xref: /linux/kernel/sched/deadline.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 /*
20  * Default limits for DL period; on the top end we guard against small util
21  * tasks still getting ridiculously long effective runtimes, on the bottom end we
22  * guard against timer DoS.
23  */
24 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
25 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
26 #ifdef CONFIG_SYSCTL
27 static struct ctl_table sched_dl_sysctls[] = {
28 	{
29 		.procname       = "sched_deadline_period_max_us",
30 		.data           = &sysctl_sched_dl_period_max,
31 		.maxlen         = sizeof(unsigned int),
32 		.mode           = 0644,
33 		.proc_handler   = proc_dointvec,
34 	},
35 	{
36 		.procname       = "sched_deadline_period_min_us",
37 		.data           = &sysctl_sched_dl_period_min,
38 		.maxlen         = sizeof(unsigned int),
39 		.mode           = 0644,
40 		.proc_handler   = proc_dointvec,
41 	},
42 	{}
43 };
44 
45 static int __init sched_dl_sysctl_init(void)
46 {
47 	register_sysctl_init("kernel", sched_dl_sysctls);
48 	return 0;
49 }
50 late_initcall(sched_dl_sysctl_init);
51 #endif
52 
53 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
54 {
55 	return container_of(dl_se, struct task_struct, dl);
56 }
57 
58 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
59 {
60 	return container_of(dl_rq, struct rq, dl);
61 }
62 
63 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
64 {
65 	struct task_struct *p = dl_task_of(dl_se);
66 	struct rq *rq = task_rq(p);
67 
68 	return &rq->dl;
69 }
70 
71 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
72 {
73 	return !RB_EMPTY_NODE(&dl_se->rb_node);
74 }
75 
76 #ifdef CONFIG_RT_MUTEXES
77 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
78 {
79 	return dl_se->pi_se;
80 }
81 
82 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
83 {
84 	return pi_of(dl_se) != dl_se;
85 }
86 #else
87 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
88 {
89 	return dl_se;
90 }
91 
92 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
93 {
94 	return false;
95 }
96 #endif
97 
98 #ifdef CONFIG_SMP
99 static inline struct dl_bw *dl_bw_of(int i)
100 {
101 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
102 			 "sched RCU must be held");
103 	return &cpu_rq(i)->rd->dl_bw;
104 }
105 
106 static inline int dl_bw_cpus(int i)
107 {
108 	struct root_domain *rd = cpu_rq(i)->rd;
109 	int cpus;
110 
111 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
112 			 "sched RCU must be held");
113 
114 	if (cpumask_subset(rd->span, cpu_active_mask))
115 		return cpumask_weight(rd->span);
116 
117 	cpus = 0;
118 
119 	for_each_cpu_and(i, rd->span, cpu_active_mask)
120 		cpus++;
121 
122 	return cpus;
123 }
124 
125 static inline unsigned long __dl_bw_capacity(int i)
126 {
127 	struct root_domain *rd = cpu_rq(i)->rd;
128 	unsigned long cap = 0;
129 
130 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
131 			 "sched RCU must be held");
132 
133 	for_each_cpu_and(i, rd->span, cpu_active_mask)
134 		cap += capacity_orig_of(i);
135 
136 	return cap;
137 }
138 
139 /*
140  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
141  * of the CPU the task is running on rather rd's \Sum CPU capacity.
142  */
143 static inline unsigned long dl_bw_capacity(int i)
144 {
145 	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
146 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
147 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
148 	} else {
149 		return __dl_bw_capacity(i);
150 	}
151 }
152 
153 static inline bool dl_bw_visited(int cpu, u64 gen)
154 {
155 	struct root_domain *rd = cpu_rq(cpu)->rd;
156 
157 	if (rd->visit_gen == gen)
158 		return true;
159 
160 	rd->visit_gen = gen;
161 	return false;
162 }
163 
164 static inline
165 void __dl_update(struct dl_bw *dl_b, s64 bw)
166 {
167 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
168 	int i;
169 
170 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
171 			 "sched RCU must be held");
172 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
173 		struct rq *rq = cpu_rq(i);
174 
175 		rq->dl.extra_bw += bw;
176 	}
177 }
178 #else
179 static inline struct dl_bw *dl_bw_of(int i)
180 {
181 	return &cpu_rq(i)->dl.dl_bw;
182 }
183 
184 static inline int dl_bw_cpus(int i)
185 {
186 	return 1;
187 }
188 
189 static inline unsigned long dl_bw_capacity(int i)
190 {
191 	return SCHED_CAPACITY_SCALE;
192 }
193 
194 static inline bool dl_bw_visited(int cpu, u64 gen)
195 {
196 	return false;
197 }
198 
199 static inline
200 void __dl_update(struct dl_bw *dl_b, s64 bw)
201 {
202 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
203 
204 	dl->extra_bw += bw;
205 }
206 #endif
207 
208 static inline
209 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
210 {
211 	dl_b->total_bw -= tsk_bw;
212 	__dl_update(dl_b, (s32)tsk_bw / cpus);
213 }
214 
215 static inline
216 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
217 {
218 	dl_b->total_bw += tsk_bw;
219 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
220 }
221 
222 static inline bool
223 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
224 {
225 	return dl_b->bw != -1 &&
226 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
227 }
228 
229 static inline
230 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
231 {
232 	u64 old = dl_rq->running_bw;
233 
234 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
235 	dl_rq->running_bw += dl_bw;
236 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
237 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
238 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
239 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
240 }
241 
242 static inline
243 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
244 {
245 	u64 old = dl_rq->running_bw;
246 
247 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
248 	dl_rq->running_bw -= dl_bw;
249 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
250 	if (dl_rq->running_bw > old)
251 		dl_rq->running_bw = 0;
252 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
253 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
254 }
255 
256 static inline
257 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
258 {
259 	u64 old = dl_rq->this_bw;
260 
261 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
262 	dl_rq->this_bw += dl_bw;
263 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
264 }
265 
266 static inline
267 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
268 {
269 	u64 old = dl_rq->this_bw;
270 
271 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
272 	dl_rq->this_bw -= dl_bw;
273 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
274 	if (dl_rq->this_bw > old)
275 		dl_rq->this_bw = 0;
276 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
277 }
278 
279 static inline
280 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
281 {
282 	if (!dl_entity_is_special(dl_se))
283 		__add_rq_bw(dl_se->dl_bw, dl_rq);
284 }
285 
286 static inline
287 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
288 {
289 	if (!dl_entity_is_special(dl_se))
290 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
291 }
292 
293 static inline
294 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
295 {
296 	if (!dl_entity_is_special(dl_se))
297 		__add_running_bw(dl_se->dl_bw, dl_rq);
298 }
299 
300 static inline
301 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
302 {
303 	if (!dl_entity_is_special(dl_se))
304 		__sub_running_bw(dl_se->dl_bw, dl_rq);
305 }
306 
307 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
308 {
309 	struct rq *rq;
310 
311 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
312 
313 	if (task_on_rq_queued(p))
314 		return;
315 
316 	rq = task_rq(p);
317 	if (p->dl.dl_non_contending) {
318 		sub_running_bw(&p->dl, &rq->dl);
319 		p->dl.dl_non_contending = 0;
320 		/*
321 		 * If the timer handler is currently running and the
322 		 * timer cannot be canceled, inactive_task_timer()
323 		 * will see that dl_not_contending is not set, and
324 		 * will not touch the rq's active utilization,
325 		 * so we are still safe.
326 		 */
327 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
328 			put_task_struct(p);
329 	}
330 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
331 	__add_rq_bw(new_bw, &rq->dl);
332 }
333 
334 /*
335  * The utilization of a task cannot be immediately removed from
336  * the rq active utilization (running_bw) when the task blocks.
337  * Instead, we have to wait for the so called "0-lag time".
338  *
339  * If a task blocks before the "0-lag time", a timer (the inactive
340  * timer) is armed, and running_bw is decreased when the timer
341  * fires.
342  *
343  * If the task wakes up again before the inactive timer fires,
344  * the timer is canceled, whereas if the task wakes up after the
345  * inactive timer fired (and running_bw has been decreased) the
346  * task's utilization has to be added to running_bw again.
347  * A flag in the deadline scheduling entity (dl_non_contending)
348  * is used to avoid race conditions between the inactive timer handler
349  * and task wakeups.
350  *
351  * The following diagram shows how running_bw is updated. A task is
352  * "ACTIVE" when its utilization contributes to running_bw; an
353  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
354  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
355  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
356  * time already passed, which does not contribute to running_bw anymore.
357  *                              +------------------+
358  *             wakeup           |    ACTIVE        |
359  *          +------------------>+   contending     |
360  *          | add_running_bw    |                  |
361  *          |                   +----+------+------+
362  *          |                        |      ^
363  *          |                dequeue |      |
364  * +--------+-------+                |      |
365  * |                |   t >= 0-lag   |      | wakeup
366  * |    INACTIVE    |<---------------+      |
367  * |                | sub_running_bw |      |
368  * +--------+-------+                |      |
369  *          ^                        |      |
370  *          |              t < 0-lag |      |
371  *          |                        |      |
372  *          |                        V      |
373  *          |                   +----+------+------+
374  *          | sub_running_bw    |    ACTIVE        |
375  *          +-------------------+                  |
376  *            inactive timer    |  non contending  |
377  *            fired             +------------------+
378  *
379  * The task_non_contending() function is invoked when a task
380  * blocks, and checks if the 0-lag time already passed or
381  * not (in the first case, it directly updates running_bw;
382  * in the second case, it arms the inactive timer).
383  *
384  * The task_contending() function is invoked when a task wakes
385  * up, and checks if the task is still in the "ACTIVE non contending"
386  * state or not (in the second case, it updates running_bw).
387  */
388 static void task_non_contending(struct task_struct *p)
389 {
390 	struct sched_dl_entity *dl_se = &p->dl;
391 	struct hrtimer *timer = &dl_se->inactive_timer;
392 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
393 	struct rq *rq = rq_of_dl_rq(dl_rq);
394 	s64 zerolag_time;
395 
396 	/*
397 	 * If this is a non-deadline task that has been boosted,
398 	 * do nothing
399 	 */
400 	if (dl_se->dl_runtime == 0)
401 		return;
402 
403 	if (dl_entity_is_special(dl_se))
404 		return;
405 
406 	WARN_ON(dl_se->dl_non_contending);
407 
408 	zerolag_time = dl_se->deadline -
409 		 div64_long((dl_se->runtime * dl_se->dl_period),
410 			dl_se->dl_runtime);
411 
412 	/*
413 	 * Using relative times instead of the absolute "0-lag time"
414 	 * allows to simplify the code
415 	 */
416 	zerolag_time -= rq_clock(rq);
417 
418 	/*
419 	 * If the "0-lag time" already passed, decrease the active
420 	 * utilization now, instead of starting a timer
421 	 */
422 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
423 		if (dl_task(p))
424 			sub_running_bw(dl_se, dl_rq);
425 		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
426 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
427 
428 			if (READ_ONCE(p->__state) == TASK_DEAD)
429 				sub_rq_bw(&p->dl, &rq->dl);
430 			raw_spin_lock(&dl_b->lock);
431 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
432 			__dl_clear_params(p);
433 			raw_spin_unlock(&dl_b->lock);
434 		}
435 
436 		return;
437 	}
438 
439 	dl_se->dl_non_contending = 1;
440 	get_task_struct(p);
441 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
442 }
443 
444 static void task_contending(struct sched_dl_entity *dl_se, int flags)
445 {
446 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
447 
448 	/*
449 	 * If this is a non-deadline task that has been boosted,
450 	 * do nothing
451 	 */
452 	if (dl_se->dl_runtime == 0)
453 		return;
454 
455 	if (flags & ENQUEUE_MIGRATED)
456 		add_rq_bw(dl_se, dl_rq);
457 
458 	if (dl_se->dl_non_contending) {
459 		dl_se->dl_non_contending = 0;
460 		/*
461 		 * If the timer handler is currently running and the
462 		 * timer cannot be canceled, inactive_task_timer()
463 		 * will see that dl_not_contending is not set, and
464 		 * will not touch the rq's active utilization,
465 		 * so we are still safe.
466 		 */
467 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
468 			put_task_struct(dl_task_of(dl_se));
469 	} else {
470 		/*
471 		 * Since "dl_non_contending" is not set, the
472 		 * task's utilization has already been removed from
473 		 * active utilization (either when the task blocked,
474 		 * when the "inactive timer" fired).
475 		 * So, add it back.
476 		 */
477 		add_running_bw(dl_se, dl_rq);
478 	}
479 }
480 
481 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
482 {
483 	struct sched_dl_entity *dl_se = &p->dl;
484 
485 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
486 }
487 
488 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
489 
490 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
491 {
492 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
493 	dl_b->dl_period = period;
494 	dl_b->dl_runtime = runtime;
495 }
496 
497 void init_dl_bw(struct dl_bw *dl_b)
498 {
499 	raw_spin_lock_init(&dl_b->lock);
500 	if (global_rt_runtime() == RUNTIME_INF)
501 		dl_b->bw = -1;
502 	else
503 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
504 	dl_b->total_bw = 0;
505 }
506 
507 void init_dl_rq(struct dl_rq *dl_rq)
508 {
509 	dl_rq->root = RB_ROOT_CACHED;
510 
511 #ifdef CONFIG_SMP
512 	/* zero means no -deadline tasks */
513 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
514 
515 	dl_rq->dl_nr_migratory = 0;
516 	dl_rq->overloaded = 0;
517 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
518 #else
519 	init_dl_bw(&dl_rq->dl_bw);
520 #endif
521 
522 	dl_rq->running_bw = 0;
523 	dl_rq->this_bw = 0;
524 	init_dl_rq_bw_ratio(dl_rq);
525 }
526 
527 #ifdef CONFIG_SMP
528 
529 static inline int dl_overloaded(struct rq *rq)
530 {
531 	return atomic_read(&rq->rd->dlo_count);
532 }
533 
534 static inline void dl_set_overload(struct rq *rq)
535 {
536 	if (!rq->online)
537 		return;
538 
539 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
540 	/*
541 	 * Must be visible before the overload count is
542 	 * set (as in sched_rt.c).
543 	 *
544 	 * Matched by the barrier in pull_dl_task().
545 	 */
546 	smp_wmb();
547 	atomic_inc(&rq->rd->dlo_count);
548 }
549 
550 static inline void dl_clear_overload(struct rq *rq)
551 {
552 	if (!rq->online)
553 		return;
554 
555 	atomic_dec(&rq->rd->dlo_count);
556 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
557 }
558 
559 static void update_dl_migration(struct dl_rq *dl_rq)
560 {
561 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
562 		if (!dl_rq->overloaded) {
563 			dl_set_overload(rq_of_dl_rq(dl_rq));
564 			dl_rq->overloaded = 1;
565 		}
566 	} else if (dl_rq->overloaded) {
567 		dl_clear_overload(rq_of_dl_rq(dl_rq));
568 		dl_rq->overloaded = 0;
569 	}
570 }
571 
572 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
573 {
574 	struct task_struct *p = dl_task_of(dl_se);
575 
576 	if (p->nr_cpus_allowed > 1)
577 		dl_rq->dl_nr_migratory++;
578 
579 	update_dl_migration(dl_rq);
580 }
581 
582 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
583 {
584 	struct task_struct *p = dl_task_of(dl_se);
585 
586 	if (p->nr_cpus_allowed > 1)
587 		dl_rq->dl_nr_migratory--;
588 
589 	update_dl_migration(dl_rq);
590 }
591 
592 #define __node_2_pdl(node) \
593 	rb_entry((node), struct task_struct, pushable_dl_tasks)
594 
595 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
596 {
597 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
598 }
599 
600 /*
601  * The list of pushable -deadline task is not a plist, like in
602  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
603  */
604 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
605 {
606 	struct rb_node *leftmost;
607 
608 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
609 
610 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
611 				 &rq->dl.pushable_dl_tasks_root,
612 				 __pushable_less);
613 	if (leftmost)
614 		rq->dl.earliest_dl.next = p->dl.deadline;
615 }
616 
617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
618 {
619 	struct dl_rq *dl_rq = &rq->dl;
620 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
621 	struct rb_node *leftmost;
622 
623 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
624 		return;
625 
626 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
627 	if (leftmost)
628 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
629 
630 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
631 }
632 
633 static inline int has_pushable_dl_tasks(struct rq *rq)
634 {
635 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
636 }
637 
638 static int push_dl_task(struct rq *rq);
639 
640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
641 {
642 	return rq->online && dl_task(prev);
643 }
644 
645 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
646 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
647 
648 static void push_dl_tasks(struct rq *);
649 static void pull_dl_task(struct rq *);
650 
651 static inline void deadline_queue_push_tasks(struct rq *rq)
652 {
653 	if (!has_pushable_dl_tasks(rq))
654 		return;
655 
656 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
657 }
658 
659 static inline void deadline_queue_pull_task(struct rq *rq)
660 {
661 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
662 }
663 
664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
665 
666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
667 {
668 	struct rq *later_rq = NULL;
669 	struct dl_bw *dl_b;
670 
671 	later_rq = find_lock_later_rq(p, rq);
672 	if (!later_rq) {
673 		int cpu;
674 
675 		/*
676 		 * If we cannot preempt any rq, fall back to pick any
677 		 * online CPU:
678 		 */
679 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
680 		if (cpu >= nr_cpu_ids) {
681 			/*
682 			 * Failed to find any suitable CPU.
683 			 * The task will never come back!
684 			 */
685 			BUG_ON(dl_bandwidth_enabled());
686 
687 			/*
688 			 * If admission control is disabled we
689 			 * try a little harder to let the task
690 			 * run.
691 			 */
692 			cpu = cpumask_any(cpu_active_mask);
693 		}
694 		later_rq = cpu_rq(cpu);
695 		double_lock_balance(rq, later_rq);
696 	}
697 
698 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
699 		/*
700 		 * Inactive timer is armed (or callback is running, but
701 		 * waiting for us to release rq locks). In any case, when it
702 		 * will fire (or continue), it will see running_bw of this
703 		 * task migrated to later_rq (and correctly handle it).
704 		 */
705 		sub_running_bw(&p->dl, &rq->dl);
706 		sub_rq_bw(&p->dl, &rq->dl);
707 
708 		add_rq_bw(&p->dl, &later_rq->dl);
709 		add_running_bw(&p->dl, &later_rq->dl);
710 	} else {
711 		sub_rq_bw(&p->dl, &rq->dl);
712 		add_rq_bw(&p->dl, &later_rq->dl);
713 	}
714 
715 	/*
716 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
717 	 * since p is still hanging out in the old (now moved to default) root
718 	 * domain.
719 	 */
720 	dl_b = &rq->rd->dl_bw;
721 	raw_spin_lock(&dl_b->lock);
722 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
723 	raw_spin_unlock(&dl_b->lock);
724 
725 	dl_b = &later_rq->rd->dl_bw;
726 	raw_spin_lock(&dl_b->lock);
727 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
728 	raw_spin_unlock(&dl_b->lock);
729 
730 	set_task_cpu(p, later_rq->cpu);
731 	double_unlock_balance(later_rq, rq);
732 
733 	return later_rq;
734 }
735 
736 #else
737 
738 static inline
739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740 {
741 }
742 
743 static inline
744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
745 {
746 }
747 
748 static inline
749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750 {
751 }
752 
753 static inline
754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
755 {
756 }
757 
758 static inline void deadline_queue_push_tasks(struct rq *rq)
759 {
760 }
761 
762 static inline void deadline_queue_pull_task(struct rq *rq)
763 {
764 }
765 #endif /* CONFIG_SMP */
766 
767 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
768 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
769 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
770 
771 /*
772  * We are being explicitly informed that a new instance is starting,
773  * and this means that:
774  *  - the absolute deadline of the entity has to be placed at
775  *    current time + relative deadline;
776  *  - the runtime of the entity has to be set to the maximum value.
777  *
778  * The capability of specifying such event is useful whenever a -deadline
779  * entity wants to (try to!) synchronize its behaviour with the scheduler's
780  * one, and to (try to!) reconcile itself with its own scheduling
781  * parameters.
782  */
783 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
784 {
785 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
786 	struct rq *rq = rq_of_dl_rq(dl_rq);
787 
788 	WARN_ON(is_dl_boosted(dl_se));
789 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
790 
791 	/*
792 	 * We are racing with the deadline timer. So, do nothing because
793 	 * the deadline timer handler will take care of properly recharging
794 	 * the runtime and postponing the deadline
795 	 */
796 	if (dl_se->dl_throttled)
797 		return;
798 
799 	/*
800 	 * We use the regular wall clock time to set deadlines in the
801 	 * future; in fact, we must consider execution overheads (time
802 	 * spent on hardirq context, etc.).
803 	 */
804 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
805 	dl_se->runtime = dl_se->dl_runtime;
806 }
807 
808 /*
809  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
810  * possibility of a entity lasting more than what it declared, and thus
811  * exhausting its runtime.
812  *
813  * Here we are interested in making runtime overrun possible, but we do
814  * not want a entity which is misbehaving to affect the scheduling of all
815  * other entities.
816  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
817  * is used, in order to confine each entity within its own bandwidth.
818  *
819  * This function deals exactly with that, and ensures that when the runtime
820  * of a entity is replenished, its deadline is also postponed. That ensures
821  * the overrunning entity can't interfere with other entity in the system and
822  * can't make them miss their deadlines. Reasons why this kind of overruns
823  * could happen are, typically, a entity voluntarily trying to overcome its
824  * runtime, or it just underestimated it during sched_setattr().
825  */
826 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
827 {
828 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
829 	struct rq *rq = rq_of_dl_rq(dl_rq);
830 
831 	BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
832 
833 	/*
834 	 * This could be the case for a !-dl task that is boosted.
835 	 * Just go with full inherited parameters.
836 	 */
837 	if (dl_se->dl_deadline == 0) {
838 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
839 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
840 	}
841 
842 	if (dl_se->dl_yielded && dl_se->runtime > 0)
843 		dl_se->runtime = 0;
844 
845 	/*
846 	 * We keep moving the deadline away until we get some
847 	 * available runtime for the entity. This ensures correct
848 	 * handling of situations where the runtime overrun is
849 	 * arbitrary large.
850 	 */
851 	while (dl_se->runtime <= 0) {
852 		dl_se->deadline += pi_of(dl_se)->dl_period;
853 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
854 	}
855 
856 	/*
857 	 * At this point, the deadline really should be "in
858 	 * the future" with respect to rq->clock. If it's
859 	 * not, we are, for some reason, lagging too much!
860 	 * Anyway, after having warn userspace abut that,
861 	 * we still try to keep the things running by
862 	 * resetting the deadline and the budget of the
863 	 * entity.
864 	 */
865 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
866 		printk_deferred_once("sched: DL replenish lagged too much\n");
867 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
868 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
869 	}
870 
871 	if (dl_se->dl_yielded)
872 		dl_se->dl_yielded = 0;
873 	if (dl_se->dl_throttled)
874 		dl_se->dl_throttled = 0;
875 }
876 
877 /*
878  * Here we check if --at time t-- an entity (which is probably being
879  * [re]activated or, in general, enqueued) can use its remaining runtime
880  * and its current deadline _without_ exceeding the bandwidth it is
881  * assigned (function returns true if it can't). We are in fact applying
882  * one of the CBS rules: when a task wakes up, if the residual runtime
883  * over residual deadline fits within the allocated bandwidth, then we
884  * can keep the current (absolute) deadline and residual budget without
885  * disrupting the schedulability of the system. Otherwise, we should
886  * refill the runtime and set the deadline a period in the future,
887  * because keeping the current (absolute) deadline of the task would
888  * result in breaking guarantees promised to other tasks (refer to
889  * Documentation/scheduler/sched-deadline.rst for more information).
890  *
891  * This function returns true if:
892  *
893  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
894  *
895  * IOW we can't recycle current parameters.
896  *
897  * Notice that the bandwidth check is done against the deadline. For
898  * task with deadline equal to period this is the same of using
899  * dl_period instead of dl_deadline in the equation above.
900  */
901 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
902 {
903 	u64 left, right;
904 
905 	/*
906 	 * left and right are the two sides of the equation above,
907 	 * after a bit of shuffling to use multiplications instead
908 	 * of divisions.
909 	 *
910 	 * Note that none of the time values involved in the two
911 	 * multiplications are absolute: dl_deadline and dl_runtime
912 	 * are the relative deadline and the maximum runtime of each
913 	 * instance, runtime is the runtime left for the last instance
914 	 * and (deadline - t), since t is rq->clock, is the time left
915 	 * to the (absolute) deadline. Even if overflowing the u64 type
916 	 * is very unlikely to occur in both cases, here we scale down
917 	 * as we want to avoid that risk at all. Scaling down by 10
918 	 * means that we reduce granularity to 1us. We are fine with it,
919 	 * since this is only a true/false check and, anyway, thinking
920 	 * of anything below microseconds resolution is actually fiction
921 	 * (but still we want to give the user that illusion >;).
922 	 */
923 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
924 	right = ((dl_se->deadline - t) >> DL_SCALE) *
925 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
926 
927 	return dl_time_before(right, left);
928 }
929 
930 /*
931  * Revised wakeup rule [1]: For self-suspending tasks, rather then
932  * re-initializing task's runtime and deadline, the revised wakeup
933  * rule adjusts the task's runtime to avoid the task to overrun its
934  * density.
935  *
936  * Reasoning: a task may overrun the density if:
937  *    runtime / (deadline - t) > dl_runtime / dl_deadline
938  *
939  * Therefore, runtime can be adjusted to:
940  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
941  *
942  * In such way that runtime will be equal to the maximum density
943  * the task can use without breaking any rule.
944  *
945  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
946  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
947  */
948 static void
949 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
950 {
951 	u64 laxity = dl_se->deadline - rq_clock(rq);
952 
953 	/*
954 	 * If the task has deadline < period, and the deadline is in the past,
955 	 * it should already be throttled before this check.
956 	 *
957 	 * See update_dl_entity() comments for further details.
958 	 */
959 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
960 
961 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
962 }
963 
964 /*
965  * Regarding the deadline, a task with implicit deadline has a relative
966  * deadline == relative period. A task with constrained deadline has a
967  * relative deadline <= relative period.
968  *
969  * We support constrained deadline tasks. However, there are some restrictions
970  * applied only for tasks which do not have an implicit deadline. See
971  * update_dl_entity() to know more about such restrictions.
972  *
973  * The dl_is_implicit() returns true if the task has an implicit deadline.
974  */
975 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
976 {
977 	return dl_se->dl_deadline == dl_se->dl_period;
978 }
979 
980 /*
981  * When a deadline entity is placed in the runqueue, its runtime and deadline
982  * might need to be updated. This is done by a CBS wake up rule. There are two
983  * different rules: 1) the original CBS; and 2) the Revisited CBS.
984  *
985  * When the task is starting a new period, the Original CBS is used. In this
986  * case, the runtime is replenished and a new absolute deadline is set.
987  *
988  * When a task is queued before the begin of the next period, using the
989  * remaining runtime and deadline could make the entity to overflow, see
990  * dl_entity_overflow() to find more about runtime overflow. When such case
991  * is detected, the runtime and deadline need to be updated.
992  *
993  * If the task has an implicit deadline, i.e., deadline == period, the Original
994  * CBS is applied. the runtime is replenished and a new absolute deadline is
995  * set, as in the previous cases.
996  *
997  * However, the Original CBS does not work properly for tasks with
998  * deadline < period, which are said to have a constrained deadline. By
999  * applying the Original CBS, a constrained deadline task would be able to run
1000  * runtime/deadline in a period. With deadline < period, the task would
1001  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1002  *
1003  * In order to prevent this misbehave, the Revisited CBS is used for
1004  * constrained deadline tasks when a runtime overflow is detected. In the
1005  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1006  * the remaining runtime of the task is reduced to avoid runtime overflow.
1007  * Please refer to the comments update_dl_revised_wakeup() function to find
1008  * more about the Revised CBS rule.
1009  */
1010 static void update_dl_entity(struct sched_dl_entity *dl_se)
1011 {
1012 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1013 	struct rq *rq = rq_of_dl_rq(dl_rq);
1014 
1015 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1016 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1017 
1018 		if (unlikely(!dl_is_implicit(dl_se) &&
1019 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1020 			     !is_dl_boosted(dl_se))) {
1021 			update_dl_revised_wakeup(dl_se, rq);
1022 			return;
1023 		}
1024 
1025 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
1026 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
1027 	}
1028 }
1029 
1030 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1031 {
1032 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1033 }
1034 
1035 /*
1036  * If the entity depleted all its runtime, and if we want it to sleep
1037  * while waiting for some new execution time to become available, we
1038  * set the bandwidth replenishment timer to the replenishment instant
1039  * and try to activate it.
1040  *
1041  * Notice that it is important for the caller to know if the timer
1042  * actually started or not (i.e., the replenishment instant is in
1043  * the future or in the past).
1044  */
1045 static int start_dl_timer(struct task_struct *p)
1046 {
1047 	struct sched_dl_entity *dl_se = &p->dl;
1048 	struct hrtimer *timer = &dl_se->dl_timer;
1049 	struct rq *rq = task_rq(p);
1050 	ktime_t now, act;
1051 	s64 delta;
1052 
1053 	lockdep_assert_rq_held(rq);
1054 
1055 	/*
1056 	 * We want the timer to fire at the deadline, but considering
1057 	 * that it is actually coming from rq->clock and not from
1058 	 * hrtimer's time base reading.
1059 	 */
1060 	act = ns_to_ktime(dl_next_period(dl_se));
1061 	now = hrtimer_cb_get_time(timer);
1062 	delta = ktime_to_ns(now) - rq_clock(rq);
1063 	act = ktime_add_ns(act, delta);
1064 
1065 	/*
1066 	 * If the expiry time already passed, e.g., because the value
1067 	 * chosen as the deadline is too small, don't even try to
1068 	 * start the timer in the past!
1069 	 */
1070 	if (ktime_us_delta(act, now) < 0)
1071 		return 0;
1072 
1073 	/*
1074 	 * !enqueued will guarantee another callback; even if one is already in
1075 	 * progress. This ensures a balanced {get,put}_task_struct().
1076 	 *
1077 	 * The race against __run_timer() clearing the enqueued state is
1078 	 * harmless because we're holding task_rq()->lock, therefore the timer
1079 	 * expiring after we've done the check will wait on its task_rq_lock()
1080 	 * and observe our state.
1081 	 */
1082 	if (!hrtimer_is_queued(timer)) {
1083 		get_task_struct(p);
1084 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1085 	}
1086 
1087 	return 1;
1088 }
1089 
1090 /*
1091  * This is the bandwidth enforcement timer callback. If here, we know
1092  * a task is not on its dl_rq, since the fact that the timer was running
1093  * means the task is throttled and needs a runtime replenishment.
1094  *
1095  * However, what we actually do depends on the fact the task is active,
1096  * (it is on its rq) or has been removed from there by a call to
1097  * dequeue_task_dl(). In the former case we must issue the runtime
1098  * replenishment and add the task back to the dl_rq; in the latter, we just
1099  * do nothing but clearing dl_throttled, so that runtime and deadline
1100  * updating (and the queueing back to dl_rq) will be done by the
1101  * next call to enqueue_task_dl().
1102  */
1103 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1104 {
1105 	struct sched_dl_entity *dl_se = container_of(timer,
1106 						     struct sched_dl_entity,
1107 						     dl_timer);
1108 	struct task_struct *p = dl_task_of(dl_se);
1109 	struct rq_flags rf;
1110 	struct rq *rq;
1111 
1112 	rq = task_rq_lock(p, &rf);
1113 
1114 	/*
1115 	 * The task might have changed its scheduling policy to something
1116 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1117 	 */
1118 	if (!dl_task(p))
1119 		goto unlock;
1120 
1121 	/*
1122 	 * The task might have been boosted by someone else and might be in the
1123 	 * boosting/deboosting path, its not throttled.
1124 	 */
1125 	if (is_dl_boosted(dl_se))
1126 		goto unlock;
1127 
1128 	/*
1129 	 * Spurious timer due to start_dl_timer() race; or we already received
1130 	 * a replenishment from rt_mutex_setprio().
1131 	 */
1132 	if (!dl_se->dl_throttled)
1133 		goto unlock;
1134 
1135 	sched_clock_tick();
1136 	update_rq_clock(rq);
1137 
1138 	/*
1139 	 * If the throttle happened during sched-out; like:
1140 	 *
1141 	 *   schedule()
1142 	 *     deactivate_task()
1143 	 *       dequeue_task_dl()
1144 	 *         update_curr_dl()
1145 	 *           start_dl_timer()
1146 	 *         __dequeue_task_dl()
1147 	 *     prev->on_rq = 0;
1148 	 *
1149 	 * We can be both throttled and !queued. Replenish the counter
1150 	 * but do not enqueue -- wait for our wakeup to do that.
1151 	 */
1152 	if (!task_on_rq_queued(p)) {
1153 		replenish_dl_entity(dl_se);
1154 		goto unlock;
1155 	}
1156 
1157 #ifdef CONFIG_SMP
1158 	if (unlikely(!rq->online)) {
1159 		/*
1160 		 * If the runqueue is no longer available, migrate the
1161 		 * task elsewhere. This necessarily changes rq.
1162 		 */
1163 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1164 		rq = dl_task_offline_migration(rq, p);
1165 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1166 		update_rq_clock(rq);
1167 
1168 		/*
1169 		 * Now that the task has been migrated to the new RQ and we
1170 		 * have that locked, proceed as normal and enqueue the task
1171 		 * there.
1172 		 */
1173 	}
1174 #endif
1175 
1176 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1177 	if (dl_task(rq->curr))
1178 		check_preempt_curr_dl(rq, p, 0);
1179 	else
1180 		resched_curr(rq);
1181 
1182 #ifdef CONFIG_SMP
1183 	/*
1184 	 * Queueing this task back might have overloaded rq, check if we need
1185 	 * to kick someone away.
1186 	 */
1187 	if (has_pushable_dl_tasks(rq)) {
1188 		/*
1189 		 * Nothing relies on rq->lock after this, so its safe to drop
1190 		 * rq->lock.
1191 		 */
1192 		rq_unpin_lock(rq, &rf);
1193 		push_dl_task(rq);
1194 		rq_repin_lock(rq, &rf);
1195 	}
1196 #endif
1197 
1198 unlock:
1199 	task_rq_unlock(rq, p, &rf);
1200 
1201 	/*
1202 	 * This can free the task_struct, including this hrtimer, do not touch
1203 	 * anything related to that after this.
1204 	 */
1205 	put_task_struct(p);
1206 
1207 	return HRTIMER_NORESTART;
1208 }
1209 
1210 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1211 {
1212 	struct hrtimer *timer = &dl_se->dl_timer;
1213 
1214 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1215 	timer->function = dl_task_timer;
1216 }
1217 
1218 /*
1219  * During the activation, CBS checks if it can reuse the current task's
1220  * runtime and period. If the deadline of the task is in the past, CBS
1221  * cannot use the runtime, and so it replenishes the task. This rule
1222  * works fine for implicit deadline tasks (deadline == period), and the
1223  * CBS was designed for implicit deadline tasks. However, a task with
1224  * constrained deadline (deadline < period) might be awakened after the
1225  * deadline, but before the next period. In this case, replenishing the
1226  * task would allow it to run for runtime / deadline. As in this case
1227  * deadline < period, CBS enables a task to run for more than the
1228  * runtime / period. In a very loaded system, this can cause a domino
1229  * effect, making other tasks miss their deadlines.
1230  *
1231  * To avoid this problem, in the activation of a constrained deadline
1232  * task after the deadline but before the next period, throttle the
1233  * task and set the replenishing timer to the begin of the next period,
1234  * unless it is boosted.
1235  */
1236 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1237 {
1238 	struct task_struct *p = dl_task_of(dl_se);
1239 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1240 
1241 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1242 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1243 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1244 			return;
1245 		dl_se->dl_throttled = 1;
1246 		if (dl_se->runtime > 0)
1247 			dl_se->runtime = 0;
1248 	}
1249 }
1250 
1251 static
1252 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1253 {
1254 	return (dl_se->runtime <= 0);
1255 }
1256 
1257 /*
1258  * This function implements the GRUB accounting rule:
1259  * according to the GRUB reclaiming algorithm, the runtime is
1260  * not decreased as "dq = -dt", but as
1261  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1262  * where u is the utilization of the task, Umax is the maximum reclaimable
1263  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1264  * as the difference between the "total runqueue utilization" and the
1265  * runqueue active utilization, and Uextra is the (per runqueue) extra
1266  * reclaimable utilization.
1267  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1268  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1269  * BW_SHIFT.
1270  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1271  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1272  * Since delta is a 64 bit variable, to have an overflow its value
1273  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1274  * So, overflow is not an issue here.
1275  */
1276 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1277 {
1278 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1279 	u64 u_act;
1280 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1281 
1282 	/*
1283 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1284 	 * we compare u_inact + rq->dl.extra_bw with
1285 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1286 	 * u_inact + rq->dl.extra_bw can be larger than
1287 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1288 	 * leading to wrong results)
1289 	 */
1290 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1291 		u_act = u_act_min;
1292 	else
1293 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1294 
1295 	return (delta * u_act) >> BW_SHIFT;
1296 }
1297 
1298 /*
1299  * Update the current task's runtime statistics (provided it is still
1300  * a -deadline task and has not been removed from the dl_rq).
1301  */
1302 static void update_curr_dl(struct rq *rq)
1303 {
1304 	struct task_struct *curr = rq->curr;
1305 	struct sched_dl_entity *dl_se = &curr->dl;
1306 	u64 delta_exec, scaled_delta_exec;
1307 	int cpu = cpu_of(rq);
1308 	u64 now;
1309 
1310 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1311 		return;
1312 
1313 	/*
1314 	 * Consumed budget is computed considering the time as
1315 	 * observed by schedulable tasks (excluding time spent
1316 	 * in hardirq context, etc.). Deadlines are instead
1317 	 * computed using hard walltime. This seems to be the more
1318 	 * natural solution, but the full ramifications of this
1319 	 * approach need further study.
1320 	 */
1321 	now = rq_clock_task(rq);
1322 	delta_exec = now - curr->se.exec_start;
1323 	if (unlikely((s64)delta_exec <= 0)) {
1324 		if (unlikely(dl_se->dl_yielded))
1325 			goto throttle;
1326 		return;
1327 	}
1328 
1329 	schedstat_set(curr->stats.exec_max,
1330 		      max(curr->stats.exec_max, delta_exec));
1331 
1332 	trace_sched_stat_runtime(curr, delta_exec, 0);
1333 
1334 	curr->se.sum_exec_runtime += delta_exec;
1335 	account_group_exec_runtime(curr, delta_exec);
1336 
1337 	curr->se.exec_start = now;
1338 	cgroup_account_cputime(curr, delta_exec);
1339 
1340 	if (dl_entity_is_special(dl_se))
1341 		return;
1342 
1343 	/*
1344 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1345 	 * spare reclaimed bandwidth is used to clock down frequency.
1346 	 *
1347 	 * For the others, we still need to scale reservation parameters
1348 	 * according to current frequency and CPU maximum capacity.
1349 	 */
1350 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1351 		scaled_delta_exec = grub_reclaim(delta_exec,
1352 						 rq,
1353 						 &curr->dl);
1354 	} else {
1355 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1356 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1357 
1358 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1359 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1360 	}
1361 
1362 	dl_se->runtime -= scaled_delta_exec;
1363 
1364 throttle:
1365 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1366 		dl_se->dl_throttled = 1;
1367 
1368 		/* If requested, inform the user about runtime overruns. */
1369 		if (dl_runtime_exceeded(dl_se) &&
1370 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1371 			dl_se->dl_overrun = 1;
1372 
1373 		__dequeue_task_dl(rq, curr, 0);
1374 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1375 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1376 
1377 		if (!is_leftmost(curr, &rq->dl))
1378 			resched_curr(rq);
1379 	}
1380 
1381 	/*
1382 	 * Because -- for now -- we share the rt bandwidth, we need to
1383 	 * account our runtime there too, otherwise actual rt tasks
1384 	 * would be able to exceed the shared quota.
1385 	 *
1386 	 * Account to the root rt group for now.
1387 	 *
1388 	 * The solution we're working towards is having the RT groups scheduled
1389 	 * using deadline servers -- however there's a few nasties to figure
1390 	 * out before that can happen.
1391 	 */
1392 	if (rt_bandwidth_enabled()) {
1393 		struct rt_rq *rt_rq = &rq->rt;
1394 
1395 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1396 		/*
1397 		 * We'll let actual RT tasks worry about the overflow here, we
1398 		 * have our own CBS to keep us inline; only account when RT
1399 		 * bandwidth is relevant.
1400 		 */
1401 		if (sched_rt_bandwidth_account(rt_rq))
1402 			rt_rq->rt_time += delta_exec;
1403 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1404 	}
1405 }
1406 
1407 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1408 {
1409 	struct sched_dl_entity *dl_se = container_of(timer,
1410 						     struct sched_dl_entity,
1411 						     inactive_timer);
1412 	struct task_struct *p = dl_task_of(dl_se);
1413 	struct rq_flags rf;
1414 	struct rq *rq;
1415 
1416 	rq = task_rq_lock(p, &rf);
1417 
1418 	sched_clock_tick();
1419 	update_rq_clock(rq);
1420 
1421 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1422 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1423 
1424 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1425 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1426 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1427 			dl_se->dl_non_contending = 0;
1428 		}
1429 
1430 		raw_spin_lock(&dl_b->lock);
1431 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1432 		raw_spin_unlock(&dl_b->lock);
1433 		__dl_clear_params(p);
1434 
1435 		goto unlock;
1436 	}
1437 	if (dl_se->dl_non_contending == 0)
1438 		goto unlock;
1439 
1440 	sub_running_bw(dl_se, &rq->dl);
1441 	dl_se->dl_non_contending = 0;
1442 unlock:
1443 	task_rq_unlock(rq, p, &rf);
1444 	put_task_struct(p);
1445 
1446 	return HRTIMER_NORESTART;
1447 }
1448 
1449 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1450 {
1451 	struct hrtimer *timer = &dl_se->inactive_timer;
1452 
1453 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1454 	timer->function = inactive_task_timer;
1455 }
1456 
1457 #define __node_2_dle(node) \
1458 	rb_entry((node), struct sched_dl_entity, rb_node)
1459 
1460 #ifdef CONFIG_SMP
1461 
1462 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1463 {
1464 	struct rq *rq = rq_of_dl_rq(dl_rq);
1465 
1466 	if (dl_rq->earliest_dl.curr == 0 ||
1467 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1468 		if (dl_rq->earliest_dl.curr == 0)
1469 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1470 		dl_rq->earliest_dl.curr = deadline;
1471 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1472 	}
1473 }
1474 
1475 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1476 {
1477 	struct rq *rq = rq_of_dl_rq(dl_rq);
1478 
1479 	/*
1480 	 * Since we may have removed our earliest (and/or next earliest)
1481 	 * task we must recompute them.
1482 	 */
1483 	if (!dl_rq->dl_nr_running) {
1484 		dl_rq->earliest_dl.curr = 0;
1485 		dl_rq->earliest_dl.next = 0;
1486 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1487 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1488 	} else {
1489 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1490 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1491 
1492 		dl_rq->earliest_dl.curr = entry->deadline;
1493 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1494 	}
1495 }
1496 
1497 #else
1498 
1499 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1500 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1501 
1502 #endif /* CONFIG_SMP */
1503 
1504 static inline
1505 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1506 {
1507 	int prio = dl_task_of(dl_se)->prio;
1508 	u64 deadline = dl_se->deadline;
1509 
1510 	WARN_ON(!dl_prio(prio));
1511 	dl_rq->dl_nr_running++;
1512 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1513 
1514 	inc_dl_deadline(dl_rq, deadline);
1515 	inc_dl_migration(dl_se, dl_rq);
1516 }
1517 
1518 static inline
1519 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1520 {
1521 	int prio = dl_task_of(dl_se)->prio;
1522 
1523 	WARN_ON(!dl_prio(prio));
1524 	WARN_ON(!dl_rq->dl_nr_running);
1525 	dl_rq->dl_nr_running--;
1526 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1527 
1528 	dec_dl_deadline(dl_rq, dl_se->deadline);
1529 	dec_dl_migration(dl_se, dl_rq);
1530 }
1531 
1532 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1533 {
1534 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1535 }
1536 
1537 static inline struct sched_statistics *
1538 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1539 {
1540 	return &dl_task_of(dl_se)->stats;
1541 }
1542 
1543 static inline void
1544 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1545 {
1546 	struct sched_statistics *stats;
1547 
1548 	if (!schedstat_enabled())
1549 		return;
1550 
1551 	stats = __schedstats_from_dl_se(dl_se);
1552 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1553 }
1554 
1555 static inline void
1556 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1557 {
1558 	struct sched_statistics *stats;
1559 
1560 	if (!schedstat_enabled())
1561 		return;
1562 
1563 	stats = __schedstats_from_dl_se(dl_se);
1564 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1565 }
1566 
1567 static inline void
1568 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1569 {
1570 	struct sched_statistics *stats;
1571 
1572 	if (!schedstat_enabled())
1573 		return;
1574 
1575 	stats = __schedstats_from_dl_se(dl_se);
1576 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1577 }
1578 
1579 static inline void
1580 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1581 			int flags)
1582 {
1583 	if (!schedstat_enabled())
1584 		return;
1585 
1586 	if (flags & ENQUEUE_WAKEUP)
1587 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1588 }
1589 
1590 static inline void
1591 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1592 			int flags)
1593 {
1594 	struct task_struct *p = dl_task_of(dl_se);
1595 
1596 	if (!schedstat_enabled())
1597 		return;
1598 
1599 	if ((flags & DEQUEUE_SLEEP)) {
1600 		unsigned int state;
1601 
1602 		state = READ_ONCE(p->__state);
1603 		if (state & TASK_INTERRUPTIBLE)
1604 			__schedstat_set(p->stats.sleep_start,
1605 					rq_clock(rq_of_dl_rq(dl_rq)));
1606 
1607 		if (state & TASK_UNINTERRUPTIBLE)
1608 			__schedstat_set(p->stats.block_start,
1609 					rq_clock(rq_of_dl_rq(dl_rq)));
1610 	}
1611 }
1612 
1613 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1614 {
1615 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1616 
1617 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1618 
1619 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1620 
1621 	inc_dl_tasks(dl_se, dl_rq);
1622 }
1623 
1624 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1625 {
1626 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1627 
1628 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1629 		return;
1630 
1631 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1632 
1633 	RB_CLEAR_NODE(&dl_se->rb_node);
1634 
1635 	dec_dl_tasks(dl_se, dl_rq);
1636 }
1637 
1638 static void
1639 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1640 {
1641 	BUG_ON(on_dl_rq(dl_se));
1642 
1643 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1644 
1645 	/*
1646 	 * If this is a wakeup or a new instance, the scheduling
1647 	 * parameters of the task might need updating. Otherwise,
1648 	 * we want a replenishment of its runtime.
1649 	 */
1650 	if (flags & ENQUEUE_WAKEUP) {
1651 		task_contending(dl_se, flags);
1652 		update_dl_entity(dl_se);
1653 	} else if (flags & ENQUEUE_REPLENISH) {
1654 		replenish_dl_entity(dl_se);
1655 	} else if ((flags & ENQUEUE_RESTORE) &&
1656 		  dl_time_before(dl_se->deadline,
1657 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1658 		setup_new_dl_entity(dl_se);
1659 	}
1660 
1661 	__enqueue_dl_entity(dl_se);
1662 }
1663 
1664 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1665 {
1666 	__dequeue_dl_entity(dl_se);
1667 }
1668 
1669 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1670 {
1671 	if (is_dl_boosted(&p->dl)) {
1672 		/*
1673 		 * Because of delays in the detection of the overrun of a
1674 		 * thread's runtime, it might be the case that a thread
1675 		 * goes to sleep in a rt mutex with negative runtime. As
1676 		 * a consequence, the thread will be throttled.
1677 		 *
1678 		 * While waiting for the mutex, this thread can also be
1679 		 * boosted via PI, resulting in a thread that is throttled
1680 		 * and boosted at the same time.
1681 		 *
1682 		 * In this case, the boost overrides the throttle.
1683 		 */
1684 		if (p->dl.dl_throttled) {
1685 			/*
1686 			 * The replenish timer needs to be canceled. No
1687 			 * problem if it fires concurrently: boosted threads
1688 			 * are ignored in dl_task_timer().
1689 			 */
1690 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1691 			p->dl.dl_throttled = 0;
1692 		}
1693 	} else if (!dl_prio(p->normal_prio)) {
1694 		/*
1695 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1696 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1697 		 * replenishing it, as it's going to return back to its original
1698 		 * scheduling class after this. If it has been throttled, we need to
1699 		 * clear the flag, otherwise the task may wake up as throttled after
1700 		 * being boosted again with no means to replenish the runtime and clear
1701 		 * the throttle.
1702 		 */
1703 		p->dl.dl_throttled = 0;
1704 		BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1705 		return;
1706 	}
1707 
1708 	/*
1709 	 * Check if a constrained deadline task was activated
1710 	 * after the deadline but before the next period.
1711 	 * If that is the case, the task will be throttled and
1712 	 * the replenishment timer will be set to the next period.
1713 	 */
1714 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1715 		dl_check_constrained_dl(&p->dl);
1716 
1717 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1718 		add_rq_bw(&p->dl, &rq->dl);
1719 		add_running_bw(&p->dl, &rq->dl);
1720 	}
1721 
1722 	/*
1723 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1724 	 * its budget it needs a replenishment and, since it now is on
1725 	 * its rq, the bandwidth timer callback (which clearly has not
1726 	 * run yet) will take care of this.
1727 	 * However, the active utilization does not depend on the fact
1728 	 * that the task is on the runqueue or not (but depends on the
1729 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1730 	 * In other words, even if a task is throttled its utilization must
1731 	 * be counted in the active utilization; hence, we need to call
1732 	 * add_running_bw().
1733 	 */
1734 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1735 		if (flags & ENQUEUE_WAKEUP)
1736 			task_contending(&p->dl, flags);
1737 
1738 		return;
1739 	}
1740 
1741 	check_schedstat_required();
1742 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1743 
1744 	enqueue_dl_entity(&p->dl, flags);
1745 
1746 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1747 		enqueue_pushable_dl_task(rq, p);
1748 }
1749 
1750 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1751 {
1752 	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1753 	dequeue_dl_entity(&p->dl);
1754 	dequeue_pushable_dl_task(rq, p);
1755 }
1756 
1757 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1758 {
1759 	update_curr_dl(rq);
1760 	__dequeue_task_dl(rq, p, flags);
1761 
1762 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1763 		sub_running_bw(&p->dl, &rq->dl);
1764 		sub_rq_bw(&p->dl, &rq->dl);
1765 	}
1766 
1767 	/*
1768 	 * This check allows to start the inactive timer (or to immediately
1769 	 * decrease the active utilization, if needed) in two cases:
1770 	 * when the task blocks and when it is terminating
1771 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1772 	 * way, because from GRUB's point of view the same thing is happening
1773 	 * (the task moves from "active contending" to "active non contending"
1774 	 * or "inactive")
1775 	 */
1776 	if (flags & DEQUEUE_SLEEP)
1777 		task_non_contending(p);
1778 }
1779 
1780 /*
1781  * Yield task semantic for -deadline tasks is:
1782  *
1783  *   get off from the CPU until our next instance, with
1784  *   a new runtime. This is of little use now, since we
1785  *   don't have a bandwidth reclaiming mechanism. Anyway,
1786  *   bandwidth reclaiming is planned for the future, and
1787  *   yield_task_dl will indicate that some spare budget
1788  *   is available for other task instances to use it.
1789  */
1790 static void yield_task_dl(struct rq *rq)
1791 {
1792 	/*
1793 	 * We make the task go to sleep until its current deadline by
1794 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1795 	 * it and the bandwidth timer will wake it up and will give it
1796 	 * new scheduling parameters (thanks to dl_yielded=1).
1797 	 */
1798 	rq->curr->dl.dl_yielded = 1;
1799 
1800 	update_rq_clock(rq);
1801 	update_curr_dl(rq);
1802 	/*
1803 	 * Tell update_rq_clock() that we've just updated,
1804 	 * so we don't do microscopic update in schedule()
1805 	 * and double the fastpath cost.
1806 	 */
1807 	rq_clock_skip_update(rq);
1808 }
1809 
1810 #ifdef CONFIG_SMP
1811 
1812 static int find_later_rq(struct task_struct *task);
1813 
1814 static int
1815 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1816 {
1817 	struct task_struct *curr;
1818 	bool select_rq;
1819 	struct rq *rq;
1820 
1821 	if (!(flags & WF_TTWU))
1822 		goto out;
1823 
1824 	rq = cpu_rq(cpu);
1825 
1826 	rcu_read_lock();
1827 	curr = READ_ONCE(rq->curr); /* unlocked access */
1828 
1829 	/*
1830 	 * If we are dealing with a -deadline task, we must
1831 	 * decide where to wake it up.
1832 	 * If it has a later deadline and the current task
1833 	 * on this rq can't move (provided the waking task
1834 	 * can!) we prefer to send it somewhere else. On the
1835 	 * other hand, if it has a shorter deadline, we
1836 	 * try to make it stay here, it might be important.
1837 	 */
1838 	select_rq = unlikely(dl_task(curr)) &&
1839 		    (curr->nr_cpus_allowed < 2 ||
1840 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1841 		    p->nr_cpus_allowed > 1;
1842 
1843 	/*
1844 	 * Take the capacity of the CPU into account to
1845 	 * ensure it fits the requirement of the task.
1846 	 */
1847 	if (static_branch_unlikely(&sched_asym_cpucapacity))
1848 		select_rq |= !dl_task_fits_capacity(p, cpu);
1849 
1850 	if (select_rq) {
1851 		int target = find_later_rq(p);
1852 
1853 		if (target != -1 &&
1854 				(dl_time_before(p->dl.deadline,
1855 					cpu_rq(target)->dl.earliest_dl.curr) ||
1856 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1857 			cpu = target;
1858 	}
1859 	rcu_read_unlock();
1860 
1861 out:
1862 	return cpu;
1863 }
1864 
1865 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1866 {
1867 	struct rq_flags rf;
1868 	struct rq *rq;
1869 
1870 	if (READ_ONCE(p->__state) != TASK_WAKING)
1871 		return;
1872 
1873 	rq = task_rq(p);
1874 	/*
1875 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1876 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1877 	 * rq->lock is not... So, lock it
1878 	 */
1879 	rq_lock(rq, &rf);
1880 	if (p->dl.dl_non_contending) {
1881 		update_rq_clock(rq);
1882 		sub_running_bw(&p->dl, &rq->dl);
1883 		p->dl.dl_non_contending = 0;
1884 		/*
1885 		 * If the timer handler is currently running and the
1886 		 * timer cannot be canceled, inactive_task_timer()
1887 		 * will see that dl_not_contending is not set, and
1888 		 * will not touch the rq's active utilization,
1889 		 * so we are still safe.
1890 		 */
1891 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1892 			put_task_struct(p);
1893 	}
1894 	sub_rq_bw(&p->dl, &rq->dl);
1895 	rq_unlock(rq, &rf);
1896 }
1897 
1898 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1899 {
1900 	/*
1901 	 * Current can't be migrated, useless to reschedule,
1902 	 * let's hope p can move out.
1903 	 */
1904 	if (rq->curr->nr_cpus_allowed == 1 ||
1905 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1906 		return;
1907 
1908 	/*
1909 	 * p is migratable, so let's not schedule it and
1910 	 * see if it is pushed or pulled somewhere else.
1911 	 */
1912 	if (p->nr_cpus_allowed != 1 &&
1913 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1914 		return;
1915 
1916 	resched_curr(rq);
1917 }
1918 
1919 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1920 {
1921 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1922 		/*
1923 		 * This is OK, because current is on_cpu, which avoids it being
1924 		 * picked for load-balance and preemption/IRQs are still
1925 		 * disabled avoiding further scheduler activity on it and we've
1926 		 * not yet started the picking loop.
1927 		 */
1928 		rq_unpin_lock(rq, rf);
1929 		pull_dl_task(rq);
1930 		rq_repin_lock(rq, rf);
1931 	}
1932 
1933 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1934 }
1935 #endif /* CONFIG_SMP */
1936 
1937 /*
1938  * Only called when both the current and waking task are -deadline
1939  * tasks.
1940  */
1941 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1942 				  int flags)
1943 {
1944 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1945 		resched_curr(rq);
1946 		return;
1947 	}
1948 
1949 #ifdef CONFIG_SMP
1950 	/*
1951 	 * In the unlikely case current and p have the same deadline
1952 	 * let us try to decide what's the best thing to do...
1953 	 */
1954 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1955 	    !test_tsk_need_resched(rq->curr))
1956 		check_preempt_equal_dl(rq, p);
1957 #endif /* CONFIG_SMP */
1958 }
1959 
1960 #ifdef CONFIG_SCHED_HRTICK
1961 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1962 {
1963 	hrtick_start(rq, p->dl.runtime);
1964 }
1965 #else /* !CONFIG_SCHED_HRTICK */
1966 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1967 {
1968 }
1969 #endif
1970 
1971 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1972 {
1973 	struct sched_dl_entity *dl_se = &p->dl;
1974 	struct dl_rq *dl_rq = &rq->dl;
1975 
1976 	p->se.exec_start = rq_clock_task(rq);
1977 	if (on_dl_rq(&p->dl))
1978 		update_stats_wait_end_dl(dl_rq, dl_se);
1979 
1980 	/* You can't push away the running task */
1981 	dequeue_pushable_dl_task(rq, p);
1982 
1983 	if (!first)
1984 		return;
1985 
1986 	if (hrtick_enabled_dl(rq))
1987 		start_hrtick_dl(rq, p);
1988 
1989 	if (rq->curr->sched_class != &dl_sched_class)
1990 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1991 
1992 	deadline_queue_push_tasks(rq);
1993 }
1994 
1995 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1996 {
1997 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1998 
1999 	if (!left)
2000 		return NULL;
2001 
2002 	return __node_2_dle(left);
2003 }
2004 
2005 static struct task_struct *pick_task_dl(struct rq *rq)
2006 {
2007 	struct sched_dl_entity *dl_se;
2008 	struct dl_rq *dl_rq = &rq->dl;
2009 	struct task_struct *p;
2010 
2011 	if (!sched_dl_runnable(rq))
2012 		return NULL;
2013 
2014 	dl_se = pick_next_dl_entity(dl_rq);
2015 	BUG_ON(!dl_se);
2016 	p = dl_task_of(dl_se);
2017 
2018 	return p;
2019 }
2020 
2021 static struct task_struct *pick_next_task_dl(struct rq *rq)
2022 {
2023 	struct task_struct *p;
2024 
2025 	p = pick_task_dl(rq);
2026 	if (p)
2027 		set_next_task_dl(rq, p, true);
2028 
2029 	return p;
2030 }
2031 
2032 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2033 {
2034 	struct sched_dl_entity *dl_se = &p->dl;
2035 	struct dl_rq *dl_rq = &rq->dl;
2036 
2037 	if (on_dl_rq(&p->dl))
2038 		update_stats_wait_start_dl(dl_rq, dl_se);
2039 
2040 	update_curr_dl(rq);
2041 
2042 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2043 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2044 		enqueue_pushable_dl_task(rq, p);
2045 }
2046 
2047 /*
2048  * scheduler tick hitting a task of our scheduling class.
2049  *
2050  * NOTE: This function can be called remotely by the tick offload that
2051  * goes along full dynticks. Therefore no local assumption can be made
2052  * and everything must be accessed through the @rq and @curr passed in
2053  * parameters.
2054  */
2055 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2056 {
2057 	update_curr_dl(rq);
2058 
2059 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2060 	/*
2061 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2062 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2063 	 * be set and schedule() will start a new hrtick for the next task.
2064 	 */
2065 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2066 	    is_leftmost(p, &rq->dl))
2067 		start_hrtick_dl(rq, p);
2068 }
2069 
2070 static void task_fork_dl(struct task_struct *p)
2071 {
2072 	/*
2073 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2074 	 * sched_fork()
2075 	 */
2076 }
2077 
2078 #ifdef CONFIG_SMP
2079 
2080 /* Only try algorithms three times */
2081 #define DL_MAX_TRIES 3
2082 
2083 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2084 {
2085 	if (!task_running(rq, p) &&
2086 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2087 		return 1;
2088 	return 0;
2089 }
2090 
2091 /*
2092  * Return the earliest pushable rq's task, which is suitable to be executed
2093  * on the CPU, NULL otherwise:
2094  */
2095 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2096 {
2097 	struct task_struct *p = NULL;
2098 	struct rb_node *next_node;
2099 
2100 	if (!has_pushable_dl_tasks(rq))
2101 		return NULL;
2102 
2103 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2104 
2105 next_node:
2106 	if (next_node) {
2107 		p = __node_2_pdl(next_node);
2108 
2109 		if (pick_dl_task(rq, p, cpu))
2110 			return p;
2111 
2112 		next_node = rb_next(next_node);
2113 		goto next_node;
2114 	}
2115 
2116 	return NULL;
2117 }
2118 
2119 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2120 
2121 static int find_later_rq(struct task_struct *task)
2122 {
2123 	struct sched_domain *sd;
2124 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2125 	int this_cpu = smp_processor_id();
2126 	int cpu = task_cpu(task);
2127 
2128 	/* Make sure the mask is initialized first */
2129 	if (unlikely(!later_mask))
2130 		return -1;
2131 
2132 	if (task->nr_cpus_allowed == 1)
2133 		return -1;
2134 
2135 	/*
2136 	 * We have to consider system topology and task affinity
2137 	 * first, then we can look for a suitable CPU.
2138 	 */
2139 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2140 		return -1;
2141 
2142 	/*
2143 	 * If we are here, some targets have been found, including
2144 	 * the most suitable which is, among the runqueues where the
2145 	 * current tasks have later deadlines than the task's one, the
2146 	 * rq with the latest possible one.
2147 	 *
2148 	 * Now we check how well this matches with task's
2149 	 * affinity and system topology.
2150 	 *
2151 	 * The last CPU where the task run is our first
2152 	 * guess, since it is most likely cache-hot there.
2153 	 */
2154 	if (cpumask_test_cpu(cpu, later_mask))
2155 		return cpu;
2156 	/*
2157 	 * Check if this_cpu is to be skipped (i.e., it is
2158 	 * not in the mask) or not.
2159 	 */
2160 	if (!cpumask_test_cpu(this_cpu, later_mask))
2161 		this_cpu = -1;
2162 
2163 	rcu_read_lock();
2164 	for_each_domain(cpu, sd) {
2165 		if (sd->flags & SD_WAKE_AFFINE) {
2166 			int best_cpu;
2167 
2168 			/*
2169 			 * If possible, preempting this_cpu is
2170 			 * cheaper than migrating.
2171 			 */
2172 			if (this_cpu != -1 &&
2173 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2174 				rcu_read_unlock();
2175 				return this_cpu;
2176 			}
2177 
2178 			best_cpu = cpumask_any_and_distribute(later_mask,
2179 							      sched_domain_span(sd));
2180 			/*
2181 			 * Last chance: if a CPU being in both later_mask
2182 			 * and current sd span is valid, that becomes our
2183 			 * choice. Of course, the latest possible CPU is
2184 			 * already under consideration through later_mask.
2185 			 */
2186 			if (best_cpu < nr_cpu_ids) {
2187 				rcu_read_unlock();
2188 				return best_cpu;
2189 			}
2190 		}
2191 	}
2192 	rcu_read_unlock();
2193 
2194 	/*
2195 	 * At this point, all our guesses failed, we just return
2196 	 * 'something', and let the caller sort the things out.
2197 	 */
2198 	if (this_cpu != -1)
2199 		return this_cpu;
2200 
2201 	cpu = cpumask_any_distribute(later_mask);
2202 	if (cpu < nr_cpu_ids)
2203 		return cpu;
2204 
2205 	return -1;
2206 }
2207 
2208 /* Locks the rq it finds */
2209 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2210 {
2211 	struct rq *later_rq = NULL;
2212 	int tries;
2213 	int cpu;
2214 
2215 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2216 		cpu = find_later_rq(task);
2217 
2218 		if ((cpu == -1) || (cpu == rq->cpu))
2219 			break;
2220 
2221 		later_rq = cpu_rq(cpu);
2222 
2223 		if (later_rq->dl.dl_nr_running &&
2224 		    !dl_time_before(task->dl.deadline,
2225 					later_rq->dl.earliest_dl.curr)) {
2226 			/*
2227 			 * Target rq has tasks of equal or earlier deadline,
2228 			 * retrying does not release any lock and is unlikely
2229 			 * to yield a different result.
2230 			 */
2231 			later_rq = NULL;
2232 			break;
2233 		}
2234 
2235 		/* Retry if something changed. */
2236 		if (double_lock_balance(rq, later_rq)) {
2237 			if (unlikely(task_rq(task) != rq ||
2238 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2239 				     task_running(rq, task) ||
2240 				     !dl_task(task) ||
2241 				     !task_on_rq_queued(task))) {
2242 				double_unlock_balance(rq, later_rq);
2243 				later_rq = NULL;
2244 				break;
2245 			}
2246 		}
2247 
2248 		/*
2249 		 * If the rq we found has no -deadline task, or
2250 		 * its earliest one has a later deadline than our
2251 		 * task, the rq is a good one.
2252 		 */
2253 		if (!later_rq->dl.dl_nr_running ||
2254 		    dl_time_before(task->dl.deadline,
2255 				   later_rq->dl.earliest_dl.curr))
2256 			break;
2257 
2258 		/* Otherwise we try again. */
2259 		double_unlock_balance(rq, later_rq);
2260 		later_rq = NULL;
2261 	}
2262 
2263 	return later_rq;
2264 }
2265 
2266 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2267 {
2268 	struct task_struct *p;
2269 
2270 	if (!has_pushable_dl_tasks(rq))
2271 		return NULL;
2272 
2273 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2274 
2275 	BUG_ON(rq->cpu != task_cpu(p));
2276 	BUG_ON(task_current(rq, p));
2277 	BUG_ON(p->nr_cpus_allowed <= 1);
2278 
2279 	BUG_ON(!task_on_rq_queued(p));
2280 	BUG_ON(!dl_task(p));
2281 
2282 	return p;
2283 }
2284 
2285 /*
2286  * See if the non running -deadline tasks on this rq
2287  * can be sent to some other CPU where they can preempt
2288  * and start executing.
2289  */
2290 static int push_dl_task(struct rq *rq)
2291 {
2292 	struct task_struct *next_task;
2293 	struct rq *later_rq;
2294 	int ret = 0;
2295 
2296 	if (!rq->dl.overloaded)
2297 		return 0;
2298 
2299 	next_task = pick_next_pushable_dl_task(rq);
2300 	if (!next_task)
2301 		return 0;
2302 
2303 retry:
2304 	/*
2305 	 * If next_task preempts rq->curr, and rq->curr
2306 	 * can move away, it makes sense to just reschedule
2307 	 * without going further in pushing next_task.
2308 	 */
2309 	if (dl_task(rq->curr) &&
2310 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2311 	    rq->curr->nr_cpus_allowed > 1) {
2312 		resched_curr(rq);
2313 		return 0;
2314 	}
2315 
2316 	if (is_migration_disabled(next_task))
2317 		return 0;
2318 
2319 	if (WARN_ON(next_task == rq->curr))
2320 		return 0;
2321 
2322 	/* We might release rq lock */
2323 	get_task_struct(next_task);
2324 
2325 	/* Will lock the rq it'll find */
2326 	later_rq = find_lock_later_rq(next_task, rq);
2327 	if (!later_rq) {
2328 		struct task_struct *task;
2329 
2330 		/*
2331 		 * We must check all this again, since
2332 		 * find_lock_later_rq releases rq->lock and it is
2333 		 * then possible that next_task has migrated.
2334 		 */
2335 		task = pick_next_pushable_dl_task(rq);
2336 		if (task == next_task) {
2337 			/*
2338 			 * The task is still there. We don't try
2339 			 * again, some other CPU will pull it when ready.
2340 			 */
2341 			goto out;
2342 		}
2343 
2344 		if (!task)
2345 			/* No more tasks */
2346 			goto out;
2347 
2348 		put_task_struct(next_task);
2349 		next_task = task;
2350 		goto retry;
2351 	}
2352 
2353 	deactivate_task(rq, next_task, 0);
2354 	set_task_cpu(next_task, later_rq->cpu);
2355 	activate_task(later_rq, next_task, 0);
2356 	ret = 1;
2357 
2358 	resched_curr(later_rq);
2359 
2360 	double_unlock_balance(rq, later_rq);
2361 
2362 out:
2363 	put_task_struct(next_task);
2364 
2365 	return ret;
2366 }
2367 
2368 static void push_dl_tasks(struct rq *rq)
2369 {
2370 	/* push_dl_task() will return true if it moved a -deadline task */
2371 	while (push_dl_task(rq))
2372 		;
2373 }
2374 
2375 static void pull_dl_task(struct rq *this_rq)
2376 {
2377 	int this_cpu = this_rq->cpu, cpu;
2378 	struct task_struct *p, *push_task;
2379 	bool resched = false;
2380 	struct rq *src_rq;
2381 	u64 dmin = LONG_MAX;
2382 
2383 	if (likely(!dl_overloaded(this_rq)))
2384 		return;
2385 
2386 	/*
2387 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2388 	 * see overloaded we must also see the dlo_mask bit.
2389 	 */
2390 	smp_rmb();
2391 
2392 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2393 		if (this_cpu == cpu)
2394 			continue;
2395 
2396 		src_rq = cpu_rq(cpu);
2397 
2398 		/*
2399 		 * It looks racy, abd it is! However, as in sched_rt.c,
2400 		 * we are fine with this.
2401 		 */
2402 		if (this_rq->dl.dl_nr_running &&
2403 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2404 				   src_rq->dl.earliest_dl.next))
2405 			continue;
2406 
2407 		/* Might drop this_rq->lock */
2408 		push_task = NULL;
2409 		double_lock_balance(this_rq, src_rq);
2410 
2411 		/*
2412 		 * If there are no more pullable tasks on the
2413 		 * rq, we're done with it.
2414 		 */
2415 		if (src_rq->dl.dl_nr_running <= 1)
2416 			goto skip;
2417 
2418 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2419 
2420 		/*
2421 		 * We found a task to be pulled if:
2422 		 *  - it preempts our current (if there's one),
2423 		 *  - it will preempt the last one we pulled (if any).
2424 		 */
2425 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2426 		    (!this_rq->dl.dl_nr_running ||
2427 		     dl_time_before(p->dl.deadline,
2428 				    this_rq->dl.earliest_dl.curr))) {
2429 			WARN_ON(p == src_rq->curr);
2430 			WARN_ON(!task_on_rq_queued(p));
2431 
2432 			/*
2433 			 * Then we pull iff p has actually an earlier
2434 			 * deadline than the current task of its runqueue.
2435 			 */
2436 			if (dl_time_before(p->dl.deadline,
2437 					   src_rq->curr->dl.deadline))
2438 				goto skip;
2439 
2440 			if (is_migration_disabled(p)) {
2441 				push_task = get_push_task(src_rq);
2442 			} else {
2443 				deactivate_task(src_rq, p, 0);
2444 				set_task_cpu(p, this_cpu);
2445 				activate_task(this_rq, p, 0);
2446 				dmin = p->dl.deadline;
2447 				resched = true;
2448 			}
2449 
2450 			/* Is there any other task even earlier? */
2451 		}
2452 skip:
2453 		double_unlock_balance(this_rq, src_rq);
2454 
2455 		if (push_task) {
2456 			raw_spin_rq_unlock(this_rq);
2457 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2458 					    push_task, &src_rq->push_work);
2459 			raw_spin_rq_lock(this_rq);
2460 		}
2461 	}
2462 
2463 	if (resched)
2464 		resched_curr(this_rq);
2465 }
2466 
2467 /*
2468  * Since the task is not running and a reschedule is not going to happen
2469  * anytime soon on its runqueue, we try pushing it away now.
2470  */
2471 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2472 {
2473 	if (!task_running(rq, p) &&
2474 	    !test_tsk_need_resched(rq->curr) &&
2475 	    p->nr_cpus_allowed > 1 &&
2476 	    dl_task(rq->curr) &&
2477 	    (rq->curr->nr_cpus_allowed < 2 ||
2478 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2479 		push_dl_tasks(rq);
2480 	}
2481 }
2482 
2483 static void set_cpus_allowed_dl(struct task_struct *p,
2484 				const struct cpumask *new_mask,
2485 				u32 flags)
2486 {
2487 	struct root_domain *src_rd;
2488 	struct rq *rq;
2489 
2490 	BUG_ON(!dl_task(p));
2491 
2492 	rq = task_rq(p);
2493 	src_rd = rq->rd;
2494 	/*
2495 	 * Migrating a SCHED_DEADLINE task between exclusive
2496 	 * cpusets (different root_domains) entails a bandwidth
2497 	 * update. We already made space for us in the destination
2498 	 * domain (see cpuset_can_attach()).
2499 	 */
2500 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2501 		struct dl_bw *src_dl_b;
2502 
2503 		src_dl_b = dl_bw_of(cpu_of(rq));
2504 		/*
2505 		 * We now free resources of the root_domain we are migrating
2506 		 * off. In the worst case, sched_setattr() may temporary fail
2507 		 * until we complete the update.
2508 		 */
2509 		raw_spin_lock(&src_dl_b->lock);
2510 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2511 		raw_spin_unlock(&src_dl_b->lock);
2512 	}
2513 
2514 	set_cpus_allowed_common(p, new_mask, flags);
2515 }
2516 
2517 /* Assumes rq->lock is held */
2518 static void rq_online_dl(struct rq *rq)
2519 {
2520 	if (rq->dl.overloaded)
2521 		dl_set_overload(rq);
2522 
2523 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2524 	if (rq->dl.dl_nr_running > 0)
2525 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2526 }
2527 
2528 /* Assumes rq->lock is held */
2529 static void rq_offline_dl(struct rq *rq)
2530 {
2531 	if (rq->dl.overloaded)
2532 		dl_clear_overload(rq);
2533 
2534 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2535 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2536 }
2537 
2538 void __init init_sched_dl_class(void)
2539 {
2540 	unsigned int i;
2541 
2542 	for_each_possible_cpu(i)
2543 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2544 					GFP_KERNEL, cpu_to_node(i));
2545 }
2546 
2547 void dl_add_task_root_domain(struct task_struct *p)
2548 {
2549 	struct rq_flags rf;
2550 	struct rq *rq;
2551 	struct dl_bw *dl_b;
2552 
2553 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2554 	if (!dl_task(p)) {
2555 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2556 		return;
2557 	}
2558 
2559 	rq = __task_rq_lock(p, &rf);
2560 
2561 	dl_b = &rq->rd->dl_bw;
2562 	raw_spin_lock(&dl_b->lock);
2563 
2564 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2565 
2566 	raw_spin_unlock(&dl_b->lock);
2567 
2568 	task_rq_unlock(rq, p, &rf);
2569 }
2570 
2571 void dl_clear_root_domain(struct root_domain *rd)
2572 {
2573 	unsigned long flags;
2574 
2575 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2576 	rd->dl_bw.total_bw = 0;
2577 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2578 }
2579 
2580 #endif /* CONFIG_SMP */
2581 
2582 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2583 {
2584 	/*
2585 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2586 	 * time is in the future). If the task switches back to dl before
2587 	 * the "inactive timer" fires, it can continue to consume its current
2588 	 * runtime using its current deadline. If it stays outside of
2589 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2590 	 * will reset the task parameters.
2591 	 */
2592 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2593 		task_non_contending(p);
2594 
2595 	if (!task_on_rq_queued(p)) {
2596 		/*
2597 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2598 		 * might migrate away from this rq while continuing to run on
2599 		 * some other class. We need to remove its contribution from
2600 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2601 		 */
2602 		if (p->dl.dl_non_contending)
2603 			sub_running_bw(&p->dl, &rq->dl);
2604 		sub_rq_bw(&p->dl, &rq->dl);
2605 	}
2606 
2607 	/*
2608 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2609 	 * at the 0-lag time, because the task could have been migrated
2610 	 * while SCHED_OTHER in the meanwhile.
2611 	 */
2612 	if (p->dl.dl_non_contending)
2613 		p->dl.dl_non_contending = 0;
2614 
2615 	/*
2616 	 * Since this might be the only -deadline task on the rq,
2617 	 * this is the right place to try to pull some other one
2618 	 * from an overloaded CPU, if any.
2619 	 */
2620 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2621 		return;
2622 
2623 	deadline_queue_pull_task(rq);
2624 }
2625 
2626 /*
2627  * When switching to -deadline, we may overload the rq, then
2628  * we try to push someone off, if possible.
2629  */
2630 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2631 {
2632 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2633 		put_task_struct(p);
2634 
2635 	/* If p is not queued we will update its parameters at next wakeup. */
2636 	if (!task_on_rq_queued(p)) {
2637 		add_rq_bw(&p->dl, &rq->dl);
2638 
2639 		return;
2640 	}
2641 
2642 	if (rq->curr != p) {
2643 #ifdef CONFIG_SMP
2644 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2645 			deadline_queue_push_tasks(rq);
2646 #endif
2647 		if (dl_task(rq->curr))
2648 			check_preempt_curr_dl(rq, p, 0);
2649 		else
2650 			resched_curr(rq);
2651 	} else {
2652 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2653 	}
2654 }
2655 
2656 /*
2657  * If the scheduling parameters of a -deadline task changed,
2658  * a push or pull operation might be needed.
2659  */
2660 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2661 			    int oldprio)
2662 {
2663 	if (task_on_rq_queued(p) || task_current(rq, p)) {
2664 #ifdef CONFIG_SMP
2665 		/*
2666 		 * This might be too much, but unfortunately
2667 		 * we don't have the old deadline value, and
2668 		 * we can't argue if the task is increasing
2669 		 * or lowering its prio, so...
2670 		 */
2671 		if (!rq->dl.overloaded)
2672 			deadline_queue_pull_task(rq);
2673 
2674 		/*
2675 		 * If we now have a earlier deadline task than p,
2676 		 * then reschedule, provided p is still on this
2677 		 * runqueue.
2678 		 */
2679 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2680 			resched_curr(rq);
2681 #else
2682 		/*
2683 		 * Again, we don't know if p has a earlier
2684 		 * or later deadline, so let's blindly set a
2685 		 * (maybe not needed) rescheduling point.
2686 		 */
2687 		resched_curr(rq);
2688 #endif /* CONFIG_SMP */
2689 	}
2690 }
2691 
2692 DEFINE_SCHED_CLASS(dl) = {
2693 
2694 	.enqueue_task		= enqueue_task_dl,
2695 	.dequeue_task		= dequeue_task_dl,
2696 	.yield_task		= yield_task_dl,
2697 
2698 	.check_preempt_curr	= check_preempt_curr_dl,
2699 
2700 	.pick_next_task		= pick_next_task_dl,
2701 	.put_prev_task		= put_prev_task_dl,
2702 	.set_next_task		= set_next_task_dl,
2703 
2704 #ifdef CONFIG_SMP
2705 	.balance		= balance_dl,
2706 	.pick_task		= pick_task_dl,
2707 	.select_task_rq		= select_task_rq_dl,
2708 	.migrate_task_rq	= migrate_task_rq_dl,
2709 	.set_cpus_allowed       = set_cpus_allowed_dl,
2710 	.rq_online              = rq_online_dl,
2711 	.rq_offline             = rq_offline_dl,
2712 	.task_woken		= task_woken_dl,
2713 	.find_lock_rq		= find_lock_later_rq,
2714 #endif
2715 
2716 	.task_tick		= task_tick_dl,
2717 	.task_fork              = task_fork_dl,
2718 
2719 	.prio_changed           = prio_changed_dl,
2720 	.switched_from		= switched_from_dl,
2721 	.switched_to		= switched_to_dl,
2722 
2723 	.update_curr		= update_curr_dl,
2724 };
2725 
2726 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2727 static u64 dl_generation;
2728 
2729 int sched_dl_global_validate(void)
2730 {
2731 	u64 runtime = global_rt_runtime();
2732 	u64 period = global_rt_period();
2733 	u64 new_bw = to_ratio(period, runtime);
2734 	u64 gen = ++dl_generation;
2735 	struct dl_bw *dl_b;
2736 	int cpu, cpus, ret = 0;
2737 	unsigned long flags;
2738 
2739 	/*
2740 	 * Here we want to check the bandwidth not being set to some
2741 	 * value smaller than the currently allocated bandwidth in
2742 	 * any of the root_domains.
2743 	 */
2744 	for_each_possible_cpu(cpu) {
2745 		rcu_read_lock_sched();
2746 
2747 		if (dl_bw_visited(cpu, gen))
2748 			goto next;
2749 
2750 		dl_b = dl_bw_of(cpu);
2751 		cpus = dl_bw_cpus(cpu);
2752 
2753 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2754 		if (new_bw * cpus < dl_b->total_bw)
2755 			ret = -EBUSY;
2756 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2757 
2758 next:
2759 		rcu_read_unlock_sched();
2760 
2761 		if (ret)
2762 			break;
2763 	}
2764 
2765 	return ret;
2766 }
2767 
2768 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2769 {
2770 	if (global_rt_runtime() == RUNTIME_INF) {
2771 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2772 		dl_rq->extra_bw = 1 << BW_SHIFT;
2773 	} else {
2774 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2775 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2776 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2777 						    global_rt_runtime());
2778 	}
2779 }
2780 
2781 void sched_dl_do_global(void)
2782 {
2783 	u64 new_bw = -1;
2784 	u64 gen = ++dl_generation;
2785 	struct dl_bw *dl_b;
2786 	int cpu;
2787 	unsigned long flags;
2788 
2789 	if (global_rt_runtime() != RUNTIME_INF)
2790 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2791 
2792 	for_each_possible_cpu(cpu) {
2793 		rcu_read_lock_sched();
2794 
2795 		if (dl_bw_visited(cpu, gen)) {
2796 			rcu_read_unlock_sched();
2797 			continue;
2798 		}
2799 
2800 		dl_b = dl_bw_of(cpu);
2801 
2802 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2803 		dl_b->bw = new_bw;
2804 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2805 
2806 		rcu_read_unlock_sched();
2807 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2808 	}
2809 }
2810 
2811 /*
2812  * We must be sure that accepting a new task (or allowing changing the
2813  * parameters of an existing one) is consistent with the bandwidth
2814  * constraints. If yes, this function also accordingly updates the currently
2815  * allocated bandwidth to reflect the new situation.
2816  *
2817  * This function is called while holding p's rq->lock.
2818  */
2819 int sched_dl_overflow(struct task_struct *p, int policy,
2820 		      const struct sched_attr *attr)
2821 {
2822 	u64 period = attr->sched_period ?: attr->sched_deadline;
2823 	u64 runtime = attr->sched_runtime;
2824 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2825 	int cpus, err = -1, cpu = task_cpu(p);
2826 	struct dl_bw *dl_b = dl_bw_of(cpu);
2827 	unsigned long cap;
2828 
2829 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2830 		return 0;
2831 
2832 	/* !deadline task may carry old deadline bandwidth */
2833 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2834 		return 0;
2835 
2836 	/*
2837 	 * Either if a task, enters, leave, or stays -deadline but changes
2838 	 * its parameters, we may need to update accordingly the total
2839 	 * allocated bandwidth of the container.
2840 	 */
2841 	raw_spin_lock(&dl_b->lock);
2842 	cpus = dl_bw_cpus(cpu);
2843 	cap = dl_bw_capacity(cpu);
2844 
2845 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2846 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2847 		if (hrtimer_active(&p->dl.inactive_timer))
2848 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2849 		__dl_add(dl_b, new_bw, cpus);
2850 		err = 0;
2851 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2852 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2853 		/*
2854 		 * XXX this is slightly incorrect: when the task
2855 		 * utilization decreases, we should delay the total
2856 		 * utilization change until the task's 0-lag point.
2857 		 * But this would require to set the task's "inactive
2858 		 * timer" when the task is not inactive.
2859 		 */
2860 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2861 		__dl_add(dl_b, new_bw, cpus);
2862 		dl_change_utilization(p, new_bw);
2863 		err = 0;
2864 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2865 		/*
2866 		 * Do not decrease the total deadline utilization here,
2867 		 * switched_from_dl() will take care to do it at the correct
2868 		 * (0-lag) time.
2869 		 */
2870 		err = 0;
2871 	}
2872 	raw_spin_unlock(&dl_b->lock);
2873 
2874 	return err;
2875 }
2876 
2877 /*
2878  * This function initializes the sched_dl_entity of a newly becoming
2879  * SCHED_DEADLINE task.
2880  *
2881  * Only the static values are considered here, the actual runtime and the
2882  * absolute deadline will be properly calculated when the task is enqueued
2883  * for the first time with its new policy.
2884  */
2885 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2886 {
2887 	struct sched_dl_entity *dl_se = &p->dl;
2888 
2889 	dl_se->dl_runtime = attr->sched_runtime;
2890 	dl_se->dl_deadline = attr->sched_deadline;
2891 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2892 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2893 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2894 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2895 }
2896 
2897 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2898 {
2899 	struct sched_dl_entity *dl_se = &p->dl;
2900 
2901 	attr->sched_priority = p->rt_priority;
2902 	attr->sched_runtime = dl_se->dl_runtime;
2903 	attr->sched_deadline = dl_se->dl_deadline;
2904 	attr->sched_period = dl_se->dl_period;
2905 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2906 	attr->sched_flags |= dl_se->flags;
2907 }
2908 
2909 /*
2910  * This function validates the new parameters of a -deadline task.
2911  * We ask for the deadline not being zero, and greater or equal
2912  * than the runtime, as well as the period of being zero or
2913  * greater than deadline. Furthermore, we have to be sure that
2914  * user parameters are above the internal resolution of 1us (we
2915  * check sched_runtime only since it is always the smaller one) and
2916  * below 2^63 ns (we have to check both sched_deadline and
2917  * sched_period, as the latter can be zero).
2918  */
2919 bool __checkparam_dl(const struct sched_attr *attr)
2920 {
2921 	u64 period, max, min;
2922 
2923 	/* special dl tasks don't actually use any parameter */
2924 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2925 		return true;
2926 
2927 	/* deadline != 0 */
2928 	if (attr->sched_deadline == 0)
2929 		return false;
2930 
2931 	/*
2932 	 * Since we truncate DL_SCALE bits, make sure we're at least
2933 	 * that big.
2934 	 */
2935 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2936 		return false;
2937 
2938 	/*
2939 	 * Since we use the MSB for wrap-around and sign issues, make
2940 	 * sure it's not set (mind that period can be equal to zero).
2941 	 */
2942 	if (attr->sched_deadline & (1ULL << 63) ||
2943 	    attr->sched_period & (1ULL << 63))
2944 		return false;
2945 
2946 	period = attr->sched_period;
2947 	if (!period)
2948 		period = attr->sched_deadline;
2949 
2950 	/* runtime <= deadline <= period (if period != 0) */
2951 	if (period < attr->sched_deadline ||
2952 	    attr->sched_deadline < attr->sched_runtime)
2953 		return false;
2954 
2955 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2956 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2957 
2958 	if (period < min || period > max)
2959 		return false;
2960 
2961 	return true;
2962 }
2963 
2964 /*
2965  * This function clears the sched_dl_entity static params.
2966  */
2967 void __dl_clear_params(struct task_struct *p)
2968 {
2969 	struct sched_dl_entity *dl_se = &p->dl;
2970 
2971 	dl_se->dl_runtime		= 0;
2972 	dl_se->dl_deadline		= 0;
2973 	dl_se->dl_period		= 0;
2974 	dl_se->flags			= 0;
2975 	dl_se->dl_bw			= 0;
2976 	dl_se->dl_density		= 0;
2977 
2978 	dl_se->dl_throttled		= 0;
2979 	dl_se->dl_yielded		= 0;
2980 	dl_se->dl_non_contending	= 0;
2981 	dl_se->dl_overrun		= 0;
2982 
2983 #ifdef CONFIG_RT_MUTEXES
2984 	dl_se->pi_se			= dl_se;
2985 #endif
2986 }
2987 
2988 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2989 {
2990 	struct sched_dl_entity *dl_se = &p->dl;
2991 
2992 	if (dl_se->dl_runtime != attr->sched_runtime ||
2993 	    dl_se->dl_deadline != attr->sched_deadline ||
2994 	    dl_se->dl_period != attr->sched_period ||
2995 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2996 		return true;
2997 
2998 	return false;
2999 }
3000 
3001 #ifdef CONFIG_SMP
3002 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3003 				 const struct cpumask *trial)
3004 {
3005 	int ret = 1, trial_cpus;
3006 	struct dl_bw *cur_dl_b;
3007 	unsigned long flags;
3008 
3009 	rcu_read_lock_sched();
3010 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3011 	trial_cpus = cpumask_weight(trial);
3012 
3013 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3014 	if (cur_dl_b->bw != -1 &&
3015 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
3016 		ret = 0;
3017 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3018 	rcu_read_unlock_sched();
3019 
3020 	return ret;
3021 }
3022 
3023 int dl_cpu_busy(int cpu, struct task_struct *p)
3024 {
3025 	unsigned long flags, cap;
3026 	struct dl_bw *dl_b;
3027 	bool overflow;
3028 
3029 	rcu_read_lock_sched();
3030 	dl_b = dl_bw_of(cpu);
3031 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3032 	cap = dl_bw_capacity(cpu);
3033 	overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
3034 
3035 	if (!overflow && p) {
3036 		/*
3037 		 * We reserve space for this task in the destination
3038 		 * root_domain, as we can't fail after this point.
3039 		 * We will free resources in the source root_domain
3040 		 * later on (see set_cpus_allowed_dl()).
3041 		 */
3042 		__dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
3043 	}
3044 
3045 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3046 	rcu_read_unlock_sched();
3047 
3048 	return overflow ? -EBUSY : 0;
3049 }
3050 #endif
3051 
3052 #ifdef CONFIG_SCHED_DEBUG
3053 void print_dl_stats(struct seq_file *m, int cpu)
3054 {
3055 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3056 }
3057 #endif /* CONFIG_SCHED_DEBUG */
3058