1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 void init_dl_bw(struct dl_bw *dl_b) 61 { 62 raw_spin_lock_init(&dl_b->lock); 63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 64 if (global_rt_runtime() == RUNTIME_INF) 65 dl_b->bw = -1; 66 else 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 69 dl_b->total_bw = 0; 70 } 71 72 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) 73 { 74 dl_rq->rb_root = RB_ROOT; 75 76 #ifdef CONFIG_SMP 77 /* zero means no -deadline tasks */ 78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 79 80 dl_rq->dl_nr_migratory = 0; 81 dl_rq->overloaded = 0; 82 dl_rq->pushable_dl_tasks_root = RB_ROOT; 83 #else 84 init_dl_bw(&dl_rq->dl_bw); 85 #endif 86 } 87 88 #ifdef CONFIG_SMP 89 90 static inline int dl_overloaded(struct rq *rq) 91 { 92 return atomic_read(&rq->rd->dlo_count); 93 } 94 95 static inline void dl_set_overload(struct rq *rq) 96 { 97 if (!rq->online) 98 return; 99 100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 101 /* 102 * Must be visible before the overload count is 103 * set (as in sched_rt.c). 104 * 105 * Matched by the barrier in pull_dl_task(). 106 */ 107 smp_wmb(); 108 atomic_inc(&rq->rd->dlo_count); 109 } 110 111 static inline void dl_clear_overload(struct rq *rq) 112 { 113 if (!rq->online) 114 return; 115 116 atomic_dec(&rq->rd->dlo_count); 117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 118 } 119 120 static void update_dl_migration(struct dl_rq *dl_rq) 121 { 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 123 if (!dl_rq->overloaded) { 124 dl_set_overload(rq_of_dl_rq(dl_rq)); 125 dl_rq->overloaded = 1; 126 } 127 } else if (dl_rq->overloaded) { 128 dl_clear_overload(rq_of_dl_rq(dl_rq)); 129 dl_rq->overloaded = 0; 130 } 131 } 132 133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 134 { 135 struct task_struct *p = dl_task_of(dl_se); 136 137 if (p->nr_cpus_allowed > 1) 138 dl_rq->dl_nr_migratory++; 139 140 update_dl_migration(dl_rq); 141 } 142 143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 struct task_struct *p = dl_task_of(dl_se); 146 147 if (p->nr_cpus_allowed > 1) 148 dl_rq->dl_nr_migratory--; 149 150 update_dl_migration(dl_rq); 151 } 152 153 /* 154 * The list of pushable -deadline task is not a plist, like in 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 156 */ 157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 158 { 159 struct dl_rq *dl_rq = &rq->dl; 160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 161 struct rb_node *parent = NULL; 162 struct task_struct *entry; 163 int leftmost = 1; 164 165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 166 167 while (*link) { 168 parent = *link; 169 entry = rb_entry(parent, struct task_struct, 170 pushable_dl_tasks); 171 if (dl_entity_preempt(&p->dl, &entry->dl)) 172 link = &parent->rb_left; 173 else { 174 link = &parent->rb_right; 175 leftmost = 0; 176 } 177 } 178 179 if (leftmost) 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 181 182 rb_link_node(&p->pushable_dl_tasks, parent, link); 183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 184 } 185 186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 187 { 188 struct dl_rq *dl_rq = &rq->dl; 189 190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 191 return; 192 193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 194 struct rb_node *next_node; 195 196 next_node = rb_next(&p->pushable_dl_tasks); 197 dl_rq->pushable_dl_tasks_leftmost = next_node; 198 } 199 200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 201 RB_CLEAR_NODE(&p->pushable_dl_tasks); 202 } 203 204 static inline int has_pushable_dl_tasks(struct rq *rq) 205 { 206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 207 } 208 209 static int push_dl_task(struct rq *rq); 210 211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 212 { 213 return dl_task(prev); 214 } 215 216 static inline void set_post_schedule(struct rq *rq) 217 { 218 rq->post_schedule = has_pushable_dl_tasks(rq); 219 } 220 221 #else 222 223 static inline 224 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 225 { 226 } 227 228 static inline 229 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 230 { 231 } 232 233 static inline 234 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 235 { 236 } 237 238 static inline 239 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 240 { 241 } 242 243 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 244 { 245 return false; 246 } 247 248 static inline int pull_dl_task(struct rq *rq) 249 { 250 return 0; 251 } 252 253 static inline void set_post_schedule(struct rq *rq) 254 { 255 } 256 #endif /* CONFIG_SMP */ 257 258 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 259 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 260 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 261 int flags); 262 263 /* 264 * We are being explicitly informed that a new instance is starting, 265 * and this means that: 266 * - the absolute deadline of the entity has to be placed at 267 * current time + relative deadline; 268 * - the runtime of the entity has to be set to the maximum value. 269 * 270 * The capability of specifying such event is useful whenever a -deadline 271 * entity wants to (try to!) synchronize its behaviour with the scheduler's 272 * one, and to (try to!) reconcile itself with its own scheduling 273 * parameters. 274 */ 275 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 276 struct sched_dl_entity *pi_se) 277 { 278 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 279 struct rq *rq = rq_of_dl_rq(dl_rq); 280 281 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); 282 283 /* 284 * We use the regular wall clock time to set deadlines in the 285 * future; in fact, we must consider execution overheads (time 286 * spent on hardirq context, etc.). 287 */ 288 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 289 dl_se->runtime = pi_se->dl_runtime; 290 dl_se->dl_new = 0; 291 } 292 293 /* 294 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 295 * possibility of a entity lasting more than what it declared, and thus 296 * exhausting its runtime. 297 * 298 * Here we are interested in making runtime overrun possible, but we do 299 * not want a entity which is misbehaving to affect the scheduling of all 300 * other entities. 301 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 302 * is used, in order to confine each entity within its own bandwidth. 303 * 304 * This function deals exactly with that, and ensures that when the runtime 305 * of a entity is replenished, its deadline is also postponed. That ensures 306 * the overrunning entity can't interfere with other entity in the system and 307 * can't make them miss their deadlines. Reasons why this kind of overruns 308 * could happen are, typically, a entity voluntarily trying to overcome its 309 * runtime, or it just underestimated it during sched_setattr(). 310 */ 311 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 312 struct sched_dl_entity *pi_se) 313 { 314 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 315 struct rq *rq = rq_of_dl_rq(dl_rq); 316 317 BUG_ON(pi_se->dl_runtime <= 0); 318 319 /* 320 * This could be the case for a !-dl task that is boosted. 321 * Just go with full inherited parameters. 322 */ 323 if (dl_se->dl_deadline == 0) { 324 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 325 dl_se->runtime = pi_se->dl_runtime; 326 } 327 328 /* 329 * We keep moving the deadline away until we get some 330 * available runtime for the entity. This ensures correct 331 * handling of situations where the runtime overrun is 332 * arbitrary large. 333 */ 334 while (dl_se->runtime <= 0) { 335 dl_se->deadline += pi_se->dl_period; 336 dl_se->runtime += pi_se->dl_runtime; 337 } 338 339 /* 340 * At this point, the deadline really should be "in 341 * the future" with respect to rq->clock. If it's 342 * not, we are, for some reason, lagging too much! 343 * Anyway, after having warn userspace abut that, 344 * we still try to keep the things running by 345 * resetting the deadline and the budget of the 346 * entity. 347 */ 348 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 349 printk_deferred_once("sched: DL replenish lagged to much\n"); 350 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 351 dl_se->runtime = pi_se->dl_runtime; 352 } 353 354 if (dl_se->dl_yielded) 355 dl_se->dl_yielded = 0; 356 if (dl_se->dl_throttled) 357 dl_se->dl_throttled = 0; 358 } 359 360 /* 361 * Here we check if --at time t-- an entity (which is probably being 362 * [re]activated or, in general, enqueued) can use its remaining runtime 363 * and its current deadline _without_ exceeding the bandwidth it is 364 * assigned (function returns true if it can't). We are in fact applying 365 * one of the CBS rules: when a task wakes up, if the residual runtime 366 * over residual deadline fits within the allocated bandwidth, then we 367 * can keep the current (absolute) deadline and residual budget without 368 * disrupting the schedulability of the system. Otherwise, we should 369 * refill the runtime and set the deadline a period in the future, 370 * because keeping the current (absolute) deadline of the task would 371 * result in breaking guarantees promised to other tasks (refer to 372 * Documentation/scheduler/sched-deadline.txt for more informations). 373 * 374 * This function returns true if: 375 * 376 * runtime / (deadline - t) > dl_runtime / dl_period , 377 * 378 * IOW we can't recycle current parameters. 379 * 380 * Notice that the bandwidth check is done against the period. For 381 * task with deadline equal to period this is the same of using 382 * dl_deadline instead of dl_period in the equation above. 383 */ 384 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 385 struct sched_dl_entity *pi_se, u64 t) 386 { 387 u64 left, right; 388 389 /* 390 * left and right are the two sides of the equation above, 391 * after a bit of shuffling to use multiplications instead 392 * of divisions. 393 * 394 * Note that none of the time values involved in the two 395 * multiplications are absolute: dl_deadline and dl_runtime 396 * are the relative deadline and the maximum runtime of each 397 * instance, runtime is the runtime left for the last instance 398 * and (deadline - t), since t is rq->clock, is the time left 399 * to the (absolute) deadline. Even if overflowing the u64 type 400 * is very unlikely to occur in both cases, here we scale down 401 * as we want to avoid that risk at all. Scaling down by 10 402 * means that we reduce granularity to 1us. We are fine with it, 403 * since this is only a true/false check and, anyway, thinking 404 * of anything below microseconds resolution is actually fiction 405 * (but still we want to give the user that illusion >;). 406 */ 407 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 408 right = ((dl_se->deadline - t) >> DL_SCALE) * 409 (pi_se->dl_runtime >> DL_SCALE); 410 411 return dl_time_before(right, left); 412 } 413 414 /* 415 * When a -deadline entity is queued back on the runqueue, its runtime and 416 * deadline might need updating. 417 * 418 * The policy here is that we update the deadline of the entity only if: 419 * - the current deadline is in the past, 420 * - using the remaining runtime with the current deadline would make 421 * the entity exceed its bandwidth. 422 */ 423 static void update_dl_entity(struct sched_dl_entity *dl_se, 424 struct sched_dl_entity *pi_se) 425 { 426 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 427 struct rq *rq = rq_of_dl_rq(dl_rq); 428 429 /* 430 * The arrival of a new instance needs special treatment, i.e., 431 * the actual scheduling parameters have to be "renewed". 432 */ 433 if (dl_se->dl_new) { 434 setup_new_dl_entity(dl_se, pi_se); 435 return; 436 } 437 438 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 439 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 440 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 441 dl_se->runtime = pi_se->dl_runtime; 442 } 443 } 444 445 /* 446 * If the entity depleted all its runtime, and if we want it to sleep 447 * while waiting for some new execution time to become available, we 448 * set the bandwidth enforcement timer to the replenishment instant 449 * and try to activate it. 450 * 451 * Notice that it is important for the caller to know if the timer 452 * actually started or not (i.e., the replenishment instant is in 453 * the future or in the past). 454 */ 455 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) 456 { 457 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 458 struct rq *rq = rq_of_dl_rq(dl_rq); 459 ktime_t now, act; 460 ktime_t soft, hard; 461 unsigned long range; 462 s64 delta; 463 464 if (boosted) 465 return 0; 466 /* 467 * We want the timer to fire at the deadline, but considering 468 * that it is actually coming from rq->clock and not from 469 * hrtimer's time base reading. 470 */ 471 act = ns_to_ktime(dl_se->deadline); 472 now = hrtimer_cb_get_time(&dl_se->dl_timer); 473 delta = ktime_to_ns(now) - rq_clock(rq); 474 act = ktime_add_ns(act, delta); 475 476 /* 477 * If the expiry time already passed, e.g., because the value 478 * chosen as the deadline is too small, don't even try to 479 * start the timer in the past! 480 */ 481 if (ktime_us_delta(act, now) < 0) 482 return 0; 483 484 hrtimer_set_expires(&dl_se->dl_timer, act); 485 486 soft = hrtimer_get_softexpires(&dl_se->dl_timer); 487 hard = hrtimer_get_expires(&dl_se->dl_timer); 488 range = ktime_to_ns(ktime_sub(hard, soft)); 489 __hrtimer_start_range_ns(&dl_se->dl_timer, soft, 490 range, HRTIMER_MODE_ABS, 0); 491 492 return hrtimer_active(&dl_se->dl_timer); 493 } 494 495 /* 496 * This is the bandwidth enforcement timer callback. If here, we know 497 * a task is not on its dl_rq, since the fact that the timer was running 498 * means the task is throttled and needs a runtime replenishment. 499 * 500 * However, what we actually do depends on the fact the task is active, 501 * (it is on its rq) or has been removed from there by a call to 502 * dequeue_task_dl(). In the former case we must issue the runtime 503 * replenishment and add the task back to the dl_rq; in the latter, we just 504 * do nothing but clearing dl_throttled, so that runtime and deadline 505 * updating (and the queueing back to dl_rq) will be done by the 506 * next call to enqueue_task_dl(). 507 */ 508 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 509 { 510 struct sched_dl_entity *dl_se = container_of(timer, 511 struct sched_dl_entity, 512 dl_timer); 513 struct task_struct *p = dl_task_of(dl_se); 514 struct rq *rq; 515 again: 516 rq = task_rq(p); 517 raw_spin_lock(&rq->lock); 518 519 if (rq != task_rq(p)) { 520 /* Task was moved, retrying. */ 521 raw_spin_unlock(&rq->lock); 522 goto again; 523 } 524 525 /* 526 * We need to take care of several possible races here: 527 * 528 * - the task might have changed its scheduling policy 529 * to something different than SCHED_DEADLINE 530 * - the task might have changed its reservation parameters 531 * (through sched_setattr()) 532 * - the task might have been boosted by someone else and 533 * might be in the boosting/deboosting path 534 * 535 * In all this cases we bail out, as the task is already 536 * in the runqueue or is going to be enqueued back anyway. 537 */ 538 if (!dl_task(p) || dl_se->dl_new || 539 dl_se->dl_boosted || !dl_se->dl_throttled) 540 goto unlock; 541 542 sched_clock_tick(); 543 update_rq_clock(rq); 544 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 545 if (dl_task(rq->curr)) 546 check_preempt_curr_dl(rq, p, 0); 547 else 548 resched_curr(rq); 549 #ifdef CONFIG_SMP 550 /* 551 * Queueing this task back might have overloaded rq, 552 * check if we need to kick someone away. 553 */ 554 if (has_pushable_dl_tasks(rq)) 555 push_dl_task(rq); 556 #endif 557 unlock: 558 raw_spin_unlock(&rq->lock); 559 560 return HRTIMER_NORESTART; 561 } 562 563 void init_dl_task_timer(struct sched_dl_entity *dl_se) 564 { 565 struct hrtimer *timer = &dl_se->dl_timer; 566 567 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 568 timer->function = dl_task_timer; 569 } 570 571 static 572 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) 573 { 574 return (dl_se->runtime <= 0); 575 } 576 577 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 578 579 /* 580 * Update the current task's runtime statistics (provided it is still 581 * a -deadline task and has not been removed from the dl_rq). 582 */ 583 static void update_curr_dl(struct rq *rq) 584 { 585 struct task_struct *curr = rq->curr; 586 struct sched_dl_entity *dl_se = &curr->dl; 587 u64 delta_exec; 588 589 if (!dl_task(curr) || !on_dl_rq(dl_se)) 590 return; 591 592 /* 593 * Consumed budget is computed considering the time as 594 * observed by schedulable tasks (excluding time spent 595 * in hardirq context, etc.). Deadlines are instead 596 * computed using hard walltime. This seems to be the more 597 * natural solution, but the full ramifications of this 598 * approach need further study. 599 */ 600 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 601 if (unlikely((s64)delta_exec <= 0)) 602 return; 603 604 schedstat_set(curr->se.statistics.exec_max, 605 max(curr->se.statistics.exec_max, delta_exec)); 606 607 curr->se.sum_exec_runtime += delta_exec; 608 account_group_exec_runtime(curr, delta_exec); 609 610 curr->se.exec_start = rq_clock_task(rq); 611 cpuacct_charge(curr, delta_exec); 612 613 sched_rt_avg_update(rq, delta_exec); 614 615 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec; 616 if (dl_runtime_exceeded(rq, dl_se)) { 617 dl_se->dl_throttled = 1; 618 __dequeue_task_dl(rq, curr, 0); 619 if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted))) 620 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 621 622 if (!is_leftmost(curr, &rq->dl)) 623 resched_curr(rq); 624 } 625 626 /* 627 * Because -- for now -- we share the rt bandwidth, we need to 628 * account our runtime there too, otherwise actual rt tasks 629 * would be able to exceed the shared quota. 630 * 631 * Account to the root rt group for now. 632 * 633 * The solution we're working towards is having the RT groups scheduled 634 * using deadline servers -- however there's a few nasties to figure 635 * out before that can happen. 636 */ 637 if (rt_bandwidth_enabled()) { 638 struct rt_rq *rt_rq = &rq->rt; 639 640 raw_spin_lock(&rt_rq->rt_runtime_lock); 641 /* 642 * We'll let actual RT tasks worry about the overflow here, we 643 * have our own CBS to keep us inline; only account when RT 644 * bandwidth is relevant. 645 */ 646 if (sched_rt_bandwidth_account(rt_rq)) 647 rt_rq->rt_time += delta_exec; 648 raw_spin_unlock(&rt_rq->rt_runtime_lock); 649 } 650 } 651 652 #ifdef CONFIG_SMP 653 654 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); 655 656 static inline u64 next_deadline(struct rq *rq) 657 { 658 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); 659 660 if (next && dl_prio(next->prio)) 661 return next->dl.deadline; 662 else 663 return 0; 664 } 665 666 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 667 { 668 struct rq *rq = rq_of_dl_rq(dl_rq); 669 670 if (dl_rq->earliest_dl.curr == 0 || 671 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 672 /* 673 * If the dl_rq had no -deadline tasks, or if the new task 674 * has shorter deadline than the current one on dl_rq, we 675 * know that the previous earliest becomes our next earliest, 676 * as the new task becomes the earliest itself. 677 */ 678 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; 679 dl_rq->earliest_dl.curr = deadline; 680 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 681 } else if (dl_rq->earliest_dl.next == 0 || 682 dl_time_before(deadline, dl_rq->earliest_dl.next)) { 683 /* 684 * On the other hand, if the new -deadline task has a 685 * a later deadline than the earliest one on dl_rq, but 686 * it is earlier than the next (if any), we must 687 * recompute the next-earliest. 688 */ 689 dl_rq->earliest_dl.next = next_deadline(rq); 690 } 691 } 692 693 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 694 { 695 struct rq *rq = rq_of_dl_rq(dl_rq); 696 697 /* 698 * Since we may have removed our earliest (and/or next earliest) 699 * task we must recompute them. 700 */ 701 if (!dl_rq->dl_nr_running) { 702 dl_rq->earliest_dl.curr = 0; 703 dl_rq->earliest_dl.next = 0; 704 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 705 } else { 706 struct rb_node *leftmost = dl_rq->rb_leftmost; 707 struct sched_dl_entity *entry; 708 709 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 710 dl_rq->earliest_dl.curr = entry->deadline; 711 dl_rq->earliest_dl.next = next_deadline(rq); 712 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 713 } 714 } 715 716 #else 717 718 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 719 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 720 721 #endif /* CONFIG_SMP */ 722 723 static inline 724 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 725 { 726 int prio = dl_task_of(dl_se)->prio; 727 u64 deadline = dl_se->deadline; 728 729 WARN_ON(!dl_prio(prio)); 730 dl_rq->dl_nr_running++; 731 add_nr_running(rq_of_dl_rq(dl_rq), 1); 732 733 inc_dl_deadline(dl_rq, deadline); 734 inc_dl_migration(dl_se, dl_rq); 735 } 736 737 static inline 738 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 739 { 740 int prio = dl_task_of(dl_se)->prio; 741 742 WARN_ON(!dl_prio(prio)); 743 WARN_ON(!dl_rq->dl_nr_running); 744 dl_rq->dl_nr_running--; 745 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 746 747 dec_dl_deadline(dl_rq, dl_se->deadline); 748 dec_dl_migration(dl_se, dl_rq); 749 } 750 751 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 752 { 753 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 754 struct rb_node **link = &dl_rq->rb_root.rb_node; 755 struct rb_node *parent = NULL; 756 struct sched_dl_entity *entry; 757 int leftmost = 1; 758 759 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 760 761 while (*link) { 762 parent = *link; 763 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 764 if (dl_time_before(dl_se->deadline, entry->deadline)) 765 link = &parent->rb_left; 766 else { 767 link = &parent->rb_right; 768 leftmost = 0; 769 } 770 } 771 772 if (leftmost) 773 dl_rq->rb_leftmost = &dl_se->rb_node; 774 775 rb_link_node(&dl_se->rb_node, parent, link); 776 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 777 778 inc_dl_tasks(dl_se, dl_rq); 779 } 780 781 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 782 { 783 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 784 785 if (RB_EMPTY_NODE(&dl_se->rb_node)) 786 return; 787 788 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 789 struct rb_node *next_node; 790 791 next_node = rb_next(&dl_se->rb_node); 792 dl_rq->rb_leftmost = next_node; 793 } 794 795 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 796 RB_CLEAR_NODE(&dl_se->rb_node); 797 798 dec_dl_tasks(dl_se, dl_rq); 799 } 800 801 static void 802 enqueue_dl_entity(struct sched_dl_entity *dl_se, 803 struct sched_dl_entity *pi_se, int flags) 804 { 805 BUG_ON(on_dl_rq(dl_se)); 806 807 /* 808 * If this is a wakeup or a new instance, the scheduling 809 * parameters of the task might need updating. Otherwise, 810 * we want a replenishment of its runtime. 811 */ 812 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP) 813 update_dl_entity(dl_se, pi_se); 814 else if (flags & ENQUEUE_REPLENISH) 815 replenish_dl_entity(dl_se, pi_se); 816 817 __enqueue_dl_entity(dl_se); 818 } 819 820 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 821 { 822 __dequeue_dl_entity(dl_se); 823 } 824 825 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 826 { 827 struct task_struct *pi_task = rt_mutex_get_top_task(p); 828 struct sched_dl_entity *pi_se = &p->dl; 829 830 /* 831 * Use the scheduling parameters of the top pi-waiter 832 * task if we have one and its (relative) deadline is 833 * smaller than our one... OTW we keep our runtime and 834 * deadline. 835 */ 836 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { 837 pi_se = &pi_task->dl; 838 } else if (!dl_prio(p->normal_prio)) { 839 /* 840 * Special case in which we have a !SCHED_DEADLINE task 841 * that is going to be deboosted, but exceedes its 842 * runtime while doing so. No point in replenishing 843 * it, as it's going to return back to its original 844 * scheduling class after this. 845 */ 846 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 847 return; 848 } 849 850 /* 851 * If p is throttled, we do nothing. In fact, if it exhausted 852 * its budget it needs a replenishment and, since it now is on 853 * its rq, the bandwidth timer callback (which clearly has not 854 * run yet) will take care of this. 855 */ 856 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) 857 return; 858 859 enqueue_dl_entity(&p->dl, pi_se, flags); 860 861 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 862 enqueue_pushable_dl_task(rq, p); 863 } 864 865 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 866 { 867 dequeue_dl_entity(&p->dl); 868 dequeue_pushable_dl_task(rq, p); 869 } 870 871 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 872 { 873 update_curr_dl(rq); 874 __dequeue_task_dl(rq, p, flags); 875 } 876 877 /* 878 * Yield task semantic for -deadline tasks is: 879 * 880 * get off from the CPU until our next instance, with 881 * a new runtime. This is of little use now, since we 882 * don't have a bandwidth reclaiming mechanism. Anyway, 883 * bandwidth reclaiming is planned for the future, and 884 * yield_task_dl will indicate that some spare budget 885 * is available for other task instances to use it. 886 */ 887 static void yield_task_dl(struct rq *rq) 888 { 889 struct task_struct *p = rq->curr; 890 891 /* 892 * We make the task go to sleep until its current deadline by 893 * forcing its runtime to zero. This way, update_curr_dl() stops 894 * it and the bandwidth timer will wake it up and will give it 895 * new scheduling parameters (thanks to dl_yielded=1). 896 */ 897 if (p->dl.runtime > 0) { 898 rq->curr->dl.dl_yielded = 1; 899 p->dl.runtime = 0; 900 } 901 update_curr_dl(rq); 902 } 903 904 #ifdef CONFIG_SMP 905 906 static int find_later_rq(struct task_struct *task); 907 908 static int 909 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 910 { 911 struct task_struct *curr; 912 struct rq *rq; 913 914 if (sd_flag != SD_BALANCE_WAKE) 915 goto out; 916 917 rq = cpu_rq(cpu); 918 919 rcu_read_lock(); 920 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 921 922 /* 923 * If we are dealing with a -deadline task, we must 924 * decide where to wake it up. 925 * If it has a later deadline and the current task 926 * on this rq can't move (provided the waking task 927 * can!) we prefer to send it somewhere else. On the 928 * other hand, if it has a shorter deadline, we 929 * try to make it stay here, it might be important. 930 */ 931 if (unlikely(dl_task(curr)) && 932 (curr->nr_cpus_allowed < 2 || 933 !dl_entity_preempt(&p->dl, &curr->dl)) && 934 (p->nr_cpus_allowed > 1)) { 935 int target = find_later_rq(p); 936 937 if (target != -1) 938 cpu = target; 939 } 940 rcu_read_unlock(); 941 942 out: 943 return cpu; 944 } 945 946 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 947 { 948 /* 949 * Current can't be migrated, useless to reschedule, 950 * let's hope p can move out. 951 */ 952 if (rq->curr->nr_cpus_allowed == 1 || 953 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 954 return; 955 956 /* 957 * p is migratable, so let's not schedule it and 958 * see if it is pushed or pulled somewhere else. 959 */ 960 if (p->nr_cpus_allowed != 1 && 961 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 962 return; 963 964 resched_curr(rq); 965 } 966 967 static int pull_dl_task(struct rq *this_rq); 968 969 #endif /* CONFIG_SMP */ 970 971 /* 972 * Only called when both the current and waking task are -deadline 973 * tasks. 974 */ 975 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 976 int flags) 977 { 978 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 979 resched_curr(rq); 980 return; 981 } 982 983 #ifdef CONFIG_SMP 984 /* 985 * In the unlikely case current and p have the same deadline 986 * let us try to decide what's the best thing to do... 987 */ 988 if ((p->dl.deadline == rq->curr->dl.deadline) && 989 !test_tsk_need_resched(rq->curr)) 990 check_preempt_equal_dl(rq, p); 991 #endif /* CONFIG_SMP */ 992 } 993 994 #ifdef CONFIG_SCHED_HRTICK 995 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 996 { 997 hrtick_start(rq, p->dl.runtime); 998 } 999 #else /* !CONFIG_SCHED_HRTICK */ 1000 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1001 { 1002 } 1003 #endif 1004 1005 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1006 struct dl_rq *dl_rq) 1007 { 1008 struct rb_node *left = dl_rq->rb_leftmost; 1009 1010 if (!left) 1011 return NULL; 1012 1013 return rb_entry(left, struct sched_dl_entity, rb_node); 1014 } 1015 1016 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) 1017 { 1018 struct sched_dl_entity *dl_se; 1019 struct task_struct *p; 1020 struct dl_rq *dl_rq; 1021 1022 dl_rq = &rq->dl; 1023 1024 if (need_pull_dl_task(rq, prev)) { 1025 pull_dl_task(rq); 1026 /* 1027 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1028 * means a stop task can slip in, in which case we need to 1029 * re-start task selection. 1030 */ 1031 if (rq->stop && task_on_rq_queued(rq->stop)) 1032 return RETRY_TASK; 1033 } 1034 1035 /* 1036 * When prev is DL, we may throttle it in put_prev_task(). 1037 * So, we update time before we check for dl_nr_running. 1038 */ 1039 if (prev->sched_class == &dl_sched_class) 1040 update_curr_dl(rq); 1041 1042 if (unlikely(!dl_rq->dl_nr_running)) 1043 return NULL; 1044 1045 put_prev_task(rq, prev); 1046 1047 dl_se = pick_next_dl_entity(rq, dl_rq); 1048 BUG_ON(!dl_se); 1049 1050 p = dl_task_of(dl_se); 1051 p->se.exec_start = rq_clock_task(rq); 1052 1053 /* Running task will never be pushed. */ 1054 dequeue_pushable_dl_task(rq, p); 1055 1056 if (hrtick_enabled(rq)) 1057 start_hrtick_dl(rq, p); 1058 1059 set_post_schedule(rq); 1060 1061 return p; 1062 } 1063 1064 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1065 { 1066 update_curr_dl(rq); 1067 1068 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1069 enqueue_pushable_dl_task(rq, p); 1070 } 1071 1072 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1073 { 1074 update_curr_dl(rq); 1075 1076 /* 1077 * Even when we have runtime, update_curr_dl() might have resulted in us 1078 * not being the leftmost task anymore. In that case NEED_RESCHED will 1079 * be set and schedule() will start a new hrtick for the next task. 1080 */ 1081 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1082 is_leftmost(p, &rq->dl)) 1083 start_hrtick_dl(rq, p); 1084 } 1085 1086 static void task_fork_dl(struct task_struct *p) 1087 { 1088 /* 1089 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1090 * sched_fork() 1091 */ 1092 } 1093 1094 static void task_dead_dl(struct task_struct *p) 1095 { 1096 struct hrtimer *timer = &p->dl.dl_timer; 1097 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1098 1099 /* 1100 * Since we are TASK_DEAD we won't slip out of the domain! 1101 */ 1102 raw_spin_lock_irq(&dl_b->lock); 1103 /* XXX we should retain the bw until 0-lag */ 1104 dl_b->total_bw -= p->dl.dl_bw; 1105 raw_spin_unlock_irq(&dl_b->lock); 1106 1107 hrtimer_cancel(timer); 1108 } 1109 1110 static void set_curr_task_dl(struct rq *rq) 1111 { 1112 struct task_struct *p = rq->curr; 1113 1114 p->se.exec_start = rq_clock_task(rq); 1115 1116 /* You can't push away the running task */ 1117 dequeue_pushable_dl_task(rq, p); 1118 } 1119 1120 #ifdef CONFIG_SMP 1121 1122 /* Only try algorithms three times */ 1123 #define DL_MAX_TRIES 3 1124 1125 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1126 { 1127 if (!task_running(rq, p) && 1128 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1129 return 1; 1130 return 0; 1131 } 1132 1133 /* Returns the second earliest -deadline task, NULL otherwise */ 1134 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) 1135 { 1136 struct rb_node *next_node = rq->dl.rb_leftmost; 1137 struct sched_dl_entity *dl_se; 1138 struct task_struct *p = NULL; 1139 1140 next_node: 1141 next_node = rb_next(next_node); 1142 if (next_node) { 1143 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); 1144 p = dl_task_of(dl_se); 1145 1146 if (pick_dl_task(rq, p, cpu)) 1147 return p; 1148 1149 goto next_node; 1150 } 1151 1152 return NULL; 1153 } 1154 1155 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1156 1157 static int find_later_rq(struct task_struct *task) 1158 { 1159 struct sched_domain *sd; 1160 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1161 int this_cpu = smp_processor_id(); 1162 int best_cpu, cpu = task_cpu(task); 1163 1164 /* Make sure the mask is initialized first */ 1165 if (unlikely(!later_mask)) 1166 return -1; 1167 1168 if (task->nr_cpus_allowed == 1) 1169 return -1; 1170 1171 /* 1172 * We have to consider system topology and task affinity 1173 * first, then we can look for a suitable cpu. 1174 */ 1175 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1176 task, later_mask); 1177 if (best_cpu == -1) 1178 return -1; 1179 1180 /* 1181 * If we are here, some target has been found, 1182 * the most suitable of which is cached in best_cpu. 1183 * This is, among the runqueues where the current tasks 1184 * have later deadlines than the task's one, the rq 1185 * with the latest possible one. 1186 * 1187 * Now we check how well this matches with task's 1188 * affinity and system topology. 1189 * 1190 * The last cpu where the task run is our first 1191 * guess, since it is most likely cache-hot there. 1192 */ 1193 if (cpumask_test_cpu(cpu, later_mask)) 1194 return cpu; 1195 /* 1196 * Check if this_cpu is to be skipped (i.e., it is 1197 * not in the mask) or not. 1198 */ 1199 if (!cpumask_test_cpu(this_cpu, later_mask)) 1200 this_cpu = -1; 1201 1202 rcu_read_lock(); 1203 for_each_domain(cpu, sd) { 1204 if (sd->flags & SD_WAKE_AFFINE) { 1205 1206 /* 1207 * If possible, preempting this_cpu is 1208 * cheaper than migrating. 1209 */ 1210 if (this_cpu != -1 && 1211 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1212 rcu_read_unlock(); 1213 return this_cpu; 1214 } 1215 1216 /* 1217 * Last chance: if best_cpu is valid and is 1218 * in the mask, that becomes our choice. 1219 */ 1220 if (best_cpu < nr_cpu_ids && 1221 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1222 rcu_read_unlock(); 1223 return best_cpu; 1224 } 1225 } 1226 } 1227 rcu_read_unlock(); 1228 1229 /* 1230 * At this point, all our guesses failed, we just return 1231 * 'something', and let the caller sort the things out. 1232 */ 1233 if (this_cpu != -1) 1234 return this_cpu; 1235 1236 cpu = cpumask_any(later_mask); 1237 if (cpu < nr_cpu_ids) 1238 return cpu; 1239 1240 return -1; 1241 } 1242 1243 /* Locks the rq it finds */ 1244 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1245 { 1246 struct rq *later_rq = NULL; 1247 int tries; 1248 int cpu; 1249 1250 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1251 cpu = find_later_rq(task); 1252 1253 if ((cpu == -1) || (cpu == rq->cpu)) 1254 break; 1255 1256 later_rq = cpu_rq(cpu); 1257 1258 /* Retry if something changed. */ 1259 if (double_lock_balance(rq, later_rq)) { 1260 if (unlikely(task_rq(task) != rq || 1261 !cpumask_test_cpu(later_rq->cpu, 1262 &task->cpus_allowed) || 1263 task_running(rq, task) || 1264 !task_on_rq_queued(task))) { 1265 double_unlock_balance(rq, later_rq); 1266 later_rq = NULL; 1267 break; 1268 } 1269 } 1270 1271 /* 1272 * If the rq we found has no -deadline task, or 1273 * its earliest one has a later deadline than our 1274 * task, the rq is a good one. 1275 */ 1276 if (!later_rq->dl.dl_nr_running || 1277 dl_time_before(task->dl.deadline, 1278 later_rq->dl.earliest_dl.curr)) 1279 break; 1280 1281 /* Otherwise we try again. */ 1282 double_unlock_balance(rq, later_rq); 1283 later_rq = NULL; 1284 } 1285 1286 return later_rq; 1287 } 1288 1289 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1290 { 1291 struct task_struct *p; 1292 1293 if (!has_pushable_dl_tasks(rq)) 1294 return NULL; 1295 1296 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1297 struct task_struct, pushable_dl_tasks); 1298 1299 BUG_ON(rq->cpu != task_cpu(p)); 1300 BUG_ON(task_current(rq, p)); 1301 BUG_ON(p->nr_cpus_allowed <= 1); 1302 1303 BUG_ON(!task_on_rq_queued(p)); 1304 BUG_ON(!dl_task(p)); 1305 1306 return p; 1307 } 1308 1309 /* 1310 * See if the non running -deadline tasks on this rq 1311 * can be sent to some other CPU where they can preempt 1312 * and start executing. 1313 */ 1314 static int push_dl_task(struct rq *rq) 1315 { 1316 struct task_struct *next_task; 1317 struct rq *later_rq; 1318 int ret = 0; 1319 1320 if (!rq->dl.overloaded) 1321 return 0; 1322 1323 next_task = pick_next_pushable_dl_task(rq); 1324 if (!next_task) 1325 return 0; 1326 1327 retry: 1328 if (unlikely(next_task == rq->curr)) { 1329 WARN_ON(1); 1330 return 0; 1331 } 1332 1333 /* 1334 * If next_task preempts rq->curr, and rq->curr 1335 * can move away, it makes sense to just reschedule 1336 * without going further in pushing next_task. 1337 */ 1338 if (dl_task(rq->curr) && 1339 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1340 rq->curr->nr_cpus_allowed > 1) { 1341 resched_curr(rq); 1342 return 0; 1343 } 1344 1345 /* We might release rq lock */ 1346 get_task_struct(next_task); 1347 1348 /* Will lock the rq it'll find */ 1349 later_rq = find_lock_later_rq(next_task, rq); 1350 if (!later_rq) { 1351 struct task_struct *task; 1352 1353 /* 1354 * We must check all this again, since 1355 * find_lock_later_rq releases rq->lock and it is 1356 * then possible that next_task has migrated. 1357 */ 1358 task = pick_next_pushable_dl_task(rq); 1359 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1360 /* 1361 * The task is still there. We don't try 1362 * again, some other cpu will pull it when ready. 1363 */ 1364 goto out; 1365 } 1366 1367 if (!task) 1368 /* No more tasks */ 1369 goto out; 1370 1371 put_task_struct(next_task); 1372 next_task = task; 1373 goto retry; 1374 } 1375 1376 deactivate_task(rq, next_task, 0); 1377 set_task_cpu(next_task, later_rq->cpu); 1378 activate_task(later_rq, next_task, 0); 1379 ret = 1; 1380 1381 resched_curr(later_rq); 1382 1383 double_unlock_balance(rq, later_rq); 1384 1385 out: 1386 put_task_struct(next_task); 1387 1388 return ret; 1389 } 1390 1391 static void push_dl_tasks(struct rq *rq) 1392 { 1393 /* Terminates as it moves a -deadline task */ 1394 while (push_dl_task(rq)) 1395 ; 1396 } 1397 1398 static int pull_dl_task(struct rq *this_rq) 1399 { 1400 int this_cpu = this_rq->cpu, ret = 0, cpu; 1401 struct task_struct *p; 1402 struct rq *src_rq; 1403 u64 dmin = LONG_MAX; 1404 1405 if (likely(!dl_overloaded(this_rq))) 1406 return 0; 1407 1408 /* 1409 * Match the barrier from dl_set_overloaded; this guarantees that if we 1410 * see overloaded we must also see the dlo_mask bit. 1411 */ 1412 smp_rmb(); 1413 1414 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1415 if (this_cpu == cpu) 1416 continue; 1417 1418 src_rq = cpu_rq(cpu); 1419 1420 /* 1421 * It looks racy, abd it is! However, as in sched_rt.c, 1422 * we are fine with this. 1423 */ 1424 if (this_rq->dl.dl_nr_running && 1425 dl_time_before(this_rq->dl.earliest_dl.curr, 1426 src_rq->dl.earliest_dl.next)) 1427 continue; 1428 1429 /* Might drop this_rq->lock */ 1430 double_lock_balance(this_rq, src_rq); 1431 1432 /* 1433 * If there are no more pullable tasks on the 1434 * rq, we're done with it. 1435 */ 1436 if (src_rq->dl.dl_nr_running <= 1) 1437 goto skip; 1438 1439 p = pick_next_earliest_dl_task(src_rq, this_cpu); 1440 1441 /* 1442 * We found a task to be pulled if: 1443 * - it preempts our current (if there's one), 1444 * - it will preempt the last one we pulled (if any). 1445 */ 1446 if (p && dl_time_before(p->dl.deadline, dmin) && 1447 (!this_rq->dl.dl_nr_running || 1448 dl_time_before(p->dl.deadline, 1449 this_rq->dl.earliest_dl.curr))) { 1450 WARN_ON(p == src_rq->curr); 1451 WARN_ON(!task_on_rq_queued(p)); 1452 1453 /* 1454 * Then we pull iff p has actually an earlier 1455 * deadline than the current task of its runqueue. 1456 */ 1457 if (dl_time_before(p->dl.deadline, 1458 src_rq->curr->dl.deadline)) 1459 goto skip; 1460 1461 ret = 1; 1462 1463 deactivate_task(src_rq, p, 0); 1464 set_task_cpu(p, this_cpu); 1465 activate_task(this_rq, p, 0); 1466 dmin = p->dl.deadline; 1467 1468 /* Is there any other task even earlier? */ 1469 } 1470 skip: 1471 double_unlock_balance(this_rq, src_rq); 1472 } 1473 1474 return ret; 1475 } 1476 1477 static void post_schedule_dl(struct rq *rq) 1478 { 1479 push_dl_tasks(rq); 1480 } 1481 1482 /* 1483 * Since the task is not running and a reschedule is not going to happen 1484 * anytime soon on its runqueue, we try pushing it away now. 1485 */ 1486 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1487 { 1488 if (!task_running(rq, p) && 1489 !test_tsk_need_resched(rq->curr) && 1490 has_pushable_dl_tasks(rq) && 1491 p->nr_cpus_allowed > 1 && 1492 dl_task(rq->curr) && 1493 (rq->curr->nr_cpus_allowed < 2 || 1494 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 1495 push_dl_tasks(rq); 1496 } 1497 } 1498 1499 static void set_cpus_allowed_dl(struct task_struct *p, 1500 const struct cpumask *new_mask) 1501 { 1502 struct rq *rq; 1503 struct root_domain *src_rd; 1504 int weight; 1505 1506 BUG_ON(!dl_task(p)); 1507 1508 rq = task_rq(p); 1509 src_rd = rq->rd; 1510 /* 1511 * Migrating a SCHED_DEADLINE task between exclusive 1512 * cpusets (different root_domains) entails a bandwidth 1513 * update. We already made space for us in the destination 1514 * domain (see cpuset_can_attach()). 1515 */ 1516 if (!cpumask_intersects(src_rd->span, new_mask)) { 1517 struct dl_bw *src_dl_b; 1518 1519 src_dl_b = dl_bw_of(cpu_of(rq)); 1520 /* 1521 * We now free resources of the root_domain we are migrating 1522 * off. In the worst case, sched_setattr() may temporary fail 1523 * until we complete the update. 1524 */ 1525 raw_spin_lock(&src_dl_b->lock); 1526 __dl_clear(src_dl_b, p->dl.dl_bw); 1527 raw_spin_unlock(&src_dl_b->lock); 1528 } 1529 1530 /* 1531 * Update only if the task is actually running (i.e., 1532 * it is on the rq AND it is not throttled). 1533 */ 1534 if (!on_dl_rq(&p->dl)) 1535 return; 1536 1537 weight = cpumask_weight(new_mask); 1538 1539 /* 1540 * Only update if the process changes its state from whether it 1541 * can migrate or not. 1542 */ 1543 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1544 return; 1545 1546 /* 1547 * The process used to be able to migrate OR it can now migrate 1548 */ 1549 if (weight <= 1) { 1550 if (!task_current(rq, p)) 1551 dequeue_pushable_dl_task(rq, p); 1552 BUG_ON(!rq->dl.dl_nr_migratory); 1553 rq->dl.dl_nr_migratory--; 1554 } else { 1555 if (!task_current(rq, p)) 1556 enqueue_pushable_dl_task(rq, p); 1557 rq->dl.dl_nr_migratory++; 1558 } 1559 1560 update_dl_migration(&rq->dl); 1561 } 1562 1563 /* Assumes rq->lock is held */ 1564 static void rq_online_dl(struct rq *rq) 1565 { 1566 if (rq->dl.overloaded) 1567 dl_set_overload(rq); 1568 1569 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 1570 if (rq->dl.dl_nr_running > 0) 1571 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1572 } 1573 1574 /* Assumes rq->lock is held */ 1575 static void rq_offline_dl(struct rq *rq) 1576 { 1577 if (rq->dl.overloaded) 1578 dl_clear_overload(rq); 1579 1580 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1581 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 1582 } 1583 1584 void init_sched_dl_class(void) 1585 { 1586 unsigned int i; 1587 1588 for_each_possible_cpu(i) 1589 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1590 GFP_KERNEL, cpu_to_node(i)); 1591 } 1592 1593 #endif /* CONFIG_SMP */ 1594 1595 /* 1596 * Ensure p's dl_timer is cancelled. May drop rq->lock for a while. 1597 */ 1598 static void cancel_dl_timer(struct rq *rq, struct task_struct *p) 1599 { 1600 struct hrtimer *dl_timer = &p->dl.dl_timer; 1601 1602 /* Nobody will change task's class if pi_lock is held */ 1603 lockdep_assert_held(&p->pi_lock); 1604 1605 if (hrtimer_active(dl_timer)) { 1606 int ret = hrtimer_try_to_cancel(dl_timer); 1607 1608 if (unlikely(ret == -1)) { 1609 /* 1610 * Note, p may migrate OR new deadline tasks 1611 * may appear in rq when we are unlocking it. 1612 * A caller of us must be fine with that. 1613 */ 1614 raw_spin_unlock(&rq->lock); 1615 hrtimer_cancel(dl_timer); 1616 raw_spin_lock(&rq->lock); 1617 } 1618 } 1619 } 1620 1621 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1622 { 1623 /* XXX we should retain the bw until 0-lag */ 1624 cancel_dl_timer(rq, p); 1625 __dl_clear_params(p); 1626 1627 /* 1628 * Since this might be the only -deadline task on the rq, 1629 * this is the right place to try to pull some other one 1630 * from an overloaded cpu, if any. 1631 */ 1632 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 1633 return; 1634 1635 if (pull_dl_task(rq)) 1636 resched_curr(rq); 1637 } 1638 1639 /* 1640 * When switching to -deadline, we may overload the rq, then 1641 * we try to push someone off, if possible. 1642 */ 1643 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1644 { 1645 int check_resched = 1; 1646 1647 /* 1648 * If p is throttled, don't consider the possibility 1649 * of preempting rq->curr, the check will be done right 1650 * after its runtime will get replenished. 1651 */ 1652 if (unlikely(p->dl.dl_throttled)) 1653 return; 1654 1655 if (task_on_rq_queued(p) && rq->curr != p) { 1656 #ifdef CONFIG_SMP 1657 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded && 1658 push_dl_task(rq) && rq != task_rq(p)) 1659 /* Only reschedule if pushing failed */ 1660 check_resched = 0; 1661 #endif /* CONFIG_SMP */ 1662 if (check_resched) { 1663 if (dl_task(rq->curr)) 1664 check_preempt_curr_dl(rq, p, 0); 1665 else 1666 resched_curr(rq); 1667 } 1668 } 1669 } 1670 1671 /* 1672 * If the scheduling parameters of a -deadline task changed, 1673 * a push or pull operation might be needed. 1674 */ 1675 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1676 int oldprio) 1677 { 1678 if (task_on_rq_queued(p) || rq->curr == p) { 1679 #ifdef CONFIG_SMP 1680 /* 1681 * This might be too much, but unfortunately 1682 * we don't have the old deadline value, and 1683 * we can't argue if the task is increasing 1684 * or lowering its prio, so... 1685 */ 1686 if (!rq->dl.overloaded) 1687 pull_dl_task(rq); 1688 1689 /* 1690 * If we now have a earlier deadline task than p, 1691 * then reschedule, provided p is still on this 1692 * runqueue. 1693 */ 1694 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && 1695 rq->curr == p) 1696 resched_curr(rq); 1697 #else 1698 /* 1699 * Again, we don't know if p has a earlier 1700 * or later deadline, so let's blindly set a 1701 * (maybe not needed) rescheduling point. 1702 */ 1703 resched_curr(rq); 1704 #endif /* CONFIG_SMP */ 1705 } else 1706 switched_to_dl(rq, p); 1707 } 1708 1709 const struct sched_class dl_sched_class = { 1710 .next = &rt_sched_class, 1711 .enqueue_task = enqueue_task_dl, 1712 .dequeue_task = dequeue_task_dl, 1713 .yield_task = yield_task_dl, 1714 1715 .check_preempt_curr = check_preempt_curr_dl, 1716 1717 .pick_next_task = pick_next_task_dl, 1718 .put_prev_task = put_prev_task_dl, 1719 1720 #ifdef CONFIG_SMP 1721 .select_task_rq = select_task_rq_dl, 1722 .set_cpus_allowed = set_cpus_allowed_dl, 1723 .rq_online = rq_online_dl, 1724 .rq_offline = rq_offline_dl, 1725 .post_schedule = post_schedule_dl, 1726 .task_woken = task_woken_dl, 1727 #endif 1728 1729 .set_curr_task = set_curr_task_dl, 1730 .task_tick = task_tick_dl, 1731 .task_fork = task_fork_dl, 1732 .task_dead = task_dead_dl, 1733 1734 .prio_changed = prio_changed_dl, 1735 .switched_from = switched_from_dl, 1736 .switched_to = switched_to_dl, 1737 1738 .update_curr = update_curr_dl, 1739 }; 1740 1741 #ifdef CONFIG_SCHED_DEBUG 1742 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 1743 1744 void print_dl_stats(struct seq_file *m, int cpu) 1745 { 1746 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 1747 } 1748 #endif /* CONFIG_SCHED_DEBUG */ 1749