xref: /linux/kernel/sched/deadline.c (revision 058443934524590d5537a80f490267cc95a61c05)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 /*
20  * Default limits for DL period; on the top end we guard against small util
21  * tasks still getting ridiculously long effective runtimes, on the bottom end we
22  * guard against timer DoS.
23  */
24 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
25 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
26 #ifdef CONFIG_SYSCTL
27 static struct ctl_table sched_dl_sysctls[] = {
28 	{
29 		.procname       = "sched_deadline_period_max_us",
30 		.data           = &sysctl_sched_dl_period_max,
31 		.maxlen         = sizeof(unsigned int),
32 		.mode           = 0644,
33 		.proc_handler   = proc_douintvec_minmax,
34 		.extra1         = (void *)&sysctl_sched_dl_period_min,
35 	},
36 	{
37 		.procname       = "sched_deadline_period_min_us",
38 		.data           = &sysctl_sched_dl_period_min,
39 		.maxlen         = sizeof(unsigned int),
40 		.mode           = 0644,
41 		.proc_handler   = proc_douintvec_minmax,
42 		.extra2         = (void *)&sysctl_sched_dl_period_max,
43 	},
44 	{}
45 };
46 
47 static int __init sched_dl_sysctl_init(void)
48 {
49 	register_sysctl_init("kernel", sched_dl_sysctls);
50 	return 0;
51 }
52 late_initcall(sched_dl_sysctl_init);
53 #endif
54 
55 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
56 {
57 	return container_of(dl_se, struct task_struct, dl);
58 }
59 
60 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
61 {
62 	return container_of(dl_rq, struct rq, dl);
63 }
64 
65 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
66 {
67 	struct task_struct *p = dl_task_of(dl_se);
68 	struct rq *rq = task_rq(p);
69 
70 	return &rq->dl;
71 }
72 
73 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
74 {
75 	return !RB_EMPTY_NODE(&dl_se->rb_node);
76 }
77 
78 #ifdef CONFIG_RT_MUTEXES
79 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
80 {
81 	return dl_se->pi_se;
82 }
83 
84 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
85 {
86 	return pi_of(dl_se) != dl_se;
87 }
88 #else
89 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
90 {
91 	return dl_se;
92 }
93 
94 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
95 {
96 	return false;
97 }
98 #endif
99 
100 #ifdef CONFIG_SMP
101 static inline struct dl_bw *dl_bw_of(int i)
102 {
103 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
104 			 "sched RCU must be held");
105 	return &cpu_rq(i)->rd->dl_bw;
106 }
107 
108 static inline int dl_bw_cpus(int i)
109 {
110 	struct root_domain *rd = cpu_rq(i)->rd;
111 	int cpus;
112 
113 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
114 			 "sched RCU must be held");
115 
116 	if (cpumask_subset(rd->span, cpu_active_mask))
117 		return cpumask_weight(rd->span);
118 
119 	cpus = 0;
120 
121 	for_each_cpu_and(i, rd->span, cpu_active_mask)
122 		cpus++;
123 
124 	return cpus;
125 }
126 
127 static inline unsigned long __dl_bw_capacity(int i)
128 {
129 	struct root_domain *rd = cpu_rq(i)->rd;
130 	unsigned long cap = 0;
131 
132 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
133 			 "sched RCU must be held");
134 
135 	for_each_cpu_and(i, rd->span, cpu_active_mask)
136 		cap += capacity_orig_of(i);
137 
138 	return cap;
139 }
140 
141 /*
142  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
143  * of the CPU the task is running on rather rd's \Sum CPU capacity.
144  */
145 static inline unsigned long dl_bw_capacity(int i)
146 {
147 	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
148 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
149 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
150 	} else {
151 		return __dl_bw_capacity(i);
152 	}
153 }
154 
155 static inline bool dl_bw_visited(int cpu, u64 gen)
156 {
157 	struct root_domain *rd = cpu_rq(cpu)->rd;
158 
159 	if (rd->visit_gen == gen)
160 		return true;
161 
162 	rd->visit_gen = gen;
163 	return false;
164 }
165 
166 static inline
167 void __dl_update(struct dl_bw *dl_b, s64 bw)
168 {
169 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
170 	int i;
171 
172 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
173 			 "sched RCU must be held");
174 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
175 		struct rq *rq = cpu_rq(i);
176 
177 		rq->dl.extra_bw += bw;
178 	}
179 }
180 #else
181 static inline struct dl_bw *dl_bw_of(int i)
182 {
183 	return &cpu_rq(i)->dl.dl_bw;
184 }
185 
186 static inline int dl_bw_cpus(int i)
187 {
188 	return 1;
189 }
190 
191 static inline unsigned long dl_bw_capacity(int i)
192 {
193 	return SCHED_CAPACITY_SCALE;
194 }
195 
196 static inline bool dl_bw_visited(int cpu, u64 gen)
197 {
198 	return false;
199 }
200 
201 static inline
202 void __dl_update(struct dl_bw *dl_b, s64 bw)
203 {
204 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
205 
206 	dl->extra_bw += bw;
207 }
208 #endif
209 
210 static inline
211 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
212 {
213 	dl_b->total_bw -= tsk_bw;
214 	__dl_update(dl_b, (s32)tsk_bw / cpus);
215 }
216 
217 static inline
218 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
219 {
220 	dl_b->total_bw += tsk_bw;
221 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
222 }
223 
224 static inline bool
225 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
226 {
227 	return dl_b->bw != -1 &&
228 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
229 }
230 
231 static inline
232 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
233 {
234 	u64 old = dl_rq->running_bw;
235 
236 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
237 	dl_rq->running_bw += dl_bw;
238 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
239 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
240 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
241 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
242 }
243 
244 static inline
245 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
246 {
247 	u64 old = dl_rq->running_bw;
248 
249 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
250 	dl_rq->running_bw -= dl_bw;
251 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
252 	if (dl_rq->running_bw > old)
253 		dl_rq->running_bw = 0;
254 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257 
258 static inline
259 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 	u64 old = dl_rq->this_bw;
262 
263 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 	dl_rq->this_bw += dl_bw;
265 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
266 }
267 
268 static inline
269 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
270 {
271 	u64 old = dl_rq->this_bw;
272 
273 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
274 	dl_rq->this_bw -= dl_bw;
275 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
276 	if (dl_rq->this_bw > old)
277 		dl_rq->this_bw = 0;
278 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
279 }
280 
281 static inline
282 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
283 {
284 	if (!dl_entity_is_special(dl_se))
285 		__add_rq_bw(dl_se->dl_bw, dl_rq);
286 }
287 
288 static inline
289 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
290 {
291 	if (!dl_entity_is_special(dl_se))
292 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
293 }
294 
295 static inline
296 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 	if (!dl_entity_is_special(dl_se))
299 		__add_running_bw(dl_se->dl_bw, dl_rq);
300 }
301 
302 static inline
303 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 	if (!dl_entity_is_special(dl_se))
306 		__sub_running_bw(dl_se->dl_bw, dl_rq);
307 }
308 
309 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
310 {
311 	struct rq *rq;
312 
313 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
314 
315 	if (task_on_rq_queued(p))
316 		return;
317 
318 	rq = task_rq(p);
319 	if (p->dl.dl_non_contending) {
320 		sub_running_bw(&p->dl, &rq->dl);
321 		p->dl.dl_non_contending = 0;
322 		/*
323 		 * If the timer handler is currently running and the
324 		 * timer cannot be canceled, inactive_task_timer()
325 		 * will see that dl_not_contending is not set, and
326 		 * will not touch the rq's active utilization,
327 		 * so we are still safe.
328 		 */
329 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
330 			put_task_struct(p);
331 	}
332 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
333 	__add_rq_bw(new_bw, &rq->dl);
334 }
335 
336 /*
337  * The utilization of a task cannot be immediately removed from
338  * the rq active utilization (running_bw) when the task blocks.
339  * Instead, we have to wait for the so called "0-lag time".
340  *
341  * If a task blocks before the "0-lag time", a timer (the inactive
342  * timer) is armed, and running_bw is decreased when the timer
343  * fires.
344  *
345  * If the task wakes up again before the inactive timer fires,
346  * the timer is canceled, whereas if the task wakes up after the
347  * inactive timer fired (and running_bw has been decreased) the
348  * task's utilization has to be added to running_bw again.
349  * A flag in the deadline scheduling entity (dl_non_contending)
350  * is used to avoid race conditions between the inactive timer handler
351  * and task wakeups.
352  *
353  * The following diagram shows how running_bw is updated. A task is
354  * "ACTIVE" when its utilization contributes to running_bw; an
355  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
356  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
357  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
358  * time already passed, which does not contribute to running_bw anymore.
359  *                              +------------------+
360  *             wakeup           |    ACTIVE        |
361  *          +------------------>+   contending     |
362  *          | add_running_bw    |                  |
363  *          |                   +----+------+------+
364  *          |                        |      ^
365  *          |                dequeue |      |
366  * +--------+-------+                |      |
367  * |                |   t >= 0-lag   |      | wakeup
368  * |    INACTIVE    |<---------------+      |
369  * |                | sub_running_bw |      |
370  * +--------+-------+                |      |
371  *          ^                        |      |
372  *          |              t < 0-lag |      |
373  *          |                        |      |
374  *          |                        V      |
375  *          |                   +----+------+------+
376  *          | sub_running_bw    |    ACTIVE        |
377  *          +-------------------+                  |
378  *            inactive timer    |  non contending  |
379  *            fired             +------------------+
380  *
381  * The task_non_contending() function is invoked when a task
382  * blocks, and checks if the 0-lag time already passed or
383  * not (in the first case, it directly updates running_bw;
384  * in the second case, it arms the inactive timer).
385  *
386  * The task_contending() function is invoked when a task wakes
387  * up, and checks if the task is still in the "ACTIVE non contending"
388  * state or not (in the second case, it updates running_bw).
389  */
390 static void task_non_contending(struct task_struct *p)
391 {
392 	struct sched_dl_entity *dl_se = &p->dl;
393 	struct hrtimer *timer = &dl_se->inactive_timer;
394 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
395 	struct rq *rq = rq_of_dl_rq(dl_rq);
396 	s64 zerolag_time;
397 
398 	/*
399 	 * If this is a non-deadline task that has been boosted,
400 	 * do nothing
401 	 */
402 	if (dl_se->dl_runtime == 0)
403 		return;
404 
405 	if (dl_entity_is_special(dl_se))
406 		return;
407 
408 	WARN_ON(dl_se->dl_non_contending);
409 
410 	zerolag_time = dl_se->deadline -
411 		 div64_long((dl_se->runtime * dl_se->dl_period),
412 			dl_se->dl_runtime);
413 
414 	/*
415 	 * Using relative times instead of the absolute "0-lag time"
416 	 * allows to simplify the code
417 	 */
418 	zerolag_time -= rq_clock(rq);
419 
420 	/*
421 	 * If the "0-lag time" already passed, decrease the active
422 	 * utilization now, instead of starting a timer
423 	 */
424 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
425 		if (dl_task(p))
426 			sub_running_bw(dl_se, dl_rq);
427 		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
428 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
429 
430 			if (READ_ONCE(p->__state) == TASK_DEAD)
431 				sub_rq_bw(&p->dl, &rq->dl);
432 			raw_spin_lock(&dl_b->lock);
433 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
434 			__dl_clear_params(p);
435 			raw_spin_unlock(&dl_b->lock);
436 		}
437 
438 		return;
439 	}
440 
441 	dl_se->dl_non_contending = 1;
442 	get_task_struct(p);
443 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
444 }
445 
446 static void task_contending(struct sched_dl_entity *dl_se, int flags)
447 {
448 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
449 
450 	/*
451 	 * If this is a non-deadline task that has been boosted,
452 	 * do nothing
453 	 */
454 	if (dl_se->dl_runtime == 0)
455 		return;
456 
457 	if (flags & ENQUEUE_MIGRATED)
458 		add_rq_bw(dl_se, dl_rq);
459 
460 	if (dl_se->dl_non_contending) {
461 		dl_se->dl_non_contending = 0;
462 		/*
463 		 * If the timer handler is currently running and the
464 		 * timer cannot be canceled, inactive_task_timer()
465 		 * will see that dl_not_contending is not set, and
466 		 * will not touch the rq's active utilization,
467 		 * so we are still safe.
468 		 */
469 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
470 			put_task_struct(dl_task_of(dl_se));
471 	} else {
472 		/*
473 		 * Since "dl_non_contending" is not set, the
474 		 * task's utilization has already been removed from
475 		 * active utilization (either when the task blocked,
476 		 * when the "inactive timer" fired).
477 		 * So, add it back.
478 		 */
479 		add_running_bw(dl_se, dl_rq);
480 	}
481 }
482 
483 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
484 {
485 	struct sched_dl_entity *dl_se = &p->dl;
486 
487 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
488 }
489 
490 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
491 
492 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
493 {
494 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
495 	dl_b->dl_period = period;
496 	dl_b->dl_runtime = runtime;
497 }
498 
499 void init_dl_bw(struct dl_bw *dl_b)
500 {
501 	raw_spin_lock_init(&dl_b->lock);
502 	if (global_rt_runtime() == RUNTIME_INF)
503 		dl_b->bw = -1;
504 	else
505 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
506 	dl_b->total_bw = 0;
507 }
508 
509 void init_dl_rq(struct dl_rq *dl_rq)
510 {
511 	dl_rq->root = RB_ROOT_CACHED;
512 
513 #ifdef CONFIG_SMP
514 	/* zero means no -deadline tasks */
515 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
516 
517 	dl_rq->dl_nr_migratory = 0;
518 	dl_rq->overloaded = 0;
519 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
520 #else
521 	init_dl_bw(&dl_rq->dl_bw);
522 #endif
523 
524 	dl_rq->running_bw = 0;
525 	dl_rq->this_bw = 0;
526 	init_dl_rq_bw_ratio(dl_rq);
527 }
528 
529 #ifdef CONFIG_SMP
530 
531 static inline int dl_overloaded(struct rq *rq)
532 {
533 	return atomic_read(&rq->rd->dlo_count);
534 }
535 
536 static inline void dl_set_overload(struct rq *rq)
537 {
538 	if (!rq->online)
539 		return;
540 
541 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
542 	/*
543 	 * Must be visible before the overload count is
544 	 * set (as in sched_rt.c).
545 	 *
546 	 * Matched by the barrier in pull_dl_task().
547 	 */
548 	smp_wmb();
549 	atomic_inc(&rq->rd->dlo_count);
550 }
551 
552 static inline void dl_clear_overload(struct rq *rq)
553 {
554 	if (!rq->online)
555 		return;
556 
557 	atomic_dec(&rq->rd->dlo_count);
558 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
559 }
560 
561 static void update_dl_migration(struct dl_rq *dl_rq)
562 {
563 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
564 		if (!dl_rq->overloaded) {
565 			dl_set_overload(rq_of_dl_rq(dl_rq));
566 			dl_rq->overloaded = 1;
567 		}
568 	} else if (dl_rq->overloaded) {
569 		dl_clear_overload(rq_of_dl_rq(dl_rq));
570 		dl_rq->overloaded = 0;
571 	}
572 }
573 
574 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
575 {
576 	struct task_struct *p = dl_task_of(dl_se);
577 
578 	if (p->nr_cpus_allowed > 1)
579 		dl_rq->dl_nr_migratory++;
580 
581 	update_dl_migration(dl_rq);
582 }
583 
584 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
585 {
586 	struct task_struct *p = dl_task_of(dl_se);
587 
588 	if (p->nr_cpus_allowed > 1)
589 		dl_rq->dl_nr_migratory--;
590 
591 	update_dl_migration(dl_rq);
592 }
593 
594 #define __node_2_pdl(node) \
595 	rb_entry((node), struct task_struct, pushable_dl_tasks)
596 
597 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
598 {
599 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
600 }
601 
602 /*
603  * The list of pushable -deadline task is not a plist, like in
604  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
605  */
606 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
607 {
608 	struct rb_node *leftmost;
609 
610 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
611 
612 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
613 				 &rq->dl.pushable_dl_tasks_root,
614 				 __pushable_less);
615 	if (leftmost)
616 		rq->dl.earliest_dl.next = p->dl.deadline;
617 }
618 
619 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
620 {
621 	struct dl_rq *dl_rq = &rq->dl;
622 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
623 	struct rb_node *leftmost;
624 
625 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
626 		return;
627 
628 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
629 	if (leftmost)
630 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
631 
632 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
633 }
634 
635 static inline int has_pushable_dl_tasks(struct rq *rq)
636 {
637 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
638 }
639 
640 static int push_dl_task(struct rq *rq);
641 
642 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
643 {
644 	return rq->online && dl_task(prev);
645 }
646 
647 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
648 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
649 
650 static void push_dl_tasks(struct rq *);
651 static void pull_dl_task(struct rq *);
652 
653 static inline void deadline_queue_push_tasks(struct rq *rq)
654 {
655 	if (!has_pushable_dl_tasks(rq))
656 		return;
657 
658 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
659 }
660 
661 static inline void deadline_queue_pull_task(struct rq *rq)
662 {
663 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
664 }
665 
666 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
667 
668 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
669 {
670 	struct rq *later_rq = NULL;
671 	struct dl_bw *dl_b;
672 
673 	later_rq = find_lock_later_rq(p, rq);
674 	if (!later_rq) {
675 		int cpu;
676 
677 		/*
678 		 * If we cannot preempt any rq, fall back to pick any
679 		 * online CPU:
680 		 */
681 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
682 		if (cpu >= nr_cpu_ids) {
683 			/*
684 			 * Failed to find any suitable CPU.
685 			 * The task will never come back!
686 			 */
687 			BUG_ON(dl_bandwidth_enabled());
688 
689 			/*
690 			 * If admission control is disabled we
691 			 * try a little harder to let the task
692 			 * run.
693 			 */
694 			cpu = cpumask_any(cpu_active_mask);
695 		}
696 		later_rq = cpu_rq(cpu);
697 		double_lock_balance(rq, later_rq);
698 	}
699 
700 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
701 		/*
702 		 * Inactive timer is armed (or callback is running, but
703 		 * waiting for us to release rq locks). In any case, when it
704 		 * will fire (or continue), it will see running_bw of this
705 		 * task migrated to later_rq (and correctly handle it).
706 		 */
707 		sub_running_bw(&p->dl, &rq->dl);
708 		sub_rq_bw(&p->dl, &rq->dl);
709 
710 		add_rq_bw(&p->dl, &later_rq->dl);
711 		add_running_bw(&p->dl, &later_rq->dl);
712 	} else {
713 		sub_rq_bw(&p->dl, &rq->dl);
714 		add_rq_bw(&p->dl, &later_rq->dl);
715 	}
716 
717 	/*
718 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
719 	 * since p is still hanging out in the old (now moved to default) root
720 	 * domain.
721 	 */
722 	dl_b = &rq->rd->dl_bw;
723 	raw_spin_lock(&dl_b->lock);
724 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
725 	raw_spin_unlock(&dl_b->lock);
726 
727 	dl_b = &later_rq->rd->dl_bw;
728 	raw_spin_lock(&dl_b->lock);
729 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
730 	raw_spin_unlock(&dl_b->lock);
731 
732 	set_task_cpu(p, later_rq->cpu);
733 	double_unlock_balance(later_rq, rq);
734 
735 	return later_rq;
736 }
737 
738 #else
739 
740 static inline
741 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
742 {
743 }
744 
745 static inline
746 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
747 {
748 }
749 
750 static inline
751 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
752 {
753 }
754 
755 static inline
756 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
757 {
758 }
759 
760 static inline void deadline_queue_push_tasks(struct rq *rq)
761 {
762 }
763 
764 static inline void deadline_queue_pull_task(struct rq *rq)
765 {
766 }
767 #endif /* CONFIG_SMP */
768 
769 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
771 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
772 
773 /*
774  * We are being explicitly informed that a new instance is starting,
775  * and this means that:
776  *  - the absolute deadline of the entity has to be placed at
777  *    current time + relative deadline;
778  *  - the runtime of the entity has to be set to the maximum value.
779  *
780  * The capability of specifying such event is useful whenever a -deadline
781  * entity wants to (try to!) synchronize its behaviour with the scheduler's
782  * one, and to (try to!) reconcile itself with its own scheduling
783  * parameters.
784  */
785 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
786 {
787 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
788 	struct rq *rq = rq_of_dl_rq(dl_rq);
789 
790 	WARN_ON(is_dl_boosted(dl_se));
791 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
792 
793 	/*
794 	 * We are racing with the deadline timer. So, do nothing because
795 	 * the deadline timer handler will take care of properly recharging
796 	 * the runtime and postponing the deadline
797 	 */
798 	if (dl_se->dl_throttled)
799 		return;
800 
801 	/*
802 	 * We use the regular wall clock time to set deadlines in the
803 	 * future; in fact, we must consider execution overheads (time
804 	 * spent on hardirq context, etc.).
805 	 */
806 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
807 	dl_se->runtime = dl_se->dl_runtime;
808 }
809 
810 /*
811  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
812  * possibility of a entity lasting more than what it declared, and thus
813  * exhausting its runtime.
814  *
815  * Here we are interested in making runtime overrun possible, but we do
816  * not want a entity which is misbehaving to affect the scheduling of all
817  * other entities.
818  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
819  * is used, in order to confine each entity within its own bandwidth.
820  *
821  * This function deals exactly with that, and ensures that when the runtime
822  * of a entity is replenished, its deadline is also postponed. That ensures
823  * the overrunning entity can't interfere with other entity in the system and
824  * can't make them miss their deadlines. Reasons why this kind of overruns
825  * could happen are, typically, a entity voluntarily trying to overcome its
826  * runtime, or it just underestimated it during sched_setattr().
827  */
828 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
829 {
830 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
831 	struct rq *rq = rq_of_dl_rq(dl_rq);
832 
833 	BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
834 
835 	/*
836 	 * This could be the case for a !-dl task that is boosted.
837 	 * Just go with full inherited parameters.
838 	 */
839 	if (dl_se->dl_deadline == 0) {
840 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
841 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
842 	}
843 
844 	if (dl_se->dl_yielded && dl_se->runtime > 0)
845 		dl_se->runtime = 0;
846 
847 	/*
848 	 * We keep moving the deadline away until we get some
849 	 * available runtime for the entity. This ensures correct
850 	 * handling of situations where the runtime overrun is
851 	 * arbitrary large.
852 	 */
853 	while (dl_se->runtime <= 0) {
854 		dl_se->deadline += pi_of(dl_se)->dl_period;
855 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
856 	}
857 
858 	/*
859 	 * At this point, the deadline really should be "in
860 	 * the future" with respect to rq->clock. If it's
861 	 * not, we are, for some reason, lagging too much!
862 	 * Anyway, after having warn userspace abut that,
863 	 * we still try to keep the things running by
864 	 * resetting the deadline and the budget of the
865 	 * entity.
866 	 */
867 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
868 		printk_deferred_once("sched: DL replenish lagged too much\n");
869 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
870 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
871 	}
872 
873 	if (dl_se->dl_yielded)
874 		dl_se->dl_yielded = 0;
875 	if (dl_se->dl_throttled)
876 		dl_se->dl_throttled = 0;
877 }
878 
879 /*
880  * Here we check if --at time t-- an entity (which is probably being
881  * [re]activated or, in general, enqueued) can use its remaining runtime
882  * and its current deadline _without_ exceeding the bandwidth it is
883  * assigned (function returns true if it can't). We are in fact applying
884  * one of the CBS rules: when a task wakes up, if the residual runtime
885  * over residual deadline fits within the allocated bandwidth, then we
886  * can keep the current (absolute) deadline and residual budget without
887  * disrupting the schedulability of the system. Otherwise, we should
888  * refill the runtime and set the deadline a period in the future,
889  * because keeping the current (absolute) deadline of the task would
890  * result in breaking guarantees promised to other tasks (refer to
891  * Documentation/scheduler/sched-deadline.rst for more information).
892  *
893  * This function returns true if:
894  *
895  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
896  *
897  * IOW we can't recycle current parameters.
898  *
899  * Notice that the bandwidth check is done against the deadline. For
900  * task with deadline equal to period this is the same of using
901  * dl_period instead of dl_deadline in the equation above.
902  */
903 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
904 {
905 	u64 left, right;
906 
907 	/*
908 	 * left and right are the two sides of the equation above,
909 	 * after a bit of shuffling to use multiplications instead
910 	 * of divisions.
911 	 *
912 	 * Note that none of the time values involved in the two
913 	 * multiplications are absolute: dl_deadline and dl_runtime
914 	 * are the relative deadline and the maximum runtime of each
915 	 * instance, runtime is the runtime left for the last instance
916 	 * and (deadline - t), since t is rq->clock, is the time left
917 	 * to the (absolute) deadline. Even if overflowing the u64 type
918 	 * is very unlikely to occur in both cases, here we scale down
919 	 * as we want to avoid that risk at all. Scaling down by 10
920 	 * means that we reduce granularity to 1us. We are fine with it,
921 	 * since this is only a true/false check and, anyway, thinking
922 	 * of anything below microseconds resolution is actually fiction
923 	 * (but still we want to give the user that illusion >;).
924 	 */
925 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
926 	right = ((dl_se->deadline - t) >> DL_SCALE) *
927 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
928 
929 	return dl_time_before(right, left);
930 }
931 
932 /*
933  * Revised wakeup rule [1]: For self-suspending tasks, rather then
934  * re-initializing task's runtime and deadline, the revised wakeup
935  * rule adjusts the task's runtime to avoid the task to overrun its
936  * density.
937  *
938  * Reasoning: a task may overrun the density if:
939  *    runtime / (deadline - t) > dl_runtime / dl_deadline
940  *
941  * Therefore, runtime can be adjusted to:
942  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
943  *
944  * In such way that runtime will be equal to the maximum density
945  * the task can use without breaking any rule.
946  *
947  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
948  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
949  */
950 static void
951 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
952 {
953 	u64 laxity = dl_se->deadline - rq_clock(rq);
954 
955 	/*
956 	 * If the task has deadline < period, and the deadline is in the past,
957 	 * it should already be throttled before this check.
958 	 *
959 	 * See update_dl_entity() comments for further details.
960 	 */
961 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
962 
963 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
964 }
965 
966 /*
967  * Regarding the deadline, a task with implicit deadline has a relative
968  * deadline == relative period. A task with constrained deadline has a
969  * relative deadline <= relative period.
970  *
971  * We support constrained deadline tasks. However, there are some restrictions
972  * applied only for tasks which do not have an implicit deadline. See
973  * update_dl_entity() to know more about such restrictions.
974  *
975  * The dl_is_implicit() returns true if the task has an implicit deadline.
976  */
977 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
978 {
979 	return dl_se->dl_deadline == dl_se->dl_period;
980 }
981 
982 /*
983  * When a deadline entity is placed in the runqueue, its runtime and deadline
984  * might need to be updated. This is done by a CBS wake up rule. There are two
985  * different rules: 1) the original CBS; and 2) the Revisited CBS.
986  *
987  * When the task is starting a new period, the Original CBS is used. In this
988  * case, the runtime is replenished and a new absolute deadline is set.
989  *
990  * When a task is queued before the begin of the next period, using the
991  * remaining runtime and deadline could make the entity to overflow, see
992  * dl_entity_overflow() to find more about runtime overflow. When such case
993  * is detected, the runtime and deadline need to be updated.
994  *
995  * If the task has an implicit deadline, i.e., deadline == period, the Original
996  * CBS is applied. the runtime is replenished and a new absolute deadline is
997  * set, as in the previous cases.
998  *
999  * However, the Original CBS does not work properly for tasks with
1000  * deadline < period, which are said to have a constrained deadline. By
1001  * applying the Original CBS, a constrained deadline task would be able to run
1002  * runtime/deadline in a period. With deadline < period, the task would
1003  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1004  *
1005  * In order to prevent this misbehave, the Revisited CBS is used for
1006  * constrained deadline tasks when a runtime overflow is detected. In the
1007  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1008  * the remaining runtime of the task is reduced to avoid runtime overflow.
1009  * Please refer to the comments update_dl_revised_wakeup() function to find
1010  * more about the Revised CBS rule.
1011  */
1012 static void update_dl_entity(struct sched_dl_entity *dl_se)
1013 {
1014 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1015 	struct rq *rq = rq_of_dl_rq(dl_rq);
1016 
1017 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1018 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1019 
1020 		if (unlikely(!dl_is_implicit(dl_se) &&
1021 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1022 			     !is_dl_boosted(dl_se))) {
1023 			update_dl_revised_wakeup(dl_se, rq);
1024 			return;
1025 		}
1026 
1027 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
1028 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
1029 	}
1030 }
1031 
1032 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1033 {
1034 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1035 }
1036 
1037 /*
1038  * If the entity depleted all its runtime, and if we want it to sleep
1039  * while waiting for some new execution time to become available, we
1040  * set the bandwidth replenishment timer to the replenishment instant
1041  * and try to activate it.
1042  *
1043  * Notice that it is important for the caller to know if the timer
1044  * actually started or not (i.e., the replenishment instant is in
1045  * the future or in the past).
1046  */
1047 static int start_dl_timer(struct task_struct *p)
1048 {
1049 	struct sched_dl_entity *dl_se = &p->dl;
1050 	struct hrtimer *timer = &dl_se->dl_timer;
1051 	struct rq *rq = task_rq(p);
1052 	ktime_t now, act;
1053 	s64 delta;
1054 
1055 	lockdep_assert_rq_held(rq);
1056 
1057 	/*
1058 	 * We want the timer to fire at the deadline, but considering
1059 	 * that it is actually coming from rq->clock and not from
1060 	 * hrtimer's time base reading.
1061 	 */
1062 	act = ns_to_ktime(dl_next_period(dl_se));
1063 	now = hrtimer_cb_get_time(timer);
1064 	delta = ktime_to_ns(now) - rq_clock(rq);
1065 	act = ktime_add_ns(act, delta);
1066 
1067 	/*
1068 	 * If the expiry time already passed, e.g., because the value
1069 	 * chosen as the deadline is too small, don't even try to
1070 	 * start the timer in the past!
1071 	 */
1072 	if (ktime_us_delta(act, now) < 0)
1073 		return 0;
1074 
1075 	/*
1076 	 * !enqueued will guarantee another callback; even if one is already in
1077 	 * progress. This ensures a balanced {get,put}_task_struct().
1078 	 *
1079 	 * The race against __run_timer() clearing the enqueued state is
1080 	 * harmless because we're holding task_rq()->lock, therefore the timer
1081 	 * expiring after we've done the check will wait on its task_rq_lock()
1082 	 * and observe our state.
1083 	 */
1084 	if (!hrtimer_is_queued(timer)) {
1085 		get_task_struct(p);
1086 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1087 	}
1088 
1089 	return 1;
1090 }
1091 
1092 /*
1093  * This is the bandwidth enforcement timer callback. If here, we know
1094  * a task is not on its dl_rq, since the fact that the timer was running
1095  * means the task is throttled and needs a runtime replenishment.
1096  *
1097  * However, what we actually do depends on the fact the task is active,
1098  * (it is on its rq) or has been removed from there by a call to
1099  * dequeue_task_dl(). In the former case we must issue the runtime
1100  * replenishment and add the task back to the dl_rq; in the latter, we just
1101  * do nothing but clearing dl_throttled, so that runtime and deadline
1102  * updating (and the queueing back to dl_rq) will be done by the
1103  * next call to enqueue_task_dl().
1104  */
1105 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1106 {
1107 	struct sched_dl_entity *dl_se = container_of(timer,
1108 						     struct sched_dl_entity,
1109 						     dl_timer);
1110 	struct task_struct *p = dl_task_of(dl_se);
1111 	struct rq_flags rf;
1112 	struct rq *rq;
1113 
1114 	rq = task_rq_lock(p, &rf);
1115 
1116 	/*
1117 	 * The task might have changed its scheduling policy to something
1118 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1119 	 */
1120 	if (!dl_task(p))
1121 		goto unlock;
1122 
1123 	/*
1124 	 * The task might have been boosted by someone else and might be in the
1125 	 * boosting/deboosting path, its not throttled.
1126 	 */
1127 	if (is_dl_boosted(dl_se))
1128 		goto unlock;
1129 
1130 	/*
1131 	 * Spurious timer due to start_dl_timer() race; or we already received
1132 	 * a replenishment from rt_mutex_setprio().
1133 	 */
1134 	if (!dl_se->dl_throttled)
1135 		goto unlock;
1136 
1137 	sched_clock_tick();
1138 	update_rq_clock(rq);
1139 
1140 	/*
1141 	 * If the throttle happened during sched-out; like:
1142 	 *
1143 	 *   schedule()
1144 	 *     deactivate_task()
1145 	 *       dequeue_task_dl()
1146 	 *         update_curr_dl()
1147 	 *           start_dl_timer()
1148 	 *         __dequeue_task_dl()
1149 	 *     prev->on_rq = 0;
1150 	 *
1151 	 * We can be both throttled and !queued. Replenish the counter
1152 	 * but do not enqueue -- wait for our wakeup to do that.
1153 	 */
1154 	if (!task_on_rq_queued(p)) {
1155 		replenish_dl_entity(dl_se);
1156 		goto unlock;
1157 	}
1158 
1159 #ifdef CONFIG_SMP
1160 	if (unlikely(!rq->online)) {
1161 		/*
1162 		 * If the runqueue is no longer available, migrate the
1163 		 * task elsewhere. This necessarily changes rq.
1164 		 */
1165 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1166 		rq = dl_task_offline_migration(rq, p);
1167 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1168 		update_rq_clock(rq);
1169 
1170 		/*
1171 		 * Now that the task has been migrated to the new RQ and we
1172 		 * have that locked, proceed as normal and enqueue the task
1173 		 * there.
1174 		 */
1175 	}
1176 #endif
1177 
1178 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1179 	if (dl_task(rq->curr))
1180 		check_preempt_curr_dl(rq, p, 0);
1181 	else
1182 		resched_curr(rq);
1183 
1184 #ifdef CONFIG_SMP
1185 	/*
1186 	 * Queueing this task back might have overloaded rq, check if we need
1187 	 * to kick someone away.
1188 	 */
1189 	if (has_pushable_dl_tasks(rq)) {
1190 		/*
1191 		 * Nothing relies on rq->lock after this, so its safe to drop
1192 		 * rq->lock.
1193 		 */
1194 		rq_unpin_lock(rq, &rf);
1195 		push_dl_task(rq);
1196 		rq_repin_lock(rq, &rf);
1197 	}
1198 #endif
1199 
1200 unlock:
1201 	task_rq_unlock(rq, p, &rf);
1202 
1203 	/*
1204 	 * This can free the task_struct, including this hrtimer, do not touch
1205 	 * anything related to that after this.
1206 	 */
1207 	put_task_struct(p);
1208 
1209 	return HRTIMER_NORESTART;
1210 }
1211 
1212 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1213 {
1214 	struct hrtimer *timer = &dl_se->dl_timer;
1215 
1216 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1217 	timer->function = dl_task_timer;
1218 }
1219 
1220 /*
1221  * During the activation, CBS checks if it can reuse the current task's
1222  * runtime and period. If the deadline of the task is in the past, CBS
1223  * cannot use the runtime, and so it replenishes the task. This rule
1224  * works fine for implicit deadline tasks (deadline == period), and the
1225  * CBS was designed for implicit deadline tasks. However, a task with
1226  * constrained deadline (deadline < period) might be awakened after the
1227  * deadline, but before the next period. In this case, replenishing the
1228  * task would allow it to run for runtime / deadline. As in this case
1229  * deadline < period, CBS enables a task to run for more than the
1230  * runtime / period. In a very loaded system, this can cause a domino
1231  * effect, making other tasks miss their deadlines.
1232  *
1233  * To avoid this problem, in the activation of a constrained deadline
1234  * task after the deadline but before the next period, throttle the
1235  * task and set the replenishing timer to the begin of the next period,
1236  * unless it is boosted.
1237  */
1238 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1239 {
1240 	struct task_struct *p = dl_task_of(dl_se);
1241 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1242 
1243 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1244 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1245 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1246 			return;
1247 		dl_se->dl_throttled = 1;
1248 		if (dl_se->runtime > 0)
1249 			dl_se->runtime = 0;
1250 	}
1251 }
1252 
1253 static
1254 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1255 {
1256 	return (dl_se->runtime <= 0);
1257 }
1258 
1259 /*
1260  * This function implements the GRUB accounting rule:
1261  * according to the GRUB reclaiming algorithm, the runtime is
1262  * not decreased as "dq = -dt", but as
1263  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1264  * where u is the utilization of the task, Umax is the maximum reclaimable
1265  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1266  * as the difference between the "total runqueue utilization" and the
1267  * runqueue active utilization, and Uextra is the (per runqueue) extra
1268  * reclaimable utilization.
1269  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1270  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1271  * BW_SHIFT.
1272  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1273  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1274  * Since delta is a 64 bit variable, to have an overflow its value
1275  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1276  * So, overflow is not an issue here.
1277  */
1278 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1279 {
1280 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1281 	u64 u_act;
1282 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1283 
1284 	/*
1285 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1286 	 * we compare u_inact + rq->dl.extra_bw with
1287 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1288 	 * u_inact + rq->dl.extra_bw can be larger than
1289 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1290 	 * leading to wrong results)
1291 	 */
1292 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1293 		u_act = u_act_min;
1294 	else
1295 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1296 
1297 	return (delta * u_act) >> BW_SHIFT;
1298 }
1299 
1300 /*
1301  * Update the current task's runtime statistics (provided it is still
1302  * a -deadline task and has not been removed from the dl_rq).
1303  */
1304 static void update_curr_dl(struct rq *rq)
1305 {
1306 	struct task_struct *curr = rq->curr;
1307 	struct sched_dl_entity *dl_se = &curr->dl;
1308 	u64 delta_exec, scaled_delta_exec;
1309 	int cpu = cpu_of(rq);
1310 	u64 now;
1311 
1312 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1313 		return;
1314 
1315 	/*
1316 	 * Consumed budget is computed considering the time as
1317 	 * observed by schedulable tasks (excluding time spent
1318 	 * in hardirq context, etc.). Deadlines are instead
1319 	 * computed using hard walltime. This seems to be the more
1320 	 * natural solution, but the full ramifications of this
1321 	 * approach need further study.
1322 	 */
1323 	now = rq_clock_task(rq);
1324 	delta_exec = now - curr->se.exec_start;
1325 	if (unlikely((s64)delta_exec <= 0)) {
1326 		if (unlikely(dl_se->dl_yielded))
1327 			goto throttle;
1328 		return;
1329 	}
1330 
1331 	schedstat_set(curr->stats.exec_max,
1332 		      max(curr->stats.exec_max, delta_exec));
1333 
1334 	trace_sched_stat_runtime(curr, delta_exec, 0);
1335 
1336 	curr->se.sum_exec_runtime += delta_exec;
1337 	account_group_exec_runtime(curr, delta_exec);
1338 
1339 	curr->se.exec_start = now;
1340 	cgroup_account_cputime(curr, delta_exec);
1341 
1342 	if (dl_entity_is_special(dl_se))
1343 		return;
1344 
1345 	/*
1346 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1347 	 * spare reclaimed bandwidth is used to clock down frequency.
1348 	 *
1349 	 * For the others, we still need to scale reservation parameters
1350 	 * according to current frequency and CPU maximum capacity.
1351 	 */
1352 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1353 		scaled_delta_exec = grub_reclaim(delta_exec,
1354 						 rq,
1355 						 &curr->dl);
1356 	} else {
1357 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1358 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1359 
1360 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1361 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1362 	}
1363 
1364 	dl_se->runtime -= scaled_delta_exec;
1365 
1366 throttle:
1367 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1368 		dl_se->dl_throttled = 1;
1369 
1370 		/* If requested, inform the user about runtime overruns. */
1371 		if (dl_runtime_exceeded(dl_se) &&
1372 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1373 			dl_se->dl_overrun = 1;
1374 
1375 		__dequeue_task_dl(rq, curr, 0);
1376 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1377 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1378 
1379 		if (!is_leftmost(curr, &rq->dl))
1380 			resched_curr(rq);
1381 	}
1382 
1383 	/*
1384 	 * Because -- for now -- we share the rt bandwidth, we need to
1385 	 * account our runtime there too, otherwise actual rt tasks
1386 	 * would be able to exceed the shared quota.
1387 	 *
1388 	 * Account to the root rt group for now.
1389 	 *
1390 	 * The solution we're working towards is having the RT groups scheduled
1391 	 * using deadline servers -- however there's a few nasties to figure
1392 	 * out before that can happen.
1393 	 */
1394 	if (rt_bandwidth_enabled()) {
1395 		struct rt_rq *rt_rq = &rq->rt;
1396 
1397 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1398 		/*
1399 		 * We'll let actual RT tasks worry about the overflow here, we
1400 		 * have our own CBS to keep us inline; only account when RT
1401 		 * bandwidth is relevant.
1402 		 */
1403 		if (sched_rt_bandwidth_account(rt_rq))
1404 			rt_rq->rt_time += delta_exec;
1405 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1406 	}
1407 }
1408 
1409 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1410 {
1411 	struct sched_dl_entity *dl_se = container_of(timer,
1412 						     struct sched_dl_entity,
1413 						     inactive_timer);
1414 	struct task_struct *p = dl_task_of(dl_se);
1415 	struct rq_flags rf;
1416 	struct rq *rq;
1417 
1418 	rq = task_rq_lock(p, &rf);
1419 
1420 	sched_clock_tick();
1421 	update_rq_clock(rq);
1422 
1423 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1424 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1425 
1426 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1427 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1428 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1429 			dl_se->dl_non_contending = 0;
1430 		}
1431 
1432 		raw_spin_lock(&dl_b->lock);
1433 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1434 		raw_spin_unlock(&dl_b->lock);
1435 		__dl_clear_params(p);
1436 
1437 		goto unlock;
1438 	}
1439 	if (dl_se->dl_non_contending == 0)
1440 		goto unlock;
1441 
1442 	sub_running_bw(dl_se, &rq->dl);
1443 	dl_se->dl_non_contending = 0;
1444 unlock:
1445 	task_rq_unlock(rq, p, &rf);
1446 	put_task_struct(p);
1447 
1448 	return HRTIMER_NORESTART;
1449 }
1450 
1451 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1452 {
1453 	struct hrtimer *timer = &dl_se->inactive_timer;
1454 
1455 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1456 	timer->function = inactive_task_timer;
1457 }
1458 
1459 #define __node_2_dle(node) \
1460 	rb_entry((node), struct sched_dl_entity, rb_node)
1461 
1462 #ifdef CONFIG_SMP
1463 
1464 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1465 {
1466 	struct rq *rq = rq_of_dl_rq(dl_rq);
1467 
1468 	if (dl_rq->earliest_dl.curr == 0 ||
1469 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1470 		if (dl_rq->earliest_dl.curr == 0)
1471 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1472 		dl_rq->earliest_dl.curr = deadline;
1473 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1474 	}
1475 }
1476 
1477 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1478 {
1479 	struct rq *rq = rq_of_dl_rq(dl_rq);
1480 
1481 	/*
1482 	 * Since we may have removed our earliest (and/or next earliest)
1483 	 * task we must recompute them.
1484 	 */
1485 	if (!dl_rq->dl_nr_running) {
1486 		dl_rq->earliest_dl.curr = 0;
1487 		dl_rq->earliest_dl.next = 0;
1488 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1489 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1490 	} else {
1491 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1492 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1493 
1494 		dl_rq->earliest_dl.curr = entry->deadline;
1495 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1496 	}
1497 }
1498 
1499 #else
1500 
1501 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1502 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1503 
1504 #endif /* CONFIG_SMP */
1505 
1506 static inline
1507 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1508 {
1509 	int prio = dl_task_of(dl_se)->prio;
1510 	u64 deadline = dl_se->deadline;
1511 
1512 	WARN_ON(!dl_prio(prio));
1513 	dl_rq->dl_nr_running++;
1514 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1515 
1516 	inc_dl_deadline(dl_rq, deadline);
1517 	inc_dl_migration(dl_se, dl_rq);
1518 }
1519 
1520 static inline
1521 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1522 {
1523 	int prio = dl_task_of(dl_se)->prio;
1524 
1525 	WARN_ON(!dl_prio(prio));
1526 	WARN_ON(!dl_rq->dl_nr_running);
1527 	dl_rq->dl_nr_running--;
1528 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1529 
1530 	dec_dl_deadline(dl_rq, dl_se->deadline);
1531 	dec_dl_migration(dl_se, dl_rq);
1532 }
1533 
1534 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1535 {
1536 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1537 }
1538 
1539 static inline struct sched_statistics *
1540 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1541 {
1542 	return &dl_task_of(dl_se)->stats;
1543 }
1544 
1545 static inline void
1546 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1547 {
1548 	struct sched_statistics *stats;
1549 
1550 	if (!schedstat_enabled())
1551 		return;
1552 
1553 	stats = __schedstats_from_dl_se(dl_se);
1554 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1555 }
1556 
1557 static inline void
1558 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1559 {
1560 	struct sched_statistics *stats;
1561 
1562 	if (!schedstat_enabled())
1563 		return;
1564 
1565 	stats = __schedstats_from_dl_se(dl_se);
1566 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1567 }
1568 
1569 static inline void
1570 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1571 {
1572 	struct sched_statistics *stats;
1573 
1574 	if (!schedstat_enabled())
1575 		return;
1576 
1577 	stats = __schedstats_from_dl_se(dl_se);
1578 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1579 }
1580 
1581 static inline void
1582 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1583 			int flags)
1584 {
1585 	if (!schedstat_enabled())
1586 		return;
1587 
1588 	if (flags & ENQUEUE_WAKEUP)
1589 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1590 }
1591 
1592 static inline void
1593 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1594 			int flags)
1595 {
1596 	struct task_struct *p = dl_task_of(dl_se);
1597 
1598 	if (!schedstat_enabled())
1599 		return;
1600 
1601 	if ((flags & DEQUEUE_SLEEP)) {
1602 		unsigned int state;
1603 
1604 		state = READ_ONCE(p->__state);
1605 		if (state & TASK_INTERRUPTIBLE)
1606 			__schedstat_set(p->stats.sleep_start,
1607 					rq_clock(rq_of_dl_rq(dl_rq)));
1608 
1609 		if (state & TASK_UNINTERRUPTIBLE)
1610 			__schedstat_set(p->stats.block_start,
1611 					rq_clock(rq_of_dl_rq(dl_rq)));
1612 	}
1613 }
1614 
1615 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1616 {
1617 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1618 
1619 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1620 
1621 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1622 
1623 	inc_dl_tasks(dl_se, dl_rq);
1624 }
1625 
1626 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1627 {
1628 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1629 
1630 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1631 		return;
1632 
1633 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1634 
1635 	RB_CLEAR_NODE(&dl_se->rb_node);
1636 
1637 	dec_dl_tasks(dl_se, dl_rq);
1638 }
1639 
1640 static void
1641 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1642 {
1643 	BUG_ON(on_dl_rq(dl_se));
1644 
1645 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1646 
1647 	/*
1648 	 * If this is a wakeup or a new instance, the scheduling
1649 	 * parameters of the task might need updating. Otherwise,
1650 	 * we want a replenishment of its runtime.
1651 	 */
1652 	if (flags & ENQUEUE_WAKEUP) {
1653 		task_contending(dl_se, flags);
1654 		update_dl_entity(dl_se);
1655 	} else if (flags & ENQUEUE_REPLENISH) {
1656 		replenish_dl_entity(dl_se);
1657 	} else if ((flags & ENQUEUE_RESTORE) &&
1658 		  dl_time_before(dl_se->deadline,
1659 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1660 		setup_new_dl_entity(dl_se);
1661 	}
1662 
1663 	__enqueue_dl_entity(dl_se);
1664 }
1665 
1666 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1667 {
1668 	__dequeue_dl_entity(dl_se);
1669 }
1670 
1671 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1672 {
1673 	if (is_dl_boosted(&p->dl)) {
1674 		/*
1675 		 * Because of delays in the detection of the overrun of a
1676 		 * thread's runtime, it might be the case that a thread
1677 		 * goes to sleep in a rt mutex with negative runtime. As
1678 		 * a consequence, the thread will be throttled.
1679 		 *
1680 		 * While waiting for the mutex, this thread can also be
1681 		 * boosted via PI, resulting in a thread that is throttled
1682 		 * and boosted at the same time.
1683 		 *
1684 		 * In this case, the boost overrides the throttle.
1685 		 */
1686 		if (p->dl.dl_throttled) {
1687 			/*
1688 			 * The replenish timer needs to be canceled. No
1689 			 * problem if it fires concurrently: boosted threads
1690 			 * are ignored in dl_task_timer().
1691 			 */
1692 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1693 			p->dl.dl_throttled = 0;
1694 		}
1695 	} else if (!dl_prio(p->normal_prio)) {
1696 		/*
1697 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1698 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1699 		 * replenishing it, as it's going to return back to its original
1700 		 * scheduling class after this. If it has been throttled, we need to
1701 		 * clear the flag, otherwise the task may wake up as throttled after
1702 		 * being boosted again with no means to replenish the runtime and clear
1703 		 * the throttle.
1704 		 */
1705 		p->dl.dl_throttled = 0;
1706 		if (!(flags & ENQUEUE_REPLENISH))
1707 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1708 					     task_pid_nr(p));
1709 
1710 		return;
1711 	}
1712 
1713 	/*
1714 	 * Check if a constrained deadline task was activated
1715 	 * after the deadline but before the next period.
1716 	 * If that is the case, the task will be throttled and
1717 	 * the replenishment timer will be set to the next period.
1718 	 */
1719 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1720 		dl_check_constrained_dl(&p->dl);
1721 
1722 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1723 		add_rq_bw(&p->dl, &rq->dl);
1724 		add_running_bw(&p->dl, &rq->dl);
1725 	}
1726 
1727 	/*
1728 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1729 	 * its budget it needs a replenishment and, since it now is on
1730 	 * its rq, the bandwidth timer callback (which clearly has not
1731 	 * run yet) will take care of this.
1732 	 * However, the active utilization does not depend on the fact
1733 	 * that the task is on the runqueue or not (but depends on the
1734 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1735 	 * In other words, even if a task is throttled its utilization must
1736 	 * be counted in the active utilization; hence, we need to call
1737 	 * add_running_bw().
1738 	 */
1739 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1740 		if (flags & ENQUEUE_WAKEUP)
1741 			task_contending(&p->dl, flags);
1742 
1743 		return;
1744 	}
1745 
1746 	check_schedstat_required();
1747 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1748 
1749 	enqueue_dl_entity(&p->dl, flags);
1750 
1751 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1752 		enqueue_pushable_dl_task(rq, p);
1753 }
1754 
1755 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1756 {
1757 	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1758 	dequeue_dl_entity(&p->dl);
1759 	dequeue_pushable_dl_task(rq, p);
1760 }
1761 
1762 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1763 {
1764 	update_curr_dl(rq);
1765 	__dequeue_task_dl(rq, p, flags);
1766 
1767 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1768 		sub_running_bw(&p->dl, &rq->dl);
1769 		sub_rq_bw(&p->dl, &rq->dl);
1770 	}
1771 
1772 	/*
1773 	 * This check allows to start the inactive timer (or to immediately
1774 	 * decrease the active utilization, if needed) in two cases:
1775 	 * when the task blocks and when it is terminating
1776 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1777 	 * way, because from GRUB's point of view the same thing is happening
1778 	 * (the task moves from "active contending" to "active non contending"
1779 	 * or "inactive")
1780 	 */
1781 	if (flags & DEQUEUE_SLEEP)
1782 		task_non_contending(p);
1783 }
1784 
1785 /*
1786  * Yield task semantic for -deadline tasks is:
1787  *
1788  *   get off from the CPU until our next instance, with
1789  *   a new runtime. This is of little use now, since we
1790  *   don't have a bandwidth reclaiming mechanism. Anyway,
1791  *   bandwidth reclaiming is planned for the future, and
1792  *   yield_task_dl will indicate that some spare budget
1793  *   is available for other task instances to use it.
1794  */
1795 static void yield_task_dl(struct rq *rq)
1796 {
1797 	/*
1798 	 * We make the task go to sleep until its current deadline by
1799 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1800 	 * it and the bandwidth timer will wake it up and will give it
1801 	 * new scheduling parameters (thanks to dl_yielded=1).
1802 	 */
1803 	rq->curr->dl.dl_yielded = 1;
1804 
1805 	update_rq_clock(rq);
1806 	update_curr_dl(rq);
1807 	/*
1808 	 * Tell update_rq_clock() that we've just updated,
1809 	 * so we don't do microscopic update in schedule()
1810 	 * and double the fastpath cost.
1811 	 */
1812 	rq_clock_skip_update(rq);
1813 }
1814 
1815 #ifdef CONFIG_SMP
1816 
1817 static int find_later_rq(struct task_struct *task);
1818 
1819 static int
1820 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1821 {
1822 	struct task_struct *curr;
1823 	bool select_rq;
1824 	struct rq *rq;
1825 
1826 	if (!(flags & WF_TTWU))
1827 		goto out;
1828 
1829 	rq = cpu_rq(cpu);
1830 
1831 	rcu_read_lock();
1832 	curr = READ_ONCE(rq->curr); /* unlocked access */
1833 
1834 	/*
1835 	 * If we are dealing with a -deadline task, we must
1836 	 * decide where to wake it up.
1837 	 * If it has a later deadline and the current task
1838 	 * on this rq can't move (provided the waking task
1839 	 * can!) we prefer to send it somewhere else. On the
1840 	 * other hand, if it has a shorter deadline, we
1841 	 * try to make it stay here, it might be important.
1842 	 */
1843 	select_rq = unlikely(dl_task(curr)) &&
1844 		    (curr->nr_cpus_allowed < 2 ||
1845 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1846 		    p->nr_cpus_allowed > 1;
1847 
1848 	/*
1849 	 * Take the capacity of the CPU into account to
1850 	 * ensure it fits the requirement of the task.
1851 	 */
1852 	if (static_branch_unlikely(&sched_asym_cpucapacity))
1853 		select_rq |= !dl_task_fits_capacity(p, cpu);
1854 
1855 	if (select_rq) {
1856 		int target = find_later_rq(p);
1857 
1858 		if (target != -1 &&
1859 				(dl_time_before(p->dl.deadline,
1860 					cpu_rq(target)->dl.earliest_dl.curr) ||
1861 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1862 			cpu = target;
1863 	}
1864 	rcu_read_unlock();
1865 
1866 out:
1867 	return cpu;
1868 }
1869 
1870 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1871 {
1872 	struct rq_flags rf;
1873 	struct rq *rq;
1874 
1875 	if (READ_ONCE(p->__state) != TASK_WAKING)
1876 		return;
1877 
1878 	rq = task_rq(p);
1879 	/*
1880 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1881 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1882 	 * rq->lock is not... So, lock it
1883 	 */
1884 	rq_lock(rq, &rf);
1885 	if (p->dl.dl_non_contending) {
1886 		update_rq_clock(rq);
1887 		sub_running_bw(&p->dl, &rq->dl);
1888 		p->dl.dl_non_contending = 0;
1889 		/*
1890 		 * If the timer handler is currently running and the
1891 		 * timer cannot be canceled, inactive_task_timer()
1892 		 * will see that dl_not_contending is not set, and
1893 		 * will not touch the rq's active utilization,
1894 		 * so we are still safe.
1895 		 */
1896 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1897 			put_task_struct(p);
1898 	}
1899 	sub_rq_bw(&p->dl, &rq->dl);
1900 	rq_unlock(rq, &rf);
1901 }
1902 
1903 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1904 {
1905 	/*
1906 	 * Current can't be migrated, useless to reschedule,
1907 	 * let's hope p can move out.
1908 	 */
1909 	if (rq->curr->nr_cpus_allowed == 1 ||
1910 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1911 		return;
1912 
1913 	/*
1914 	 * p is migratable, so let's not schedule it and
1915 	 * see if it is pushed or pulled somewhere else.
1916 	 */
1917 	if (p->nr_cpus_allowed != 1 &&
1918 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1919 		return;
1920 
1921 	resched_curr(rq);
1922 }
1923 
1924 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1925 {
1926 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1927 		/*
1928 		 * This is OK, because current is on_cpu, which avoids it being
1929 		 * picked for load-balance and preemption/IRQs are still
1930 		 * disabled avoiding further scheduler activity on it and we've
1931 		 * not yet started the picking loop.
1932 		 */
1933 		rq_unpin_lock(rq, rf);
1934 		pull_dl_task(rq);
1935 		rq_repin_lock(rq, rf);
1936 	}
1937 
1938 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1939 }
1940 #endif /* CONFIG_SMP */
1941 
1942 /*
1943  * Only called when both the current and waking task are -deadline
1944  * tasks.
1945  */
1946 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1947 				  int flags)
1948 {
1949 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1950 		resched_curr(rq);
1951 		return;
1952 	}
1953 
1954 #ifdef CONFIG_SMP
1955 	/*
1956 	 * In the unlikely case current and p have the same deadline
1957 	 * let us try to decide what's the best thing to do...
1958 	 */
1959 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1960 	    !test_tsk_need_resched(rq->curr))
1961 		check_preempt_equal_dl(rq, p);
1962 #endif /* CONFIG_SMP */
1963 }
1964 
1965 #ifdef CONFIG_SCHED_HRTICK
1966 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1967 {
1968 	hrtick_start(rq, p->dl.runtime);
1969 }
1970 #else /* !CONFIG_SCHED_HRTICK */
1971 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1972 {
1973 }
1974 #endif
1975 
1976 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1977 {
1978 	struct sched_dl_entity *dl_se = &p->dl;
1979 	struct dl_rq *dl_rq = &rq->dl;
1980 
1981 	p->se.exec_start = rq_clock_task(rq);
1982 	if (on_dl_rq(&p->dl))
1983 		update_stats_wait_end_dl(dl_rq, dl_se);
1984 
1985 	/* You can't push away the running task */
1986 	dequeue_pushable_dl_task(rq, p);
1987 
1988 	if (!first)
1989 		return;
1990 
1991 	if (hrtick_enabled_dl(rq))
1992 		start_hrtick_dl(rq, p);
1993 
1994 	if (rq->curr->sched_class != &dl_sched_class)
1995 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1996 
1997 	deadline_queue_push_tasks(rq);
1998 }
1999 
2000 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2001 {
2002 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2003 
2004 	if (!left)
2005 		return NULL;
2006 
2007 	return __node_2_dle(left);
2008 }
2009 
2010 static struct task_struct *pick_task_dl(struct rq *rq)
2011 {
2012 	struct sched_dl_entity *dl_se;
2013 	struct dl_rq *dl_rq = &rq->dl;
2014 	struct task_struct *p;
2015 
2016 	if (!sched_dl_runnable(rq))
2017 		return NULL;
2018 
2019 	dl_se = pick_next_dl_entity(dl_rq);
2020 	BUG_ON(!dl_se);
2021 	p = dl_task_of(dl_se);
2022 
2023 	return p;
2024 }
2025 
2026 static struct task_struct *pick_next_task_dl(struct rq *rq)
2027 {
2028 	struct task_struct *p;
2029 
2030 	p = pick_task_dl(rq);
2031 	if (p)
2032 		set_next_task_dl(rq, p, true);
2033 
2034 	return p;
2035 }
2036 
2037 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2038 {
2039 	struct sched_dl_entity *dl_se = &p->dl;
2040 	struct dl_rq *dl_rq = &rq->dl;
2041 
2042 	if (on_dl_rq(&p->dl))
2043 		update_stats_wait_start_dl(dl_rq, dl_se);
2044 
2045 	update_curr_dl(rq);
2046 
2047 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2048 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2049 		enqueue_pushable_dl_task(rq, p);
2050 }
2051 
2052 /*
2053  * scheduler tick hitting a task of our scheduling class.
2054  *
2055  * NOTE: This function can be called remotely by the tick offload that
2056  * goes along full dynticks. Therefore no local assumption can be made
2057  * and everything must be accessed through the @rq and @curr passed in
2058  * parameters.
2059  */
2060 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2061 {
2062 	update_curr_dl(rq);
2063 
2064 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2065 	/*
2066 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2067 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2068 	 * be set and schedule() will start a new hrtick for the next task.
2069 	 */
2070 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2071 	    is_leftmost(p, &rq->dl))
2072 		start_hrtick_dl(rq, p);
2073 }
2074 
2075 static void task_fork_dl(struct task_struct *p)
2076 {
2077 	/*
2078 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2079 	 * sched_fork()
2080 	 */
2081 }
2082 
2083 #ifdef CONFIG_SMP
2084 
2085 /* Only try algorithms three times */
2086 #define DL_MAX_TRIES 3
2087 
2088 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2089 {
2090 	if (!task_running(rq, p) &&
2091 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2092 		return 1;
2093 	return 0;
2094 }
2095 
2096 /*
2097  * Return the earliest pushable rq's task, which is suitable to be executed
2098  * on the CPU, NULL otherwise:
2099  */
2100 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2101 {
2102 	struct task_struct *p = NULL;
2103 	struct rb_node *next_node;
2104 
2105 	if (!has_pushable_dl_tasks(rq))
2106 		return NULL;
2107 
2108 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2109 
2110 next_node:
2111 	if (next_node) {
2112 		p = __node_2_pdl(next_node);
2113 
2114 		if (pick_dl_task(rq, p, cpu))
2115 			return p;
2116 
2117 		next_node = rb_next(next_node);
2118 		goto next_node;
2119 	}
2120 
2121 	return NULL;
2122 }
2123 
2124 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2125 
2126 static int find_later_rq(struct task_struct *task)
2127 {
2128 	struct sched_domain *sd;
2129 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2130 	int this_cpu = smp_processor_id();
2131 	int cpu = task_cpu(task);
2132 
2133 	/* Make sure the mask is initialized first */
2134 	if (unlikely(!later_mask))
2135 		return -1;
2136 
2137 	if (task->nr_cpus_allowed == 1)
2138 		return -1;
2139 
2140 	/*
2141 	 * We have to consider system topology and task affinity
2142 	 * first, then we can look for a suitable CPU.
2143 	 */
2144 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2145 		return -1;
2146 
2147 	/*
2148 	 * If we are here, some targets have been found, including
2149 	 * the most suitable which is, among the runqueues where the
2150 	 * current tasks have later deadlines than the task's one, the
2151 	 * rq with the latest possible one.
2152 	 *
2153 	 * Now we check how well this matches with task's
2154 	 * affinity and system topology.
2155 	 *
2156 	 * The last CPU where the task run is our first
2157 	 * guess, since it is most likely cache-hot there.
2158 	 */
2159 	if (cpumask_test_cpu(cpu, later_mask))
2160 		return cpu;
2161 	/*
2162 	 * Check if this_cpu is to be skipped (i.e., it is
2163 	 * not in the mask) or not.
2164 	 */
2165 	if (!cpumask_test_cpu(this_cpu, later_mask))
2166 		this_cpu = -1;
2167 
2168 	rcu_read_lock();
2169 	for_each_domain(cpu, sd) {
2170 		if (sd->flags & SD_WAKE_AFFINE) {
2171 			int best_cpu;
2172 
2173 			/*
2174 			 * If possible, preempting this_cpu is
2175 			 * cheaper than migrating.
2176 			 */
2177 			if (this_cpu != -1 &&
2178 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2179 				rcu_read_unlock();
2180 				return this_cpu;
2181 			}
2182 
2183 			best_cpu = cpumask_any_and_distribute(later_mask,
2184 							      sched_domain_span(sd));
2185 			/*
2186 			 * Last chance: if a CPU being in both later_mask
2187 			 * and current sd span is valid, that becomes our
2188 			 * choice. Of course, the latest possible CPU is
2189 			 * already under consideration through later_mask.
2190 			 */
2191 			if (best_cpu < nr_cpu_ids) {
2192 				rcu_read_unlock();
2193 				return best_cpu;
2194 			}
2195 		}
2196 	}
2197 	rcu_read_unlock();
2198 
2199 	/*
2200 	 * At this point, all our guesses failed, we just return
2201 	 * 'something', and let the caller sort the things out.
2202 	 */
2203 	if (this_cpu != -1)
2204 		return this_cpu;
2205 
2206 	cpu = cpumask_any_distribute(later_mask);
2207 	if (cpu < nr_cpu_ids)
2208 		return cpu;
2209 
2210 	return -1;
2211 }
2212 
2213 /* Locks the rq it finds */
2214 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2215 {
2216 	struct rq *later_rq = NULL;
2217 	int tries;
2218 	int cpu;
2219 
2220 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2221 		cpu = find_later_rq(task);
2222 
2223 		if ((cpu == -1) || (cpu == rq->cpu))
2224 			break;
2225 
2226 		later_rq = cpu_rq(cpu);
2227 
2228 		if (later_rq->dl.dl_nr_running &&
2229 		    !dl_time_before(task->dl.deadline,
2230 					later_rq->dl.earliest_dl.curr)) {
2231 			/*
2232 			 * Target rq has tasks of equal or earlier deadline,
2233 			 * retrying does not release any lock and is unlikely
2234 			 * to yield a different result.
2235 			 */
2236 			later_rq = NULL;
2237 			break;
2238 		}
2239 
2240 		/* Retry if something changed. */
2241 		if (double_lock_balance(rq, later_rq)) {
2242 			if (unlikely(task_rq(task) != rq ||
2243 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2244 				     task_running(rq, task) ||
2245 				     !dl_task(task) ||
2246 				     !task_on_rq_queued(task))) {
2247 				double_unlock_balance(rq, later_rq);
2248 				later_rq = NULL;
2249 				break;
2250 			}
2251 		}
2252 
2253 		/*
2254 		 * If the rq we found has no -deadline task, or
2255 		 * its earliest one has a later deadline than our
2256 		 * task, the rq is a good one.
2257 		 */
2258 		if (!later_rq->dl.dl_nr_running ||
2259 		    dl_time_before(task->dl.deadline,
2260 				   later_rq->dl.earliest_dl.curr))
2261 			break;
2262 
2263 		/* Otherwise we try again. */
2264 		double_unlock_balance(rq, later_rq);
2265 		later_rq = NULL;
2266 	}
2267 
2268 	return later_rq;
2269 }
2270 
2271 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2272 {
2273 	struct task_struct *p;
2274 
2275 	if (!has_pushable_dl_tasks(rq))
2276 		return NULL;
2277 
2278 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2279 
2280 	BUG_ON(rq->cpu != task_cpu(p));
2281 	BUG_ON(task_current(rq, p));
2282 	BUG_ON(p->nr_cpus_allowed <= 1);
2283 
2284 	BUG_ON(!task_on_rq_queued(p));
2285 	BUG_ON(!dl_task(p));
2286 
2287 	return p;
2288 }
2289 
2290 /*
2291  * See if the non running -deadline tasks on this rq
2292  * can be sent to some other CPU where they can preempt
2293  * and start executing.
2294  */
2295 static int push_dl_task(struct rq *rq)
2296 {
2297 	struct task_struct *next_task;
2298 	struct rq *later_rq;
2299 	int ret = 0;
2300 
2301 	if (!rq->dl.overloaded)
2302 		return 0;
2303 
2304 	next_task = pick_next_pushable_dl_task(rq);
2305 	if (!next_task)
2306 		return 0;
2307 
2308 retry:
2309 	/*
2310 	 * If next_task preempts rq->curr, and rq->curr
2311 	 * can move away, it makes sense to just reschedule
2312 	 * without going further in pushing next_task.
2313 	 */
2314 	if (dl_task(rq->curr) &&
2315 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2316 	    rq->curr->nr_cpus_allowed > 1) {
2317 		resched_curr(rq);
2318 		return 0;
2319 	}
2320 
2321 	if (is_migration_disabled(next_task))
2322 		return 0;
2323 
2324 	if (WARN_ON(next_task == rq->curr))
2325 		return 0;
2326 
2327 	/* We might release rq lock */
2328 	get_task_struct(next_task);
2329 
2330 	/* Will lock the rq it'll find */
2331 	later_rq = find_lock_later_rq(next_task, rq);
2332 	if (!later_rq) {
2333 		struct task_struct *task;
2334 
2335 		/*
2336 		 * We must check all this again, since
2337 		 * find_lock_later_rq releases rq->lock and it is
2338 		 * then possible that next_task has migrated.
2339 		 */
2340 		task = pick_next_pushable_dl_task(rq);
2341 		if (task == next_task) {
2342 			/*
2343 			 * The task is still there. We don't try
2344 			 * again, some other CPU will pull it when ready.
2345 			 */
2346 			goto out;
2347 		}
2348 
2349 		if (!task)
2350 			/* No more tasks */
2351 			goto out;
2352 
2353 		put_task_struct(next_task);
2354 		next_task = task;
2355 		goto retry;
2356 	}
2357 
2358 	deactivate_task(rq, next_task, 0);
2359 	set_task_cpu(next_task, later_rq->cpu);
2360 	activate_task(later_rq, next_task, 0);
2361 	ret = 1;
2362 
2363 	resched_curr(later_rq);
2364 
2365 	double_unlock_balance(rq, later_rq);
2366 
2367 out:
2368 	put_task_struct(next_task);
2369 
2370 	return ret;
2371 }
2372 
2373 static void push_dl_tasks(struct rq *rq)
2374 {
2375 	/* push_dl_task() will return true if it moved a -deadline task */
2376 	while (push_dl_task(rq))
2377 		;
2378 }
2379 
2380 static void pull_dl_task(struct rq *this_rq)
2381 {
2382 	int this_cpu = this_rq->cpu, cpu;
2383 	struct task_struct *p, *push_task;
2384 	bool resched = false;
2385 	struct rq *src_rq;
2386 	u64 dmin = LONG_MAX;
2387 
2388 	if (likely(!dl_overloaded(this_rq)))
2389 		return;
2390 
2391 	/*
2392 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2393 	 * see overloaded we must also see the dlo_mask bit.
2394 	 */
2395 	smp_rmb();
2396 
2397 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2398 		if (this_cpu == cpu)
2399 			continue;
2400 
2401 		src_rq = cpu_rq(cpu);
2402 
2403 		/*
2404 		 * It looks racy, abd it is! However, as in sched_rt.c,
2405 		 * we are fine with this.
2406 		 */
2407 		if (this_rq->dl.dl_nr_running &&
2408 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2409 				   src_rq->dl.earliest_dl.next))
2410 			continue;
2411 
2412 		/* Might drop this_rq->lock */
2413 		push_task = NULL;
2414 		double_lock_balance(this_rq, src_rq);
2415 
2416 		/*
2417 		 * If there are no more pullable tasks on the
2418 		 * rq, we're done with it.
2419 		 */
2420 		if (src_rq->dl.dl_nr_running <= 1)
2421 			goto skip;
2422 
2423 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2424 
2425 		/*
2426 		 * We found a task to be pulled if:
2427 		 *  - it preempts our current (if there's one),
2428 		 *  - it will preempt the last one we pulled (if any).
2429 		 */
2430 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2431 		    (!this_rq->dl.dl_nr_running ||
2432 		     dl_time_before(p->dl.deadline,
2433 				    this_rq->dl.earliest_dl.curr))) {
2434 			WARN_ON(p == src_rq->curr);
2435 			WARN_ON(!task_on_rq_queued(p));
2436 
2437 			/*
2438 			 * Then we pull iff p has actually an earlier
2439 			 * deadline than the current task of its runqueue.
2440 			 */
2441 			if (dl_time_before(p->dl.deadline,
2442 					   src_rq->curr->dl.deadline))
2443 				goto skip;
2444 
2445 			if (is_migration_disabled(p)) {
2446 				push_task = get_push_task(src_rq);
2447 			} else {
2448 				deactivate_task(src_rq, p, 0);
2449 				set_task_cpu(p, this_cpu);
2450 				activate_task(this_rq, p, 0);
2451 				dmin = p->dl.deadline;
2452 				resched = true;
2453 			}
2454 
2455 			/* Is there any other task even earlier? */
2456 		}
2457 skip:
2458 		double_unlock_balance(this_rq, src_rq);
2459 
2460 		if (push_task) {
2461 			raw_spin_rq_unlock(this_rq);
2462 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2463 					    push_task, &src_rq->push_work);
2464 			raw_spin_rq_lock(this_rq);
2465 		}
2466 	}
2467 
2468 	if (resched)
2469 		resched_curr(this_rq);
2470 }
2471 
2472 /*
2473  * Since the task is not running and a reschedule is not going to happen
2474  * anytime soon on its runqueue, we try pushing it away now.
2475  */
2476 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2477 {
2478 	if (!task_running(rq, p) &&
2479 	    !test_tsk_need_resched(rq->curr) &&
2480 	    p->nr_cpus_allowed > 1 &&
2481 	    dl_task(rq->curr) &&
2482 	    (rq->curr->nr_cpus_allowed < 2 ||
2483 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2484 		push_dl_tasks(rq);
2485 	}
2486 }
2487 
2488 static void set_cpus_allowed_dl(struct task_struct *p,
2489 				const struct cpumask *new_mask,
2490 				u32 flags)
2491 {
2492 	struct root_domain *src_rd;
2493 	struct rq *rq;
2494 
2495 	BUG_ON(!dl_task(p));
2496 
2497 	rq = task_rq(p);
2498 	src_rd = rq->rd;
2499 	/*
2500 	 * Migrating a SCHED_DEADLINE task between exclusive
2501 	 * cpusets (different root_domains) entails a bandwidth
2502 	 * update. We already made space for us in the destination
2503 	 * domain (see cpuset_can_attach()).
2504 	 */
2505 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2506 		struct dl_bw *src_dl_b;
2507 
2508 		src_dl_b = dl_bw_of(cpu_of(rq));
2509 		/*
2510 		 * We now free resources of the root_domain we are migrating
2511 		 * off. In the worst case, sched_setattr() may temporary fail
2512 		 * until we complete the update.
2513 		 */
2514 		raw_spin_lock(&src_dl_b->lock);
2515 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2516 		raw_spin_unlock(&src_dl_b->lock);
2517 	}
2518 
2519 	set_cpus_allowed_common(p, new_mask, flags);
2520 }
2521 
2522 /* Assumes rq->lock is held */
2523 static void rq_online_dl(struct rq *rq)
2524 {
2525 	if (rq->dl.overloaded)
2526 		dl_set_overload(rq);
2527 
2528 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2529 	if (rq->dl.dl_nr_running > 0)
2530 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2531 }
2532 
2533 /* Assumes rq->lock is held */
2534 static void rq_offline_dl(struct rq *rq)
2535 {
2536 	if (rq->dl.overloaded)
2537 		dl_clear_overload(rq);
2538 
2539 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2540 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2541 }
2542 
2543 void __init init_sched_dl_class(void)
2544 {
2545 	unsigned int i;
2546 
2547 	for_each_possible_cpu(i)
2548 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2549 					GFP_KERNEL, cpu_to_node(i));
2550 }
2551 
2552 void dl_add_task_root_domain(struct task_struct *p)
2553 {
2554 	struct rq_flags rf;
2555 	struct rq *rq;
2556 	struct dl_bw *dl_b;
2557 
2558 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2559 	if (!dl_task(p)) {
2560 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2561 		return;
2562 	}
2563 
2564 	rq = __task_rq_lock(p, &rf);
2565 
2566 	dl_b = &rq->rd->dl_bw;
2567 	raw_spin_lock(&dl_b->lock);
2568 
2569 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2570 
2571 	raw_spin_unlock(&dl_b->lock);
2572 
2573 	task_rq_unlock(rq, p, &rf);
2574 }
2575 
2576 void dl_clear_root_domain(struct root_domain *rd)
2577 {
2578 	unsigned long flags;
2579 
2580 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2581 	rd->dl_bw.total_bw = 0;
2582 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2583 }
2584 
2585 #endif /* CONFIG_SMP */
2586 
2587 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2588 {
2589 	/*
2590 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2591 	 * time is in the future). If the task switches back to dl before
2592 	 * the "inactive timer" fires, it can continue to consume its current
2593 	 * runtime using its current deadline. If it stays outside of
2594 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2595 	 * will reset the task parameters.
2596 	 */
2597 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2598 		task_non_contending(p);
2599 
2600 	if (!task_on_rq_queued(p)) {
2601 		/*
2602 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2603 		 * might migrate away from this rq while continuing to run on
2604 		 * some other class. We need to remove its contribution from
2605 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2606 		 */
2607 		if (p->dl.dl_non_contending)
2608 			sub_running_bw(&p->dl, &rq->dl);
2609 		sub_rq_bw(&p->dl, &rq->dl);
2610 	}
2611 
2612 	/*
2613 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2614 	 * at the 0-lag time, because the task could have been migrated
2615 	 * while SCHED_OTHER in the meanwhile.
2616 	 */
2617 	if (p->dl.dl_non_contending)
2618 		p->dl.dl_non_contending = 0;
2619 
2620 	/*
2621 	 * Since this might be the only -deadline task on the rq,
2622 	 * this is the right place to try to pull some other one
2623 	 * from an overloaded CPU, if any.
2624 	 */
2625 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2626 		return;
2627 
2628 	deadline_queue_pull_task(rq);
2629 }
2630 
2631 /*
2632  * When switching to -deadline, we may overload the rq, then
2633  * we try to push someone off, if possible.
2634  */
2635 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2636 {
2637 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2638 		put_task_struct(p);
2639 
2640 	/* If p is not queued we will update its parameters at next wakeup. */
2641 	if (!task_on_rq_queued(p)) {
2642 		add_rq_bw(&p->dl, &rq->dl);
2643 
2644 		return;
2645 	}
2646 
2647 	if (rq->curr != p) {
2648 #ifdef CONFIG_SMP
2649 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2650 			deadline_queue_push_tasks(rq);
2651 #endif
2652 		if (dl_task(rq->curr))
2653 			check_preempt_curr_dl(rq, p, 0);
2654 		else
2655 			resched_curr(rq);
2656 	} else {
2657 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2658 	}
2659 }
2660 
2661 /*
2662  * If the scheduling parameters of a -deadline task changed,
2663  * a push or pull operation might be needed.
2664  */
2665 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2666 			    int oldprio)
2667 {
2668 	if (task_on_rq_queued(p) || task_current(rq, p)) {
2669 #ifdef CONFIG_SMP
2670 		/*
2671 		 * This might be too much, but unfortunately
2672 		 * we don't have the old deadline value, and
2673 		 * we can't argue if the task is increasing
2674 		 * or lowering its prio, so...
2675 		 */
2676 		if (!rq->dl.overloaded)
2677 			deadline_queue_pull_task(rq);
2678 
2679 		/*
2680 		 * If we now have a earlier deadline task than p,
2681 		 * then reschedule, provided p is still on this
2682 		 * runqueue.
2683 		 */
2684 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2685 			resched_curr(rq);
2686 #else
2687 		/*
2688 		 * Again, we don't know if p has a earlier
2689 		 * or later deadline, so let's blindly set a
2690 		 * (maybe not needed) rescheduling point.
2691 		 */
2692 		resched_curr(rq);
2693 #endif /* CONFIG_SMP */
2694 	}
2695 }
2696 
2697 DEFINE_SCHED_CLASS(dl) = {
2698 
2699 	.enqueue_task		= enqueue_task_dl,
2700 	.dequeue_task		= dequeue_task_dl,
2701 	.yield_task		= yield_task_dl,
2702 
2703 	.check_preempt_curr	= check_preempt_curr_dl,
2704 
2705 	.pick_next_task		= pick_next_task_dl,
2706 	.put_prev_task		= put_prev_task_dl,
2707 	.set_next_task		= set_next_task_dl,
2708 
2709 #ifdef CONFIG_SMP
2710 	.balance		= balance_dl,
2711 	.pick_task		= pick_task_dl,
2712 	.select_task_rq		= select_task_rq_dl,
2713 	.migrate_task_rq	= migrate_task_rq_dl,
2714 	.set_cpus_allowed       = set_cpus_allowed_dl,
2715 	.rq_online              = rq_online_dl,
2716 	.rq_offline             = rq_offline_dl,
2717 	.task_woken		= task_woken_dl,
2718 	.find_lock_rq		= find_lock_later_rq,
2719 #endif
2720 
2721 	.task_tick		= task_tick_dl,
2722 	.task_fork              = task_fork_dl,
2723 
2724 	.prio_changed           = prio_changed_dl,
2725 	.switched_from		= switched_from_dl,
2726 	.switched_to		= switched_to_dl,
2727 
2728 	.update_curr		= update_curr_dl,
2729 };
2730 
2731 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2732 static u64 dl_generation;
2733 
2734 int sched_dl_global_validate(void)
2735 {
2736 	u64 runtime = global_rt_runtime();
2737 	u64 period = global_rt_period();
2738 	u64 new_bw = to_ratio(period, runtime);
2739 	u64 gen = ++dl_generation;
2740 	struct dl_bw *dl_b;
2741 	int cpu, cpus, ret = 0;
2742 	unsigned long flags;
2743 
2744 	/*
2745 	 * Here we want to check the bandwidth not being set to some
2746 	 * value smaller than the currently allocated bandwidth in
2747 	 * any of the root_domains.
2748 	 */
2749 	for_each_possible_cpu(cpu) {
2750 		rcu_read_lock_sched();
2751 
2752 		if (dl_bw_visited(cpu, gen))
2753 			goto next;
2754 
2755 		dl_b = dl_bw_of(cpu);
2756 		cpus = dl_bw_cpus(cpu);
2757 
2758 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2759 		if (new_bw * cpus < dl_b->total_bw)
2760 			ret = -EBUSY;
2761 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2762 
2763 next:
2764 		rcu_read_unlock_sched();
2765 
2766 		if (ret)
2767 			break;
2768 	}
2769 
2770 	return ret;
2771 }
2772 
2773 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2774 {
2775 	if (global_rt_runtime() == RUNTIME_INF) {
2776 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2777 		dl_rq->extra_bw = 1 << BW_SHIFT;
2778 	} else {
2779 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2780 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2781 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2782 						    global_rt_runtime());
2783 	}
2784 }
2785 
2786 void sched_dl_do_global(void)
2787 {
2788 	u64 new_bw = -1;
2789 	u64 gen = ++dl_generation;
2790 	struct dl_bw *dl_b;
2791 	int cpu;
2792 	unsigned long flags;
2793 
2794 	if (global_rt_runtime() != RUNTIME_INF)
2795 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2796 
2797 	for_each_possible_cpu(cpu) {
2798 		rcu_read_lock_sched();
2799 
2800 		if (dl_bw_visited(cpu, gen)) {
2801 			rcu_read_unlock_sched();
2802 			continue;
2803 		}
2804 
2805 		dl_b = dl_bw_of(cpu);
2806 
2807 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2808 		dl_b->bw = new_bw;
2809 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2810 
2811 		rcu_read_unlock_sched();
2812 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2813 	}
2814 }
2815 
2816 /*
2817  * We must be sure that accepting a new task (or allowing changing the
2818  * parameters of an existing one) is consistent with the bandwidth
2819  * constraints. If yes, this function also accordingly updates the currently
2820  * allocated bandwidth to reflect the new situation.
2821  *
2822  * This function is called while holding p's rq->lock.
2823  */
2824 int sched_dl_overflow(struct task_struct *p, int policy,
2825 		      const struct sched_attr *attr)
2826 {
2827 	u64 period = attr->sched_period ?: attr->sched_deadline;
2828 	u64 runtime = attr->sched_runtime;
2829 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2830 	int cpus, err = -1, cpu = task_cpu(p);
2831 	struct dl_bw *dl_b = dl_bw_of(cpu);
2832 	unsigned long cap;
2833 
2834 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2835 		return 0;
2836 
2837 	/* !deadline task may carry old deadline bandwidth */
2838 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2839 		return 0;
2840 
2841 	/*
2842 	 * Either if a task, enters, leave, or stays -deadline but changes
2843 	 * its parameters, we may need to update accordingly the total
2844 	 * allocated bandwidth of the container.
2845 	 */
2846 	raw_spin_lock(&dl_b->lock);
2847 	cpus = dl_bw_cpus(cpu);
2848 	cap = dl_bw_capacity(cpu);
2849 
2850 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2851 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2852 		if (hrtimer_active(&p->dl.inactive_timer))
2853 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2854 		__dl_add(dl_b, new_bw, cpus);
2855 		err = 0;
2856 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2857 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2858 		/*
2859 		 * XXX this is slightly incorrect: when the task
2860 		 * utilization decreases, we should delay the total
2861 		 * utilization change until the task's 0-lag point.
2862 		 * But this would require to set the task's "inactive
2863 		 * timer" when the task is not inactive.
2864 		 */
2865 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2866 		__dl_add(dl_b, new_bw, cpus);
2867 		dl_change_utilization(p, new_bw);
2868 		err = 0;
2869 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2870 		/*
2871 		 * Do not decrease the total deadline utilization here,
2872 		 * switched_from_dl() will take care to do it at the correct
2873 		 * (0-lag) time.
2874 		 */
2875 		err = 0;
2876 	}
2877 	raw_spin_unlock(&dl_b->lock);
2878 
2879 	return err;
2880 }
2881 
2882 /*
2883  * This function initializes the sched_dl_entity of a newly becoming
2884  * SCHED_DEADLINE task.
2885  *
2886  * Only the static values are considered here, the actual runtime and the
2887  * absolute deadline will be properly calculated when the task is enqueued
2888  * for the first time with its new policy.
2889  */
2890 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2891 {
2892 	struct sched_dl_entity *dl_se = &p->dl;
2893 
2894 	dl_se->dl_runtime = attr->sched_runtime;
2895 	dl_se->dl_deadline = attr->sched_deadline;
2896 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2897 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2898 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2899 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2900 }
2901 
2902 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2903 {
2904 	struct sched_dl_entity *dl_se = &p->dl;
2905 
2906 	attr->sched_priority = p->rt_priority;
2907 	attr->sched_runtime = dl_se->dl_runtime;
2908 	attr->sched_deadline = dl_se->dl_deadline;
2909 	attr->sched_period = dl_se->dl_period;
2910 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2911 	attr->sched_flags |= dl_se->flags;
2912 }
2913 
2914 /*
2915  * This function validates the new parameters of a -deadline task.
2916  * We ask for the deadline not being zero, and greater or equal
2917  * than the runtime, as well as the period of being zero or
2918  * greater than deadline. Furthermore, we have to be sure that
2919  * user parameters are above the internal resolution of 1us (we
2920  * check sched_runtime only since it is always the smaller one) and
2921  * below 2^63 ns (we have to check both sched_deadline and
2922  * sched_period, as the latter can be zero).
2923  */
2924 bool __checkparam_dl(const struct sched_attr *attr)
2925 {
2926 	u64 period, max, min;
2927 
2928 	/* special dl tasks don't actually use any parameter */
2929 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2930 		return true;
2931 
2932 	/* deadline != 0 */
2933 	if (attr->sched_deadline == 0)
2934 		return false;
2935 
2936 	/*
2937 	 * Since we truncate DL_SCALE bits, make sure we're at least
2938 	 * that big.
2939 	 */
2940 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2941 		return false;
2942 
2943 	/*
2944 	 * Since we use the MSB for wrap-around and sign issues, make
2945 	 * sure it's not set (mind that period can be equal to zero).
2946 	 */
2947 	if (attr->sched_deadline & (1ULL << 63) ||
2948 	    attr->sched_period & (1ULL << 63))
2949 		return false;
2950 
2951 	period = attr->sched_period;
2952 	if (!period)
2953 		period = attr->sched_deadline;
2954 
2955 	/* runtime <= deadline <= period (if period != 0) */
2956 	if (period < attr->sched_deadline ||
2957 	    attr->sched_deadline < attr->sched_runtime)
2958 		return false;
2959 
2960 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2961 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2962 
2963 	if (period < min || period > max)
2964 		return false;
2965 
2966 	return true;
2967 }
2968 
2969 /*
2970  * This function clears the sched_dl_entity static params.
2971  */
2972 void __dl_clear_params(struct task_struct *p)
2973 {
2974 	struct sched_dl_entity *dl_se = &p->dl;
2975 
2976 	dl_se->dl_runtime		= 0;
2977 	dl_se->dl_deadline		= 0;
2978 	dl_se->dl_period		= 0;
2979 	dl_se->flags			= 0;
2980 	dl_se->dl_bw			= 0;
2981 	dl_se->dl_density		= 0;
2982 
2983 	dl_se->dl_throttled		= 0;
2984 	dl_se->dl_yielded		= 0;
2985 	dl_se->dl_non_contending	= 0;
2986 	dl_se->dl_overrun		= 0;
2987 
2988 #ifdef CONFIG_RT_MUTEXES
2989 	dl_se->pi_se			= dl_se;
2990 #endif
2991 }
2992 
2993 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2994 {
2995 	struct sched_dl_entity *dl_se = &p->dl;
2996 
2997 	if (dl_se->dl_runtime != attr->sched_runtime ||
2998 	    dl_se->dl_deadline != attr->sched_deadline ||
2999 	    dl_se->dl_period != attr->sched_period ||
3000 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3001 		return true;
3002 
3003 	return false;
3004 }
3005 
3006 #ifdef CONFIG_SMP
3007 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3008 				 const struct cpumask *trial)
3009 {
3010 	int ret = 1, trial_cpus;
3011 	struct dl_bw *cur_dl_b;
3012 	unsigned long flags;
3013 
3014 	rcu_read_lock_sched();
3015 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3016 	trial_cpus = cpumask_weight(trial);
3017 
3018 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3019 	if (cur_dl_b->bw != -1 &&
3020 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
3021 		ret = 0;
3022 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3023 	rcu_read_unlock_sched();
3024 
3025 	return ret;
3026 }
3027 
3028 int dl_cpu_busy(int cpu, struct task_struct *p)
3029 {
3030 	unsigned long flags, cap;
3031 	struct dl_bw *dl_b;
3032 	bool overflow;
3033 
3034 	rcu_read_lock_sched();
3035 	dl_b = dl_bw_of(cpu);
3036 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3037 	cap = dl_bw_capacity(cpu);
3038 	overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
3039 
3040 	if (!overflow && p) {
3041 		/*
3042 		 * We reserve space for this task in the destination
3043 		 * root_domain, as we can't fail after this point.
3044 		 * We will free resources in the source root_domain
3045 		 * later on (see set_cpus_allowed_dl()).
3046 		 */
3047 		__dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
3048 	}
3049 
3050 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3051 	rcu_read_unlock_sched();
3052 
3053 	return overflow ? -EBUSY : 0;
3054 }
3055 #endif
3056 
3057 #ifdef CONFIG_SCHED_DEBUG
3058 void print_dl_stats(struct seq_file *m, int cpu)
3059 {
3060 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3061 }
3062 #endif /* CONFIG_SCHED_DEBUG */
3063