1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 #include <linux/sched/clock.h> 21 #include <uapi/linux/sched/types.h> 22 #include "sched.h" 23 #include "pelt.h" 24 25 /* 26 * Default limits for DL period; on the top end we guard against small util 27 * tasks still getting ridiculously long effective runtimes, on the bottom end we 28 * guard against timer DoS. 29 */ 30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 32 #ifdef CONFIG_SYSCTL 33 static const struct ctl_table sched_dl_sysctls[] = { 34 { 35 .procname = "sched_deadline_period_max_us", 36 .data = &sysctl_sched_dl_period_max, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = proc_douintvec_minmax, 40 .extra1 = (void *)&sysctl_sched_dl_period_min, 41 }, 42 { 43 .procname = "sched_deadline_period_min_us", 44 .data = &sysctl_sched_dl_period_min, 45 .maxlen = sizeof(unsigned int), 46 .mode = 0644, 47 .proc_handler = proc_douintvec_minmax, 48 .extra2 = (void *)&sysctl_sched_dl_period_max, 49 }, 50 }; 51 52 static int __init sched_dl_sysctl_init(void) 53 { 54 register_sysctl_init("kernel", sched_dl_sysctls); 55 return 0; 56 } 57 late_initcall(sched_dl_sysctl_init); 58 #endif /* CONFIG_SYSCTL */ 59 60 static bool dl_server(struct sched_dl_entity *dl_se) 61 { 62 return dl_se->dl_server; 63 } 64 65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 66 { 67 BUG_ON(dl_server(dl_se)); 68 return container_of(dl_se, struct task_struct, dl); 69 } 70 71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 72 { 73 return container_of(dl_rq, struct rq, dl); 74 } 75 76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se) 77 { 78 struct rq *rq = dl_se->rq; 79 80 if (!dl_server(dl_se)) 81 rq = task_rq(dl_task_of(dl_se)); 82 83 return rq; 84 } 85 86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 87 { 88 return &rq_of_dl_se(dl_se)->dl; 89 } 90 91 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 92 { 93 return !RB_EMPTY_NODE(&dl_se->rb_node); 94 } 95 96 #ifdef CONFIG_RT_MUTEXES 97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 98 { 99 return dl_se->pi_se; 100 } 101 102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 103 { 104 return pi_of(dl_se) != dl_se; 105 } 106 #else /* !CONFIG_RT_MUTEXES: */ 107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 108 { 109 return dl_se; 110 } 111 112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 113 { 114 return false; 115 } 116 #endif /* !CONFIG_RT_MUTEXES */ 117 118 static inline struct dl_bw *dl_bw_of(int i) 119 { 120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 121 "sched RCU must be held"); 122 return &cpu_rq(i)->rd->dl_bw; 123 } 124 125 static inline int dl_bw_cpus(int i) 126 { 127 struct root_domain *rd = cpu_rq(i)->rd; 128 int cpus; 129 130 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 131 "sched RCU must be held"); 132 133 if (cpumask_subset(rd->span, cpu_active_mask)) 134 return cpumask_weight(rd->span); 135 136 cpus = 0; 137 138 for_each_cpu_and(i, rd->span, cpu_active_mask) 139 cpus++; 140 141 return cpus; 142 } 143 144 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 145 { 146 unsigned long cap = 0; 147 int i; 148 149 for_each_cpu_and(i, mask, cpu_active_mask) 150 cap += arch_scale_cpu_capacity(i); 151 152 return cap; 153 } 154 155 /* 156 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 157 * of the CPU the task is running on rather rd's \Sum CPU capacity. 158 */ 159 static inline unsigned long dl_bw_capacity(int i) 160 { 161 if (!sched_asym_cpucap_active() && 162 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) { 163 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 164 } else { 165 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 166 "sched RCU must be held"); 167 168 return __dl_bw_capacity(cpu_rq(i)->rd->span); 169 } 170 } 171 172 bool dl_bw_visited(int cpu, u64 cookie) 173 { 174 struct root_domain *rd = cpu_rq(cpu)->rd; 175 176 if (rd->visit_cookie == cookie) 177 return true; 178 179 rd->visit_cookie = cookie; 180 return false; 181 } 182 183 static inline 184 void __dl_update(struct dl_bw *dl_b, s64 bw) 185 { 186 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 187 int i; 188 189 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 190 "sched RCU must be held"); 191 for_each_cpu_and(i, rd->span, cpu_active_mask) { 192 struct rq *rq = cpu_rq(i); 193 194 rq->dl.extra_bw += bw; 195 } 196 } 197 198 static inline 199 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 200 { 201 dl_b->total_bw -= tsk_bw; 202 __dl_update(dl_b, (s32)tsk_bw / cpus); 203 } 204 205 static inline 206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 207 { 208 dl_b->total_bw += tsk_bw; 209 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 210 } 211 212 static inline bool 213 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 214 { 215 return dl_b->bw != -1 && 216 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 217 } 218 219 static inline 220 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 221 { 222 u64 old = dl_rq->running_bw; 223 224 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 225 dl_rq->running_bw += dl_bw; 226 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */ 227 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 228 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 229 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 230 } 231 232 static inline 233 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 234 { 235 u64 old = dl_rq->running_bw; 236 237 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 238 dl_rq->running_bw -= dl_bw; 239 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */ 240 if (dl_rq->running_bw > old) 241 dl_rq->running_bw = 0; 242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 244 } 245 246 static inline 247 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 248 { 249 u64 old = dl_rq->this_bw; 250 251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 252 dl_rq->this_bw += dl_bw; 253 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */ 254 } 255 256 static inline 257 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 258 { 259 u64 old = dl_rq->this_bw; 260 261 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 262 dl_rq->this_bw -= dl_bw; 263 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */ 264 if (dl_rq->this_bw > old) 265 dl_rq->this_bw = 0; 266 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 267 } 268 269 static inline 270 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 271 { 272 if (!dl_entity_is_special(dl_se)) 273 __add_rq_bw(dl_se->dl_bw, dl_rq); 274 } 275 276 static inline 277 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 278 { 279 if (!dl_entity_is_special(dl_se)) 280 __sub_rq_bw(dl_se->dl_bw, dl_rq); 281 } 282 283 static inline 284 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 285 { 286 if (!dl_entity_is_special(dl_se)) 287 __add_running_bw(dl_se->dl_bw, dl_rq); 288 } 289 290 static inline 291 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 292 { 293 if (!dl_entity_is_special(dl_se)) 294 __sub_running_bw(dl_se->dl_bw, dl_rq); 295 } 296 297 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw) 298 { 299 if (dl_se->dl_non_contending) { 300 sub_running_bw(dl_se, &rq->dl); 301 dl_se->dl_non_contending = 0; 302 303 /* 304 * If the timer handler is currently running and the 305 * timer cannot be canceled, inactive_task_timer() 306 * will see that dl_not_contending is not set, and 307 * will not touch the rq's active utilization, 308 * so we are still safe. 309 */ 310 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) { 311 if (!dl_server(dl_se)) 312 put_task_struct(dl_task_of(dl_se)); 313 } 314 } 315 __sub_rq_bw(dl_se->dl_bw, &rq->dl); 316 __add_rq_bw(new_bw, &rq->dl); 317 } 318 319 static __always_inline 320 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer) 321 { 322 /* 323 * If the timer callback was running (hrtimer_try_to_cancel == -1), 324 * it will eventually call put_task_struct(). 325 */ 326 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se)) 327 put_task_struct(dl_task_of(dl_se)); 328 } 329 330 static __always_inline 331 void cancel_replenish_timer(struct sched_dl_entity *dl_se) 332 { 333 cancel_dl_timer(dl_se, &dl_se->dl_timer); 334 } 335 336 static __always_inline 337 void cancel_inactive_timer(struct sched_dl_entity *dl_se) 338 { 339 cancel_dl_timer(dl_se, &dl_se->inactive_timer); 340 } 341 342 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 343 { 344 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 345 346 if (task_on_rq_queued(p)) 347 return; 348 349 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw); 350 } 351 352 static void __dl_clear_params(struct sched_dl_entity *dl_se); 353 354 /* 355 * The utilization of a task cannot be immediately removed from 356 * the rq active utilization (running_bw) when the task blocks. 357 * Instead, we have to wait for the so called "0-lag time". 358 * 359 * If a task blocks before the "0-lag time", a timer (the inactive 360 * timer) is armed, and running_bw is decreased when the timer 361 * fires. 362 * 363 * If the task wakes up again before the inactive timer fires, 364 * the timer is canceled, whereas if the task wakes up after the 365 * inactive timer fired (and running_bw has been decreased) the 366 * task's utilization has to be added to running_bw again. 367 * A flag in the deadline scheduling entity (dl_non_contending) 368 * is used to avoid race conditions between the inactive timer handler 369 * and task wakeups. 370 * 371 * The following diagram shows how running_bw is updated. A task is 372 * "ACTIVE" when its utilization contributes to running_bw; an 373 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 374 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 375 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 376 * time already passed, which does not contribute to running_bw anymore. 377 * +------------------+ 378 * wakeup | ACTIVE | 379 * +------------------>+ contending | 380 * | add_running_bw | | 381 * | +----+------+------+ 382 * | | ^ 383 * | dequeue | | 384 * +--------+-------+ | | 385 * | | t >= 0-lag | | wakeup 386 * | INACTIVE |<---------------+ | 387 * | | sub_running_bw | | 388 * +--------+-------+ | | 389 * ^ | | 390 * | t < 0-lag | | 391 * | | | 392 * | V | 393 * | +----+------+------+ 394 * | sub_running_bw | ACTIVE | 395 * +-------------------+ | 396 * inactive timer | non contending | 397 * fired +------------------+ 398 * 399 * The task_non_contending() function is invoked when a task 400 * blocks, and checks if the 0-lag time already passed or 401 * not (in the first case, it directly updates running_bw; 402 * in the second case, it arms the inactive timer). 403 * 404 * The task_contending() function is invoked when a task wakes 405 * up, and checks if the task is still in the "ACTIVE non contending" 406 * state or not (in the second case, it updates running_bw). 407 */ 408 static void task_non_contending(struct sched_dl_entity *dl_se) 409 { 410 struct hrtimer *timer = &dl_se->inactive_timer; 411 struct rq *rq = rq_of_dl_se(dl_se); 412 struct dl_rq *dl_rq = &rq->dl; 413 s64 zerolag_time; 414 415 /* 416 * If this is a non-deadline task that has been boosted, 417 * do nothing 418 */ 419 if (dl_se->dl_runtime == 0) 420 return; 421 422 if (dl_entity_is_special(dl_se)) 423 return; 424 425 WARN_ON(dl_se->dl_non_contending); 426 427 zerolag_time = dl_se->deadline - 428 div64_long((dl_se->runtime * dl_se->dl_period), 429 dl_se->dl_runtime); 430 431 /* 432 * Using relative times instead of the absolute "0-lag time" 433 * allows to simplify the code 434 */ 435 zerolag_time -= rq_clock(rq); 436 437 /* 438 * If the "0-lag time" already passed, decrease the active 439 * utilization now, instead of starting a timer 440 */ 441 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 442 if (dl_server(dl_se)) { 443 sub_running_bw(dl_se, dl_rq); 444 } else { 445 struct task_struct *p = dl_task_of(dl_se); 446 447 if (dl_task(p)) 448 sub_running_bw(dl_se, dl_rq); 449 450 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 451 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 452 453 if (READ_ONCE(p->__state) == TASK_DEAD) 454 sub_rq_bw(dl_se, &rq->dl); 455 raw_spin_lock(&dl_b->lock); 456 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p))); 457 raw_spin_unlock(&dl_b->lock); 458 __dl_clear_params(dl_se); 459 } 460 } 461 462 return; 463 } 464 465 dl_se->dl_non_contending = 1; 466 if (!dl_server(dl_se)) 467 get_task_struct(dl_task_of(dl_se)); 468 469 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 470 } 471 472 static void task_contending(struct sched_dl_entity *dl_se, int flags) 473 { 474 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 475 476 /* 477 * If this is a non-deadline task that has been boosted, 478 * do nothing 479 */ 480 if (dl_se->dl_runtime == 0) 481 return; 482 483 if (flags & ENQUEUE_MIGRATED) 484 add_rq_bw(dl_se, dl_rq); 485 486 if (dl_se->dl_non_contending) { 487 dl_se->dl_non_contending = 0; 488 /* 489 * If the timer handler is currently running and the 490 * timer cannot be canceled, inactive_task_timer() 491 * will see that dl_not_contending is not set, and 492 * will not touch the rq's active utilization, 493 * so we are still safe. 494 */ 495 cancel_inactive_timer(dl_se); 496 } else { 497 /* 498 * Since "dl_non_contending" is not set, the 499 * task's utilization has already been removed from 500 * active utilization (either when the task blocked, 501 * when the "inactive timer" fired). 502 * So, add it back. 503 */ 504 add_running_bw(dl_se, dl_rq); 505 } 506 } 507 508 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 509 { 510 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 511 } 512 513 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 514 515 void init_dl_bw(struct dl_bw *dl_b) 516 { 517 raw_spin_lock_init(&dl_b->lock); 518 if (global_rt_runtime() == RUNTIME_INF) 519 dl_b->bw = -1; 520 else 521 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 522 dl_b->total_bw = 0; 523 } 524 525 void init_dl_rq(struct dl_rq *dl_rq) 526 { 527 dl_rq->root = RB_ROOT_CACHED; 528 529 /* zero means no -deadline tasks */ 530 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 531 532 dl_rq->overloaded = 0; 533 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 534 535 dl_rq->running_bw = 0; 536 dl_rq->this_bw = 0; 537 init_dl_rq_bw_ratio(dl_rq); 538 } 539 540 static inline int dl_overloaded(struct rq *rq) 541 { 542 return atomic_read(&rq->rd->dlo_count); 543 } 544 545 static inline void dl_set_overload(struct rq *rq) 546 { 547 if (!rq->online) 548 return; 549 550 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 551 /* 552 * Must be visible before the overload count is 553 * set (as in sched_rt.c). 554 * 555 * Matched by the barrier in pull_dl_task(). 556 */ 557 smp_wmb(); 558 atomic_inc(&rq->rd->dlo_count); 559 } 560 561 static inline void dl_clear_overload(struct rq *rq) 562 { 563 if (!rq->online) 564 return; 565 566 atomic_dec(&rq->rd->dlo_count); 567 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 568 } 569 570 #define __node_2_pdl(node) \ 571 rb_entry((node), struct task_struct, pushable_dl_tasks) 572 573 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 574 { 575 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 576 } 577 578 static inline int has_pushable_dl_tasks(struct rq *rq) 579 { 580 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 581 } 582 583 /* 584 * The list of pushable -deadline task is not a plist, like in 585 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 586 */ 587 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 588 { 589 struct rb_node *leftmost; 590 591 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 592 593 leftmost = rb_add_cached(&p->pushable_dl_tasks, 594 &rq->dl.pushable_dl_tasks_root, 595 __pushable_less); 596 if (leftmost) 597 rq->dl.earliest_dl.next = p->dl.deadline; 598 599 if (!rq->dl.overloaded) { 600 dl_set_overload(rq); 601 rq->dl.overloaded = 1; 602 } 603 } 604 605 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 606 { 607 struct dl_rq *dl_rq = &rq->dl; 608 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 609 struct rb_node *leftmost; 610 611 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 612 return; 613 614 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 615 if (leftmost) 616 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 617 618 RB_CLEAR_NODE(&p->pushable_dl_tasks); 619 620 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { 621 dl_clear_overload(rq); 622 rq->dl.overloaded = 0; 623 } 624 } 625 626 static int push_dl_task(struct rq *rq); 627 628 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 629 { 630 return rq->online && dl_task(prev); 631 } 632 633 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 634 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 635 636 static void push_dl_tasks(struct rq *); 637 static void pull_dl_task(struct rq *); 638 639 static inline void deadline_queue_push_tasks(struct rq *rq) 640 { 641 if (!has_pushable_dl_tasks(rq)) 642 return; 643 644 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 645 } 646 647 static inline void deadline_queue_pull_task(struct rq *rq) 648 { 649 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 650 } 651 652 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 653 654 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 655 { 656 struct rq *later_rq = NULL; 657 struct dl_bw *dl_b; 658 659 later_rq = find_lock_later_rq(p, rq); 660 if (!later_rq) { 661 int cpu; 662 663 /* 664 * If we cannot preempt any rq, fall back to pick any 665 * online CPU: 666 */ 667 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 668 if (cpu >= nr_cpu_ids) { 669 /* 670 * Failed to find any suitable CPU. 671 * The task will never come back! 672 */ 673 WARN_ON_ONCE(dl_bandwidth_enabled()); 674 675 /* 676 * If admission control is disabled we 677 * try a little harder to let the task 678 * run. 679 */ 680 cpu = cpumask_any(cpu_active_mask); 681 } 682 later_rq = cpu_rq(cpu); 683 double_lock_balance(rq, later_rq); 684 } 685 686 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 687 /* 688 * Inactive timer is armed (or callback is running, but 689 * waiting for us to release rq locks). In any case, when it 690 * will fire (or continue), it will see running_bw of this 691 * task migrated to later_rq (and correctly handle it). 692 */ 693 sub_running_bw(&p->dl, &rq->dl); 694 sub_rq_bw(&p->dl, &rq->dl); 695 696 add_rq_bw(&p->dl, &later_rq->dl); 697 add_running_bw(&p->dl, &later_rq->dl); 698 } else { 699 sub_rq_bw(&p->dl, &rq->dl); 700 add_rq_bw(&p->dl, &later_rq->dl); 701 } 702 703 /* 704 * And we finally need to fix up root_domain(s) bandwidth accounting, 705 * since p is still hanging out in the old (now moved to default) root 706 * domain. 707 */ 708 dl_b = &rq->rd->dl_bw; 709 raw_spin_lock(&dl_b->lock); 710 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 711 raw_spin_unlock(&dl_b->lock); 712 713 dl_b = &later_rq->rd->dl_bw; 714 raw_spin_lock(&dl_b->lock); 715 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 716 raw_spin_unlock(&dl_b->lock); 717 718 set_task_cpu(p, later_rq->cpu); 719 double_unlock_balance(later_rq, rq); 720 721 return later_rq; 722 } 723 724 static void 725 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags); 726 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 727 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags); 728 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 729 730 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 731 struct rq *rq) 732 { 733 /* for non-boosted task, pi_of(dl_se) == dl_se */ 734 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 735 dl_se->runtime = pi_of(dl_se)->dl_runtime; 736 737 /* 738 * If it is a deferred reservation, and the server 739 * is not handling an starvation case, defer it. 740 */ 741 if (dl_se->dl_defer && !dl_se->dl_defer_running) { 742 dl_se->dl_throttled = 1; 743 dl_se->dl_defer_armed = 1; 744 } 745 } 746 747 /* 748 * We are being explicitly informed that a new instance is starting, 749 * and this means that: 750 * - the absolute deadline of the entity has to be placed at 751 * current time + relative deadline; 752 * - the runtime of the entity has to be set to the maximum value. 753 * 754 * The capability of specifying such event is useful whenever a -deadline 755 * entity wants to (try to!) synchronize its behaviour with the scheduler's 756 * one, and to (try to!) reconcile itself with its own scheduling 757 * parameters. 758 */ 759 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 760 { 761 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 762 struct rq *rq = rq_of_dl_rq(dl_rq); 763 764 update_rq_clock(rq); 765 766 WARN_ON(is_dl_boosted(dl_se)); 767 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 768 769 /* 770 * We are racing with the deadline timer. So, do nothing because 771 * the deadline timer handler will take care of properly recharging 772 * the runtime and postponing the deadline 773 */ 774 if (dl_se->dl_throttled) 775 return; 776 777 /* 778 * We use the regular wall clock time to set deadlines in the 779 * future; in fact, we must consider execution overheads (time 780 * spent on hardirq context, etc.). 781 */ 782 replenish_dl_new_period(dl_se, rq); 783 } 784 785 static int start_dl_timer(struct sched_dl_entity *dl_se); 786 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t); 787 788 /* 789 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 790 * possibility of a entity lasting more than what it declared, and thus 791 * exhausting its runtime. 792 * 793 * Here we are interested in making runtime overrun possible, but we do 794 * not want a entity which is misbehaving to affect the scheduling of all 795 * other entities. 796 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 797 * is used, in order to confine each entity within its own bandwidth. 798 * 799 * This function deals exactly with that, and ensures that when the runtime 800 * of a entity is replenished, its deadline is also postponed. That ensures 801 * the overrunning entity can't interfere with other entity in the system and 802 * can't make them miss their deadlines. Reasons why this kind of overruns 803 * could happen are, typically, a entity voluntarily trying to overcome its 804 * runtime, or it just underestimated it during sched_setattr(). 805 */ 806 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 807 { 808 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 809 struct rq *rq = rq_of_dl_rq(dl_rq); 810 811 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 812 813 /* 814 * This could be the case for a !-dl task that is boosted. 815 * Just go with full inherited parameters. 816 * 817 * Or, it could be the case of a deferred reservation that 818 * was not able to consume its runtime in background and 819 * reached this point with current u > U. 820 * 821 * In both cases, set a new period. 822 */ 823 if (dl_se->dl_deadline == 0 || 824 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) { 825 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 826 dl_se->runtime = pi_of(dl_se)->dl_runtime; 827 } 828 829 if (dl_se->dl_yielded && dl_se->runtime > 0) 830 dl_se->runtime = 0; 831 832 /* 833 * We keep moving the deadline away until we get some 834 * available runtime for the entity. This ensures correct 835 * handling of situations where the runtime overrun is 836 * arbitrary large. 837 */ 838 while (dl_se->runtime <= 0) { 839 dl_se->deadline += pi_of(dl_se)->dl_period; 840 dl_se->runtime += pi_of(dl_se)->dl_runtime; 841 } 842 843 /* 844 * At this point, the deadline really should be "in 845 * the future" with respect to rq->clock. If it's 846 * not, we are, for some reason, lagging too much! 847 * Anyway, after having warn userspace abut that, 848 * we still try to keep the things running by 849 * resetting the deadline and the budget of the 850 * entity. 851 */ 852 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 853 printk_deferred_once("sched: DL replenish lagged too much\n"); 854 replenish_dl_new_period(dl_se, rq); 855 } 856 857 if (dl_se->dl_yielded) 858 dl_se->dl_yielded = 0; 859 if (dl_se->dl_throttled) 860 dl_se->dl_throttled = 0; 861 862 /* 863 * If this is the replenishment of a deferred reservation, 864 * clear the flag and return. 865 */ 866 if (dl_se->dl_defer_armed) { 867 dl_se->dl_defer_armed = 0; 868 return; 869 } 870 871 /* 872 * A this point, if the deferred server is not armed, and the deadline 873 * is in the future, if it is not running already, throttle the server 874 * and arm the defer timer. 875 */ 876 if (dl_se->dl_defer && !dl_se->dl_defer_running && 877 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) { 878 if (!is_dl_boosted(dl_se)) { 879 880 /* 881 * Set dl_se->dl_defer_armed and dl_throttled variables to 882 * inform the start_dl_timer() that this is a deferred 883 * activation. 884 */ 885 dl_se->dl_defer_armed = 1; 886 dl_se->dl_throttled = 1; 887 if (!start_dl_timer(dl_se)) { 888 /* 889 * If for whatever reason (delays), a previous timer was 890 * queued but not serviced, cancel it and clean the 891 * deferrable server variables intended for start_dl_timer(). 892 */ 893 hrtimer_try_to_cancel(&dl_se->dl_timer); 894 dl_se->dl_defer_armed = 0; 895 dl_se->dl_throttled = 0; 896 } 897 } 898 } 899 } 900 901 /* 902 * Here we check if --at time t-- an entity (which is probably being 903 * [re]activated or, in general, enqueued) can use its remaining runtime 904 * and its current deadline _without_ exceeding the bandwidth it is 905 * assigned (function returns true if it can't). We are in fact applying 906 * one of the CBS rules: when a task wakes up, if the residual runtime 907 * over residual deadline fits within the allocated bandwidth, then we 908 * can keep the current (absolute) deadline and residual budget without 909 * disrupting the schedulability of the system. Otherwise, we should 910 * refill the runtime and set the deadline a period in the future, 911 * because keeping the current (absolute) deadline of the task would 912 * result in breaking guarantees promised to other tasks (refer to 913 * Documentation/scheduler/sched-deadline.rst for more information). 914 * 915 * This function returns true if: 916 * 917 * runtime / (deadline - t) > dl_runtime / dl_deadline , 918 * 919 * IOW we can't recycle current parameters. 920 * 921 * Notice that the bandwidth check is done against the deadline. For 922 * task with deadline equal to period this is the same of using 923 * dl_period instead of dl_deadline in the equation above. 924 */ 925 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 926 { 927 u64 left, right; 928 929 /* 930 * left and right are the two sides of the equation above, 931 * after a bit of shuffling to use multiplications instead 932 * of divisions. 933 * 934 * Note that none of the time values involved in the two 935 * multiplications are absolute: dl_deadline and dl_runtime 936 * are the relative deadline and the maximum runtime of each 937 * instance, runtime is the runtime left for the last instance 938 * and (deadline - t), since t is rq->clock, is the time left 939 * to the (absolute) deadline. Even if overflowing the u64 type 940 * is very unlikely to occur in both cases, here we scale down 941 * as we want to avoid that risk at all. Scaling down by 10 942 * means that we reduce granularity to 1us. We are fine with it, 943 * since this is only a true/false check and, anyway, thinking 944 * of anything below microseconds resolution is actually fiction 945 * (but still we want to give the user that illusion >;). 946 */ 947 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 948 right = ((dl_se->deadline - t) >> DL_SCALE) * 949 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 950 951 return dl_time_before(right, left); 952 } 953 954 /* 955 * Revised wakeup rule [1]: For self-suspending tasks, rather then 956 * re-initializing task's runtime and deadline, the revised wakeup 957 * rule adjusts the task's runtime to avoid the task to overrun its 958 * density. 959 * 960 * Reasoning: a task may overrun the density if: 961 * runtime / (deadline - t) > dl_runtime / dl_deadline 962 * 963 * Therefore, runtime can be adjusted to: 964 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 965 * 966 * In such way that runtime will be equal to the maximum density 967 * the task can use without breaking any rule. 968 * 969 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 970 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 971 */ 972 static void 973 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 974 { 975 u64 laxity = dl_se->deadline - rq_clock(rq); 976 977 /* 978 * If the task has deadline < period, and the deadline is in the past, 979 * it should already be throttled before this check. 980 * 981 * See update_dl_entity() comments for further details. 982 */ 983 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 984 985 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 986 } 987 988 /* 989 * Regarding the deadline, a task with implicit deadline has a relative 990 * deadline == relative period. A task with constrained deadline has a 991 * relative deadline <= relative period. 992 * 993 * We support constrained deadline tasks. However, there are some restrictions 994 * applied only for tasks which do not have an implicit deadline. See 995 * update_dl_entity() to know more about such restrictions. 996 * 997 * The dl_is_implicit() returns true if the task has an implicit deadline. 998 */ 999 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 1000 { 1001 return dl_se->dl_deadline == dl_se->dl_period; 1002 } 1003 1004 /* 1005 * When a deadline entity is placed in the runqueue, its runtime and deadline 1006 * might need to be updated. This is done by a CBS wake up rule. There are two 1007 * different rules: 1) the original CBS; and 2) the Revisited CBS. 1008 * 1009 * When the task is starting a new period, the Original CBS is used. In this 1010 * case, the runtime is replenished and a new absolute deadline is set. 1011 * 1012 * When a task is queued before the begin of the next period, using the 1013 * remaining runtime and deadline could make the entity to overflow, see 1014 * dl_entity_overflow() to find more about runtime overflow. When such case 1015 * is detected, the runtime and deadline need to be updated. 1016 * 1017 * If the task has an implicit deadline, i.e., deadline == period, the Original 1018 * CBS is applied. The runtime is replenished and a new absolute deadline is 1019 * set, as in the previous cases. 1020 * 1021 * However, the Original CBS does not work properly for tasks with 1022 * deadline < period, which are said to have a constrained deadline. By 1023 * applying the Original CBS, a constrained deadline task would be able to run 1024 * runtime/deadline in a period. With deadline < period, the task would 1025 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1026 * 1027 * In order to prevent this misbehave, the Revisited CBS is used for 1028 * constrained deadline tasks when a runtime overflow is detected. In the 1029 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1030 * the remaining runtime of the task is reduced to avoid runtime overflow. 1031 * Please refer to the comments update_dl_revised_wakeup() function to find 1032 * more about the Revised CBS rule. 1033 */ 1034 static void update_dl_entity(struct sched_dl_entity *dl_se) 1035 { 1036 struct rq *rq = rq_of_dl_se(dl_se); 1037 1038 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1039 dl_entity_overflow(dl_se, rq_clock(rq))) { 1040 1041 if (unlikely(!dl_is_implicit(dl_se) && 1042 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1043 !is_dl_boosted(dl_se))) { 1044 update_dl_revised_wakeup(dl_se, rq); 1045 return; 1046 } 1047 1048 replenish_dl_new_period(dl_se, rq); 1049 } else if (dl_server(dl_se) && dl_se->dl_defer) { 1050 /* 1051 * The server can still use its previous deadline, so check if 1052 * it left the dl_defer_running state. 1053 */ 1054 if (!dl_se->dl_defer_running) { 1055 dl_se->dl_defer_armed = 1; 1056 dl_se->dl_throttled = 1; 1057 } 1058 } 1059 } 1060 1061 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1062 { 1063 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1064 } 1065 1066 /* 1067 * If the entity depleted all its runtime, and if we want it to sleep 1068 * while waiting for some new execution time to become available, we 1069 * set the bandwidth replenishment timer to the replenishment instant 1070 * and try to activate it. 1071 * 1072 * Notice that it is important for the caller to know if the timer 1073 * actually started or not (i.e., the replenishment instant is in 1074 * the future or in the past). 1075 */ 1076 static int start_dl_timer(struct sched_dl_entity *dl_se) 1077 { 1078 struct hrtimer *timer = &dl_se->dl_timer; 1079 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1080 struct rq *rq = rq_of_dl_rq(dl_rq); 1081 ktime_t now, act; 1082 s64 delta; 1083 1084 lockdep_assert_rq_held(rq); 1085 1086 /* 1087 * We want the timer to fire at the deadline, but considering 1088 * that it is actually coming from rq->clock and not from 1089 * hrtimer's time base reading. 1090 * 1091 * The deferred reservation will have its timer set to 1092 * (deadline - runtime). At that point, the CBS rule will decide 1093 * if the current deadline can be used, or if a replenishment is 1094 * required to avoid add too much pressure on the system 1095 * (current u > U). 1096 */ 1097 if (dl_se->dl_defer_armed) { 1098 WARN_ON_ONCE(!dl_se->dl_throttled); 1099 act = ns_to_ktime(dl_se->deadline - dl_se->runtime); 1100 } else { 1101 /* act = deadline - rel-deadline + period */ 1102 act = ns_to_ktime(dl_next_period(dl_se)); 1103 } 1104 1105 now = hrtimer_cb_get_time(timer); 1106 delta = ktime_to_ns(now) - rq_clock(rq); 1107 act = ktime_add_ns(act, delta); 1108 1109 /* 1110 * If the expiry time already passed, e.g., because the value 1111 * chosen as the deadline is too small, don't even try to 1112 * start the timer in the past! 1113 */ 1114 if (ktime_us_delta(act, now) < 0) 1115 return 0; 1116 1117 /* 1118 * !enqueued will guarantee another callback; even if one is already in 1119 * progress. This ensures a balanced {get,put}_task_struct(). 1120 * 1121 * The race against __run_timer() clearing the enqueued state is 1122 * harmless because we're holding task_rq()->lock, therefore the timer 1123 * expiring after we've done the check will wait on its task_rq_lock() 1124 * and observe our state. 1125 */ 1126 if (!hrtimer_is_queued(timer)) { 1127 if (!dl_server(dl_se)) 1128 get_task_struct(dl_task_of(dl_se)); 1129 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1130 } 1131 1132 return 1; 1133 } 1134 1135 static void __push_dl_task(struct rq *rq, struct rq_flags *rf) 1136 { 1137 /* 1138 * Queueing this task back might have overloaded rq, check if we need 1139 * to kick someone away. 1140 */ 1141 if (has_pushable_dl_tasks(rq)) { 1142 /* 1143 * Nothing relies on rq->lock after this, so its safe to drop 1144 * rq->lock. 1145 */ 1146 rq_unpin_lock(rq, rf); 1147 push_dl_task(rq); 1148 rq_repin_lock(rq, rf); 1149 } 1150 } 1151 1152 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */ 1153 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC; 1154 1155 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se) 1156 { 1157 struct rq *rq = rq_of_dl_se(dl_se); 1158 u64 fw; 1159 1160 scoped_guard (rq_lock, rq) { 1161 struct rq_flags *rf = &scope.rf; 1162 1163 if (!dl_se->dl_throttled || !dl_se->dl_runtime) 1164 return HRTIMER_NORESTART; 1165 1166 sched_clock_tick(); 1167 update_rq_clock(rq); 1168 1169 if (!dl_se->dl_runtime) 1170 return HRTIMER_NORESTART; 1171 1172 if (dl_se->dl_defer_armed) { 1173 /* 1174 * First check if the server could consume runtime in background. 1175 * If so, it is possible to push the defer timer for this amount 1176 * of time. The dl_server_min_res serves as a limit to avoid 1177 * forwarding the timer for a too small amount of time. 1178 */ 1179 if (dl_time_before(rq_clock(dl_se->rq), 1180 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) { 1181 1182 /* reset the defer timer */ 1183 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime; 1184 1185 hrtimer_forward_now(timer, ns_to_ktime(fw)); 1186 return HRTIMER_RESTART; 1187 } 1188 1189 dl_se->dl_defer_running = 1; 1190 } 1191 1192 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1193 1194 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl)) 1195 resched_curr(rq); 1196 1197 __push_dl_task(rq, rf); 1198 } 1199 1200 return HRTIMER_NORESTART; 1201 } 1202 1203 /* 1204 * This is the bandwidth enforcement timer callback. If here, we know 1205 * a task is not on its dl_rq, since the fact that the timer was running 1206 * means the task is throttled and needs a runtime replenishment. 1207 * 1208 * However, what we actually do depends on the fact the task is active, 1209 * (it is on its rq) or has been removed from there by a call to 1210 * dequeue_task_dl(). In the former case we must issue the runtime 1211 * replenishment and add the task back to the dl_rq; in the latter, we just 1212 * do nothing but clearing dl_throttled, so that runtime and deadline 1213 * updating (and the queueing back to dl_rq) will be done by the 1214 * next call to enqueue_task_dl(). 1215 */ 1216 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1217 { 1218 struct sched_dl_entity *dl_se = container_of(timer, 1219 struct sched_dl_entity, 1220 dl_timer); 1221 struct task_struct *p; 1222 struct rq_flags rf; 1223 struct rq *rq; 1224 1225 if (dl_server(dl_se)) 1226 return dl_server_timer(timer, dl_se); 1227 1228 p = dl_task_of(dl_se); 1229 rq = task_rq_lock(p, &rf); 1230 1231 /* 1232 * The task might have changed its scheduling policy to something 1233 * different than SCHED_DEADLINE (through switched_from_dl()). 1234 */ 1235 if (!dl_task(p)) 1236 goto unlock; 1237 1238 /* 1239 * The task might have been boosted by someone else and might be in the 1240 * boosting/deboosting path, its not throttled. 1241 */ 1242 if (is_dl_boosted(dl_se)) 1243 goto unlock; 1244 1245 /* 1246 * Spurious timer due to start_dl_timer() race; or we already received 1247 * a replenishment from rt_mutex_setprio(). 1248 */ 1249 if (!dl_se->dl_throttled) 1250 goto unlock; 1251 1252 sched_clock_tick(); 1253 update_rq_clock(rq); 1254 1255 /* 1256 * If the throttle happened during sched-out; like: 1257 * 1258 * schedule() 1259 * deactivate_task() 1260 * dequeue_task_dl() 1261 * update_curr_dl() 1262 * start_dl_timer() 1263 * __dequeue_task_dl() 1264 * prev->on_rq = 0; 1265 * 1266 * We can be both throttled and !queued. Replenish the counter 1267 * but do not enqueue -- wait for our wakeup to do that. 1268 */ 1269 if (!task_on_rq_queued(p)) { 1270 replenish_dl_entity(dl_se); 1271 goto unlock; 1272 } 1273 1274 if (unlikely(!rq->online)) { 1275 /* 1276 * If the runqueue is no longer available, migrate the 1277 * task elsewhere. This necessarily changes rq. 1278 */ 1279 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1280 rq = dl_task_offline_migration(rq, p); 1281 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1282 update_rq_clock(rq); 1283 1284 /* 1285 * Now that the task has been migrated to the new RQ and we 1286 * have that locked, proceed as normal and enqueue the task 1287 * there. 1288 */ 1289 } 1290 1291 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1292 if (dl_task(rq->donor)) 1293 wakeup_preempt_dl(rq, p, 0); 1294 else 1295 resched_curr(rq); 1296 1297 __push_dl_task(rq, &rf); 1298 1299 unlock: 1300 task_rq_unlock(rq, p, &rf); 1301 1302 /* 1303 * This can free the task_struct, including this hrtimer, do not touch 1304 * anything related to that after this. 1305 */ 1306 put_task_struct(p); 1307 1308 return HRTIMER_NORESTART; 1309 } 1310 1311 static void init_dl_task_timer(struct sched_dl_entity *dl_se) 1312 { 1313 struct hrtimer *timer = &dl_se->dl_timer; 1314 1315 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1316 } 1317 1318 /* 1319 * During the activation, CBS checks if it can reuse the current task's 1320 * runtime and period. If the deadline of the task is in the past, CBS 1321 * cannot use the runtime, and so it replenishes the task. This rule 1322 * works fine for implicit deadline tasks (deadline == period), and the 1323 * CBS was designed for implicit deadline tasks. However, a task with 1324 * constrained deadline (deadline < period) might be awakened after the 1325 * deadline, but before the next period. In this case, replenishing the 1326 * task would allow it to run for runtime / deadline. As in this case 1327 * deadline < period, CBS enables a task to run for more than the 1328 * runtime / period. In a very loaded system, this can cause a domino 1329 * effect, making other tasks miss their deadlines. 1330 * 1331 * To avoid this problem, in the activation of a constrained deadline 1332 * task after the deadline but before the next period, throttle the 1333 * task and set the replenishing timer to the begin of the next period, 1334 * unless it is boosted. 1335 */ 1336 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1337 { 1338 struct rq *rq = rq_of_dl_se(dl_se); 1339 1340 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1341 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1342 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) 1343 return; 1344 dl_se->dl_throttled = 1; 1345 if (dl_se->runtime > 0) 1346 dl_se->runtime = 0; 1347 } 1348 } 1349 1350 static 1351 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1352 { 1353 return (dl_se->runtime <= 0); 1354 } 1355 1356 /* 1357 * This function implements the GRUB accounting rule. According to the 1358 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1359 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1360 * where u is the utilization of the task, Umax is the maximum reclaimable 1361 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1362 * as the difference between the "total runqueue utilization" and the 1363 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1364 * reclaimable utilization. 1365 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1366 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1367 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1368 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1369 * Since delta is a 64 bit variable, to have an overflow its value should be 1370 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1371 * not an issue here. 1372 */ 1373 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1374 { 1375 u64 u_act; 1376 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1377 1378 /* 1379 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1380 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1381 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1382 * negative leading to wrong results. 1383 */ 1384 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1385 u_act = dl_se->dl_bw; 1386 else 1387 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1388 1389 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1390 return (delta * u_act) >> BW_SHIFT; 1391 } 1392 1393 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1394 { 1395 s64 scaled_delta_exec; 1396 1397 /* 1398 * For tasks that participate in GRUB, we implement GRUB-PA: the 1399 * spare reclaimed bandwidth is used to clock down frequency. 1400 * 1401 * For the others, we still need to scale reservation parameters 1402 * according to current frequency and CPU maximum capacity. 1403 */ 1404 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1405 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se); 1406 } else { 1407 int cpu = cpu_of(rq); 1408 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1409 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1410 1411 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1412 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1413 } 1414 1415 return scaled_delta_exec; 1416 } 1417 1418 static inline void 1419 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1420 int flags); 1421 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1422 { 1423 s64 scaled_delta_exec; 1424 1425 if (unlikely(delta_exec <= 0)) { 1426 if (unlikely(dl_se->dl_yielded)) 1427 goto throttle; 1428 return; 1429 } 1430 1431 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer) 1432 return; 1433 1434 if (dl_entity_is_special(dl_se)) 1435 return; 1436 1437 scaled_delta_exec = delta_exec; 1438 if (!dl_server(dl_se)) 1439 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec); 1440 1441 dl_se->runtime -= scaled_delta_exec; 1442 1443 /* 1444 * The fair server can consume its runtime while throttled (not queued/ 1445 * running as regular CFS). 1446 * 1447 * If the server consumes its entire runtime in this state. The server 1448 * is not required for the current period. Thus, reset the server by 1449 * starting a new period, pushing the activation. 1450 */ 1451 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) { 1452 /* 1453 * If the server was previously activated - the starving condition 1454 * took place, it this point it went away because the fair scheduler 1455 * was able to get runtime in background. So return to the initial 1456 * state. 1457 */ 1458 dl_se->dl_defer_running = 0; 1459 1460 hrtimer_try_to_cancel(&dl_se->dl_timer); 1461 1462 replenish_dl_new_period(dl_se, dl_se->rq); 1463 1464 /* 1465 * Not being able to start the timer seems problematic. If it could not 1466 * be started for whatever reason, we need to "unthrottle" the DL server 1467 * and queue right away. Otherwise nothing might queue it. That's similar 1468 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn. 1469 */ 1470 WARN_ON_ONCE(!start_dl_timer(dl_se)); 1471 1472 return; 1473 } 1474 1475 throttle: 1476 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1477 dl_se->dl_throttled = 1; 1478 1479 /* If requested, inform the user about runtime overruns. */ 1480 if (dl_runtime_exceeded(dl_se) && 1481 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1482 dl_se->dl_overrun = 1; 1483 1484 dequeue_dl_entity(dl_se, 0); 1485 if (!dl_server(dl_se)) { 1486 update_stats_dequeue_dl(&rq->dl, dl_se, 0); 1487 dequeue_pushable_dl_task(rq, dl_task_of(dl_se)); 1488 } 1489 1490 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) { 1491 if (dl_server(dl_se)) { 1492 replenish_dl_new_period(dl_se, rq); 1493 start_dl_timer(dl_se); 1494 } else { 1495 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH); 1496 } 1497 } 1498 1499 if (!is_leftmost(dl_se, &rq->dl)) 1500 resched_curr(rq); 1501 } 1502 1503 /* 1504 * The fair server (sole dl_server) does not account for real-time 1505 * workload because it is running fair work. 1506 */ 1507 if (dl_se == &rq->fair_server) 1508 return; 1509 1510 #ifdef CONFIG_RT_GROUP_SCHED 1511 /* 1512 * Because -- for now -- we share the rt bandwidth, we need to 1513 * account our runtime there too, otherwise actual rt tasks 1514 * would be able to exceed the shared quota. 1515 * 1516 * Account to the root rt group for now. 1517 * 1518 * The solution we're working towards is having the RT groups scheduled 1519 * using deadline servers -- however there's a few nasties to figure 1520 * out before that can happen. 1521 */ 1522 if (rt_bandwidth_enabled()) { 1523 struct rt_rq *rt_rq = &rq->rt; 1524 1525 raw_spin_lock(&rt_rq->rt_runtime_lock); 1526 /* 1527 * We'll let actual RT tasks worry about the overflow here, we 1528 * have our own CBS to keep us inline; only account when RT 1529 * bandwidth is relevant. 1530 */ 1531 if (sched_rt_bandwidth_account(rt_rq)) 1532 rt_rq->rt_time += delta_exec; 1533 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1534 } 1535 #endif /* CONFIG_RT_GROUP_SCHED */ 1536 } 1537 1538 /* 1539 * In the non-defer mode, the idle time is not accounted, as the 1540 * server provides a guarantee. 1541 * 1542 * If the dl_server is in defer mode, the idle time is also considered 1543 * as time available for the fair server, avoiding a penalty for the 1544 * rt scheduler that did not consumed that time. 1545 */ 1546 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p) 1547 { 1548 s64 delta_exec; 1549 1550 if (!rq->fair_server.dl_defer) 1551 return; 1552 1553 /* no need to discount more */ 1554 if (rq->fair_server.runtime < 0) 1555 return; 1556 1557 delta_exec = rq_clock_task(rq) - p->se.exec_start; 1558 if (delta_exec < 0) 1559 return; 1560 1561 rq->fair_server.runtime -= delta_exec; 1562 1563 if (rq->fair_server.runtime < 0) { 1564 rq->fair_server.dl_defer_running = 0; 1565 rq->fair_server.runtime = 0; 1566 } 1567 1568 p->se.exec_start = rq_clock_task(rq); 1569 } 1570 1571 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec) 1572 { 1573 /* 0 runtime = fair server disabled */ 1574 if (dl_se->dl_runtime) 1575 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1576 } 1577 1578 void dl_server_start(struct sched_dl_entity *dl_se) 1579 { 1580 struct rq *rq = dl_se->rq; 1581 1582 if (!dl_server(dl_se) || dl_se->dl_server_active) 1583 return; 1584 1585 dl_se->dl_server_active = 1; 1586 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP); 1587 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl)) 1588 resched_curr(dl_se->rq); 1589 } 1590 1591 void dl_server_stop(struct sched_dl_entity *dl_se) 1592 { 1593 if (!dl_server(dl_se) || !dl_server_active(dl_se)) 1594 return; 1595 1596 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP); 1597 hrtimer_try_to_cancel(&dl_se->dl_timer); 1598 dl_se->dl_defer_armed = 0; 1599 dl_se->dl_throttled = 0; 1600 dl_se->dl_server_active = 0; 1601 } 1602 1603 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 1604 dl_server_pick_f pick_task) 1605 { 1606 dl_se->rq = rq; 1607 dl_se->server_pick_task = pick_task; 1608 } 1609 1610 void sched_init_dl_servers(void) 1611 { 1612 int cpu; 1613 struct rq *rq; 1614 struct sched_dl_entity *dl_se; 1615 1616 for_each_online_cpu(cpu) { 1617 u64 runtime = 50 * NSEC_PER_MSEC; 1618 u64 period = 1000 * NSEC_PER_MSEC; 1619 1620 rq = cpu_rq(cpu); 1621 1622 guard(rq_lock_irq)(rq); 1623 1624 dl_se = &rq->fair_server; 1625 1626 WARN_ON(dl_server(dl_se)); 1627 1628 dl_server_apply_params(dl_se, runtime, period, 1); 1629 1630 dl_se->dl_server = 1; 1631 dl_se->dl_defer = 1; 1632 setup_new_dl_entity(dl_se); 1633 } 1634 } 1635 1636 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq) 1637 { 1638 u64 new_bw = dl_se->dl_bw; 1639 int cpu = cpu_of(rq); 1640 struct dl_bw *dl_b; 1641 1642 dl_b = dl_bw_of(cpu_of(rq)); 1643 guard(raw_spinlock)(&dl_b->lock); 1644 1645 if (!dl_bw_cpus(cpu)) 1646 return; 1647 1648 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu)); 1649 } 1650 1651 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init) 1652 { 1653 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1654 u64 new_bw = to_ratio(period, runtime); 1655 struct rq *rq = dl_se->rq; 1656 int cpu = cpu_of(rq); 1657 struct dl_bw *dl_b; 1658 unsigned long cap; 1659 int retval = 0; 1660 int cpus; 1661 1662 dl_b = dl_bw_of(cpu); 1663 guard(raw_spinlock)(&dl_b->lock); 1664 1665 cpus = dl_bw_cpus(cpu); 1666 cap = dl_bw_capacity(cpu); 1667 1668 if (__dl_overflow(dl_b, cap, old_bw, new_bw)) 1669 return -EBUSY; 1670 1671 if (init) { 1672 __add_rq_bw(new_bw, &rq->dl); 1673 __dl_add(dl_b, new_bw, cpus); 1674 } else { 1675 __dl_sub(dl_b, dl_se->dl_bw, cpus); 1676 __dl_add(dl_b, new_bw, cpus); 1677 1678 dl_rq_change_utilization(rq, dl_se, new_bw); 1679 } 1680 1681 dl_se->dl_runtime = runtime; 1682 dl_se->dl_deadline = period; 1683 dl_se->dl_period = period; 1684 1685 dl_se->runtime = 0; 1686 dl_se->deadline = 0; 1687 1688 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1689 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 1690 1691 return retval; 1692 } 1693 1694 /* 1695 * Update the current task's runtime statistics (provided it is still 1696 * a -deadline task and has not been removed from the dl_rq). 1697 */ 1698 static void update_curr_dl(struct rq *rq) 1699 { 1700 struct task_struct *donor = rq->donor; 1701 struct sched_dl_entity *dl_se = &donor->dl; 1702 s64 delta_exec; 1703 1704 if (!dl_task(donor) || !on_dl_rq(dl_se)) 1705 return; 1706 1707 /* 1708 * Consumed budget is computed considering the time as 1709 * observed by schedulable tasks (excluding time spent 1710 * in hardirq context, etc.). Deadlines are instead 1711 * computed using hard walltime. This seems to be the more 1712 * natural solution, but the full ramifications of this 1713 * approach need further study. 1714 */ 1715 delta_exec = update_curr_common(rq); 1716 update_curr_dl_se(rq, dl_se, delta_exec); 1717 } 1718 1719 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1720 { 1721 struct sched_dl_entity *dl_se = container_of(timer, 1722 struct sched_dl_entity, 1723 inactive_timer); 1724 struct task_struct *p = NULL; 1725 struct rq_flags rf; 1726 struct rq *rq; 1727 1728 if (!dl_server(dl_se)) { 1729 p = dl_task_of(dl_se); 1730 rq = task_rq_lock(p, &rf); 1731 } else { 1732 rq = dl_se->rq; 1733 rq_lock(rq, &rf); 1734 } 1735 1736 sched_clock_tick(); 1737 update_rq_clock(rq); 1738 1739 if (dl_server(dl_se)) 1740 goto no_task; 1741 1742 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1743 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1744 1745 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1746 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1747 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1748 dl_se->dl_non_contending = 0; 1749 } 1750 1751 raw_spin_lock(&dl_b->lock); 1752 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1753 raw_spin_unlock(&dl_b->lock); 1754 __dl_clear_params(dl_se); 1755 1756 goto unlock; 1757 } 1758 1759 no_task: 1760 if (dl_se->dl_non_contending == 0) 1761 goto unlock; 1762 1763 sub_running_bw(dl_se, &rq->dl); 1764 dl_se->dl_non_contending = 0; 1765 unlock: 1766 1767 if (!dl_server(dl_se)) { 1768 task_rq_unlock(rq, p, &rf); 1769 put_task_struct(p); 1770 } else { 1771 rq_unlock(rq, &rf); 1772 } 1773 1774 return HRTIMER_NORESTART; 1775 } 1776 1777 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1778 { 1779 struct hrtimer *timer = &dl_se->inactive_timer; 1780 1781 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1782 } 1783 1784 #define __node_2_dle(node) \ 1785 rb_entry((node), struct sched_dl_entity, rb_node) 1786 1787 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1788 { 1789 struct rq *rq = rq_of_dl_rq(dl_rq); 1790 1791 if (dl_rq->earliest_dl.curr == 0 || 1792 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1793 if (dl_rq->earliest_dl.curr == 0) 1794 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1795 dl_rq->earliest_dl.curr = deadline; 1796 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1797 } 1798 } 1799 1800 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1801 { 1802 struct rq *rq = rq_of_dl_rq(dl_rq); 1803 1804 /* 1805 * Since we may have removed our earliest (and/or next earliest) 1806 * task we must recompute them. 1807 */ 1808 if (!dl_rq->dl_nr_running) { 1809 dl_rq->earliest_dl.curr = 0; 1810 dl_rq->earliest_dl.next = 0; 1811 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1812 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1813 } else { 1814 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1815 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1816 1817 dl_rq->earliest_dl.curr = entry->deadline; 1818 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1819 } 1820 } 1821 1822 static inline 1823 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1824 { 1825 u64 deadline = dl_se->deadline; 1826 1827 dl_rq->dl_nr_running++; 1828 1829 if (!dl_server(dl_se)) 1830 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1831 1832 inc_dl_deadline(dl_rq, deadline); 1833 } 1834 1835 static inline 1836 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1837 { 1838 WARN_ON(!dl_rq->dl_nr_running); 1839 dl_rq->dl_nr_running--; 1840 1841 if (!dl_server(dl_se)) 1842 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1843 1844 dec_dl_deadline(dl_rq, dl_se->deadline); 1845 } 1846 1847 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1848 { 1849 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1850 } 1851 1852 static __always_inline struct sched_statistics * 1853 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1854 { 1855 if (!schedstat_enabled()) 1856 return NULL; 1857 1858 if (dl_server(dl_se)) 1859 return NULL; 1860 1861 return &dl_task_of(dl_se)->stats; 1862 } 1863 1864 static inline void 1865 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1866 { 1867 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1868 if (stats) 1869 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1870 } 1871 1872 static inline void 1873 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1874 { 1875 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1876 if (stats) 1877 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1878 } 1879 1880 static inline void 1881 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1882 { 1883 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 1884 if (stats) 1885 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1886 } 1887 1888 static inline void 1889 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1890 int flags) 1891 { 1892 if (!schedstat_enabled()) 1893 return; 1894 1895 if (flags & ENQUEUE_WAKEUP) 1896 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1897 } 1898 1899 static inline void 1900 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1901 int flags) 1902 { 1903 struct task_struct *p = dl_task_of(dl_se); 1904 1905 if (!schedstat_enabled()) 1906 return; 1907 1908 if ((flags & DEQUEUE_SLEEP)) { 1909 unsigned int state; 1910 1911 state = READ_ONCE(p->__state); 1912 if (state & TASK_INTERRUPTIBLE) 1913 __schedstat_set(p->stats.sleep_start, 1914 rq_clock(rq_of_dl_rq(dl_rq))); 1915 1916 if (state & TASK_UNINTERRUPTIBLE) 1917 __schedstat_set(p->stats.block_start, 1918 rq_clock(rq_of_dl_rq(dl_rq))); 1919 } 1920 } 1921 1922 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1923 { 1924 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1925 1926 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1927 1928 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1929 1930 inc_dl_tasks(dl_se, dl_rq); 1931 } 1932 1933 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1934 { 1935 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1936 1937 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1938 return; 1939 1940 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1941 1942 RB_CLEAR_NODE(&dl_se->rb_node); 1943 1944 dec_dl_tasks(dl_se, dl_rq); 1945 } 1946 1947 static void 1948 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1949 { 1950 WARN_ON_ONCE(on_dl_rq(dl_se)); 1951 1952 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1953 1954 /* 1955 * Check if a constrained deadline task was activated 1956 * after the deadline but before the next period. 1957 * If that is the case, the task will be throttled and 1958 * the replenishment timer will be set to the next period. 1959 */ 1960 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) 1961 dl_check_constrained_dl(dl_se); 1962 1963 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { 1964 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1965 1966 add_rq_bw(dl_se, dl_rq); 1967 add_running_bw(dl_se, dl_rq); 1968 } 1969 1970 /* 1971 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1972 * its budget it needs a replenishment and, since it now is on 1973 * its rq, the bandwidth timer callback (which clearly has not 1974 * run yet) will take care of this. 1975 * However, the active utilization does not depend on the fact 1976 * that the task is on the runqueue or not (but depends on the 1977 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1978 * In other words, even if a task is throttled its utilization must 1979 * be counted in the active utilization; hence, we need to call 1980 * add_running_bw(). 1981 */ 1982 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1983 if (flags & ENQUEUE_WAKEUP) 1984 task_contending(dl_se, flags); 1985 1986 return; 1987 } 1988 1989 /* 1990 * If this is a wakeup or a new instance, the scheduling 1991 * parameters of the task might need updating. Otherwise, 1992 * we want a replenishment of its runtime. 1993 */ 1994 if (flags & ENQUEUE_WAKEUP) { 1995 task_contending(dl_se, flags); 1996 update_dl_entity(dl_se); 1997 } else if (flags & ENQUEUE_REPLENISH) { 1998 replenish_dl_entity(dl_se); 1999 } else if ((flags & ENQUEUE_RESTORE) && 2000 !is_dl_boosted(dl_se) && 2001 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) { 2002 setup_new_dl_entity(dl_se); 2003 } 2004 2005 /* 2006 * If the reservation is still throttled, e.g., it got replenished but is a 2007 * deferred task and still got to wait, don't enqueue. 2008 */ 2009 if (dl_se->dl_throttled && start_dl_timer(dl_se)) 2010 return; 2011 2012 /* 2013 * We're about to enqueue, make sure we're not ->dl_throttled! 2014 * In case the timer was not started, say because the defer time 2015 * has passed, mark as not throttled and mark unarmed. 2016 * Also cancel earlier timers, since letting those run is pointless. 2017 */ 2018 if (dl_se->dl_throttled) { 2019 hrtimer_try_to_cancel(&dl_se->dl_timer); 2020 dl_se->dl_defer_armed = 0; 2021 dl_se->dl_throttled = 0; 2022 } 2023 2024 __enqueue_dl_entity(dl_se); 2025 } 2026 2027 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2028 { 2029 __dequeue_dl_entity(dl_se); 2030 2031 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { 2032 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2033 2034 sub_running_bw(dl_se, dl_rq); 2035 sub_rq_bw(dl_se, dl_rq); 2036 } 2037 2038 /* 2039 * This check allows to start the inactive timer (or to immediately 2040 * decrease the active utilization, if needed) in two cases: 2041 * when the task blocks and when it is terminating 2042 * (p->state == TASK_DEAD). We can handle the two cases in the same 2043 * way, because from GRUB's point of view the same thing is happening 2044 * (the task moves from "active contending" to "active non contending" 2045 * or "inactive") 2046 */ 2047 if (flags & DEQUEUE_SLEEP) 2048 task_non_contending(dl_se); 2049 } 2050 2051 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2052 { 2053 if (is_dl_boosted(&p->dl)) { 2054 /* 2055 * Because of delays in the detection of the overrun of a 2056 * thread's runtime, it might be the case that a thread 2057 * goes to sleep in a rt mutex with negative runtime. As 2058 * a consequence, the thread will be throttled. 2059 * 2060 * While waiting for the mutex, this thread can also be 2061 * boosted via PI, resulting in a thread that is throttled 2062 * and boosted at the same time. 2063 * 2064 * In this case, the boost overrides the throttle. 2065 */ 2066 if (p->dl.dl_throttled) { 2067 /* 2068 * The replenish timer needs to be canceled. No 2069 * problem if it fires concurrently: boosted threads 2070 * are ignored in dl_task_timer(). 2071 */ 2072 cancel_replenish_timer(&p->dl); 2073 p->dl.dl_throttled = 0; 2074 } 2075 } else if (!dl_prio(p->normal_prio)) { 2076 /* 2077 * Special case in which we have a !SCHED_DEADLINE task that is going 2078 * to be deboosted, but exceeds its runtime while doing so. No point in 2079 * replenishing it, as it's going to return back to its original 2080 * scheduling class after this. If it has been throttled, we need to 2081 * clear the flag, otherwise the task may wake up as throttled after 2082 * being boosted again with no means to replenish the runtime and clear 2083 * the throttle. 2084 */ 2085 p->dl.dl_throttled = 0; 2086 if (!(flags & ENQUEUE_REPLENISH)) 2087 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 2088 task_pid_nr(p)); 2089 2090 return; 2091 } 2092 2093 check_schedstat_required(); 2094 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 2095 2096 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2097 flags |= ENQUEUE_MIGRATING; 2098 2099 enqueue_dl_entity(&p->dl, flags); 2100 2101 if (dl_server(&p->dl)) 2102 return; 2103 2104 if (task_is_blocked(p)) 2105 return; 2106 2107 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) 2108 enqueue_pushable_dl_task(rq, p); 2109 } 2110 2111 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2112 { 2113 update_curr_dl(rq); 2114 2115 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2116 flags |= DEQUEUE_MIGRATING; 2117 2118 dequeue_dl_entity(&p->dl, flags); 2119 if (!p->dl.dl_throttled && !dl_server(&p->dl)) 2120 dequeue_pushable_dl_task(rq, p); 2121 2122 return true; 2123 } 2124 2125 /* 2126 * Yield task semantic for -deadline tasks is: 2127 * 2128 * get off from the CPU until our next instance, with 2129 * a new runtime. This is of little use now, since we 2130 * don't have a bandwidth reclaiming mechanism. Anyway, 2131 * bandwidth reclaiming is planned for the future, and 2132 * yield_task_dl will indicate that some spare budget 2133 * is available for other task instances to use it. 2134 */ 2135 static void yield_task_dl(struct rq *rq) 2136 { 2137 /* 2138 * We make the task go to sleep until its current deadline by 2139 * forcing its runtime to zero. This way, update_curr_dl() stops 2140 * it and the bandwidth timer will wake it up and will give it 2141 * new scheduling parameters (thanks to dl_yielded=1). 2142 */ 2143 rq->curr->dl.dl_yielded = 1; 2144 2145 update_rq_clock(rq); 2146 update_curr_dl(rq); 2147 /* 2148 * Tell update_rq_clock() that we've just updated, 2149 * so we don't do microscopic update in schedule() 2150 * and double the fastpath cost. 2151 */ 2152 rq_clock_skip_update(rq); 2153 } 2154 2155 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 2156 struct rq *rq) 2157 { 2158 return (!rq->dl.dl_nr_running || 2159 dl_time_before(p->dl.deadline, 2160 rq->dl.earliest_dl.curr)); 2161 } 2162 2163 static int find_later_rq(struct task_struct *task); 2164 2165 static int 2166 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 2167 { 2168 struct task_struct *curr, *donor; 2169 bool select_rq; 2170 struct rq *rq; 2171 2172 if (!(flags & WF_TTWU)) 2173 goto out; 2174 2175 rq = cpu_rq(cpu); 2176 2177 rcu_read_lock(); 2178 curr = READ_ONCE(rq->curr); /* unlocked access */ 2179 donor = READ_ONCE(rq->donor); 2180 2181 /* 2182 * If we are dealing with a -deadline task, we must 2183 * decide where to wake it up. 2184 * If it has a later deadline and the current task 2185 * on this rq can't move (provided the waking task 2186 * can!) we prefer to send it somewhere else. On the 2187 * other hand, if it has a shorter deadline, we 2188 * try to make it stay here, it might be important. 2189 */ 2190 select_rq = unlikely(dl_task(donor)) && 2191 (curr->nr_cpus_allowed < 2 || 2192 !dl_entity_preempt(&p->dl, &donor->dl)) && 2193 p->nr_cpus_allowed > 1; 2194 2195 /* 2196 * Take the capacity of the CPU into account to 2197 * ensure it fits the requirement of the task. 2198 */ 2199 if (sched_asym_cpucap_active()) 2200 select_rq |= !dl_task_fits_capacity(p, cpu); 2201 2202 if (select_rq) { 2203 int target = find_later_rq(p); 2204 2205 if (target != -1 && 2206 dl_task_is_earliest_deadline(p, cpu_rq(target))) 2207 cpu = target; 2208 } 2209 rcu_read_unlock(); 2210 2211 out: 2212 return cpu; 2213 } 2214 2215 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 2216 { 2217 struct rq_flags rf; 2218 struct rq *rq; 2219 2220 if (READ_ONCE(p->__state) != TASK_WAKING) 2221 return; 2222 2223 rq = task_rq(p); 2224 /* 2225 * Since p->state == TASK_WAKING, set_task_cpu() has been called 2226 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 2227 * rq->lock is not... So, lock it 2228 */ 2229 rq_lock(rq, &rf); 2230 if (p->dl.dl_non_contending) { 2231 update_rq_clock(rq); 2232 sub_running_bw(&p->dl, &rq->dl); 2233 p->dl.dl_non_contending = 0; 2234 /* 2235 * If the timer handler is currently running and the 2236 * timer cannot be canceled, inactive_task_timer() 2237 * will see that dl_not_contending is not set, and 2238 * will not touch the rq's active utilization, 2239 * so we are still safe. 2240 */ 2241 cancel_inactive_timer(&p->dl); 2242 } 2243 sub_rq_bw(&p->dl, &rq->dl); 2244 rq_unlock(rq, &rf); 2245 } 2246 2247 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 2248 { 2249 /* 2250 * Current can't be migrated, useless to reschedule, 2251 * let's hope p can move out. 2252 */ 2253 if (rq->curr->nr_cpus_allowed == 1 || 2254 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL)) 2255 return; 2256 2257 /* 2258 * p is migratable, so let's not schedule it and 2259 * see if it is pushed or pulled somewhere else. 2260 */ 2261 if (p->nr_cpus_allowed != 1 && 2262 cpudl_find(&rq->rd->cpudl, p, NULL)) 2263 return; 2264 2265 resched_curr(rq); 2266 } 2267 2268 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2269 { 2270 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2271 /* 2272 * This is OK, because current is on_cpu, which avoids it being 2273 * picked for load-balance and preemption/IRQs are still 2274 * disabled avoiding further scheduler activity on it and we've 2275 * not yet started the picking loop. 2276 */ 2277 rq_unpin_lock(rq, rf); 2278 pull_dl_task(rq); 2279 rq_repin_lock(rq, rf); 2280 } 2281 2282 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2283 } 2284 2285 /* 2286 * Only called when both the current and waking task are -deadline 2287 * tasks. 2288 */ 2289 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, 2290 int flags) 2291 { 2292 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) { 2293 resched_curr(rq); 2294 return; 2295 } 2296 2297 /* 2298 * In the unlikely case current and p have the same deadline 2299 * let us try to decide what's the best thing to do... 2300 */ 2301 if ((p->dl.deadline == rq->donor->dl.deadline) && 2302 !test_tsk_need_resched(rq->curr)) 2303 check_preempt_equal_dl(rq, p); 2304 } 2305 2306 #ifdef CONFIG_SCHED_HRTICK 2307 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2308 { 2309 hrtick_start(rq, dl_se->runtime); 2310 } 2311 #else /* !CONFIG_SCHED_HRTICK: */ 2312 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2313 { 2314 } 2315 #endif /* !CONFIG_SCHED_HRTICK */ 2316 2317 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2318 { 2319 struct sched_dl_entity *dl_se = &p->dl; 2320 struct dl_rq *dl_rq = &rq->dl; 2321 2322 p->se.exec_start = rq_clock_task(rq); 2323 if (on_dl_rq(&p->dl)) 2324 update_stats_wait_end_dl(dl_rq, dl_se); 2325 2326 /* You can't push away the running task */ 2327 dequeue_pushable_dl_task(rq, p); 2328 2329 if (!first) 2330 return; 2331 2332 if (rq->donor->sched_class != &dl_sched_class) 2333 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2334 2335 deadline_queue_push_tasks(rq); 2336 2337 if (hrtick_enabled_dl(rq)) 2338 start_hrtick_dl(rq, &p->dl); 2339 } 2340 2341 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2342 { 2343 struct rb_node *left = rb_first_cached(&dl_rq->root); 2344 2345 if (!left) 2346 return NULL; 2347 2348 return __node_2_dle(left); 2349 } 2350 2351 /* 2352 * __pick_next_task_dl - Helper to pick the next -deadline task to run. 2353 * @rq: The runqueue to pick the next task from. 2354 */ 2355 static struct task_struct *__pick_task_dl(struct rq *rq) 2356 { 2357 struct sched_dl_entity *dl_se; 2358 struct dl_rq *dl_rq = &rq->dl; 2359 struct task_struct *p; 2360 2361 again: 2362 if (!sched_dl_runnable(rq)) 2363 return NULL; 2364 2365 dl_se = pick_next_dl_entity(dl_rq); 2366 WARN_ON_ONCE(!dl_se); 2367 2368 if (dl_server(dl_se)) { 2369 p = dl_se->server_pick_task(dl_se); 2370 if (!p) { 2371 dl_server_stop(dl_se); 2372 goto again; 2373 } 2374 rq->dl_server = dl_se; 2375 } else { 2376 p = dl_task_of(dl_se); 2377 } 2378 2379 return p; 2380 } 2381 2382 static struct task_struct *pick_task_dl(struct rq *rq) 2383 { 2384 return __pick_task_dl(rq); 2385 } 2386 2387 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next) 2388 { 2389 struct sched_dl_entity *dl_se = &p->dl; 2390 struct dl_rq *dl_rq = &rq->dl; 2391 2392 if (on_dl_rq(&p->dl)) 2393 update_stats_wait_start_dl(dl_rq, dl_se); 2394 2395 update_curr_dl(rq); 2396 2397 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2398 2399 if (task_is_blocked(p)) 2400 return; 2401 2402 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2403 enqueue_pushable_dl_task(rq, p); 2404 } 2405 2406 /* 2407 * scheduler tick hitting a task of our scheduling class. 2408 * 2409 * NOTE: This function can be called remotely by the tick offload that 2410 * goes along full dynticks. Therefore no local assumption can be made 2411 * and everything must be accessed through the @rq and @curr passed in 2412 * parameters. 2413 */ 2414 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2415 { 2416 update_curr_dl(rq); 2417 2418 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2419 /* 2420 * Even when we have runtime, update_curr_dl() might have resulted in us 2421 * not being the leftmost task anymore. In that case NEED_RESCHED will 2422 * be set and schedule() will start a new hrtick for the next task. 2423 */ 2424 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2425 is_leftmost(&p->dl, &rq->dl)) 2426 start_hrtick_dl(rq, &p->dl); 2427 } 2428 2429 static void task_fork_dl(struct task_struct *p) 2430 { 2431 /* 2432 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2433 * sched_fork() 2434 */ 2435 } 2436 2437 /* Only try algorithms three times */ 2438 #define DL_MAX_TRIES 3 2439 2440 /* 2441 * Return the earliest pushable rq's task, which is suitable to be executed 2442 * on the CPU, NULL otherwise: 2443 */ 2444 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2445 { 2446 struct task_struct *p = NULL; 2447 struct rb_node *next_node; 2448 2449 if (!has_pushable_dl_tasks(rq)) 2450 return NULL; 2451 2452 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2453 while (next_node) { 2454 p = __node_2_pdl(next_node); 2455 2456 if (task_is_pushable(rq, p, cpu)) 2457 return p; 2458 2459 next_node = rb_next(next_node); 2460 } 2461 2462 return NULL; 2463 } 2464 2465 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2466 2467 static int find_later_rq(struct task_struct *task) 2468 { 2469 struct sched_domain *sd; 2470 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2471 int this_cpu = smp_processor_id(); 2472 int cpu = task_cpu(task); 2473 2474 /* Make sure the mask is initialized first */ 2475 if (unlikely(!later_mask)) 2476 return -1; 2477 2478 if (task->nr_cpus_allowed == 1) 2479 return -1; 2480 2481 /* 2482 * We have to consider system topology and task affinity 2483 * first, then we can look for a suitable CPU. 2484 */ 2485 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2486 return -1; 2487 2488 /* 2489 * If we are here, some targets have been found, including 2490 * the most suitable which is, among the runqueues where the 2491 * current tasks have later deadlines than the task's one, the 2492 * rq with the latest possible one. 2493 * 2494 * Now we check how well this matches with task's 2495 * affinity and system topology. 2496 * 2497 * The last CPU where the task run is our first 2498 * guess, since it is most likely cache-hot there. 2499 */ 2500 if (cpumask_test_cpu(cpu, later_mask)) 2501 return cpu; 2502 /* 2503 * Check if this_cpu is to be skipped (i.e., it is 2504 * not in the mask) or not. 2505 */ 2506 if (!cpumask_test_cpu(this_cpu, later_mask)) 2507 this_cpu = -1; 2508 2509 rcu_read_lock(); 2510 for_each_domain(cpu, sd) { 2511 if (sd->flags & SD_WAKE_AFFINE) { 2512 int best_cpu; 2513 2514 /* 2515 * If possible, preempting this_cpu is 2516 * cheaper than migrating. 2517 */ 2518 if (this_cpu != -1 && 2519 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2520 rcu_read_unlock(); 2521 return this_cpu; 2522 } 2523 2524 best_cpu = cpumask_any_and_distribute(later_mask, 2525 sched_domain_span(sd)); 2526 /* 2527 * Last chance: if a CPU being in both later_mask 2528 * and current sd span is valid, that becomes our 2529 * choice. Of course, the latest possible CPU is 2530 * already under consideration through later_mask. 2531 */ 2532 if (best_cpu < nr_cpu_ids) { 2533 rcu_read_unlock(); 2534 return best_cpu; 2535 } 2536 } 2537 } 2538 rcu_read_unlock(); 2539 2540 /* 2541 * At this point, all our guesses failed, we just return 2542 * 'something', and let the caller sort the things out. 2543 */ 2544 if (this_cpu != -1) 2545 return this_cpu; 2546 2547 cpu = cpumask_any_distribute(later_mask); 2548 if (cpu < nr_cpu_ids) 2549 return cpu; 2550 2551 return -1; 2552 } 2553 2554 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2555 { 2556 struct task_struct *p; 2557 2558 if (!has_pushable_dl_tasks(rq)) 2559 return NULL; 2560 2561 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2562 2563 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2564 WARN_ON_ONCE(task_current(rq, p)); 2565 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2566 2567 WARN_ON_ONCE(!task_on_rq_queued(p)); 2568 WARN_ON_ONCE(!dl_task(p)); 2569 2570 return p; 2571 } 2572 2573 /* Locks the rq it finds */ 2574 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2575 { 2576 struct rq *later_rq = NULL; 2577 int tries; 2578 int cpu; 2579 2580 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2581 cpu = find_later_rq(task); 2582 2583 if ((cpu == -1) || (cpu == rq->cpu)) 2584 break; 2585 2586 later_rq = cpu_rq(cpu); 2587 2588 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2589 /* 2590 * Target rq has tasks of equal or earlier deadline, 2591 * retrying does not release any lock and is unlikely 2592 * to yield a different result. 2593 */ 2594 later_rq = NULL; 2595 break; 2596 } 2597 2598 /* Retry if something changed. */ 2599 if (double_lock_balance(rq, later_rq)) { 2600 /* 2601 * double_lock_balance had to release rq->lock, in the 2602 * meantime, task may no longer be fit to be migrated. 2603 * Check the following to ensure that the task is 2604 * still suitable for migration: 2605 * 1. It is possible the task was scheduled, 2606 * migrate_disabled was set and then got preempted, 2607 * so we must check the task migration disable 2608 * flag. 2609 * 2. The CPU picked is in the task's affinity. 2610 * 3. For throttled task (dl_task_offline_migration), 2611 * check the following: 2612 * - the task is not on the rq anymore (it was 2613 * migrated) 2614 * - the task is not on CPU anymore 2615 * - the task is still a dl task 2616 * - the task is not queued on the rq anymore 2617 * 4. For the non-throttled task (push_dl_task), the 2618 * check to ensure that this task is still at the 2619 * head of the pushable tasks list is enough. 2620 */ 2621 if (unlikely(is_migration_disabled(task) || 2622 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2623 (task->dl.dl_throttled && 2624 (task_rq(task) != rq || 2625 task_on_cpu(rq, task) || 2626 !dl_task(task) || 2627 !task_on_rq_queued(task))) || 2628 (!task->dl.dl_throttled && 2629 task != pick_next_pushable_dl_task(rq)))) { 2630 2631 double_unlock_balance(rq, later_rq); 2632 later_rq = NULL; 2633 break; 2634 } 2635 } 2636 2637 /* 2638 * If the rq we found has no -deadline task, or 2639 * its earliest one has a later deadline than our 2640 * task, the rq is a good one. 2641 */ 2642 if (dl_task_is_earliest_deadline(task, later_rq)) 2643 break; 2644 2645 /* Otherwise we try again. */ 2646 double_unlock_balance(rq, later_rq); 2647 later_rq = NULL; 2648 } 2649 2650 return later_rq; 2651 } 2652 2653 /* 2654 * See if the non running -deadline tasks on this rq 2655 * can be sent to some other CPU where they can preempt 2656 * and start executing. 2657 */ 2658 static int push_dl_task(struct rq *rq) 2659 { 2660 struct task_struct *next_task; 2661 struct rq *later_rq; 2662 int ret = 0; 2663 2664 next_task = pick_next_pushable_dl_task(rq); 2665 if (!next_task) 2666 return 0; 2667 2668 retry: 2669 /* 2670 * If next_task preempts rq->curr, and rq->curr 2671 * can move away, it makes sense to just reschedule 2672 * without going further in pushing next_task. 2673 */ 2674 if (dl_task(rq->donor) && 2675 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) && 2676 rq->curr->nr_cpus_allowed > 1) { 2677 resched_curr(rq); 2678 return 0; 2679 } 2680 2681 if (is_migration_disabled(next_task)) 2682 return 0; 2683 2684 if (WARN_ON(next_task == rq->curr)) 2685 return 0; 2686 2687 /* We might release rq lock */ 2688 get_task_struct(next_task); 2689 2690 /* Will lock the rq it'll find */ 2691 later_rq = find_lock_later_rq(next_task, rq); 2692 if (!later_rq) { 2693 struct task_struct *task; 2694 2695 /* 2696 * We must check all this again, since 2697 * find_lock_later_rq releases rq->lock and it is 2698 * then possible that next_task has migrated. 2699 */ 2700 task = pick_next_pushable_dl_task(rq); 2701 if (task == next_task) { 2702 /* 2703 * The task is still there. We don't try 2704 * again, some other CPU will pull it when ready. 2705 */ 2706 goto out; 2707 } 2708 2709 if (!task) 2710 /* No more tasks */ 2711 goto out; 2712 2713 put_task_struct(next_task); 2714 next_task = task; 2715 goto retry; 2716 } 2717 2718 move_queued_task_locked(rq, later_rq, next_task); 2719 ret = 1; 2720 2721 resched_curr(later_rq); 2722 2723 double_unlock_balance(rq, later_rq); 2724 2725 out: 2726 put_task_struct(next_task); 2727 2728 return ret; 2729 } 2730 2731 static void push_dl_tasks(struct rq *rq) 2732 { 2733 /* push_dl_task() will return true if it moved a -deadline task */ 2734 while (push_dl_task(rq)) 2735 ; 2736 } 2737 2738 static void pull_dl_task(struct rq *this_rq) 2739 { 2740 int this_cpu = this_rq->cpu, cpu; 2741 struct task_struct *p, *push_task; 2742 bool resched = false; 2743 struct rq *src_rq; 2744 u64 dmin = LONG_MAX; 2745 2746 if (likely(!dl_overloaded(this_rq))) 2747 return; 2748 2749 /* 2750 * Match the barrier from dl_set_overloaded; this guarantees that if we 2751 * see overloaded we must also see the dlo_mask bit. 2752 */ 2753 smp_rmb(); 2754 2755 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2756 if (this_cpu == cpu) 2757 continue; 2758 2759 src_rq = cpu_rq(cpu); 2760 2761 /* 2762 * It looks racy, and it is! However, as in sched_rt.c, 2763 * we are fine with this. 2764 */ 2765 if (this_rq->dl.dl_nr_running && 2766 dl_time_before(this_rq->dl.earliest_dl.curr, 2767 src_rq->dl.earliest_dl.next)) 2768 continue; 2769 2770 /* Might drop this_rq->lock */ 2771 push_task = NULL; 2772 double_lock_balance(this_rq, src_rq); 2773 2774 /* 2775 * If there are no more pullable tasks on the 2776 * rq, we're done with it. 2777 */ 2778 if (src_rq->dl.dl_nr_running <= 1) 2779 goto skip; 2780 2781 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2782 2783 /* 2784 * We found a task to be pulled if: 2785 * - it preempts our current (if there's one), 2786 * - it will preempt the last one we pulled (if any). 2787 */ 2788 if (p && dl_time_before(p->dl.deadline, dmin) && 2789 dl_task_is_earliest_deadline(p, this_rq)) { 2790 WARN_ON(p == src_rq->curr); 2791 WARN_ON(!task_on_rq_queued(p)); 2792 2793 /* 2794 * Then we pull iff p has actually an earlier 2795 * deadline than the current task of its runqueue. 2796 */ 2797 if (dl_time_before(p->dl.deadline, 2798 src_rq->donor->dl.deadline)) 2799 goto skip; 2800 2801 if (is_migration_disabled(p)) { 2802 push_task = get_push_task(src_rq); 2803 } else { 2804 move_queued_task_locked(src_rq, this_rq, p); 2805 dmin = p->dl.deadline; 2806 resched = true; 2807 } 2808 2809 /* Is there any other task even earlier? */ 2810 } 2811 skip: 2812 double_unlock_balance(this_rq, src_rq); 2813 2814 if (push_task) { 2815 preempt_disable(); 2816 raw_spin_rq_unlock(this_rq); 2817 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2818 push_task, &src_rq->push_work); 2819 preempt_enable(); 2820 raw_spin_rq_lock(this_rq); 2821 } 2822 } 2823 2824 if (resched) 2825 resched_curr(this_rq); 2826 } 2827 2828 /* 2829 * Since the task is not running and a reschedule is not going to happen 2830 * anytime soon on its runqueue, we try pushing it away now. 2831 */ 2832 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2833 { 2834 if (!task_on_cpu(rq, p) && 2835 !test_tsk_need_resched(rq->curr) && 2836 p->nr_cpus_allowed > 1 && 2837 dl_task(rq->donor) && 2838 (rq->curr->nr_cpus_allowed < 2 || 2839 !dl_entity_preempt(&p->dl, &rq->donor->dl))) { 2840 push_dl_tasks(rq); 2841 } 2842 } 2843 2844 static void set_cpus_allowed_dl(struct task_struct *p, 2845 struct affinity_context *ctx) 2846 { 2847 struct root_domain *src_rd; 2848 struct rq *rq; 2849 2850 WARN_ON_ONCE(!dl_task(p)); 2851 2852 rq = task_rq(p); 2853 src_rd = rq->rd; 2854 /* 2855 * Migrating a SCHED_DEADLINE task between exclusive 2856 * cpusets (different root_domains) entails a bandwidth 2857 * update. We already made space for us in the destination 2858 * domain (see cpuset_can_attach()). 2859 */ 2860 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 2861 struct dl_bw *src_dl_b; 2862 2863 src_dl_b = dl_bw_of(cpu_of(rq)); 2864 /* 2865 * We now free resources of the root_domain we are migrating 2866 * off. In the worst case, sched_setattr() may temporary fail 2867 * until we complete the update. 2868 */ 2869 raw_spin_lock(&src_dl_b->lock); 2870 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2871 raw_spin_unlock(&src_dl_b->lock); 2872 } 2873 2874 set_cpus_allowed_common(p, ctx); 2875 } 2876 2877 /* Assumes rq->lock is held */ 2878 static void rq_online_dl(struct rq *rq) 2879 { 2880 if (rq->dl.overloaded) 2881 dl_set_overload(rq); 2882 2883 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2884 if (rq->dl.dl_nr_running > 0) 2885 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2886 } 2887 2888 /* Assumes rq->lock is held */ 2889 static void rq_offline_dl(struct rq *rq) 2890 { 2891 if (rq->dl.overloaded) 2892 dl_clear_overload(rq); 2893 2894 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2895 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2896 } 2897 2898 void __init init_sched_dl_class(void) 2899 { 2900 unsigned int i; 2901 2902 for_each_possible_cpu(i) 2903 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2904 GFP_KERNEL, cpu_to_node(i)); 2905 } 2906 2907 void dl_add_task_root_domain(struct task_struct *p) 2908 { 2909 struct rq_flags rf; 2910 struct rq *rq; 2911 struct dl_bw *dl_b; 2912 2913 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2914 if (!dl_task(p) || dl_entity_is_special(&p->dl)) { 2915 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2916 return; 2917 } 2918 2919 rq = __task_rq_lock(p, &rf); 2920 2921 dl_b = &rq->rd->dl_bw; 2922 raw_spin_lock(&dl_b->lock); 2923 2924 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2925 2926 raw_spin_unlock(&dl_b->lock); 2927 2928 task_rq_unlock(rq, p, &rf); 2929 } 2930 2931 void dl_clear_root_domain(struct root_domain *rd) 2932 { 2933 int i; 2934 2935 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock); 2936 2937 /* 2938 * Reset total_bw to zero and extra_bw to max_bw so that next 2939 * loop will add dl-servers contributions back properly, 2940 */ 2941 rd->dl_bw.total_bw = 0; 2942 for_each_cpu(i, rd->span) 2943 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw; 2944 2945 /* 2946 * dl_servers are not tasks. Since dl_add_task_root_domain ignores 2947 * them, we need to account for them here explicitly. 2948 */ 2949 for_each_cpu(i, rd->span) { 2950 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server; 2951 2952 if (dl_server(dl_se) && cpu_active(i)) 2953 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i)); 2954 } 2955 } 2956 2957 void dl_clear_root_domain_cpu(int cpu) 2958 { 2959 dl_clear_root_domain(cpu_rq(cpu)->rd); 2960 } 2961 2962 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2963 { 2964 /* 2965 * task_non_contending() can start the "inactive timer" (if the 0-lag 2966 * time is in the future). If the task switches back to dl before 2967 * the "inactive timer" fires, it can continue to consume its current 2968 * runtime using its current deadline. If it stays outside of 2969 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2970 * will reset the task parameters. 2971 */ 2972 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2973 task_non_contending(&p->dl); 2974 2975 /* 2976 * In case a task is setscheduled out from SCHED_DEADLINE we need to 2977 * keep track of that on its cpuset (for correct bandwidth tracking). 2978 */ 2979 dec_dl_tasks_cs(p); 2980 2981 if (!task_on_rq_queued(p)) { 2982 /* 2983 * Inactive timer is armed. However, p is leaving DEADLINE and 2984 * might migrate away from this rq while continuing to run on 2985 * some other class. We need to remove its contribution from 2986 * this rq running_bw now, or sub_rq_bw (below) will complain. 2987 */ 2988 if (p->dl.dl_non_contending) 2989 sub_running_bw(&p->dl, &rq->dl); 2990 sub_rq_bw(&p->dl, &rq->dl); 2991 } 2992 2993 /* 2994 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2995 * at the 0-lag time, because the task could have been migrated 2996 * while SCHED_OTHER in the meanwhile. 2997 */ 2998 if (p->dl.dl_non_contending) 2999 p->dl.dl_non_contending = 0; 3000 3001 /* 3002 * Since this might be the only -deadline task on the rq, 3003 * this is the right place to try to pull some other one 3004 * from an overloaded CPU, if any. 3005 */ 3006 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 3007 return; 3008 3009 deadline_queue_pull_task(rq); 3010 } 3011 3012 /* 3013 * When switching to -deadline, we may overload the rq, then 3014 * we try to push someone off, if possible. 3015 */ 3016 static void switched_to_dl(struct rq *rq, struct task_struct *p) 3017 { 3018 cancel_inactive_timer(&p->dl); 3019 3020 /* 3021 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 3022 * track of that on its cpuset (for correct bandwidth tracking). 3023 */ 3024 inc_dl_tasks_cs(p); 3025 3026 /* If p is not queued we will update its parameters at next wakeup. */ 3027 if (!task_on_rq_queued(p)) { 3028 add_rq_bw(&p->dl, &rq->dl); 3029 3030 return; 3031 } 3032 3033 if (rq->donor != p) { 3034 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 3035 deadline_queue_push_tasks(rq); 3036 if (dl_task(rq->donor)) 3037 wakeup_preempt_dl(rq, p, 0); 3038 else 3039 resched_curr(rq); 3040 } else { 3041 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 3042 } 3043 } 3044 3045 /* 3046 * If the scheduling parameters of a -deadline task changed, 3047 * a push or pull operation might be needed. 3048 */ 3049 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 3050 int oldprio) 3051 { 3052 if (!task_on_rq_queued(p)) 3053 return; 3054 3055 /* 3056 * This might be too much, but unfortunately 3057 * we don't have the old deadline value, and 3058 * we can't argue if the task is increasing 3059 * or lowering its prio, so... 3060 */ 3061 if (!rq->dl.overloaded) 3062 deadline_queue_pull_task(rq); 3063 3064 if (task_current_donor(rq, p)) { 3065 /* 3066 * If we now have a earlier deadline task than p, 3067 * then reschedule, provided p is still on this 3068 * runqueue. 3069 */ 3070 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 3071 resched_curr(rq); 3072 } else { 3073 /* 3074 * Current may not be deadline in case p was throttled but we 3075 * have just replenished it (e.g. rt_mutex_setprio()). 3076 * 3077 * Otherwise, if p was given an earlier deadline, reschedule. 3078 */ 3079 if (!dl_task(rq->curr) || 3080 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 3081 resched_curr(rq); 3082 } 3083 } 3084 3085 #ifdef CONFIG_SCHED_CORE 3086 static int task_is_throttled_dl(struct task_struct *p, int cpu) 3087 { 3088 return p->dl.dl_throttled; 3089 } 3090 #endif 3091 3092 DEFINE_SCHED_CLASS(dl) = { 3093 3094 .enqueue_task = enqueue_task_dl, 3095 .dequeue_task = dequeue_task_dl, 3096 .yield_task = yield_task_dl, 3097 3098 .wakeup_preempt = wakeup_preempt_dl, 3099 3100 .pick_task = pick_task_dl, 3101 .put_prev_task = put_prev_task_dl, 3102 .set_next_task = set_next_task_dl, 3103 3104 .balance = balance_dl, 3105 .select_task_rq = select_task_rq_dl, 3106 .migrate_task_rq = migrate_task_rq_dl, 3107 .set_cpus_allowed = set_cpus_allowed_dl, 3108 .rq_online = rq_online_dl, 3109 .rq_offline = rq_offline_dl, 3110 .task_woken = task_woken_dl, 3111 .find_lock_rq = find_lock_later_rq, 3112 3113 .task_tick = task_tick_dl, 3114 .task_fork = task_fork_dl, 3115 3116 .prio_changed = prio_changed_dl, 3117 .switched_from = switched_from_dl, 3118 .switched_to = switched_to_dl, 3119 3120 .update_curr = update_curr_dl, 3121 #ifdef CONFIG_SCHED_CORE 3122 .task_is_throttled = task_is_throttled_dl, 3123 #endif 3124 }; 3125 3126 /* 3127 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and 3128 * sched_domains_mutex. 3129 */ 3130 u64 dl_cookie; 3131 3132 int sched_dl_global_validate(void) 3133 { 3134 u64 runtime = global_rt_runtime(); 3135 u64 period = global_rt_period(); 3136 u64 new_bw = to_ratio(period, runtime); 3137 u64 cookie = ++dl_cookie; 3138 struct dl_bw *dl_b; 3139 int cpu, cpus, ret = 0; 3140 unsigned long flags; 3141 3142 /* 3143 * Here we want to check the bandwidth not being set to some 3144 * value smaller than the currently allocated bandwidth in 3145 * any of the root_domains. 3146 */ 3147 for_each_online_cpu(cpu) { 3148 rcu_read_lock_sched(); 3149 3150 if (dl_bw_visited(cpu, cookie)) 3151 goto next; 3152 3153 dl_b = dl_bw_of(cpu); 3154 cpus = dl_bw_cpus(cpu); 3155 3156 raw_spin_lock_irqsave(&dl_b->lock, flags); 3157 if (new_bw * cpus < dl_b->total_bw) 3158 ret = -EBUSY; 3159 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3160 3161 next: 3162 rcu_read_unlock_sched(); 3163 3164 if (ret) 3165 break; 3166 } 3167 3168 return ret; 3169 } 3170 3171 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 3172 { 3173 if (global_rt_runtime() == RUNTIME_INF) { 3174 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 3175 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 3176 } else { 3177 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 3178 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 3179 dl_rq->max_bw = dl_rq->extra_bw = 3180 to_ratio(global_rt_period(), global_rt_runtime()); 3181 } 3182 } 3183 3184 void sched_dl_do_global(void) 3185 { 3186 u64 new_bw = -1; 3187 u64 cookie = ++dl_cookie; 3188 struct dl_bw *dl_b; 3189 int cpu; 3190 unsigned long flags; 3191 3192 if (global_rt_runtime() != RUNTIME_INF) 3193 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 3194 3195 for_each_possible_cpu(cpu) 3196 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 3197 3198 for_each_possible_cpu(cpu) { 3199 rcu_read_lock_sched(); 3200 3201 if (dl_bw_visited(cpu, cookie)) { 3202 rcu_read_unlock_sched(); 3203 continue; 3204 } 3205 3206 dl_b = dl_bw_of(cpu); 3207 3208 raw_spin_lock_irqsave(&dl_b->lock, flags); 3209 dl_b->bw = new_bw; 3210 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3211 3212 rcu_read_unlock_sched(); 3213 } 3214 } 3215 3216 /* 3217 * We must be sure that accepting a new task (or allowing changing the 3218 * parameters of an existing one) is consistent with the bandwidth 3219 * constraints. If yes, this function also accordingly updates the currently 3220 * allocated bandwidth to reflect the new situation. 3221 * 3222 * This function is called while holding p's rq->lock. 3223 */ 3224 int sched_dl_overflow(struct task_struct *p, int policy, 3225 const struct sched_attr *attr) 3226 { 3227 u64 period = attr->sched_period ?: attr->sched_deadline; 3228 u64 runtime = attr->sched_runtime; 3229 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 3230 int cpus, err = -1, cpu = task_cpu(p); 3231 struct dl_bw *dl_b = dl_bw_of(cpu); 3232 unsigned long cap; 3233 3234 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3235 return 0; 3236 3237 /* !deadline task may carry old deadline bandwidth */ 3238 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 3239 return 0; 3240 3241 /* 3242 * Either if a task, enters, leave, or stays -deadline but changes 3243 * its parameters, we may need to update accordingly the total 3244 * allocated bandwidth of the container. 3245 */ 3246 raw_spin_lock(&dl_b->lock); 3247 cpus = dl_bw_cpus(cpu); 3248 cap = dl_bw_capacity(cpu); 3249 3250 if (dl_policy(policy) && !task_has_dl_policy(p) && 3251 !__dl_overflow(dl_b, cap, 0, new_bw)) { 3252 if (hrtimer_active(&p->dl.inactive_timer)) 3253 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3254 __dl_add(dl_b, new_bw, cpus); 3255 err = 0; 3256 } else if (dl_policy(policy) && task_has_dl_policy(p) && 3257 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 3258 /* 3259 * XXX this is slightly incorrect: when the task 3260 * utilization decreases, we should delay the total 3261 * utilization change until the task's 0-lag point. 3262 * But this would require to set the task's "inactive 3263 * timer" when the task is not inactive. 3264 */ 3265 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3266 __dl_add(dl_b, new_bw, cpus); 3267 dl_change_utilization(p, new_bw); 3268 err = 0; 3269 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 3270 /* 3271 * Do not decrease the total deadline utilization here, 3272 * switched_from_dl() will take care to do it at the correct 3273 * (0-lag) time. 3274 */ 3275 err = 0; 3276 } 3277 raw_spin_unlock(&dl_b->lock); 3278 3279 return err; 3280 } 3281 3282 /* 3283 * This function initializes the sched_dl_entity of a newly becoming 3284 * SCHED_DEADLINE task. 3285 * 3286 * Only the static values are considered here, the actual runtime and the 3287 * absolute deadline will be properly calculated when the task is enqueued 3288 * for the first time with its new policy. 3289 */ 3290 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3291 { 3292 struct sched_dl_entity *dl_se = &p->dl; 3293 3294 dl_se->dl_runtime = attr->sched_runtime; 3295 dl_se->dl_deadline = attr->sched_deadline; 3296 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3297 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 3298 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3299 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3300 } 3301 3302 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3303 { 3304 struct sched_dl_entity *dl_se = &p->dl; 3305 3306 attr->sched_priority = p->rt_priority; 3307 attr->sched_runtime = dl_se->dl_runtime; 3308 attr->sched_deadline = dl_se->dl_deadline; 3309 attr->sched_period = dl_se->dl_period; 3310 attr->sched_flags &= ~SCHED_DL_FLAGS; 3311 attr->sched_flags |= dl_se->flags; 3312 } 3313 3314 /* 3315 * This function validates the new parameters of a -deadline task. 3316 * We ask for the deadline not being zero, and greater or equal 3317 * than the runtime, as well as the period of being zero or 3318 * greater than deadline. Furthermore, we have to be sure that 3319 * user parameters are above the internal resolution of 1us (we 3320 * check sched_runtime only since it is always the smaller one) and 3321 * below 2^63 ns (we have to check both sched_deadline and 3322 * sched_period, as the latter can be zero). 3323 */ 3324 bool __checkparam_dl(const struct sched_attr *attr) 3325 { 3326 u64 period, max, min; 3327 3328 /* special dl tasks don't actually use any parameter */ 3329 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3330 return true; 3331 3332 /* deadline != 0 */ 3333 if (attr->sched_deadline == 0) 3334 return false; 3335 3336 /* 3337 * Since we truncate DL_SCALE bits, make sure we're at least 3338 * that big. 3339 */ 3340 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3341 return false; 3342 3343 /* 3344 * Since we use the MSB for wrap-around and sign issues, make 3345 * sure it's not set (mind that period can be equal to zero). 3346 */ 3347 if (attr->sched_deadline & (1ULL << 63) || 3348 attr->sched_period & (1ULL << 63)) 3349 return false; 3350 3351 period = attr->sched_period; 3352 if (!period) 3353 period = attr->sched_deadline; 3354 3355 /* runtime <= deadline <= period (if period != 0) */ 3356 if (period < attr->sched_deadline || 3357 attr->sched_deadline < attr->sched_runtime) 3358 return false; 3359 3360 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3361 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3362 3363 if (period < min || period > max) 3364 return false; 3365 3366 return true; 3367 } 3368 3369 /* 3370 * This function clears the sched_dl_entity static params. 3371 */ 3372 static void __dl_clear_params(struct sched_dl_entity *dl_se) 3373 { 3374 dl_se->dl_runtime = 0; 3375 dl_se->dl_deadline = 0; 3376 dl_se->dl_period = 0; 3377 dl_se->flags = 0; 3378 dl_se->dl_bw = 0; 3379 dl_se->dl_density = 0; 3380 3381 dl_se->dl_throttled = 0; 3382 dl_se->dl_yielded = 0; 3383 dl_se->dl_non_contending = 0; 3384 dl_se->dl_overrun = 0; 3385 dl_se->dl_server = 0; 3386 3387 #ifdef CONFIG_RT_MUTEXES 3388 dl_se->pi_se = dl_se; 3389 #endif 3390 } 3391 3392 void init_dl_entity(struct sched_dl_entity *dl_se) 3393 { 3394 RB_CLEAR_NODE(&dl_se->rb_node); 3395 init_dl_task_timer(dl_se); 3396 init_dl_inactive_task_timer(dl_se); 3397 __dl_clear_params(dl_se); 3398 } 3399 3400 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3401 { 3402 struct sched_dl_entity *dl_se = &p->dl; 3403 3404 if (dl_se->dl_runtime != attr->sched_runtime || 3405 dl_se->dl_deadline != attr->sched_deadline || 3406 dl_se->dl_period != attr->sched_period || 3407 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3408 return true; 3409 3410 return false; 3411 } 3412 3413 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3414 const struct cpumask *trial) 3415 { 3416 unsigned long flags, cap; 3417 struct dl_bw *cur_dl_b; 3418 int ret = 1; 3419 3420 rcu_read_lock_sched(); 3421 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3422 cap = __dl_bw_capacity(trial); 3423 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3424 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3425 ret = 0; 3426 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3427 rcu_read_unlock_sched(); 3428 3429 return ret; 3430 } 3431 3432 enum dl_bw_request { 3433 dl_bw_req_deactivate = 0, 3434 dl_bw_req_alloc, 3435 dl_bw_req_free 3436 }; 3437 3438 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3439 { 3440 unsigned long flags, cap; 3441 struct dl_bw *dl_b; 3442 bool overflow = 0; 3443 u64 fair_server_bw = 0; 3444 3445 rcu_read_lock_sched(); 3446 dl_b = dl_bw_of(cpu); 3447 raw_spin_lock_irqsave(&dl_b->lock, flags); 3448 3449 cap = dl_bw_capacity(cpu); 3450 switch (req) { 3451 case dl_bw_req_free: 3452 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3453 break; 3454 case dl_bw_req_alloc: 3455 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3456 3457 if (!overflow) { 3458 /* 3459 * We reserve space in the destination 3460 * root_domain, as we can't fail after this point. 3461 * We will free resources in the source root_domain 3462 * later on (see set_cpus_allowed_dl()). 3463 */ 3464 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3465 } 3466 break; 3467 case dl_bw_req_deactivate: 3468 /* 3469 * cpu is not off yet, but we need to do the math by 3470 * considering it off already (i.e., what would happen if we 3471 * turn cpu off?). 3472 */ 3473 cap -= arch_scale_cpu_capacity(cpu); 3474 3475 /* 3476 * cpu is going offline and NORMAL tasks will be moved away 3477 * from it. We can thus discount dl_server bandwidth 3478 * contribution as it won't need to be servicing tasks after 3479 * the cpu is off. 3480 */ 3481 if (cpu_rq(cpu)->fair_server.dl_server) 3482 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw; 3483 3484 /* 3485 * Not much to check if no DEADLINE bandwidth is present. 3486 * dl_servers we can discount, as tasks will be moved out the 3487 * offlined CPUs anyway. 3488 */ 3489 if (dl_b->total_bw - fair_server_bw > 0) { 3490 /* 3491 * Leaving at least one CPU for DEADLINE tasks seems a 3492 * wise thing to do. As said above, cpu is not offline 3493 * yet, so account for that. 3494 */ 3495 if (dl_bw_cpus(cpu) - 1) 3496 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0); 3497 else 3498 overflow = 1; 3499 } 3500 3501 break; 3502 } 3503 3504 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3505 rcu_read_unlock_sched(); 3506 3507 return overflow ? -EBUSY : 0; 3508 } 3509 3510 int dl_bw_deactivate(int cpu) 3511 { 3512 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0); 3513 } 3514 3515 int dl_bw_alloc(int cpu, u64 dl_bw) 3516 { 3517 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3518 } 3519 3520 void dl_bw_free(int cpu, u64 dl_bw) 3521 { 3522 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3523 } 3524 3525 void print_dl_stats(struct seq_file *m, int cpu) 3526 { 3527 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3528 } 3529