1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 #include <linux/sched/clock.h> 21 #include <uapi/linux/sched/types.h> 22 #include "sched.h" 23 #include "pelt.h" 24 25 /* 26 * Default limits for DL period; on the top end we guard against small util 27 * tasks still getting ridiculously long effective runtimes, on the bottom end we 28 * guard against timer DoS. 29 */ 30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 32 #ifdef CONFIG_SYSCTL 33 static const struct ctl_table sched_dl_sysctls[] = { 34 { 35 .procname = "sched_deadline_period_max_us", 36 .data = &sysctl_sched_dl_period_max, 37 .maxlen = sizeof(unsigned int), 38 .mode = 0644, 39 .proc_handler = proc_douintvec_minmax, 40 .extra1 = (void *)&sysctl_sched_dl_period_min, 41 }, 42 { 43 .procname = "sched_deadline_period_min_us", 44 .data = &sysctl_sched_dl_period_min, 45 .maxlen = sizeof(unsigned int), 46 .mode = 0644, 47 .proc_handler = proc_douintvec_minmax, 48 .extra2 = (void *)&sysctl_sched_dl_period_max, 49 }, 50 }; 51 52 static int __init sched_dl_sysctl_init(void) 53 { 54 register_sysctl_init("kernel", sched_dl_sysctls); 55 return 0; 56 } 57 late_initcall(sched_dl_sysctl_init); 58 #endif /* CONFIG_SYSCTL */ 59 60 static bool dl_server(struct sched_dl_entity *dl_se) 61 { 62 return dl_se->dl_server; 63 } 64 65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 66 { 67 BUG_ON(dl_server(dl_se)); 68 return container_of(dl_se, struct task_struct, dl); 69 } 70 71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 72 { 73 return container_of(dl_rq, struct rq, dl); 74 } 75 76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se) 77 { 78 struct rq *rq = dl_se->rq; 79 80 if (!dl_server(dl_se)) 81 rq = task_rq(dl_task_of(dl_se)); 82 83 return rq; 84 } 85 86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 87 { 88 return &rq_of_dl_se(dl_se)->dl; 89 } 90 91 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 92 { 93 return !RB_EMPTY_NODE(&dl_se->rb_node); 94 } 95 96 #ifdef CONFIG_RT_MUTEXES 97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 98 { 99 return dl_se->pi_se; 100 } 101 102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 103 { 104 return pi_of(dl_se) != dl_se; 105 } 106 #else /* !CONFIG_RT_MUTEXES: */ 107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 108 { 109 return dl_se; 110 } 111 112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 113 { 114 return false; 115 } 116 #endif /* !CONFIG_RT_MUTEXES */ 117 118 static inline struct dl_bw *dl_bw_of(int i) 119 { 120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 121 "sched RCU must be held"); 122 return &cpu_rq(i)->rd->dl_bw; 123 } 124 125 static inline int dl_bw_cpus(int i) 126 { 127 struct root_domain *rd = cpu_rq(i)->rd; 128 129 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 130 "sched RCU must be held"); 131 132 return cpumask_weight_and(rd->span, cpu_active_mask); 133 } 134 135 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 136 { 137 unsigned long cap = 0; 138 int i; 139 140 for_each_cpu_and(i, mask, cpu_active_mask) 141 cap += arch_scale_cpu_capacity(i); 142 143 return cap; 144 } 145 146 /* 147 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 148 * of the CPU the task is running on rather rd's \Sum CPU capacity. 149 */ 150 static inline unsigned long dl_bw_capacity(int i) 151 { 152 if (!sched_asym_cpucap_active() && 153 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) { 154 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 155 } else { 156 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 157 "sched RCU must be held"); 158 159 return __dl_bw_capacity(cpu_rq(i)->rd->span); 160 } 161 } 162 163 bool dl_bw_visited(int cpu, u64 cookie) 164 { 165 struct root_domain *rd = cpu_rq(cpu)->rd; 166 167 if (rd->visit_cookie == cookie) 168 return true; 169 170 rd->visit_cookie = cookie; 171 return false; 172 } 173 174 static inline 175 void __dl_update(struct dl_bw *dl_b, s64 bw) 176 { 177 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 178 int i; 179 180 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 181 "sched RCU must be held"); 182 for_each_cpu_and(i, rd->span, cpu_active_mask) { 183 struct rq *rq = cpu_rq(i); 184 185 rq->dl.extra_bw += bw; 186 } 187 } 188 189 static inline 190 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 191 { 192 dl_b->total_bw -= tsk_bw; 193 __dl_update(dl_b, (s32)tsk_bw / cpus); 194 } 195 196 static inline 197 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 198 { 199 dl_b->total_bw += tsk_bw; 200 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 201 } 202 203 static inline bool 204 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 205 { 206 return dl_b->bw != -1 && 207 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 208 } 209 210 static inline 211 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 212 { 213 u64 old = dl_rq->running_bw; 214 215 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 216 dl_rq->running_bw += dl_bw; 217 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */ 218 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 219 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 220 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 221 } 222 223 static inline 224 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 225 { 226 u64 old = dl_rq->running_bw; 227 228 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 229 dl_rq->running_bw -= dl_bw; 230 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */ 231 if (dl_rq->running_bw > old) 232 dl_rq->running_bw = 0; 233 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 234 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 235 } 236 237 static inline 238 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 239 { 240 u64 old = dl_rq->this_bw; 241 242 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 243 dl_rq->this_bw += dl_bw; 244 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */ 245 } 246 247 static inline 248 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 249 { 250 u64 old = dl_rq->this_bw; 251 252 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 253 dl_rq->this_bw -= dl_bw; 254 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */ 255 if (dl_rq->this_bw > old) 256 dl_rq->this_bw = 0; 257 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw); 258 } 259 260 static inline 261 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 262 { 263 if (!dl_entity_is_special(dl_se)) 264 __add_rq_bw(dl_se->dl_bw, dl_rq); 265 } 266 267 static inline 268 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 269 { 270 if (!dl_entity_is_special(dl_se)) 271 __sub_rq_bw(dl_se->dl_bw, dl_rq); 272 } 273 274 static inline 275 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 276 { 277 if (!dl_entity_is_special(dl_se)) 278 __add_running_bw(dl_se->dl_bw, dl_rq); 279 } 280 281 static inline 282 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 283 { 284 if (!dl_entity_is_special(dl_se)) 285 __sub_running_bw(dl_se->dl_bw, dl_rq); 286 } 287 288 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw) 289 { 290 if (dl_se->dl_non_contending) { 291 sub_running_bw(dl_se, &rq->dl); 292 dl_se->dl_non_contending = 0; 293 294 /* 295 * If the timer handler is currently running and the 296 * timer cannot be canceled, inactive_task_timer() 297 * will see that dl_not_contending is not set, and 298 * will not touch the rq's active utilization, 299 * so we are still safe. 300 */ 301 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) { 302 if (!dl_server(dl_se)) 303 put_task_struct(dl_task_of(dl_se)); 304 } 305 } 306 __sub_rq_bw(dl_se->dl_bw, &rq->dl); 307 __add_rq_bw(new_bw, &rq->dl); 308 } 309 310 static __always_inline 311 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer) 312 { 313 /* 314 * If the timer callback was running (hrtimer_try_to_cancel == -1), 315 * it will eventually call put_task_struct(). 316 */ 317 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se)) 318 put_task_struct(dl_task_of(dl_se)); 319 } 320 321 static __always_inline 322 void cancel_replenish_timer(struct sched_dl_entity *dl_se) 323 { 324 cancel_dl_timer(dl_se, &dl_se->dl_timer); 325 } 326 327 static __always_inline 328 void cancel_inactive_timer(struct sched_dl_entity *dl_se) 329 { 330 cancel_dl_timer(dl_se, &dl_se->inactive_timer); 331 } 332 333 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 334 { 335 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 336 337 if (task_on_rq_queued(p)) 338 return; 339 340 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw); 341 } 342 343 static void __dl_clear_params(struct sched_dl_entity *dl_se); 344 345 /* 346 * The utilization of a task cannot be immediately removed from 347 * the rq active utilization (running_bw) when the task blocks. 348 * Instead, we have to wait for the so called "0-lag time". 349 * 350 * If a task blocks before the "0-lag time", a timer (the inactive 351 * timer) is armed, and running_bw is decreased when the timer 352 * fires. 353 * 354 * If the task wakes up again before the inactive timer fires, 355 * the timer is canceled, whereas if the task wakes up after the 356 * inactive timer fired (and running_bw has been decreased) the 357 * task's utilization has to be added to running_bw again. 358 * A flag in the deadline scheduling entity (dl_non_contending) 359 * is used to avoid race conditions between the inactive timer handler 360 * and task wakeups. 361 * 362 * The following diagram shows how running_bw is updated. A task is 363 * "ACTIVE" when its utilization contributes to running_bw; an 364 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 365 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 366 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 367 * time already passed, which does not contribute to running_bw anymore. 368 * +------------------+ 369 * wakeup | ACTIVE | 370 * +------------------>+ contending | 371 * | add_running_bw | | 372 * | +----+------+------+ 373 * | | ^ 374 * | dequeue | | 375 * +--------+-------+ | | 376 * | | t >= 0-lag | | wakeup 377 * | INACTIVE |<---------------+ | 378 * | | sub_running_bw | | 379 * +--------+-------+ | | 380 * ^ | | 381 * | t < 0-lag | | 382 * | | | 383 * | V | 384 * | +----+------+------+ 385 * | sub_running_bw | ACTIVE | 386 * +-------------------+ | 387 * inactive timer | non contending | 388 * fired +------------------+ 389 * 390 * The task_non_contending() function is invoked when a task 391 * blocks, and checks if the 0-lag time already passed or 392 * not (in the first case, it directly updates running_bw; 393 * in the second case, it arms the inactive timer). 394 * 395 * The task_contending() function is invoked when a task wakes 396 * up, and checks if the task is still in the "ACTIVE non contending" 397 * state or not (in the second case, it updates running_bw). 398 */ 399 static void task_non_contending(struct sched_dl_entity *dl_se, bool dl_task) 400 { 401 struct hrtimer *timer = &dl_se->inactive_timer; 402 struct rq *rq = rq_of_dl_se(dl_se); 403 struct dl_rq *dl_rq = &rq->dl; 404 s64 zerolag_time; 405 406 /* 407 * If this is a non-deadline task that has been boosted, 408 * do nothing 409 */ 410 if (dl_se->dl_runtime == 0) 411 return; 412 413 if (dl_entity_is_special(dl_se)) 414 return; 415 416 WARN_ON(dl_se->dl_non_contending); 417 418 zerolag_time = dl_se->deadline - 419 div64_long((dl_se->runtime * dl_se->dl_period), 420 dl_se->dl_runtime); 421 422 /* 423 * Using relative times instead of the absolute "0-lag time" 424 * allows to simplify the code 425 */ 426 zerolag_time -= rq_clock(rq); 427 428 /* 429 * If the "0-lag time" already passed, decrease the active 430 * utilization now, instead of starting a timer 431 */ 432 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 433 if (dl_server(dl_se)) { 434 sub_running_bw(dl_se, dl_rq); 435 } else { 436 struct task_struct *p = dl_task_of(dl_se); 437 438 if (dl_task) 439 sub_running_bw(dl_se, dl_rq); 440 441 if (!dl_task || READ_ONCE(p->__state) == TASK_DEAD) { 442 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 443 444 if (READ_ONCE(p->__state) == TASK_DEAD) 445 sub_rq_bw(dl_se, &rq->dl); 446 raw_spin_lock(&dl_b->lock); 447 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p))); 448 raw_spin_unlock(&dl_b->lock); 449 __dl_clear_params(dl_se); 450 } 451 } 452 453 return; 454 } 455 456 dl_se->dl_non_contending = 1; 457 if (!dl_server(dl_se)) 458 get_task_struct(dl_task_of(dl_se)); 459 460 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 461 } 462 463 static void task_contending(struct sched_dl_entity *dl_se, int flags) 464 { 465 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 466 467 /* 468 * If this is a non-deadline task that has been boosted, 469 * do nothing 470 */ 471 if (dl_se->dl_runtime == 0) 472 return; 473 474 if (flags & ENQUEUE_MIGRATED) 475 add_rq_bw(dl_se, dl_rq); 476 477 if (dl_se->dl_non_contending) { 478 dl_se->dl_non_contending = 0; 479 /* 480 * If the timer handler is currently running and the 481 * timer cannot be canceled, inactive_task_timer() 482 * will see that dl_not_contending is not set, and 483 * will not touch the rq's active utilization, 484 * so we are still safe. 485 */ 486 cancel_inactive_timer(dl_se); 487 } else { 488 /* 489 * Since "dl_non_contending" is not set, the 490 * task's utilization has already been removed from 491 * active utilization (either when the task blocked, 492 * when the "inactive timer" fired). 493 * So, add it back. 494 */ 495 add_running_bw(dl_se, dl_rq); 496 } 497 } 498 499 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 500 { 501 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 502 } 503 504 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 505 506 void init_dl_bw(struct dl_bw *dl_b) 507 { 508 raw_spin_lock_init(&dl_b->lock); 509 if (global_rt_runtime() == RUNTIME_INF) 510 dl_b->bw = -1; 511 else 512 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 513 dl_b->total_bw = 0; 514 } 515 516 void init_dl_rq(struct dl_rq *dl_rq) 517 { 518 dl_rq->root = RB_ROOT_CACHED; 519 520 /* zero means no -deadline tasks */ 521 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 522 523 dl_rq->overloaded = 0; 524 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 525 526 dl_rq->running_bw = 0; 527 dl_rq->this_bw = 0; 528 init_dl_rq_bw_ratio(dl_rq); 529 } 530 531 static inline int dl_overloaded(struct rq *rq) 532 { 533 return atomic_read(&rq->rd->dlo_count); 534 } 535 536 static inline void dl_set_overload(struct rq *rq) 537 { 538 if (!rq->online) 539 return; 540 541 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 542 /* 543 * Must be visible before the overload count is 544 * set (as in sched_rt.c). 545 * 546 * Matched by the barrier in pull_dl_task(). 547 */ 548 smp_wmb(); 549 atomic_inc(&rq->rd->dlo_count); 550 } 551 552 static inline void dl_clear_overload(struct rq *rq) 553 { 554 if (!rq->online) 555 return; 556 557 atomic_dec(&rq->rd->dlo_count); 558 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 559 } 560 561 #define __node_2_pdl(node) \ 562 rb_entry((node), struct task_struct, pushable_dl_tasks) 563 564 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 565 { 566 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 567 } 568 569 static inline int has_pushable_dl_tasks(struct rq *rq) 570 { 571 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 572 } 573 574 /* 575 * The list of pushable -deadline task is not a plist, like in 576 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 577 */ 578 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 579 { 580 struct rb_node *leftmost; 581 582 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 583 584 leftmost = rb_add_cached(&p->pushable_dl_tasks, 585 &rq->dl.pushable_dl_tasks_root, 586 __pushable_less); 587 if (leftmost) 588 rq->dl.earliest_dl.next = p->dl.deadline; 589 590 if (!rq->dl.overloaded) { 591 dl_set_overload(rq); 592 rq->dl.overloaded = 1; 593 } 594 } 595 596 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 597 { 598 struct dl_rq *dl_rq = &rq->dl; 599 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 600 struct rb_node *leftmost; 601 602 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 603 return; 604 605 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 606 if (leftmost) 607 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 608 609 RB_CLEAR_NODE(&p->pushable_dl_tasks); 610 611 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) { 612 dl_clear_overload(rq); 613 rq->dl.overloaded = 0; 614 } 615 } 616 617 static int push_dl_task(struct rq *rq); 618 619 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 620 { 621 return rq->online && dl_task(prev); 622 } 623 624 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 625 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 626 627 static void push_dl_tasks(struct rq *); 628 static void pull_dl_task(struct rq *); 629 630 static inline void deadline_queue_push_tasks(struct rq *rq) 631 { 632 if (!has_pushable_dl_tasks(rq)) 633 return; 634 635 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 636 } 637 638 static inline void deadline_queue_pull_task(struct rq *rq) 639 { 640 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 641 } 642 643 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 644 645 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 646 { 647 struct rq *later_rq = NULL; 648 struct dl_bw *dl_b; 649 650 later_rq = find_lock_later_rq(p, rq); 651 if (!later_rq) { 652 int cpu; 653 654 /* 655 * If we cannot preempt any rq, fall back to pick any 656 * online CPU: 657 */ 658 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 659 if (cpu >= nr_cpu_ids) { 660 /* 661 * Failed to find any suitable CPU. 662 * The task will never come back! 663 */ 664 WARN_ON_ONCE(dl_bandwidth_enabled()); 665 666 /* 667 * If admission control is disabled we 668 * try a little harder to let the task 669 * run. 670 */ 671 cpu = cpumask_any(cpu_active_mask); 672 } 673 later_rq = cpu_rq(cpu); 674 double_lock_balance(rq, later_rq); 675 } 676 677 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 678 /* 679 * Inactive timer is armed (or callback is running, but 680 * waiting for us to release rq locks). In any case, when it 681 * will fire (or continue), it will see running_bw of this 682 * task migrated to later_rq (and correctly handle it). 683 */ 684 sub_running_bw(&p->dl, &rq->dl); 685 sub_rq_bw(&p->dl, &rq->dl); 686 687 add_rq_bw(&p->dl, &later_rq->dl); 688 add_running_bw(&p->dl, &later_rq->dl); 689 } else { 690 sub_rq_bw(&p->dl, &rq->dl); 691 add_rq_bw(&p->dl, &later_rq->dl); 692 } 693 694 /* 695 * And we finally need to fix up root_domain(s) bandwidth accounting, 696 * since p is still hanging out in the old (now moved to default) root 697 * domain. 698 */ 699 dl_b = &rq->rd->dl_bw; 700 raw_spin_lock(&dl_b->lock); 701 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 702 raw_spin_unlock(&dl_b->lock); 703 704 dl_b = &later_rq->rd->dl_bw; 705 raw_spin_lock(&dl_b->lock); 706 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 707 raw_spin_unlock(&dl_b->lock); 708 709 set_task_cpu(p, later_rq->cpu); 710 double_unlock_balance(later_rq, rq); 711 712 return later_rq; 713 } 714 715 static void 716 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags); 717 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 718 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags); 719 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags); 720 721 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 722 struct rq *rq) 723 { 724 /* for non-boosted task, pi_of(dl_se) == dl_se */ 725 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 726 dl_se->runtime = pi_of(dl_se)->dl_runtime; 727 728 /* 729 * If it is a deferred reservation, and the server 730 * is not handling an starvation case, defer it. 731 */ 732 if (dl_se->dl_defer && !dl_se->dl_defer_running) { 733 dl_se->dl_throttled = 1; 734 dl_se->dl_defer_armed = 1; 735 } 736 } 737 738 /* 739 * We are being explicitly informed that a new instance is starting, 740 * and this means that: 741 * - the absolute deadline of the entity has to be placed at 742 * current time + relative deadline; 743 * - the runtime of the entity has to be set to the maximum value. 744 * 745 * The capability of specifying such event is useful whenever a -deadline 746 * entity wants to (try to!) synchronize its behaviour with the scheduler's 747 * one, and to (try to!) reconcile itself with its own scheduling 748 * parameters. 749 */ 750 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 751 { 752 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 753 struct rq *rq = rq_of_dl_rq(dl_rq); 754 755 WARN_ON(is_dl_boosted(dl_se)); 756 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 757 758 /* 759 * We are racing with the deadline timer. So, do nothing because 760 * the deadline timer handler will take care of properly recharging 761 * the runtime and postponing the deadline 762 */ 763 if (dl_se->dl_throttled) 764 return; 765 766 /* 767 * We use the regular wall clock time to set deadlines in the 768 * future; in fact, we must consider execution overheads (time 769 * spent on hardirq context, etc.). 770 */ 771 replenish_dl_new_period(dl_se, rq); 772 } 773 774 static int start_dl_timer(struct sched_dl_entity *dl_se); 775 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t); 776 777 /* 778 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 779 * possibility of a entity lasting more than what it declared, and thus 780 * exhausting its runtime. 781 * 782 * Here we are interested in making runtime overrun possible, but we do 783 * not want a entity which is misbehaving to affect the scheduling of all 784 * other entities. 785 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 786 * is used, in order to confine each entity within its own bandwidth. 787 * 788 * This function deals exactly with that, and ensures that when the runtime 789 * of a entity is replenished, its deadline is also postponed. That ensures 790 * the overrunning entity can't interfere with other entity in the system and 791 * can't make them miss their deadlines. Reasons why this kind of overruns 792 * could happen are, typically, a entity voluntarily trying to overcome its 793 * runtime, or it just underestimated it during sched_setattr(). 794 */ 795 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 796 { 797 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 798 struct rq *rq = rq_of_dl_rq(dl_rq); 799 800 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 801 802 /* 803 * This could be the case for a !-dl task that is boosted. 804 * Just go with full inherited parameters. 805 * 806 * Or, it could be the case of a deferred reservation that 807 * was not able to consume its runtime in background and 808 * reached this point with current u > U. 809 * 810 * In both cases, set a new period. 811 */ 812 if (dl_se->dl_deadline == 0 || 813 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) { 814 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 815 dl_se->runtime = pi_of(dl_se)->dl_runtime; 816 } 817 818 if (dl_se->dl_yielded && dl_se->runtime > 0) 819 dl_se->runtime = 0; 820 821 /* 822 * We keep moving the deadline away until we get some 823 * available runtime for the entity. This ensures correct 824 * handling of situations where the runtime overrun is 825 * arbitrary large. 826 */ 827 while (dl_se->runtime <= 0) { 828 dl_se->deadline += pi_of(dl_se)->dl_period; 829 dl_se->runtime += pi_of(dl_se)->dl_runtime; 830 } 831 832 /* 833 * At this point, the deadline really should be "in 834 * the future" with respect to rq->clock. If it's 835 * not, we are, for some reason, lagging too much! 836 * Anyway, after having warn userspace abut that, 837 * we still try to keep the things running by 838 * resetting the deadline and the budget of the 839 * entity. 840 */ 841 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 842 printk_deferred_once("sched: DL replenish lagged too much\n"); 843 replenish_dl_new_period(dl_se, rq); 844 } 845 846 if (dl_se->dl_yielded) 847 dl_se->dl_yielded = 0; 848 if (dl_se->dl_throttled) 849 dl_se->dl_throttled = 0; 850 851 /* 852 * If this is the replenishment of a deferred reservation, 853 * clear the flag and return. 854 */ 855 if (dl_se->dl_defer_armed) { 856 dl_se->dl_defer_armed = 0; 857 return; 858 } 859 860 /* 861 * A this point, if the deferred server is not armed, and the deadline 862 * is in the future, if it is not running already, throttle the server 863 * and arm the defer timer. 864 */ 865 if (dl_se->dl_defer && !dl_se->dl_defer_running && 866 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) { 867 if (!is_dl_boosted(dl_se)) { 868 869 /* 870 * Set dl_se->dl_defer_armed and dl_throttled variables to 871 * inform the start_dl_timer() that this is a deferred 872 * activation. 873 */ 874 dl_se->dl_defer_armed = 1; 875 dl_se->dl_throttled = 1; 876 if (!start_dl_timer(dl_se)) { 877 /* 878 * If for whatever reason (delays), a previous timer was 879 * queued but not serviced, cancel it and clean the 880 * deferrable server variables intended for start_dl_timer(). 881 */ 882 hrtimer_try_to_cancel(&dl_se->dl_timer); 883 dl_se->dl_defer_armed = 0; 884 dl_se->dl_throttled = 0; 885 } 886 } 887 } 888 } 889 890 /* 891 * Here we check if --at time t-- an entity (which is probably being 892 * [re]activated or, in general, enqueued) can use its remaining runtime 893 * and its current deadline _without_ exceeding the bandwidth it is 894 * assigned (function returns true if it can't). We are in fact applying 895 * one of the CBS rules: when a task wakes up, if the residual runtime 896 * over residual deadline fits within the allocated bandwidth, then we 897 * can keep the current (absolute) deadline and residual budget without 898 * disrupting the schedulability of the system. Otherwise, we should 899 * refill the runtime and set the deadline a period in the future, 900 * because keeping the current (absolute) deadline of the task would 901 * result in breaking guarantees promised to other tasks (refer to 902 * Documentation/scheduler/sched-deadline.rst for more information). 903 * 904 * This function returns true if: 905 * 906 * runtime / (deadline - t) > dl_runtime / dl_deadline , 907 * 908 * IOW we can't recycle current parameters. 909 * 910 * Notice that the bandwidth check is done against the deadline. For 911 * task with deadline equal to period this is the same of using 912 * dl_period instead of dl_deadline in the equation above. 913 */ 914 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 915 { 916 u64 left, right; 917 918 /* 919 * left and right are the two sides of the equation above, 920 * after a bit of shuffling to use multiplications instead 921 * of divisions. 922 * 923 * Note that none of the time values involved in the two 924 * multiplications are absolute: dl_deadline and dl_runtime 925 * are the relative deadline and the maximum runtime of each 926 * instance, runtime is the runtime left for the last instance 927 * and (deadline - t), since t is rq->clock, is the time left 928 * to the (absolute) deadline. Even if overflowing the u64 type 929 * is very unlikely to occur in both cases, here we scale down 930 * as we want to avoid that risk at all. Scaling down by 10 931 * means that we reduce granularity to 1us. We are fine with it, 932 * since this is only a true/false check and, anyway, thinking 933 * of anything below microseconds resolution is actually fiction 934 * (but still we want to give the user that illusion >;). 935 */ 936 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 937 right = ((dl_se->deadline - t) >> DL_SCALE) * 938 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 939 940 return dl_time_before(right, left); 941 } 942 943 /* 944 * Revised wakeup rule [1]: For self-suspending tasks, rather then 945 * re-initializing task's runtime and deadline, the revised wakeup 946 * rule adjusts the task's runtime to avoid the task to overrun its 947 * density. 948 * 949 * Reasoning: a task may overrun the density if: 950 * runtime / (deadline - t) > dl_runtime / dl_deadline 951 * 952 * Therefore, runtime can be adjusted to: 953 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 954 * 955 * In such way that runtime will be equal to the maximum density 956 * the task can use without breaking any rule. 957 * 958 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 959 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 960 */ 961 static void 962 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 963 { 964 u64 laxity = dl_se->deadline - rq_clock(rq); 965 966 /* 967 * If the task has deadline < period, and the deadline is in the past, 968 * it should already be throttled before this check. 969 * 970 * See update_dl_entity() comments for further details. 971 */ 972 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 973 974 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 975 } 976 977 /* 978 * Regarding the deadline, a task with implicit deadline has a relative 979 * deadline == relative period. A task with constrained deadline has a 980 * relative deadline <= relative period. 981 * 982 * We support constrained deadline tasks. However, there are some restrictions 983 * applied only for tasks which do not have an implicit deadline. See 984 * update_dl_entity() to know more about such restrictions. 985 * 986 * The dl_is_implicit() returns true if the task has an implicit deadline. 987 */ 988 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 989 { 990 return dl_se->dl_deadline == dl_se->dl_period; 991 } 992 993 /* 994 * When a deadline entity is placed in the runqueue, its runtime and deadline 995 * might need to be updated. This is done by a CBS wake up rule. There are two 996 * different rules: 1) the original CBS; and 2) the Revisited CBS. 997 * 998 * When the task is starting a new period, the Original CBS is used. In this 999 * case, the runtime is replenished and a new absolute deadline is set. 1000 * 1001 * When a task is queued before the begin of the next period, using the 1002 * remaining runtime and deadline could make the entity to overflow, see 1003 * dl_entity_overflow() to find more about runtime overflow. When such case 1004 * is detected, the runtime and deadline need to be updated. 1005 * 1006 * If the task has an implicit deadline, i.e., deadline == period, the Original 1007 * CBS is applied. The runtime is replenished and a new absolute deadline is 1008 * set, as in the previous cases. 1009 * 1010 * However, the Original CBS does not work properly for tasks with 1011 * deadline < period, which are said to have a constrained deadline. By 1012 * applying the Original CBS, a constrained deadline task would be able to run 1013 * runtime/deadline in a period. With deadline < period, the task would 1014 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1015 * 1016 * In order to prevent this misbehave, the Revisited CBS is used for 1017 * constrained deadline tasks when a runtime overflow is detected. In the 1018 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1019 * the remaining runtime of the task is reduced to avoid runtime overflow. 1020 * Please refer to the comments update_dl_revised_wakeup() function to find 1021 * more about the Revised CBS rule. 1022 */ 1023 static void update_dl_entity(struct sched_dl_entity *dl_se) 1024 { 1025 struct rq *rq = rq_of_dl_se(dl_se); 1026 1027 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1028 dl_entity_overflow(dl_se, rq_clock(rq))) { 1029 1030 if (unlikely(!dl_is_implicit(dl_se) && 1031 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1032 !is_dl_boosted(dl_se))) { 1033 update_dl_revised_wakeup(dl_se, rq); 1034 return; 1035 } 1036 1037 replenish_dl_new_period(dl_se, rq); 1038 } else if (dl_server(dl_se) && dl_se->dl_defer) { 1039 /* 1040 * The server can still use its previous deadline, so check if 1041 * it left the dl_defer_running state. 1042 */ 1043 if (!dl_se->dl_defer_running) { 1044 dl_se->dl_defer_armed = 1; 1045 dl_se->dl_throttled = 1; 1046 } 1047 } 1048 } 1049 1050 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1051 { 1052 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1053 } 1054 1055 /* 1056 * If the entity depleted all its runtime, and if we want it to sleep 1057 * while waiting for some new execution time to become available, we 1058 * set the bandwidth replenishment timer to the replenishment instant 1059 * and try to activate it. 1060 * 1061 * Notice that it is important for the caller to know if the timer 1062 * actually started or not (i.e., the replenishment instant is in 1063 * the future or in the past). 1064 */ 1065 static int start_dl_timer(struct sched_dl_entity *dl_se) 1066 { 1067 struct hrtimer *timer = &dl_se->dl_timer; 1068 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1069 struct rq *rq = rq_of_dl_rq(dl_rq); 1070 ktime_t now, act; 1071 s64 delta; 1072 1073 lockdep_assert_rq_held(rq); 1074 1075 /* 1076 * We want the timer to fire at the deadline, but considering 1077 * that it is actually coming from rq->clock and not from 1078 * hrtimer's time base reading. 1079 * 1080 * The deferred reservation will have its timer set to 1081 * (deadline - runtime). At that point, the CBS rule will decide 1082 * if the current deadline can be used, or if a replenishment is 1083 * required to avoid add too much pressure on the system 1084 * (current u > U). 1085 */ 1086 if (dl_se->dl_defer_armed) { 1087 WARN_ON_ONCE(!dl_se->dl_throttled); 1088 act = ns_to_ktime(dl_se->deadline - dl_se->runtime); 1089 } else { 1090 /* act = deadline - rel-deadline + period */ 1091 act = ns_to_ktime(dl_next_period(dl_se)); 1092 } 1093 1094 now = hrtimer_cb_get_time(timer); 1095 delta = ktime_to_ns(now) - rq_clock(rq); 1096 act = ktime_add_ns(act, delta); 1097 1098 /* 1099 * If the expiry time already passed, e.g., because the value 1100 * chosen as the deadline is too small, don't even try to 1101 * start the timer in the past! 1102 */ 1103 if (ktime_us_delta(act, now) < 0) 1104 return 0; 1105 1106 /* 1107 * !enqueued will guarantee another callback; even if one is already in 1108 * progress. This ensures a balanced {get,put}_task_struct(). 1109 * 1110 * The race against __run_timer() clearing the enqueued state is 1111 * harmless because we're holding task_rq()->lock, therefore the timer 1112 * expiring after we've done the check will wait on its task_rq_lock() 1113 * and observe our state. 1114 */ 1115 if (!hrtimer_is_queued(timer)) { 1116 if (!dl_server(dl_se)) 1117 get_task_struct(dl_task_of(dl_se)); 1118 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1119 } 1120 1121 return 1; 1122 } 1123 1124 static void __push_dl_task(struct rq *rq, struct rq_flags *rf) 1125 { 1126 /* 1127 * Queueing this task back might have overloaded rq, check if we need 1128 * to kick someone away. 1129 */ 1130 if (has_pushable_dl_tasks(rq)) { 1131 /* 1132 * Nothing relies on rq->lock after this, so its safe to drop 1133 * rq->lock. 1134 */ 1135 rq_unpin_lock(rq, rf); 1136 push_dl_task(rq); 1137 rq_repin_lock(rq, rf); 1138 } 1139 } 1140 1141 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */ 1142 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC; 1143 1144 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se) 1145 { 1146 struct rq *rq = rq_of_dl_se(dl_se); 1147 u64 fw; 1148 1149 scoped_guard (rq_lock, rq) { 1150 struct rq_flags *rf = &scope.rf; 1151 1152 if (!dl_se->dl_throttled || !dl_se->dl_runtime) 1153 return HRTIMER_NORESTART; 1154 1155 sched_clock_tick(); 1156 update_rq_clock(rq); 1157 1158 /* 1159 * Make sure current has propagated its pending runtime into 1160 * any relevant server through calling dl_server_update() and 1161 * friends. 1162 */ 1163 rq->donor->sched_class->update_curr(rq); 1164 1165 if (dl_se->dl_defer_idle) { 1166 dl_server_stop(dl_se); 1167 return HRTIMER_NORESTART; 1168 } 1169 1170 if (dl_se->dl_defer_armed) { 1171 /* 1172 * First check if the server could consume runtime in background. 1173 * If so, it is possible to push the defer timer for this amount 1174 * of time. The dl_server_min_res serves as a limit to avoid 1175 * forwarding the timer for a too small amount of time. 1176 */ 1177 if (dl_time_before(rq_clock(dl_se->rq), 1178 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) { 1179 1180 /* reset the defer timer */ 1181 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime; 1182 1183 hrtimer_forward_now(timer, ns_to_ktime(fw)); 1184 return HRTIMER_RESTART; 1185 } 1186 1187 dl_se->dl_defer_running = 1; 1188 } 1189 1190 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH); 1191 1192 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl)) 1193 resched_curr(rq); 1194 1195 __push_dl_task(rq, rf); 1196 } 1197 1198 return HRTIMER_NORESTART; 1199 } 1200 1201 /* 1202 * This is the bandwidth enforcement timer callback. If here, we know 1203 * a task is not on its dl_rq, since the fact that the timer was running 1204 * means the task is throttled and needs a runtime replenishment. 1205 * 1206 * However, what we actually do depends on the fact the task is active, 1207 * (it is on its rq) or has been removed from there by a call to 1208 * dequeue_task_dl(). In the former case we must issue the runtime 1209 * replenishment and add the task back to the dl_rq; in the latter, we just 1210 * do nothing but clearing dl_throttled, so that runtime and deadline 1211 * updating (and the queueing back to dl_rq) will be done by the 1212 * next call to enqueue_task_dl(). 1213 */ 1214 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1215 { 1216 struct sched_dl_entity *dl_se = container_of(timer, 1217 struct sched_dl_entity, 1218 dl_timer); 1219 struct task_struct *p; 1220 struct rq_flags rf; 1221 struct rq *rq; 1222 1223 if (dl_server(dl_se)) 1224 return dl_server_timer(timer, dl_se); 1225 1226 p = dl_task_of(dl_se); 1227 rq = task_rq_lock(p, &rf); 1228 1229 /* 1230 * The task might have changed its scheduling policy to something 1231 * different than SCHED_DEADLINE (through switched_from_dl()). 1232 */ 1233 if (!dl_task(p)) 1234 goto unlock; 1235 1236 /* 1237 * The task might have been boosted by someone else and might be in the 1238 * boosting/deboosting path, its not throttled. 1239 */ 1240 if (is_dl_boosted(dl_se)) 1241 goto unlock; 1242 1243 /* 1244 * Spurious timer due to start_dl_timer() race; or we already received 1245 * a replenishment from rt_mutex_setprio(). 1246 */ 1247 if (!dl_se->dl_throttled) 1248 goto unlock; 1249 1250 sched_clock_tick(); 1251 update_rq_clock(rq); 1252 1253 /* 1254 * If the throttle happened during sched-out; like: 1255 * 1256 * schedule() 1257 * deactivate_task() 1258 * dequeue_task_dl() 1259 * update_curr_dl() 1260 * start_dl_timer() 1261 * __dequeue_task_dl() 1262 * prev->on_rq = 0; 1263 * 1264 * We can be both throttled and !queued. Replenish the counter 1265 * but do not enqueue -- wait for our wakeup to do that. 1266 */ 1267 if (!task_on_rq_queued(p)) { 1268 replenish_dl_entity(dl_se); 1269 goto unlock; 1270 } 1271 1272 if (unlikely(!rq->online)) { 1273 /* 1274 * If the runqueue is no longer available, migrate the 1275 * task elsewhere. This necessarily changes rq. 1276 */ 1277 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1278 rq = dl_task_offline_migration(rq, p); 1279 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1280 update_rq_clock(rq); 1281 1282 /* 1283 * Now that the task has been migrated to the new RQ and we 1284 * have that locked, proceed as normal and enqueue the task 1285 * there. 1286 */ 1287 } 1288 1289 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1290 if (dl_task(rq->donor)) 1291 wakeup_preempt_dl(rq, p, 0); 1292 else 1293 resched_curr(rq); 1294 1295 __push_dl_task(rq, &rf); 1296 1297 unlock: 1298 task_rq_unlock(rq, p, &rf); 1299 1300 /* 1301 * This can free the task_struct, including this hrtimer, do not touch 1302 * anything related to that after this. 1303 */ 1304 put_task_struct(p); 1305 1306 return HRTIMER_NORESTART; 1307 } 1308 1309 static void init_dl_task_timer(struct sched_dl_entity *dl_se) 1310 { 1311 struct hrtimer *timer = &dl_se->dl_timer; 1312 1313 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1314 } 1315 1316 /* 1317 * During the activation, CBS checks if it can reuse the current task's 1318 * runtime and period. If the deadline of the task is in the past, CBS 1319 * cannot use the runtime, and so it replenishes the task. This rule 1320 * works fine for implicit deadline tasks (deadline == period), and the 1321 * CBS was designed for implicit deadline tasks. However, a task with 1322 * constrained deadline (deadline < period) might be awakened after the 1323 * deadline, but before the next period. In this case, replenishing the 1324 * task would allow it to run for runtime / deadline. As in this case 1325 * deadline < period, CBS enables a task to run for more than the 1326 * runtime / period. In a very loaded system, this can cause a domino 1327 * effect, making other tasks miss their deadlines. 1328 * 1329 * To avoid this problem, in the activation of a constrained deadline 1330 * task after the deadline but before the next period, throttle the 1331 * task and set the replenishing timer to the begin of the next period, 1332 * unless it is boosted. 1333 */ 1334 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1335 { 1336 struct rq *rq = rq_of_dl_se(dl_se); 1337 1338 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1339 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1340 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) 1341 return; 1342 dl_se->dl_throttled = 1; 1343 if (dl_se->runtime > 0) 1344 dl_se->runtime = 0; 1345 } 1346 } 1347 1348 static 1349 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1350 { 1351 return (dl_se->runtime <= 0); 1352 } 1353 1354 /* 1355 * This function implements the GRUB accounting rule. According to the 1356 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1357 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1358 * where u is the utilization of the task, Umax is the maximum reclaimable 1359 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1360 * as the difference between the "total runqueue utilization" and the 1361 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1362 * reclaimable utilization. 1363 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1364 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1365 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1366 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1367 * Since delta is a 64 bit variable, to have an overflow its value should be 1368 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1369 * not an issue here. 1370 */ 1371 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1372 { 1373 u64 u_act; 1374 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1375 1376 /* 1377 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1378 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1379 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1380 * negative leading to wrong results. 1381 */ 1382 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1383 u_act = dl_se->dl_bw; 1384 else 1385 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1386 1387 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1388 return (delta * u_act) >> BW_SHIFT; 1389 } 1390 1391 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1392 { 1393 s64 scaled_delta_exec; 1394 1395 /* 1396 * For tasks that participate in GRUB, we implement GRUB-PA: the 1397 * spare reclaimed bandwidth is used to clock down frequency. 1398 * 1399 * For the others, we still need to scale reservation parameters 1400 * according to current frequency and CPU maximum capacity. 1401 */ 1402 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1403 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se); 1404 } else { 1405 int cpu = cpu_of(rq); 1406 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1407 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1408 1409 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1410 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1411 } 1412 1413 return scaled_delta_exec; 1414 } 1415 1416 static inline void 1417 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, int flags); 1418 1419 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec) 1420 { 1421 bool idle = idle_rq(rq); 1422 s64 scaled_delta_exec; 1423 1424 if (unlikely(delta_exec <= 0)) { 1425 if (unlikely(dl_se->dl_yielded)) 1426 goto throttle; 1427 return; 1428 } 1429 1430 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer) 1431 return; 1432 1433 if (dl_entity_is_special(dl_se)) 1434 return; 1435 1436 scaled_delta_exec = delta_exec; 1437 if (!dl_server(dl_se)) 1438 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec); 1439 1440 dl_se->runtime -= scaled_delta_exec; 1441 1442 if (dl_se->dl_defer_idle && !idle) 1443 dl_se->dl_defer_idle = 0; 1444 1445 /* 1446 * The fair server can consume its runtime while throttled (not queued/ 1447 * running as regular CFS). 1448 * 1449 * If the server consumes its entire runtime in this state. The server 1450 * is not required for the current period. Thus, reset the server by 1451 * starting a new period, pushing the activation. 1452 */ 1453 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) { 1454 /* 1455 * Non-servers would never get time accounted while throttled. 1456 */ 1457 WARN_ON_ONCE(!dl_server(dl_se)); 1458 1459 /* 1460 * While the server is marked idle, do not push out the 1461 * activation further, instead wait for the period timer 1462 * to lapse and stop the server. 1463 */ 1464 if (dl_se->dl_defer_idle && idle) { 1465 /* 1466 * The timer is at the zero-laxity point, this means 1467 * dl_server_stop() / dl_server_start() can happen 1468 * while now < deadline. This means update_dl_entity() 1469 * will not replenish. Additionally start_dl_timer() 1470 * will be set for 'deadline - runtime'. Negative 1471 * runtime will not do. 1472 */ 1473 dl_se->runtime = 0; 1474 return; 1475 } 1476 1477 /* 1478 * If the server was previously activated - the starving condition 1479 * took place, it this point it went away because the fair scheduler 1480 * was able to get runtime in background. So return to the initial 1481 * state. 1482 */ 1483 dl_se->dl_defer_running = 0; 1484 1485 hrtimer_try_to_cancel(&dl_se->dl_timer); 1486 1487 replenish_dl_new_period(dl_se, dl_se->rq); 1488 1489 if (idle) 1490 dl_se->dl_defer_idle = 1; 1491 1492 /* 1493 * Not being able to start the timer seems problematic. If it could not 1494 * be started for whatever reason, we need to "unthrottle" the DL server 1495 * and queue right away. Otherwise nothing might queue it. That's similar 1496 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn. 1497 */ 1498 WARN_ON_ONCE(!start_dl_timer(dl_se)); 1499 1500 return; 1501 } 1502 1503 throttle: 1504 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1505 dl_se->dl_throttled = 1; 1506 1507 /* If requested, inform the user about runtime overruns. */ 1508 if (dl_runtime_exceeded(dl_se) && 1509 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1510 dl_se->dl_overrun = 1; 1511 1512 dequeue_dl_entity(dl_se, 0); 1513 if (!dl_server(dl_se)) { 1514 update_stats_dequeue_dl(&rq->dl, dl_se, 0); 1515 dequeue_pushable_dl_task(rq, dl_task_of(dl_se)); 1516 } 1517 1518 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) { 1519 if (dl_server(dl_se)) { 1520 replenish_dl_new_period(dl_se, rq); 1521 start_dl_timer(dl_se); 1522 } else { 1523 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH); 1524 } 1525 } 1526 1527 if (!is_leftmost(dl_se, &rq->dl)) 1528 resched_curr(rq); 1529 } 1530 1531 /* 1532 * The fair server (sole dl_server) does not account for real-time 1533 * workload because it is running fair work. 1534 */ 1535 if (dl_se == &rq->fair_server) 1536 return; 1537 1538 #ifdef CONFIG_RT_GROUP_SCHED 1539 /* 1540 * Because -- for now -- we share the rt bandwidth, we need to 1541 * account our runtime there too, otherwise actual rt tasks 1542 * would be able to exceed the shared quota. 1543 * 1544 * Account to the root rt group for now. 1545 * 1546 * The solution we're working towards is having the RT groups scheduled 1547 * using deadline servers -- however there's a few nasties to figure 1548 * out before that can happen. 1549 */ 1550 if (rt_bandwidth_enabled()) { 1551 struct rt_rq *rt_rq = &rq->rt; 1552 1553 raw_spin_lock(&rt_rq->rt_runtime_lock); 1554 /* 1555 * We'll let actual RT tasks worry about the overflow here, we 1556 * have our own CBS to keep us inline; only account when RT 1557 * bandwidth is relevant. 1558 */ 1559 if (sched_rt_bandwidth_account(rt_rq)) 1560 rt_rq->rt_time += delta_exec; 1561 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1562 } 1563 #endif /* CONFIG_RT_GROUP_SCHED */ 1564 } 1565 1566 /* 1567 * In the non-defer mode, the idle time is not accounted, as the 1568 * server provides a guarantee. 1569 * 1570 * If the dl_server is in defer mode, the idle time is also considered 1571 * as time available for the fair server, avoiding a penalty for the 1572 * rt scheduler that did not consumed that time. 1573 */ 1574 void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec) 1575 { 1576 if (dl_se->dl_server_active && dl_se->dl_runtime && dl_se->dl_defer) 1577 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1578 } 1579 1580 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec) 1581 { 1582 /* 0 runtime = fair server disabled */ 1583 if (dl_se->dl_server_active && dl_se->dl_runtime) 1584 update_curr_dl_se(dl_se->rq, dl_se, delta_exec); 1585 } 1586 1587 /* 1588 * dl_server && dl_defer: 1589 * 1590 * 6 1591 * +--------------------+ 1592 * v | 1593 * +-------------+ 4 +-----------+ 5 +------------------+ 1594 * +-> | A:init | <--- | D:running | -----> | E:replenish-wait | 1595 * | +-------------+ +-----------+ +------------------+ 1596 * | | | 1 ^ ^ | 1597 * | | 1 +----------+ | 3 | 1598 * | v | | 1599 * | +--------------------------------+ 2 | 1600 * | | | ----+ | 1601 * | 8 | B:zero_laxity-wait | | | 1602 * | | | <---+ | 1603 * | +--------------------------------+ | 1604 * | | ^ ^ 2 | 1605 * | | 7 | 2, 1 +----------------+ 1606 * | v | 1607 * | +-------------+ | 1608 * +-- | C:idle-wait | -+ 1609 * +-------------+ 1610 * ^ 7 | 1611 * +---------+ 1612 * 1613 * 1614 * [A] - init 1615 * dl_server_active = 0 1616 * dl_throttled = 0 1617 * dl_defer_armed = 0 1618 * dl_defer_running = 0/1 1619 * dl_defer_idle = 0 1620 * 1621 * [B] - zero_laxity-wait 1622 * dl_server_active = 1 1623 * dl_throttled = 1 1624 * dl_defer_armed = 1 1625 * dl_defer_running = 0 1626 * dl_defer_idle = 0 1627 * 1628 * [C] - idle-wait 1629 * dl_server_active = 1 1630 * dl_throttled = 1 1631 * dl_defer_armed = 1 1632 * dl_defer_running = 0 1633 * dl_defer_idle = 1 1634 * 1635 * [D] - running 1636 * dl_server_active = 1 1637 * dl_throttled = 0 1638 * dl_defer_armed = 0 1639 * dl_defer_running = 1 1640 * dl_defer_idle = 0 1641 * 1642 * [E] - replenish-wait 1643 * dl_server_active = 1 1644 * dl_throttled = 1 1645 * dl_defer_armed = 0 1646 * dl_defer_running = 1 1647 * dl_defer_idle = 0 1648 * 1649 * 1650 * [1] A->B, A->D, C->B 1651 * dl_server_start() 1652 * dl_defer_idle = 0; 1653 * if (dl_server_active) 1654 * return; // [B] 1655 * dl_server_active = 1; 1656 * enqueue_dl_entity() 1657 * update_dl_entity(WAKEUP) 1658 * if (!dl_defer_running) 1659 * dl_defer_armed = 1; 1660 * dl_throttled = 1; 1661 * if (dl_throttled && start_dl_timer()) 1662 * return; // [B] 1663 * __enqueue_dl_entity(); 1664 * // [D] 1665 * 1666 * // deplete server runtime from client-class 1667 * [2] B->B, C->B, E->B 1668 * dl_server_update() 1669 * update_curr_dl_se() // idle = false 1670 * if (dl_defer_idle) 1671 * dl_defer_idle = 0; 1672 * if (dl_defer && dl_throttled && dl_runtime_exceeded()) 1673 * dl_defer_running = 0; 1674 * hrtimer_try_to_cancel(); // stop timer 1675 * replenish_dl_new_period() 1676 * // fwd period 1677 * dl_throttled = 1; 1678 * dl_defer_armed = 1; 1679 * start_dl_timer(); // restart timer 1680 * // [B] 1681 * 1682 * // timer actually fires means we have runtime 1683 * [3] B->D 1684 * dl_server_timer() 1685 * if (dl_defer_armed) 1686 * dl_defer_running = 1; 1687 * enqueue_dl_entity(REPLENISH) 1688 * replenish_dl_entity() 1689 * // fwd period 1690 * if (dl_throttled) 1691 * dl_throttled = 0; 1692 * if (dl_defer_armed) 1693 * dl_defer_armed = 0; 1694 * __enqueue_dl_entity(); 1695 * // [D] 1696 * 1697 * // schedule server 1698 * [4] D->A 1699 * pick_task_dl() 1700 * p = server_pick_task(); 1701 * if (!p) 1702 * dl_server_stop() 1703 * dequeue_dl_entity(); 1704 * hrtimer_try_to_cancel(); 1705 * dl_defer_armed = 0; 1706 * dl_throttled = 0; 1707 * dl_server_active = 0; 1708 * // [A] 1709 * return p; 1710 * 1711 * // server running 1712 * [5] D->E 1713 * update_curr_dl_se() 1714 * if (dl_runtime_exceeded()) 1715 * dl_throttled = 1; 1716 * dequeue_dl_entity(); 1717 * start_dl_timer(); 1718 * // [E] 1719 * 1720 * // server replenished 1721 * [6] E->D 1722 * dl_server_timer() 1723 * enqueue_dl_entity(REPLENISH) 1724 * replenish_dl_entity() 1725 * fwd-period 1726 * if (dl_throttled) 1727 * dl_throttled = 0; 1728 * __enqueue_dl_entity(); 1729 * // [D] 1730 * 1731 * // deplete server runtime from idle 1732 * [7] B->C, C->C 1733 * dl_server_update_idle() 1734 * update_curr_dl_se() // idle = true 1735 * if (dl_defer && dl_throttled && dl_runtime_exceeded()) 1736 * if (dl_defer_idle) 1737 * return; 1738 * dl_defer_running = 0; 1739 * hrtimer_try_to_cancel(); 1740 * replenish_dl_new_period() 1741 * // fwd period 1742 * dl_throttled = 1; 1743 * dl_defer_armed = 1; 1744 * dl_defer_idle = 1; 1745 * start_dl_timer(); // restart timer 1746 * // [C] 1747 * 1748 * // stop idle server 1749 * [8] C->A 1750 * dl_server_timer() 1751 * if (dl_defer_idle) 1752 * dl_server_stop(); 1753 * // [A] 1754 * 1755 * 1756 * digraph dl_server { 1757 * "A:init" -> "B:zero_laxity-wait" [label="1:dl_server_start"] 1758 * "A:init" -> "D:running" [label="1:dl_server_start"] 1759 * "B:zero_laxity-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1760 * "B:zero_laxity-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"] 1761 * "B:zero_laxity-wait" -> "D:running" [label="3:dl_server_timer"] 1762 * "C:idle-wait" -> "A:init" [label="8:dl_server_timer"] 1763 * "C:idle-wait" -> "B:zero_laxity-wait" [label="1:dl_server_start"] 1764 * "C:idle-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1765 * "C:idle-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"] 1766 * "D:running" -> "A:init" [label="4:pick_task_dl"] 1767 * "D:running" -> "E:replenish-wait" [label="5:update_curr_dl_se"] 1768 * "E:replenish-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"] 1769 * "E:replenish-wait" -> "D:running" [label="6:dl_server_timer"] 1770 * } 1771 * 1772 * 1773 * Notes: 1774 * 1775 * - When there are fair tasks running the most likely loop is [2]->[2]. 1776 * the dl_server never actually runs, the timer never fires. 1777 * 1778 * - When there is actual fair starvation; the timer fires and starts the 1779 * dl_server. This will then throttle and replenish like a normal DL 1780 * task. Notably it will not 'defer' again. 1781 * 1782 * - When idle it will push the actication forward once, and then wait 1783 * for the timer to hit or a non-idle update to restart things. 1784 */ 1785 void dl_server_start(struct sched_dl_entity *dl_se) 1786 { 1787 struct rq *rq = dl_se->rq; 1788 1789 dl_se->dl_defer_idle = 0; 1790 if (!dl_server(dl_se) || dl_se->dl_server_active) 1791 return; 1792 1793 /* 1794 * Update the current task to 'now'. 1795 */ 1796 rq->donor->sched_class->update_curr(rq); 1797 1798 if (WARN_ON_ONCE(!cpu_online(cpu_of(rq)))) 1799 return; 1800 1801 dl_se->dl_server_active = 1; 1802 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP); 1803 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl)) 1804 resched_curr(dl_se->rq); 1805 } 1806 1807 void dl_server_stop(struct sched_dl_entity *dl_se) 1808 { 1809 if (!dl_server(dl_se) || !dl_server_active(dl_se)) 1810 return; 1811 1812 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP); 1813 hrtimer_try_to_cancel(&dl_se->dl_timer); 1814 dl_se->dl_defer_armed = 0; 1815 dl_se->dl_throttled = 0; 1816 dl_se->dl_defer_idle = 0; 1817 dl_se->dl_server_active = 0; 1818 } 1819 1820 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 1821 dl_server_pick_f pick_task) 1822 { 1823 dl_se->rq = rq; 1824 dl_se->server_pick_task = pick_task; 1825 } 1826 1827 void sched_init_dl_servers(void) 1828 { 1829 int cpu; 1830 struct rq *rq; 1831 struct sched_dl_entity *dl_se; 1832 1833 for_each_online_cpu(cpu) { 1834 u64 runtime = 50 * NSEC_PER_MSEC; 1835 u64 period = 1000 * NSEC_PER_MSEC; 1836 1837 rq = cpu_rq(cpu); 1838 1839 guard(rq_lock_irq)(rq); 1840 update_rq_clock(rq); 1841 1842 dl_se = &rq->fair_server; 1843 1844 WARN_ON(dl_server(dl_se)); 1845 1846 dl_server_apply_params(dl_se, runtime, period, 1); 1847 1848 dl_se->dl_server = 1; 1849 dl_se->dl_defer = 1; 1850 setup_new_dl_entity(dl_se); 1851 } 1852 } 1853 1854 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq) 1855 { 1856 u64 new_bw = dl_se->dl_bw; 1857 int cpu = cpu_of(rq); 1858 struct dl_bw *dl_b; 1859 1860 dl_b = dl_bw_of(cpu_of(rq)); 1861 guard(raw_spinlock)(&dl_b->lock); 1862 1863 if (!dl_bw_cpus(cpu)) 1864 return; 1865 1866 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu)); 1867 } 1868 1869 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init) 1870 { 1871 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1872 u64 new_bw = to_ratio(period, runtime); 1873 struct rq *rq = dl_se->rq; 1874 int cpu = cpu_of(rq); 1875 struct dl_bw *dl_b; 1876 unsigned long cap; 1877 int retval = 0; 1878 int cpus; 1879 1880 dl_b = dl_bw_of(cpu); 1881 guard(raw_spinlock)(&dl_b->lock); 1882 1883 cpus = dl_bw_cpus(cpu); 1884 cap = dl_bw_capacity(cpu); 1885 1886 if (__dl_overflow(dl_b, cap, old_bw, new_bw)) 1887 return -EBUSY; 1888 1889 if (init) { 1890 __add_rq_bw(new_bw, &rq->dl); 1891 __dl_add(dl_b, new_bw, cpus); 1892 } else { 1893 __dl_sub(dl_b, dl_se->dl_bw, cpus); 1894 __dl_add(dl_b, new_bw, cpus); 1895 1896 dl_rq_change_utilization(rq, dl_se, new_bw); 1897 } 1898 1899 dl_se->dl_runtime = runtime; 1900 dl_se->dl_deadline = period; 1901 dl_se->dl_period = period; 1902 1903 dl_se->runtime = 0; 1904 dl_se->deadline = 0; 1905 1906 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 1907 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 1908 1909 return retval; 1910 } 1911 1912 /* 1913 * Update the current task's runtime statistics (provided it is still 1914 * a -deadline task and has not been removed from the dl_rq). 1915 */ 1916 static void update_curr_dl(struct rq *rq) 1917 { 1918 struct task_struct *donor = rq->donor; 1919 struct sched_dl_entity *dl_se = &donor->dl; 1920 s64 delta_exec; 1921 1922 if (!dl_task(donor) || !on_dl_rq(dl_se)) 1923 return; 1924 1925 /* 1926 * Consumed budget is computed considering the time as 1927 * observed by schedulable tasks (excluding time spent 1928 * in hardirq context, etc.). Deadlines are instead 1929 * computed using hard walltime. This seems to be the more 1930 * natural solution, but the full ramifications of this 1931 * approach need further study. 1932 */ 1933 delta_exec = update_curr_common(rq); 1934 update_curr_dl_se(rq, dl_se, delta_exec); 1935 } 1936 1937 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1938 { 1939 struct sched_dl_entity *dl_se = container_of(timer, 1940 struct sched_dl_entity, 1941 inactive_timer); 1942 struct task_struct *p = NULL; 1943 struct rq_flags rf; 1944 struct rq *rq; 1945 1946 if (!dl_server(dl_se)) { 1947 p = dl_task_of(dl_se); 1948 rq = task_rq_lock(p, &rf); 1949 } else { 1950 rq = dl_se->rq; 1951 rq_lock(rq, &rf); 1952 } 1953 1954 sched_clock_tick(); 1955 update_rq_clock(rq); 1956 1957 if (dl_server(dl_se)) 1958 goto no_task; 1959 1960 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1961 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1962 1963 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1964 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1965 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1966 dl_se->dl_non_contending = 0; 1967 } 1968 1969 raw_spin_lock(&dl_b->lock); 1970 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1971 raw_spin_unlock(&dl_b->lock); 1972 __dl_clear_params(dl_se); 1973 1974 goto unlock; 1975 } 1976 1977 no_task: 1978 if (dl_se->dl_non_contending == 0) 1979 goto unlock; 1980 1981 sub_running_bw(dl_se, &rq->dl); 1982 dl_se->dl_non_contending = 0; 1983 unlock: 1984 1985 if (!dl_server(dl_se)) { 1986 task_rq_unlock(rq, p, &rf); 1987 put_task_struct(p); 1988 } else { 1989 rq_unlock(rq, &rf); 1990 } 1991 1992 return HRTIMER_NORESTART; 1993 } 1994 1995 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1996 { 1997 struct hrtimer *timer = &dl_se->inactive_timer; 1998 1999 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 2000 } 2001 2002 #define __node_2_dle(node) \ 2003 rb_entry((node), struct sched_dl_entity, rb_node) 2004 2005 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 2006 { 2007 struct rq *rq = rq_of_dl_rq(dl_rq); 2008 2009 if (dl_rq->earliest_dl.curr == 0 || 2010 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 2011 if (dl_rq->earliest_dl.curr == 0) 2012 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 2013 dl_rq->earliest_dl.curr = deadline; 2014 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 2015 } 2016 } 2017 2018 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 2019 { 2020 struct rq *rq = rq_of_dl_rq(dl_rq); 2021 2022 /* 2023 * Since we may have removed our earliest (and/or next earliest) 2024 * task we must recompute them. 2025 */ 2026 if (!dl_rq->dl_nr_running) { 2027 dl_rq->earliest_dl.curr = 0; 2028 dl_rq->earliest_dl.next = 0; 2029 cpudl_clear(&rq->rd->cpudl, rq->cpu, rq->online); 2030 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2031 } else { 2032 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 2033 struct sched_dl_entity *entry = __node_2_dle(leftmost); 2034 2035 dl_rq->earliest_dl.curr = entry->deadline; 2036 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 2037 } 2038 } 2039 2040 static inline 2041 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 2042 { 2043 u64 deadline = dl_se->deadline; 2044 2045 dl_rq->dl_nr_running++; 2046 2047 if (!dl_server(dl_se)) 2048 add_nr_running(rq_of_dl_rq(dl_rq), 1); 2049 2050 inc_dl_deadline(dl_rq, deadline); 2051 } 2052 2053 static inline 2054 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 2055 { 2056 WARN_ON(!dl_rq->dl_nr_running); 2057 dl_rq->dl_nr_running--; 2058 2059 if (!dl_server(dl_se)) 2060 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 2061 2062 dec_dl_deadline(dl_rq, dl_se->deadline); 2063 } 2064 2065 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 2066 { 2067 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 2068 } 2069 2070 static __always_inline struct sched_statistics * 2071 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 2072 { 2073 if (!schedstat_enabled()) 2074 return NULL; 2075 2076 if (dl_server(dl_se)) 2077 return NULL; 2078 2079 return &dl_task_of(dl_se)->stats; 2080 } 2081 2082 static inline void 2083 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2084 { 2085 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2086 if (stats) 2087 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2088 } 2089 2090 static inline void 2091 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2092 { 2093 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2094 if (stats) 2095 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2096 } 2097 2098 static inline void 2099 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 2100 { 2101 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se); 2102 if (stats) 2103 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 2104 } 2105 2106 static inline void 2107 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 2108 int flags) 2109 { 2110 if (!schedstat_enabled()) 2111 return; 2112 2113 if (flags & ENQUEUE_WAKEUP) 2114 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 2115 } 2116 2117 static inline void 2118 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 2119 int flags) 2120 { 2121 struct task_struct *p = dl_task_of(dl_se); 2122 2123 if (!schedstat_enabled()) 2124 return; 2125 2126 if ((flags & DEQUEUE_SLEEP)) { 2127 unsigned int state; 2128 2129 state = READ_ONCE(p->__state); 2130 if (state & TASK_INTERRUPTIBLE) 2131 __schedstat_set(p->stats.sleep_start, 2132 rq_clock(rq_of_dl_rq(dl_rq))); 2133 2134 if (state & TASK_UNINTERRUPTIBLE) 2135 __schedstat_set(p->stats.block_start, 2136 rq_clock(rq_of_dl_rq(dl_rq))); 2137 } 2138 } 2139 2140 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 2141 { 2142 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2143 2144 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 2145 2146 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 2147 2148 inc_dl_tasks(dl_se, dl_rq); 2149 } 2150 2151 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 2152 { 2153 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2154 2155 if (RB_EMPTY_NODE(&dl_se->rb_node)) 2156 return; 2157 2158 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 2159 2160 RB_CLEAR_NODE(&dl_se->rb_node); 2161 2162 dec_dl_tasks(dl_se, dl_rq); 2163 } 2164 2165 static void 2166 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2167 { 2168 WARN_ON_ONCE(on_dl_rq(dl_se)); 2169 2170 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 2171 2172 /* 2173 * Check if a constrained deadline task was activated 2174 * after the deadline but before the next period. 2175 * If that is the case, the task will be throttled and 2176 * the replenishment timer will be set to the next period. 2177 */ 2178 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se)) 2179 dl_check_constrained_dl(dl_se); 2180 2181 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) { 2182 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2183 2184 add_rq_bw(dl_se, dl_rq); 2185 add_running_bw(dl_se, dl_rq); 2186 } 2187 2188 /* 2189 * If p is throttled, we do not enqueue it. In fact, if it exhausted 2190 * its budget it needs a replenishment and, since it now is on 2191 * its rq, the bandwidth timer callback (which clearly has not 2192 * run yet) will take care of this. 2193 * However, the active utilization does not depend on the fact 2194 * that the task is on the runqueue or not (but depends on the 2195 * task's state - in GRUB parlance, "inactive" vs "active contending"). 2196 * In other words, even if a task is throttled its utilization must 2197 * be counted in the active utilization; hence, we need to call 2198 * add_running_bw(). 2199 */ 2200 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 2201 if (flags & ENQUEUE_WAKEUP) 2202 task_contending(dl_se, flags); 2203 2204 return; 2205 } 2206 2207 /* 2208 * If this is a wakeup or a new instance, the scheduling 2209 * parameters of the task might need updating. Otherwise, 2210 * we want a replenishment of its runtime. 2211 */ 2212 if (flags & ENQUEUE_WAKEUP) { 2213 task_contending(dl_se, flags); 2214 update_dl_entity(dl_se); 2215 } else if (flags & ENQUEUE_REPLENISH) { 2216 replenish_dl_entity(dl_se); 2217 } else if ((flags & ENQUEUE_MOVE) && 2218 !is_dl_boosted(dl_se) && 2219 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) { 2220 setup_new_dl_entity(dl_se); 2221 } 2222 2223 /* 2224 * If the reservation is still throttled, e.g., it got replenished but is a 2225 * deferred task and still got to wait, don't enqueue. 2226 */ 2227 if (dl_se->dl_throttled && start_dl_timer(dl_se)) 2228 return; 2229 2230 /* 2231 * We're about to enqueue, make sure we're not ->dl_throttled! 2232 * In case the timer was not started, say because the defer time 2233 * has passed, mark as not throttled and mark unarmed. 2234 * Also cancel earlier timers, since letting those run is pointless. 2235 */ 2236 if (dl_se->dl_throttled) { 2237 hrtimer_try_to_cancel(&dl_se->dl_timer); 2238 dl_se->dl_defer_armed = 0; 2239 dl_se->dl_throttled = 0; 2240 } 2241 2242 __enqueue_dl_entity(dl_se); 2243 } 2244 2245 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags) 2246 { 2247 __dequeue_dl_entity(dl_se); 2248 2249 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) { 2250 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 2251 2252 sub_running_bw(dl_se, dl_rq); 2253 sub_rq_bw(dl_se, dl_rq); 2254 } 2255 2256 /* 2257 * This check allows to start the inactive timer (or to immediately 2258 * decrease the active utilization, if needed) in two cases: 2259 * when the task blocks and when it is terminating 2260 * (p->state == TASK_DEAD). We can handle the two cases in the same 2261 * way, because from GRUB's point of view the same thing is happening 2262 * (the task moves from "active contending" to "active non contending" 2263 * or "inactive") 2264 */ 2265 if (flags & DEQUEUE_SLEEP) 2266 task_non_contending(dl_se, true); 2267 } 2268 2269 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2270 { 2271 if (is_dl_boosted(&p->dl)) { 2272 /* 2273 * Because of delays in the detection of the overrun of a 2274 * thread's runtime, it might be the case that a thread 2275 * goes to sleep in a rt mutex with negative runtime. As 2276 * a consequence, the thread will be throttled. 2277 * 2278 * While waiting for the mutex, this thread can also be 2279 * boosted via PI, resulting in a thread that is throttled 2280 * and boosted at the same time. 2281 * 2282 * In this case, the boost overrides the throttle. 2283 */ 2284 if (p->dl.dl_throttled) { 2285 /* 2286 * The replenish timer needs to be canceled. No 2287 * problem if it fires concurrently: boosted threads 2288 * are ignored in dl_task_timer(). 2289 */ 2290 cancel_replenish_timer(&p->dl); 2291 p->dl.dl_throttled = 0; 2292 } 2293 } else if (!dl_prio(p->normal_prio)) { 2294 /* 2295 * Special case in which we have a !SCHED_DEADLINE task that is going 2296 * to be deboosted, but exceeds its runtime while doing so. No point in 2297 * replenishing it, as it's going to return back to its original 2298 * scheduling class after this. If it has been throttled, we need to 2299 * clear the flag, otherwise the task may wake up as throttled after 2300 * being boosted again with no means to replenish the runtime and clear 2301 * the throttle. 2302 */ 2303 p->dl.dl_throttled = 0; 2304 if (!(flags & ENQUEUE_REPLENISH)) 2305 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 2306 task_pid_nr(p)); 2307 2308 return; 2309 } 2310 2311 check_schedstat_required(); 2312 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 2313 2314 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2315 flags |= ENQUEUE_MIGRATING; 2316 2317 enqueue_dl_entity(&p->dl, flags); 2318 2319 if (dl_server(&p->dl)) 2320 return; 2321 2322 if (task_is_blocked(p)) 2323 return; 2324 2325 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1) 2326 enqueue_pushable_dl_task(rq, p); 2327 } 2328 2329 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 2330 { 2331 update_curr_dl(rq); 2332 2333 if (p->on_rq == TASK_ON_RQ_MIGRATING) 2334 flags |= DEQUEUE_MIGRATING; 2335 2336 dequeue_dl_entity(&p->dl, flags); 2337 if (!p->dl.dl_throttled && !dl_server(&p->dl)) 2338 dequeue_pushable_dl_task(rq, p); 2339 2340 return true; 2341 } 2342 2343 /* 2344 * Yield task semantic for -deadline tasks is: 2345 * 2346 * get off from the CPU until our next instance, with 2347 * a new runtime. This is of little use now, since we 2348 * don't have a bandwidth reclaiming mechanism. Anyway, 2349 * bandwidth reclaiming is planned for the future, and 2350 * yield_task_dl will indicate that some spare budget 2351 * is available for other task instances to use it. 2352 */ 2353 static void yield_task_dl(struct rq *rq) 2354 { 2355 /* 2356 * We make the task go to sleep until its current deadline by 2357 * forcing its runtime to zero. This way, update_curr_dl() stops 2358 * it and the bandwidth timer will wake it up and will give it 2359 * new scheduling parameters (thanks to dl_yielded=1). 2360 */ 2361 rq->donor->dl.dl_yielded = 1; 2362 2363 update_rq_clock(rq); 2364 update_curr_dl(rq); 2365 /* 2366 * Tell update_rq_clock() that we've just updated, 2367 * so we don't do microscopic update in schedule() 2368 * and double the fastpath cost. 2369 */ 2370 rq_clock_skip_update(rq); 2371 } 2372 2373 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 2374 struct rq *rq) 2375 { 2376 return (!rq->dl.dl_nr_running || 2377 dl_time_before(p->dl.deadline, 2378 rq->dl.earliest_dl.curr)); 2379 } 2380 2381 static int find_later_rq(struct task_struct *task); 2382 2383 static int 2384 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 2385 { 2386 struct task_struct *curr, *donor; 2387 bool select_rq; 2388 struct rq *rq; 2389 2390 if (!(flags & WF_TTWU)) 2391 return cpu; 2392 2393 rq = cpu_rq(cpu); 2394 2395 rcu_read_lock(); 2396 curr = READ_ONCE(rq->curr); /* unlocked access */ 2397 donor = READ_ONCE(rq->donor); 2398 2399 /* 2400 * If we are dealing with a -deadline task, we must 2401 * decide where to wake it up. 2402 * If it has a later deadline and the current task 2403 * on this rq can't move (provided the waking task 2404 * can!) we prefer to send it somewhere else. On the 2405 * other hand, if it has a shorter deadline, we 2406 * try to make it stay here, it might be important. 2407 */ 2408 select_rq = unlikely(dl_task(donor)) && 2409 (curr->nr_cpus_allowed < 2 || 2410 !dl_entity_preempt(&p->dl, &donor->dl)) && 2411 p->nr_cpus_allowed > 1; 2412 2413 /* 2414 * Take the capacity of the CPU into account to 2415 * ensure it fits the requirement of the task. 2416 */ 2417 if (sched_asym_cpucap_active()) 2418 select_rq |= !dl_task_fits_capacity(p, cpu); 2419 2420 if (select_rq) { 2421 int target = find_later_rq(p); 2422 2423 if (target != -1 && 2424 dl_task_is_earliest_deadline(p, cpu_rq(target))) 2425 cpu = target; 2426 } 2427 rcu_read_unlock(); 2428 2429 return cpu; 2430 } 2431 2432 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 2433 { 2434 struct rq_flags rf; 2435 struct rq *rq; 2436 2437 if (READ_ONCE(p->__state) != TASK_WAKING) 2438 return; 2439 2440 rq = task_rq(p); 2441 /* 2442 * Since p->state == TASK_WAKING, set_task_cpu() has been called 2443 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 2444 * rq->lock is not... So, lock it 2445 */ 2446 rq_lock(rq, &rf); 2447 if (p->dl.dl_non_contending) { 2448 update_rq_clock(rq); 2449 sub_running_bw(&p->dl, &rq->dl); 2450 p->dl.dl_non_contending = 0; 2451 /* 2452 * If the timer handler is currently running and the 2453 * timer cannot be canceled, inactive_task_timer() 2454 * will see that dl_not_contending is not set, and 2455 * will not touch the rq's active utilization, 2456 * so we are still safe. 2457 */ 2458 cancel_inactive_timer(&p->dl); 2459 } 2460 sub_rq_bw(&p->dl, &rq->dl); 2461 rq_unlock(rq, &rf); 2462 } 2463 2464 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 2465 { 2466 /* 2467 * Current can't be migrated, useless to reschedule, 2468 * let's hope p can move out. 2469 */ 2470 if (rq->curr->nr_cpus_allowed == 1 || 2471 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL)) 2472 return; 2473 2474 /* 2475 * p is migratable, so let's not schedule it and 2476 * see if it is pushed or pulled somewhere else. 2477 */ 2478 if (p->nr_cpus_allowed != 1 && 2479 cpudl_find(&rq->rd->cpudl, p, NULL)) 2480 return; 2481 2482 resched_curr(rq); 2483 } 2484 2485 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 2486 { 2487 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 2488 /* 2489 * This is OK, because current is on_cpu, which avoids it being 2490 * picked for load-balance and preemption/IRQs are still 2491 * disabled avoiding further scheduler activity on it and we've 2492 * not yet started the picking loop. 2493 */ 2494 rq_unpin_lock(rq, rf); 2495 pull_dl_task(rq); 2496 rq_repin_lock(rq, rf); 2497 } 2498 2499 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 2500 } 2501 2502 /* 2503 * Only called when both the current and waking task are -deadline 2504 * tasks. 2505 */ 2506 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, 2507 int flags) 2508 { 2509 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) { 2510 resched_curr(rq); 2511 return; 2512 } 2513 2514 /* 2515 * In the unlikely case current and p have the same deadline 2516 * let us try to decide what's the best thing to do... 2517 */ 2518 if ((p->dl.deadline == rq->donor->dl.deadline) && 2519 !test_tsk_need_resched(rq->curr)) 2520 check_preempt_equal_dl(rq, p); 2521 } 2522 2523 #ifdef CONFIG_SCHED_HRTICK 2524 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2525 { 2526 hrtick_start(rq, dl_se->runtime); 2527 } 2528 #else /* !CONFIG_SCHED_HRTICK: */ 2529 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se) 2530 { 2531 } 2532 #endif /* !CONFIG_SCHED_HRTICK */ 2533 2534 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 2535 { 2536 struct sched_dl_entity *dl_se = &p->dl; 2537 struct dl_rq *dl_rq = &rq->dl; 2538 2539 p->se.exec_start = rq_clock_task(rq); 2540 if (on_dl_rq(&p->dl)) 2541 update_stats_wait_end_dl(dl_rq, dl_se); 2542 2543 /* You can't push away the running task */ 2544 dequeue_pushable_dl_task(rq, p); 2545 2546 if (!first) 2547 return; 2548 2549 if (rq->donor->sched_class != &dl_sched_class) 2550 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2551 2552 deadline_queue_push_tasks(rq); 2553 2554 if (hrtick_enabled_dl(rq)) 2555 start_hrtick_dl(rq, &p->dl); 2556 } 2557 2558 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2559 { 2560 struct rb_node *left = rb_first_cached(&dl_rq->root); 2561 2562 if (!left) 2563 return NULL; 2564 2565 return __node_2_dle(left); 2566 } 2567 2568 /* 2569 * __pick_next_task_dl - Helper to pick the next -deadline task to run. 2570 * @rq: The runqueue to pick the next task from. 2571 */ 2572 static struct task_struct *__pick_task_dl(struct rq *rq, struct rq_flags *rf) 2573 { 2574 struct sched_dl_entity *dl_se; 2575 struct dl_rq *dl_rq = &rq->dl; 2576 struct task_struct *p; 2577 2578 again: 2579 if (!sched_dl_runnable(rq)) 2580 return NULL; 2581 2582 dl_se = pick_next_dl_entity(dl_rq); 2583 WARN_ON_ONCE(!dl_se); 2584 2585 if (dl_server(dl_se)) { 2586 p = dl_se->server_pick_task(dl_se, rf); 2587 if (!p) { 2588 dl_server_stop(dl_se); 2589 goto again; 2590 } 2591 rq->dl_server = dl_se; 2592 } else { 2593 p = dl_task_of(dl_se); 2594 } 2595 2596 return p; 2597 } 2598 2599 static struct task_struct *pick_task_dl(struct rq *rq, struct rq_flags *rf) 2600 { 2601 return __pick_task_dl(rq, rf); 2602 } 2603 2604 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next) 2605 { 2606 struct sched_dl_entity *dl_se = &p->dl; 2607 struct dl_rq *dl_rq = &rq->dl; 2608 2609 if (on_dl_rq(&p->dl)) 2610 update_stats_wait_start_dl(dl_rq, dl_se); 2611 2612 update_curr_dl(rq); 2613 2614 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2615 2616 if (task_is_blocked(p)) 2617 return; 2618 2619 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2620 enqueue_pushable_dl_task(rq, p); 2621 } 2622 2623 /* 2624 * scheduler tick hitting a task of our scheduling class. 2625 * 2626 * NOTE: This function can be called remotely by the tick offload that 2627 * goes along full dynticks. Therefore no local assumption can be made 2628 * and everything must be accessed through the @rq and @curr passed in 2629 * parameters. 2630 */ 2631 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2632 { 2633 update_curr_dl(rq); 2634 2635 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2636 /* 2637 * Even when we have runtime, update_curr_dl() might have resulted in us 2638 * not being the leftmost task anymore. In that case NEED_RESCHED will 2639 * be set and schedule() will start a new hrtick for the next task. 2640 */ 2641 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2642 is_leftmost(&p->dl, &rq->dl)) 2643 start_hrtick_dl(rq, &p->dl); 2644 } 2645 2646 static void task_fork_dl(struct task_struct *p) 2647 { 2648 /* 2649 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2650 * sched_fork() 2651 */ 2652 } 2653 2654 /* Only try algorithms three times */ 2655 #define DL_MAX_TRIES 3 2656 2657 /* 2658 * Return the earliest pushable rq's task, which is suitable to be executed 2659 * on the CPU, NULL otherwise: 2660 */ 2661 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2662 { 2663 struct task_struct *p = NULL; 2664 struct rb_node *next_node; 2665 2666 if (!has_pushable_dl_tasks(rq)) 2667 return NULL; 2668 2669 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2670 while (next_node) { 2671 p = __node_2_pdl(next_node); 2672 2673 if (task_is_pushable(rq, p, cpu)) 2674 return p; 2675 2676 next_node = rb_next(next_node); 2677 } 2678 2679 return NULL; 2680 } 2681 2682 /* Access rule: must be called on local CPU with preemption disabled */ 2683 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2684 2685 static int find_later_rq(struct task_struct *task) 2686 { 2687 struct sched_domain *sd; 2688 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2689 int this_cpu = smp_processor_id(); 2690 int cpu = task_cpu(task); 2691 2692 /* Make sure the mask is initialized first */ 2693 if (unlikely(!later_mask)) 2694 return -1; 2695 2696 if (task->nr_cpus_allowed == 1) 2697 return -1; 2698 2699 /* 2700 * We have to consider system topology and task affinity 2701 * first, then we can look for a suitable CPU. 2702 */ 2703 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2704 return -1; 2705 2706 /* 2707 * If we are here, some targets have been found, including 2708 * the most suitable which is, among the runqueues where the 2709 * current tasks have later deadlines than the task's one, the 2710 * rq with the latest possible one. 2711 * 2712 * Now we check how well this matches with task's 2713 * affinity and system topology. 2714 * 2715 * The last CPU where the task run is our first 2716 * guess, since it is most likely cache-hot there. 2717 */ 2718 if (cpumask_test_cpu(cpu, later_mask)) 2719 return cpu; 2720 /* 2721 * Check if this_cpu is to be skipped (i.e., it is 2722 * not in the mask) or not. 2723 */ 2724 if (!cpumask_test_cpu(this_cpu, later_mask)) 2725 this_cpu = -1; 2726 2727 rcu_read_lock(); 2728 for_each_domain(cpu, sd) { 2729 if (sd->flags & SD_WAKE_AFFINE) { 2730 int best_cpu; 2731 2732 /* 2733 * If possible, preempting this_cpu is 2734 * cheaper than migrating. 2735 */ 2736 if (this_cpu != -1 && 2737 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2738 rcu_read_unlock(); 2739 return this_cpu; 2740 } 2741 2742 best_cpu = cpumask_any_and_distribute(later_mask, 2743 sched_domain_span(sd)); 2744 /* 2745 * Last chance: if a CPU being in both later_mask 2746 * and current sd span is valid, that becomes our 2747 * choice. Of course, the latest possible CPU is 2748 * already under consideration through later_mask. 2749 */ 2750 if (best_cpu < nr_cpu_ids) { 2751 rcu_read_unlock(); 2752 return best_cpu; 2753 } 2754 } 2755 } 2756 rcu_read_unlock(); 2757 2758 /* 2759 * At this point, all our guesses failed, we just return 2760 * 'something', and let the caller sort the things out. 2761 */ 2762 if (this_cpu != -1) 2763 return this_cpu; 2764 2765 cpu = cpumask_any_distribute(later_mask); 2766 if (cpu < nr_cpu_ids) 2767 return cpu; 2768 2769 return -1; 2770 } 2771 2772 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2773 { 2774 struct task_struct *p; 2775 2776 if (!has_pushable_dl_tasks(rq)) 2777 return NULL; 2778 2779 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2780 2781 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2782 WARN_ON_ONCE(task_current(rq, p)); 2783 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2784 2785 WARN_ON_ONCE(!task_on_rq_queued(p)); 2786 WARN_ON_ONCE(!dl_task(p)); 2787 2788 return p; 2789 } 2790 2791 /* Locks the rq it finds */ 2792 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2793 { 2794 struct rq *later_rq = NULL; 2795 int tries; 2796 int cpu; 2797 2798 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2799 cpu = find_later_rq(task); 2800 2801 if ((cpu == -1) || (cpu == rq->cpu)) 2802 break; 2803 2804 later_rq = cpu_rq(cpu); 2805 2806 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2807 /* 2808 * Target rq has tasks of equal or earlier deadline, 2809 * retrying does not release any lock and is unlikely 2810 * to yield a different result. 2811 */ 2812 later_rq = NULL; 2813 break; 2814 } 2815 2816 /* Retry if something changed. */ 2817 if (double_lock_balance(rq, later_rq)) { 2818 /* 2819 * double_lock_balance had to release rq->lock, in the 2820 * meantime, task may no longer be fit to be migrated. 2821 * Check the following to ensure that the task is 2822 * still suitable for migration: 2823 * 1. It is possible the task was scheduled, 2824 * migrate_disabled was set and then got preempted, 2825 * so we must check the task migration disable 2826 * flag. 2827 * 2. The CPU picked is in the task's affinity. 2828 * 3. For throttled task (dl_task_offline_migration), 2829 * check the following: 2830 * - the task is not on the rq anymore (it was 2831 * migrated) 2832 * - the task is not on CPU anymore 2833 * - the task is still a dl task 2834 * - the task is not queued on the rq anymore 2835 * 4. For the non-throttled task (push_dl_task), the 2836 * check to ensure that this task is still at the 2837 * head of the pushable tasks list is enough. 2838 */ 2839 if (unlikely(is_migration_disabled(task) || 2840 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2841 (task->dl.dl_throttled && 2842 (task_rq(task) != rq || 2843 task_on_cpu(rq, task) || 2844 !dl_task(task) || 2845 !task_on_rq_queued(task))) || 2846 (!task->dl.dl_throttled && 2847 task != pick_next_pushable_dl_task(rq)))) { 2848 2849 double_unlock_balance(rq, later_rq); 2850 later_rq = NULL; 2851 break; 2852 } 2853 } 2854 2855 /* 2856 * If the rq we found has no -deadline task, or 2857 * its earliest one has a later deadline than our 2858 * task, the rq is a good one. 2859 */ 2860 if (dl_task_is_earliest_deadline(task, later_rq)) 2861 break; 2862 2863 /* Otherwise we try again. */ 2864 double_unlock_balance(rq, later_rq); 2865 later_rq = NULL; 2866 } 2867 2868 return later_rq; 2869 } 2870 2871 /* 2872 * See if the non running -deadline tasks on this rq 2873 * can be sent to some other CPU where they can preempt 2874 * and start executing. 2875 */ 2876 static int push_dl_task(struct rq *rq) 2877 { 2878 struct task_struct *next_task; 2879 struct rq *later_rq; 2880 int ret = 0; 2881 2882 next_task = pick_next_pushable_dl_task(rq); 2883 if (!next_task) 2884 return 0; 2885 2886 retry: 2887 /* 2888 * If next_task preempts rq->curr, and rq->curr 2889 * can move away, it makes sense to just reschedule 2890 * without going further in pushing next_task. 2891 */ 2892 if (dl_task(rq->donor) && 2893 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) && 2894 rq->curr->nr_cpus_allowed > 1) { 2895 resched_curr(rq); 2896 return 0; 2897 } 2898 2899 if (is_migration_disabled(next_task)) 2900 return 0; 2901 2902 if (WARN_ON(next_task == rq->curr)) 2903 return 0; 2904 2905 /* We might release rq lock */ 2906 get_task_struct(next_task); 2907 2908 /* Will lock the rq it'll find */ 2909 later_rq = find_lock_later_rq(next_task, rq); 2910 if (!later_rq) { 2911 struct task_struct *task; 2912 2913 /* 2914 * We must check all this again, since 2915 * find_lock_later_rq releases rq->lock and it is 2916 * then possible that next_task has migrated. 2917 */ 2918 task = pick_next_pushable_dl_task(rq); 2919 if (task == next_task) { 2920 /* 2921 * The task is still there. We don't try 2922 * again, some other CPU will pull it when ready. 2923 */ 2924 goto out; 2925 } 2926 2927 if (!task) 2928 /* No more tasks */ 2929 goto out; 2930 2931 put_task_struct(next_task); 2932 next_task = task; 2933 goto retry; 2934 } 2935 2936 move_queued_task_locked(rq, later_rq, next_task); 2937 ret = 1; 2938 2939 resched_curr(later_rq); 2940 2941 double_unlock_balance(rq, later_rq); 2942 2943 out: 2944 put_task_struct(next_task); 2945 2946 return ret; 2947 } 2948 2949 static void push_dl_tasks(struct rq *rq) 2950 { 2951 /* push_dl_task() will return true if it moved a -deadline task */ 2952 while (push_dl_task(rq)) 2953 ; 2954 } 2955 2956 static void pull_dl_task(struct rq *this_rq) 2957 { 2958 int this_cpu = this_rq->cpu, cpu; 2959 struct task_struct *p, *push_task; 2960 bool resched = false; 2961 struct rq *src_rq; 2962 u64 dmin = LONG_MAX; 2963 2964 if (likely(!dl_overloaded(this_rq))) 2965 return; 2966 2967 /* 2968 * Match the barrier from dl_set_overloaded; this guarantees that if we 2969 * see overloaded we must also see the dlo_mask bit. 2970 */ 2971 smp_rmb(); 2972 2973 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2974 if (this_cpu == cpu) 2975 continue; 2976 2977 src_rq = cpu_rq(cpu); 2978 2979 /* 2980 * It looks racy, and it is! However, as in sched_rt.c, 2981 * we are fine with this. 2982 */ 2983 if (this_rq->dl.dl_nr_running && 2984 dl_time_before(this_rq->dl.earliest_dl.curr, 2985 src_rq->dl.earliest_dl.next)) 2986 continue; 2987 2988 /* Might drop this_rq->lock */ 2989 push_task = NULL; 2990 double_lock_balance(this_rq, src_rq); 2991 2992 /* 2993 * If there are no more pullable tasks on the 2994 * rq, we're done with it. 2995 */ 2996 if (src_rq->dl.dl_nr_running <= 1) 2997 goto skip; 2998 2999 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 3000 3001 /* 3002 * We found a task to be pulled if: 3003 * - it preempts our current (if there's one), 3004 * - it will preempt the last one we pulled (if any). 3005 */ 3006 if (p && dl_time_before(p->dl.deadline, dmin) && 3007 dl_task_is_earliest_deadline(p, this_rq)) { 3008 WARN_ON(p == src_rq->curr); 3009 WARN_ON(!task_on_rq_queued(p)); 3010 3011 /* 3012 * Then we pull iff p has actually an earlier 3013 * deadline than the current task of its runqueue. 3014 */ 3015 if (dl_time_before(p->dl.deadline, 3016 src_rq->donor->dl.deadline)) 3017 goto skip; 3018 3019 if (is_migration_disabled(p)) { 3020 push_task = get_push_task(src_rq); 3021 } else { 3022 move_queued_task_locked(src_rq, this_rq, p); 3023 dmin = p->dl.deadline; 3024 resched = true; 3025 } 3026 3027 /* Is there any other task even earlier? */ 3028 } 3029 skip: 3030 double_unlock_balance(this_rq, src_rq); 3031 3032 if (push_task) { 3033 preempt_disable(); 3034 raw_spin_rq_unlock(this_rq); 3035 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 3036 push_task, &src_rq->push_work); 3037 preempt_enable(); 3038 raw_spin_rq_lock(this_rq); 3039 } 3040 } 3041 3042 if (resched) 3043 resched_curr(this_rq); 3044 } 3045 3046 /* 3047 * Since the task is not running and a reschedule is not going to happen 3048 * anytime soon on its runqueue, we try pushing it away now. 3049 */ 3050 static void task_woken_dl(struct rq *rq, struct task_struct *p) 3051 { 3052 if (!task_on_cpu(rq, p) && 3053 !test_tsk_need_resched(rq->curr) && 3054 p->nr_cpus_allowed > 1 && 3055 dl_task(rq->donor) && 3056 (rq->curr->nr_cpus_allowed < 2 || 3057 !dl_entity_preempt(&p->dl, &rq->donor->dl))) { 3058 push_dl_tasks(rq); 3059 } 3060 } 3061 3062 static void set_cpus_allowed_dl(struct task_struct *p, 3063 struct affinity_context *ctx) 3064 { 3065 struct root_domain *src_rd; 3066 struct rq *rq; 3067 3068 WARN_ON_ONCE(!dl_task(p)); 3069 3070 rq = task_rq(p); 3071 src_rd = rq->rd; 3072 /* 3073 * Migrating a SCHED_DEADLINE task between exclusive 3074 * cpusets (different root_domains) entails a bandwidth 3075 * update. We already made space for us in the destination 3076 * domain (see cpuset_can_attach()). 3077 */ 3078 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 3079 struct dl_bw *src_dl_b; 3080 3081 src_dl_b = dl_bw_of(cpu_of(rq)); 3082 /* 3083 * We now free resources of the root_domain we are migrating 3084 * off. In the worst case, sched_setattr() may temporary fail 3085 * until we complete the update. 3086 */ 3087 raw_spin_lock(&src_dl_b->lock); 3088 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 3089 raw_spin_unlock(&src_dl_b->lock); 3090 } 3091 3092 set_cpus_allowed_common(p, ctx); 3093 } 3094 3095 /* Assumes rq->lock is held */ 3096 static void rq_online_dl(struct rq *rq) 3097 { 3098 if (rq->dl.overloaded) 3099 dl_set_overload(rq); 3100 3101 if (rq->dl.dl_nr_running > 0) 3102 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 3103 else 3104 cpudl_clear(&rq->rd->cpudl, rq->cpu, true); 3105 } 3106 3107 /* Assumes rq->lock is held */ 3108 static void rq_offline_dl(struct rq *rq) 3109 { 3110 if (rq->dl.overloaded) 3111 dl_clear_overload(rq); 3112 3113 cpudl_clear(&rq->rd->cpudl, rq->cpu, false); 3114 } 3115 3116 void __init init_sched_dl_class(void) 3117 { 3118 unsigned int i; 3119 3120 for_each_possible_cpu(i) 3121 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 3122 GFP_KERNEL, cpu_to_node(i)); 3123 } 3124 3125 /* 3126 * This function always returns a non-empty bitmap in @cpus. This is because 3127 * if a root domain has reserved bandwidth for DL tasks, the DL bandwidth 3128 * check will prevent CPU hotplug from deactivating all CPUs in that domain. 3129 */ 3130 static void dl_get_task_effective_cpus(struct task_struct *p, struct cpumask *cpus) 3131 { 3132 const struct cpumask *hk_msk; 3133 3134 hk_msk = housekeeping_cpumask(HK_TYPE_DOMAIN); 3135 if (housekeeping_enabled(HK_TYPE_DOMAIN)) { 3136 if (!cpumask_intersects(p->cpus_ptr, hk_msk)) { 3137 /* 3138 * CPUs isolated by isolcpu="domain" always belong to 3139 * def_root_domain. 3140 */ 3141 cpumask_andnot(cpus, cpu_active_mask, hk_msk); 3142 return; 3143 } 3144 } 3145 3146 /* 3147 * If a root domain holds a DL task, it must have active CPUs. So 3148 * active CPUs can always be found by walking up the task's cpuset 3149 * hierarchy up to the partition root. 3150 */ 3151 cpuset_cpus_allowed_locked(p, cpus); 3152 } 3153 3154 /* The caller should hold cpuset_mutex */ 3155 void dl_add_task_root_domain(struct task_struct *p) 3156 { 3157 struct rq_flags rf; 3158 struct rq *rq; 3159 struct dl_bw *dl_b; 3160 unsigned int cpu; 3161 struct cpumask *msk; 3162 3163 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3164 if (!dl_task(p) || dl_entity_is_special(&p->dl)) { 3165 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3166 return; 3167 } 3168 3169 msk = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 3170 dl_get_task_effective_cpus(p, msk); 3171 cpu = cpumask_first_and(cpu_active_mask, msk); 3172 BUG_ON(cpu >= nr_cpu_ids); 3173 rq = cpu_rq(cpu); 3174 dl_b = &rq->rd->dl_bw; 3175 3176 raw_spin_lock(&dl_b->lock); 3177 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 3178 raw_spin_unlock(&dl_b->lock); 3179 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3180 } 3181 3182 void dl_clear_root_domain(struct root_domain *rd) 3183 { 3184 int i; 3185 3186 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock); 3187 3188 /* 3189 * Reset total_bw to zero and extra_bw to max_bw so that next 3190 * loop will add dl-servers contributions back properly, 3191 */ 3192 rd->dl_bw.total_bw = 0; 3193 for_each_cpu(i, rd->span) 3194 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw; 3195 3196 /* 3197 * dl_servers are not tasks. Since dl_add_task_root_domain ignores 3198 * them, we need to account for them here explicitly. 3199 */ 3200 for_each_cpu(i, rd->span) { 3201 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server; 3202 3203 if (dl_server(dl_se) && cpu_active(i)) 3204 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i)); 3205 } 3206 } 3207 3208 void dl_clear_root_domain_cpu(int cpu) 3209 { 3210 dl_clear_root_domain(cpu_rq(cpu)->rd); 3211 } 3212 3213 static void switched_from_dl(struct rq *rq, struct task_struct *p) 3214 { 3215 /* 3216 * task_non_contending() can start the "inactive timer" (if the 0-lag 3217 * time is in the future). If the task switches back to dl before 3218 * the "inactive timer" fires, it can continue to consume its current 3219 * runtime using its current deadline. If it stays outside of 3220 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 3221 * will reset the task parameters. 3222 */ 3223 if (task_on_rq_queued(p) && p->dl.dl_runtime) 3224 task_non_contending(&p->dl, false); 3225 3226 /* 3227 * In case a task is setscheduled out from SCHED_DEADLINE we need to 3228 * keep track of that on its cpuset (for correct bandwidth tracking). 3229 */ 3230 dec_dl_tasks_cs(p); 3231 3232 if (!task_on_rq_queued(p)) { 3233 /* 3234 * Inactive timer is armed. However, p is leaving DEADLINE and 3235 * might migrate away from this rq while continuing to run on 3236 * some other class. We need to remove its contribution from 3237 * this rq running_bw now, or sub_rq_bw (below) will complain. 3238 */ 3239 if (p->dl.dl_non_contending) 3240 sub_running_bw(&p->dl, &rq->dl); 3241 sub_rq_bw(&p->dl, &rq->dl); 3242 } 3243 3244 /* 3245 * We cannot use inactive_task_timer() to invoke sub_running_bw() 3246 * at the 0-lag time, because the task could have been migrated 3247 * while SCHED_OTHER in the meanwhile. 3248 */ 3249 if (p->dl.dl_non_contending) 3250 p->dl.dl_non_contending = 0; 3251 3252 /* 3253 * Since this might be the only -deadline task on the rq, 3254 * this is the right place to try to pull some other one 3255 * from an overloaded CPU, if any. 3256 */ 3257 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 3258 return; 3259 3260 deadline_queue_pull_task(rq); 3261 } 3262 3263 /* 3264 * When switching to -deadline, we may overload the rq, then 3265 * we try to push someone off, if possible. 3266 */ 3267 static void switched_to_dl(struct rq *rq, struct task_struct *p) 3268 { 3269 cancel_inactive_timer(&p->dl); 3270 3271 /* 3272 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 3273 * track of that on its cpuset (for correct bandwidth tracking). 3274 */ 3275 inc_dl_tasks_cs(p); 3276 3277 /* If p is not queued we will update its parameters at next wakeup. */ 3278 if (!task_on_rq_queued(p)) { 3279 add_rq_bw(&p->dl, &rq->dl); 3280 3281 return; 3282 } 3283 3284 if (rq->donor != p) { 3285 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 3286 deadline_queue_push_tasks(rq); 3287 if (dl_task(rq->donor)) 3288 wakeup_preempt_dl(rq, p, 0); 3289 else 3290 resched_curr(rq); 3291 } else { 3292 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 3293 } 3294 } 3295 3296 static u64 get_prio_dl(struct rq *rq, struct task_struct *p) 3297 { 3298 /* 3299 * Make sure to update current so we don't return a stale value. 3300 */ 3301 if (task_current_donor(rq, p)) 3302 update_curr_dl(rq); 3303 3304 return p->dl.deadline; 3305 } 3306 3307 /* 3308 * If the scheduling parameters of a -deadline task changed, 3309 * a push or pull operation might be needed. 3310 */ 3311 static void prio_changed_dl(struct rq *rq, struct task_struct *p, u64 old_deadline) 3312 { 3313 if (!task_on_rq_queued(p)) 3314 return; 3315 3316 if (p->dl.deadline == old_deadline) 3317 return; 3318 3319 if (dl_time_before(old_deadline, p->dl.deadline)) 3320 deadline_queue_pull_task(rq); 3321 3322 if (task_current_donor(rq, p)) { 3323 /* 3324 * If we now have a earlier deadline task than p, 3325 * then reschedule, provided p is still on this 3326 * runqueue. 3327 */ 3328 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 3329 resched_curr(rq); 3330 } else { 3331 /* 3332 * Current may not be deadline in case p was throttled but we 3333 * have just replenished it (e.g. rt_mutex_setprio()). 3334 * 3335 * Otherwise, if p was given an earlier deadline, reschedule. 3336 */ 3337 if (!dl_task(rq->curr) || 3338 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 3339 resched_curr(rq); 3340 } 3341 } 3342 3343 #ifdef CONFIG_SCHED_CORE 3344 static int task_is_throttled_dl(struct task_struct *p, int cpu) 3345 { 3346 return p->dl.dl_throttled; 3347 } 3348 #endif 3349 3350 DEFINE_SCHED_CLASS(dl) = { 3351 3352 .queue_mask = 8, 3353 3354 .enqueue_task = enqueue_task_dl, 3355 .dequeue_task = dequeue_task_dl, 3356 .yield_task = yield_task_dl, 3357 3358 .wakeup_preempt = wakeup_preempt_dl, 3359 3360 .pick_task = pick_task_dl, 3361 .put_prev_task = put_prev_task_dl, 3362 .set_next_task = set_next_task_dl, 3363 3364 .balance = balance_dl, 3365 .select_task_rq = select_task_rq_dl, 3366 .migrate_task_rq = migrate_task_rq_dl, 3367 .set_cpus_allowed = set_cpus_allowed_dl, 3368 .rq_online = rq_online_dl, 3369 .rq_offline = rq_offline_dl, 3370 .task_woken = task_woken_dl, 3371 .find_lock_rq = find_lock_later_rq, 3372 3373 .task_tick = task_tick_dl, 3374 .task_fork = task_fork_dl, 3375 3376 .get_prio = get_prio_dl, 3377 .prio_changed = prio_changed_dl, 3378 .switched_from = switched_from_dl, 3379 .switched_to = switched_to_dl, 3380 3381 .update_curr = update_curr_dl, 3382 #ifdef CONFIG_SCHED_CORE 3383 .task_is_throttled = task_is_throttled_dl, 3384 #endif 3385 }; 3386 3387 /* 3388 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and 3389 * sched_domains_mutex. 3390 */ 3391 u64 dl_cookie; 3392 3393 int sched_dl_global_validate(void) 3394 { 3395 u64 runtime = global_rt_runtime(); 3396 u64 period = global_rt_period(); 3397 u64 new_bw = to_ratio(period, runtime); 3398 u64 cookie = ++dl_cookie; 3399 struct dl_bw *dl_b; 3400 int cpu, cpus, ret = 0; 3401 unsigned long flags; 3402 3403 /* 3404 * Here we want to check the bandwidth not being set to some 3405 * value smaller than the currently allocated bandwidth in 3406 * any of the root_domains. 3407 */ 3408 for_each_online_cpu(cpu) { 3409 rcu_read_lock_sched(); 3410 3411 if (dl_bw_visited(cpu, cookie)) 3412 goto next; 3413 3414 dl_b = dl_bw_of(cpu); 3415 cpus = dl_bw_cpus(cpu); 3416 3417 raw_spin_lock_irqsave(&dl_b->lock, flags); 3418 if (new_bw * cpus < dl_b->total_bw) 3419 ret = -EBUSY; 3420 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3421 3422 next: 3423 rcu_read_unlock_sched(); 3424 3425 if (ret) 3426 break; 3427 } 3428 3429 return ret; 3430 } 3431 3432 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 3433 { 3434 if (global_rt_runtime() == RUNTIME_INF) { 3435 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 3436 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 3437 } else { 3438 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 3439 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 3440 dl_rq->max_bw = dl_rq->extra_bw = 3441 to_ratio(global_rt_period(), global_rt_runtime()); 3442 } 3443 } 3444 3445 void sched_dl_do_global(void) 3446 { 3447 u64 new_bw = -1; 3448 u64 cookie = ++dl_cookie; 3449 struct dl_bw *dl_b; 3450 int cpu; 3451 unsigned long flags; 3452 3453 if (global_rt_runtime() != RUNTIME_INF) 3454 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 3455 3456 for_each_possible_cpu(cpu) 3457 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 3458 3459 for_each_possible_cpu(cpu) { 3460 rcu_read_lock_sched(); 3461 3462 if (dl_bw_visited(cpu, cookie)) { 3463 rcu_read_unlock_sched(); 3464 continue; 3465 } 3466 3467 dl_b = dl_bw_of(cpu); 3468 3469 raw_spin_lock_irqsave(&dl_b->lock, flags); 3470 dl_b->bw = new_bw; 3471 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3472 3473 rcu_read_unlock_sched(); 3474 } 3475 } 3476 3477 /* 3478 * We must be sure that accepting a new task (or allowing changing the 3479 * parameters of an existing one) is consistent with the bandwidth 3480 * constraints. If yes, this function also accordingly updates the currently 3481 * allocated bandwidth to reflect the new situation. 3482 * 3483 * This function is called while holding p's rq->lock. 3484 */ 3485 int sched_dl_overflow(struct task_struct *p, int policy, 3486 const struct sched_attr *attr) 3487 { 3488 u64 period = attr->sched_period ?: attr->sched_deadline; 3489 u64 runtime = attr->sched_runtime; 3490 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 3491 int cpus, err = -1, cpu = task_cpu(p); 3492 struct dl_bw *dl_b = dl_bw_of(cpu); 3493 unsigned long cap; 3494 3495 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3496 return 0; 3497 3498 /* !deadline task may carry old deadline bandwidth */ 3499 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 3500 return 0; 3501 3502 /* 3503 * Either if a task, enters, leave, or stays -deadline but changes 3504 * its parameters, we may need to update accordingly the total 3505 * allocated bandwidth of the container. 3506 */ 3507 raw_spin_lock(&dl_b->lock); 3508 cpus = dl_bw_cpus(cpu); 3509 cap = dl_bw_capacity(cpu); 3510 3511 if (dl_policy(policy) && !task_has_dl_policy(p) && 3512 !__dl_overflow(dl_b, cap, 0, new_bw)) { 3513 if (hrtimer_active(&p->dl.inactive_timer)) 3514 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3515 __dl_add(dl_b, new_bw, cpus); 3516 err = 0; 3517 } else if (dl_policy(policy) && task_has_dl_policy(p) && 3518 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 3519 /* 3520 * XXX this is slightly incorrect: when the task 3521 * utilization decreases, we should delay the total 3522 * utilization change until the task's 0-lag point. 3523 * But this would require to set the task's "inactive 3524 * timer" when the task is not inactive. 3525 */ 3526 __dl_sub(dl_b, p->dl.dl_bw, cpus); 3527 __dl_add(dl_b, new_bw, cpus); 3528 dl_change_utilization(p, new_bw); 3529 err = 0; 3530 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 3531 /* 3532 * Do not decrease the total deadline utilization here, 3533 * switched_from_dl() will take care to do it at the correct 3534 * (0-lag) time. 3535 */ 3536 err = 0; 3537 } 3538 raw_spin_unlock(&dl_b->lock); 3539 3540 return err; 3541 } 3542 3543 /* 3544 * This function initializes the sched_dl_entity of a newly becoming 3545 * SCHED_DEADLINE task. 3546 * 3547 * Only the static values are considered here, the actual runtime and the 3548 * absolute deadline will be properly calculated when the task is enqueued 3549 * for the first time with its new policy. 3550 */ 3551 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3552 { 3553 struct sched_dl_entity *dl_se = &p->dl; 3554 3555 dl_se->dl_runtime = attr->sched_runtime; 3556 dl_se->dl_deadline = attr->sched_deadline; 3557 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3558 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 3559 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3560 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 3561 } 3562 3563 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3564 { 3565 struct sched_dl_entity *dl_se = &p->dl; 3566 3567 attr->sched_priority = p->rt_priority; 3568 attr->sched_runtime = dl_se->dl_runtime; 3569 attr->sched_deadline = dl_se->dl_deadline; 3570 attr->sched_period = dl_se->dl_period; 3571 attr->sched_flags &= ~SCHED_DL_FLAGS; 3572 attr->sched_flags |= dl_se->flags; 3573 } 3574 3575 /* 3576 * This function validates the new parameters of a -deadline task. 3577 * We ask for the deadline not being zero, and greater or equal 3578 * than the runtime, as well as the period of being zero or 3579 * greater than deadline. Furthermore, we have to be sure that 3580 * user parameters are above the internal resolution of 1us (we 3581 * check sched_runtime only since it is always the smaller one) and 3582 * below 2^63 ns (we have to check both sched_deadline and 3583 * sched_period, as the latter can be zero). 3584 */ 3585 bool __checkparam_dl(const struct sched_attr *attr) 3586 { 3587 u64 period, max, min; 3588 3589 /* special dl tasks don't actually use any parameter */ 3590 if (attr->sched_flags & SCHED_FLAG_SUGOV) 3591 return true; 3592 3593 /* deadline != 0 */ 3594 if (attr->sched_deadline == 0) 3595 return false; 3596 3597 /* 3598 * Since we truncate DL_SCALE bits, make sure we're at least 3599 * that big. 3600 */ 3601 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3602 return false; 3603 3604 /* 3605 * Since we use the MSB for wrap-around and sign issues, make 3606 * sure it's not set (mind that period can be equal to zero). 3607 */ 3608 if (attr->sched_deadline & (1ULL << 63) || 3609 attr->sched_period & (1ULL << 63)) 3610 return false; 3611 3612 period = attr->sched_period; 3613 if (!period) 3614 period = attr->sched_deadline; 3615 3616 /* runtime <= deadline <= period (if period != 0) */ 3617 if (period < attr->sched_deadline || 3618 attr->sched_deadline < attr->sched_runtime) 3619 return false; 3620 3621 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 3622 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 3623 3624 if (period < min || period > max) 3625 return false; 3626 3627 return true; 3628 } 3629 3630 /* 3631 * This function clears the sched_dl_entity static params. 3632 */ 3633 static void __dl_clear_params(struct sched_dl_entity *dl_se) 3634 { 3635 dl_se->dl_runtime = 0; 3636 dl_se->dl_deadline = 0; 3637 dl_se->dl_period = 0; 3638 dl_se->flags = 0; 3639 dl_se->dl_bw = 0; 3640 dl_se->dl_density = 0; 3641 3642 dl_se->dl_throttled = 0; 3643 dl_se->dl_yielded = 0; 3644 dl_se->dl_non_contending = 0; 3645 dl_se->dl_overrun = 0; 3646 dl_se->dl_server = 0; 3647 3648 #ifdef CONFIG_RT_MUTEXES 3649 dl_se->pi_se = dl_se; 3650 #endif 3651 } 3652 3653 void init_dl_entity(struct sched_dl_entity *dl_se) 3654 { 3655 RB_CLEAR_NODE(&dl_se->rb_node); 3656 init_dl_task_timer(dl_se); 3657 init_dl_inactive_task_timer(dl_se); 3658 __dl_clear_params(dl_se); 3659 } 3660 3661 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3662 { 3663 struct sched_dl_entity *dl_se = &p->dl; 3664 3665 if (dl_se->dl_runtime != attr->sched_runtime || 3666 dl_se->dl_deadline != attr->sched_deadline || 3667 dl_se->dl_period != attr->sched_period || 3668 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3669 return true; 3670 3671 return false; 3672 } 3673 3674 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3675 const struct cpumask *trial) 3676 { 3677 unsigned long flags, cap; 3678 struct dl_bw *cur_dl_b; 3679 int ret = 1; 3680 3681 rcu_read_lock_sched(); 3682 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3683 cap = __dl_bw_capacity(trial); 3684 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3685 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3686 ret = 0; 3687 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3688 rcu_read_unlock_sched(); 3689 3690 return ret; 3691 } 3692 3693 enum dl_bw_request { 3694 dl_bw_req_deactivate = 0, 3695 dl_bw_req_alloc, 3696 dl_bw_req_free 3697 }; 3698 3699 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3700 { 3701 unsigned long flags, cap; 3702 struct dl_bw *dl_b; 3703 bool overflow = 0; 3704 u64 fair_server_bw = 0; 3705 3706 rcu_read_lock_sched(); 3707 dl_b = dl_bw_of(cpu); 3708 raw_spin_lock_irqsave(&dl_b->lock, flags); 3709 3710 cap = dl_bw_capacity(cpu); 3711 switch (req) { 3712 case dl_bw_req_free: 3713 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3714 break; 3715 case dl_bw_req_alloc: 3716 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3717 3718 if (!overflow) { 3719 /* 3720 * We reserve space in the destination 3721 * root_domain, as we can't fail after this point. 3722 * We will free resources in the source root_domain 3723 * later on (see set_cpus_allowed_dl()). 3724 */ 3725 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3726 } 3727 break; 3728 case dl_bw_req_deactivate: 3729 /* 3730 * cpu is not off yet, but we need to do the math by 3731 * considering it off already (i.e., what would happen if we 3732 * turn cpu off?). 3733 */ 3734 cap -= arch_scale_cpu_capacity(cpu); 3735 3736 /* 3737 * cpu is going offline and NORMAL tasks will be moved away 3738 * from it. We can thus discount dl_server bandwidth 3739 * contribution as it won't need to be servicing tasks after 3740 * the cpu is off. 3741 */ 3742 if (cpu_rq(cpu)->fair_server.dl_server) 3743 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw; 3744 3745 /* 3746 * Not much to check if no DEADLINE bandwidth is present. 3747 * dl_servers we can discount, as tasks will be moved out the 3748 * offlined CPUs anyway. 3749 */ 3750 if (dl_b->total_bw - fair_server_bw > 0) { 3751 /* 3752 * Leaving at least one CPU for DEADLINE tasks seems a 3753 * wise thing to do. As said above, cpu is not offline 3754 * yet, so account for that. 3755 */ 3756 if (dl_bw_cpus(cpu) - 1) 3757 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0); 3758 else 3759 overflow = 1; 3760 } 3761 3762 break; 3763 } 3764 3765 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3766 rcu_read_unlock_sched(); 3767 3768 return overflow ? -EBUSY : 0; 3769 } 3770 3771 int dl_bw_deactivate(int cpu) 3772 { 3773 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0); 3774 } 3775 3776 int dl_bw_alloc(int cpu, u64 dl_bw) 3777 { 3778 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3779 } 3780 3781 void dl_bw_free(int cpu, u64 dl_bw) 3782 { 3783 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3784 } 3785 3786 void print_dl_stats(struct seq_file *m, int cpu) 3787 { 3788 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3789 } 3790