1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 #include <uapi/linux/sched/types.h> 21 22 struct dl_bandwidth def_dl_bandwidth; 23 24 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 25 { 26 return container_of(dl_se, struct task_struct, dl); 27 } 28 29 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 30 { 31 return container_of(dl_rq, struct rq, dl); 32 } 33 34 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 35 { 36 struct task_struct *p = dl_task_of(dl_se); 37 struct rq *rq = task_rq(p); 38 39 return &rq->dl; 40 } 41 42 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 43 { 44 return !RB_EMPTY_NODE(&dl_se->rb_node); 45 } 46 47 #ifdef CONFIG_SMP 48 static inline struct dl_bw *dl_bw_of(int i) 49 { 50 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 51 "sched RCU must be held"); 52 return &cpu_rq(i)->rd->dl_bw; 53 } 54 55 static inline int dl_bw_cpus(int i) 56 { 57 struct root_domain *rd = cpu_rq(i)->rd; 58 int cpus = 0; 59 60 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 61 "sched RCU must be held"); 62 for_each_cpu_and(i, rd->span, cpu_active_mask) 63 cpus++; 64 65 return cpus; 66 } 67 #else 68 static inline struct dl_bw *dl_bw_of(int i) 69 { 70 return &cpu_rq(i)->dl.dl_bw; 71 } 72 73 static inline int dl_bw_cpus(int i) 74 { 75 return 1; 76 } 77 #endif 78 79 static inline 80 void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 81 { 82 u64 old = dl_rq->running_bw; 83 84 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 85 dl_rq->running_bw += dl_bw; 86 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 87 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 88 } 89 90 static inline 91 void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 92 { 93 u64 old = dl_rq->running_bw; 94 95 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 96 dl_rq->running_bw -= dl_bw; 97 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 98 if (dl_rq->running_bw > old) 99 dl_rq->running_bw = 0; 100 } 101 102 static inline 103 void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 104 { 105 u64 old = dl_rq->this_bw; 106 107 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 108 dl_rq->this_bw += dl_bw; 109 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 110 } 111 112 static inline 113 void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 114 { 115 u64 old = dl_rq->this_bw; 116 117 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 118 dl_rq->this_bw -= dl_bw; 119 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 120 if (dl_rq->this_bw > old) 121 dl_rq->this_bw = 0; 122 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 123 } 124 125 void dl_change_utilization(struct task_struct *p, u64 new_bw) 126 { 127 struct rq *rq; 128 129 if (task_on_rq_queued(p)) 130 return; 131 132 rq = task_rq(p); 133 if (p->dl.dl_non_contending) { 134 sub_running_bw(p->dl.dl_bw, &rq->dl); 135 p->dl.dl_non_contending = 0; 136 /* 137 * If the timer handler is currently running and the 138 * timer cannot be cancelled, inactive_task_timer() 139 * will see that dl_not_contending is not set, and 140 * will not touch the rq's active utilization, 141 * so we are still safe. 142 */ 143 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 144 put_task_struct(p); 145 } 146 sub_rq_bw(p->dl.dl_bw, &rq->dl); 147 add_rq_bw(new_bw, &rq->dl); 148 } 149 150 /* 151 * The utilization of a task cannot be immediately removed from 152 * the rq active utilization (running_bw) when the task blocks. 153 * Instead, we have to wait for the so called "0-lag time". 154 * 155 * If a task blocks before the "0-lag time", a timer (the inactive 156 * timer) is armed, and running_bw is decreased when the timer 157 * fires. 158 * 159 * If the task wakes up again before the inactive timer fires, 160 * the timer is cancelled, whereas if the task wakes up after the 161 * inactive timer fired (and running_bw has been decreased) the 162 * task's utilization has to be added to running_bw again. 163 * A flag in the deadline scheduling entity (dl_non_contending) 164 * is used to avoid race conditions between the inactive timer handler 165 * and task wakeups. 166 * 167 * The following diagram shows how running_bw is updated. A task is 168 * "ACTIVE" when its utilization contributes to running_bw; an 169 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 170 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 171 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 172 * time already passed, which does not contribute to running_bw anymore. 173 * +------------------+ 174 * wakeup | ACTIVE | 175 * +------------------>+ contending | 176 * | add_running_bw | | 177 * | +----+------+------+ 178 * | | ^ 179 * | dequeue | | 180 * +--------+-------+ | | 181 * | | t >= 0-lag | | wakeup 182 * | INACTIVE |<---------------+ | 183 * | | sub_running_bw | | 184 * +--------+-------+ | | 185 * ^ | | 186 * | t < 0-lag | | 187 * | | | 188 * | V | 189 * | +----+------+------+ 190 * | sub_running_bw | ACTIVE | 191 * +-------------------+ | 192 * inactive timer | non contending | 193 * fired +------------------+ 194 * 195 * The task_non_contending() function is invoked when a task 196 * blocks, and checks if the 0-lag time already passed or 197 * not (in the first case, it directly updates running_bw; 198 * in the second case, it arms the inactive timer). 199 * 200 * The task_contending() function is invoked when a task wakes 201 * up, and checks if the task is still in the "ACTIVE non contending" 202 * state or not (in the second case, it updates running_bw). 203 */ 204 static void task_non_contending(struct task_struct *p) 205 { 206 struct sched_dl_entity *dl_se = &p->dl; 207 struct hrtimer *timer = &dl_se->inactive_timer; 208 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 209 struct rq *rq = rq_of_dl_rq(dl_rq); 210 s64 zerolag_time; 211 212 /* 213 * If this is a non-deadline task that has been boosted, 214 * do nothing 215 */ 216 if (dl_se->dl_runtime == 0) 217 return; 218 219 WARN_ON(hrtimer_active(&dl_se->inactive_timer)); 220 WARN_ON(dl_se->dl_non_contending); 221 222 zerolag_time = dl_se->deadline - 223 div64_long((dl_se->runtime * dl_se->dl_period), 224 dl_se->dl_runtime); 225 226 /* 227 * Using relative times instead of the absolute "0-lag time" 228 * allows to simplify the code 229 */ 230 zerolag_time -= rq_clock(rq); 231 232 /* 233 * If the "0-lag time" already passed, decrease the active 234 * utilization now, instead of starting a timer 235 */ 236 if (zerolag_time < 0) { 237 if (dl_task(p)) 238 sub_running_bw(dl_se->dl_bw, dl_rq); 239 if (!dl_task(p) || p->state == TASK_DEAD) { 240 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 241 242 if (p->state == TASK_DEAD) 243 sub_rq_bw(p->dl.dl_bw, &rq->dl); 244 raw_spin_lock(&dl_b->lock); 245 __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 246 __dl_clear_params(p); 247 raw_spin_unlock(&dl_b->lock); 248 } 249 250 return; 251 } 252 253 dl_se->dl_non_contending = 1; 254 get_task_struct(p); 255 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL); 256 } 257 258 static void task_contending(struct sched_dl_entity *dl_se, int flags) 259 { 260 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 261 262 /* 263 * If this is a non-deadline task that has been boosted, 264 * do nothing 265 */ 266 if (dl_se->dl_runtime == 0) 267 return; 268 269 if (flags & ENQUEUE_MIGRATED) 270 add_rq_bw(dl_se->dl_bw, dl_rq); 271 272 if (dl_se->dl_non_contending) { 273 dl_se->dl_non_contending = 0; 274 /* 275 * If the timer handler is currently running and the 276 * timer cannot be cancelled, inactive_task_timer() 277 * will see that dl_not_contending is not set, and 278 * will not touch the rq's active utilization, 279 * so we are still safe. 280 */ 281 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 282 put_task_struct(dl_task_of(dl_se)); 283 } else { 284 /* 285 * Since "dl_non_contending" is not set, the 286 * task's utilization has already been removed from 287 * active utilization (either when the task blocked, 288 * when the "inactive timer" fired). 289 * So, add it back. 290 */ 291 add_running_bw(dl_se->dl_bw, dl_rq); 292 } 293 } 294 295 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 296 { 297 struct sched_dl_entity *dl_se = &p->dl; 298 299 return dl_rq->rb_leftmost == &dl_se->rb_node; 300 } 301 302 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 303 { 304 raw_spin_lock_init(&dl_b->dl_runtime_lock); 305 dl_b->dl_period = period; 306 dl_b->dl_runtime = runtime; 307 } 308 309 void init_dl_bw(struct dl_bw *dl_b) 310 { 311 raw_spin_lock_init(&dl_b->lock); 312 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 313 if (global_rt_runtime() == RUNTIME_INF) 314 dl_b->bw = -1; 315 else 316 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 317 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 318 dl_b->total_bw = 0; 319 } 320 321 void init_dl_rq(struct dl_rq *dl_rq) 322 { 323 dl_rq->rb_root = RB_ROOT; 324 325 #ifdef CONFIG_SMP 326 /* zero means no -deadline tasks */ 327 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 328 329 dl_rq->dl_nr_migratory = 0; 330 dl_rq->overloaded = 0; 331 dl_rq->pushable_dl_tasks_root = RB_ROOT; 332 #else 333 init_dl_bw(&dl_rq->dl_bw); 334 #endif 335 336 dl_rq->running_bw = 0; 337 dl_rq->this_bw = 0; 338 init_dl_rq_bw_ratio(dl_rq); 339 } 340 341 #ifdef CONFIG_SMP 342 343 static inline int dl_overloaded(struct rq *rq) 344 { 345 return atomic_read(&rq->rd->dlo_count); 346 } 347 348 static inline void dl_set_overload(struct rq *rq) 349 { 350 if (!rq->online) 351 return; 352 353 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 354 /* 355 * Must be visible before the overload count is 356 * set (as in sched_rt.c). 357 * 358 * Matched by the barrier in pull_dl_task(). 359 */ 360 smp_wmb(); 361 atomic_inc(&rq->rd->dlo_count); 362 } 363 364 static inline void dl_clear_overload(struct rq *rq) 365 { 366 if (!rq->online) 367 return; 368 369 atomic_dec(&rq->rd->dlo_count); 370 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 371 } 372 373 static void update_dl_migration(struct dl_rq *dl_rq) 374 { 375 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 376 if (!dl_rq->overloaded) { 377 dl_set_overload(rq_of_dl_rq(dl_rq)); 378 dl_rq->overloaded = 1; 379 } 380 } else if (dl_rq->overloaded) { 381 dl_clear_overload(rq_of_dl_rq(dl_rq)); 382 dl_rq->overloaded = 0; 383 } 384 } 385 386 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 387 { 388 struct task_struct *p = dl_task_of(dl_se); 389 390 if (p->nr_cpus_allowed > 1) 391 dl_rq->dl_nr_migratory++; 392 393 update_dl_migration(dl_rq); 394 } 395 396 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 397 { 398 struct task_struct *p = dl_task_of(dl_se); 399 400 if (p->nr_cpus_allowed > 1) 401 dl_rq->dl_nr_migratory--; 402 403 update_dl_migration(dl_rq); 404 } 405 406 /* 407 * The list of pushable -deadline task is not a plist, like in 408 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 409 */ 410 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 411 { 412 struct dl_rq *dl_rq = &rq->dl; 413 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 414 struct rb_node *parent = NULL; 415 struct task_struct *entry; 416 int leftmost = 1; 417 418 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 419 420 while (*link) { 421 parent = *link; 422 entry = rb_entry(parent, struct task_struct, 423 pushable_dl_tasks); 424 if (dl_entity_preempt(&p->dl, &entry->dl)) 425 link = &parent->rb_left; 426 else { 427 link = &parent->rb_right; 428 leftmost = 0; 429 } 430 } 431 432 if (leftmost) { 433 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 434 dl_rq->earliest_dl.next = p->dl.deadline; 435 } 436 437 rb_link_node(&p->pushable_dl_tasks, parent, link); 438 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 439 } 440 441 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 442 { 443 struct dl_rq *dl_rq = &rq->dl; 444 445 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 446 return; 447 448 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 449 struct rb_node *next_node; 450 451 next_node = rb_next(&p->pushable_dl_tasks); 452 dl_rq->pushable_dl_tasks_leftmost = next_node; 453 if (next_node) { 454 dl_rq->earliest_dl.next = rb_entry(next_node, 455 struct task_struct, pushable_dl_tasks)->dl.deadline; 456 } 457 } 458 459 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 460 RB_CLEAR_NODE(&p->pushable_dl_tasks); 461 } 462 463 static inline int has_pushable_dl_tasks(struct rq *rq) 464 { 465 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 466 } 467 468 static int push_dl_task(struct rq *rq); 469 470 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 471 { 472 return dl_task(prev); 473 } 474 475 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 476 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 477 478 static void push_dl_tasks(struct rq *); 479 static void pull_dl_task(struct rq *); 480 481 static inline void queue_push_tasks(struct rq *rq) 482 { 483 if (!has_pushable_dl_tasks(rq)) 484 return; 485 486 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 487 } 488 489 static inline void queue_pull_task(struct rq *rq) 490 { 491 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 492 } 493 494 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 495 496 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 497 { 498 struct rq *later_rq = NULL; 499 500 later_rq = find_lock_later_rq(p, rq); 501 if (!later_rq) { 502 int cpu; 503 504 /* 505 * If we cannot preempt any rq, fall back to pick any 506 * online cpu. 507 */ 508 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); 509 if (cpu >= nr_cpu_ids) { 510 /* 511 * Fail to find any suitable cpu. 512 * The task will never come back! 513 */ 514 BUG_ON(dl_bandwidth_enabled()); 515 516 /* 517 * If admission control is disabled we 518 * try a little harder to let the task 519 * run. 520 */ 521 cpu = cpumask_any(cpu_active_mask); 522 } 523 later_rq = cpu_rq(cpu); 524 double_lock_balance(rq, later_rq); 525 } 526 527 set_task_cpu(p, later_rq->cpu); 528 double_unlock_balance(later_rq, rq); 529 530 return later_rq; 531 } 532 533 #else 534 535 static inline 536 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 537 { 538 } 539 540 static inline 541 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 542 { 543 } 544 545 static inline 546 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 547 { 548 } 549 550 static inline 551 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 552 { 553 } 554 555 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 556 { 557 return false; 558 } 559 560 static inline void pull_dl_task(struct rq *rq) 561 { 562 } 563 564 static inline void queue_push_tasks(struct rq *rq) 565 { 566 } 567 568 static inline void queue_pull_task(struct rq *rq) 569 { 570 } 571 #endif /* CONFIG_SMP */ 572 573 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 574 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 575 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 576 int flags); 577 578 /* 579 * We are being explicitly informed that a new instance is starting, 580 * and this means that: 581 * - the absolute deadline of the entity has to be placed at 582 * current time + relative deadline; 583 * - the runtime of the entity has to be set to the maximum value. 584 * 585 * The capability of specifying such event is useful whenever a -deadline 586 * entity wants to (try to!) synchronize its behaviour with the scheduler's 587 * one, and to (try to!) reconcile itself with its own scheduling 588 * parameters. 589 */ 590 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 591 { 592 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 593 struct rq *rq = rq_of_dl_rq(dl_rq); 594 595 WARN_ON(dl_se->dl_boosted); 596 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 597 598 /* 599 * We are racing with the deadline timer. So, do nothing because 600 * the deadline timer handler will take care of properly recharging 601 * the runtime and postponing the deadline 602 */ 603 if (dl_se->dl_throttled) 604 return; 605 606 /* 607 * We use the regular wall clock time to set deadlines in the 608 * future; in fact, we must consider execution overheads (time 609 * spent on hardirq context, etc.). 610 */ 611 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 612 dl_se->runtime = dl_se->dl_runtime; 613 } 614 615 /* 616 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 617 * possibility of a entity lasting more than what it declared, and thus 618 * exhausting its runtime. 619 * 620 * Here we are interested in making runtime overrun possible, but we do 621 * not want a entity which is misbehaving to affect the scheduling of all 622 * other entities. 623 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 624 * is used, in order to confine each entity within its own bandwidth. 625 * 626 * This function deals exactly with that, and ensures that when the runtime 627 * of a entity is replenished, its deadline is also postponed. That ensures 628 * the overrunning entity can't interfere with other entity in the system and 629 * can't make them miss their deadlines. Reasons why this kind of overruns 630 * could happen are, typically, a entity voluntarily trying to overcome its 631 * runtime, or it just underestimated it during sched_setattr(). 632 */ 633 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 634 struct sched_dl_entity *pi_se) 635 { 636 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 637 struct rq *rq = rq_of_dl_rq(dl_rq); 638 639 BUG_ON(pi_se->dl_runtime <= 0); 640 641 /* 642 * This could be the case for a !-dl task that is boosted. 643 * Just go with full inherited parameters. 644 */ 645 if (dl_se->dl_deadline == 0) { 646 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 647 dl_se->runtime = pi_se->dl_runtime; 648 } 649 650 if (dl_se->dl_yielded && dl_se->runtime > 0) 651 dl_se->runtime = 0; 652 653 /* 654 * We keep moving the deadline away until we get some 655 * available runtime for the entity. This ensures correct 656 * handling of situations where the runtime overrun is 657 * arbitrary large. 658 */ 659 while (dl_se->runtime <= 0) { 660 dl_se->deadline += pi_se->dl_period; 661 dl_se->runtime += pi_se->dl_runtime; 662 } 663 664 /* 665 * At this point, the deadline really should be "in 666 * the future" with respect to rq->clock. If it's 667 * not, we are, for some reason, lagging too much! 668 * Anyway, after having warn userspace abut that, 669 * we still try to keep the things running by 670 * resetting the deadline and the budget of the 671 * entity. 672 */ 673 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 674 printk_deferred_once("sched: DL replenish lagged too much\n"); 675 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 676 dl_se->runtime = pi_se->dl_runtime; 677 } 678 679 if (dl_se->dl_yielded) 680 dl_se->dl_yielded = 0; 681 if (dl_se->dl_throttled) 682 dl_se->dl_throttled = 0; 683 } 684 685 /* 686 * Here we check if --at time t-- an entity (which is probably being 687 * [re]activated or, in general, enqueued) can use its remaining runtime 688 * and its current deadline _without_ exceeding the bandwidth it is 689 * assigned (function returns true if it can't). We are in fact applying 690 * one of the CBS rules: when a task wakes up, if the residual runtime 691 * over residual deadline fits within the allocated bandwidth, then we 692 * can keep the current (absolute) deadline and residual budget without 693 * disrupting the schedulability of the system. Otherwise, we should 694 * refill the runtime and set the deadline a period in the future, 695 * because keeping the current (absolute) deadline of the task would 696 * result in breaking guarantees promised to other tasks (refer to 697 * Documentation/scheduler/sched-deadline.txt for more informations). 698 * 699 * This function returns true if: 700 * 701 * runtime / (deadline - t) > dl_runtime / dl_deadline , 702 * 703 * IOW we can't recycle current parameters. 704 * 705 * Notice that the bandwidth check is done against the deadline. For 706 * task with deadline equal to period this is the same of using 707 * dl_period instead of dl_deadline in the equation above. 708 */ 709 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 710 struct sched_dl_entity *pi_se, u64 t) 711 { 712 u64 left, right; 713 714 /* 715 * left and right are the two sides of the equation above, 716 * after a bit of shuffling to use multiplications instead 717 * of divisions. 718 * 719 * Note that none of the time values involved in the two 720 * multiplications are absolute: dl_deadline and dl_runtime 721 * are the relative deadline and the maximum runtime of each 722 * instance, runtime is the runtime left for the last instance 723 * and (deadline - t), since t is rq->clock, is the time left 724 * to the (absolute) deadline. Even if overflowing the u64 type 725 * is very unlikely to occur in both cases, here we scale down 726 * as we want to avoid that risk at all. Scaling down by 10 727 * means that we reduce granularity to 1us. We are fine with it, 728 * since this is only a true/false check and, anyway, thinking 729 * of anything below microseconds resolution is actually fiction 730 * (but still we want to give the user that illusion >;). 731 */ 732 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 733 right = ((dl_se->deadline - t) >> DL_SCALE) * 734 (pi_se->dl_runtime >> DL_SCALE); 735 736 return dl_time_before(right, left); 737 } 738 739 /* 740 * Revised wakeup rule [1]: For self-suspending tasks, rather then 741 * re-initializing task's runtime and deadline, the revised wakeup 742 * rule adjusts the task's runtime to avoid the task to overrun its 743 * density. 744 * 745 * Reasoning: a task may overrun the density if: 746 * runtime / (deadline - t) > dl_runtime / dl_deadline 747 * 748 * Therefore, runtime can be adjusted to: 749 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 750 * 751 * In such way that runtime will be equal to the maximum density 752 * the task can use without breaking any rule. 753 * 754 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 755 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 756 */ 757 static void 758 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 759 { 760 u64 laxity = dl_se->deadline - rq_clock(rq); 761 762 /* 763 * If the task has deadline < period, and the deadline is in the past, 764 * it should already be throttled before this check. 765 * 766 * See update_dl_entity() comments for further details. 767 */ 768 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 769 770 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 771 } 772 773 /* 774 * Regarding the deadline, a task with implicit deadline has a relative 775 * deadline == relative period. A task with constrained deadline has a 776 * relative deadline <= relative period. 777 * 778 * We support constrained deadline tasks. However, there are some restrictions 779 * applied only for tasks which do not have an implicit deadline. See 780 * update_dl_entity() to know more about such restrictions. 781 * 782 * The dl_is_implicit() returns true if the task has an implicit deadline. 783 */ 784 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 785 { 786 return dl_se->dl_deadline == dl_se->dl_period; 787 } 788 789 /* 790 * When a deadline entity is placed in the runqueue, its runtime and deadline 791 * might need to be updated. This is done by a CBS wake up rule. There are two 792 * different rules: 1) the original CBS; and 2) the Revisited CBS. 793 * 794 * When the task is starting a new period, the Original CBS is used. In this 795 * case, the runtime is replenished and a new absolute deadline is set. 796 * 797 * When a task is queued before the begin of the next period, using the 798 * remaining runtime and deadline could make the entity to overflow, see 799 * dl_entity_overflow() to find more about runtime overflow. When such case 800 * is detected, the runtime and deadline need to be updated. 801 * 802 * If the task has an implicit deadline, i.e., deadline == period, the Original 803 * CBS is applied. the runtime is replenished and a new absolute deadline is 804 * set, as in the previous cases. 805 * 806 * However, the Original CBS does not work properly for tasks with 807 * deadline < period, which are said to have a constrained deadline. By 808 * applying the Original CBS, a constrained deadline task would be able to run 809 * runtime/deadline in a period. With deadline < period, the task would 810 * overrun the runtime/period allowed bandwidth, breaking the admission test. 811 * 812 * In order to prevent this misbehave, the Revisited CBS is used for 813 * constrained deadline tasks when a runtime overflow is detected. In the 814 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 815 * the remaining runtime of the task is reduced to avoid runtime overflow. 816 * Please refer to the comments update_dl_revised_wakeup() function to find 817 * more about the Revised CBS rule. 818 */ 819 static void update_dl_entity(struct sched_dl_entity *dl_se, 820 struct sched_dl_entity *pi_se) 821 { 822 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 823 struct rq *rq = rq_of_dl_rq(dl_rq); 824 825 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 826 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 827 828 if (unlikely(!dl_is_implicit(dl_se) && 829 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 830 !dl_se->dl_boosted)){ 831 update_dl_revised_wakeup(dl_se, rq); 832 return; 833 } 834 835 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 836 dl_se->runtime = pi_se->dl_runtime; 837 } 838 } 839 840 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 841 { 842 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 843 } 844 845 /* 846 * If the entity depleted all its runtime, and if we want it to sleep 847 * while waiting for some new execution time to become available, we 848 * set the bandwidth replenishment timer to the replenishment instant 849 * and try to activate it. 850 * 851 * Notice that it is important for the caller to know if the timer 852 * actually started or not (i.e., the replenishment instant is in 853 * the future or in the past). 854 */ 855 static int start_dl_timer(struct task_struct *p) 856 { 857 struct sched_dl_entity *dl_se = &p->dl; 858 struct hrtimer *timer = &dl_se->dl_timer; 859 struct rq *rq = task_rq(p); 860 ktime_t now, act; 861 s64 delta; 862 863 lockdep_assert_held(&rq->lock); 864 865 /* 866 * We want the timer to fire at the deadline, but considering 867 * that it is actually coming from rq->clock and not from 868 * hrtimer's time base reading. 869 */ 870 act = ns_to_ktime(dl_next_period(dl_se)); 871 now = hrtimer_cb_get_time(timer); 872 delta = ktime_to_ns(now) - rq_clock(rq); 873 act = ktime_add_ns(act, delta); 874 875 /* 876 * If the expiry time already passed, e.g., because the value 877 * chosen as the deadline is too small, don't even try to 878 * start the timer in the past! 879 */ 880 if (ktime_us_delta(act, now) < 0) 881 return 0; 882 883 /* 884 * !enqueued will guarantee another callback; even if one is already in 885 * progress. This ensures a balanced {get,put}_task_struct(). 886 * 887 * The race against __run_timer() clearing the enqueued state is 888 * harmless because we're holding task_rq()->lock, therefore the timer 889 * expiring after we've done the check will wait on its task_rq_lock() 890 * and observe our state. 891 */ 892 if (!hrtimer_is_queued(timer)) { 893 get_task_struct(p); 894 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 895 } 896 897 return 1; 898 } 899 900 /* 901 * This is the bandwidth enforcement timer callback. If here, we know 902 * a task is not on its dl_rq, since the fact that the timer was running 903 * means the task is throttled and needs a runtime replenishment. 904 * 905 * However, what we actually do depends on the fact the task is active, 906 * (it is on its rq) or has been removed from there by a call to 907 * dequeue_task_dl(). In the former case we must issue the runtime 908 * replenishment and add the task back to the dl_rq; in the latter, we just 909 * do nothing but clearing dl_throttled, so that runtime and deadline 910 * updating (and the queueing back to dl_rq) will be done by the 911 * next call to enqueue_task_dl(). 912 */ 913 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 914 { 915 struct sched_dl_entity *dl_se = container_of(timer, 916 struct sched_dl_entity, 917 dl_timer); 918 struct task_struct *p = dl_task_of(dl_se); 919 struct rq_flags rf; 920 struct rq *rq; 921 922 rq = task_rq_lock(p, &rf); 923 924 /* 925 * The task might have changed its scheduling policy to something 926 * different than SCHED_DEADLINE (through switched_from_dl()). 927 */ 928 if (!dl_task(p)) 929 goto unlock; 930 931 /* 932 * The task might have been boosted by someone else and might be in the 933 * boosting/deboosting path, its not throttled. 934 */ 935 if (dl_se->dl_boosted) 936 goto unlock; 937 938 /* 939 * Spurious timer due to start_dl_timer() race; or we already received 940 * a replenishment from rt_mutex_setprio(). 941 */ 942 if (!dl_se->dl_throttled) 943 goto unlock; 944 945 sched_clock_tick(); 946 update_rq_clock(rq); 947 948 /* 949 * If the throttle happened during sched-out; like: 950 * 951 * schedule() 952 * deactivate_task() 953 * dequeue_task_dl() 954 * update_curr_dl() 955 * start_dl_timer() 956 * __dequeue_task_dl() 957 * prev->on_rq = 0; 958 * 959 * We can be both throttled and !queued. Replenish the counter 960 * but do not enqueue -- wait for our wakeup to do that. 961 */ 962 if (!task_on_rq_queued(p)) { 963 replenish_dl_entity(dl_se, dl_se); 964 goto unlock; 965 } 966 967 #ifdef CONFIG_SMP 968 if (unlikely(!rq->online)) { 969 /* 970 * If the runqueue is no longer available, migrate the 971 * task elsewhere. This necessarily changes rq. 972 */ 973 lockdep_unpin_lock(&rq->lock, rf.cookie); 974 rq = dl_task_offline_migration(rq, p); 975 rf.cookie = lockdep_pin_lock(&rq->lock); 976 update_rq_clock(rq); 977 978 /* 979 * Now that the task has been migrated to the new RQ and we 980 * have that locked, proceed as normal and enqueue the task 981 * there. 982 */ 983 } 984 #endif 985 986 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 987 if (dl_task(rq->curr)) 988 check_preempt_curr_dl(rq, p, 0); 989 else 990 resched_curr(rq); 991 992 #ifdef CONFIG_SMP 993 /* 994 * Queueing this task back might have overloaded rq, check if we need 995 * to kick someone away. 996 */ 997 if (has_pushable_dl_tasks(rq)) { 998 /* 999 * Nothing relies on rq->lock after this, so its safe to drop 1000 * rq->lock. 1001 */ 1002 rq_unpin_lock(rq, &rf); 1003 push_dl_task(rq); 1004 rq_repin_lock(rq, &rf); 1005 } 1006 #endif 1007 1008 unlock: 1009 task_rq_unlock(rq, p, &rf); 1010 1011 /* 1012 * This can free the task_struct, including this hrtimer, do not touch 1013 * anything related to that after this. 1014 */ 1015 put_task_struct(p); 1016 1017 return HRTIMER_NORESTART; 1018 } 1019 1020 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1021 { 1022 struct hrtimer *timer = &dl_se->dl_timer; 1023 1024 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1025 timer->function = dl_task_timer; 1026 } 1027 1028 /* 1029 * During the activation, CBS checks if it can reuse the current task's 1030 * runtime and period. If the deadline of the task is in the past, CBS 1031 * cannot use the runtime, and so it replenishes the task. This rule 1032 * works fine for implicit deadline tasks (deadline == period), and the 1033 * CBS was designed for implicit deadline tasks. However, a task with 1034 * constrained deadline (deadine < period) might be awakened after the 1035 * deadline, but before the next period. In this case, replenishing the 1036 * task would allow it to run for runtime / deadline. As in this case 1037 * deadline < period, CBS enables a task to run for more than the 1038 * runtime / period. In a very loaded system, this can cause a domino 1039 * effect, making other tasks miss their deadlines. 1040 * 1041 * To avoid this problem, in the activation of a constrained deadline 1042 * task after the deadline but before the next period, throttle the 1043 * task and set the replenishing timer to the begin of the next period, 1044 * unless it is boosted. 1045 */ 1046 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1047 { 1048 struct task_struct *p = dl_task_of(dl_se); 1049 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1050 1051 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1052 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1053 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) 1054 return; 1055 dl_se->dl_throttled = 1; 1056 if (dl_se->runtime > 0) 1057 dl_se->runtime = 0; 1058 } 1059 } 1060 1061 static 1062 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1063 { 1064 return (dl_se->runtime <= 0); 1065 } 1066 1067 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 1068 1069 /* 1070 * This function implements the GRUB accounting rule: 1071 * according to the GRUB reclaiming algorithm, the runtime is 1072 * not decreased as "dq = -dt", but as 1073 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1074 * where u is the utilization of the task, Umax is the maximum reclaimable 1075 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1076 * as the difference between the "total runqueue utilization" and the 1077 * runqueue active utilization, and Uextra is the (per runqueue) extra 1078 * reclaimable utilization. 1079 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1080 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1081 * BW_SHIFT. 1082 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, 1083 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1084 * Since delta is a 64 bit variable, to have an overflow its value 1085 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1086 * So, overflow is not an issue here. 1087 */ 1088 u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1089 { 1090 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1091 u64 u_act; 1092 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1093 1094 /* 1095 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1096 * we compare u_inact + rq->dl.extra_bw with 1097 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1098 * u_inact + rq->dl.extra_bw can be larger than 1099 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1100 * leading to wrong results) 1101 */ 1102 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1103 u_act = u_act_min; 1104 else 1105 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1106 1107 return (delta * u_act) >> BW_SHIFT; 1108 } 1109 1110 /* 1111 * Update the current task's runtime statistics (provided it is still 1112 * a -deadline task and has not been removed from the dl_rq). 1113 */ 1114 static void update_curr_dl(struct rq *rq) 1115 { 1116 struct task_struct *curr = rq->curr; 1117 struct sched_dl_entity *dl_se = &curr->dl; 1118 u64 delta_exec; 1119 1120 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1121 return; 1122 1123 /* 1124 * Consumed budget is computed considering the time as 1125 * observed by schedulable tasks (excluding time spent 1126 * in hardirq context, etc.). Deadlines are instead 1127 * computed using hard walltime. This seems to be the more 1128 * natural solution, but the full ramifications of this 1129 * approach need further study. 1130 */ 1131 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 1132 if (unlikely((s64)delta_exec <= 0)) { 1133 if (unlikely(dl_se->dl_yielded)) 1134 goto throttle; 1135 return; 1136 } 1137 1138 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 1139 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_DL); 1140 1141 schedstat_set(curr->se.statistics.exec_max, 1142 max(curr->se.statistics.exec_max, delta_exec)); 1143 1144 curr->se.sum_exec_runtime += delta_exec; 1145 account_group_exec_runtime(curr, delta_exec); 1146 1147 curr->se.exec_start = rq_clock_task(rq); 1148 cpuacct_charge(curr, delta_exec); 1149 1150 sched_rt_avg_update(rq, delta_exec); 1151 1152 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) 1153 delta_exec = grub_reclaim(delta_exec, rq, &curr->dl); 1154 dl_se->runtime -= delta_exec; 1155 1156 throttle: 1157 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1158 dl_se->dl_throttled = 1; 1159 __dequeue_task_dl(rq, curr, 0); 1160 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 1161 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1162 1163 if (!is_leftmost(curr, &rq->dl)) 1164 resched_curr(rq); 1165 } 1166 1167 /* 1168 * Because -- for now -- we share the rt bandwidth, we need to 1169 * account our runtime there too, otherwise actual rt tasks 1170 * would be able to exceed the shared quota. 1171 * 1172 * Account to the root rt group for now. 1173 * 1174 * The solution we're working towards is having the RT groups scheduled 1175 * using deadline servers -- however there's a few nasties to figure 1176 * out before that can happen. 1177 */ 1178 if (rt_bandwidth_enabled()) { 1179 struct rt_rq *rt_rq = &rq->rt; 1180 1181 raw_spin_lock(&rt_rq->rt_runtime_lock); 1182 /* 1183 * We'll let actual RT tasks worry about the overflow here, we 1184 * have our own CBS to keep us inline; only account when RT 1185 * bandwidth is relevant. 1186 */ 1187 if (sched_rt_bandwidth_account(rt_rq)) 1188 rt_rq->rt_time += delta_exec; 1189 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1190 } 1191 } 1192 1193 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1194 { 1195 struct sched_dl_entity *dl_se = container_of(timer, 1196 struct sched_dl_entity, 1197 inactive_timer); 1198 struct task_struct *p = dl_task_of(dl_se); 1199 struct rq_flags rf; 1200 struct rq *rq; 1201 1202 rq = task_rq_lock(p, &rf); 1203 1204 if (!dl_task(p) || p->state == TASK_DEAD) { 1205 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1206 1207 if (p->state == TASK_DEAD && dl_se->dl_non_contending) { 1208 sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl)); 1209 sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl)); 1210 dl_se->dl_non_contending = 0; 1211 } 1212 1213 raw_spin_lock(&dl_b->lock); 1214 __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1215 raw_spin_unlock(&dl_b->lock); 1216 __dl_clear_params(p); 1217 1218 goto unlock; 1219 } 1220 if (dl_se->dl_non_contending == 0) 1221 goto unlock; 1222 1223 sched_clock_tick(); 1224 update_rq_clock(rq); 1225 1226 sub_running_bw(dl_se->dl_bw, &rq->dl); 1227 dl_se->dl_non_contending = 0; 1228 unlock: 1229 task_rq_unlock(rq, p, &rf); 1230 put_task_struct(p); 1231 1232 return HRTIMER_NORESTART; 1233 } 1234 1235 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1236 { 1237 struct hrtimer *timer = &dl_se->inactive_timer; 1238 1239 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1240 timer->function = inactive_task_timer; 1241 } 1242 1243 #ifdef CONFIG_SMP 1244 1245 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1246 { 1247 struct rq *rq = rq_of_dl_rq(dl_rq); 1248 1249 if (dl_rq->earliest_dl.curr == 0 || 1250 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1251 dl_rq->earliest_dl.curr = deadline; 1252 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1253 } 1254 } 1255 1256 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1257 { 1258 struct rq *rq = rq_of_dl_rq(dl_rq); 1259 1260 /* 1261 * Since we may have removed our earliest (and/or next earliest) 1262 * task we must recompute them. 1263 */ 1264 if (!dl_rq->dl_nr_running) { 1265 dl_rq->earliest_dl.curr = 0; 1266 dl_rq->earliest_dl.next = 0; 1267 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1268 } else { 1269 struct rb_node *leftmost = dl_rq->rb_leftmost; 1270 struct sched_dl_entity *entry; 1271 1272 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 1273 dl_rq->earliest_dl.curr = entry->deadline; 1274 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1275 } 1276 } 1277 1278 #else 1279 1280 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1281 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1282 1283 #endif /* CONFIG_SMP */ 1284 1285 static inline 1286 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1287 { 1288 int prio = dl_task_of(dl_se)->prio; 1289 u64 deadline = dl_se->deadline; 1290 1291 WARN_ON(!dl_prio(prio)); 1292 dl_rq->dl_nr_running++; 1293 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1294 1295 inc_dl_deadline(dl_rq, deadline); 1296 inc_dl_migration(dl_se, dl_rq); 1297 } 1298 1299 static inline 1300 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1301 { 1302 int prio = dl_task_of(dl_se)->prio; 1303 1304 WARN_ON(!dl_prio(prio)); 1305 WARN_ON(!dl_rq->dl_nr_running); 1306 dl_rq->dl_nr_running--; 1307 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1308 1309 dec_dl_deadline(dl_rq, dl_se->deadline); 1310 dec_dl_migration(dl_se, dl_rq); 1311 } 1312 1313 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1314 { 1315 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1316 struct rb_node **link = &dl_rq->rb_root.rb_node; 1317 struct rb_node *parent = NULL; 1318 struct sched_dl_entity *entry; 1319 int leftmost = 1; 1320 1321 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 1322 1323 while (*link) { 1324 parent = *link; 1325 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 1326 if (dl_time_before(dl_se->deadline, entry->deadline)) 1327 link = &parent->rb_left; 1328 else { 1329 link = &parent->rb_right; 1330 leftmost = 0; 1331 } 1332 } 1333 1334 if (leftmost) 1335 dl_rq->rb_leftmost = &dl_se->rb_node; 1336 1337 rb_link_node(&dl_se->rb_node, parent, link); 1338 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 1339 1340 inc_dl_tasks(dl_se, dl_rq); 1341 } 1342 1343 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1344 { 1345 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1346 1347 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1348 return; 1349 1350 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 1351 struct rb_node *next_node; 1352 1353 next_node = rb_next(&dl_se->rb_node); 1354 dl_rq->rb_leftmost = next_node; 1355 } 1356 1357 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 1358 RB_CLEAR_NODE(&dl_se->rb_node); 1359 1360 dec_dl_tasks(dl_se, dl_rq); 1361 } 1362 1363 static void 1364 enqueue_dl_entity(struct sched_dl_entity *dl_se, 1365 struct sched_dl_entity *pi_se, int flags) 1366 { 1367 BUG_ON(on_dl_rq(dl_se)); 1368 1369 /* 1370 * If this is a wakeup or a new instance, the scheduling 1371 * parameters of the task might need updating. Otherwise, 1372 * we want a replenishment of its runtime. 1373 */ 1374 if (flags & ENQUEUE_WAKEUP) { 1375 task_contending(dl_se, flags); 1376 update_dl_entity(dl_se, pi_se); 1377 } else if (flags & ENQUEUE_REPLENISH) { 1378 replenish_dl_entity(dl_se, pi_se); 1379 } 1380 1381 __enqueue_dl_entity(dl_se); 1382 } 1383 1384 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1385 { 1386 __dequeue_dl_entity(dl_se); 1387 } 1388 1389 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1390 { 1391 struct task_struct *pi_task = rt_mutex_get_top_task(p); 1392 struct sched_dl_entity *pi_se = &p->dl; 1393 1394 /* 1395 * Use the scheduling parameters of the top pi-waiter 1396 * task if we have one and its (absolute) deadline is 1397 * smaller than our one... OTW we keep our runtime and 1398 * deadline. 1399 */ 1400 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { 1401 pi_se = &pi_task->dl; 1402 } else if (!dl_prio(p->normal_prio)) { 1403 /* 1404 * Special case in which we have a !SCHED_DEADLINE task 1405 * that is going to be deboosted, but exceedes its 1406 * runtime while doing so. No point in replenishing 1407 * it, as it's going to return back to its original 1408 * scheduling class after this. 1409 */ 1410 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 1411 return; 1412 } 1413 1414 /* 1415 * Check if a constrained deadline task was activated 1416 * after the deadline but before the next period. 1417 * If that is the case, the task will be throttled and 1418 * the replenishment timer will be set to the next period. 1419 */ 1420 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1421 dl_check_constrained_dl(&p->dl); 1422 1423 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1424 add_rq_bw(p->dl.dl_bw, &rq->dl); 1425 add_running_bw(p->dl.dl_bw, &rq->dl); 1426 } 1427 1428 /* 1429 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1430 * its budget it needs a replenishment and, since it now is on 1431 * its rq, the bandwidth timer callback (which clearly has not 1432 * run yet) will take care of this. 1433 * However, the active utilization does not depend on the fact 1434 * that the task is on the runqueue or not (but depends on the 1435 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1436 * In other words, even if a task is throttled its utilization must 1437 * be counted in the active utilization; hence, we need to call 1438 * add_running_bw(). 1439 */ 1440 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1441 if (flags & ENQUEUE_WAKEUP) 1442 task_contending(&p->dl, flags); 1443 1444 return; 1445 } 1446 1447 enqueue_dl_entity(&p->dl, pi_se, flags); 1448 1449 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1450 enqueue_pushable_dl_task(rq, p); 1451 } 1452 1453 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1454 { 1455 dequeue_dl_entity(&p->dl); 1456 dequeue_pushable_dl_task(rq, p); 1457 } 1458 1459 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1460 { 1461 update_curr_dl(rq); 1462 __dequeue_task_dl(rq, p, flags); 1463 1464 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1465 sub_running_bw(p->dl.dl_bw, &rq->dl); 1466 sub_rq_bw(p->dl.dl_bw, &rq->dl); 1467 } 1468 1469 /* 1470 * This check allows to start the inactive timer (or to immediately 1471 * decrease the active utilization, if needed) in two cases: 1472 * when the task blocks and when it is terminating 1473 * (p->state == TASK_DEAD). We can handle the two cases in the same 1474 * way, because from GRUB's point of view the same thing is happening 1475 * (the task moves from "active contending" to "active non contending" 1476 * or "inactive") 1477 */ 1478 if (flags & DEQUEUE_SLEEP) 1479 task_non_contending(p); 1480 } 1481 1482 /* 1483 * Yield task semantic for -deadline tasks is: 1484 * 1485 * get off from the CPU until our next instance, with 1486 * a new runtime. This is of little use now, since we 1487 * don't have a bandwidth reclaiming mechanism. Anyway, 1488 * bandwidth reclaiming is planned for the future, and 1489 * yield_task_dl will indicate that some spare budget 1490 * is available for other task instances to use it. 1491 */ 1492 static void yield_task_dl(struct rq *rq) 1493 { 1494 /* 1495 * We make the task go to sleep until its current deadline by 1496 * forcing its runtime to zero. This way, update_curr_dl() stops 1497 * it and the bandwidth timer will wake it up and will give it 1498 * new scheduling parameters (thanks to dl_yielded=1). 1499 */ 1500 rq->curr->dl.dl_yielded = 1; 1501 1502 update_rq_clock(rq); 1503 update_curr_dl(rq); 1504 /* 1505 * Tell update_rq_clock() that we've just updated, 1506 * so we don't do microscopic update in schedule() 1507 * and double the fastpath cost. 1508 */ 1509 rq_clock_skip_update(rq, true); 1510 } 1511 1512 #ifdef CONFIG_SMP 1513 1514 static int find_later_rq(struct task_struct *task); 1515 1516 static int 1517 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1518 { 1519 struct task_struct *curr; 1520 struct rq *rq; 1521 1522 if (sd_flag != SD_BALANCE_WAKE) 1523 goto out; 1524 1525 rq = cpu_rq(cpu); 1526 1527 rcu_read_lock(); 1528 curr = READ_ONCE(rq->curr); /* unlocked access */ 1529 1530 /* 1531 * If we are dealing with a -deadline task, we must 1532 * decide where to wake it up. 1533 * If it has a later deadline and the current task 1534 * on this rq can't move (provided the waking task 1535 * can!) we prefer to send it somewhere else. On the 1536 * other hand, if it has a shorter deadline, we 1537 * try to make it stay here, it might be important. 1538 */ 1539 if (unlikely(dl_task(curr)) && 1540 (curr->nr_cpus_allowed < 2 || 1541 !dl_entity_preempt(&p->dl, &curr->dl)) && 1542 (p->nr_cpus_allowed > 1)) { 1543 int target = find_later_rq(p); 1544 1545 if (target != -1 && 1546 (dl_time_before(p->dl.deadline, 1547 cpu_rq(target)->dl.earliest_dl.curr) || 1548 (cpu_rq(target)->dl.dl_nr_running == 0))) 1549 cpu = target; 1550 } 1551 rcu_read_unlock(); 1552 1553 out: 1554 return cpu; 1555 } 1556 1557 static void migrate_task_rq_dl(struct task_struct *p) 1558 { 1559 struct rq *rq; 1560 1561 if (p->state != TASK_WAKING) 1562 return; 1563 1564 rq = task_rq(p); 1565 /* 1566 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1567 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1568 * rq->lock is not... So, lock it 1569 */ 1570 raw_spin_lock(&rq->lock); 1571 if (p->dl.dl_non_contending) { 1572 sub_running_bw(p->dl.dl_bw, &rq->dl); 1573 p->dl.dl_non_contending = 0; 1574 /* 1575 * If the timer handler is currently running and the 1576 * timer cannot be cancelled, inactive_task_timer() 1577 * will see that dl_not_contending is not set, and 1578 * will not touch the rq's active utilization, 1579 * so we are still safe. 1580 */ 1581 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1582 put_task_struct(p); 1583 } 1584 sub_rq_bw(p->dl.dl_bw, &rq->dl); 1585 raw_spin_unlock(&rq->lock); 1586 } 1587 1588 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1589 { 1590 /* 1591 * Current can't be migrated, useless to reschedule, 1592 * let's hope p can move out. 1593 */ 1594 if (rq->curr->nr_cpus_allowed == 1 || 1595 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 1596 return; 1597 1598 /* 1599 * p is migratable, so let's not schedule it and 1600 * see if it is pushed or pulled somewhere else. 1601 */ 1602 if (p->nr_cpus_allowed != 1 && 1603 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 1604 return; 1605 1606 resched_curr(rq); 1607 } 1608 1609 #endif /* CONFIG_SMP */ 1610 1611 /* 1612 * Only called when both the current and waking task are -deadline 1613 * tasks. 1614 */ 1615 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1616 int flags) 1617 { 1618 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1619 resched_curr(rq); 1620 return; 1621 } 1622 1623 #ifdef CONFIG_SMP 1624 /* 1625 * In the unlikely case current and p have the same deadline 1626 * let us try to decide what's the best thing to do... 1627 */ 1628 if ((p->dl.deadline == rq->curr->dl.deadline) && 1629 !test_tsk_need_resched(rq->curr)) 1630 check_preempt_equal_dl(rq, p); 1631 #endif /* CONFIG_SMP */ 1632 } 1633 1634 #ifdef CONFIG_SCHED_HRTICK 1635 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1636 { 1637 hrtick_start(rq, p->dl.runtime); 1638 } 1639 #else /* !CONFIG_SCHED_HRTICK */ 1640 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1641 { 1642 } 1643 #endif 1644 1645 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1646 struct dl_rq *dl_rq) 1647 { 1648 struct rb_node *left = dl_rq->rb_leftmost; 1649 1650 if (!left) 1651 return NULL; 1652 1653 return rb_entry(left, struct sched_dl_entity, rb_node); 1654 } 1655 1656 struct task_struct * 1657 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1658 { 1659 struct sched_dl_entity *dl_se; 1660 struct task_struct *p; 1661 struct dl_rq *dl_rq; 1662 1663 dl_rq = &rq->dl; 1664 1665 if (need_pull_dl_task(rq, prev)) { 1666 /* 1667 * This is OK, because current is on_cpu, which avoids it being 1668 * picked for load-balance and preemption/IRQs are still 1669 * disabled avoiding further scheduler activity on it and we're 1670 * being very careful to re-start the picking loop. 1671 */ 1672 rq_unpin_lock(rq, rf); 1673 pull_dl_task(rq); 1674 rq_repin_lock(rq, rf); 1675 /* 1676 * pull_dl_task() can drop (and re-acquire) rq->lock; this 1677 * means a stop task can slip in, in which case we need to 1678 * re-start task selection. 1679 */ 1680 if (rq->stop && task_on_rq_queued(rq->stop)) 1681 return RETRY_TASK; 1682 } 1683 1684 /* 1685 * When prev is DL, we may throttle it in put_prev_task(). 1686 * So, we update time before we check for dl_nr_running. 1687 */ 1688 if (prev->sched_class == &dl_sched_class) 1689 update_curr_dl(rq); 1690 1691 if (unlikely(!dl_rq->dl_nr_running)) 1692 return NULL; 1693 1694 put_prev_task(rq, prev); 1695 1696 dl_se = pick_next_dl_entity(rq, dl_rq); 1697 BUG_ON(!dl_se); 1698 1699 p = dl_task_of(dl_se); 1700 p->se.exec_start = rq_clock_task(rq); 1701 1702 /* Running task will never be pushed. */ 1703 dequeue_pushable_dl_task(rq, p); 1704 1705 if (hrtick_enabled(rq)) 1706 start_hrtick_dl(rq, p); 1707 1708 queue_push_tasks(rq); 1709 1710 return p; 1711 } 1712 1713 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1714 { 1715 update_curr_dl(rq); 1716 1717 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1718 enqueue_pushable_dl_task(rq, p); 1719 } 1720 1721 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1722 { 1723 update_curr_dl(rq); 1724 1725 /* 1726 * Even when we have runtime, update_curr_dl() might have resulted in us 1727 * not being the leftmost task anymore. In that case NEED_RESCHED will 1728 * be set and schedule() will start a new hrtick for the next task. 1729 */ 1730 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1731 is_leftmost(p, &rq->dl)) 1732 start_hrtick_dl(rq, p); 1733 } 1734 1735 static void task_fork_dl(struct task_struct *p) 1736 { 1737 /* 1738 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1739 * sched_fork() 1740 */ 1741 } 1742 1743 static void set_curr_task_dl(struct rq *rq) 1744 { 1745 struct task_struct *p = rq->curr; 1746 1747 p->se.exec_start = rq_clock_task(rq); 1748 1749 /* You can't push away the running task */ 1750 dequeue_pushable_dl_task(rq, p); 1751 } 1752 1753 #ifdef CONFIG_SMP 1754 1755 /* Only try algorithms three times */ 1756 #define DL_MAX_TRIES 3 1757 1758 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1759 { 1760 if (!task_running(rq, p) && 1761 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1762 return 1; 1763 return 0; 1764 } 1765 1766 /* 1767 * Return the earliest pushable rq's task, which is suitable to be executed 1768 * on the CPU, NULL otherwise: 1769 */ 1770 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1771 { 1772 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost; 1773 struct task_struct *p = NULL; 1774 1775 if (!has_pushable_dl_tasks(rq)) 1776 return NULL; 1777 1778 next_node: 1779 if (next_node) { 1780 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1781 1782 if (pick_dl_task(rq, p, cpu)) 1783 return p; 1784 1785 next_node = rb_next(next_node); 1786 goto next_node; 1787 } 1788 1789 return NULL; 1790 } 1791 1792 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1793 1794 static int find_later_rq(struct task_struct *task) 1795 { 1796 struct sched_domain *sd; 1797 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1798 int this_cpu = smp_processor_id(); 1799 int best_cpu, cpu = task_cpu(task); 1800 1801 /* Make sure the mask is initialized first */ 1802 if (unlikely(!later_mask)) 1803 return -1; 1804 1805 if (task->nr_cpus_allowed == 1) 1806 return -1; 1807 1808 /* 1809 * We have to consider system topology and task affinity 1810 * first, then we can look for a suitable cpu. 1811 */ 1812 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1813 task, later_mask); 1814 if (best_cpu == -1) 1815 return -1; 1816 1817 /* 1818 * If we are here, some target has been found, 1819 * the most suitable of which is cached in best_cpu. 1820 * This is, among the runqueues where the current tasks 1821 * have later deadlines than the task's one, the rq 1822 * with the latest possible one. 1823 * 1824 * Now we check how well this matches with task's 1825 * affinity and system topology. 1826 * 1827 * The last cpu where the task run is our first 1828 * guess, since it is most likely cache-hot there. 1829 */ 1830 if (cpumask_test_cpu(cpu, later_mask)) 1831 return cpu; 1832 /* 1833 * Check if this_cpu is to be skipped (i.e., it is 1834 * not in the mask) or not. 1835 */ 1836 if (!cpumask_test_cpu(this_cpu, later_mask)) 1837 this_cpu = -1; 1838 1839 rcu_read_lock(); 1840 for_each_domain(cpu, sd) { 1841 if (sd->flags & SD_WAKE_AFFINE) { 1842 1843 /* 1844 * If possible, preempting this_cpu is 1845 * cheaper than migrating. 1846 */ 1847 if (this_cpu != -1 && 1848 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1849 rcu_read_unlock(); 1850 return this_cpu; 1851 } 1852 1853 /* 1854 * Last chance: if best_cpu is valid and is 1855 * in the mask, that becomes our choice. 1856 */ 1857 if (best_cpu < nr_cpu_ids && 1858 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1859 rcu_read_unlock(); 1860 return best_cpu; 1861 } 1862 } 1863 } 1864 rcu_read_unlock(); 1865 1866 /* 1867 * At this point, all our guesses failed, we just return 1868 * 'something', and let the caller sort the things out. 1869 */ 1870 if (this_cpu != -1) 1871 return this_cpu; 1872 1873 cpu = cpumask_any(later_mask); 1874 if (cpu < nr_cpu_ids) 1875 return cpu; 1876 1877 return -1; 1878 } 1879 1880 /* Locks the rq it finds */ 1881 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1882 { 1883 struct rq *later_rq = NULL; 1884 int tries; 1885 int cpu; 1886 1887 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1888 cpu = find_later_rq(task); 1889 1890 if ((cpu == -1) || (cpu == rq->cpu)) 1891 break; 1892 1893 later_rq = cpu_rq(cpu); 1894 1895 if (later_rq->dl.dl_nr_running && 1896 !dl_time_before(task->dl.deadline, 1897 later_rq->dl.earliest_dl.curr)) { 1898 /* 1899 * Target rq has tasks of equal or earlier deadline, 1900 * retrying does not release any lock and is unlikely 1901 * to yield a different result. 1902 */ 1903 later_rq = NULL; 1904 break; 1905 } 1906 1907 /* Retry if something changed. */ 1908 if (double_lock_balance(rq, later_rq)) { 1909 if (unlikely(task_rq(task) != rq || 1910 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) || 1911 task_running(rq, task) || 1912 !dl_task(task) || 1913 !task_on_rq_queued(task))) { 1914 double_unlock_balance(rq, later_rq); 1915 later_rq = NULL; 1916 break; 1917 } 1918 } 1919 1920 /* 1921 * If the rq we found has no -deadline task, or 1922 * its earliest one has a later deadline than our 1923 * task, the rq is a good one. 1924 */ 1925 if (!later_rq->dl.dl_nr_running || 1926 dl_time_before(task->dl.deadline, 1927 later_rq->dl.earliest_dl.curr)) 1928 break; 1929 1930 /* Otherwise we try again. */ 1931 double_unlock_balance(rq, later_rq); 1932 later_rq = NULL; 1933 } 1934 1935 return later_rq; 1936 } 1937 1938 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1939 { 1940 struct task_struct *p; 1941 1942 if (!has_pushable_dl_tasks(rq)) 1943 return NULL; 1944 1945 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1946 struct task_struct, pushable_dl_tasks); 1947 1948 BUG_ON(rq->cpu != task_cpu(p)); 1949 BUG_ON(task_current(rq, p)); 1950 BUG_ON(p->nr_cpus_allowed <= 1); 1951 1952 BUG_ON(!task_on_rq_queued(p)); 1953 BUG_ON(!dl_task(p)); 1954 1955 return p; 1956 } 1957 1958 /* 1959 * See if the non running -deadline tasks on this rq 1960 * can be sent to some other CPU where they can preempt 1961 * and start executing. 1962 */ 1963 static int push_dl_task(struct rq *rq) 1964 { 1965 struct task_struct *next_task; 1966 struct rq *later_rq; 1967 int ret = 0; 1968 1969 if (!rq->dl.overloaded) 1970 return 0; 1971 1972 next_task = pick_next_pushable_dl_task(rq); 1973 if (!next_task) 1974 return 0; 1975 1976 retry: 1977 if (unlikely(next_task == rq->curr)) { 1978 WARN_ON(1); 1979 return 0; 1980 } 1981 1982 /* 1983 * If next_task preempts rq->curr, and rq->curr 1984 * can move away, it makes sense to just reschedule 1985 * without going further in pushing next_task. 1986 */ 1987 if (dl_task(rq->curr) && 1988 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1989 rq->curr->nr_cpus_allowed > 1) { 1990 resched_curr(rq); 1991 return 0; 1992 } 1993 1994 /* We might release rq lock */ 1995 get_task_struct(next_task); 1996 1997 /* Will lock the rq it'll find */ 1998 later_rq = find_lock_later_rq(next_task, rq); 1999 if (!later_rq) { 2000 struct task_struct *task; 2001 2002 /* 2003 * We must check all this again, since 2004 * find_lock_later_rq releases rq->lock and it is 2005 * then possible that next_task has migrated. 2006 */ 2007 task = pick_next_pushable_dl_task(rq); 2008 if (task == next_task) { 2009 /* 2010 * The task is still there. We don't try 2011 * again, some other cpu will pull it when ready. 2012 */ 2013 goto out; 2014 } 2015 2016 if (!task) 2017 /* No more tasks */ 2018 goto out; 2019 2020 put_task_struct(next_task); 2021 next_task = task; 2022 goto retry; 2023 } 2024 2025 deactivate_task(rq, next_task, 0); 2026 sub_running_bw(next_task->dl.dl_bw, &rq->dl); 2027 sub_rq_bw(next_task->dl.dl_bw, &rq->dl); 2028 set_task_cpu(next_task, later_rq->cpu); 2029 add_rq_bw(next_task->dl.dl_bw, &later_rq->dl); 2030 add_running_bw(next_task->dl.dl_bw, &later_rq->dl); 2031 activate_task(later_rq, next_task, 0); 2032 ret = 1; 2033 2034 resched_curr(later_rq); 2035 2036 double_unlock_balance(rq, later_rq); 2037 2038 out: 2039 put_task_struct(next_task); 2040 2041 return ret; 2042 } 2043 2044 static void push_dl_tasks(struct rq *rq) 2045 { 2046 /* push_dl_task() will return true if it moved a -deadline task */ 2047 while (push_dl_task(rq)) 2048 ; 2049 } 2050 2051 static void pull_dl_task(struct rq *this_rq) 2052 { 2053 int this_cpu = this_rq->cpu, cpu; 2054 struct task_struct *p; 2055 bool resched = false; 2056 struct rq *src_rq; 2057 u64 dmin = LONG_MAX; 2058 2059 if (likely(!dl_overloaded(this_rq))) 2060 return; 2061 2062 /* 2063 * Match the barrier from dl_set_overloaded; this guarantees that if we 2064 * see overloaded we must also see the dlo_mask bit. 2065 */ 2066 smp_rmb(); 2067 2068 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2069 if (this_cpu == cpu) 2070 continue; 2071 2072 src_rq = cpu_rq(cpu); 2073 2074 /* 2075 * It looks racy, abd it is! However, as in sched_rt.c, 2076 * we are fine with this. 2077 */ 2078 if (this_rq->dl.dl_nr_running && 2079 dl_time_before(this_rq->dl.earliest_dl.curr, 2080 src_rq->dl.earliest_dl.next)) 2081 continue; 2082 2083 /* Might drop this_rq->lock */ 2084 double_lock_balance(this_rq, src_rq); 2085 2086 /* 2087 * If there are no more pullable tasks on the 2088 * rq, we're done with it. 2089 */ 2090 if (src_rq->dl.dl_nr_running <= 1) 2091 goto skip; 2092 2093 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2094 2095 /* 2096 * We found a task to be pulled if: 2097 * - it preempts our current (if there's one), 2098 * - it will preempt the last one we pulled (if any). 2099 */ 2100 if (p && dl_time_before(p->dl.deadline, dmin) && 2101 (!this_rq->dl.dl_nr_running || 2102 dl_time_before(p->dl.deadline, 2103 this_rq->dl.earliest_dl.curr))) { 2104 WARN_ON(p == src_rq->curr); 2105 WARN_ON(!task_on_rq_queued(p)); 2106 2107 /* 2108 * Then we pull iff p has actually an earlier 2109 * deadline than the current task of its runqueue. 2110 */ 2111 if (dl_time_before(p->dl.deadline, 2112 src_rq->curr->dl.deadline)) 2113 goto skip; 2114 2115 resched = true; 2116 2117 deactivate_task(src_rq, p, 0); 2118 sub_running_bw(p->dl.dl_bw, &src_rq->dl); 2119 sub_rq_bw(p->dl.dl_bw, &src_rq->dl); 2120 set_task_cpu(p, this_cpu); 2121 add_rq_bw(p->dl.dl_bw, &this_rq->dl); 2122 add_running_bw(p->dl.dl_bw, &this_rq->dl); 2123 activate_task(this_rq, p, 0); 2124 dmin = p->dl.deadline; 2125 2126 /* Is there any other task even earlier? */ 2127 } 2128 skip: 2129 double_unlock_balance(this_rq, src_rq); 2130 } 2131 2132 if (resched) 2133 resched_curr(this_rq); 2134 } 2135 2136 /* 2137 * Since the task is not running and a reschedule is not going to happen 2138 * anytime soon on its runqueue, we try pushing it away now. 2139 */ 2140 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2141 { 2142 if (!task_running(rq, p) && 2143 !test_tsk_need_resched(rq->curr) && 2144 p->nr_cpus_allowed > 1 && 2145 dl_task(rq->curr) && 2146 (rq->curr->nr_cpus_allowed < 2 || 2147 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2148 push_dl_tasks(rq); 2149 } 2150 } 2151 2152 static void set_cpus_allowed_dl(struct task_struct *p, 2153 const struct cpumask *new_mask) 2154 { 2155 struct root_domain *src_rd; 2156 struct rq *rq; 2157 2158 BUG_ON(!dl_task(p)); 2159 2160 rq = task_rq(p); 2161 src_rd = rq->rd; 2162 /* 2163 * Migrating a SCHED_DEADLINE task between exclusive 2164 * cpusets (different root_domains) entails a bandwidth 2165 * update. We already made space for us in the destination 2166 * domain (see cpuset_can_attach()). 2167 */ 2168 if (!cpumask_intersects(src_rd->span, new_mask)) { 2169 struct dl_bw *src_dl_b; 2170 2171 src_dl_b = dl_bw_of(cpu_of(rq)); 2172 /* 2173 * We now free resources of the root_domain we are migrating 2174 * off. In the worst case, sched_setattr() may temporary fail 2175 * until we complete the update. 2176 */ 2177 raw_spin_lock(&src_dl_b->lock); 2178 __dl_clear(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2179 raw_spin_unlock(&src_dl_b->lock); 2180 } 2181 2182 set_cpus_allowed_common(p, new_mask); 2183 } 2184 2185 /* Assumes rq->lock is held */ 2186 static void rq_online_dl(struct rq *rq) 2187 { 2188 if (rq->dl.overloaded) 2189 dl_set_overload(rq); 2190 2191 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2192 if (rq->dl.dl_nr_running > 0) 2193 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2194 } 2195 2196 /* Assumes rq->lock is held */ 2197 static void rq_offline_dl(struct rq *rq) 2198 { 2199 if (rq->dl.overloaded) 2200 dl_clear_overload(rq); 2201 2202 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2203 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2204 } 2205 2206 void __init init_sched_dl_class(void) 2207 { 2208 unsigned int i; 2209 2210 for_each_possible_cpu(i) 2211 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2212 GFP_KERNEL, cpu_to_node(i)); 2213 } 2214 2215 #endif /* CONFIG_SMP */ 2216 2217 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2218 { 2219 /* 2220 * task_non_contending() can start the "inactive timer" (if the 0-lag 2221 * time is in the future). If the task switches back to dl before 2222 * the "inactive timer" fires, it can continue to consume its current 2223 * runtime using its current deadline. If it stays outside of 2224 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2225 * will reset the task parameters. 2226 */ 2227 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2228 task_non_contending(p); 2229 2230 if (!task_on_rq_queued(p)) 2231 sub_rq_bw(p->dl.dl_bw, &rq->dl); 2232 2233 /* 2234 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2235 * at the 0-lag time, because the task could have been migrated 2236 * while SCHED_OTHER in the meanwhile. 2237 */ 2238 if (p->dl.dl_non_contending) 2239 p->dl.dl_non_contending = 0; 2240 2241 /* 2242 * Since this might be the only -deadline task on the rq, 2243 * this is the right place to try to pull some other one 2244 * from an overloaded cpu, if any. 2245 */ 2246 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2247 return; 2248 2249 queue_pull_task(rq); 2250 } 2251 2252 /* 2253 * When switching to -deadline, we may overload the rq, then 2254 * we try to push someone off, if possible. 2255 */ 2256 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2257 { 2258 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2259 put_task_struct(p); 2260 2261 /* If p is not queued we will update its parameters at next wakeup. */ 2262 if (!task_on_rq_queued(p)) { 2263 add_rq_bw(p->dl.dl_bw, &rq->dl); 2264 2265 return; 2266 } 2267 /* 2268 * If p is boosted we already updated its params in 2269 * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH), 2270 * p's deadline being now already after rq_clock(rq). 2271 */ 2272 if (dl_time_before(p->dl.deadline, rq_clock(rq))) 2273 setup_new_dl_entity(&p->dl); 2274 2275 if (rq->curr != p) { 2276 #ifdef CONFIG_SMP 2277 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2278 queue_push_tasks(rq); 2279 #endif 2280 if (dl_task(rq->curr)) 2281 check_preempt_curr_dl(rq, p, 0); 2282 else 2283 resched_curr(rq); 2284 } 2285 } 2286 2287 /* 2288 * If the scheduling parameters of a -deadline task changed, 2289 * a push or pull operation might be needed. 2290 */ 2291 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2292 int oldprio) 2293 { 2294 if (task_on_rq_queued(p) || rq->curr == p) { 2295 #ifdef CONFIG_SMP 2296 /* 2297 * This might be too much, but unfortunately 2298 * we don't have the old deadline value, and 2299 * we can't argue if the task is increasing 2300 * or lowering its prio, so... 2301 */ 2302 if (!rq->dl.overloaded) 2303 queue_pull_task(rq); 2304 2305 /* 2306 * If we now have a earlier deadline task than p, 2307 * then reschedule, provided p is still on this 2308 * runqueue. 2309 */ 2310 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2311 resched_curr(rq); 2312 #else 2313 /* 2314 * Again, we don't know if p has a earlier 2315 * or later deadline, so let's blindly set a 2316 * (maybe not needed) rescheduling point. 2317 */ 2318 resched_curr(rq); 2319 #endif /* CONFIG_SMP */ 2320 } 2321 } 2322 2323 const struct sched_class dl_sched_class = { 2324 .next = &rt_sched_class, 2325 .enqueue_task = enqueue_task_dl, 2326 .dequeue_task = dequeue_task_dl, 2327 .yield_task = yield_task_dl, 2328 2329 .check_preempt_curr = check_preempt_curr_dl, 2330 2331 .pick_next_task = pick_next_task_dl, 2332 .put_prev_task = put_prev_task_dl, 2333 2334 #ifdef CONFIG_SMP 2335 .select_task_rq = select_task_rq_dl, 2336 .migrate_task_rq = migrate_task_rq_dl, 2337 .set_cpus_allowed = set_cpus_allowed_dl, 2338 .rq_online = rq_online_dl, 2339 .rq_offline = rq_offline_dl, 2340 .task_woken = task_woken_dl, 2341 #endif 2342 2343 .set_curr_task = set_curr_task_dl, 2344 .task_tick = task_tick_dl, 2345 .task_fork = task_fork_dl, 2346 2347 .prio_changed = prio_changed_dl, 2348 .switched_from = switched_from_dl, 2349 .switched_to = switched_to_dl, 2350 2351 .update_curr = update_curr_dl, 2352 }; 2353 2354 int sched_dl_global_validate(void) 2355 { 2356 u64 runtime = global_rt_runtime(); 2357 u64 period = global_rt_period(); 2358 u64 new_bw = to_ratio(period, runtime); 2359 struct dl_bw *dl_b; 2360 int cpu, ret = 0; 2361 unsigned long flags; 2362 2363 /* 2364 * Here we want to check the bandwidth not being set to some 2365 * value smaller than the currently allocated bandwidth in 2366 * any of the root_domains. 2367 * 2368 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 2369 * cycling on root_domains... Discussion on different/better 2370 * solutions is welcome! 2371 */ 2372 for_each_possible_cpu(cpu) { 2373 rcu_read_lock_sched(); 2374 dl_b = dl_bw_of(cpu); 2375 2376 raw_spin_lock_irqsave(&dl_b->lock, flags); 2377 if (new_bw < dl_b->total_bw) 2378 ret = -EBUSY; 2379 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2380 2381 rcu_read_unlock_sched(); 2382 2383 if (ret) 2384 break; 2385 } 2386 2387 return ret; 2388 } 2389 2390 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2391 { 2392 if (global_rt_runtime() == RUNTIME_INF) { 2393 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2394 dl_rq->extra_bw = 1 << BW_SHIFT; 2395 } else { 2396 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2397 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2398 dl_rq->extra_bw = to_ratio(global_rt_period(), 2399 global_rt_runtime()); 2400 } 2401 } 2402 2403 void sched_dl_do_global(void) 2404 { 2405 u64 new_bw = -1; 2406 struct dl_bw *dl_b; 2407 int cpu; 2408 unsigned long flags; 2409 2410 def_dl_bandwidth.dl_period = global_rt_period(); 2411 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 2412 2413 if (global_rt_runtime() != RUNTIME_INF) 2414 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2415 2416 /* 2417 * FIXME: As above... 2418 */ 2419 for_each_possible_cpu(cpu) { 2420 rcu_read_lock_sched(); 2421 dl_b = dl_bw_of(cpu); 2422 2423 raw_spin_lock_irqsave(&dl_b->lock, flags); 2424 dl_b->bw = new_bw; 2425 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2426 2427 rcu_read_unlock_sched(); 2428 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2429 } 2430 } 2431 2432 /* 2433 * We must be sure that accepting a new task (or allowing changing the 2434 * parameters of an existing one) is consistent with the bandwidth 2435 * constraints. If yes, this function also accordingly updates the currently 2436 * allocated bandwidth to reflect the new situation. 2437 * 2438 * This function is called while holding p's rq->lock. 2439 */ 2440 int sched_dl_overflow(struct task_struct *p, int policy, 2441 const struct sched_attr *attr) 2442 { 2443 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2444 u64 period = attr->sched_period ?: attr->sched_deadline; 2445 u64 runtime = attr->sched_runtime; 2446 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2447 int cpus, err = -1; 2448 2449 /* !deadline task may carry old deadline bandwidth */ 2450 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2451 return 0; 2452 2453 /* 2454 * Either if a task, enters, leave, or stays -deadline but changes 2455 * its parameters, we may need to update accordingly the total 2456 * allocated bandwidth of the container. 2457 */ 2458 raw_spin_lock(&dl_b->lock); 2459 cpus = dl_bw_cpus(task_cpu(p)); 2460 if (dl_policy(policy) && !task_has_dl_policy(p) && 2461 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2462 if (hrtimer_active(&p->dl.inactive_timer)) 2463 __dl_clear(dl_b, p->dl.dl_bw, cpus); 2464 __dl_add(dl_b, new_bw, cpus); 2465 err = 0; 2466 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2467 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2468 /* 2469 * XXX this is slightly incorrect: when the task 2470 * utilization decreases, we should delay the total 2471 * utilization change until the task's 0-lag point. 2472 * But this would require to set the task's "inactive 2473 * timer" when the task is not inactive. 2474 */ 2475 __dl_clear(dl_b, p->dl.dl_bw, cpus); 2476 __dl_add(dl_b, new_bw, cpus); 2477 dl_change_utilization(p, new_bw); 2478 err = 0; 2479 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2480 /* 2481 * Do not decrease the total deadline utilization here, 2482 * switched_from_dl() will take care to do it at the correct 2483 * (0-lag) time. 2484 */ 2485 err = 0; 2486 } 2487 raw_spin_unlock(&dl_b->lock); 2488 2489 return err; 2490 } 2491 2492 /* 2493 * This function initializes the sched_dl_entity of a newly becoming 2494 * SCHED_DEADLINE task. 2495 * 2496 * Only the static values are considered here, the actual runtime and the 2497 * absolute deadline will be properly calculated when the task is enqueued 2498 * for the first time with its new policy. 2499 */ 2500 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2501 { 2502 struct sched_dl_entity *dl_se = &p->dl; 2503 2504 dl_se->dl_runtime = attr->sched_runtime; 2505 dl_se->dl_deadline = attr->sched_deadline; 2506 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2507 dl_se->flags = attr->sched_flags; 2508 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2509 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2510 } 2511 2512 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2513 { 2514 struct sched_dl_entity *dl_se = &p->dl; 2515 2516 attr->sched_priority = p->rt_priority; 2517 attr->sched_runtime = dl_se->dl_runtime; 2518 attr->sched_deadline = dl_se->dl_deadline; 2519 attr->sched_period = dl_se->dl_period; 2520 attr->sched_flags = dl_se->flags; 2521 } 2522 2523 /* 2524 * This function validates the new parameters of a -deadline task. 2525 * We ask for the deadline not being zero, and greater or equal 2526 * than the runtime, as well as the period of being zero or 2527 * greater than deadline. Furthermore, we have to be sure that 2528 * user parameters are above the internal resolution of 1us (we 2529 * check sched_runtime only since it is always the smaller one) and 2530 * below 2^63 ns (we have to check both sched_deadline and 2531 * sched_period, as the latter can be zero). 2532 */ 2533 bool __checkparam_dl(const struct sched_attr *attr) 2534 { 2535 /* deadline != 0 */ 2536 if (attr->sched_deadline == 0) 2537 return false; 2538 2539 /* 2540 * Since we truncate DL_SCALE bits, make sure we're at least 2541 * that big. 2542 */ 2543 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2544 return false; 2545 2546 /* 2547 * Since we use the MSB for wrap-around and sign issues, make 2548 * sure it's not set (mind that period can be equal to zero). 2549 */ 2550 if (attr->sched_deadline & (1ULL << 63) || 2551 attr->sched_period & (1ULL << 63)) 2552 return false; 2553 2554 /* runtime <= deadline <= period (if period != 0) */ 2555 if ((attr->sched_period != 0 && 2556 attr->sched_period < attr->sched_deadline) || 2557 attr->sched_deadline < attr->sched_runtime) 2558 return false; 2559 2560 return true; 2561 } 2562 2563 /* 2564 * This function clears the sched_dl_entity static params. 2565 */ 2566 void __dl_clear_params(struct task_struct *p) 2567 { 2568 struct sched_dl_entity *dl_se = &p->dl; 2569 2570 dl_se->dl_runtime = 0; 2571 dl_se->dl_deadline = 0; 2572 dl_se->dl_period = 0; 2573 dl_se->flags = 0; 2574 dl_se->dl_bw = 0; 2575 dl_se->dl_density = 0; 2576 2577 dl_se->dl_throttled = 0; 2578 dl_se->dl_yielded = 0; 2579 dl_se->dl_non_contending = 0; 2580 } 2581 2582 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2583 { 2584 struct sched_dl_entity *dl_se = &p->dl; 2585 2586 if (dl_se->dl_runtime != attr->sched_runtime || 2587 dl_se->dl_deadline != attr->sched_deadline || 2588 dl_se->dl_period != attr->sched_period || 2589 dl_se->flags != attr->sched_flags) 2590 return true; 2591 2592 return false; 2593 } 2594 2595 #ifdef CONFIG_SMP 2596 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) 2597 { 2598 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 2599 cs_cpus_allowed); 2600 struct dl_bw *dl_b; 2601 bool overflow; 2602 int cpus, ret; 2603 unsigned long flags; 2604 2605 rcu_read_lock_sched(); 2606 dl_b = dl_bw_of(dest_cpu); 2607 raw_spin_lock_irqsave(&dl_b->lock, flags); 2608 cpus = dl_bw_cpus(dest_cpu); 2609 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 2610 if (overflow) 2611 ret = -EBUSY; 2612 else { 2613 /* 2614 * We reserve space for this task in the destination 2615 * root_domain, as we can't fail after this point. 2616 * We will free resources in the source root_domain 2617 * later on (see set_cpus_allowed_dl()). 2618 */ 2619 __dl_add(dl_b, p->dl.dl_bw, cpus); 2620 ret = 0; 2621 } 2622 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2623 rcu_read_unlock_sched(); 2624 return ret; 2625 } 2626 2627 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 2628 const struct cpumask *trial) 2629 { 2630 int ret = 1, trial_cpus; 2631 struct dl_bw *cur_dl_b; 2632 unsigned long flags; 2633 2634 rcu_read_lock_sched(); 2635 cur_dl_b = dl_bw_of(cpumask_any(cur)); 2636 trial_cpus = cpumask_weight(trial); 2637 2638 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 2639 if (cur_dl_b->bw != -1 && 2640 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 2641 ret = 0; 2642 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 2643 rcu_read_unlock_sched(); 2644 return ret; 2645 } 2646 2647 bool dl_cpu_busy(unsigned int cpu) 2648 { 2649 unsigned long flags; 2650 struct dl_bw *dl_b; 2651 bool overflow; 2652 int cpus; 2653 2654 rcu_read_lock_sched(); 2655 dl_b = dl_bw_of(cpu); 2656 raw_spin_lock_irqsave(&dl_b->lock, flags); 2657 cpus = dl_bw_cpus(cpu); 2658 overflow = __dl_overflow(dl_b, cpus, 0, 0); 2659 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2660 rcu_read_unlock_sched(); 2661 return overflow; 2662 } 2663 #endif 2664 2665 #ifdef CONFIG_SCHED_DEBUG 2666 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2667 2668 void print_dl_stats(struct seq_file *m, int cpu) 2669 { 2670 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 2671 } 2672 #endif /* CONFIG_SCHED_DEBUG */ 2673