xref: /linux/kernel/sched/deadline.c (revision 1e73427f66353b7fe21c138787ff2b711ca1c0dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 
21 /*
22  * Default limits for DL period; on the top end we guard against small util
23  * tasks still getting ridiculously long effective runtimes, on the bottom end we
24  * guard against timer DoS.
25  */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 	{
31 		.procname       = "sched_deadline_period_max_us",
32 		.data           = &sysctl_sched_dl_period_max,
33 		.maxlen         = sizeof(unsigned int),
34 		.mode           = 0644,
35 		.proc_handler   = proc_douintvec_minmax,
36 		.extra1         = (void *)&sysctl_sched_dl_period_min,
37 	},
38 	{
39 		.procname       = "sched_deadline_period_min_us",
40 		.data           = &sysctl_sched_dl_period_min,
41 		.maxlen         = sizeof(unsigned int),
42 		.mode           = 0644,
43 		.proc_handler   = proc_douintvec_minmax,
44 		.extra2         = (void *)&sysctl_sched_dl_period_max,
45 	},
46 	{}
47 };
48 
49 static int __init sched_dl_sysctl_init(void)
50 {
51 	register_sysctl_init("kernel", sched_dl_sysctls);
52 	return 0;
53 }
54 late_initcall(sched_dl_sysctl_init);
55 #endif
56 
57 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
58 {
59 	return container_of(dl_se, struct task_struct, dl);
60 }
61 
62 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
63 {
64 	return container_of(dl_rq, struct rq, dl);
65 }
66 
67 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
68 {
69 	struct task_struct *p = dl_task_of(dl_se);
70 	struct rq *rq = task_rq(p);
71 
72 	return &rq->dl;
73 }
74 
75 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
76 {
77 	return !RB_EMPTY_NODE(&dl_se->rb_node);
78 }
79 
80 #ifdef CONFIG_RT_MUTEXES
81 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
82 {
83 	return dl_se->pi_se;
84 }
85 
86 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
87 {
88 	return pi_of(dl_se) != dl_se;
89 }
90 #else
91 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
92 {
93 	return dl_se;
94 }
95 
96 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
97 {
98 	return false;
99 }
100 #endif
101 
102 #ifdef CONFIG_SMP
103 static inline struct dl_bw *dl_bw_of(int i)
104 {
105 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
106 			 "sched RCU must be held");
107 	return &cpu_rq(i)->rd->dl_bw;
108 }
109 
110 static inline int dl_bw_cpus(int i)
111 {
112 	struct root_domain *rd = cpu_rq(i)->rd;
113 	int cpus;
114 
115 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
116 			 "sched RCU must be held");
117 
118 	if (cpumask_subset(rd->span, cpu_active_mask))
119 		return cpumask_weight(rd->span);
120 
121 	cpus = 0;
122 
123 	for_each_cpu_and(i, rd->span, cpu_active_mask)
124 		cpus++;
125 
126 	return cpus;
127 }
128 
129 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
130 {
131 	unsigned long cap = 0;
132 	int i;
133 
134 	for_each_cpu_and(i, mask, cpu_active_mask)
135 		cap += arch_scale_cpu_capacity(i);
136 
137 	return cap;
138 }
139 
140 /*
141  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
142  * of the CPU the task is running on rather rd's \Sum CPU capacity.
143  */
144 static inline unsigned long dl_bw_capacity(int i)
145 {
146 	if (!sched_asym_cpucap_active() &&
147 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
148 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
149 	} else {
150 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
151 				 "sched RCU must be held");
152 
153 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
154 	}
155 }
156 
157 static inline bool dl_bw_visited(int cpu, u64 gen)
158 {
159 	struct root_domain *rd = cpu_rq(cpu)->rd;
160 
161 	if (rd->visit_gen == gen)
162 		return true;
163 
164 	rd->visit_gen = gen;
165 	return false;
166 }
167 
168 static inline
169 void __dl_update(struct dl_bw *dl_b, s64 bw)
170 {
171 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
172 	int i;
173 
174 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
175 			 "sched RCU must be held");
176 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
177 		struct rq *rq = cpu_rq(i);
178 
179 		rq->dl.extra_bw += bw;
180 	}
181 }
182 #else
183 static inline struct dl_bw *dl_bw_of(int i)
184 {
185 	return &cpu_rq(i)->dl.dl_bw;
186 }
187 
188 static inline int dl_bw_cpus(int i)
189 {
190 	return 1;
191 }
192 
193 static inline unsigned long dl_bw_capacity(int i)
194 {
195 	return SCHED_CAPACITY_SCALE;
196 }
197 
198 static inline bool dl_bw_visited(int cpu, u64 gen)
199 {
200 	return false;
201 }
202 
203 static inline
204 void __dl_update(struct dl_bw *dl_b, s64 bw)
205 {
206 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
207 
208 	dl->extra_bw += bw;
209 }
210 #endif
211 
212 static inline
213 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
214 {
215 	dl_b->total_bw -= tsk_bw;
216 	__dl_update(dl_b, (s32)tsk_bw / cpus);
217 }
218 
219 static inline
220 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
221 {
222 	dl_b->total_bw += tsk_bw;
223 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
224 }
225 
226 static inline bool
227 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
228 {
229 	return dl_b->bw != -1 &&
230 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
231 }
232 
233 static inline
234 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
235 {
236 	u64 old = dl_rq->running_bw;
237 
238 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
239 	dl_rq->running_bw += dl_bw;
240 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
241 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
242 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
243 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
244 }
245 
246 static inline
247 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 	u64 old = dl_rq->running_bw;
250 
251 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 	dl_rq->running_bw -= dl_bw;
253 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
254 	if (dl_rq->running_bw > old)
255 		dl_rq->running_bw = 0;
256 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
257 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
258 }
259 
260 static inline
261 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
262 {
263 	u64 old = dl_rq->this_bw;
264 
265 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
266 	dl_rq->this_bw += dl_bw;
267 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
268 }
269 
270 static inline
271 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
272 {
273 	u64 old = dl_rq->this_bw;
274 
275 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
276 	dl_rq->this_bw -= dl_bw;
277 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
278 	if (dl_rq->this_bw > old)
279 		dl_rq->this_bw = 0;
280 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
281 }
282 
283 static inline
284 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
285 {
286 	if (!dl_entity_is_special(dl_se))
287 		__add_rq_bw(dl_se->dl_bw, dl_rq);
288 }
289 
290 static inline
291 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
292 {
293 	if (!dl_entity_is_special(dl_se))
294 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
295 }
296 
297 static inline
298 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
299 {
300 	if (!dl_entity_is_special(dl_se))
301 		__add_running_bw(dl_se->dl_bw, dl_rq);
302 }
303 
304 static inline
305 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306 {
307 	if (!dl_entity_is_special(dl_se))
308 		__sub_running_bw(dl_se->dl_bw, dl_rq);
309 }
310 
311 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
312 {
313 	struct rq *rq;
314 
315 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
316 
317 	if (task_on_rq_queued(p))
318 		return;
319 
320 	rq = task_rq(p);
321 	if (p->dl.dl_non_contending) {
322 		sub_running_bw(&p->dl, &rq->dl);
323 		p->dl.dl_non_contending = 0;
324 		/*
325 		 * If the timer handler is currently running and the
326 		 * timer cannot be canceled, inactive_task_timer()
327 		 * will see that dl_not_contending is not set, and
328 		 * will not touch the rq's active utilization,
329 		 * so we are still safe.
330 		 */
331 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
332 			put_task_struct(p);
333 	}
334 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
335 	__add_rq_bw(new_bw, &rq->dl);
336 }
337 
338 /*
339  * The utilization of a task cannot be immediately removed from
340  * the rq active utilization (running_bw) when the task blocks.
341  * Instead, we have to wait for the so called "0-lag time".
342  *
343  * If a task blocks before the "0-lag time", a timer (the inactive
344  * timer) is armed, and running_bw is decreased when the timer
345  * fires.
346  *
347  * If the task wakes up again before the inactive timer fires,
348  * the timer is canceled, whereas if the task wakes up after the
349  * inactive timer fired (and running_bw has been decreased) the
350  * task's utilization has to be added to running_bw again.
351  * A flag in the deadline scheduling entity (dl_non_contending)
352  * is used to avoid race conditions between the inactive timer handler
353  * and task wakeups.
354  *
355  * The following diagram shows how running_bw is updated. A task is
356  * "ACTIVE" when its utilization contributes to running_bw; an
357  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
358  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
359  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
360  * time already passed, which does not contribute to running_bw anymore.
361  *                              +------------------+
362  *             wakeup           |    ACTIVE        |
363  *          +------------------>+   contending     |
364  *          | add_running_bw    |                  |
365  *          |                   +----+------+------+
366  *          |                        |      ^
367  *          |                dequeue |      |
368  * +--------+-------+                |      |
369  * |                |   t >= 0-lag   |      | wakeup
370  * |    INACTIVE    |<---------------+      |
371  * |                | sub_running_bw |      |
372  * +--------+-------+                |      |
373  *          ^                        |      |
374  *          |              t < 0-lag |      |
375  *          |                        |      |
376  *          |                        V      |
377  *          |                   +----+------+------+
378  *          | sub_running_bw    |    ACTIVE        |
379  *          +-------------------+                  |
380  *            inactive timer    |  non contending  |
381  *            fired             +------------------+
382  *
383  * The task_non_contending() function is invoked when a task
384  * blocks, and checks if the 0-lag time already passed or
385  * not (in the first case, it directly updates running_bw;
386  * in the second case, it arms the inactive timer).
387  *
388  * The task_contending() function is invoked when a task wakes
389  * up, and checks if the task is still in the "ACTIVE non contending"
390  * state or not (in the second case, it updates running_bw).
391  */
392 static void task_non_contending(struct task_struct *p)
393 {
394 	struct sched_dl_entity *dl_se = &p->dl;
395 	struct hrtimer *timer = &dl_se->inactive_timer;
396 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
397 	struct rq *rq = rq_of_dl_rq(dl_rq);
398 	s64 zerolag_time;
399 
400 	/*
401 	 * If this is a non-deadline task that has been boosted,
402 	 * do nothing
403 	 */
404 	if (dl_se->dl_runtime == 0)
405 		return;
406 
407 	if (dl_entity_is_special(dl_se))
408 		return;
409 
410 	WARN_ON(dl_se->dl_non_contending);
411 
412 	zerolag_time = dl_se->deadline -
413 		 div64_long((dl_se->runtime * dl_se->dl_period),
414 			dl_se->dl_runtime);
415 
416 	/*
417 	 * Using relative times instead of the absolute "0-lag time"
418 	 * allows to simplify the code
419 	 */
420 	zerolag_time -= rq_clock(rq);
421 
422 	/*
423 	 * If the "0-lag time" already passed, decrease the active
424 	 * utilization now, instead of starting a timer
425 	 */
426 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
427 		if (dl_task(p))
428 			sub_running_bw(dl_se, dl_rq);
429 		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
430 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
431 
432 			if (READ_ONCE(p->__state) == TASK_DEAD)
433 				sub_rq_bw(&p->dl, &rq->dl);
434 			raw_spin_lock(&dl_b->lock);
435 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
436 			raw_spin_unlock(&dl_b->lock);
437 			__dl_clear_params(p);
438 		}
439 
440 		return;
441 	}
442 
443 	dl_se->dl_non_contending = 1;
444 	get_task_struct(p);
445 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
446 }
447 
448 static void task_contending(struct sched_dl_entity *dl_se, int flags)
449 {
450 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
451 
452 	/*
453 	 * If this is a non-deadline task that has been boosted,
454 	 * do nothing
455 	 */
456 	if (dl_se->dl_runtime == 0)
457 		return;
458 
459 	if (flags & ENQUEUE_MIGRATED)
460 		add_rq_bw(dl_se, dl_rq);
461 
462 	if (dl_se->dl_non_contending) {
463 		dl_se->dl_non_contending = 0;
464 		/*
465 		 * If the timer handler is currently running and the
466 		 * timer cannot be canceled, inactive_task_timer()
467 		 * will see that dl_not_contending is not set, and
468 		 * will not touch the rq's active utilization,
469 		 * so we are still safe.
470 		 */
471 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
472 			put_task_struct(dl_task_of(dl_se));
473 	} else {
474 		/*
475 		 * Since "dl_non_contending" is not set, the
476 		 * task's utilization has already been removed from
477 		 * active utilization (either when the task blocked,
478 		 * when the "inactive timer" fired).
479 		 * So, add it back.
480 		 */
481 		add_running_bw(dl_se, dl_rq);
482 	}
483 }
484 
485 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
486 {
487 	struct sched_dl_entity *dl_se = &p->dl;
488 
489 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
490 }
491 
492 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
493 
494 void init_dl_bw(struct dl_bw *dl_b)
495 {
496 	raw_spin_lock_init(&dl_b->lock);
497 	if (global_rt_runtime() == RUNTIME_INF)
498 		dl_b->bw = -1;
499 	else
500 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
501 	dl_b->total_bw = 0;
502 }
503 
504 void init_dl_rq(struct dl_rq *dl_rq)
505 {
506 	dl_rq->root = RB_ROOT_CACHED;
507 
508 #ifdef CONFIG_SMP
509 	/* zero means no -deadline tasks */
510 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
511 
512 	dl_rq->overloaded = 0;
513 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
514 #else
515 	init_dl_bw(&dl_rq->dl_bw);
516 #endif
517 
518 	dl_rq->running_bw = 0;
519 	dl_rq->this_bw = 0;
520 	init_dl_rq_bw_ratio(dl_rq);
521 }
522 
523 #ifdef CONFIG_SMP
524 
525 static inline int dl_overloaded(struct rq *rq)
526 {
527 	return atomic_read(&rq->rd->dlo_count);
528 }
529 
530 static inline void dl_set_overload(struct rq *rq)
531 {
532 	if (!rq->online)
533 		return;
534 
535 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
536 	/*
537 	 * Must be visible before the overload count is
538 	 * set (as in sched_rt.c).
539 	 *
540 	 * Matched by the barrier in pull_dl_task().
541 	 */
542 	smp_wmb();
543 	atomic_inc(&rq->rd->dlo_count);
544 }
545 
546 static inline void dl_clear_overload(struct rq *rq)
547 {
548 	if (!rq->online)
549 		return;
550 
551 	atomic_dec(&rq->rd->dlo_count);
552 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
553 }
554 
555 #define __node_2_pdl(node) \
556 	rb_entry((node), struct task_struct, pushable_dl_tasks)
557 
558 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
559 {
560 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
561 }
562 
563 static inline int has_pushable_dl_tasks(struct rq *rq)
564 {
565 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
566 }
567 
568 /*
569  * The list of pushable -deadline task is not a plist, like in
570  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
571  */
572 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
573 {
574 	struct rb_node *leftmost;
575 
576 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
577 
578 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
579 				 &rq->dl.pushable_dl_tasks_root,
580 				 __pushable_less);
581 	if (leftmost)
582 		rq->dl.earliest_dl.next = p->dl.deadline;
583 
584 	if (!rq->dl.overloaded) {
585 		dl_set_overload(rq);
586 		rq->dl.overloaded = 1;
587 	}
588 }
589 
590 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
591 {
592 	struct dl_rq *dl_rq = &rq->dl;
593 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
594 	struct rb_node *leftmost;
595 
596 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
597 		return;
598 
599 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
600 	if (leftmost)
601 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
602 
603 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
604 
605 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
606 		dl_clear_overload(rq);
607 		rq->dl.overloaded = 0;
608 	}
609 }
610 
611 static int push_dl_task(struct rq *rq);
612 
613 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
614 {
615 	return rq->online && dl_task(prev);
616 }
617 
618 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
619 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
620 
621 static void push_dl_tasks(struct rq *);
622 static void pull_dl_task(struct rq *);
623 
624 static inline void deadline_queue_push_tasks(struct rq *rq)
625 {
626 	if (!has_pushable_dl_tasks(rq))
627 		return;
628 
629 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
630 }
631 
632 static inline void deadline_queue_pull_task(struct rq *rq)
633 {
634 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
635 }
636 
637 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
638 
639 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
640 {
641 	struct rq *later_rq = NULL;
642 	struct dl_bw *dl_b;
643 
644 	later_rq = find_lock_later_rq(p, rq);
645 	if (!later_rq) {
646 		int cpu;
647 
648 		/*
649 		 * If we cannot preempt any rq, fall back to pick any
650 		 * online CPU:
651 		 */
652 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
653 		if (cpu >= nr_cpu_ids) {
654 			/*
655 			 * Failed to find any suitable CPU.
656 			 * The task will never come back!
657 			 */
658 			WARN_ON_ONCE(dl_bandwidth_enabled());
659 
660 			/*
661 			 * If admission control is disabled we
662 			 * try a little harder to let the task
663 			 * run.
664 			 */
665 			cpu = cpumask_any(cpu_active_mask);
666 		}
667 		later_rq = cpu_rq(cpu);
668 		double_lock_balance(rq, later_rq);
669 	}
670 
671 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
672 		/*
673 		 * Inactive timer is armed (or callback is running, but
674 		 * waiting for us to release rq locks). In any case, when it
675 		 * will fire (or continue), it will see running_bw of this
676 		 * task migrated to later_rq (and correctly handle it).
677 		 */
678 		sub_running_bw(&p->dl, &rq->dl);
679 		sub_rq_bw(&p->dl, &rq->dl);
680 
681 		add_rq_bw(&p->dl, &later_rq->dl);
682 		add_running_bw(&p->dl, &later_rq->dl);
683 	} else {
684 		sub_rq_bw(&p->dl, &rq->dl);
685 		add_rq_bw(&p->dl, &later_rq->dl);
686 	}
687 
688 	/*
689 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
690 	 * since p is still hanging out in the old (now moved to default) root
691 	 * domain.
692 	 */
693 	dl_b = &rq->rd->dl_bw;
694 	raw_spin_lock(&dl_b->lock);
695 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
696 	raw_spin_unlock(&dl_b->lock);
697 
698 	dl_b = &later_rq->rd->dl_bw;
699 	raw_spin_lock(&dl_b->lock);
700 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
701 	raw_spin_unlock(&dl_b->lock);
702 
703 	set_task_cpu(p, later_rq->cpu);
704 	double_unlock_balance(later_rq, rq);
705 
706 	return later_rq;
707 }
708 
709 #else
710 
711 static inline
712 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
713 {
714 }
715 
716 static inline
717 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
718 {
719 }
720 
721 static inline
722 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
723 {
724 }
725 
726 static inline
727 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
728 {
729 }
730 
731 static inline void deadline_queue_push_tasks(struct rq *rq)
732 {
733 }
734 
735 static inline void deadline_queue_pull_task(struct rq *rq)
736 {
737 }
738 #endif /* CONFIG_SMP */
739 
740 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
741 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
742 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
743 
744 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
745 					    struct rq *rq)
746 {
747 	/* for non-boosted task, pi_of(dl_se) == dl_se */
748 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
749 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
750 }
751 
752 /*
753  * We are being explicitly informed that a new instance is starting,
754  * and this means that:
755  *  - the absolute deadline of the entity has to be placed at
756  *    current time + relative deadline;
757  *  - the runtime of the entity has to be set to the maximum value.
758  *
759  * The capability of specifying such event is useful whenever a -deadline
760  * entity wants to (try to!) synchronize its behaviour with the scheduler's
761  * one, and to (try to!) reconcile itself with its own scheduling
762  * parameters.
763  */
764 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
765 {
766 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
767 	struct rq *rq = rq_of_dl_rq(dl_rq);
768 
769 	WARN_ON(is_dl_boosted(dl_se));
770 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
771 
772 	/*
773 	 * We are racing with the deadline timer. So, do nothing because
774 	 * the deadline timer handler will take care of properly recharging
775 	 * the runtime and postponing the deadline
776 	 */
777 	if (dl_se->dl_throttled)
778 		return;
779 
780 	/*
781 	 * We use the regular wall clock time to set deadlines in the
782 	 * future; in fact, we must consider execution overheads (time
783 	 * spent on hardirq context, etc.).
784 	 */
785 	replenish_dl_new_period(dl_se, rq);
786 }
787 
788 /*
789  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
790  * possibility of a entity lasting more than what it declared, and thus
791  * exhausting its runtime.
792  *
793  * Here we are interested in making runtime overrun possible, but we do
794  * not want a entity which is misbehaving to affect the scheduling of all
795  * other entities.
796  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
797  * is used, in order to confine each entity within its own bandwidth.
798  *
799  * This function deals exactly with that, and ensures that when the runtime
800  * of a entity is replenished, its deadline is also postponed. That ensures
801  * the overrunning entity can't interfere with other entity in the system and
802  * can't make them miss their deadlines. Reasons why this kind of overruns
803  * could happen are, typically, a entity voluntarily trying to overcome its
804  * runtime, or it just underestimated it during sched_setattr().
805  */
806 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
807 {
808 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
809 	struct rq *rq = rq_of_dl_rq(dl_rq);
810 
811 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
812 
813 	/*
814 	 * This could be the case for a !-dl task that is boosted.
815 	 * Just go with full inherited parameters.
816 	 */
817 	if (dl_se->dl_deadline == 0)
818 		replenish_dl_new_period(dl_se, rq);
819 
820 	if (dl_se->dl_yielded && dl_se->runtime > 0)
821 		dl_se->runtime = 0;
822 
823 	/*
824 	 * We keep moving the deadline away until we get some
825 	 * available runtime for the entity. This ensures correct
826 	 * handling of situations where the runtime overrun is
827 	 * arbitrary large.
828 	 */
829 	while (dl_se->runtime <= 0) {
830 		dl_se->deadline += pi_of(dl_se)->dl_period;
831 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
832 	}
833 
834 	/*
835 	 * At this point, the deadline really should be "in
836 	 * the future" with respect to rq->clock. If it's
837 	 * not, we are, for some reason, lagging too much!
838 	 * Anyway, after having warn userspace abut that,
839 	 * we still try to keep the things running by
840 	 * resetting the deadline and the budget of the
841 	 * entity.
842 	 */
843 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
844 		printk_deferred_once("sched: DL replenish lagged too much\n");
845 		replenish_dl_new_period(dl_se, rq);
846 	}
847 
848 	if (dl_se->dl_yielded)
849 		dl_se->dl_yielded = 0;
850 	if (dl_se->dl_throttled)
851 		dl_se->dl_throttled = 0;
852 }
853 
854 /*
855  * Here we check if --at time t-- an entity (which is probably being
856  * [re]activated or, in general, enqueued) can use its remaining runtime
857  * and its current deadline _without_ exceeding the bandwidth it is
858  * assigned (function returns true if it can't). We are in fact applying
859  * one of the CBS rules: when a task wakes up, if the residual runtime
860  * over residual deadline fits within the allocated bandwidth, then we
861  * can keep the current (absolute) deadline and residual budget without
862  * disrupting the schedulability of the system. Otherwise, we should
863  * refill the runtime and set the deadline a period in the future,
864  * because keeping the current (absolute) deadline of the task would
865  * result in breaking guarantees promised to other tasks (refer to
866  * Documentation/scheduler/sched-deadline.rst for more information).
867  *
868  * This function returns true if:
869  *
870  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
871  *
872  * IOW we can't recycle current parameters.
873  *
874  * Notice that the bandwidth check is done against the deadline. For
875  * task with deadline equal to period this is the same of using
876  * dl_period instead of dl_deadline in the equation above.
877  */
878 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
879 {
880 	u64 left, right;
881 
882 	/*
883 	 * left and right are the two sides of the equation above,
884 	 * after a bit of shuffling to use multiplications instead
885 	 * of divisions.
886 	 *
887 	 * Note that none of the time values involved in the two
888 	 * multiplications are absolute: dl_deadline and dl_runtime
889 	 * are the relative deadline and the maximum runtime of each
890 	 * instance, runtime is the runtime left for the last instance
891 	 * and (deadline - t), since t is rq->clock, is the time left
892 	 * to the (absolute) deadline. Even if overflowing the u64 type
893 	 * is very unlikely to occur in both cases, here we scale down
894 	 * as we want to avoid that risk at all. Scaling down by 10
895 	 * means that we reduce granularity to 1us. We are fine with it,
896 	 * since this is only a true/false check and, anyway, thinking
897 	 * of anything below microseconds resolution is actually fiction
898 	 * (but still we want to give the user that illusion >;).
899 	 */
900 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
901 	right = ((dl_se->deadline - t) >> DL_SCALE) *
902 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
903 
904 	return dl_time_before(right, left);
905 }
906 
907 /*
908  * Revised wakeup rule [1]: For self-suspending tasks, rather then
909  * re-initializing task's runtime and deadline, the revised wakeup
910  * rule adjusts the task's runtime to avoid the task to overrun its
911  * density.
912  *
913  * Reasoning: a task may overrun the density if:
914  *    runtime / (deadline - t) > dl_runtime / dl_deadline
915  *
916  * Therefore, runtime can be adjusted to:
917  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
918  *
919  * In such way that runtime will be equal to the maximum density
920  * the task can use without breaking any rule.
921  *
922  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
923  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
924  */
925 static void
926 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
927 {
928 	u64 laxity = dl_se->deadline - rq_clock(rq);
929 
930 	/*
931 	 * If the task has deadline < period, and the deadline is in the past,
932 	 * it should already be throttled before this check.
933 	 *
934 	 * See update_dl_entity() comments for further details.
935 	 */
936 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
937 
938 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
939 }
940 
941 /*
942  * Regarding the deadline, a task with implicit deadline has a relative
943  * deadline == relative period. A task with constrained deadline has a
944  * relative deadline <= relative period.
945  *
946  * We support constrained deadline tasks. However, there are some restrictions
947  * applied only for tasks which do not have an implicit deadline. See
948  * update_dl_entity() to know more about such restrictions.
949  *
950  * The dl_is_implicit() returns true if the task has an implicit deadline.
951  */
952 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
953 {
954 	return dl_se->dl_deadline == dl_se->dl_period;
955 }
956 
957 /*
958  * When a deadline entity is placed in the runqueue, its runtime and deadline
959  * might need to be updated. This is done by a CBS wake up rule. There are two
960  * different rules: 1) the original CBS; and 2) the Revisited CBS.
961  *
962  * When the task is starting a new period, the Original CBS is used. In this
963  * case, the runtime is replenished and a new absolute deadline is set.
964  *
965  * When a task is queued before the begin of the next period, using the
966  * remaining runtime and deadline could make the entity to overflow, see
967  * dl_entity_overflow() to find more about runtime overflow. When such case
968  * is detected, the runtime and deadline need to be updated.
969  *
970  * If the task has an implicit deadline, i.e., deadline == period, the Original
971  * CBS is applied. the runtime is replenished and a new absolute deadline is
972  * set, as in the previous cases.
973  *
974  * However, the Original CBS does not work properly for tasks with
975  * deadline < period, which are said to have a constrained deadline. By
976  * applying the Original CBS, a constrained deadline task would be able to run
977  * runtime/deadline in a period. With deadline < period, the task would
978  * overrun the runtime/period allowed bandwidth, breaking the admission test.
979  *
980  * In order to prevent this misbehave, the Revisited CBS is used for
981  * constrained deadline tasks when a runtime overflow is detected. In the
982  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
983  * the remaining runtime of the task is reduced to avoid runtime overflow.
984  * Please refer to the comments update_dl_revised_wakeup() function to find
985  * more about the Revised CBS rule.
986  */
987 static void update_dl_entity(struct sched_dl_entity *dl_se)
988 {
989 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
990 	struct rq *rq = rq_of_dl_rq(dl_rq);
991 
992 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
993 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
994 
995 		if (unlikely(!dl_is_implicit(dl_se) &&
996 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
997 			     !is_dl_boosted(dl_se))) {
998 			update_dl_revised_wakeup(dl_se, rq);
999 			return;
1000 		}
1001 
1002 		replenish_dl_new_period(dl_se, rq);
1003 	}
1004 }
1005 
1006 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1007 {
1008 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1009 }
1010 
1011 /*
1012  * If the entity depleted all its runtime, and if we want it to sleep
1013  * while waiting for some new execution time to become available, we
1014  * set the bandwidth replenishment timer to the replenishment instant
1015  * and try to activate it.
1016  *
1017  * Notice that it is important for the caller to know if the timer
1018  * actually started or not (i.e., the replenishment instant is in
1019  * the future or in the past).
1020  */
1021 static int start_dl_timer(struct task_struct *p)
1022 {
1023 	struct sched_dl_entity *dl_se = &p->dl;
1024 	struct hrtimer *timer = &dl_se->dl_timer;
1025 	struct rq *rq = task_rq(p);
1026 	ktime_t now, act;
1027 	s64 delta;
1028 
1029 	lockdep_assert_rq_held(rq);
1030 
1031 	/*
1032 	 * We want the timer to fire at the deadline, but considering
1033 	 * that it is actually coming from rq->clock and not from
1034 	 * hrtimer's time base reading.
1035 	 */
1036 	act = ns_to_ktime(dl_next_period(dl_se));
1037 	now = hrtimer_cb_get_time(timer);
1038 	delta = ktime_to_ns(now) - rq_clock(rq);
1039 	act = ktime_add_ns(act, delta);
1040 
1041 	/*
1042 	 * If the expiry time already passed, e.g., because the value
1043 	 * chosen as the deadline is too small, don't even try to
1044 	 * start the timer in the past!
1045 	 */
1046 	if (ktime_us_delta(act, now) < 0)
1047 		return 0;
1048 
1049 	/*
1050 	 * !enqueued will guarantee another callback; even if one is already in
1051 	 * progress. This ensures a balanced {get,put}_task_struct().
1052 	 *
1053 	 * The race against __run_timer() clearing the enqueued state is
1054 	 * harmless because we're holding task_rq()->lock, therefore the timer
1055 	 * expiring after we've done the check will wait on its task_rq_lock()
1056 	 * and observe our state.
1057 	 */
1058 	if (!hrtimer_is_queued(timer)) {
1059 		get_task_struct(p);
1060 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1061 	}
1062 
1063 	return 1;
1064 }
1065 
1066 /*
1067  * This is the bandwidth enforcement timer callback. If here, we know
1068  * a task is not on its dl_rq, since the fact that the timer was running
1069  * means the task is throttled and needs a runtime replenishment.
1070  *
1071  * However, what we actually do depends on the fact the task is active,
1072  * (it is on its rq) or has been removed from there by a call to
1073  * dequeue_task_dl(). In the former case we must issue the runtime
1074  * replenishment and add the task back to the dl_rq; in the latter, we just
1075  * do nothing but clearing dl_throttled, so that runtime and deadline
1076  * updating (and the queueing back to dl_rq) will be done by the
1077  * next call to enqueue_task_dl().
1078  */
1079 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1080 {
1081 	struct sched_dl_entity *dl_se = container_of(timer,
1082 						     struct sched_dl_entity,
1083 						     dl_timer);
1084 	struct task_struct *p = dl_task_of(dl_se);
1085 	struct rq_flags rf;
1086 	struct rq *rq;
1087 
1088 	rq = task_rq_lock(p, &rf);
1089 
1090 	/*
1091 	 * The task might have changed its scheduling policy to something
1092 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1093 	 */
1094 	if (!dl_task(p))
1095 		goto unlock;
1096 
1097 	/*
1098 	 * The task might have been boosted by someone else and might be in the
1099 	 * boosting/deboosting path, its not throttled.
1100 	 */
1101 	if (is_dl_boosted(dl_se))
1102 		goto unlock;
1103 
1104 	/*
1105 	 * Spurious timer due to start_dl_timer() race; or we already received
1106 	 * a replenishment from rt_mutex_setprio().
1107 	 */
1108 	if (!dl_se->dl_throttled)
1109 		goto unlock;
1110 
1111 	sched_clock_tick();
1112 	update_rq_clock(rq);
1113 
1114 	/*
1115 	 * If the throttle happened during sched-out; like:
1116 	 *
1117 	 *   schedule()
1118 	 *     deactivate_task()
1119 	 *       dequeue_task_dl()
1120 	 *         update_curr_dl()
1121 	 *           start_dl_timer()
1122 	 *         __dequeue_task_dl()
1123 	 *     prev->on_rq = 0;
1124 	 *
1125 	 * We can be both throttled and !queued. Replenish the counter
1126 	 * but do not enqueue -- wait for our wakeup to do that.
1127 	 */
1128 	if (!task_on_rq_queued(p)) {
1129 		replenish_dl_entity(dl_se);
1130 		goto unlock;
1131 	}
1132 
1133 #ifdef CONFIG_SMP
1134 	if (unlikely(!rq->online)) {
1135 		/*
1136 		 * If the runqueue is no longer available, migrate the
1137 		 * task elsewhere. This necessarily changes rq.
1138 		 */
1139 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1140 		rq = dl_task_offline_migration(rq, p);
1141 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1142 		update_rq_clock(rq);
1143 
1144 		/*
1145 		 * Now that the task has been migrated to the new RQ and we
1146 		 * have that locked, proceed as normal and enqueue the task
1147 		 * there.
1148 		 */
1149 	}
1150 #endif
1151 
1152 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1153 	if (dl_task(rq->curr))
1154 		wakeup_preempt_dl(rq, p, 0);
1155 	else
1156 		resched_curr(rq);
1157 
1158 #ifdef CONFIG_SMP
1159 	/*
1160 	 * Queueing this task back might have overloaded rq, check if we need
1161 	 * to kick someone away.
1162 	 */
1163 	if (has_pushable_dl_tasks(rq)) {
1164 		/*
1165 		 * Nothing relies on rq->lock after this, so its safe to drop
1166 		 * rq->lock.
1167 		 */
1168 		rq_unpin_lock(rq, &rf);
1169 		push_dl_task(rq);
1170 		rq_repin_lock(rq, &rf);
1171 	}
1172 #endif
1173 
1174 unlock:
1175 	task_rq_unlock(rq, p, &rf);
1176 
1177 	/*
1178 	 * This can free the task_struct, including this hrtimer, do not touch
1179 	 * anything related to that after this.
1180 	 */
1181 	put_task_struct(p);
1182 
1183 	return HRTIMER_NORESTART;
1184 }
1185 
1186 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1187 {
1188 	struct hrtimer *timer = &dl_se->dl_timer;
1189 
1190 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1191 	timer->function = dl_task_timer;
1192 }
1193 
1194 /*
1195  * During the activation, CBS checks if it can reuse the current task's
1196  * runtime and period. If the deadline of the task is in the past, CBS
1197  * cannot use the runtime, and so it replenishes the task. This rule
1198  * works fine for implicit deadline tasks (deadline == period), and the
1199  * CBS was designed for implicit deadline tasks. However, a task with
1200  * constrained deadline (deadline < period) might be awakened after the
1201  * deadline, but before the next period. In this case, replenishing the
1202  * task would allow it to run for runtime / deadline. As in this case
1203  * deadline < period, CBS enables a task to run for more than the
1204  * runtime / period. In a very loaded system, this can cause a domino
1205  * effect, making other tasks miss their deadlines.
1206  *
1207  * To avoid this problem, in the activation of a constrained deadline
1208  * task after the deadline but before the next period, throttle the
1209  * task and set the replenishing timer to the begin of the next period,
1210  * unless it is boosted.
1211  */
1212 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1213 {
1214 	struct task_struct *p = dl_task_of(dl_se);
1215 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1216 
1217 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1218 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1219 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1220 			return;
1221 		dl_se->dl_throttled = 1;
1222 		if (dl_se->runtime > 0)
1223 			dl_se->runtime = 0;
1224 	}
1225 }
1226 
1227 static
1228 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1229 {
1230 	return (dl_se->runtime <= 0);
1231 }
1232 
1233 /*
1234  * This function implements the GRUB accounting rule. According to the
1235  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1236  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1237  * where u is the utilization of the task, Umax is the maximum reclaimable
1238  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1239  * as the difference between the "total runqueue utilization" and the
1240  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1241  * reclaimable utilization.
1242  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1243  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1244  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1245  * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1246  * Since delta is a 64 bit variable, to have an overflow its value should be
1247  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1248  * not an issue here.
1249  */
1250 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1251 {
1252 	u64 u_act;
1253 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1254 
1255 	/*
1256 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1257 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1258 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1259 	 * negative leading to wrong results.
1260 	 */
1261 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1262 		u_act = dl_se->dl_bw;
1263 	else
1264 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1265 
1266 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1267 	return (delta * u_act) >> BW_SHIFT;
1268 }
1269 
1270 /*
1271  * Update the current task's runtime statistics (provided it is still
1272  * a -deadline task and has not been removed from the dl_rq).
1273  */
1274 static void update_curr_dl(struct rq *rq)
1275 {
1276 	struct task_struct *curr = rq->curr;
1277 	struct sched_dl_entity *dl_se = &curr->dl;
1278 	u64 delta_exec, scaled_delta_exec;
1279 	int cpu = cpu_of(rq);
1280 	u64 now;
1281 
1282 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1283 		return;
1284 
1285 	/*
1286 	 * Consumed budget is computed considering the time as
1287 	 * observed by schedulable tasks (excluding time spent
1288 	 * in hardirq context, etc.). Deadlines are instead
1289 	 * computed using hard walltime. This seems to be the more
1290 	 * natural solution, but the full ramifications of this
1291 	 * approach need further study.
1292 	 */
1293 	now = rq_clock_task(rq);
1294 	delta_exec = now - curr->se.exec_start;
1295 	if (unlikely((s64)delta_exec <= 0)) {
1296 		if (unlikely(dl_se->dl_yielded))
1297 			goto throttle;
1298 		return;
1299 	}
1300 
1301 	schedstat_set(curr->stats.exec_max,
1302 		      max(curr->stats.exec_max, delta_exec));
1303 
1304 	trace_sched_stat_runtime(curr, delta_exec, 0);
1305 
1306 	update_current_exec_runtime(curr, now, delta_exec);
1307 
1308 	if (dl_entity_is_special(dl_se))
1309 		return;
1310 
1311 	/*
1312 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1313 	 * spare reclaimed bandwidth is used to clock down frequency.
1314 	 *
1315 	 * For the others, we still need to scale reservation parameters
1316 	 * according to current frequency and CPU maximum capacity.
1317 	 */
1318 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1319 		scaled_delta_exec = grub_reclaim(delta_exec,
1320 						 rq,
1321 						 &curr->dl);
1322 	} else {
1323 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1324 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1325 
1326 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1327 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1328 	}
1329 
1330 	dl_se->runtime -= scaled_delta_exec;
1331 
1332 throttle:
1333 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1334 		dl_se->dl_throttled = 1;
1335 
1336 		/* If requested, inform the user about runtime overruns. */
1337 		if (dl_runtime_exceeded(dl_se) &&
1338 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1339 			dl_se->dl_overrun = 1;
1340 
1341 		__dequeue_task_dl(rq, curr, 0);
1342 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1343 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1344 
1345 		if (!is_leftmost(curr, &rq->dl))
1346 			resched_curr(rq);
1347 	}
1348 
1349 	/*
1350 	 * Because -- for now -- we share the rt bandwidth, we need to
1351 	 * account our runtime there too, otherwise actual rt tasks
1352 	 * would be able to exceed the shared quota.
1353 	 *
1354 	 * Account to the root rt group for now.
1355 	 *
1356 	 * The solution we're working towards is having the RT groups scheduled
1357 	 * using deadline servers -- however there's a few nasties to figure
1358 	 * out before that can happen.
1359 	 */
1360 	if (rt_bandwidth_enabled()) {
1361 		struct rt_rq *rt_rq = &rq->rt;
1362 
1363 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1364 		/*
1365 		 * We'll let actual RT tasks worry about the overflow here, we
1366 		 * have our own CBS to keep us inline; only account when RT
1367 		 * bandwidth is relevant.
1368 		 */
1369 		if (sched_rt_bandwidth_account(rt_rq))
1370 			rt_rq->rt_time += delta_exec;
1371 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1372 	}
1373 }
1374 
1375 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1376 {
1377 	struct sched_dl_entity *dl_se = container_of(timer,
1378 						     struct sched_dl_entity,
1379 						     inactive_timer);
1380 	struct task_struct *p = dl_task_of(dl_se);
1381 	struct rq_flags rf;
1382 	struct rq *rq;
1383 
1384 	rq = task_rq_lock(p, &rf);
1385 
1386 	sched_clock_tick();
1387 	update_rq_clock(rq);
1388 
1389 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1390 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1391 
1392 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1393 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1394 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1395 			dl_se->dl_non_contending = 0;
1396 		}
1397 
1398 		raw_spin_lock(&dl_b->lock);
1399 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1400 		raw_spin_unlock(&dl_b->lock);
1401 		__dl_clear_params(p);
1402 
1403 		goto unlock;
1404 	}
1405 	if (dl_se->dl_non_contending == 0)
1406 		goto unlock;
1407 
1408 	sub_running_bw(dl_se, &rq->dl);
1409 	dl_se->dl_non_contending = 0;
1410 unlock:
1411 	task_rq_unlock(rq, p, &rf);
1412 	put_task_struct(p);
1413 
1414 	return HRTIMER_NORESTART;
1415 }
1416 
1417 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1418 {
1419 	struct hrtimer *timer = &dl_se->inactive_timer;
1420 
1421 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1422 	timer->function = inactive_task_timer;
1423 }
1424 
1425 #define __node_2_dle(node) \
1426 	rb_entry((node), struct sched_dl_entity, rb_node)
1427 
1428 #ifdef CONFIG_SMP
1429 
1430 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1431 {
1432 	struct rq *rq = rq_of_dl_rq(dl_rq);
1433 
1434 	if (dl_rq->earliest_dl.curr == 0 ||
1435 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1436 		if (dl_rq->earliest_dl.curr == 0)
1437 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1438 		dl_rq->earliest_dl.curr = deadline;
1439 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1440 	}
1441 }
1442 
1443 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1444 {
1445 	struct rq *rq = rq_of_dl_rq(dl_rq);
1446 
1447 	/*
1448 	 * Since we may have removed our earliest (and/or next earliest)
1449 	 * task we must recompute them.
1450 	 */
1451 	if (!dl_rq->dl_nr_running) {
1452 		dl_rq->earliest_dl.curr = 0;
1453 		dl_rq->earliest_dl.next = 0;
1454 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1455 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1456 	} else {
1457 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1458 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1459 
1460 		dl_rq->earliest_dl.curr = entry->deadline;
1461 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1462 	}
1463 }
1464 
1465 #else
1466 
1467 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1468 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1469 
1470 #endif /* CONFIG_SMP */
1471 
1472 static inline
1473 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1474 {
1475 	int prio = dl_task_of(dl_se)->prio;
1476 	u64 deadline = dl_se->deadline;
1477 
1478 	WARN_ON(!dl_prio(prio));
1479 	dl_rq->dl_nr_running++;
1480 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1481 
1482 	inc_dl_deadline(dl_rq, deadline);
1483 }
1484 
1485 static inline
1486 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1487 {
1488 	int prio = dl_task_of(dl_se)->prio;
1489 
1490 	WARN_ON(!dl_prio(prio));
1491 	WARN_ON(!dl_rq->dl_nr_running);
1492 	dl_rq->dl_nr_running--;
1493 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1494 
1495 	dec_dl_deadline(dl_rq, dl_se->deadline);
1496 }
1497 
1498 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1499 {
1500 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1501 }
1502 
1503 static inline struct sched_statistics *
1504 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1505 {
1506 	return &dl_task_of(dl_se)->stats;
1507 }
1508 
1509 static inline void
1510 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1511 {
1512 	struct sched_statistics *stats;
1513 
1514 	if (!schedstat_enabled())
1515 		return;
1516 
1517 	stats = __schedstats_from_dl_se(dl_se);
1518 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1519 }
1520 
1521 static inline void
1522 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1523 {
1524 	struct sched_statistics *stats;
1525 
1526 	if (!schedstat_enabled())
1527 		return;
1528 
1529 	stats = __schedstats_from_dl_se(dl_se);
1530 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1531 }
1532 
1533 static inline void
1534 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1535 {
1536 	struct sched_statistics *stats;
1537 
1538 	if (!schedstat_enabled())
1539 		return;
1540 
1541 	stats = __schedstats_from_dl_se(dl_se);
1542 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1543 }
1544 
1545 static inline void
1546 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1547 			int flags)
1548 {
1549 	if (!schedstat_enabled())
1550 		return;
1551 
1552 	if (flags & ENQUEUE_WAKEUP)
1553 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1554 }
1555 
1556 static inline void
1557 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1558 			int flags)
1559 {
1560 	struct task_struct *p = dl_task_of(dl_se);
1561 
1562 	if (!schedstat_enabled())
1563 		return;
1564 
1565 	if ((flags & DEQUEUE_SLEEP)) {
1566 		unsigned int state;
1567 
1568 		state = READ_ONCE(p->__state);
1569 		if (state & TASK_INTERRUPTIBLE)
1570 			__schedstat_set(p->stats.sleep_start,
1571 					rq_clock(rq_of_dl_rq(dl_rq)));
1572 
1573 		if (state & TASK_UNINTERRUPTIBLE)
1574 			__schedstat_set(p->stats.block_start,
1575 					rq_clock(rq_of_dl_rq(dl_rq)));
1576 	}
1577 }
1578 
1579 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1580 {
1581 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1582 
1583 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1584 
1585 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1586 
1587 	inc_dl_tasks(dl_se, dl_rq);
1588 }
1589 
1590 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1591 {
1592 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1593 
1594 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1595 		return;
1596 
1597 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1598 
1599 	RB_CLEAR_NODE(&dl_se->rb_node);
1600 
1601 	dec_dl_tasks(dl_se, dl_rq);
1602 }
1603 
1604 static void
1605 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1606 {
1607 	WARN_ON_ONCE(on_dl_rq(dl_se));
1608 
1609 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1610 
1611 	/*
1612 	 * If this is a wakeup or a new instance, the scheduling
1613 	 * parameters of the task might need updating. Otherwise,
1614 	 * we want a replenishment of its runtime.
1615 	 */
1616 	if (flags & ENQUEUE_WAKEUP) {
1617 		task_contending(dl_se, flags);
1618 		update_dl_entity(dl_se);
1619 	} else if (flags & ENQUEUE_REPLENISH) {
1620 		replenish_dl_entity(dl_se);
1621 	} else if ((flags & ENQUEUE_RESTORE) &&
1622 		  dl_time_before(dl_se->deadline,
1623 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1624 		setup_new_dl_entity(dl_se);
1625 	}
1626 
1627 	__enqueue_dl_entity(dl_se);
1628 }
1629 
1630 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1631 {
1632 	__dequeue_dl_entity(dl_se);
1633 }
1634 
1635 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1636 {
1637 	if (is_dl_boosted(&p->dl)) {
1638 		/*
1639 		 * Because of delays in the detection of the overrun of a
1640 		 * thread's runtime, it might be the case that a thread
1641 		 * goes to sleep in a rt mutex with negative runtime. As
1642 		 * a consequence, the thread will be throttled.
1643 		 *
1644 		 * While waiting for the mutex, this thread can also be
1645 		 * boosted via PI, resulting in a thread that is throttled
1646 		 * and boosted at the same time.
1647 		 *
1648 		 * In this case, the boost overrides the throttle.
1649 		 */
1650 		if (p->dl.dl_throttled) {
1651 			/*
1652 			 * The replenish timer needs to be canceled. No
1653 			 * problem if it fires concurrently: boosted threads
1654 			 * are ignored in dl_task_timer().
1655 			 */
1656 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1657 			p->dl.dl_throttled = 0;
1658 		}
1659 	} else if (!dl_prio(p->normal_prio)) {
1660 		/*
1661 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1662 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1663 		 * replenishing it, as it's going to return back to its original
1664 		 * scheduling class after this. If it has been throttled, we need to
1665 		 * clear the flag, otherwise the task may wake up as throttled after
1666 		 * being boosted again with no means to replenish the runtime and clear
1667 		 * the throttle.
1668 		 */
1669 		p->dl.dl_throttled = 0;
1670 		if (!(flags & ENQUEUE_REPLENISH))
1671 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1672 					     task_pid_nr(p));
1673 
1674 		return;
1675 	}
1676 
1677 	/*
1678 	 * Check if a constrained deadline task was activated
1679 	 * after the deadline but before the next period.
1680 	 * If that is the case, the task will be throttled and
1681 	 * the replenishment timer will be set to the next period.
1682 	 */
1683 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1684 		dl_check_constrained_dl(&p->dl);
1685 
1686 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1687 		add_rq_bw(&p->dl, &rq->dl);
1688 		add_running_bw(&p->dl, &rq->dl);
1689 	}
1690 
1691 	/*
1692 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1693 	 * its budget it needs a replenishment and, since it now is on
1694 	 * its rq, the bandwidth timer callback (which clearly has not
1695 	 * run yet) will take care of this.
1696 	 * However, the active utilization does not depend on the fact
1697 	 * that the task is on the runqueue or not (but depends on the
1698 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1699 	 * In other words, even if a task is throttled its utilization must
1700 	 * be counted in the active utilization; hence, we need to call
1701 	 * add_running_bw().
1702 	 */
1703 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1704 		if (flags & ENQUEUE_WAKEUP)
1705 			task_contending(&p->dl, flags);
1706 
1707 		return;
1708 	}
1709 
1710 	check_schedstat_required();
1711 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1712 
1713 	enqueue_dl_entity(&p->dl, flags);
1714 
1715 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1716 		enqueue_pushable_dl_task(rq, p);
1717 }
1718 
1719 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1720 {
1721 	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1722 	dequeue_dl_entity(&p->dl);
1723 	dequeue_pushable_dl_task(rq, p);
1724 }
1725 
1726 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1727 {
1728 	update_curr_dl(rq);
1729 	__dequeue_task_dl(rq, p, flags);
1730 
1731 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1732 		sub_running_bw(&p->dl, &rq->dl);
1733 		sub_rq_bw(&p->dl, &rq->dl);
1734 	}
1735 
1736 	/*
1737 	 * This check allows to start the inactive timer (or to immediately
1738 	 * decrease the active utilization, if needed) in two cases:
1739 	 * when the task blocks and when it is terminating
1740 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1741 	 * way, because from GRUB's point of view the same thing is happening
1742 	 * (the task moves from "active contending" to "active non contending"
1743 	 * or "inactive")
1744 	 */
1745 	if (flags & DEQUEUE_SLEEP)
1746 		task_non_contending(p);
1747 }
1748 
1749 /*
1750  * Yield task semantic for -deadline tasks is:
1751  *
1752  *   get off from the CPU until our next instance, with
1753  *   a new runtime. This is of little use now, since we
1754  *   don't have a bandwidth reclaiming mechanism. Anyway,
1755  *   bandwidth reclaiming is planned for the future, and
1756  *   yield_task_dl will indicate that some spare budget
1757  *   is available for other task instances to use it.
1758  */
1759 static void yield_task_dl(struct rq *rq)
1760 {
1761 	/*
1762 	 * We make the task go to sleep until its current deadline by
1763 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1764 	 * it and the bandwidth timer will wake it up and will give it
1765 	 * new scheduling parameters (thanks to dl_yielded=1).
1766 	 */
1767 	rq->curr->dl.dl_yielded = 1;
1768 
1769 	update_rq_clock(rq);
1770 	update_curr_dl(rq);
1771 	/*
1772 	 * Tell update_rq_clock() that we've just updated,
1773 	 * so we don't do microscopic update in schedule()
1774 	 * and double the fastpath cost.
1775 	 */
1776 	rq_clock_skip_update(rq);
1777 }
1778 
1779 #ifdef CONFIG_SMP
1780 
1781 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1782 						 struct rq *rq)
1783 {
1784 	return (!rq->dl.dl_nr_running ||
1785 		dl_time_before(p->dl.deadline,
1786 			       rq->dl.earliest_dl.curr));
1787 }
1788 
1789 static int find_later_rq(struct task_struct *task);
1790 
1791 static int
1792 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1793 {
1794 	struct task_struct *curr;
1795 	bool select_rq;
1796 	struct rq *rq;
1797 
1798 	if (!(flags & WF_TTWU))
1799 		goto out;
1800 
1801 	rq = cpu_rq(cpu);
1802 
1803 	rcu_read_lock();
1804 	curr = READ_ONCE(rq->curr); /* unlocked access */
1805 
1806 	/*
1807 	 * If we are dealing with a -deadline task, we must
1808 	 * decide where to wake it up.
1809 	 * If it has a later deadline and the current task
1810 	 * on this rq can't move (provided the waking task
1811 	 * can!) we prefer to send it somewhere else. On the
1812 	 * other hand, if it has a shorter deadline, we
1813 	 * try to make it stay here, it might be important.
1814 	 */
1815 	select_rq = unlikely(dl_task(curr)) &&
1816 		    (curr->nr_cpus_allowed < 2 ||
1817 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1818 		    p->nr_cpus_allowed > 1;
1819 
1820 	/*
1821 	 * Take the capacity of the CPU into account to
1822 	 * ensure it fits the requirement of the task.
1823 	 */
1824 	if (sched_asym_cpucap_active())
1825 		select_rq |= !dl_task_fits_capacity(p, cpu);
1826 
1827 	if (select_rq) {
1828 		int target = find_later_rq(p);
1829 
1830 		if (target != -1 &&
1831 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
1832 			cpu = target;
1833 	}
1834 	rcu_read_unlock();
1835 
1836 out:
1837 	return cpu;
1838 }
1839 
1840 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1841 {
1842 	struct rq_flags rf;
1843 	struct rq *rq;
1844 
1845 	if (READ_ONCE(p->__state) != TASK_WAKING)
1846 		return;
1847 
1848 	rq = task_rq(p);
1849 	/*
1850 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1851 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1852 	 * rq->lock is not... So, lock it
1853 	 */
1854 	rq_lock(rq, &rf);
1855 	if (p->dl.dl_non_contending) {
1856 		update_rq_clock(rq);
1857 		sub_running_bw(&p->dl, &rq->dl);
1858 		p->dl.dl_non_contending = 0;
1859 		/*
1860 		 * If the timer handler is currently running and the
1861 		 * timer cannot be canceled, inactive_task_timer()
1862 		 * will see that dl_not_contending is not set, and
1863 		 * will not touch the rq's active utilization,
1864 		 * so we are still safe.
1865 		 */
1866 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1867 			put_task_struct(p);
1868 	}
1869 	sub_rq_bw(&p->dl, &rq->dl);
1870 	rq_unlock(rq, &rf);
1871 }
1872 
1873 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1874 {
1875 	/*
1876 	 * Current can't be migrated, useless to reschedule,
1877 	 * let's hope p can move out.
1878 	 */
1879 	if (rq->curr->nr_cpus_allowed == 1 ||
1880 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1881 		return;
1882 
1883 	/*
1884 	 * p is migratable, so let's not schedule it and
1885 	 * see if it is pushed or pulled somewhere else.
1886 	 */
1887 	if (p->nr_cpus_allowed != 1 &&
1888 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1889 		return;
1890 
1891 	resched_curr(rq);
1892 }
1893 
1894 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1895 {
1896 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1897 		/*
1898 		 * This is OK, because current is on_cpu, which avoids it being
1899 		 * picked for load-balance and preemption/IRQs are still
1900 		 * disabled avoiding further scheduler activity on it and we've
1901 		 * not yet started the picking loop.
1902 		 */
1903 		rq_unpin_lock(rq, rf);
1904 		pull_dl_task(rq);
1905 		rq_repin_lock(rq, rf);
1906 	}
1907 
1908 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1909 }
1910 #endif /* CONFIG_SMP */
1911 
1912 /*
1913  * Only called when both the current and waking task are -deadline
1914  * tasks.
1915  */
1916 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
1917 				  int flags)
1918 {
1919 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1920 		resched_curr(rq);
1921 		return;
1922 	}
1923 
1924 #ifdef CONFIG_SMP
1925 	/*
1926 	 * In the unlikely case current and p have the same deadline
1927 	 * let us try to decide what's the best thing to do...
1928 	 */
1929 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1930 	    !test_tsk_need_resched(rq->curr))
1931 		check_preempt_equal_dl(rq, p);
1932 #endif /* CONFIG_SMP */
1933 }
1934 
1935 #ifdef CONFIG_SCHED_HRTICK
1936 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1937 {
1938 	hrtick_start(rq, p->dl.runtime);
1939 }
1940 #else /* !CONFIG_SCHED_HRTICK */
1941 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1942 {
1943 }
1944 #endif
1945 
1946 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1947 {
1948 	struct sched_dl_entity *dl_se = &p->dl;
1949 	struct dl_rq *dl_rq = &rq->dl;
1950 
1951 	p->se.exec_start = rq_clock_task(rq);
1952 	if (on_dl_rq(&p->dl))
1953 		update_stats_wait_end_dl(dl_rq, dl_se);
1954 
1955 	/* You can't push away the running task */
1956 	dequeue_pushable_dl_task(rq, p);
1957 
1958 	if (!first)
1959 		return;
1960 
1961 	if (hrtick_enabled_dl(rq))
1962 		start_hrtick_dl(rq, p);
1963 
1964 	if (rq->curr->sched_class != &dl_sched_class)
1965 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1966 
1967 	deadline_queue_push_tasks(rq);
1968 }
1969 
1970 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1971 {
1972 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1973 
1974 	if (!left)
1975 		return NULL;
1976 
1977 	return __node_2_dle(left);
1978 }
1979 
1980 static struct task_struct *pick_task_dl(struct rq *rq)
1981 {
1982 	struct sched_dl_entity *dl_se;
1983 	struct dl_rq *dl_rq = &rq->dl;
1984 	struct task_struct *p;
1985 
1986 	if (!sched_dl_runnable(rq))
1987 		return NULL;
1988 
1989 	dl_se = pick_next_dl_entity(dl_rq);
1990 	WARN_ON_ONCE(!dl_se);
1991 	p = dl_task_of(dl_se);
1992 
1993 	return p;
1994 }
1995 
1996 static struct task_struct *pick_next_task_dl(struct rq *rq)
1997 {
1998 	struct task_struct *p;
1999 
2000 	p = pick_task_dl(rq);
2001 	if (p)
2002 		set_next_task_dl(rq, p, true);
2003 
2004 	return p;
2005 }
2006 
2007 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2008 {
2009 	struct sched_dl_entity *dl_se = &p->dl;
2010 	struct dl_rq *dl_rq = &rq->dl;
2011 
2012 	if (on_dl_rq(&p->dl))
2013 		update_stats_wait_start_dl(dl_rq, dl_se);
2014 
2015 	update_curr_dl(rq);
2016 
2017 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2018 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2019 		enqueue_pushable_dl_task(rq, p);
2020 }
2021 
2022 /*
2023  * scheduler tick hitting a task of our scheduling class.
2024  *
2025  * NOTE: This function can be called remotely by the tick offload that
2026  * goes along full dynticks. Therefore no local assumption can be made
2027  * and everything must be accessed through the @rq and @curr passed in
2028  * parameters.
2029  */
2030 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2031 {
2032 	update_curr_dl(rq);
2033 
2034 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2035 	/*
2036 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2037 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2038 	 * be set and schedule() will start a new hrtick for the next task.
2039 	 */
2040 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2041 	    is_leftmost(p, &rq->dl))
2042 		start_hrtick_dl(rq, p);
2043 }
2044 
2045 static void task_fork_dl(struct task_struct *p)
2046 {
2047 	/*
2048 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2049 	 * sched_fork()
2050 	 */
2051 }
2052 
2053 #ifdef CONFIG_SMP
2054 
2055 /* Only try algorithms three times */
2056 #define DL_MAX_TRIES 3
2057 
2058 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2059 {
2060 	if (!task_on_cpu(rq, p) &&
2061 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2062 		return 1;
2063 	return 0;
2064 }
2065 
2066 /*
2067  * Return the earliest pushable rq's task, which is suitable to be executed
2068  * on the CPU, NULL otherwise:
2069  */
2070 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2071 {
2072 	struct task_struct *p = NULL;
2073 	struct rb_node *next_node;
2074 
2075 	if (!has_pushable_dl_tasks(rq))
2076 		return NULL;
2077 
2078 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2079 
2080 next_node:
2081 	if (next_node) {
2082 		p = __node_2_pdl(next_node);
2083 
2084 		if (pick_dl_task(rq, p, cpu))
2085 			return p;
2086 
2087 		next_node = rb_next(next_node);
2088 		goto next_node;
2089 	}
2090 
2091 	return NULL;
2092 }
2093 
2094 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2095 
2096 static int find_later_rq(struct task_struct *task)
2097 {
2098 	struct sched_domain *sd;
2099 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2100 	int this_cpu = smp_processor_id();
2101 	int cpu = task_cpu(task);
2102 
2103 	/* Make sure the mask is initialized first */
2104 	if (unlikely(!later_mask))
2105 		return -1;
2106 
2107 	if (task->nr_cpus_allowed == 1)
2108 		return -1;
2109 
2110 	/*
2111 	 * We have to consider system topology and task affinity
2112 	 * first, then we can look for a suitable CPU.
2113 	 */
2114 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2115 		return -1;
2116 
2117 	/*
2118 	 * If we are here, some targets have been found, including
2119 	 * the most suitable which is, among the runqueues where the
2120 	 * current tasks have later deadlines than the task's one, the
2121 	 * rq with the latest possible one.
2122 	 *
2123 	 * Now we check how well this matches with task's
2124 	 * affinity and system topology.
2125 	 *
2126 	 * The last CPU where the task run is our first
2127 	 * guess, since it is most likely cache-hot there.
2128 	 */
2129 	if (cpumask_test_cpu(cpu, later_mask))
2130 		return cpu;
2131 	/*
2132 	 * Check if this_cpu is to be skipped (i.e., it is
2133 	 * not in the mask) or not.
2134 	 */
2135 	if (!cpumask_test_cpu(this_cpu, later_mask))
2136 		this_cpu = -1;
2137 
2138 	rcu_read_lock();
2139 	for_each_domain(cpu, sd) {
2140 		if (sd->flags & SD_WAKE_AFFINE) {
2141 			int best_cpu;
2142 
2143 			/*
2144 			 * If possible, preempting this_cpu is
2145 			 * cheaper than migrating.
2146 			 */
2147 			if (this_cpu != -1 &&
2148 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2149 				rcu_read_unlock();
2150 				return this_cpu;
2151 			}
2152 
2153 			best_cpu = cpumask_any_and_distribute(later_mask,
2154 							      sched_domain_span(sd));
2155 			/*
2156 			 * Last chance: if a CPU being in both later_mask
2157 			 * and current sd span is valid, that becomes our
2158 			 * choice. Of course, the latest possible CPU is
2159 			 * already under consideration through later_mask.
2160 			 */
2161 			if (best_cpu < nr_cpu_ids) {
2162 				rcu_read_unlock();
2163 				return best_cpu;
2164 			}
2165 		}
2166 	}
2167 	rcu_read_unlock();
2168 
2169 	/*
2170 	 * At this point, all our guesses failed, we just return
2171 	 * 'something', and let the caller sort the things out.
2172 	 */
2173 	if (this_cpu != -1)
2174 		return this_cpu;
2175 
2176 	cpu = cpumask_any_distribute(later_mask);
2177 	if (cpu < nr_cpu_ids)
2178 		return cpu;
2179 
2180 	return -1;
2181 }
2182 
2183 /* Locks the rq it finds */
2184 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2185 {
2186 	struct rq *later_rq = NULL;
2187 	int tries;
2188 	int cpu;
2189 
2190 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2191 		cpu = find_later_rq(task);
2192 
2193 		if ((cpu == -1) || (cpu == rq->cpu))
2194 			break;
2195 
2196 		later_rq = cpu_rq(cpu);
2197 
2198 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2199 			/*
2200 			 * Target rq has tasks of equal or earlier deadline,
2201 			 * retrying does not release any lock and is unlikely
2202 			 * to yield a different result.
2203 			 */
2204 			later_rq = NULL;
2205 			break;
2206 		}
2207 
2208 		/* Retry if something changed. */
2209 		if (double_lock_balance(rq, later_rq)) {
2210 			if (unlikely(task_rq(task) != rq ||
2211 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2212 				     task_on_cpu(rq, task) ||
2213 				     !dl_task(task) ||
2214 				     is_migration_disabled(task) ||
2215 				     !task_on_rq_queued(task))) {
2216 				double_unlock_balance(rq, later_rq);
2217 				later_rq = NULL;
2218 				break;
2219 			}
2220 		}
2221 
2222 		/*
2223 		 * If the rq we found has no -deadline task, or
2224 		 * its earliest one has a later deadline than our
2225 		 * task, the rq is a good one.
2226 		 */
2227 		if (dl_task_is_earliest_deadline(task, later_rq))
2228 			break;
2229 
2230 		/* Otherwise we try again. */
2231 		double_unlock_balance(rq, later_rq);
2232 		later_rq = NULL;
2233 	}
2234 
2235 	return later_rq;
2236 }
2237 
2238 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2239 {
2240 	struct task_struct *p;
2241 
2242 	if (!has_pushable_dl_tasks(rq))
2243 		return NULL;
2244 
2245 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2246 
2247 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2248 	WARN_ON_ONCE(task_current(rq, p));
2249 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2250 
2251 	WARN_ON_ONCE(!task_on_rq_queued(p));
2252 	WARN_ON_ONCE(!dl_task(p));
2253 
2254 	return p;
2255 }
2256 
2257 /*
2258  * See if the non running -deadline tasks on this rq
2259  * can be sent to some other CPU where they can preempt
2260  * and start executing.
2261  */
2262 static int push_dl_task(struct rq *rq)
2263 {
2264 	struct task_struct *next_task;
2265 	struct rq *later_rq;
2266 	int ret = 0;
2267 
2268 	next_task = pick_next_pushable_dl_task(rq);
2269 	if (!next_task)
2270 		return 0;
2271 
2272 retry:
2273 	/*
2274 	 * If next_task preempts rq->curr, and rq->curr
2275 	 * can move away, it makes sense to just reschedule
2276 	 * without going further in pushing next_task.
2277 	 */
2278 	if (dl_task(rq->curr) &&
2279 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2280 	    rq->curr->nr_cpus_allowed > 1) {
2281 		resched_curr(rq);
2282 		return 0;
2283 	}
2284 
2285 	if (is_migration_disabled(next_task))
2286 		return 0;
2287 
2288 	if (WARN_ON(next_task == rq->curr))
2289 		return 0;
2290 
2291 	/* We might release rq lock */
2292 	get_task_struct(next_task);
2293 
2294 	/* Will lock the rq it'll find */
2295 	later_rq = find_lock_later_rq(next_task, rq);
2296 	if (!later_rq) {
2297 		struct task_struct *task;
2298 
2299 		/*
2300 		 * We must check all this again, since
2301 		 * find_lock_later_rq releases rq->lock and it is
2302 		 * then possible that next_task has migrated.
2303 		 */
2304 		task = pick_next_pushable_dl_task(rq);
2305 		if (task == next_task) {
2306 			/*
2307 			 * The task is still there. We don't try
2308 			 * again, some other CPU will pull it when ready.
2309 			 */
2310 			goto out;
2311 		}
2312 
2313 		if (!task)
2314 			/* No more tasks */
2315 			goto out;
2316 
2317 		put_task_struct(next_task);
2318 		next_task = task;
2319 		goto retry;
2320 	}
2321 
2322 	deactivate_task(rq, next_task, 0);
2323 	set_task_cpu(next_task, later_rq->cpu);
2324 	activate_task(later_rq, next_task, 0);
2325 	ret = 1;
2326 
2327 	resched_curr(later_rq);
2328 
2329 	double_unlock_balance(rq, later_rq);
2330 
2331 out:
2332 	put_task_struct(next_task);
2333 
2334 	return ret;
2335 }
2336 
2337 static void push_dl_tasks(struct rq *rq)
2338 {
2339 	/* push_dl_task() will return true if it moved a -deadline task */
2340 	while (push_dl_task(rq))
2341 		;
2342 }
2343 
2344 static void pull_dl_task(struct rq *this_rq)
2345 {
2346 	int this_cpu = this_rq->cpu, cpu;
2347 	struct task_struct *p, *push_task;
2348 	bool resched = false;
2349 	struct rq *src_rq;
2350 	u64 dmin = LONG_MAX;
2351 
2352 	if (likely(!dl_overloaded(this_rq)))
2353 		return;
2354 
2355 	/*
2356 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2357 	 * see overloaded we must also see the dlo_mask bit.
2358 	 */
2359 	smp_rmb();
2360 
2361 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2362 		if (this_cpu == cpu)
2363 			continue;
2364 
2365 		src_rq = cpu_rq(cpu);
2366 
2367 		/*
2368 		 * It looks racy, abd it is! However, as in sched_rt.c,
2369 		 * we are fine with this.
2370 		 */
2371 		if (this_rq->dl.dl_nr_running &&
2372 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2373 				   src_rq->dl.earliest_dl.next))
2374 			continue;
2375 
2376 		/* Might drop this_rq->lock */
2377 		push_task = NULL;
2378 		double_lock_balance(this_rq, src_rq);
2379 
2380 		/*
2381 		 * If there are no more pullable tasks on the
2382 		 * rq, we're done with it.
2383 		 */
2384 		if (src_rq->dl.dl_nr_running <= 1)
2385 			goto skip;
2386 
2387 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2388 
2389 		/*
2390 		 * We found a task to be pulled if:
2391 		 *  - it preempts our current (if there's one),
2392 		 *  - it will preempt the last one we pulled (if any).
2393 		 */
2394 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2395 		    dl_task_is_earliest_deadline(p, this_rq)) {
2396 			WARN_ON(p == src_rq->curr);
2397 			WARN_ON(!task_on_rq_queued(p));
2398 
2399 			/*
2400 			 * Then we pull iff p has actually an earlier
2401 			 * deadline than the current task of its runqueue.
2402 			 */
2403 			if (dl_time_before(p->dl.deadline,
2404 					   src_rq->curr->dl.deadline))
2405 				goto skip;
2406 
2407 			if (is_migration_disabled(p)) {
2408 				push_task = get_push_task(src_rq);
2409 			} else {
2410 				deactivate_task(src_rq, p, 0);
2411 				set_task_cpu(p, this_cpu);
2412 				activate_task(this_rq, p, 0);
2413 				dmin = p->dl.deadline;
2414 				resched = true;
2415 			}
2416 
2417 			/* Is there any other task even earlier? */
2418 		}
2419 skip:
2420 		double_unlock_balance(this_rq, src_rq);
2421 
2422 		if (push_task) {
2423 			preempt_disable();
2424 			raw_spin_rq_unlock(this_rq);
2425 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2426 					    push_task, &src_rq->push_work);
2427 			preempt_enable();
2428 			raw_spin_rq_lock(this_rq);
2429 		}
2430 	}
2431 
2432 	if (resched)
2433 		resched_curr(this_rq);
2434 }
2435 
2436 /*
2437  * Since the task is not running and a reschedule is not going to happen
2438  * anytime soon on its runqueue, we try pushing it away now.
2439  */
2440 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2441 {
2442 	if (!task_on_cpu(rq, p) &&
2443 	    !test_tsk_need_resched(rq->curr) &&
2444 	    p->nr_cpus_allowed > 1 &&
2445 	    dl_task(rq->curr) &&
2446 	    (rq->curr->nr_cpus_allowed < 2 ||
2447 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2448 		push_dl_tasks(rq);
2449 	}
2450 }
2451 
2452 static void set_cpus_allowed_dl(struct task_struct *p,
2453 				struct affinity_context *ctx)
2454 {
2455 	struct root_domain *src_rd;
2456 	struct rq *rq;
2457 
2458 	WARN_ON_ONCE(!dl_task(p));
2459 
2460 	rq = task_rq(p);
2461 	src_rd = rq->rd;
2462 	/*
2463 	 * Migrating a SCHED_DEADLINE task between exclusive
2464 	 * cpusets (different root_domains) entails a bandwidth
2465 	 * update. We already made space for us in the destination
2466 	 * domain (see cpuset_can_attach()).
2467 	 */
2468 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2469 		struct dl_bw *src_dl_b;
2470 
2471 		src_dl_b = dl_bw_of(cpu_of(rq));
2472 		/*
2473 		 * We now free resources of the root_domain we are migrating
2474 		 * off. In the worst case, sched_setattr() may temporary fail
2475 		 * until we complete the update.
2476 		 */
2477 		raw_spin_lock(&src_dl_b->lock);
2478 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2479 		raw_spin_unlock(&src_dl_b->lock);
2480 	}
2481 
2482 	set_cpus_allowed_common(p, ctx);
2483 }
2484 
2485 /* Assumes rq->lock is held */
2486 static void rq_online_dl(struct rq *rq)
2487 {
2488 	if (rq->dl.overloaded)
2489 		dl_set_overload(rq);
2490 
2491 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2492 	if (rq->dl.dl_nr_running > 0)
2493 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2494 }
2495 
2496 /* Assumes rq->lock is held */
2497 static void rq_offline_dl(struct rq *rq)
2498 {
2499 	if (rq->dl.overloaded)
2500 		dl_clear_overload(rq);
2501 
2502 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2503 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2504 }
2505 
2506 void __init init_sched_dl_class(void)
2507 {
2508 	unsigned int i;
2509 
2510 	for_each_possible_cpu(i)
2511 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2512 					GFP_KERNEL, cpu_to_node(i));
2513 }
2514 
2515 void dl_add_task_root_domain(struct task_struct *p)
2516 {
2517 	struct rq_flags rf;
2518 	struct rq *rq;
2519 	struct dl_bw *dl_b;
2520 
2521 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2522 	if (!dl_task(p)) {
2523 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2524 		return;
2525 	}
2526 
2527 	rq = __task_rq_lock(p, &rf);
2528 
2529 	dl_b = &rq->rd->dl_bw;
2530 	raw_spin_lock(&dl_b->lock);
2531 
2532 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2533 
2534 	raw_spin_unlock(&dl_b->lock);
2535 
2536 	task_rq_unlock(rq, p, &rf);
2537 }
2538 
2539 void dl_clear_root_domain(struct root_domain *rd)
2540 {
2541 	unsigned long flags;
2542 
2543 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2544 	rd->dl_bw.total_bw = 0;
2545 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2546 }
2547 
2548 #endif /* CONFIG_SMP */
2549 
2550 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2551 {
2552 	/*
2553 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2554 	 * time is in the future). If the task switches back to dl before
2555 	 * the "inactive timer" fires, it can continue to consume its current
2556 	 * runtime using its current deadline. If it stays outside of
2557 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2558 	 * will reset the task parameters.
2559 	 */
2560 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2561 		task_non_contending(p);
2562 
2563 	/*
2564 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2565 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2566 	 */
2567 	dec_dl_tasks_cs(p);
2568 
2569 	if (!task_on_rq_queued(p)) {
2570 		/*
2571 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2572 		 * might migrate away from this rq while continuing to run on
2573 		 * some other class. We need to remove its contribution from
2574 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2575 		 */
2576 		if (p->dl.dl_non_contending)
2577 			sub_running_bw(&p->dl, &rq->dl);
2578 		sub_rq_bw(&p->dl, &rq->dl);
2579 	}
2580 
2581 	/*
2582 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2583 	 * at the 0-lag time, because the task could have been migrated
2584 	 * while SCHED_OTHER in the meanwhile.
2585 	 */
2586 	if (p->dl.dl_non_contending)
2587 		p->dl.dl_non_contending = 0;
2588 
2589 	/*
2590 	 * Since this might be the only -deadline task on the rq,
2591 	 * this is the right place to try to pull some other one
2592 	 * from an overloaded CPU, if any.
2593 	 */
2594 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2595 		return;
2596 
2597 	deadline_queue_pull_task(rq);
2598 }
2599 
2600 /*
2601  * When switching to -deadline, we may overload the rq, then
2602  * we try to push someone off, if possible.
2603  */
2604 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2605 {
2606 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2607 		put_task_struct(p);
2608 
2609 	/*
2610 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2611 	 * track of that on its cpuset (for correct bandwidth tracking).
2612 	 */
2613 	inc_dl_tasks_cs(p);
2614 
2615 	/* If p is not queued we will update its parameters at next wakeup. */
2616 	if (!task_on_rq_queued(p)) {
2617 		add_rq_bw(&p->dl, &rq->dl);
2618 
2619 		return;
2620 	}
2621 
2622 	if (rq->curr != p) {
2623 #ifdef CONFIG_SMP
2624 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2625 			deadline_queue_push_tasks(rq);
2626 #endif
2627 		if (dl_task(rq->curr))
2628 			wakeup_preempt_dl(rq, p, 0);
2629 		else
2630 			resched_curr(rq);
2631 	} else {
2632 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2633 	}
2634 }
2635 
2636 /*
2637  * If the scheduling parameters of a -deadline task changed,
2638  * a push or pull operation might be needed.
2639  */
2640 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2641 			    int oldprio)
2642 {
2643 	if (!task_on_rq_queued(p))
2644 		return;
2645 
2646 #ifdef CONFIG_SMP
2647 	/*
2648 	 * This might be too much, but unfortunately
2649 	 * we don't have the old deadline value, and
2650 	 * we can't argue if the task is increasing
2651 	 * or lowering its prio, so...
2652 	 */
2653 	if (!rq->dl.overloaded)
2654 		deadline_queue_pull_task(rq);
2655 
2656 	if (task_current(rq, p)) {
2657 		/*
2658 		 * If we now have a earlier deadline task than p,
2659 		 * then reschedule, provided p is still on this
2660 		 * runqueue.
2661 		 */
2662 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2663 			resched_curr(rq);
2664 	} else {
2665 		/*
2666 		 * Current may not be deadline in case p was throttled but we
2667 		 * have just replenished it (e.g. rt_mutex_setprio()).
2668 		 *
2669 		 * Otherwise, if p was given an earlier deadline, reschedule.
2670 		 */
2671 		if (!dl_task(rq->curr) ||
2672 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2673 			resched_curr(rq);
2674 	}
2675 #else
2676 	/*
2677 	 * We don't know if p has a earlier or later deadline, so let's blindly
2678 	 * set a (maybe not needed) rescheduling point.
2679 	 */
2680 	resched_curr(rq);
2681 #endif
2682 }
2683 
2684 #ifdef CONFIG_SCHED_CORE
2685 static int task_is_throttled_dl(struct task_struct *p, int cpu)
2686 {
2687 	return p->dl.dl_throttled;
2688 }
2689 #endif
2690 
2691 DEFINE_SCHED_CLASS(dl) = {
2692 
2693 	.enqueue_task		= enqueue_task_dl,
2694 	.dequeue_task		= dequeue_task_dl,
2695 	.yield_task		= yield_task_dl,
2696 
2697 	.wakeup_preempt		= wakeup_preempt_dl,
2698 
2699 	.pick_next_task		= pick_next_task_dl,
2700 	.put_prev_task		= put_prev_task_dl,
2701 	.set_next_task		= set_next_task_dl,
2702 
2703 #ifdef CONFIG_SMP
2704 	.balance		= balance_dl,
2705 	.pick_task		= pick_task_dl,
2706 	.select_task_rq		= select_task_rq_dl,
2707 	.migrate_task_rq	= migrate_task_rq_dl,
2708 	.set_cpus_allowed       = set_cpus_allowed_dl,
2709 	.rq_online              = rq_online_dl,
2710 	.rq_offline             = rq_offline_dl,
2711 	.task_woken		= task_woken_dl,
2712 	.find_lock_rq		= find_lock_later_rq,
2713 #endif
2714 
2715 	.task_tick		= task_tick_dl,
2716 	.task_fork              = task_fork_dl,
2717 
2718 	.prio_changed           = prio_changed_dl,
2719 	.switched_from		= switched_from_dl,
2720 	.switched_to		= switched_to_dl,
2721 
2722 	.update_curr		= update_curr_dl,
2723 #ifdef CONFIG_SCHED_CORE
2724 	.task_is_throttled	= task_is_throttled_dl,
2725 #endif
2726 };
2727 
2728 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2729 static u64 dl_generation;
2730 
2731 int sched_dl_global_validate(void)
2732 {
2733 	u64 runtime = global_rt_runtime();
2734 	u64 period = global_rt_period();
2735 	u64 new_bw = to_ratio(period, runtime);
2736 	u64 gen = ++dl_generation;
2737 	struct dl_bw *dl_b;
2738 	int cpu, cpus, ret = 0;
2739 	unsigned long flags;
2740 
2741 	/*
2742 	 * Here we want to check the bandwidth not being set to some
2743 	 * value smaller than the currently allocated bandwidth in
2744 	 * any of the root_domains.
2745 	 */
2746 	for_each_possible_cpu(cpu) {
2747 		rcu_read_lock_sched();
2748 
2749 		if (dl_bw_visited(cpu, gen))
2750 			goto next;
2751 
2752 		dl_b = dl_bw_of(cpu);
2753 		cpus = dl_bw_cpus(cpu);
2754 
2755 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2756 		if (new_bw * cpus < dl_b->total_bw)
2757 			ret = -EBUSY;
2758 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2759 
2760 next:
2761 		rcu_read_unlock_sched();
2762 
2763 		if (ret)
2764 			break;
2765 	}
2766 
2767 	return ret;
2768 }
2769 
2770 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2771 {
2772 	if (global_rt_runtime() == RUNTIME_INF) {
2773 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2774 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2775 	} else {
2776 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2777 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2778 		dl_rq->max_bw = dl_rq->extra_bw =
2779 			to_ratio(global_rt_period(), global_rt_runtime());
2780 	}
2781 }
2782 
2783 void sched_dl_do_global(void)
2784 {
2785 	u64 new_bw = -1;
2786 	u64 gen = ++dl_generation;
2787 	struct dl_bw *dl_b;
2788 	int cpu;
2789 	unsigned long flags;
2790 
2791 	if (global_rt_runtime() != RUNTIME_INF)
2792 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2793 
2794 	for_each_possible_cpu(cpu) {
2795 		rcu_read_lock_sched();
2796 
2797 		if (dl_bw_visited(cpu, gen)) {
2798 			rcu_read_unlock_sched();
2799 			continue;
2800 		}
2801 
2802 		dl_b = dl_bw_of(cpu);
2803 
2804 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2805 		dl_b->bw = new_bw;
2806 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2807 
2808 		rcu_read_unlock_sched();
2809 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2810 	}
2811 }
2812 
2813 /*
2814  * We must be sure that accepting a new task (or allowing changing the
2815  * parameters of an existing one) is consistent with the bandwidth
2816  * constraints. If yes, this function also accordingly updates the currently
2817  * allocated bandwidth to reflect the new situation.
2818  *
2819  * This function is called while holding p's rq->lock.
2820  */
2821 int sched_dl_overflow(struct task_struct *p, int policy,
2822 		      const struct sched_attr *attr)
2823 {
2824 	u64 period = attr->sched_period ?: attr->sched_deadline;
2825 	u64 runtime = attr->sched_runtime;
2826 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2827 	int cpus, err = -1, cpu = task_cpu(p);
2828 	struct dl_bw *dl_b = dl_bw_of(cpu);
2829 	unsigned long cap;
2830 
2831 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2832 		return 0;
2833 
2834 	/* !deadline task may carry old deadline bandwidth */
2835 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2836 		return 0;
2837 
2838 	/*
2839 	 * Either if a task, enters, leave, or stays -deadline but changes
2840 	 * its parameters, we may need to update accordingly the total
2841 	 * allocated bandwidth of the container.
2842 	 */
2843 	raw_spin_lock(&dl_b->lock);
2844 	cpus = dl_bw_cpus(cpu);
2845 	cap = dl_bw_capacity(cpu);
2846 
2847 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2848 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2849 		if (hrtimer_active(&p->dl.inactive_timer))
2850 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2851 		__dl_add(dl_b, new_bw, cpus);
2852 		err = 0;
2853 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2854 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2855 		/*
2856 		 * XXX this is slightly incorrect: when the task
2857 		 * utilization decreases, we should delay the total
2858 		 * utilization change until the task's 0-lag point.
2859 		 * But this would require to set the task's "inactive
2860 		 * timer" when the task is not inactive.
2861 		 */
2862 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2863 		__dl_add(dl_b, new_bw, cpus);
2864 		dl_change_utilization(p, new_bw);
2865 		err = 0;
2866 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2867 		/*
2868 		 * Do not decrease the total deadline utilization here,
2869 		 * switched_from_dl() will take care to do it at the correct
2870 		 * (0-lag) time.
2871 		 */
2872 		err = 0;
2873 	}
2874 	raw_spin_unlock(&dl_b->lock);
2875 
2876 	return err;
2877 }
2878 
2879 /*
2880  * This function initializes the sched_dl_entity of a newly becoming
2881  * SCHED_DEADLINE task.
2882  *
2883  * Only the static values are considered here, the actual runtime and the
2884  * absolute deadline will be properly calculated when the task is enqueued
2885  * for the first time with its new policy.
2886  */
2887 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2888 {
2889 	struct sched_dl_entity *dl_se = &p->dl;
2890 
2891 	dl_se->dl_runtime = attr->sched_runtime;
2892 	dl_se->dl_deadline = attr->sched_deadline;
2893 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2894 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2895 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2896 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2897 }
2898 
2899 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2900 {
2901 	struct sched_dl_entity *dl_se = &p->dl;
2902 
2903 	attr->sched_priority = p->rt_priority;
2904 	attr->sched_runtime = dl_se->dl_runtime;
2905 	attr->sched_deadline = dl_se->dl_deadline;
2906 	attr->sched_period = dl_se->dl_period;
2907 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2908 	attr->sched_flags |= dl_se->flags;
2909 }
2910 
2911 /*
2912  * This function validates the new parameters of a -deadline task.
2913  * We ask for the deadline not being zero, and greater or equal
2914  * than the runtime, as well as the period of being zero or
2915  * greater than deadline. Furthermore, we have to be sure that
2916  * user parameters are above the internal resolution of 1us (we
2917  * check sched_runtime only since it is always the smaller one) and
2918  * below 2^63 ns (we have to check both sched_deadline and
2919  * sched_period, as the latter can be zero).
2920  */
2921 bool __checkparam_dl(const struct sched_attr *attr)
2922 {
2923 	u64 period, max, min;
2924 
2925 	/* special dl tasks don't actually use any parameter */
2926 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2927 		return true;
2928 
2929 	/* deadline != 0 */
2930 	if (attr->sched_deadline == 0)
2931 		return false;
2932 
2933 	/*
2934 	 * Since we truncate DL_SCALE bits, make sure we're at least
2935 	 * that big.
2936 	 */
2937 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2938 		return false;
2939 
2940 	/*
2941 	 * Since we use the MSB for wrap-around and sign issues, make
2942 	 * sure it's not set (mind that period can be equal to zero).
2943 	 */
2944 	if (attr->sched_deadline & (1ULL << 63) ||
2945 	    attr->sched_period & (1ULL << 63))
2946 		return false;
2947 
2948 	period = attr->sched_period;
2949 	if (!period)
2950 		period = attr->sched_deadline;
2951 
2952 	/* runtime <= deadline <= period (if period != 0) */
2953 	if (period < attr->sched_deadline ||
2954 	    attr->sched_deadline < attr->sched_runtime)
2955 		return false;
2956 
2957 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2958 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2959 
2960 	if (period < min || period > max)
2961 		return false;
2962 
2963 	return true;
2964 }
2965 
2966 /*
2967  * This function clears the sched_dl_entity static params.
2968  */
2969 void __dl_clear_params(struct task_struct *p)
2970 {
2971 	struct sched_dl_entity *dl_se = &p->dl;
2972 
2973 	dl_se->dl_runtime		= 0;
2974 	dl_se->dl_deadline		= 0;
2975 	dl_se->dl_period		= 0;
2976 	dl_se->flags			= 0;
2977 	dl_se->dl_bw			= 0;
2978 	dl_se->dl_density		= 0;
2979 
2980 	dl_se->dl_throttled		= 0;
2981 	dl_se->dl_yielded		= 0;
2982 	dl_se->dl_non_contending	= 0;
2983 	dl_se->dl_overrun		= 0;
2984 
2985 #ifdef CONFIG_RT_MUTEXES
2986 	dl_se->pi_se			= dl_se;
2987 #endif
2988 }
2989 
2990 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2991 {
2992 	struct sched_dl_entity *dl_se = &p->dl;
2993 
2994 	if (dl_se->dl_runtime != attr->sched_runtime ||
2995 	    dl_se->dl_deadline != attr->sched_deadline ||
2996 	    dl_se->dl_period != attr->sched_period ||
2997 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2998 		return true;
2999 
3000 	return false;
3001 }
3002 
3003 #ifdef CONFIG_SMP
3004 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3005 				 const struct cpumask *trial)
3006 {
3007 	unsigned long flags, cap;
3008 	struct dl_bw *cur_dl_b;
3009 	int ret = 1;
3010 
3011 	rcu_read_lock_sched();
3012 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3013 	cap = __dl_bw_capacity(trial);
3014 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3015 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3016 		ret = 0;
3017 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3018 	rcu_read_unlock_sched();
3019 
3020 	return ret;
3021 }
3022 
3023 enum dl_bw_request {
3024 	dl_bw_req_check_overflow = 0,
3025 	dl_bw_req_alloc,
3026 	dl_bw_req_free
3027 };
3028 
3029 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3030 {
3031 	unsigned long flags;
3032 	struct dl_bw *dl_b;
3033 	bool overflow = 0;
3034 
3035 	rcu_read_lock_sched();
3036 	dl_b = dl_bw_of(cpu);
3037 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3038 
3039 	if (req == dl_bw_req_free) {
3040 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3041 	} else {
3042 		unsigned long cap = dl_bw_capacity(cpu);
3043 
3044 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3045 
3046 		if (req == dl_bw_req_alloc && !overflow) {
3047 			/*
3048 			 * We reserve space in the destination
3049 			 * root_domain, as we can't fail after this point.
3050 			 * We will free resources in the source root_domain
3051 			 * later on (see set_cpus_allowed_dl()).
3052 			 */
3053 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3054 		}
3055 	}
3056 
3057 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3058 	rcu_read_unlock_sched();
3059 
3060 	return overflow ? -EBUSY : 0;
3061 }
3062 
3063 int dl_bw_check_overflow(int cpu)
3064 {
3065 	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3066 }
3067 
3068 int dl_bw_alloc(int cpu, u64 dl_bw)
3069 {
3070 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3071 }
3072 
3073 void dl_bw_free(int cpu, u64 dl_bw)
3074 {
3075 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3076 }
3077 #endif
3078 
3079 #ifdef CONFIG_SCHED_DEBUG
3080 void print_dl_stats(struct seq_file *m, int cpu)
3081 {
3082 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3083 }
3084 #endif /* CONFIG_SCHED_DEBUG */
3085