already passed, which does not contribute to running_bw anymore.
375  *                              +------------------+
376  *             wakeup           |    ACTIVE        |
377  *          +------------------>+   contending     |
378  *          | add_running_bw    |                  |
379  *          |                   +----+------+------+
380  *          |                        |      ^
381  *          |                dequeue |      |
382  * +--------+-------+                |      |
383  * |                |   t >= 0-lag   |      | wakeup
384  * |    INACTIVE    |<---------------+      |
385  * |                | sub_running_bw |      |
386  * +--------+-------+                |      |
387  *          ^                        |      |
388  *          |              t < 0-lag |      |
389  *          |                        |      |
390  *          |                        V      |
391  *          |                   +----+------+------+
392  *          | sub_running_bw    |    ACTIVE        |
393  *          +-------------------+                  |
394  *            inactive timer    |  non contending  |
395  *            fired             +------------------+
396  *
397  * The task_non_contending() function is invoked when a task
398  * blocks, and checks if the 0-lag time already passed or
399  * not (in the first case, it directly updates running_bw;
400  * in the second case, it arms the inactive timer).
401  *
402  * The task_contending() function is invoked when a task wakes
403  * up, and checks if the task is still in the "ACTIVE non contending"
404  * state or not (in the second case, it updates running_bw).
405  */
406 static void task_non_contending(struct sched_dl_entity *dl_se)
407 {
408 	struct hrtimer *timer = &dl_se->inactive_timer;
409 	struct rq *rq = rq_of_dl_se(dl_se);
410 	struct dl_rq *dl_rq = &rq->dl;
411 	s64 zerolag_time;
412 
413 	/*
414 	 * If this is a non-deadline task that has been boosted,
415 	 * do nothing
416 	 */
417 	if (dl_se->dl_runtime == 0)
418 		return;
419 
420 	if (dl_entity_is_special(dl_se))
421 		return;
422 
423 	WARN_ON(dl_se->dl_non_contending);
424 
425 	zerolag_time = dl_se->deadline -
426 		 div64_long((dl_se->runtime * dl_se->dl_period),
427 			dl_se->dl_runtime);
428 
429 	/*
430 	 * Using relative times instead of the absolute "0-lag time"
431 	 * allows to simplify the code
432 	 */
433 	zerolag_time -= rq_clock(rq);
434 
435 	/*
436 	 * If the "0-lag time" already passed, decrease the active
437 	 * utilization now, instead of starting a timer
438 	 */
439 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
440 		if (dl_server(dl_se)) {
441 			sub_running_bw(dl_se, dl_rq);
442 		} else {
443 			struct task_struct *p = dl_task_of(dl_se);
444 
445 			if (dl_task(p))
446 				sub_running_bw(dl_se, dl_rq);
447 
448 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
449 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
450 
451 				if (READ_ONCE(p->__state) == TASK_DEAD)
452 					sub_rq_bw(dl_se, &rq->dl);
453 				raw_spin_lock(&dl_b->lock);
454 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
455 				raw_spin_unlock(&dl_b->lock);
456 				__dl_clear_params(dl_se);
457 			}
458 		}
459 
460 		return;
461 	}
462 
463 	dl_se->dl_non_contending = 1;
464 	if (!dl_server(dl_se))
465 		get_task_struct(dl_task_of(dl_se));
466 
467 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
468 }
469 
470 static void task_contending(struct sched_dl_entity *dl_se, int flags)
471 {
472 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
473 
474 	/*
475 	 * If this is a non-deadline task that has been boosted,
476 	 * do nothing
477 	 */
478 	if (dl_se->dl_runtime == 0)
479 		return;
480 
481 	if (flags & ENQUEUE_MIGRATED)
482 		add_rq_bw(dl_se, dl_rq);
483 
484 	if (dl_se->dl_non_contending) {
485 		dl_se->dl_non_contending = 0;
486 		/*
487 		 * If the timer handler is currently running and the
488 		 * timer cannot be canceled, inactive_task_timer()
489 		 * will see that dl_not_contending is not set, and
490 		 * will not touch the rq's active utilization,
491 		 * so we are still safe.
492 		 */
493 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
494 			if (!dl_server(dl_se))
495 				put_task_struct(dl_task_of(dl_se));
496 		}
497 	} else {
498 		/*
499 		 * Since "dl_non_contending" is not set, the
500 		 * task's utilization has already been removed from
501 		 * active utilization (either when the task blocked,
502 		 * when the "inactive timer" fired).
503 		 * So, add it back.
504 		 */
505 		add_running_bw(dl_se, dl_rq);
506 	}
507 }
508 
509 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
510 {
511 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
512 }
513 
514 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
515 
516 void init_dl_bw(struct dl_bw *dl_b)
517 {
518 	raw_spin_lock_init(&dl_b->lock);
519 	if (global_rt_runtime() == RUNTIME_INF)
520 		dl_b->bw = -1;
521 	else
522 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
523 	dl_b->total_bw = 0;
524 }
525 
526 void init_dl_rq(struct dl_rq *dl_rq)
527 {
528 	dl_rq->root = RB_ROOT_CACHED;
529 
530 #ifdef CONFIG_SMP
531 	/* zero means no -deadline tasks */
532 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
533 
534 	dl_rq->overloaded = 0;
535 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
536 #else
537 	init_dl_bw(&dl_rq->dl_bw);
538 #endif
539 
540 	dl_rq->running_bw = 0;
541 	dl_rq->this_bw = 0;
542 	init_dl_rq_bw_ratio(dl_rq);
543 }
544 
545 #ifdef CONFIG_SMP
546 
547 static inline int dl_overloaded(struct rq *rq)
548 {
549 	return atomic_read(&rq->rd->dlo_count);
550 }
551 
552 static inline void dl_set_overload(struct rq *rq)
553 {
554 	if (!rq->online)
555 		return;
556 
557 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
558 	/*
559 	 * Must be visible before the overload count is
560 	 * set (as in sched_rt.c).
561 	 *
562 	 * Matched by the barrier in pull_dl_task().
563 	 */
564 	smp_wmb();
565 	atomic_inc(&rq->rd->dlo_count);
566 }
567 
568 static inline void dl_clear_overload(struct rq *rq)
569 {
570 	if (!rq->online)
571 		return;
572 
573 	atomic_dec(&rq->rd->dlo_count);
574 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
575 }
576 
577 #define __node_2_pdl(node) \
578 	rb_entry((node), struct task_struct, pushable_dl_tasks)
579 
580 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
581 {
582 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
583 }
584 
585 static inline int has_pushable_dl_tasks(struct rq *rq)
586 {
587 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
588 }
589 
590 /*
591  * The list of pushable -deadline task is not a plist, like in
592  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
593  */
594 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
595 {
596 	struct rb_node *leftmost;
597 
598 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
599 
600 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
601 				 &rq->dl.pushable_dl_tasks_root,
602 				 __pushable_less);
603 	if (leftmost)
604 		rq->dl.earliest_dl.next = p->dl.deadline;
605 
606 	if (!rq->dl.overloaded) {
607 		dl_set_overload(rq);
608 		rq->dl.overloaded = 1;
609 	}
610 }
611 
612 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
613 {
614 	struct dl_rq *dl_rq = &rq->dl;
615 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
616 	struct rb_node *leftmost;
617 
618 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
619 		return;
620 
621 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
622 	if (leftmost)
623 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
624 
625 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
626 
627 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
628 		dl_clear_overload(rq);
629 		rq->dl.overloaded = 0;
630 	}
631 }
632 
633 static int push_dl_task(struct rq *rq);
634 
635 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
636 {
637 	return rq->online && dl_task(prev);
638 }
639 
640 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
641 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
642 
643 static void push_dl_tasks(struct rq *);
644 static void pull_dl_task(struct rq *);
645 
646 static inline void deadline_queue_push_tasks(struct rq *rq)
647 {
648 	if (!has_pushable_dl_tasks(rq))
649 		return;
650 
651 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
652 }
653 
654 static inline void deadline_queue_pull_task(struct rq *rq)
655 {
656 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
657 }
658 
659 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
660 
661 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
662 {
663 	struct rq *later_rq = NULL;
664 	struct dl_bw *dl_b;
665 
666 	later_rq = find_lock_later_rq(p, rq);
667 	if (!later_rq) {
668 		int cpu;
669 
670 		/*
671 		 * If we cannot preempt any rq, fall back to pick any
672 		 * online CPU:
673 		 */
674 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
675 		if (cpu >= nr_cpu_ids) {
676 			/*
677 			 * Failed to find any suitable CPU.
678 			 * The task will never come back!
679 			 */
680 			WARN_ON_ONCE(dl_bandwidth_enabled());
681 
682 			/*
683 			 * If admission control is disabled we
684 			 * try a little harder to let the task
685 			 * run.
686 			 */
687 			cpu = cpumask_any(cpu_active_mask);
688 		}
689 		later_rq = cpu_rq(cpu);
690 		double_lock_balance(rq, later_rq);
691 	}
692 
693 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
694 		/*
695 		 * Inactive timer is armed (or callback is running, but
696 		 * waiting for us to release rq locks). In any case, when it
697 		 * will fire (or continue), it will see running_bw of this
698 		 * task migrated to later_rq (and correctly handle it).
699 		 */
700 		sub_running_bw(&p->dl, &rq->dl);
701 		sub_rq_bw(&p->dl, &rq->dl);
702 
703 		add_rq_bw(&p->dl, &later_rq->dl);
704 		add_running_bw(&p->dl, &later_rq->dl);
705 	} else {
706 		sub_rq_bw(&p->dl, &rq->dl);
707 		add_rq_bw(&p->dl, &later_rq->dl);
708 	}
709 
710 	/*
711 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
712 	 * since p is still hanging out in the old (now moved to default) root
713 	 * domain.
714 	 */
715 	dl_b = &rq->rd->dl_bw;
716 	raw_spin_lock(&dl_b->lock);
717 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
718 	raw_spin_unlock(&dl_b->lock);
719 
720 	dl_b = &later_rq->rd->dl_bw;
721 	raw_spin_lock(&dl_b->lock);
722 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
723 	raw_spin_unlock(&dl_b->lock);
724 
725 	set_task_cpu(p, later_rq->cpu);
726 	double_unlock_balance(later_rq, rq);
727 
728 	return later_rq;
729 }
730 
731 #else
732 
733 static inline
734 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
735 {
736 }
737 
738 static inline
739 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740 {
741 }
742 
743 static inline
744 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
745 {
746 }
747 
748 static inline
749 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750 {
751 }
752 
753 static inline void deadline_queue_push_tasks(struct rq *rq)
754 {
755 }
756 
757 static inline void deadline_queue_pull_task(struct rq *rq)
758 {
759 }
760 #endif /* CONFIG_SMP */
761 
762 static void
763 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
764 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
765 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
766 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
767 
768 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
769 					    struct rq *rq)
770 {
771 	/* for non-boosted task, pi_of(dl_se) == dl_se */
772 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
773 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
774 }
775 
776 /*
777  * We are being explicitly informed that a new instance is starting,
778  * and this means that:
779  *  - the absolute deadline of the entity has to be placed at
780  *    current time + relative deadline;
781  *  - the runtime of the entity has to be set to the maximum value.
782  *
783  * The capability of specifying such event is useful whenever a -deadline
784  * entity wants to (try to!) synchronize its behaviour with the scheduler's
785  * one, and to (try to!) reconcile itself with its own scheduling
786  * parameters.
787  */
788 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
789 {
790 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
791 	struct rq *rq = rq_of_dl_rq(dl_rq);
792 
793 	WARN_ON(is_dl_boosted(dl_se));
794 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
795 
796 	/*
797 	 * We are racing with the deadline timer. So, do nothing because
798 	 * the deadline timer handler will take care of properly recharging
799 	 * the runtime and postponing the deadline
800 	 */
801 	if (dl_se->dl_throttled)
802 		return;
803 
804 	/*
805 	 * We use the regular wall clock time to set deadlines in the
806 	 * future; in fact, we must consider execution overheads (time
807 	 * spent on hardirq context, etc.).
808 	 */
809 	replenish_dl_new_period(dl_se, rq);
810 }
811 
812 /*
813  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
814  * possibility of a entity lasting more than what it declared, and thus
815  * exhausting its runtime.
816  *
817  * Here we are interested in making runtime overrun possible, but we do
818  * not want a entity which is misbehaving to affect the scheduling of all
819  * other entities.
820  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
821  * is used, in order to confine each entity within its own bandwidth.
822  *
823  * This function deals exactly with that, and ensures that when the runtime
824  * of a entity is replenished, its deadline is also postponed. That ensures
825  * the overrunning entity can't interfere with other entity in the system and
826  * can't make them miss their deadlines. Reasons why this kind of overruns
827  * could happen are, typically, a entity voluntarily trying to overcome its
828  * runtime, or it just underestimated it during sched_setattr().
829  */
830 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
831 {
832 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
833 	struct rq *rq = rq_of_dl_rq(dl_rq);
834 
835 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
836 
837 	/*
838 	 * This could be the case for a !-dl task that is boosted.
839 	 * Just go with full inherited parameters.
840 	 */
841 	if (dl_se->dl_deadline == 0)
842 		replenish_dl_new_period(dl_se, rq);
843 
844 	if (dl_se->dl_yielded && dl_se->runtime > 0)
845 		dl_se->runtime = 0;
846 
847 	/*
848 	 * We keep moving the deadline away until we get some
849 	 * available runtime for the entity. This ensures correct
850 	 * handling of situations where the runtime overrun is
851 	 * arbitrary large.
852 	 */
853 	while (dl_se->runtime <= 0) {
854 		dl_se->deadline += pi_of(dl_se)->dl_period;
855 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
856 	}
857 
858 	/*
859 	 * At this point, the deadline really should be "in
860 	 * the future" with respect to rq->clock. If it's
861 	 * not, we are, for some reason, lagging too much!
862 	 * Anyway, after having warn userspace abut that,
863 	 * we still try to keep the things running by
864 	 * resetting the deadline and the budget of the
865 	 * entity.
866 	 */
867 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
868 		printk_deferred_once("sched: DL replenish lagged too much\n");
869 		replenish_dl_new_period(dl_se, rq);
870 	}
871 
872 	if (dl_se->dl_yielded)
873 		dl_se->dl_yielded = 0;
874 	if (dl_se->dl_throttled)
875 		dl_se->dl_throttled = 0;
876 }
877 
878 /*
879  * Here we check if --at time t-- an entity (which is probably being
880  * [re]activated or, in general, enqueued) can use its remaining runtime
881  * and its current deadline _without_ exceeding the bandwidth it is
882  * assigned (function returns true if it can't). We are in fact applying
883  * one of the CBS rules: when a task wakes up, if the residual runtime
884  * over residual deadline fits within the allocated bandwidth, then we
885  * can keep the current (absolute) deadline and residual budget without
886  * disrupting the schedulability of the system. Otherwise, we should
887  * refill the runtime and set the deadline a period in the future,
888  * because keeping the current (absolute) deadline of the task would
889  * result in breaking guarantees promised to other tasks (refer to
890  * Documentation/scheduler/sched-deadline.rst for more information).
891  *
892  * This function returns true if:
893  *
894  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
895  *
896  * IOW we can't recycle current parameters.
897  *
898  * Notice that the bandwidth check is done against the deadline. For
899  * task with deadline equal to period this is the same of using
900  * dl_period instead of dl_deadline in the equation above.
901  */
902 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
903 {
904 	u64 left, right;
905 
906 	/*
907 	 * left and right are the two sides of the equation above,
908 	 * after a bit of shuffling to use multiplications instead
909 	 * of divisions.
910 	 *
911 	 * Note that none of the time values involved in the two
912 	 * multiplications are absolute: dl_deadline and dl_runtime
913 	 * are the relative deadline and the maximum runtime of each
914 	 * instance, runtime is the runtime left for the last instance
915 	 * and (deadline - t), since t is rq->clock, is the time left
916 	 * to the (absolute) deadline. Even if overflowing the u64 type
917 	 * is very unlikely to occur in both cases, here we scale down
918 	 * as we want to avoid that risk at all. Scaling down by 10
919 	 * means that we reduce granularity to 1us. We are fine with it,
920 	 * since this is only a true/false check and, anyway, thinking
921 	 * of anything below microseconds resolution is actually fiction
922 	 * (but still we want to give the user that illusion >;).
923 	 */
924 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
925 	right = ((dl_se->deadline - t) >> DL_SCALE) *
926 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
927 
928 	return dl_time_before(right, left);
929 }
930 
931 /*
932  * Revised wakeup rule [1]: For self-suspending tasks, rather then
933  * re-initializing task's runtime and deadline, the revised wakeup
934  * rule adjusts the task's runtime to avoid the task to overrun its
935  * density.
936  *
937  * Reasoning: a task may overrun the density if:
938  *    runtime / (deadline - t) > dl_runtime / dl_deadline
939  *
940  * Therefore, runtime can be adjusted to:
941  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
942  *
943  * In such way that runtime will be equal to the maximum density
944  * the task can use without breaking any rule.
945  *
946  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
947  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
948  */
949 static void
950 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
951 {
952 	u64 laxity = dl_se->deadline - rq_clock(rq);
953 
954 	/*
955 	 * If the task has deadline < period, and the deadline is in the past,
956 	 * it should already be throttled before this check.
957 	 *
958 	 * See update_dl_entity() comments for further details.
959 	 */
960 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
961 
962 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
963 }
964 
965 /*
966  * Regarding the deadline, a task with implicit deadline has a relative
967  * deadline == relative period. A task with constrained deadline has a
968  * relative deadline <= relative period.
969  *
970  * We support constrained deadline tasks. However, there are some restrictions
971  * applied only for tasks which do not have an implicit deadline. See
972  * update_dl_entity() to know more about such restrictions.
973  *
974  * The dl_is_implicit() returns true if the task has an implicit deadline.
975  */
976 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
977 {
978 	return dl_se->dl_deadline == dl_se->dl_period;
979 }
980 
981 /*
982  * When a deadline entity is placed in the runqueue, its runtime and deadline
983  * might need to be updated. This is done by a CBS wake up rule. There are two
984  * different rules: 1) the original CBS; and 2) the Revisited CBS.
985  *
986  * When the task is starting a new period, the Original CBS is used. In this
987  * case, the runtime is replenished and a new absolute deadline is set.
988  *
989  * When a task is queued before the begin of the next period, using the
990  * remaining runtime and deadline could make the entity to overflow, see
991  * dl_entity_overflow() to find more about runtime overflow. When such case
992  * is detected, the runtime and deadline need to be updated.
993  *
994  * If the task has an implicit deadline, i.e., deadline == period, the Original
995  * CBS is applied. The runtime is replenished and a new absolute deadline is
996  * set, as in the previous cases.
997  *
998  * However, the Original CBS does not work properly for tasks with
999  * deadline < period, which are said to have a constrained deadline. By
1000  * applying the Original CBS, a constrained deadline task would be able to run
1001  * runtime/deadline in a period. With deadline < period, the task would
1002  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1003  *
1004  * In order to prevent this misbehave, the Revisited CBS is used for
1005  * constrained deadline tasks when a runtime overflow is detected. In the
1006  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1007  * the remaining runtime of the task is reduced to avoid runtime overflow.
1008  * Please refer to the comments update_dl_revised_wakeup() function to find
1009  * more about the Revised CBS rule.
1010  */
1011 static void update_dl_entity(struct sched_dl_entity *dl_se)
1012 {
1013 	struct rq *rq = rq_of_dl_se(dl_se);
1014 
1015 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1016 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1017 
1018 		if (unlikely(!dl_is_implicit(dl_se) &&
1019 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1020 			     !is_dl_boosted(dl_se))) {
1021 			update_dl_revised_wakeup(dl_se, rq);
1022 			return;
1023 		}
1024 
1025 		replenish_dl_new_period(dl_se, rq);
1026 	}
1027 }
1028 
1029 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1030 {
1031 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1032 }
1033 
1034 /*
1035  * If the entity depleted all its runtime, and if we want it to sleep
1036  * while waiting for some new execution time to become available, we
1037  * set the bandwidth replenishment timer to the replenishment instant
1038  * and try to activate it.
1039  *
1040  * Notice that it is important for the caller to know if the timer
1041  * actually started or not (i.e., the replenishment instant is in
1042  * the future or in the past).
1043  */
1044 static int start_dl_timer(struct sched_dl_entity *dl_se)
1045 {
1046 	struct hrtimer *timer = &dl_se->dl_timer;
1047 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1048 	struct rq *rq = rq_of_dl_rq(dl_rq);
1049 	ktime_t now, act;
1050 	s64 delta;
1051 
1052 	lockdep_assert_rq_held(rq);
1053 
1054 	/*
1055 	 * We want the timer to fire at the deadline, but considering
1056 	 * that it is actually coming from rq->clock and not from
1057 	 * hrtimer's time base reading.
1058 	 */
1059 	act = ns_to_ktime(dl_next_period(dl_se));
1060 	now = hrtimer_cb_get_time(timer);
1061 	delta = ktime_to_ns(now) - rq_clock(rq);
1062 	act = ktime_add_ns(act, delta);
1063 
1064 	/*
1065 	 * If the expiry time already passed, e.g., because the value
1066 	 * chosen as the deadline is too small, don't even try to
1067 	 * start the timer in the past!
1068 	 */
1069 	if (ktime_us_delta(act, now) < 0)
1070 		return 0;
1071 
1072 	/*
1073 	 * !enqueued will guarantee another callback; even if one is already in
1074 	 * progress. This ensures a balanced {get,put}_task_struct().
1075 	 *
1076 	 * The race against __run_timer() clearing the enqueued state is
1077 	 * harmless because we're holding task_rq()->lock, therefore the timer
1078 	 * expiring after we've done the check will wait on its task_rq_lock()
1079 	 * and observe our state.
1080 	 */
1081 	if (!hrtimer_is_queued(timer)) {
1082 		if (!dl_server(dl_se))
1083 			get_task_struct(dl_task_of(dl_se));
1084 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1085 	}
1086 
1087 	return 1;
1088 }
1089 
1090 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1091 {
1092 #ifdef CONFIG_SMP
1093 	/*
1094 	 * Queueing this task back might have overloaded rq, check if we need
1095 	 * to kick someone away.
1096 	 */
1097 	if (has_pushable_dl_tasks(rq)) {
1098 		/*
1099 		 * Nothing relies on rq->lock after this, so its safe to drop
1100 		 * rq->lock.
1101 		 */
1102 		rq_unpin_lock(rq, rf);
1103 		push_dl_task(rq);
1104 		rq_repin_lock(rq, rf);
1105 	}
1106 #endif
1107 }
1108 
1109 /*
1110  * This is the bandwidth enforcement timer callback. If here, we know
1111  * a task is not on its dl_rq, since the fact that the timer was running
1112  * means the task is throttled and needs a runtime replenishment.
1113  *
1114  * However, what we actually do depends on the fact the task is active,
1115  * (it is on its rq) or has been removed from there by a call to
1116  * dequeue_task_dl(). In the former case we must issue the runtime
1117  * replenishment and add the task back to the dl_rq; in the latter, we just
1118  * do nothing but clearing dl_throttled, so that runtime and deadline
1119  * updating (and the queueing back to dl_rq) will be done by the
1120  * next call to enqueue_task_dl().
1121  */
1122 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1123 {
1124 	struct sched_dl_entity *dl_se = container_of(timer,
1125 						     struct sched_dl_entity,
1126 						     dl_timer);
1127 	struct task_struct *p;
1128 	struct rq_flags rf;
1129 	struct rq *rq;
1130 
1131 	if (dl_server(dl_se)) {
1132 		struct rq *rq = rq_of_dl_se(dl_se);
1133 		struct rq_flags rf;
1134 
1135 		rq_lock(rq, &rf);
1136 		if (dl_se->dl_throttled) {
1137 			sched_clock_tick();
1138 			update_rq_clock(rq);
1139 
1140 			if (dl_se->server_has_tasks(dl_se)) {
1141 				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1142 				resched_curr(rq);
1143 				__push_dl_task(rq, &rf);
1144 			} else {
1145 				replenish_dl_entity(dl_se);
1146 			}
1147 
1148 		}
1149 		rq_unlock(rq, &rf);
1150 
1151 		return HRTIMER_NORESTART;
1152 	}
1153 
1154 	p = dl_task_of(dl_se);
1155 	rq = task_rq_lock(p, &rf);
1156 
1157 	/*
1158 	 * The task might have changed its scheduling policy to something
1159 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1160 	 */
1161 	if (!dl_task(p))
1162 		goto unlock;
1163 
1164 	/*
1165 	 * The task might have been boosted by someone else and might be in the
1166 	 * boosting/deboosting path, its not throttled.
1167 	 */
1168 	if (is_dl_boosted(dl_se))
1169 		goto unlock;
1170 
1171 	/*
1172 	 * Spurious timer due to start_dl_timer() race; or we already received
1173 	 * a replenishment from rt_mutex_setprio().
1174 	 */
1175 	if (!dl_se->dl_throttled)
1176 		goto unlock;
1177 
1178 	sched_clock_tick();
1179 	update_rq_clock(rq);
1180 
1181 	/*
1182 	 * If the throttle happened during sched-out; like:
1183 	 *
1184 	 *   schedule()
1185 	 *     deactivate_task()
1186 	 *       dequeue_task_dl()
1187 	 *         update_curr_dl()
1188 	 *           start_dl_timer()
1189 	 *         __dequeue_task_dl()
1190 	 *     prev->on_rq = 0;
1191 	 *
1192 	 * We can be both throttled and !queued. Replenish the counter
1193 	 * but do not enqueue -- wait for our wakeup to do that.
1194 	 */
1195 	if (!task_on_rq_queued(p)) {
1196 		replenish_dl_entity(dl_se);
1197 		goto unlock;
1198 	}
1199 
1200 #ifdef CONFIG_SMP
1201 	if (unlikely(!rq->online)) {
1202 		/*
1203 		 * If the runqueue is no longer available, migrate the
1204 		 * task elsewhere. This necessarily changes rq.
1205 		 */
1206 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1207 		rq = dl_task_offline_migration(rq, p);
1208 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1209 		update_rq_clock(rq);
1210 
1211 		/*
1212 		 * Now that the task has been migrated to the new RQ and we
1213 		 * have that locked, proceed as normal and enqueue the task
1214 		 * there.
1215 		 */
1216 	}
1217 #endif
1218 
1219 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1220 	if (dl_task(rq->curr))
1221 		wakeup_preempt_dl(rq, p, 0);
1222 	else
1223 		resched_curr(rq);
1224 
1225 	__push_dl_task(rq, &rf);
1226 
1227 unlock:
1228 	task_rq_unlock(rq, p, &rf);
1229 
1230 	/*
1231 	 * This can free the task_struct, including this hrtimer, do not touch
1232 	 * anything related to that after this.
1233 	 */
1234 	put_task_struct(p);
1235 
1236 	return HRTIMER_NORESTART;
1237 }
1238 
1239 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1240 {
1241 	struct hrtimer *timer = &dl_se->dl_timer;
1242 
1243 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1244 	timer->function = dl_task_timer;
1245 }
1246 
1247 /*
1248  * During the activation, CBS checks if it can reuse the current task's
1249  * runtime and period. If the deadline of the task is in the past, CBS
1250  * cannot use the runtime, and so it replenishes the task. This rule
1251  * works fine for implicit deadline tasks (deadline == period), and the
1252  * CBS was designed for implicit deadline tasks. However, a task with
1253  * constrained deadline (deadline < period) might be awakened after the
1254  * deadline, but before the next period. In this case, replenishing the
1255  * task would allow it to run for runtime / deadline. As in this case
1256  * deadline < period, CBS enables a task to run for more than the
1257  * runtime / period. In a very loaded system, this can cause a domino
1258  * effect, making other tasks miss their deadlines.
1259  *
1260  * To avoid this problem, in the activation of a constrained deadline
1261  * task after the deadline but before the next period, throttle the
1262  * task and set the replenishing timer to the begin of the next period,
1263  * unless it is boosted.
1264  */
1265 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1266 {
1267 	struct rq *rq = rq_of_dl_se(dl_se);
1268 
1269 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1270 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1271 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1272 			return;
1273 		dl_se->dl_throttled = 1;
1274 		if (dl_se->runtime > 0)
1275 			dl_se->runtime = 0;
1276 	}
1277 }
1278 
1279 static
1280 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1281 {
1282 	return (dl_se->runtime <= 0);
1283 }
1284 
1285 /*
1286  * This function implements the GRUB accounting rule. According to the
1287  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1288  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1289  * where u is the utilization of the task, Umax is the maximum reclaimable
1290  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1291  * as the difference between the "total runqueue utilization" and the
1292  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1293  * reclaimable utilization.
1294  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1295  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1296  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1297  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1298  * Since delta is a 64 bit variable, to have an overflow its value should be
1299  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1300  * not an issue here.
1301  */
1302 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1303 {
1304 	u64 u_act;
1305 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1306 
1307 	/*
1308 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1309 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1310 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1311 	 * negative leading to wrong results.
1312 	 */
1313 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1314 		u_act = dl_se->dl_bw;
1315 	else
1316 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1317 
1318 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1319 	return (delta * u_act) >> BW_SHIFT;
1320 }
1321 
1322 static inline void
1323 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1324                         int flags);
1325 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1326 {
1327 	s64 scaled_delta_exec;
1328 
1329 	if (unlikely(delta_exec <= 0)) {
1330 		if (unlikely(dl_se->dl_yielded))
1331 			goto throttle;
1332 		return;
1333 	}
1334 
1335 	if (dl_entity_is_special(dl_se))
1336 		return;
1337 
1338 	/*
1339 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1340 	 * spare reclaimed bandwidth is used to clock down frequency.
1341 	 *
1342 	 * For the others, we still need to scale reservation parameters
1343 	 * according to current frequency and CPU maximum capacity.
1344 	 */
1345 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1346 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1347 	} else {
1348 		int cpu = cpu_of(rq);
1349 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1350 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1351 
1352 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1353 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1354 	}
1355 
1356 	dl_se->runtime -= scaled_delta_exec;
1357 
1358 throttle:
1359 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1360 		dl_se->dl_throttled = 1;
1361 
1362 		/* If requested, inform the user about runtime overruns. */
1363 		if (dl_runtime_exceeded(dl_se) &&
1364 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1365 			dl_se->dl_overrun = 1;
1366 
1367 		dequeue_dl_entity(dl_se, 0);
1368 		if (!dl_server(dl_se)) {
1369 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1370 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1371 		}
1372 
1373 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1374 			if (dl_server(dl_se))
1375 				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1376 			else
1377 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1378 		}
1379 
1380 		if (!is_leftmost(dl_se, &rq->dl))
1381 			resched_curr(rq);
1382 	}
1383 
1384 	/*
1385 	 * Because -- for now -- we share the rt bandwidth, we need to
1386 	 * account our runtime there too, otherwise actual rt tasks
1387 	 * would be able to exceed the shared quota.
1388 	 *
1389 	 * Account to the root rt group for now.
1390 	 *
1391 	 * The solution we're working towards is having the RT groups scheduled
1392 	 * using deadline servers -- however there's a few nasties to figure
1393 	 * out before that can happen.
1394 	 */
1395 	if (rt_bandwidth_enabled()) {
1396 		struct rt_rq *rt_rq = &rq->rt;
1397 
1398 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1399 		/*
1400 		 * We'll let actual RT tasks worry about the overflow here, we
1401 		 * have our own CBS to keep us inline; only account when RT
1402 		 * bandwidth is relevant.
1403 		 */
1404 		if (sched_rt_bandwidth_account(rt_rq))
1405 			rt_rq->rt_time += delta_exec;
1406 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1407 	}
1408 }
1409 
1410 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1411 {
1412 	update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1413 }
1414 
1415 void dl_server_start(struct sched_dl_entity *dl_se)
1416 {
1417 	if (!dl_server(dl_se)) {
1418 		dl_se->dl_server = 1;
1419 		setup_new_dl_entity(dl_se);
1420 	}
1421 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1422 }
1423 
1424 void dl_server_stop(struct sched_dl_entity *dl_se)
1425 {
1426 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1427 }
1428 
1429 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1430 		    dl_server_has_tasks_f has_tasks,
1431 		    dl_server_pick_f pick)
1432 {
1433 	dl_se->rq = rq;
1434 	dl_se->server_has_tasks = has_tasks;
1435 	dl_se->server_pick = pick;
1436 }
1437 
1438 /*
1439  * Update the current task's runtime statistics (provided it is still
1440  * a -deadline task and has not been removed from the dl_rq).
1441  */
1442 static void update_curr_dl(struct rq *rq)
1443 {
1444 	struct task_struct *curr = rq->curr;
1445 	struct sched_dl_entity *dl_se = &curr->dl;
1446 	s64 delta_exec;
1447 
1448 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1449 		return;
1450 
1451 	/*
1452 	 * Consumed budget is computed considering the time as
1453 	 * observed by schedulable tasks (excluding time spent
1454 	 * in hardirq context, etc.). Deadlines are instead
1455 	 * computed using hard walltime. This seems to be the more
1456 	 * natural solution, but the full ramifications of this
1457 	 * approach need further study.
1458 	 */
1459 	delta_exec = update_curr_common(rq);
1460 	update_curr_dl_se(rq, dl_se, delta_exec);
1461 }
1462 
1463 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1464 {
1465 	struct sched_dl_entity *dl_se = container_of(timer,
1466 						     struct sched_dl_entity,
1467 						     inactive_timer);
1468 	struct task_struct *p = NULL;
1469 	struct rq_flags rf;
1470 	struct rq *rq;
1471 
1472 	if (!dl_server(dl_se)) {
1473 		p = dl_task_of(dl_se);
1474 		rq = task_rq_lock(p, &rf);
1475 	} else {
1476 		rq = dl_se->rq;
1477 		rq_lock(rq, &rf);
1478 	}
1479 
1480 	sched_clock_tick();
1481 	update_rq_clock(rq);
1482 
1483 	if (dl_server(dl_se))
1484 		goto no_task;
1485 
1486 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1487 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1488 
1489 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1490 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1491 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1492 			dl_se->dl_non_contending = 0;
1493 		}
1494 
1495 		raw_spin_lock(&dl_b->lock);
1496 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1497 		raw_spin_unlock(&dl_b->lock);
1498 		__dl_clear_params(dl_se);
1499 
1500 		goto unlock;
1501 	}
1502 
1503 no_task:
1504 	if (dl_se->dl_non_contending == 0)
1505 		goto unlock;
1506 
1507 	sub_running_bw(dl_se, &rq->dl);
1508 	dl_se->dl_non_contending = 0;
1509 unlock:
1510 
1511 	if (!dl_server(dl_se)) {
1512 		task_rq_unlock(rq, p, &rf);
1513 		put_task_struct(p);
1514 	} else {
1515 		rq_unlock(rq, &rf);
1516 	}
1517 
1518 	return HRTIMER_NORESTART;
1519 }
1520 
1521 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1522 {
1523 	struct hrtimer *timer = &dl_se->inactive_timer;
1524 
1525 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1526 	timer->function = inactive_task_timer;
1527 }
1528 
1529 #define __node_2_dle(node) \
1530 	rb_entry((node), struct sched_dl_entity, rb_node)
1531 
1532 #ifdef CONFIG_SMP
1533 
1534 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1535 {
1536 	struct rq *rq = rq_of_dl_rq(dl_rq);
1537 
1538 	if (dl_rq->earliest_dl.curr == 0 ||
1539 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1540 		if (dl_rq->earliest_dl.curr == 0)
1541 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1542 		dl_rq->earliest_dl.curr = deadline;
1543 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1544 	}
1545 }
1546 
1547 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1548 {
1549 	struct rq *rq = rq_of_dl_rq(dl_rq);
1550 
1551 	/*
1552 	 * Since we may have removed our earliest (and/or next earliest)
1553 	 * task we must recompute them.
1554 	 */
1555 	if (!dl_rq->dl_nr_running) {
1556 		dl_rq->earliest_dl.curr = 0;
1557 		dl_rq->earliest_dl.next = 0;
1558 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1559 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1560 	} else {
1561 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1562 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1563 
1564 		dl_rq->earliest_dl.curr = entry->deadline;
1565 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1566 	}
1567 }
1568 
1569 #else
1570 
1571 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1572 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1573 
1574 #endif /* CONFIG_SMP */
1575 
1576 static inline
1577 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1578 {
1579 	u64 deadline = dl_se->deadline;
1580 
1581 	dl_rq->dl_nr_running++;
1582 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1583 
1584 	inc_dl_deadline(dl_rq, deadline);
1585 }
1586 
1587 static inline
1588 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1589 {
1590 	WARN_ON(!dl_rq->dl_nr_running);
1591 	dl_rq->dl_nr_running--;
1592 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1593 
1594 	dec_dl_deadline(dl_rq, dl_se->deadline);
1595 }
1596 
1597 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1598 {
1599 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1600 }
1601 
1602 static inline struct sched_statistics *
1603 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1604 {
1605 	return &dl_task_of(dl_se)->stats;
1606 }
1607 
1608 static inline void
1609 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1610 {
1611 	struct sched_statistics *stats;
1612 
1613 	if (!schedstat_enabled())
1614 		return;
1615 
1616 	stats = __schedstats_from_dl_se(dl_se);
1617 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1618 }
1619 
1620 static inline void
1621 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1622 {
1623 	struct sched_statistics *stats;
1624 
1625 	if (!schedstat_enabled())
1626 		return;
1627 
1628 	stats = __schedstats_from_dl_se(dl_se);
1629 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1630 }
1631 
1632 static inline void
1633 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1634 {
1635 	struct sched_statistics *stats;
1636 
1637 	if (!schedstat_enabled())
1638 		return;
1639 
1640 	stats = __schedstats_from_dl_se(dl_se);
1641 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1642 }
1643 
1644 static inline void
1645 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1646 			int flags)
1647 {
1648 	if (!schedstat_enabled())
1649 		return;
1650 
1651 	if (flags & ENQUEUE_WAKEUP)
1652 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1653 }
1654 
1655 static inline void
1656 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1657 			int flags)
1658 {
1659 	struct task_struct *p = dl_task_of(dl_se);
1660 
1661 	if (!schedstat_enabled())
1662 		return;
1663 
1664 	if ((flags & DEQUEUE_SLEEP)) {
1665 		unsigned int state;
1666 
1667 		state = READ_ONCE(p->__state);
1668 		if (state & TASK_INTERRUPTIBLE)
1669 			__schedstat_set(p->stats.sleep_start,
1670 					rq_clock(rq_of_dl_rq(dl_rq)));
1671 
1672 		if (state & TASK_UNINTERRUPTIBLE)
1673 			__schedstat_set(p->stats.block_start,
1674 					rq_clock(rq_of_dl_rq(dl_rq)));
1675 	}
1676 }
1677 
1678 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1679 {
1680 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1681 
1682 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1683 
1684 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1685 
1686 	inc_dl_tasks(dl_se, dl_rq);
1687 }
1688 
1689 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1690 {
1691 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1692 
1693 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1694 		return;
1695 
1696 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1697 
1698 	RB_CLEAR_NODE(&dl_se->rb_node);
1699 
1700 	dec_dl_tasks(dl_se, dl_rq);
1701 }
1702 
1703 static void
1704 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1705 {
1706 	WARN_ON_ONCE(on_dl_rq(dl_se));
1707 
1708 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1709 
1710 	/*
1711 	 * Check if a constrained deadline task was activated
1712 	 * after the deadline but before the next period.
1713 	 * If that is the case, the task will be throttled and
1714 	 * the replenishment timer will be set to the next period.
1715 	 */
1716 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1717 		dl_check_constrained_dl(dl_se);
1718 
1719 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1720 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1721 
1722 		add_rq_bw(dl_se, dl_rq);
1723 		add_running_bw(dl_se, dl_rq);
1724 	}
1725 
1726 	/*
1727 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1728 	 * its budget it needs a replenishment and, since it now is on
1729 	 * its rq, the bandwidth timer callback (which clearly has not
1730 	 * run yet) will take care of this.
1731 	 * However, the active utilization does not depend on the fact
1732 	 * that the task is on the runqueue or not (but depends on the
1733 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1734 	 * In other words, even if a task is throttled its utilization must
1735 	 * be counted in the active utilization; hence, we need to call
1736 	 * add_running_bw().
1737 	 */
1738 	if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1739 		if (flags & ENQUEUE_WAKEUP)
1740 			task_contending(dl_se, flags);
1741 
1742 		return;
1743 	}
1744 
1745 	/*
1746 	 * If this is a wakeup or a new instance, the scheduling
1747 	 * parameters of the task might need updating. Otherwise,
1748 	 * we want a replenishment of its runtime.
1749 	 */
1750 	if (flags & ENQUEUE_WAKEUP) {
1751 		task_contending(dl_se, flags);
1752 		update_dl_entity(dl_se);
1753 	} else if (flags & ENQUEUE_REPLENISH) {
1754 		replenish_dl_entity(dl_se);
1755 	} else if ((flags & ENQUEUE_RESTORE) &&
1756 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
1757 		setup_new_dl_entity(dl_se);
1758 	}
1759 
1760 	__enqueue_dl_entity(dl_se);
1761 }
1762 
1763 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1764 {
1765 	__dequeue_dl_entity(dl_se);
1766 
1767 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
1768 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1769 
1770 		sub_running_bw(dl_se, dl_rq);
1771 		sub_rq_bw(dl_se, dl_rq);
1772 	}
1773 
1774 	/*
1775 	 * This check allows to start the inactive timer (or to immediately
1776 	 * decrease the active utilization, if needed) in two cases:
1777 	 * when the task blocks and when it is terminating
1778 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1779 	 * way, because from GRUB's point of view the same thing is happening
1780 	 * (the task moves from "active contending" to "active non contending"
1781 	 * or "inactive")
1782 	 */
1783 	if (flags & DEQUEUE_SLEEP)
1784 		task_non_contending(dl_se);
1785 }
1786 
1787 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1788 {
1789 	if (is_dl_boosted(&p->dl)) {
1790 		/*
1791 		 * Because of delays in the detection of the overrun of a
1792 		 * thread's runtime, it might be the case that a thread
1793 		 * goes to sleep in a rt mutex with negative runtime. As
1794 		 * a consequence, the thread will be throttled.
1795 		 *
1796 		 * While waiting for the mutex, this thread can also be
1797 		 * boosted via PI, resulting in a thread that is throttled
1798 		 * and boosted at the same time.
1799 		 *
1800 		 * In this case, the boost overrides the throttle.
1801 		 */
1802 		if (p->dl.dl_throttled) {
1803 			/*
1804 			 * The replenish timer needs to be canceled. No
1805 			 * problem if it fires concurrently: boosted threads
1806 			 * are ignored in dl_task_timer().
1807 			 *
1808 			 * If the timer callback was running (hrtimer_try_to_cancel == -1),
1809 			 * it will eventually call put_task_struct().
1810 			 */
1811 			if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
1812 			    !dl_server(&p->dl))
1813 				put_task_struct(p);
1814 			p->dl.dl_throttled = 0;
1815 		}
1816 	} else if (!dl_prio(p->normal_prio)) {
1817 		/*
1818 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1819 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1820 		 * replenishing it, as it's going to return back to its original
1821 		 * scheduling class after this. If it has been throttled, we need to
1822 		 * clear the flag, otherwise the task may wake up as throttled after
1823 		 * being boosted again with no means to replenish the runtime and clear
1824 		 * the throttle.
1825 		 */
1826 		p->dl.dl_throttled = 0;
1827 		if (!(flags & ENQUEUE_REPLENISH))
1828 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1829 					     task_pid_nr(p));
1830 
1831 		return;
1832 	}
1833 
1834 	check_schedstat_required();
1835 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1836 
1837 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1838 		flags |= ENQUEUE_MIGRATING;
1839 
1840 	enqueue_dl_entity(&p->dl, flags);
1841 
1842 	if (dl_server(&p->dl))
1843 		return;
1844 
1845 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
1846 		enqueue_pushable_dl_task(rq, p);
1847 }
1848 
1849 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1850 {
1851 	update_curr_dl(rq);
1852 
1853 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1854 		flags |= DEQUEUE_MIGRATING;
1855 
1856 	dequeue_dl_entity(&p->dl, flags);
1857 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
1858 		dequeue_pushable_dl_task(rq, p);
1859 }
1860 
1861 /*
1862  * Yield task semantic for -deadline tasks is:
1863  *
1864  *   get off from the CPU until our next instance, with
1865  *   a new runtime. This is of little use now, since we
1866  *   don't have a bandwidth reclaiming mechanism. Anyway,
1867  *   bandwidth reclaiming is planned for the future, and
1868  *   yield_task_dl will indicate that some spare budget
1869  *   is available for other task instances to use it.
1870  */
1871 static void yield_task_dl(struct rq *rq)
1872 {
1873 	/*
1874 	 * We make the task go to sleep until its current deadline by
1875 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1876 	 * it and the bandwidth timer will wake it up and will give it
1877 	 * new scheduling parameters (thanks to dl_yielded=1).
1878 	 */
1879 	rq->curr->dl.dl_yielded = 1;
1880 
1881 	update_rq_clock(rq);
1882 	update_curr_dl(rq);
1883 	/*
1884 	 * Tell update_rq_clock() that we've just updated,
1885 	 * so we don't do microscopic update in schedule()
1886 	 * and double the fastpath cost.
1887 	 */
1888 	rq_clock_skip_update(rq);
1889 }
1890 
1891 #ifdef CONFIG_SMP
1892 
1893 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1894 						 struct rq *rq)
1895 {
1896 	return (!rq->dl.dl_nr_running ||
1897 		dl_time_before(p->dl.deadline,
1898 			       rq->dl.earliest_dl.curr));
1899 }
1900 
1901 static int find_later_rq(struct task_struct *task);
1902 
1903 static int
1904 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1905 {
1906 	struct task_struct *curr;
1907 	bool select_rq;
1908 	struct rq *rq;
1909 
1910 	if (!(flags & WF_TTWU))
1911 		goto out;
1912 
1913 	rq = cpu_rq(cpu);
1914 
1915 	rcu_read_lock();
1916 	curr = READ_ONCE(rq->curr); /* unlocked access */
1917 
1918 	/*
1919 	 * If we are dealing with a -deadline task, we must
1920 	 * decide where to wake it up.
1921 	 * If it has a later deadline and the current task
1922 	 * on this rq can't move (provided the waking task
1923 	 * can!) we prefer to send it somewhere else. On the
1924 	 * other hand, if it has a shorter deadline, we
1925 	 * try to make it stay here, it might be important.
1926 	 */
1927 	select_rq = unlikely(dl_task(curr)) &&
1928 		    (curr->nr_cpus_allowed < 2 ||
1929 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1930 		    p->nr_cpus_allowed > 1;
1931 
1932 	/*
1933 	 * Take the capacity of the CPU into account to
1934 	 * ensure it fits the requirement of the task.
1935 	 */
1936 	if (sched_asym_cpucap_active())
1937 		select_rq |= !dl_task_fits_capacity(p, cpu);
1938 
1939 	if (select_rq) {
1940 		int target = find_later_rq(p);
1941 
1942 		if (target != -1 &&
1943 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
1944 			cpu = target;
1945 	}
1946 	rcu_read_unlock();
1947 
1948 out:
1949 	return cpu;
1950 }
1951 
1952 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1953 {
1954 	struct rq_flags rf;
1955 	struct rq *rq;
1956 
1957 	if (READ_ONCE(p->__state) != TASK_WAKING)
1958 		return;
1959 
1960 	rq = task_rq(p);
1961 	/*
1962 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1963 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1964 	 * rq->lock is not... So, lock it
1965 	 */
1966 	rq_lock(rq, &rf);
1967 	if (p->dl.dl_non_contending) {
1968 		update_rq_clock(rq);
1969 		sub_running_bw(&p->dl, &rq->dl);
1970 		p->dl.dl_non_contending = 0;
1971 		/*
1972 		 * If the timer handler is currently running and the
1973 		 * timer cannot be canceled, inactive_task_timer()
1974 		 * will see that dl_not_contending is not set, and
1975 		 * will not touch the rq's active utilization,
1976 		 * so we are still safe.
1977 		 */
1978 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1979 			put_task_struct(p);
1980 	}
1981 	sub_rq_bw(&p->dl, &rq->dl);
1982 	rq_unlock(rq, &rf);
1983 }
1984 
1985 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1986 {
1987 	/*
1988 	 * Current can't be migrated, useless to reschedule,
1989 	 * let's hope p can move out.
1990 	 */
1991 	if (rq->curr->nr_cpus_allowed == 1 ||
1992 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1993 		return;
1994 
1995 	/*
1996 	 * p is migratable, so let's not schedule it and
1997 	 * see if it is pushed or pulled somewhere else.
1998 	 */
1999 	if (p->nr_cpus_allowed != 1 &&
2000 	    cpudl_find(&rq->rd->cpudl, p, NULL))
2001 		return;
2002 
2003 	resched_curr(rq);
2004 }
2005 
2006 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2007 {
2008 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2009 		/*
2010 		 * This is OK, because current is on_cpu, which avoids it being
2011 		 * picked for load-balance and preemption/IRQs are still
2012 		 * disabled avoiding further scheduler activity on it and we've
2013 		 * not yet started the picking loop.
2014 		 */
2015 		rq_unpin_lock(rq, rf);
2016 		pull_dl_task(rq);
2017 		rq_repin_lock(rq, rf);
2018 	}
2019 
2020 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2021 }
2022 #endif /* CONFIG_SMP */
2023 
2024 /*
2025  * Only called when both the current and waking task are -deadline
2026  * tasks.
2027  */
2028 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2029 				  int flags)
2030 {
2031 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
2032 		resched_curr(rq);
2033 		return;
2034 	}
2035 
2036 #ifdef CONFIG_SMP
2037 	/*
2038 	 * In the unlikely case current and p have the same deadline
2039 	 * let us try to decide what's the best thing to do...
2040 	 */
2041 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
2042 	    !test_tsk_need_resched(rq->curr))
2043 		check_preempt_equal_dl(rq, p);
2044 #endif /* CONFIG_SMP */
2045 }
2046 
2047 #ifdef CONFIG_SCHED_HRTICK
2048 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2049 {
2050 	hrtick_start(rq, dl_se->runtime);
2051 }
2052 #else /* !CONFIG_SCHED_HRTICK */
2053 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2054 {
2055 }
2056 #endif
2057 
2058 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2059 {
2060 	struct sched_dl_entity *dl_se = &p->dl;
2061 	struct dl_rq *dl_rq = &rq->dl;
2062 
2063 	p->se.exec_start = rq_clock_task(rq);
2064 	if (on_dl_rq(&p->dl))
2065 		update_stats_wait_end_dl(dl_rq, dl_se);
2066 
2067 	/* You can't push away the running task */
2068 	dequeue_pushable_dl_task(rq, p);
2069 
2070 	if (!first)
2071 		return;
2072 
2073 	if (rq->curr->sched_class != &dl_sched_class)
2074 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2075 
2076 	deadline_queue_push_tasks(rq);
2077 }
2078 
2079 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2080 {
2081 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2082 
2083 	if (!left)
2084 		return NULL;
2085 
2086 	return __node_2_dle(left);
2087 }
2088 
2089 static struct task_struct *pick_task_dl(struct rq *rq)
2090 {
2091 	struct sched_dl_entity *dl_se;
2092 	struct dl_rq *dl_rq = &rq->dl;
2093 	struct task_struct *p;
2094 
2095 again:
2096 	if (!sched_dl_runnable(rq))
2097 		return NULL;
2098 
2099 	dl_se = pick_next_dl_entity(dl_rq);
2100 	WARN_ON_ONCE(!dl_se);
2101 
2102 	if (dl_server(dl_se)) {
2103 		p = dl_se->server_pick(dl_se);
2104 		if (!p) {
2105 			WARN_ON_ONCE(1);
2106 			dl_se->dl_yielded = 1;
2107 			update_curr_dl_se(rq, dl_se, 0);
2108 			goto again;
2109 		}
2110 		p->dl_server = dl_se;
2111 	} else {
2112 		p = dl_task_of(dl_se);
2113 	}
2114 
2115 	return p;
2116 }
2117 
2118 static struct task_struct *pick_next_task_dl(struct rq *rq)
2119 {
2120 	struct task_struct *p;
2121 
2122 	p = pick_task_dl(rq);
2123 	if (!p)
2124 		return p;
2125 
2126 	if (!p->dl_server)
2127 		set_next_task_dl(rq, p, true);
2128 
2129 	if (hrtick_enabled(rq))
2130 		start_hrtick_dl(rq, &p->dl);
2131 
2132 	return p;
2133 }
2134 
2135 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2136 {
2137 	struct sched_dl_entity *dl_se = &p->dl;
2138 	struct dl_rq *dl_rq = &rq->dl;
2139 
2140 	if (on_dl_rq(&p->dl))
2141 		update_stats_wait_start_dl(dl_rq, dl_se);
2142 
2143 	update_curr_dl(rq);
2144 
2145 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2146 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2147 		enqueue_pushable_dl_task(rq, p);
2148 }
2149 
2150 /*
2151  * scheduler tick hitting a task of our scheduling class.
2152  *
2153  * NOTE: This function can be called remotely by the tick offload that
2154  * goes along full dynticks. Therefore no local assumption can be made
2155  * and everything must be accessed through the @rq and @curr passed in
2156  * parameters.
2157  */
2158 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2159 {
2160 	update_curr_dl(rq);
2161 
2162 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2163 	/*
2164 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2165 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2166 	 * be set and schedule() will start a new hrtick for the next task.
2167 	 */
2168 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2169 	    is_leftmost(&p->dl, &rq->dl))
2170 		start_hrtick_dl(rq, &p->dl);
2171 }
2172 
2173 static void task_fork_dl(struct task_struct *p)
2174 {
2175 	/*
2176 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2177 	 * sched_fork()
2178 	 */
2179 }
2180 
2181 #ifdef CONFIG_SMP
2182 
2183 /* Only try algorithms three times */
2184 #define DL_MAX_TRIES 3
2185 
2186 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2187 {
2188 	if (!task_on_cpu(rq, p) &&
2189 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2190 		return 1;
2191 	return 0;
2192 }
2193 
2194 /*
2195  * Return the earliest pushable rq's task, which is suitable to be executed
2196  * on the CPU, NULL otherwise:
2197  */
2198 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2199 {
2200 	struct task_struct *p = NULL;
2201 	struct rb_node *next_node;
2202 
2203 	if (!has_pushable_dl_tasks(rq))
2204 		return NULL;
2205 
2206 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2207 
2208 next_node:
2209 	if (next_node) {
2210 		p = __node_2_pdl(next_node);
2211 
2212 		if (pick_dl_task(rq, p, cpu))
2213 			return p;
2214 
2215 		next_node = rb_next(next_node);
2216 		goto next_node;
2217 	}
2218 
2219 	return NULL;
2220 }
2221 
2222 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2223 
2224 static int find_later_rq(struct task_struct *task)
2225 {
2226 	struct sched_domain *sd;
2227 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2228 	int this_cpu = smp_processor_id();
2229 	int cpu = task_cpu(task);
2230 
2231 	/* Make sure the mask is initialized first */
2232 	if (unlikely(!later_mask))
2233 		return -1;
2234 
2235 	if (task->nr_cpus_allowed == 1)
2236 		return -1;
2237 
2238 	/*
2239 	 * We have to consider system topology and task affinity
2240 	 * first, then we can look for a suitable CPU.
2241 	 */
2242 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2243 		return -1;
2244 
2245 	/*
2246 	 * If we are here, some targets have been found, including
2247 	 * the most suitable which is, among the runqueues where the
2248 	 * current tasks have later deadlines than the task's one, the
2249 	 * rq with the latest possible one.
2250 	 *
2251 	 * Now we check how well this matches with task's
2252 	 * affinity and system topology.
2253 	 *
2254 	 * The last CPU where the task run is our first
2255 	 * guess, since it is most likely cache-hot there.
2256 	 */
2257 	if (cpumask_test_cpu(cpu, later_mask))
2258 		return cpu;
2259 	/*
2260 	 * Check if this_cpu is to be skipped (i.e., it is
2261 	 * not in the mask) or not.
2262 	 */
2263 	if (!cpumask_test_cpu(this_cpu, later_mask))
2264 		this_cpu = -1;
2265 
2266 	rcu_read_lock();
2267 	for_each_domain(cpu, sd) {
2268 		if (sd->flags & SD_WAKE_AFFINE) {
2269 			int best_cpu;
2270 
2271 			/*
2272 			 * If possible, preempting this_cpu is
2273 			 * cheaper than migrating.
2274 			 */
2275 			if (this_cpu != -1 &&
2276 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2277 				rcu_read_unlock();
2278 				return this_cpu;
2279 			}
2280 
2281 			best_cpu = cpumask_any_and_distribute(later_mask,
2282 							      sched_domain_span(sd));
2283 			/*
2284 			 * Last chance: if a CPU being in both later_mask
2285 			 * and current sd span is valid, that becomes our
2286 			 * choice. Of course, the latest possible CPU is
2287 			 * already under consideration through later_mask.
2288 			 */
2289 			if (best_cpu < nr_cpu_ids) {
2290 				rcu_read_unlock();
2291 				return best_cpu;
2292 			}
2293 		}
2294 	}
2295 	rcu_read_unlock();
2296 
2297 	/*
2298 	 * At this point, all our guesses failed, we just return
2299 	 * 'something', and let the caller sort the things out.
2300 	 */
2301 	if (this_cpu != -1)
2302 		return this_cpu;
2303 
2304 	cpu = cpumask_any_distribute(later_mask);
2305 	if (cpu < nr_cpu_ids)
2306 		return cpu;
2307 
2308 	return -1;
2309 }
2310 
2311 /* Locks the rq it finds */
2312 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2313 {
2314 	struct rq *later_rq = NULL;
2315 	int tries;
2316 	int cpu;
2317 
2318 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2319 		cpu = find_later_rq(task);
2320 
2321 		if ((cpu == -1) || (cpu == rq->cpu))
2322 			break;
2323 
2324 		later_rq = cpu_rq(cpu);
2325 
2326 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2327 			/*
2328 			 * Target rq has tasks of equal or earlier deadline,
2329 			 * retrying does not release any lock and is unlikely
2330 			 * to yield a different result.
2331 			 */
2332 			later_rq = NULL;
2333 			break;
2334 		}
2335 
2336 		/* Retry if something changed. */
2337 		if (double_lock_balance(rq, later_rq)) {
2338 			if (unlikely(task_rq(task) != rq ||
2339 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2340 				     task_on_cpu(rq, task) ||
2341 				     !dl_task(task) ||
2342 				     is_migration_disabled(task) ||
2343 				     !task_on_rq_queued(task))) {
2344 				double_unlock_balance(rq, later_rq);
2345 				later_rq = NULL;
2346 				break;
2347 			}
2348 		}
2349 
2350 		/*
2351 		 * If the rq we found has no -deadline task, or
2352 		 * its earliest one has a later deadline than our
2353 		 * task, the rq is a good one.
2354 		 */
2355 		if (dl_task_is_earliest_deadline(task, later_rq))
2356 			break;
2357 
2358 		/* Otherwise we try again. */
2359 		double_unlock_balance(rq, later_rq);
2360 		later_rq = NULL;
2361 	}
2362 
2363 	return later_rq;
2364 }
2365 
2366 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2367 {
2368 	struct task_struct *p;
2369 
2370 	if (!has_pushable_dl_tasks(rq))
2371 		return NULL;
2372 
2373 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2374 
2375 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2376 	WARN_ON_ONCE(task_current(rq, p));
2377 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2378 
2379 	WARN_ON_ONCE(!task_on_rq_queued(p));
2380 	WARN_ON_ONCE(!dl_task(p));
2381 
2382 	return p;
2383 }
2384 
2385 /*
2386  * See if the non running -deadline tasks on this rq
2387  * can be sent to some other CPU where they can preempt
2388  * and start executing.
2389  */
2390 static int push_dl_task(struct rq *rq)
2391 {
2392 	struct task_struct *next_task;
2393 	struct rq *later_rq;
2394 	int ret = 0;
2395 
2396 	next_task = pick_next_pushable_dl_task(rq);
2397 	if (!next_task)
2398 		return 0;
2399 
2400 retry:
2401 	/*
2402 	 * If next_task preempts rq->curr, and rq->curr
2403 	 * can move away, it makes sense to just reschedule
2404 	 * without going further in pushing next_task.
2405 	 */
2406 	if (dl_task(rq->curr) &&
2407 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2408 	    rq->curr->nr_cpus_allowed > 1) {
2409 		resched_curr(rq);
2410 		return 0;
2411 	}
2412 
2413 	if (is_migration_disabled(next_task))
2414 		return 0;
2415 
2416 	if (WARN_ON(next_task == rq->curr))
2417 		return 0;
2418 
2419 	/* We might release rq lock */
2420 	get_task_struct(next_task);
2421 
2422 	/* Will lock the rq it'll find */
2423 	later_rq = find_lock_later_rq(next_task, rq);
2424 	if (!later_rq) {
2425 		struct task_struct *task;
2426 
2427 		/*
2428 		 * We must check all this again, since
2429 		 * find_lock_later_rq releases rq->lock and it is
2430 		 * then possible that next_task has migrated.
2431 		 */
2432 		task = pick_next_pushable_dl_task(rq);
2433 		if (task == next_task) {
2434 			/*
2435 			 * The task is still there. We don't try
2436 			 * again, some other CPU will pull it when ready.
2437 			 */
2438 			goto out;
2439 		}
2440 
2441 		if (!task)
2442 			/* No more tasks */
2443 			goto out;
2444 
2445 		put_task_struct(next_task);
2446 		next_task = task;
2447 		goto retry;
2448 	}
2449 
2450 	deactivate_task(rq, next_task, 0);
2451 	set_task_cpu(next_task, later_rq->cpu);
2452 	activate_task(later_rq, next_task, 0);
2453 	ret = 1;
2454 
2455 	resched_curr(later_rq);
2456 
2457 	double_unlock_balance(rq, later_rq);
2458 
2459 out:
2460 	put_task_struct(next_task);
2461 
2462 	return ret;
2463 }
2464 
2465 static void push_dl_tasks(struct rq *rq)
2466 {
2467 	/* push_dl_task() will return true if it moved a -deadline task */
2468 	while (push_dl_task(rq))
2469 		;
2470 }
2471 
2472 static void pull_dl_task(struct rq *this_rq)
2473 {
2474 	int this_cpu = this_rq->cpu, cpu;
2475 	struct task_struct *p, *push_task;
2476 	bool resched = false;
2477 	struct rq *src_rq;
2478 	u64 dmin = LONG_MAX;
2479 
2480 	if (likely(!dl_overloaded(this_rq)))
2481 		return;
2482 
2483 	/*
2484 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2485 	 * see overloaded we must also see the dlo_mask bit.
2486 	 */
2487 	smp_rmb();
2488 
2489 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2490 		if (this_cpu == cpu)
2491 			continue;
2492 
2493 		src_rq = cpu_rq(cpu);
2494 
2495 		/*
2496 		 * It looks racy, and it is! However, as in sched_rt.c,
2497 		 * we are fine with this.
2498 		 */
2499 		if (this_rq->dl.dl_nr_running &&
2500 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2501 				   src_rq->dl.earliest_dl.next))
2502 			continue;
2503 
2504 		/* Might drop this_rq->lock */
2505 		push_task = NULL;
2506 		double_lock_balance(this_rq, src_rq);
2507 
2508 		/*
2509 		 * If there are no more pullable tasks on the
2510 		 * rq, we're done with it.
2511 		 */
2512 		if (src_rq->dl.dl_nr_running <= 1)
2513 			goto skip;
2514 
2515 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2516 
2517 		/*
2518 		 * We found a task to be pulled if:
2519 		 *  - it preempts our current (if there's one),
2520 		 *  - it will preempt the last one we pulled (if any).
2521 		 */
2522 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2523 		    dl_task_is_earliest_deadline(p, this_rq)) {
2524 			WARN_ON(p == src_rq->curr);
2525 			WARN_ON(!task_on_rq_queued(p));
2526 
2527 			/*
2528 			 * Then we pull iff p has actually an earlier
2529 			 * deadline than the current task of its runqueue.
2530 			 */
2531 			if (dl_time_before(p->dl.deadline,
2532 					   src_rq->curr->dl.deadline))
2533 				goto skip;
2534 
2535 			if (is_migration_disabled(p)) {
2536 				push_task = get_push_task(src_rq);
2537 			} else {
2538 				deactivate_task(src_rq, p, 0);
2539 				set_task_cpu(p, this_cpu);
2540 				activate_task(this_rq, p, 0);
2541 				dmin = p->dl.deadline;
2542 				resched = true;
2543 			}
2544 
2545 			/* Is there any other task even earlier? */
2546 		}
2547 skip:
2548 		double_unlock_balance(this_rq, src_rq);
2549 
2550 		if (push_task) {
2551 			preempt_disable();
2552 			raw_spin_rq_unlock(this_rq);
2553 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2554 					    push_task, &src_rq->push_work);
2555 			preempt_enable();
2556 			raw_spin_rq_lock(this_rq);
2557 		}
2558 	}
2559 
2560 	if (resched)
2561 		resched_curr(this_rq);
2562 }
2563 
2564 /*
2565  * Since the task is not running and a reschedule is not going to happen
2566  * anytime soon on its runqueue, we try pushing it away now.
2567  */
2568 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2569 {
2570 	if (!task_on_cpu(rq, p) &&
2571 	    !test_tsk_need_resched(rq->curr) &&
2572 	    p->nr_cpus_allowed > 1 &&
2573 	    dl_task(rq->curr) &&
2574 	    (rq->curr->nr_cpus_allowed < 2 ||
2575 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2576 		push_dl_tasks(rq);
2577 	}
2578 }
2579 
2580 static void set_cpus_allowed_dl(struct task_struct *p,
2581 				struct affinity_context *ctx)
2582 {
2583 	struct root_domain *src_rd;
2584 	struct rq *rq;
2585 
2586 	WARN_ON_ONCE(!dl_task(p));
2587 
2588 	rq = task_rq(p);
2589 	src_rd = rq->rd;
2590 	/*
2591 	 * Migrating a SCHED_DEADLINE task between exclusive
2592 	 * cpusets (different root_domains) entails a bandwidth
2593 	 * update. We already made space for us in the destination
2594 	 * domain (see cpuset_can_attach()).
2595 	 */
2596 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2597 		struct dl_bw *src_dl_b;
2598 
2599 		src_dl_b = dl_bw_of(cpu_of(rq));
2600 		/*
2601 		 * We now free resources of the root_domain we are migrating
2602 		 * off. In the worst case, sched_setattr() may temporary fail
2603 		 * until we complete the update.
2604 		 */
2605 		raw_spin_lock(&src_dl_b->lock);
2606 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2607 		raw_spin_unlock(&src_dl_b->lock);
2608 	}
2609 
2610 	set_cpus_allowed_common(p, ctx);
2611 }
2612 
2613 /* Assumes rq->lock is held */
2614 static void rq_online_dl(struct rq *rq)
2615 {
2616 	if (rq->dl.overloaded)
2617 		dl_set_overload(rq);
2618 
2619 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2620 	if (rq->dl.dl_nr_running > 0)
2621 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2622 }
2623 
2624 /* Assumes rq->lock is held */
2625 static void rq_offline_dl(struct rq *rq)
2626 {
2627 	if (rq->dl.overloaded)
2628 		dl_clear_overload(rq);
2629 
2630 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2631 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2632 }
2633 
2634 void __init init_sched_dl_class(void)
2635 {
2636 	unsigned int i;
2637 
2638 	for_each_possible_cpu(i)
2639 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2640 					GFP_KERNEL, cpu_to_node(i));
2641 }
2642 
2643 void dl_add_task_root_domain(struct task_struct *p)
2644 {
2645 	struct rq_flags rf;
2646 	struct rq *rq;
2647 	struct dl_bw *dl_b;
2648 
2649 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2650 	if (!dl_task(p)) {
2651 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2652 		return;
2653 	}
2654 
2655 	rq = __task_rq_lock(p, &rf);
2656 
2657 	dl_b = &rq->rd->dl_bw;
2658 	raw_spin_lock(&dl_b->lock);
2659 
2660 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2661 
2662 	raw_spin_unlock(&dl_b->lock);
2663 
2664 	task_rq_unlock(rq, p, &rf);
2665 }
2666 
2667 void dl_clear_root_domain(struct root_domain *rd)
2668 {
2669 	unsigned long flags;
2670 
2671 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2672 	rd->dl_bw.total_bw = 0;
2673 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2674 }
2675 
2676 #endif /* CONFIG_SMP */
2677 
2678 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2679 {
2680 	/*
2681 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2682 	 * time is in the future). If the task switches back to dl before
2683 	 * the "inactive timer" fires, it can continue to consume its current
2684 	 * runtime using its current deadline. If it stays outside of
2685 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2686 	 * will reset the task parameters.
2687 	 */
2688 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2689 		task_non_contending(&p->dl);
2690 
2691 	/*
2692 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2693 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2694 	 */
2695 	dec_dl_tasks_cs(p);
2696 
2697 	if (!task_on_rq_queued(p)) {
2698 		/*
2699 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2700 		 * might migrate away from this rq while continuing to run on
2701 		 * some other class. We need to remove its contribution from
2702 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2703 		 */
2704 		if (p->dl.dl_non_contending)
2705 			sub_running_bw(&p->dl, &rq->dl);
2706 		sub_rq_bw(&p->dl, &rq->dl);
2707 	}
2708 
2709 	/*
2710 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2711 	 * at the 0-lag time, because the task could have been migrated
2712 	 * while SCHED_OTHER in the meanwhile.
2713 	 */
2714 	if (p->dl.dl_non_contending)
2715 		p->dl.dl_non_contending = 0;
2716 
2717 	/*
2718 	 * Since this might be the only -deadline task on the rq,
2719 	 * this is the right place to try to pull some other one
2720 	 * from an overloaded CPU, if any.
2721 	 */
2722 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2723 		return;
2724 
2725 	deadline_queue_pull_task(rq);
2726 }
2727 
2728 /*
2729  * When switching to -deadline, we may overload the rq, then
2730  * we try to push someone off, if possible.
2731  */
2732 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2733 {
2734 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2735 		put_task_struct(p);
2736 
2737 	/*
2738 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2739 	 * track of that on its cpuset (for correct bandwidth tracking).
2740 	 */
2741 	inc_dl_tasks_cs(p);
2742 
2743 	/* If p is not queued we will update its parameters at next wakeup. */
2744 	if (!task_on_rq_queued(p)) {
2745 		add_rq_bw(&p->dl, &rq->dl);
2746 
2747 		return;
2748 	}
2749 
2750 	if (rq->curr != p) {
2751 #ifdef CONFIG_SMP
2752 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2753 			deadline_queue_push_tasks(rq);
2754 #endif
2755 		if (dl_task(rq->curr))
2756 			wakeup_preempt_dl(rq, p, 0);
2757 		else
2758 			resched_curr(rq);
2759 	} else {
2760 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2761 	}
2762 }
2763 
2764 /*
2765  * If the scheduling parameters of a -deadline task changed,
2766  * a push or pull operation might be needed.
2767  */
2768 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2769 			    int oldprio)
2770 {
2771 	if (!task_on_rq_queued(p))
2772 		return;
2773 
2774 #ifdef CONFIG_SMP
2775 	/*
2776 	 * This might be too much, but unfortunately
2777 	 * we don't have the old deadline value, and
2778 	 * we can't argue if the task is increasing
2779 	 * or lowering its prio, so...
2780 	 */
2781 	if (!rq->dl.overloaded)
2782 		deadline_queue_pull_task(rq);
2783 
2784 	if (task_current(rq, p)) {
2785 		/*
2786 		 * If we now have a earlier deadline task than p,
2787 		 * then reschedule, provided p is still on this
2788 		 * runqueue.
2789 		 */
2790 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2791 			resched_curr(rq);
2792 	} else {
2793 		/*
2794 		 * Current may not be deadline in case p was throttled but we
2795 		 * have just replenished it (e.g. rt_mutex_setprio()).
2796 		 *
2797 		 * Otherwise, if p was given an earlier deadline, reschedule.
2798 		 */
2799 		if (!dl_task(rq->curr) ||
2800 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2801 			resched_curr(rq);
2802 	}
2803 #else
2804 	/*
2805 	 * We don't know if p has a earlier or later deadline, so let's blindly
2806 	 * set a (maybe not needed) rescheduling point.
2807 	 */
2808 	resched_curr(rq);
2809 #endif
2810 }
2811 
2812 #ifdef CONFIG_SCHED_CORE
2813 static int task_is_throttled_dl(struct task_struct *p, int cpu)
2814 {
2815 	return p->dl.dl_throttled;
2816 }
2817 #endif
2818 
2819 DEFINE_SCHED_CLASS(dl) = {
2820 
2821 	.enqueue_task		= enqueue_task_dl,
2822 	.dequeue_task		= dequeue_task_dl,
2823 	.yield_task		= yield_task_dl,
2824 
2825 	.wakeup_preempt		= wakeup_preempt_dl,
2826 
2827 	.pick_next_task		= pick_next_task_dl,
2828 	.put_prev_task		= put_prev_task_dl,
2829 	.set_next_task		= set_next_task_dl,
2830 
2831 #ifdef CONFIG_SMP
2832 	.balance		= balance_dl,
2833 	.pick_task		= pick_task_dl,
2834 	.select_task_rq		= select_task_rq_dl,
2835 	.migrate_task_rq	= migrate_task_rq_dl,
2836 	.set_cpus_allowed       = set_cpus_allowed_dl,
2837 	.rq_online              = rq_online_dl,
2838 	.rq_offline             = rq_offline_dl,
2839 	.task_woken		= task_woken_dl,
2840 	.find_lock_rq		= find_lock_later_rq,
2841 #endif
2842 
2843 	.task_tick		= task_tick_dl,
2844 	.task_fork              = task_fork_dl,
2845 
2846 	.prio_changed           = prio_changed_dl,
2847 	.switched_from		= switched_from_dl,
2848 	.switched_to		= switched_to_dl,
2849 
2850 	.update_curr		= update_curr_dl,
2851 #ifdef CONFIG_SCHED_CORE
2852 	.task_is_throttled	= task_is_throttled_dl,
2853 #endif
2854 };
2855 
2856 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2857 static u64 dl_generation;
2858 
2859 int sched_dl_global_validate(void)
2860 {
2861 	u64 runtime = global_rt_runtime();
2862 	u64 period = global_rt_period();
2863 	u64 new_bw = to_ratio(period, runtime);
2864 	u64 gen = ++dl_generation;
2865 	struct dl_bw *dl_b;
2866 	int cpu, cpus, ret = 0;
2867 	unsigned long flags;
2868 
2869 	/*
2870 	 * Here we want to check the bandwidth not being set to some
2871 	 * value smaller than the currently allocated bandwidth in
2872 	 * any of the root_domains.
2873 	 */
2874 	for_each_possible_cpu(cpu) {
2875 		rcu_read_lock_sched();
2876 
2877 		if (dl_bw_visited(cpu, gen))
2878 			goto next;
2879 
2880 		dl_b = dl_bw_of(cpu);
2881 		cpus = dl_bw_cpus(cpu);
2882 
2883 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2884 		if (new_bw * cpus < dl_b->total_bw)
2885 			ret = -EBUSY;
2886 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2887 
2888 next:
2889 		rcu_read_unlock_sched();
2890 
2891 		if (ret)
2892 			break;
2893 	}
2894 
2895 	return ret;
2896 }
2897 
2898 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2899 {
2900 	if (global_rt_runtime() == RUNTIME_INF) {
2901 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2902 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2903 	} else {
2904 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2905 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2906 		dl_rq->max_bw = dl_rq->extra_bw =
2907 			to_ratio(global_rt_period(), global_rt_runtime());
2908 	}
2909 }
2910 
2911 void sched_dl_do_global(void)
2912 {
2913 	u64 new_bw = -1;
2914 	u64 gen = ++dl_generation;
2915 	struct dl_bw *dl_b;
2916 	int cpu;
2917 	unsigned long flags;
2918 
2919 	if (global_rt_runtime() != RUNTIME_INF)
2920 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2921 
2922 	for_each_possible_cpu(cpu) {
2923 		rcu_read_lock_sched();
2924 
2925 		if (dl_bw_visited(cpu, gen)) {
2926 			rcu_read_unlock_sched();
2927 			continue;
2928 		}
2929 
2930 		dl_b = dl_bw_of(cpu);
2931 
2932 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2933 		dl_b->bw = new_bw;
2934 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2935 
2936 		rcu_read_unlock_sched();
2937 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2938 	}
2939 }
2940 
2941 /*
2942  * We must be sure that accepting a new task (or allowing changing the
2943  * parameters of an existing one) is consistent with the bandwidth
2944  * constraints. If yes, this function also accordingly updates the currently
2945  * allocated bandwidth to reflect the new situation.
2946  *
2947  * This function is called while holding p's rq->lock.
2948  */
2949 int sched_dl_overflow(struct task_struct *p, int policy,
2950 		      const struct sched_attr *attr)
2951 {
2952 	u64 period = attr->sched_period ?: attr->sched_deadline;
2953 	u64 runtime = attr->sched_runtime;
2954 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2955 	int cpus, err = -1, cpu = task_cpu(p);
2956 	struct dl_bw *dl_b = dl_bw_of(cpu);
2957 	unsigned long cap;
2958 
2959 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2960 		return 0;
2961 
2962 	/* !deadline task may carry old deadline bandwidth */
2963 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2964 		return 0;
2965 
2966 	/*
2967 	 * Either if a task, enters, leave, or stays -deadline but changes
2968 	 * its parameters, we may need to update accordingly the total
2969 	 * allocated bandwidth of the container.
2970 	 */
2971 	raw_spin_lock(&dl_b->lock);
2972 	cpus = dl_bw_cpus(cpu);
2973 	cap = dl_bw_capacity(cpu);
2974 
2975 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2976 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2977 		if (hrtimer_active(&p->dl.inactive_timer))
2978 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2979 		__dl_add(dl_b, new_bw, cpus);
2980 		err = 0;
2981 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2982 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2983 		/*
2984 		 * XXX this is slightly incorrect: when the task
2985 		 * utilization decreases, we should delay the total
2986 		 * utilization change until the task's 0-lag point.
2987 		 * But this would require to set the task's "inactive
2988 		 * timer" when the task is not inactive.
2989 		 */
2990 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2991 		__dl_add(dl_b, new_bw, cpus);
2992 		dl_change_utilization(p, new_bw);
2993 		err = 0;
2994 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2995 		/*
2996 		 * Do not decrease the total deadline utilization here,
2997 		 * switched_from_dl() will take care to do it at the correct
2998 		 * (0-lag) time.
2999 		 */
3000 		err = 0;
3001 	}
3002 	raw_spin_unlock(&dl_b->lock);
3003 
3004 	return err;
3005 }
3006 
3007 /*
3008  * This function initializes the sched_dl_entity of a newly becoming
3009  * SCHED_DEADLINE task.
3010  *
3011  * Only the static values are considered here, the actual runtime and the
3012  * absolute deadline will be properly calculated when the task is enqueued
3013  * for the first time with its new policy.
3014  */
3015 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3016 {
3017 	struct sched_dl_entity *dl_se = &p->dl;
3018 
3019 	dl_se->dl_runtime = attr->sched_runtime;
3020 	dl_se->dl_deadline = attr->sched_deadline;
3021 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3022 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3023 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3024 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3025 }
3026 
3027 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3028 {
3029 	struct sched_dl_entity *dl_se = &p->dl;
3030 
3031 	attr->sched_priority = p->rt_priority;
3032 	attr->sched_runtime = dl_se->dl_runtime;
3033 	attr->sched_deadline = dl_se->dl_deadline;
3034 	attr->sched_period = dl_se->dl_period;
3035 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3036 	attr->sched_flags |= dl_se->flags;
3037 }
3038 
3039 /*
3040  * This function validates the new parameters of a -deadline task.
3041  * We ask for the deadline not being zero, and greater or equal
3042  * than the runtime, as well as the period of being zero or
3043  * greater than deadline. Furthermore, we have to be sure that
3044  * user parameters are above the internal resolution of 1us (we
3045  * check sched_runtime only since it is always the smaller one) and
3046  * below 2^63 ns (we have to check both sched_deadline and
3047  * sched_period, as the latter can be zero).
3048  */
3049 bool __checkparam_dl(const struct sched_attr *attr)
3050 {
3051 	u64 period, max, min;
3052 
3053 	/* special dl tasks don't actually use any parameter */
3054 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3055 		return true;
3056 
3057 	/* deadline != 0 */
3058 	if (attr->sched_deadline == 0)
3059 		return false;
3060 
3061 	/*
3062 	 * Since we truncate DL_SCALE bits, make sure we're at least
3063 	 * that big.
3064 	 */
3065 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3066 		return false;
3067 
3068 	/*
3069 	 * Since we use the MSB for wrap-around and sign issues, make
3070 	 * sure it's not set (mind that period can be equal to zero).
3071 	 */
3072 	if (attr->sched_deadline & (1ULL << 63) ||
3073 	    attr->sched_period & (1ULL << 63))
3074 		return false;
3075 
3076 	period = attr->sched_period;
3077 	if (!period)
3078 		period = attr->sched_deadline;
3079 
3080 	/* runtime <= deadline <= period (if period != 0) */
3081 	if (period < attr->sched_deadline ||
3082 	    attr->sched_deadline < attr->sched_runtime)
3083 		return false;
3084 
3085 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3086 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3087 
3088 	if (period < min || period > max)
3089 		return false;
3090 
3091 	return true;
3092 }
3093 
3094 /*
3095  * This function clears the sched_dl_entity static params.
3096  */
3097 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3098 {
3099 	dl_se->dl_runtime		= 0;
3100 	dl_se->dl_deadline		= 0;
3101 	dl_se->dl_period		= 0;
3102 	dl_se->flags			= 0;
3103 	dl_se->dl_bw			= 0;
3104 	dl_se->dl_density		= 0;
3105 
3106 	dl_se->dl_throttled		= 0;
3107 	dl_se->dl_yielded		= 0;
3108 	dl_se->dl_non_contending	= 0;
3109 	dl_se->dl_overrun		= 0;
3110 	dl_se->dl_server		= 0;
3111 
3112 #ifdef CONFIG_RT_MUTEXES
3113 	dl_se->pi_se			= dl_se;
3114 #endif
3115 }
3116 
3117 void init_dl_entity(struct sched_dl_entity *dl_se)
3118 {
3119 	RB_CLEAR_NODE(&dl_se->rb_node);
3120 	init_dl_task_timer(dl_se);
3121 	init_dl_inactive_task_timer(dl_se);
3122 	__dl_clear_params(dl_se);
3123 }
3124 
3125 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3126 {
3127 	struct sched_dl_entity *dl_se = &p->dl;
3128 
3129 	if (dl_se->dl_runtime != attr->sched_runtime ||
3130 	    dl_se->dl_deadline != attr->sched_deadline ||
3131 	    dl_se->dl_period != attr->sched_period ||
3132 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3133 		return true;
3134 
3135 	return false;
3136 }
3137 
3138 #ifdef CONFIG_SMP
3139 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3140 				 const struct cpumask *trial)
3141 {
3142 	unsigned long flags, cap;
3143 	struct dl_bw *cur_dl_b;
3144 	int ret = 1;
3145 
3146 	rcu_read_lock_sched();
3147 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3148 	cap = __dl_bw_capacity(trial);
3149 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3150 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3151 		ret = 0;
3152 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3153 	rcu_read_unlock_sched();
3154 
3155 	return ret;
3156 }
3157 
3158 enum dl_bw_request {
3159 	dl_bw_req_check_overflow = 0,
3160 	dl_bw_req_alloc,
3161 	dl_bw_req_free
3162 };
3163 
3164 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3165 {
3166 	unsigned long flags;
3167 	struct dl_bw *dl_b;
3168 	bool overflow = 0;
3169 
3170 	rcu_read_lock_sched();
3171 	dl_b = dl_bw_of(cpu);
3172 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3173 
3174 	if (req == dl_bw_req_free) {
3175 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3176 	} else {
3177 		unsigned long cap = dl_bw_capacity(cpu);
3178 
3179 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3180 
3181 		if (req == dl_bw_req_alloc && !overflow) {
3182 			/*
3183 			 * We reserve space in the destination
3184 			 * root_domain, as we can't fail after this point.
3185 			 * We will free resources in the source root_domain
3186 			 * later on (see set_cpus_allowed_dl()).
3187 			 */
3188 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3189 		}
3190 	}
3191 
3192 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3193 	rcu_read_unlock_sched();
3194 
3195 	return overflow ? -EBUSY : 0;
3196 }
3197 
3198 int dl_bw_check_overflow(int cpu)
3199 {
3200 	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3201 }
3202 
3203 int dl_bw_alloc(int cpu, u64 dl_bw)
3204 {
3205 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3206 }
3207 
3208 void dl_bw_free(int cpu, u64 dl_bw)
3209 {
3210 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3211 }
3212 #endif
3213 
3214 #ifdef CONFIG_SCHED_DEBUG
3215 void print_dl_stats(struct seq_file *m, int cpu)
3216 {
3217 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3218 }
3219 #endif /* CONFIG_SCHED_DEBUG */
3220