1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 #include <linux/cpuset.h>
20 #include <linux/sched/clock.h>
21 #include <uapi/linux/sched/types.h>
22 #include "sched.h"
23 #include "pelt.h"
24
25 /*
26 * Default limits for DL period; on the top end we guard against small util
27 * tasks still getting ridiculously long effective runtimes, on the bottom end we
28 * guard against timer DoS.
29 */
30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
32 #ifdef CONFIG_SYSCTL
33 static const struct ctl_table sched_dl_sysctls[] = {
34 {
35 .procname = "sched_deadline_period_max_us",
36 .data = &sysctl_sched_dl_period_max,
37 .maxlen = sizeof(unsigned int),
38 .mode = 0644,
39 .proc_handler = proc_douintvec_minmax,
40 .extra1 = (void *)&sysctl_sched_dl_period_min,
41 },
42 {
43 .procname = "sched_deadline_period_min_us",
44 .data = &sysctl_sched_dl_period_min,
45 .maxlen = sizeof(unsigned int),
46 .mode = 0644,
47 .proc_handler = proc_douintvec_minmax,
48 .extra2 = (void *)&sysctl_sched_dl_period_max,
49 },
50 };
51
sched_dl_sysctl_init(void)52 static int __init sched_dl_sysctl_init(void)
53 {
54 register_sysctl_init("kernel", sched_dl_sysctls);
55 return 0;
56 }
57 late_initcall(sched_dl_sysctl_init);
58 #endif /* CONFIG_SYSCTL */
59
dl_server(struct sched_dl_entity * dl_se)60 static bool dl_server(struct sched_dl_entity *dl_se)
61 {
62 return dl_se->dl_server;
63 }
64
dl_task_of(struct sched_dl_entity * dl_se)65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
66 {
67 BUG_ON(dl_server(dl_se));
68 return container_of(dl_se, struct task_struct, dl);
69 }
70
rq_of_dl_rq(struct dl_rq * dl_rq)71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
72 {
73 return container_of(dl_rq, struct rq, dl);
74 }
75
rq_of_dl_se(struct sched_dl_entity * dl_se)76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
77 {
78 struct rq *rq = dl_se->rq;
79
80 if (!dl_server(dl_se))
81 rq = task_rq(dl_task_of(dl_se));
82
83 return rq;
84 }
85
dl_rq_of_se(struct sched_dl_entity * dl_se)86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
87 {
88 return &rq_of_dl_se(dl_se)->dl;
89 }
90
on_dl_rq(struct sched_dl_entity * dl_se)91 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
92 {
93 return !RB_EMPTY_NODE(&dl_se->rb_node);
94 }
95
96 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
98 {
99 return dl_se->pi_se;
100 }
101
is_dl_boosted(struct sched_dl_entity * dl_se)102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
103 {
104 return pi_of(dl_se) != dl_se;
105 }
106 #else /* !CONFIG_RT_MUTEXES: */
pi_of(struct sched_dl_entity * dl_se)107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
108 {
109 return dl_se;
110 }
111
is_dl_boosted(struct sched_dl_entity * dl_se)112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
113 {
114 return false;
115 }
116 #endif /* !CONFIG_RT_MUTEXES */
117
dl_bw_of(int i)118 static inline struct dl_bw *dl_bw_of(int i)
119 {
120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
121 "sched RCU must be held");
122 return &cpu_rq(i)->rd->dl_bw;
123 }
124
dl_bw_cpus(int i)125 static inline int dl_bw_cpus(int i)
126 {
127 struct root_domain *rd = cpu_rq(i)->rd;
128
129 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
130 "sched RCU must be held");
131
132 return cpumask_weight_and(rd->span, cpu_active_mask);
133 }
134
__dl_bw_capacity(const struct cpumask * mask)135 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
136 {
137 unsigned long cap = 0;
138 int i;
139
140 for_each_cpu_and(i, mask, cpu_active_mask)
141 cap += arch_scale_cpu_capacity(i);
142
143 return cap;
144 }
145
146 /*
147 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
148 * of the CPU the task is running on rather rd's \Sum CPU capacity.
149 */
dl_bw_capacity(int i)150 static inline unsigned long dl_bw_capacity(int i)
151 {
152 if (!sched_asym_cpucap_active() &&
153 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
154 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
155 } else {
156 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
157 "sched RCU must be held");
158
159 return __dl_bw_capacity(cpu_rq(i)->rd->span);
160 }
161 }
162
dl_bw_visited(int cpu,u64 cookie)163 bool dl_bw_visited(int cpu, u64 cookie)
164 {
165 struct root_domain *rd = cpu_rq(cpu)->rd;
166
167 if (rd->visit_cookie == cookie)
168 return true;
169
170 rd->visit_cookie = cookie;
171 return false;
172 }
173
174 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)175 void __dl_update(struct dl_bw *dl_b, s64 bw)
176 {
177 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
178 int i;
179
180 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
181 "sched RCU must be held");
182 for_each_cpu_and(i, rd->span, cpu_active_mask) {
183 struct rq *rq = cpu_rq(i);
184
185 rq->dl.extra_bw += bw;
186 }
187 }
188
189 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)190 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
191 {
192 dl_b->total_bw -= tsk_bw;
193 __dl_update(dl_b, (s32)tsk_bw / cpus);
194 }
195
196 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)197 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
198 {
199 dl_b->total_bw += tsk_bw;
200 __dl_update(dl_b, -((s32)tsk_bw / cpus));
201 }
202
203 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)204 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
205 {
206 return dl_b->bw != -1 &&
207 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
208 }
209
210 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)211 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
212 {
213 u64 old = dl_rq->running_bw;
214
215 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
216 dl_rq->running_bw += dl_bw;
217 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
218 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
219 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
220 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
221 }
222
223 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)224 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
225 {
226 u64 old = dl_rq->running_bw;
227
228 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
229 dl_rq->running_bw -= dl_bw;
230 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
231 if (dl_rq->running_bw > old)
232 dl_rq->running_bw = 0;
233 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
234 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
235 }
236
237 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)238 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
239 {
240 u64 old = dl_rq->this_bw;
241
242 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
243 dl_rq->this_bw += dl_bw;
244 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
245 }
246
247 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)248 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
249 {
250 u64 old = dl_rq->this_bw;
251
252 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
253 dl_rq->this_bw -= dl_bw;
254 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
255 if (dl_rq->this_bw > old)
256 dl_rq->this_bw = 0;
257 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
258 }
259
260 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)261 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
262 {
263 if (!dl_entity_is_special(dl_se))
264 __add_rq_bw(dl_se->dl_bw, dl_rq);
265 }
266
267 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)268 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
269 {
270 if (!dl_entity_is_special(dl_se))
271 __sub_rq_bw(dl_se->dl_bw, dl_rq);
272 }
273
274 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)275 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
276 {
277 if (!dl_entity_is_special(dl_se))
278 __add_running_bw(dl_se->dl_bw, dl_rq);
279 }
280
281 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)282 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
283 {
284 if (!dl_entity_is_special(dl_se))
285 __sub_running_bw(dl_se->dl_bw, dl_rq);
286 }
287
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)288 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
289 {
290 if (dl_se->dl_non_contending) {
291 sub_running_bw(dl_se, &rq->dl);
292 dl_se->dl_non_contending = 0;
293
294 /*
295 * If the timer handler is currently running and the
296 * timer cannot be canceled, inactive_task_timer()
297 * will see that dl_not_contending is not set, and
298 * will not touch the rq's active utilization,
299 * so we are still safe.
300 */
301 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
302 if (!dl_server(dl_se))
303 put_task_struct(dl_task_of(dl_se));
304 }
305 }
306 __sub_rq_bw(dl_se->dl_bw, &rq->dl);
307 __add_rq_bw(new_bw, &rq->dl);
308 }
309
310 static __always_inline
cancel_dl_timer(struct sched_dl_entity * dl_se,struct hrtimer * timer)311 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
312 {
313 /*
314 * If the timer callback was running (hrtimer_try_to_cancel == -1),
315 * it will eventually call put_task_struct().
316 */
317 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
318 put_task_struct(dl_task_of(dl_se));
319 }
320
321 static __always_inline
cancel_replenish_timer(struct sched_dl_entity * dl_se)322 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
323 {
324 cancel_dl_timer(dl_se, &dl_se->dl_timer);
325 }
326
327 static __always_inline
cancel_inactive_timer(struct sched_dl_entity * dl_se)328 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
329 {
330 cancel_dl_timer(dl_se, &dl_se->inactive_timer);
331 }
332
dl_change_utilization(struct task_struct * p,u64 new_bw)333 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
334 {
335 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
336
337 if (task_on_rq_queued(p))
338 return;
339
340 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
341 }
342
343 static void __dl_clear_params(struct sched_dl_entity *dl_se);
344
345 /*
346 * The utilization of a task cannot be immediately removed from
347 * the rq active utilization (running_bw) when the task blocks.
348 * Instead, we have to wait for the so called "0-lag time".
349 *
350 * If a task blocks before the "0-lag time", a timer (the inactive
351 * timer) is armed, and running_bw is decreased when the timer
352 * fires.
353 *
354 * If the task wakes up again before the inactive timer fires,
355 * the timer is canceled, whereas if the task wakes up after the
356 * inactive timer fired (and running_bw has been decreased) the
357 * task's utilization has to be added to running_bw again.
358 * A flag in the deadline scheduling entity (dl_non_contending)
359 * is used to avoid race conditions between the inactive timer handler
360 * and task wakeups.
361 *
362 * The following diagram shows how running_bw is updated. A task is
363 * "ACTIVE" when its utilization contributes to running_bw; an
364 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
365 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
366 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
367 * time already passed, which does not contribute to running_bw anymore.
368 * +------------------+
369 * wakeup | ACTIVE |
370 * +------------------>+ contending |
371 * | add_running_bw | |
372 * | +----+------+------+
373 * | | ^
374 * | dequeue | |
375 * +--------+-------+ | |
376 * | | t >= 0-lag | | wakeup
377 * | INACTIVE |<---------------+ |
378 * | | sub_running_bw | |
379 * +--------+-------+ | |
380 * ^ | |
381 * | t < 0-lag | |
382 * | | |
383 * | V |
384 * | +----+------+------+
385 * | sub_running_bw | ACTIVE |
386 * +-------------------+ |
387 * inactive timer | non contending |
388 * fired +------------------+
389 *
390 * The task_non_contending() function is invoked when a task
391 * blocks, and checks if the 0-lag time already passed or
392 * not (in the first case, it directly updates running_bw;
393 * in the second case, it arms the inactive timer).
394 *
395 * The task_contending() function is invoked when a task wakes
396 * up, and checks if the task is still in the "ACTIVE non contending"
397 * state or not (in the second case, it updates running_bw).
398 */
task_non_contending(struct sched_dl_entity * dl_se,bool dl_task)399 static void task_non_contending(struct sched_dl_entity *dl_se, bool dl_task)
400 {
401 struct hrtimer *timer = &dl_se->inactive_timer;
402 struct rq *rq = rq_of_dl_se(dl_se);
403 struct dl_rq *dl_rq = &rq->dl;
404 s64 zerolag_time;
405
406 /*
407 * If this is a non-deadline task that has been boosted,
408 * do nothing
409 */
410 if (dl_se->dl_runtime == 0)
411 return;
412
413 if (dl_entity_is_special(dl_se))
414 return;
415
416 WARN_ON(dl_se->dl_non_contending);
417
418 zerolag_time = dl_se->deadline -
419 div64_long((dl_se->runtime * dl_se->dl_period),
420 dl_se->dl_runtime);
421
422 /*
423 * Using relative times instead of the absolute "0-lag time"
424 * allows to simplify the code
425 */
426 zerolag_time -= rq_clock(rq);
427
428 /*
429 * If the "0-lag time" already passed, decrease the active
430 * utilization now, instead of starting a timer
431 */
432 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
433 if (dl_server(dl_se)) {
434 sub_running_bw(dl_se, dl_rq);
435 } else {
436 struct task_struct *p = dl_task_of(dl_se);
437
438 if (dl_task)
439 sub_running_bw(dl_se, dl_rq);
440
441 if (!dl_task || READ_ONCE(p->__state) == TASK_DEAD) {
442 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
443
444 if (READ_ONCE(p->__state) == TASK_DEAD)
445 sub_rq_bw(dl_se, &rq->dl);
446 raw_spin_lock(&dl_b->lock);
447 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
448 raw_spin_unlock(&dl_b->lock);
449 __dl_clear_params(dl_se);
450 }
451 }
452
453 return;
454 }
455
456 dl_se->dl_non_contending = 1;
457 if (!dl_server(dl_se))
458 get_task_struct(dl_task_of(dl_se));
459
460 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
461 }
462
task_contending(struct sched_dl_entity * dl_se,int flags)463 static void task_contending(struct sched_dl_entity *dl_se, int flags)
464 {
465 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
466
467 /*
468 * If this is a non-deadline task that has been boosted,
469 * do nothing
470 */
471 if (dl_se->dl_runtime == 0)
472 return;
473
474 if (flags & ENQUEUE_MIGRATED)
475 add_rq_bw(dl_se, dl_rq);
476
477 if (dl_se->dl_non_contending) {
478 dl_se->dl_non_contending = 0;
479 /*
480 * If the timer handler is currently running and the
481 * timer cannot be canceled, inactive_task_timer()
482 * will see that dl_not_contending is not set, and
483 * will not touch the rq's active utilization,
484 * so we are still safe.
485 */
486 cancel_inactive_timer(dl_se);
487 } else {
488 /*
489 * Since "dl_non_contending" is not set, the
490 * task's utilization has already been removed from
491 * active utilization (either when the task blocked,
492 * when the "inactive timer" fired).
493 * So, add it back.
494 */
495 add_running_bw(dl_se, dl_rq);
496 }
497 }
498
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)499 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
500 {
501 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
502 }
503
504 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
505
init_dl_bw(struct dl_bw * dl_b)506 void init_dl_bw(struct dl_bw *dl_b)
507 {
508 raw_spin_lock_init(&dl_b->lock);
509 if (global_rt_runtime() == RUNTIME_INF)
510 dl_b->bw = -1;
511 else
512 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
513 dl_b->total_bw = 0;
514 }
515
init_dl_rq(struct dl_rq * dl_rq)516 void init_dl_rq(struct dl_rq *dl_rq)
517 {
518 dl_rq->root = RB_ROOT_CACHED;
519
520 /* zero means no -deadline tasks */
521 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
522
523 dl_rq->overloaded = 0;
524 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
525
526 dl_rq->running_bw = 0;
527 dl_rq->this_bw = 0;
528 init_dl_rq_bw_ratio(dl_rq);
529 }
530
dl_overloaded(struct rq * rq)531 static inline int dl_overloaded(struct rq *rq)
532 {
533 return atomic_read(&rq->rd->dlo_count);
534 }
535
dl_set_overload(struct rq * rq)536 static inline void dl_set_overload(struct rq *rq)
537 {
538 if (!rq->online)
539 return;
540
541 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
542 /*
543 * Must be visible before the overload count is
544 * set (as in sched_rt.c).
545 *
546 * Matched by the barrier in pull_dl_task().
547 */
548 smp_wmb();
549 atomic_inc(&rq->rd->dlo_count);
550 }
551
dl_clear_overload(struct rq * rq)552 static inline void dl_clear_overload(struct rq *rq)
553 {
554 if (!rq->online)
555 return;
556
557 atomic_dec(&rq->rd->dlo_count);
558 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
559 }
560
561 #define __node_2_pdl(node) \
562 rb_entry((node), struct task_struct, pushable_dl_tasks)
563
__pushable_less(struct rb_node * a,const struct rb_node * b)564 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
565 {
566 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
567 }
568
has_pushable_dl_tasks(struct rq * rq)569 static inline int has_pushable_dl_tasks(struct rq *rq)
570 {
571 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
572 }
573
574 /*
575 * The list of pushable -deadline task is not a plist, like in
576 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
577 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)578 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
579 {
580 struct rb_node *leftmost;
581
582 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
583
584 leftmost = rb_add_cached(&p->pushable_dl_tasks,
585 &rq->dl.pushable_dl_tasks_root,
586 __pushable_less);
587 if (leftmost)
588 rq->dl.earliest_dl.next = p->dl.deadline;
589
590 if (!rq->dl.overloaded) {
591 dl_set_overload(rq);
592 rq->dl.overloaded = 1;
593 }
594 }
595
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)596 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
597 {
598 struct dl_rq *dl_rq = &rq->dl;
599 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
600 struct rb_node *leftmost;
601
602 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
603 return;
604
605 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
606 if (leftmost)
607 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
608
609 RB_CLEAR_NODE(&p->pushable_dl_tasks);
610
611 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
612 dl_clear_overload(rq);
613 rq->dl.overloaded = 0;
614 }
615 }
616
617 static int push_dl_task(struct rq *rq);
618
need_pull_dl_task(struct rq * rq,struct task_struct * prev)619 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
620 {
621 return rq->online && dl_task(prev);
622 }
623
624 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
625 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
626
627 static void push_dl_tasks(struct rq *);
628 static void pull_dl_task(struct rq *);
629
deadline_queue_push_tasks(struct rq * rq)630 static inline void deadline_queue_push_tasks(struct rq *rq)
631 {
632 if (!has_pushable_dl_tasks(rq))
633 return;
634
635 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
636 }
637
deadline_queue_pull_task(struct rq * rq)638 static inline void deadline_queue_pull_task(struct rq *rq)
639 {
640 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
641 }
642
643 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
644
dl_task_offline_migration(struct rq * rq,struct task_struct * p)645 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
646 {
647 struct rq *later_rq = NULL;
648 struct dl_bw *dl_b;
649
650 later_rq = find_lock_later_rq(p, rq);
651 if (!later_rq) {
652 int cpu;
653
654 /*
655 * If we cannot preempt any rq, fall back to pick any
656 * online CPU:
657 */
658 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
659 if (cpu >= nr_cpu_ids) {
660 /*
661 * Failed to find any suitable CPU.
662 * The task will never come back!
663 */
664 WARN_ON_ONCE(dl_bandwidth_enabled());
665
666 /*
667 * If admission control is disabled we
668 * try a little harder to let the task
669 * run.
670 */
671 cpu = cpumask_any(cpu_active_mask);
672 }
673 later_rq = cpu_rq(cpu);
674 double_lock_balance(rq, later_rq);
675 }
676
677 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
678 /*
679 * Inactive timer is armed (or callback is running, but
680 * waiting for us to release rq locks). In any case, when it
681 * will fire (or continue), it will see running_bw of this
682 * task migrated to later_rq (and correctly handle it).
683 */
684 sub_running_bw(&p->dl, &rq->dl);
685 sub_rq_bw(&p->dl, &rq->dl);
686
687 add_rq_bw(&p->dl, &later_rq->dl);
688 add_running_bw(&p->dl, &later_rq->dl);
689 } else {
690 sub_rq_bw(&p->dl, &rq->dl);
691 add_rq_bw(&p->dl, &later_rq->dl);
692 }
693
694 /*
695 * And we finally need to fix up root_domain(s) bandwidth accounting,
696 * since p is still hanging out in the old (now moved to default) root
697 * domain.
698 */
699 dl_b = &rq->rd->dl_bw;
700 raw_spin_lock(&dl_b->lock);
701 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
702 raw_spin_unlock(&dl_b->lock);
703
704 dl_b = &later_rq->rd->dl_bw;
705 raw_spin_lock(&dl_b->lock);
706 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
707 raw_spin_unlock(&dl_b->lock);
708
709 set_task_cpu(p, later_rq->cpu);
710 double_unlock_balance(later_rq, rq);
711
712 return later_rq;
713 }
714
715 static void
716 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
717 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
718 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
719 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
720
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)721 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
722 struct rq *rq)
723 {
724 /* for non-boosted task, pi_of(dl_se) == dl_se */
725 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
726 dl_se->runtime = pi_of(dl_se)->dl_runtime;
727
728 /*
729 * If it is a deferred reservation, and the server
730 * is not handling an starvation case, defer it.
731 */
732 if (dl_se->dl_defer && !dl_se->dl_defer_running) {
733 dl_se->dl_throttled = 1;
734 dl_se->dl_defer_armed = 1;
735 }
736 }
737
738 /*
739 * We are being explicitly informed that a new instance is starting,
740 * and this means that:
741 * - the absolute deadline of the entity has to be placed at
742 * current time + relative deadline;
743 * - the runtime of the entity has to be set to the maximum value.
744 *
745 * The capability of specifying such event is useful whenever a -deadline
746 * entity wants to (try to!) synchronize its behaviour with the scheduler's
747 * one, and to (try to!) reconcile itself with its own scheduling
748 * parameters.
749 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)750 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
751 {
752 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
753 struct rq *rq = rq_of_dl_rq(dl_rq);
754
755 update_rq_clock(rq);
756
757 WARN_ON(is_dl_boosted(dl_se));
758 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
759
760 /*
761 * We are racing with the deadline timer. So, do nothing because
762 * the deadline timer handler will take care of properly recharging
763 * the runtime and postponing the deadline
764 */
765 if (dl_se->dl_throttled)
766 return;
767
768 /*
769 * We use the regular wall clock time to set deadlines in the
770 * future; in fact, we must consider execution overheads (time
771 * spent on hardirq context, etc.).
772 */
773 replenish_dl_new_period(dl_se, rq);
774 }
775
776 static int start_dl_timer(struct sched_dl_entity *dl_se);
777 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
778
779 /*
780 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
781 * possibility of a entity lasting more than what it declared, and thus
782 * exhausting its runtime.
783 *
784 * Here we are interested in making runtime overrun possible, but we do
785 * not want a entity which is misbehaving to affect the scheduling of all
786 * other entities.
787 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
788 * is used, in order to confine each entity within its own bandwidth.
789 *
790 * This function deals exactly with that, and ensures that when the runtime
791 * of a entity is replenished, its deadline is also postponed. That ensures
792 * the overrunning entity can't interfere with other entity in the system and
793 * can't make them miss their deadlines. Reasons why this kind of overruns
794 * could happen are, typically, a entity voluntarily trying to overcome its
795 * runtime, or it just underestimated it during sched_setattr().
796 */
replenish_dl_entity(struct sched_dl_entity * dl_se)797 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
798 {
799 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
800 struct rq *rq = rq_of_dl_rq(dl_rq);
801
802 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
803
804 /*
805 * This could be the case for a !-dl task that is boosted.
806 * Just go with full inherited parameters.
807 *
808 * Or, it could be the case of a deferred reservation that
809 * was not able to consume its runtime in background and
810 * reached this point with current u > U.
811 *
812 * In both cases, set a new period.
813 */
814 if (dl_se->dl_deadline == 0 ||
815 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
816 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
817 dl_se->runtime = pi_of(dl_se)->dl_runtime;
818 }
819
820 if (dl_se->dl_yielded && dl_se->runtime > 0)
821 dl_se->runtime = 0;
822
823 /*
824 * We keep moving the deadline away until we get some
825 * available runtime for the entity. This ensures correct
826 * handling of situations where the runtime overrun is
827 * arbitrary large.
828 */
829 while (dl_se->runtime <= 0) {
830 dl_se->deadline += pi_of(dl_se)->dl_period;
831 dl_se->runtime += pi_of(dl_se)->dl_runtime;
832 }
833
834 /*
835 * At this point, the deadline really should be "in
836 * the future" with respect to rq->clock. If it's
837 * not, we are, for some reason, lagging too much!
838 * Anyway, after having warn userspace abut that,
839 * we still try to keep the things running by
840 * resetting the deadline and the budget of the
841 * entity.
842 */
843 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
844 printk_deferred_once("sched: DL replenish lagged too much\n");
845 replenish_dl_new_period(dl_se, rq);
846 }
847
848 if (dl_se->dl_yielded)
849 dl_se->dl_yielded = 0;
850 if (dl_se->dl_throttled)
851 dl_se->dl_throttled = 0;
852
853 /*
854 * If this is the replenishment of a deferred reservation,
855 * clear the flag and return.
856 */
857 if (dl_se->dl_defer_armed) {
858 dl_se->dl_defer_armed = 0;
859 return;
860 }
861
862 /*
863 * A this point, if the deferred server is not armed, and the deadline
864 * is in the future, if it is not running already, throttle the server
865 * and arm the defer timer.
866 */
867 if (dl_se->dl_defer && !dl_se->dl_defer_running &&
868 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
869 if (!is_dl_boosted(dl_se)) {
870
871 /*
872 * Set dl_se->dl_defer_armed and dl_throttled variables to
873 * inform the start_dl_timer() that this is a deferred
874 * activation.
875 */
876 dl_se->dl_defer_armed = 1;
877 dl_se->dl_throttled = 1;
878 if (!start_dl_timer(dl_se)) {
879 /*
880 * If for whatever reason (delays), a previous timer was
881 * queued but not serviced, cancel it and clean the
882 * deferrable server variables intended for start_dl_timer().
883 */
884 hrtimer_try_to_cancel(&dl_se->dl_timer);
885 dl_se->dl_defer_armed = 0;
886 dl_se->dl_throttled = 0;
887 }
888 }
889 }
890 }
891
892 /*
893 * Here we check if --at time t-- an entity (which is probably being
894 * [re]activated or, in general, enqueued) can use its remaining runtime
895 * and its current deadline _without_ exceeding the bandwidth it is
896 * assigned (function returns true if it can't). We are in fact applying
897 * one of the CBS rules: when a task wakes up, if the residual runtime
898 * over residual deadline fits within the allocated bandwidth, then we
899 * can keep the current (absolute) deadline and residual budget without
900 * disrupting the schedulability of the system. Otherwise, we should
901 * refill the runtime and set the deadline a period in the future,
902 * because keeping the current (absolute) deadline of the task would
903 * result in breaking guarantees promised to other tasks (refer to
904 * Documentation/scheduler/sched-deadline.rst for more information).
905 *
906 * This function returns true if:
907 *
908 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
909 *
910 * IOW we can't recycle current parameters.
911 *
912 * Notice that the bandwidth check is done against the deadline. For
913 * task with deadline equal to period this is the same of using
914 * dl_period instead of dl_deadline in the equation above.
915 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)916 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
917 {
918 u64 left, right;
919
920 /*
921 * left and right are the two sides of the equation above,
922 * after a bit of shuffling to use multiplications instead
923 * of divisions.
924 *
925 * Note that none of the time values involved in the two
926 * multiplications are absolute: dl_deadline and dl_runtime
927 * are the relative deadline and the maximum runtime of each
928 * instance, runtime is the runtime left for the last instance
929 * and (deadline - t), since t is rq->clock, is the time left
930 * to the (absolute) deadline. Even if overflowing the u64 type
931 * is very unlikely to occur in both cases, here we scale down
932 * as we want to avoid that risk at all. Scaling down by 10
933 * means that we reduce granularity to 1us. We are fine with it,
934 * since this is only a true/false check and, anyway, thinking
935 * of anything below microseconds resolution is actually fiction
936 * (but still we want to give the user that illusion >;).
937 */
938 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
939 right = ((dl_se->deadline - t) >> DL_SCALE) *
940 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
941
942 return dl_time_before(right, left);
943 }
944
945 /*
946 * Revised wakeup rule [1]: For self-suspending tasks, rather then
947 * re-initializing task's runtime and deadline, the revised wakeup
948 * rule adjusts the task's runtime to avoid the task to overrun its
949 * density.
950 *
951 * Reasoning: a task may overrun the density if:
952 * runtime / (deadline - t) > dl_runtime / dl_deadline
953 *
954 * Therefore, runtime can be adjusted to:
955 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
956 *
957 * In such way that runtime will be equal to the maximum density
958 * the task can use without breaking any rule.
959 *
960 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
961 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
962 */
963 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)964 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
965 {
966 u64 laxity = dl_se->deadline - rq_clock(rq);
967
968 /*
969 * If the task has deadline < period, and the deadline is in the past,
970 * it should already be throttled before this check.
971 *
972 * See update_dl_entity() comments for further details.
973 */
974 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
975
976 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
977 }
978
979 /*
980 * Regarding the deadline, a task with implicit deadline has a relative
981 * deadline == relative period. A task with constrained deadline has a
982 * relative deadline <= relative period.
983 *
984 * We support constrained deadline tasks. However, there are some restrictions
985 * applied only for tasks which do not have an implicit deadline. See
986 * update_dl_entity() to know more about such restrictions.
987 *
988 * The dl_is_implicit() returns true if the task has an implicit deadline.
989 */
dl_is_implicit(struct sched_dl_entity * dl_se)990 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
991 {
992 return dl_se->dl_deadline == dl_se->dl_period;
993 }
994
995 /*
996 * When a deadline entity is placed in the runqueue, its runtime and deadline
997 * might need to be updated. This is done by a CBS wake up rule. There are two
998 * different rules: 1) the original CBS; and 2) the Revisited CBS.
999 *
1000 * When the task is starting a new period, the Original CBS is used. In this
1001 * case, the runtime is replenished and a new absolute deadline is set.
1002 *
1003 * When a task is queued before the begin of the next period, using the
1004 * remaining runtime and deadline could make the entity to overflow, see
1005 * dl_entity_overflow() to find more about runtime overflow. When such case
1006 * is detected, the runtime and deadline need to be updated.
1007 *
1008 * If the task has an implicit deadline, i.e., deadline == period, the Original
1009 * CBS is applied. The runtime is replenished and a new absolute deadline is
1010 * set, as in the previous cases.
1011 *
1012 * However, the Original CBS does not work properly for tasks with
1013 * deadline < period, which are said to have a constrained deadline. By
1014 * applying the Original CBS, a constrained deadline task would be able to run
1015 * runtime/deadline in a period. With deadline < period, the task would
1016 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1017 *
1018 * In order to prevent this misbehave, the Revisited CBS is used for
1019 * constrained deadline tasks when a runtime overflow is detected. In the
1020 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1021 * the remaining runtime of the task is reduced to avoid runtime overflow.
1022 * Please refer to the comments update_dl_revised_wakeup() function to find
1023 * more about the Revised CBS rule.
1024 */
update_dl_entity(struct sched_dl_entity * dl_se)1025 static void update_dl_entity(struct sched_dl_entity *dl_se)
1026 {
1027 struct rq *rq = rq_of_dl_se(dl_se);
1028
1029 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1030 dl_entity_overflow(dl_se, rq_clock(rq))) {
1031
1032 if (unlikely(!dl_is_implicit(dl_se) &&
1033 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1034 !is_dl_boosted(dl_se))) {
1035 update_dl_revised_wakeup(dl_se, rq);
1036 return;
1037 }
1038
1039 replenish_dl_new_period(dl_se, rq);
1040 } else if (dl_server(dl_se) && dl_se->dl_defer) {
1041 /*
1042 * The server can still use its previous deadline, so check if
1043 * it left the dl_defer_running state.
1044 */
1045 if (!dl_se->dl_defer_running) {
1046 dl_se->dl_defer_armed = 1;
1047 dl_se->dl_throttled = 1;
1048 }
1049 }
1050 }
1051
dl_next_period(struct sched_dl_entity * dl_se)1052 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1053 {
1054 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1055 }
1056
1057 /*
1058 * If the entity depleted all its runtime, and if we want it to sleep
1059 * while waiting for some new execution time to become available, we
1060 * set the bandwidth replenishment timer to the replenishment instant
1061 * and try to activate it.
1062 *
1063 * Notice that it is important for the caller to know if the timer
1064 * actually started or not (i.e., the replenishment instant is in
1065 * the future or in the past).
1066 */
start_dl_timer(struct sched_dl_entity * dl_se)1067 static int start_dl_timer(struct sched_dl_entity *dl_se)
1068 {
1069 struct hrtimer *timer = &dl_se->dl_timer;
1070 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1071 struct rq *rq = rq_of_dl_rq(dl_rq);
1072 ktime_t now, act;
1073 s64 delta;
1074
1075 lockdep_assert_rq_held(rq);
1076
1077 /*
1078 * We want the timer to fire at the deadline, but considering
1079 * that it is actually coming from rq->clock and not from
1080 * hrtimer's time base reading.
1081 *
1082 * The deferred reservation will have its timer set to
1083 * (deadline - runtime). At that point, the CBS rule will decide
1084 * if the current deadline can be used, or if a replenishment is
1085 * required to avoid add too much pressure on the system
1086 * (current u > U).
1087 */
1088 if (dl_se->dl_defer_armed) {
1089 WARN_ON_ONCE(!dl_se->dl_throttled);
1090 act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1091 } else {
1092 /* act = deadline - rel-deadline + period */
1093 act = ns_to_ktime(dl_next_period(dl_se));
1094 }
1095
1096 now = hrtimer_cb_get_time(timer);
1097 delta = ktime_to_ns(now) - rq_clock(rq);
1098 act = ktime_add_ns(act, delta);
1099
1100 /*
1101 * If the expiry time already passed, e.g., because the value
1102 * chosen as the deadline is too small, don't even try to
1103 * start the timer in the past!
1104 */
1105 if (ktime_us_delta(act, now) < 0)
1106 return 0;
1107
1108 /*
1109 * !enqueued will guarantee another callback; even if one is already in
1110 * progress. This ensures a balanced {get,put}_task_struct().
1111 *
1112 * The race against __run_timer() clearing the enqueued state is
1113 * harmless because we're holding task_rq()->lock, therefore the timer
1114 * expiring after we've done the check will wait on its task_rq_lock()
1115 * and observe our state.
1116 */
1117 if (!hrtimer_is_queued(timer)) {
1118 if (!dl_server(dl_se))
1119 get_task_struct(dl_task_of(dl_se));
1120 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1121 }
1122
1123 return 1;
1124 }
1125
__push_dl_task(struct rq * rq,struct rq_flags * rf)1126 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1127 {
1128 /*
1129 * Queueing this task back might have overloaded rq, check if we need
1130 * to kick someone away.
1131 */
1132 if (has_pushable_dl_tasks(rq)) {
1133 /*
1134 * Nothing relies on rq->lock after this, so its safe to drop
1135 * rq->lock.
1136 */
1137 rq_unpin_lock(rq, rf);
1138 push_dl_task(rq);
1139 rq_repin_lock(rq, rf);
1140 }
1141 }
1142
1143 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1144 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1145
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1146 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1147 {
1148 struct rq *rq = rq_of_dl_se(dl_se);
1149 u64 fw;
1150
1151 scoped_guard (rq_lock, rq) {
1152 struct rq_flags *rf = &scope.rf;
1153
1154 if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1155 return HRTIMER_NORESTART;
1156
1157 sched_clock_tick();
1158 update_rq_clock(rq);
1159
1160 /*
1161 * Make sure current has propagated its pending runtime into
1162 * any relevant server through calling dl_server_update() and
1163 * friends.
1164 */
1165 rq->donor->sched_class->update_curr(rq);
1166
1167 if (dl_se->dl_defer_idle) {
1168 dl_server_stop(dl_se);
1169 return HRTIMER_NORESTART;
1170 }
1171
1172 if (dl_se->dl_defer_armed) {
1173 /*
1174 * First check if the server could consume runtime in background.
1175 * If so, it is possible to push the defer timer for this amount
1176 * of time. The dl_server_min_res serves as a limit to avoid
1177 * forwarding the timer for a too small amount of time.
1178 */
1179 if (dl_time_before(rq_clock(dl_se->rq),
1180 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1181
1182 /* reset the defer timer */
1183 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1184
1185 hrtimer_forward_now(timer, ns_to_ktime(fw));
1186 return HRTIMER_RESTART;
1187 }
1188
1189 dl_se->dl_defer_running = 1;
1190 }
1191
1192 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1193
1194 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1195 resched_curr(rq);
1196
1197 __push_dl_task(rq, rf);
1198 }
1199
1200 return HRTIMER_NORESTART;
1201 }
1202
1203 /*
1204 * This is the bandwidth enforcement timer callback. If here, we know
1205 * a task is not on its dl_rq, since the fact that the timer was running
1206 * means the task is throttled and needs a runtime replenishment.
1207 *
1208 * However, what we actually do depends on the fact the task is active,
1209 * (it is on its rq) or has been removed from there by a call to
1210 * dequeue_task_dl(). In the former case we must issue the runtime
1211 * replenishment and add the task back to the dl_rq; in the latter, we just
1212 * do nothing but clearing dl_throttled, so that runtime and deadline
1213 * updating (and the queueing back to dl_rq) will be done by the
1214 * next call to enqueue_task_dl().
1215 */
dl_task_timer(struct hrtimer * timer)1216 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1217 {
1218 struct sched_dl_entity *dl_se = container_of(timer,
1219 struct sched_dl_entity,
1220 dl_timer);
1221 struct task_struct *p;
1222 struct rq_flags rf;
1223 struct rq *rq;
1224
1225 if (dl_server(dl_se))
1226 return dl_server_timer(timer, dl_se);
1227
1228 p = dl_task_of(dl_se);
1229 rq = task_rq_lock(p, &rf);
1230
1231 /*
1232 * The task might have changed its scheduling policy to something
1233 * different than SCHED_DEADLINE (through switched_from_dl()).
1234 */
1235 if (!dl_task(p))
1236 goto unlock;
1237
1238 /*
1239 * The task might have been boosted by someone else and might be in the
1240 * boosting/deboosting path, its not throttled.
1241 */
1242 if (is_dl_boosted(dl_se))
1243 goto unlock;
1244
1245 /*
1246 * Spurious timer due to start_dl_timer() race; or we already received
1247 * a replenishment from rt_mutex_setprio().
1248 */
1249 if (!dl_se->dl_throttled)
1250 goto unlock;
1251
1252 sched_clock_tick();
1253 update_rq_clock(rq);
1254
1255 /*
1256 * If the throttle happened during sched-out; like:
1257 *
1258 * schedule()
1259 * deactivate_task()
1260 * dequeue_task_dl()
1261 * update_curr_dl()
1262 * start_dl_timer()
1263 * __dequeue_task_dl()
1264 * prev->on_rq = 0;
1265 *
1266 * We can be both throttled and !queued. Replenish the counter
1267 * but do not enqueue -- wait for our wakeup to do that.
1268 */
1269 if (!task_on_rq_queued(p)) {
1270 replenish_dl_entity(dl_se);
1271 goto unlock;
1272 }
1273
1274 if (unlikely(!rq->online)) {
1275 /*
1276 * If the runqueue is no longer available, migrate the
1277 * task elsewhere. This necessarily changes rq.
1278 */
1279 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1280 rq = dl_task_offline_migration(rq, p);
1281 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1282 update_rq_clock(rq);
1283
1284 /*
1285 * Now that the task has been migrated to the new RQ and we
1286 * have that locked, proceed as normal and enqueue the task
1287 * there.
1288 */
1289 }
1290
1291 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1292 if (dl_task(rq->donor))
1293 wakeup_preempt_dl(rq, p, 0);
1294 else
1295 resched_curr(rq);
1296
1297 __push_dl_task(rq, &rf);
1298
1299 unlock:
1300 task_rq_unlock(rq, p, &rf);
1301
1302 /*
1303 * This can free the task_struct, including this hrtimer, do not touch
1304 * anything related to that after this.
1305 */
1306 put_task_struct(p);
1307
1308 return HRTIMER_NORESTART;
1309 }
1310
init_dl_task_timer(struct sched_dl_entity * dl_se)1311 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1312 {
1313 struct hrtimer *timer = &dl_se->dl_timer;
1314
1315 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1316 }
1317
1318 /*
1319 * During the activation, CBS checks if it can reuse the current task's
1320 * runtime and period. If the deadline of the task is in the past, CBS
1321 * cannot use the runtime, and so it replenishes the task. This rule
1322 * works fine for implicit deadline tasks (deadline == period), and the
1323 * CBS was designed for implicit deadline tasks. However, a task with
1324 * constrained deadline (deadline < period) might be awakened after the
1325 * deadline, but before the next period. In this case, replenishing the
1326 * task would allow it to run for runtime / deadline. As in this case
1327 * deadline < period, CBS enables a task to run for more than the
1328 * runtime / period. In a very loaded system, this can cause a domino
1329 * effect, making other tasks miss their deadlines.
1330 *
1331 * To avoid this problem, in the activation of a constrained deadline
1332 * task after the deadline but before the next period, throttle the
1333 * task and set the replenishing timer to the begin of the next period,
1334 * unless it is boosted.
1335 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1336 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1337 {
1338 struct rq *rq = rq_of_dl_se(dl_se);
1339
1340 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1341 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1342 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1343 return;
1344 dl_se->dl_throttled = 1;
1345 if (dl_se->runtime > 0)
1346 dl_se->runtime = 0;
1347 }
1348 }
1349
1350 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1351 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1352 {
1353 return (dl_se->runtime <= 0);
1354 }
1355
1356 /*
1357 * This function implements the GRUB accounting rule. According to the
1358 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1359 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1360 * where u is the utilization of the task, Umax is the maximum reclaimable
1361 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1362 * as the difference between the "total runqueue utilization" and the
1363 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1364 * reclaimable utilization.
1365 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1366 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1367 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1368 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1369 * Since delta is a 64 bit variable, to have an overflow its value should be
1370 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1371 * not an issue here.
1372 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1373 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1374 {
1375 u64 u_act;
1376 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1377
1378 /*
1379 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1380 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1381 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1382 * negative leading to wrong results.
1383 */
1384 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1385 u_act = dl_se->dl_bw;
1386 else
1387 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1388
1389 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1390 return (delta * u_act) >> BW_SHIFT;
1391 }
1392
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1393 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1394 {
1395 s64 scaled_delta_exec;
1396
1397 /*
1398 * For tasks that participate in GRUB, we implement GRUB-PA: the
1399 * spare reclaimed bandwidth is used to clock down frequency.
1400 *
1401 * For the others, we still need to scale reservation parameters
1402 * according to current frequency and CPU maximum capacity.
1403 */
1404 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1405 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1406 } else {
1407 int cpu = cpu_of(rq);
1408 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1409 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1410
1411 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1412 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1413 }
1414
1415 return scaled_delta_exec;
1416 }
1417
1418 static inline void
1419 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, int flags);
1420
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1421 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1422 {
1423 bool idle = rq->curr == rq->idle;
1424 s64 scaled_delta_exec;
1425
1426 if (unlikely(delta_exec <= 0)) {
1427 if (unlikely(dl_se->dl_yielded))
1428 goto throttle;
1429 return;
1430 }
1431
1432 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1433 return;
1434
1435 if (dl_entity_is_special(dl_se))
1436 return;
1437
1438 scaled_delta_exec = delta_exec;
1439 if (!dl_server(dl_se))
1440 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1441
1442 dl_se->runtime -= scaled_delta_exec;
1443
1444 if (dl_se->dl_defer_idle && !idle)
1445 dl_se->dl_defer_idle = 0;
1446
1447 /*
1448 * The fair server can consume its runtime while throttled (not queued/
1449 * running as regular CFS).
1450 *
1451 * If the server consumes its entire runtime in this state. The server
1452 * is not required for the current period. Thus, reset the server by
1453 * starting a new period, pushing the activation.
1454 */
1455 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1456 /*
1457 * Non-servers would never get time accounted while throttled.
1458 */
1459 WARN_ON_ONCE(!dl_server(dl_se));
1460
1461 /*
1462 * While the server is marked idle, do not push out the
1463 * activation further, instead wait for the period timer
1464 * to lapse and stop the server.
1465 */
1466 if (dl_se->dl_defer_idle && idle) {
1467 /*
1468 * The timer is at the zero-laxity point, this means
1469 * dl_server_stop() / dl_server_start() can happen
1470 * while now < deadline. This means update_dl_entity()
1471 * will not replenish. Additionally start_dl_timer()
1472 * will be set for 'deadline - runtime'. Negative
1473 * runtime will not do.
1474 */
1475 dl_se->runtime = 0;
1476 return;
1477 }
1478
1479 /*
1480 * If the server was previously activated - the starving condition
1481 * took place, it this point it went away because the fair scheduler
1482 * was able to get runtime in background. So return to the initial
1483 * state.
1484 */
1485 dl_se->dl_defer_running = 0;
1486
1487 hrtimer_try_to_cancel(&dl_se->dl_timer);
1488
1489 replenish_dl_new_period(dl_se, dl_se->rq);
1490
1491 if (idle)
1492 dl_se->dl_defer_idle = 1;
1493
1494 /*
1495 * Not being able to start the timer seems problematic. If it could not
1496 * be started for whatever reason, we need to "unthrottle" the DL server
1497 * and queue right away. Otherwise nothing might queue it. That's similar
1498 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1499 */
1500 WARN_ON_ONCE(!start_dl_timer(dl_se));
1501
1502 return;
1503 }
1504
1505 throttle:
1506 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1507 dl_se->dl_throttled = 1;
1508
1509 /* If requested, inform the user about runtime overruns. */
1510 if (dl_runtime_exceeded(dl_se) &&
1511 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1512 dl_se->dl_overrun = 1;
1513
1514 dequeue_dl_entity(dl_se, 0);
1515 if (!dl_server(dl_se)) {
1516 update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1517 dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1518 }
1519
1520 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1521 if (dl_server(dl_se)) {
1522 replenish_dl_new_period(dl_se, rq);
1523 start_dl_timer(dl_se);
1524 } else {
1525 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1526 }
1527 }
1528
1529 if (!is_leftmost(dl_se, &rq->dl))
1530 resched_curr(rq);
1531 }
1532
1533 /*
1534 * The fair server (sole dl_server) does not account for real-time
1535 * workload because it is running fair work.
1536 */
1537 if (dl_se == &rq->fair_server)
1538 return;
1539
1540 #ifdef CONFIG_RT_GROUP_SCHED
1541 /*
1542 * Because -- for now -- we share the rt bandwidth, we need to
1543 * account our runtime there too, otherwise actual rt tasks
1544 * would be able to exceed the shared quota.
1545 *
1546 * Account to the root rt group for now.
1547 *
1548 * The solution we're working towards is having the RT groups scheduled
1549 * using deadline servers -- however there's a few nasties to figure
1550 * out before that can happen.
1551 */
1552 if (rt_bandwidth_enabled()) {
1553 struct rt_rq *rt_rq = &rq->rt;
1554
1555 raw_spin_lock(&rt_rq->rt_runtime_lock);
1556 /*
1557 * We'll let actual RT tasks worry about the overflow here, we
1558 * have our own CBS to keep us inline; only account when RT
1559 * bandwidth is relevant.
1560 */
1561 if (sched_rt_bandwidth_account(rt_rq))
1562 rt_rq->rt_time += delta_exec;
1563 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1564 }
1565 #endif /* CONFIG_RT_GROUP_SCHED */
1566 }
1567
1568 /*
1569 * In the non-defer mode, the idle time is not accounted, as the
1570 * server provides a guarantee.
1571 *
1572 * If the dl_server is in defer mode, the idle time is also considered
1573 * as time available for the fair server, avoiding a penalty for the
1574 * rt scheduler that did not consumed that time.
1575 */
dl_server_update_idle(struct sched_dl_entity * dl_se,s64 delta_exec)1576 void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec)
1577 {
1578 if (dl_se->dl_server_active && dl_se->dl_runtime && dl_se->dl_defer)
1579 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1580 }
1581
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1582 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1583 {
1584 /* 0 runtime = fair server disabled */
1585 if (dl_se->dl_server_active && dl_se->dl_runtime)
1586 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1587 }
1588
1589 /*
1590 * dl_server && dl_defer:
1591 *
1592 * 6
1593 * +--------------------+
1594 * v |
1595 * +-------------+ 4 +-----------+ 5 +------------------+
1596 * +-> | A:init | <--- | D:running | -----> | E:replenish-wait |
1597 * | +-------------+ +-----------+ +------------------+
1598 * | | | 1 ^ ^ |
1599 * | | 1 +----------+ | 3 |
1600 * | v | |
1601 * | +--------------------------------+ 2 |
1602 * | | | ----+ |
1603 * | 8 | B:zero_laxity-wait | | |
1604 * | | | <---+ |
1605 * | +--------------------------------+ |
1606 * | | ^ ^ 2 |
1607 * | | 7 | 2 +--------------------+
1608 * | v |
1609 * | +-------------+ |
1610 * +-- | C:idle-wait | -+
1611 * +-------------+
1612 * ^ 7 |
1613 * +---------+
1614 *
1615 *
1616 * [A] - init
1617 * dl_server_active = 0
1618 * dl_throttled = 0
1619 * dl_defer_armed = 0
1620 * dl_defer_running = 0/1
1621 * dl_defer_idle = 0
1622 *
1623 * [B] - zero_laxity-wait
1624 * dl_server_active = 1
1625 * dl_throttled = 1
1626 * dl_defer_armed = 1
1627 * dl_defer_running = 0
1628 * dl_defer_idle = 0
1629 *
1630 * [C] - idle-wait
1631 * dl_server_active = 1
1632 * dl_throttled = 1
1633 * dl_defer_armed = 1
1634 * dl_defer_running = 0
1635 * dl_defer_idle = 1
1636 *
1637 * [D] - running
1638 * dl_server_active = 1
1639 * dl_throttled = 0
1640 * dl_defer_armed = 0
1641 * dl_defer_running = 1
1642 * dl_defer_idle = 0
1643 *
1644 * [E] - replenish-wait
1645 * dl_server_active = 1
1646 * dl_throttled = 1
1647 * dl_defer_armed = 0
1648 * dl_defer_running = 1
1649 * dl_defer_idle = 0
1650 *
1651 *
1652 * [1] A->B, A->D
1653 * dl_server_start()
1654 * dl_server_active = 1;
1655 * enqueue_dl_entity()
1656 * update_dl_entity(WAKEUP)
1657 * if (!dl_defer_running)
1658 * dl_defer_armed = 1;
1659 * dl_throttled = 1;
1660 * if (dl_throttled && start_dl_timer())
1661 * return; // [B]
1662 * __enqueue_dl_entity();
1663 * // [D]
1664 *
1665 * // deplete server runtime from client-class
1666 * [2] B->B, C->B, E->B
1667 * dl_server_update()
1668 * update_curr_dl_se() // idle = false
1669 * if (dl_defer_idle)
1670 * dl_defer_idle = 0;
1671 * if (dl_defer && dl_throttled && dl_runtime_exceeded())
1672 * dl_defer_running = 0;
1673 * hrtimer_try_to_cancel(); // stop timer
1674 * replenish_dl_new_period()
1675 * // fwd period
1676 * dl_throttled = 1;
1677 * dl_defer_armed = 1;
1678 * start_dl_timer(); // restart timer
1679 * // [B]
1680 *
1681 * // timer actually fires means we have runtime
1682 * [3] B->D
1683 * dl_server_timer()
1684 * if (dl_defer_armed)
1685 * dl_defer_running = 1;
1686 * enqueue_dl_entity(REPLENISH)
1687 * replenish_dl_entity()
1688 * // fwd period
1689 * if (dl_throttled)
1690 * dl_throttled = 0;
1691 * if (dl_defer_armed)
1692 * dl_defer_armed = 0;
1693 * __enqueue_dl_entity();
1694 * // [D]
1695 *
1696 * // schedule server
1697 * [4] D->A
1698 * pick_task_dl()
1699 * p = server_pick_task();
1700 * if (!p)
1701 * dl_server_stop()
1702 * dequeue_dl_entity();
1703 * hrtimer_try_to_cancel();
1704 * dl_defer_armed = 0;
1705 * dl_throttled = 0;
1706 * dl_server_active = 0;
1707 * // [A]
1708 * return p;
1709 *
1710 * // server running
1711 * [5] D->E
1712 * update_curr_dl_se()
1713 * if (dl_runtime_exceeded())
1714 * dl_throttled = 1;
1715 * dequeue_dl_entity();
1716 * start_dl_timer();
1717 * // [E]
1718 *
1719 * // server replenished
1720 * [6] E->D
1721 * dl_server_timer()
1722 * enqueue_dl_entity(REPLENISH)
1723 * replenish_dl_entity()
1724 * fwd-period
1725 * if (dl_throttled)
1726 * dl_throttled = 0;
1727 * __enqueue_dl_entity();
1728 * // [D]
1729 *
1730 * // deplete server runtime from idle
1731 * [7] B->C, C->C
1732 * dl_server_update_idle()
1733 * update_curr_dl_se() // idle = true
1734 * if (dl_defer && dl_throttled && dl_runtime_exceeded())
1735 * if (dl_defer_idle)
1736 * return;
1737 * dl_defer_running = 0;
1738 * hrtimer_try_to_cancel();
1739 * replenish_dl_new_period()
1740 * // fwd period
1741 * dl_throttled = 1;
1742 * dl_defer_armed = 1;
1743 * dl_defer_idle = 1;
1744 * start_dl_timer(); // restart timer
1745 * // [C]
1746 *
1747 * // stop idle server
1748 * [8] C->A
1749 * dl_server_timer()
1750 * if (dl_defer_idle)
1751 * dl_server_stop();
1752 * // [A]
1753 *
1754 *
1755 * digraph dl_server {
1756 * "A:init" -> "B:zero_laxity-wait" [label="1:dl_server_start"]
1757 * "A:init" -> "D:running" [label="1:dl_server_start"]
1758 * "B:zero_laxity-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
1759 * "B:zero_laxity-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"]
1760 * "B:zero_laxity-wait" -> "D:running" [label="3:dl_server_timer"]
1761 * "C:idle-wait" -> "A:init" [label="8:dl_server_timer"]
1762 * "C:idle-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
1763 * "C:idle-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"]
1764 * "D:running" -> "A:init" [label="4:pick_task_dl"]
1765 * "D:running" -> "E:replenish-wait" [label="5:update_curr_dl_se"]
1766 * "E:replenish-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
1767 * "E:replenish-wait" -> "D:running" [label="6:dl_server_timer"]
1768 * }
1769 *
1770 *
1771 * Notes:
1772 *
1773 * - When there are fair tasks running the most likely loop is [2]->[2].
1774 * the dl_server never actually runs, the timer never fires.
1775 *
1776 * - When there is actual fair starvation; the timer fires and starts the
1777 * dl_server. This will then throttle and replenish like a normal DL
1778 * task. Notably it will not 'defer' again.
1779 *
1780 * - When idle it will push the actication forward once, and then wait
1781 * for the timer to hit or a non-idle update to restart things.
1782 */
dl_server_start(struct sched_dl_entity * dl_se)1783 void dl_server_start(struct sched_dl_entity *dl_se)
1784 {
1785 struct rq *rq = dl_se->rq;
1786
1787 if (!dl_server(dl_se) || dl_se->dl_server_active)
1788 return;
1789
1790 /*
1791 * Update the current task to 'now'.
1792 */
1793 rq->donor->sched_class->update_curr(rq);
1794
1795 if (WARN_ON_ONCE(!cpu_online(cpu_of(rq))))
1796 return;
1797
1798 dl_se->dl_server_active = 1;
1799 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1800 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1801 resched_curr(dl_se->rq);
1802 }
1803
dl_server_stop(struct sched_dl_entity * dl_se)1804 void dl_server_stop(struct sched_dl_entity *dl_se)
1805 {
1806 if (!dl_server(dl_se) || !dl_server_active(dl_se))
1807 return;
1808
1809 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1810 hrtimer_try_to_cancel(&dl_se->dl_timer);
1811 dl_se->dl_defer_armed = 0;
1812 dl_se->dl_throttled = 0;
1813 dl_se->dl_defer_idle = 0;
1814 dl_se->dl_server_active = 0;
1815 }
1816
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_pick_f pick_task)1817 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1818 dl_server_pick_f pick_task)
1819 {
1820 dl_se->rq = rq;
1821 dl_se->server_pick_task = pick_task;
1822 }
1823
sched_init_dl_servers(void)1824 void sched_init_dl_servers(void)
1825 {
1826 int cpu;
1827 struct rq *rq;
1828 struct sched_dl_entity *dl_se;
1829
1830 for_each_online_cpu(cpu) {
1831 u64 runtime = 50 * NSEC_PER_MSEC;
1832 u64 period = 1000 * NSEC_PER_MSEC;
1833
1834 rq = cpu_rq(cpu);
1835
1836 guard(rq_lock_irq)(rq);
1837
1838 dl_se = &rq->fair_server;
1839
1840 WARN_ON(dl_server(dl_se));
1841
1842 dl_server_apply_params(dl_se, runtime, period, 1);
1843
1844 dl_se->dl_server = 1;
1845 dl_se->dl_defer = 1;
1846 setup_new_dl_entity(dl_se);
1847 }
1848 }
1849
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1850 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1851 {
1852 u64 new_bw = dl_se->dl_bw;
1853 int cpu = cpu_of(rq);
1854 struct dl_bw *dl_b;
1855
1856 dl_b = dl_bw_of(cpu_of(rq));
1857 guard(raw_spinlock)(&dl_b->lock);
1858
1859 if (!dl_bw_cpus(cpu))
1860 return;
1861
1862 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1863 }
1864
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1865 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1866 {
1867 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1868 u64 new_bw = to_ratio(period, runtime);
1869 struct rq *rq = dl_se->rq;
1870 int cpu = cpu_of(rq);
1871 struct dl_bw *dl_b;
1872 unsigned long cap;
1873 int retval = 0;
1874 int cpus;
1875
1876 dl_b = dl_bw_of(cpu);
1877 guard(raw_spinlock)(&dl_b->lock);
1878
1879 cpus = dl_bw_cpus(cpu);
1880 cap = dl_bw_capacity(cpu);
1881
1882 if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1883 return -EBUSY;
1884
1885 if (init) {
1886 __add_rq_bw(new_bw, &rq->dl);
1887 __dl_add(dl_b, new_bw, cpus);
1888 } else {
1889 __dl_sub(dl_b, dl_se->dl_bw, cpus);
1890 __dl_add(dl_b, new_bw, cpus);
1891
1892 dl_rq_change_utilization(rq, dl_se, new_bw);
1893 }
1894
1895 dl_se->dl_runtime = runtime;
1896 dl_se->dl_deadline = period;
1897 dl_se->dl_period = period;
1898
1899 dl_se->runtime = 0;
1900 dl_se->deadline = 0;
1901
1902 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1903 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1904
1905 return retval;
1906 }
1907
1908 /*
1909 * Update the current task's runtime statistics (provided it is still
1910 * a -deadline task and has not been removed from the dl_rq).
1911 */
update_curr_dl(struct rq * rq)1912 static void update_curr_dl(struct rq *rq)
1913 {
1914 struct task_struct *donor = rq->donor;
1915 struct sched_dl_entity *dl_se = &donor->dl;
1916 s64 delta_exec;
1917
1918 if (!dl_task(donor) || !on_dl_rq(dl_se))
1919 return;
1920
1921 /*
1922 * Consumed budget is computed considering the time as
1923 * observed by schedulable tasks (excluding time spent
1924 * in hardirq context, etc.). Deadlines are instead
1925 * computed using hard walltime. This seems to be the more
1926 * natural solution, but the full ramifications of this
1927 * approach need further study.
1928 */
1929 delta_exec = update_curr_common(rq);
1930 update_curr_dl_se(rq, dl_se, delta_exec);
1931 }
1932
inactive_task_timer(struct hrtimer * timer)1933 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1934 {
1935 struct sched_dl_entity *dl_se = container_of(timer,
1936 struct sched_dl_entity,
1937 inactive_timer);
1938 struct task_struct *p = NULL;
1939 struct rq_flags rf;
1940 struct rq *rq;
1941
1942 if (!dl_server(dl_se)) {
1943 p = dl_task_of(dl_se);
1944 rq = task_rq_lock(p, &rf);
1945 } else {
1946 rq = dl_se->rq;
1947 rq_lock(rq, &rf);
1948 }
1949
1950 sched_clock_tick();
1951 update_rq_clock(rq);
1952
1953 if (dl_server(dl_se))
1954 goto no_task;
1955
1956 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1957 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1958
1959 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1960 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1961 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1962 dl_se->dl_non_contending = 0;
1963 }
1964
1965 raw_spin_lock(&dl_b->lock);
1966 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1967 raw_spin_unlock(&dl_b->lock);
1968 __dl_clear_params(dl_se);
1969
1970 goto unlock;
1971 }
1972
1973 no_task:
1974 if (dl_se->dl_non_contending == 0)
1975 goto unlock;
1976
1977 sub_running_bw(dl_se, &rq->dl);
1978 dl_se->dl_non_contending = 0;
1979 unlock:
1980
1981 if (!dl_server(dl_se)) {
1982 task_rq_unlock(rq, p, &rf);
1983 put_task_struct(p);
1984 } else {
1985 rq_unlock(rq, &rf);
1986 }
1987
1988 return HRTIMER_NORESTART;
1989 }
1990
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1991 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1992 {
1993 struct hrtimer *timer = &dl_se->inactive_timer;
1994
1995 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1996 }
1997
1998 #define __node_2_dle(node) \
1999 rb_entry((node), struct sched_dl_entity, rb_node)
2000
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)2001 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
2002 {
2003 struct rq *rq = rq_of_dl_rq(dl_rq);
2004
2005 if (dl_rq->earliest_dl.curr == 0 ||
2006 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
2007 if (dl_rq->earliest_dl.curr == 0)
2008 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
2009 dl_rq->earliest_dl.curr = deadline;
2010 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
2011 }
2012 }
2013
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)2014 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
2015 {
2016 struct rq *rq = rq_of_dl_rq(dl_rq);
2017
2018 /*
2019 * Since we may have removed our earliest (and/or next earliest)
2020 * task we must recompute them.
2021 */
2022 if (!dl_rq->dl_nr_running) {
2023 dl_rq->earliest_dl.curr = 0;
2024 dl_rq->earliest_dl.next = 0;
2025 cpudl_clear(&rq->rd->cpudl, rq->cpu, rq->online);
2026 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2027 } else {
2028 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
2029 struct sched_dl_entity *entry = __node_2_dle(leftmost);
2030
2031 dl_rq->earliest_dl.curr = entry->deadline;
2032 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
2033 }
2034 }
2035
2036 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)2037 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
2038 {
2039 u64 deadline = dl_se->deadline;
2040
2041 dl_rq->dl_nr_running++;
2042
2043 if (!dl_server(dl_se))
2044 add_nr_running(rq_of_dl_rq(dl_rq), 1);
2045
2046 inc_dl_deadline(dl_rq, deadline);
2047 }
2048
2049 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)2050 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
2051 {
2052 WARN_ON(!dl_rq->dl_nr_running);
2053 dl_rq->dl_nr_running--;
2054
2055 if (!dl_server(dl_se))
2056 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
2057
2058 dec_dl_deadline(dl_rq, dl_se->deadline);
2059 }
2060
__dl_less(struct rb_node * a,const struct rb_node * b)2061 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
2062 {
2063 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
2064 }
2065
2066 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)2067 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
2068 {
2069 if (!schedstat_enabled())
2070 return NULL;
2071
2072 if (dl_server(dl_se))
2073 return NULL;
2074
2075 return &dl_task_of(dl_se)->stats;
2076 }
2077
2078 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)2079 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2080 {
2081 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2082 if (stats)
2083 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2084 }
2085
2086 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)2087 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2088 {
2089 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2090 if (stats)
2091 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2092 }
2093
2094 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)2095 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2096 {
2097 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2098 if (stats)
2099 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2100 }
2101
2102 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)2103 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
2104 int flags)
2105 {
2106 if (!schedstat_enabled())
2107 return;
2108
2109 if (flags & ENQUEUE_WAKEUP)
2110 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
2111 }
2112
2113 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)2114 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
2115 int flags)
2116 {
2117 struct task_struct *p = dl_task_of(dl_se);
2118
2119 if (!schedstat_enabled())
2120 return;
2121
2122 if ((flags & DEQUEUE_SLEEP)) {
2123 unsigned int state;
2124
2125 state = READ_ONCE(p->__state);
2126 if (state & TASK_INTERRUPTIBLE)
2127 __schedstat_set(p->stats.sleep_start,
2128 rq_clock(rq_of_dl_rq(dl_rq)));
2129
2130 if (state & TASK_UNINTERRUPTIBLE)
2131 __schedstat_set(p->stats.block_start,
2132 rq_clock(rq_of_dl_rq(dl_rq)));
2133 }
2134 }
2135
__enqueue_dl_entity(struct sched_dl_entity * dl_se)2136 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
2137 {
2138 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2139
2140 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
2141
2142 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
2143
2144 inc_dl_tasks(dl_se, dl_rq);
2145 }
2146
__dequeue_dl_entity(struct sched_dl_entity * dl_se)2147 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
2148 {
2149 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2150
2151 if (RB_EMPTY_NODE(&dl_se->rb_node))
2152 return;
2153
2154 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
2155
2156 RB_CLEAR_NODE(&dl_se->rb_node);
2157
2158 dec_dl_tasks(dl_se, dl_rq);
2159 }
2160
2161 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)2162 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2163 {
2164 WARN_ON_ONCE(on_dl_rq(dl_se));
2165
2166 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
2167
2168 /*
2169 * Check if a constrained deadline task was activated
2170 * after the deadline but before the next period.
2171 * If that is the case, the task will be throttled and
2172 * the replenishment timer will be set to the next period.
2173 */
2174 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2175 dl_check_constrained_dl(dl_se);
2176
2177 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2178 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2179
2180 add_rq_bw(dl_se, dl_rq);
2181 add_running_bw(dl_se, dl_rq);
2182 }
2183
2184 /*
2185 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2186 * its budget it needs a replenishment and, since it now is on
2187 * its rq, the bandwidth timer callback (which clearly has not
2188 * run yet) will take care of this.
2189 * However, the active utilization does not depend on the fact
2190 * that the task is on the runqueue or not (but depends on the
2191 * task's state - in GRUB parlance, "inactive" vs "active contending").
2192 * In other words, even if a task is throttled its utilization must
2193 * be counted in the active utilization; hence, we need to call
2194 * add_running_bw().
2195 */
2196 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2197 if (flags & ENQUEUE_WAKEUP)
2198 task_contending(dl_se, flags);
2199
2200 return;
2201 }
2202
2203 /*
2204 * If this is a wakeup or a new instance, the scheduling
2205 * parameters of the task might need updating. Otherwise,
2206 * we want a replenishment of its runtime.
2207 */
2208 if (flags & ENQUEUE_WAKEUP) {
2209 task_contending(dl_se, flags);
2210 update_dl_entity(dl_se);
2211 } else if (flags & ENQUEUE_REPLENISH) {
2212 replenish_dl_entity(dl_se);
2213 } else if ((flags & ENQUEUE_RESTORE) &&
2214 !is_dl_boosted(dl_se) &&
2215 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2216 setup_new_dl_entity(dl_se);
2217 }
2218
2219 /*
2220 * If the reservation is still throttled, e.g., it got replenished but is a
2221 * deferred task and still got to wait, don't enqueue.
2222 */
2223 if (dl_se->dl_throttled && start_dl_timer(dl_se))
2224 return;
2225
2226 /*
2227 * We're about to enqueue, make sure we're not ->dl_throttled!
2228 * In case the timer was not started, say because the defer time
2229 * has passed, mark as not throttled and mark unarmed.
2230 * Also cancel earlier timers, since letting those run is pointless.
2231 */
2232 if (dl_se->dl_throttled) {
2233 hrtimer_try_to_cancel(&dl_se->dl_timer);
2234 dl_se->dl_defer_armed = 0;
2235 dl_se->dl_throttled = 0;
2236 }
2237
2238 __enqueue_dl_entity(dl_se);
2239 }
2240
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2241 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2242 {
2243 __dequeue_dl_entity(dl_se);
2244
2245 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2246 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2247
2248 sub_running_bw(dl_se, dl_rq);
2249 sub_rq_bw(dl_se, dl_rq);
2250 }
2251
2252 /*
2253 * This check allows to start the inactive timer (or to immediately
2254 * decrease the active utilization, if needed) in two cases:
2255 * when the task blocks and when it is terminating
2256 * (p->state == TASK_DEAD). We can handle the two cases in the same
2257 * way, because from GRUB's point of view the same thing is happening
2258 * (the task moves from "active contending" to "active non contending"
2259 * or "inactive")
2260 */
2261 if (flags & DEQUEUE_SLEEP)
2262 task_non_contending(dl_se, true);
2263 }
2264
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2265 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2266 {
2267 if (is_dl_boosted(&p->dl)) {
2268 /*
2269 * Because of delays in the detection of the overrun of a
2270 * thread's runtime, it might be the case that a thread
2271 * goes to sleep in a rt mutex with negative runtime. As
2272 * a consequence, the thread will be throttled.
2273 *
2274 * While waiting for the mutex, this thread can also be
2275 * boosted via PI, resulting in a thread that is throttled
2276 * and boosted at the same time.
2277 *
2278 * In this case, the boost overrides the throttle.
2279 */
2280 if (p->dl.dl_throttled) {
2281 /*
2282 * The replenish timer needs to be canceled. No
2283 * problem if it fires concurrently: boosted threads
2284 * are ignored in dl_task_timer().
2285 */
2286 cancel_replenish_timer(&p->dl);
2287 p->dl.dl_throttled = 0;
2288 }
2289 } else if (!dl_prio(p->normal_prio)) {
2290 /*
2291 * Special case in which we have a !SCHED_DEADLINE task that is going
2292 * to be deboosted, but exceeds its runtime while doing so. No point in
2293 * replenishing it, as it's going to return back to its original
2294 * scheduling class after this. If it has been throttled, we need to
2295 * clear the flag, otherwise the task may wake up as throttled after
2296 * being boosted again with no means to replenish the runtime and clear
2297 * the throttle.
2298 */
2299 p->dl.dl_throttled = 0;
2300 if (!(flags & ENQUEUE_REPLENISH))
2301 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2302 task_pid_nr(p));
2303
2304 return;
2305 }
2306
2307 check_schedstat_required();
2308 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2309
2310 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2311 flags |= ENQUEUE_MIGRATING;
2312
2313 enqueue_dl_entity(&p->dl, flags);
2314
2315 if (dl_server(&p->dl))
2316 return;
2317
2318 if (task_is_blocked(p))
2319 return;
2320
2321 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2322 enqueue_pushable_dl_task(rq, p);
2323 }
2324
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2325 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2326 {
2327 update_curr_dl(rq);
2328
2329 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2330 flags |= DEQUEUE_MIGRATING;
2331
2332 dequeue_dl_entity(&p->dl, flags);
2333 if (!p->dl.dl_throttled && !dl_server(&p->dl))
2334 dequeue_pushable_dl_task(rq, p);
2335
2336 return true;
2337 }
2338
2339 /*
2340 * Yield task semantic for -deadline tasks is:
2341 *
2342 * get off from the CPU until our next instance, with
2343 * a new runtime. This is of little use now, since we
2344 * don't have a bandwidth reclaiming mechanism. Anyway,
2345 * bandwidth reclaiming is planned for the future, and
2346 * yield_task_dl will indicate that some spare budget
2347 * is available for other task instances to use it.
2348 */
yield_task_dl(struct rq * rq)2349 static void yield_task_dl(struct rq *rq)
2350 {
2351 /*
2352 * We make the task go to sleep until its current deadline by
2353 * forcing its runtime to zero. This way, update_curr_dl() stops
2354 * it and the bandwidth timer will wake it up and will give it
2355 * new scheduling parameters (thanks to dl_yielded=1).
2356 */
2357 rq->donor->dl.dl_yielded = 1;
2358
2359 update_rq_clock(rq);
2360 update_curr_dl(rq);
2361 /*
2362 * Tell update_rq_clock() that we've just updated,
2363 * so we don't do microscopic update in schedule()
2364 * and double the fastpath cost.
2365 */
2366 rq_clock_skip_update(rq);
2367 }
2368
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2369 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2370 struct rq *rq)
2371 {
2372 return (!rq->dl.dl_nr_running ||
2373 dl_time_before(p->dl.deadline,
2374 rq->dl.earliest_dl.curr));
2375 }
2376
2377 static int find_later_rq(struct task_struct *task);
2378
2379 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2380 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2381 {
2382 struct task_struct *curr, *donor;
2383 bool select_rq;
2384 struct rq *rq;
2385
2386 if (!(flags & WF_TTWU))
2387 return cpu;
2388
2389 rq = cpu_rq(cpu);
2390
2391 rcu_read_lock();
2392 curr = READ_ONCE(rq->curr); /* unlocked access */
2393 donor = READ_ONCE(rq->donor);
2394
2395 /*
2396 * If we are dealing with a -deadline task, we must
2397 * decide where to wake it up.
2398 * If it has a later deadline and the current task
2399 * on this rq can't move (provided the waking task
2400 * can!) we prefer to send it somewhere else. On the
2401 * other hand, if it has a shorter deadline, we
2402 * try to make it stay here, it might be important.
2403 */
2404 select_rq = unlikely(dl_task(donor)) &&
2405 (curr->nr_cpus_allowed < 2 ||
2406 !dl_entity_preempt(&p->dl, &donor->dl)) &&
2407 p->nr_cpus_allowed > 1;
2408
2409 /*
2410 * Take the capacity of the CPU into account to
2411 * ensure it fits the requirement of the task.
2412 */
2413 if (sched_asym_cpucap_active())
2414 select_rq |= !dl_task_fits_capacity(p, cpu);
2415
2416 if (select_rq) {
2417 int target = find_later_rq(p);
2418
2419 if (target != -1 &&
2420 dl_task_is_earliest_deadline(p, cpu_rq(target)))
2421 cpu = target;
2422 }
2423 rcu_read_unlock();
2424
2425 return cpu;
2426 }
2427
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2428 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2429 {
2430 struct rq_flags rf;
2431 struct rq *rq;
2432
2433 if (READ_ONCE(p->__state) != TASK_WAKING)
2434 return;
2435
2436 rq = task_rq(p);
2437 /*
2438 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2439 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2440 * rq->lock is not... So, lock it
2441 */
2442 rq_lock(rq, &rf);
2443 if (p->dl.dl_non_contending) {
2444 update_rq_clock(rq);
2445 sub_running_bw(&p->dl, &rq->dl);
2446 p->dl.dl_non_contending = 0;
2447 /*
2448 * If the timer handler is currently running and the
2449 * timer cannot be canceled, inactive_task_timer()
2450 * will see that dl_not_contending is not set, and
2451 * will not touch the rq's active utilization,
2452 * so we are still safe.
2453 */
2454 cancel_inactive_timer(&p->dl);
2455 }
2456 sub_rq_bw(&p->dl, &rq->dl);
2457 rq_unlock(rq, &rf);
2458 }
2459
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2460 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2461 {
2462 /*
2463 * Current can't be migrated, useless to reschedule,
2464 * let's hope p can move out.
2465 */
2466 if (rq->curr->nr_cpus_allowed == 1 ||
2467 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2468 return;
2469
2470 /*
2471 * p is migratable, so let's not schedule it and
2472 * see if it is pushed or pulled somewhere else.
2473 */
2474 if (p->nr_cpus_allowed != 1 &&
2475 cpudl_find(&rq->rd->cpudl, p, NULL))
2476 return;
2477
2478 resched_curr(rq);
2479 }
2480
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2481 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2482 {
2483 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2484 /*
2485 * This is OK, because current is on_cpu, which avoids it being
2486 * picked for load-balance and preemption/IRQs are still
2487 * disabled avoiding further scheduler activity on it and we've
2488 * not yet started the picking loop.
2489 */
2490 rq_unpin_lock(rq, rf);
2491 pull_dl_task(rq);
2492 rq_repin_lock(rq, rf);
2493 }
2494
2495 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2496 }
2497
2498 /*
2499 * Only called when both the current and waking task are -deadline
2500 * tasks.
2501 */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2502 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2503 int flags)
2504 {
2505 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2506 resched_curr(rq);
2507 return;
2508 }
2509
2510 /*
2511 * In the unlikely case current and p have the same deadline
2512 * let us try to decide what's the best thing to do...
2513 */
2514 if ((p->dl.deadline == rq->donor->dl.deadline) &&
2515 !test_tsk_need_resched(rq->curr))
2516 check_preempt_equal_dl(rq, p);
2517 }
2518
2519 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2520 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2521 {
2522 hrtick_start(rq, dl_se->runtime);
2523 }
2524 #else /* !CONFIG_SCHED_HRTICK: */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2525 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2526 {
2527 }
2528 #endif /* !CONFIG_SCHED_HRTICK */
2529
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2530 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2531 {
2532 struct sched_dl_entity *dl_se = &p->dl;
2533 struct dl_rq *dl_rq = &rq->dl;
2534
2535 p->se.exec_start = rq_clock_task(rq);
2536 if (on_dl_rq(&p->dl))
2537 update_stats_wait_end_dl(dl_rq, dl_se);
2538
2539 /* You can't push away the running task */
2540 dequeue_pushable_dl_task(rq, p);
2541
2542 if (!first)
2543 return;
2544
2545 if (rq->donor->sched_class != &dl_sched_class)
2546 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2547
2548 deadline_queue_push_tasks(rq);
2549
2550 if (hrtick_enabled_dl(rq))
2551 start_hrtick_dl(rq, &p->dl);
2552 }
2553
pick_next_dl_entity(struct dl_rq * dl_rq)2554 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2555 {
2556 struct rb_node *left = rb_first_cached(&dl_rq->root);
2557
2558 if (!left)
2559 return NULL;
2560
2561 return __node_2_dle(left);
2562 }
2563
2564 /*
2565 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2566 * @rq: The runqueue to pick the next task from.
2567 */
__pick_task_dl(struct rq * rq,struct rq_flags * rf)2568 static struct task_struct *__pick_task_dl(struct rq *rq, struct rq_flags *rf)
2569 {
2570 struct sched_dl_entity *dl_se;
2571 struct dl_rq *dl_rq = &rq->dl;
2572 struct task_struct *p;
2573
2574 again:
2575 if (!sched_dl_runnable(rq))
2576 return NULL;
2577
2578 dl_se = pick_next_dl_entity(dl_rq);
2579 WARN_ON_ONCE(!dl_se);
2580
2581 if (dl_server(dl_se)) {
2582 p = dl_se->server_pick_task(dl_se, rf);
2583 if (!p) {
2584 dl_server_stop(dl_se);
2585 goto again;
2586 }
2587 rq->dl_server = dl_se;
2588 } else {
2589 p = dl_task_of(dl_se);
2590 }
2591
2592 return p;
2593 }
2594
pick_task_dl(struct rq * rq,struct rq_flags * rf)2595 static struct task_struct *pick_task_dl(struct rq *rq, struct rq_flags *rf)
2596 {
2597 return __pick_task_dl(rq, rf);
2598 }
2599
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2600 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2601 {
2602 struct sched_dl_entity *dl_se = &p->dl;
2603 struct dl_rq *dl_rq = &rq->dl;
2604
2605 if (on_dl_rq(&p->dl))
2606 update_stats_wait_start_dl(dl_rq, dl_se);
2607
2608 update_curr_dl(rq);
2609
2610 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2611
2612 if (task_is_blocked(p))
2613 return;
2614
2615 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2616 enqueue_pushable_dl_task(rq, p);
2617 }
2618
2619 /*
2620 * scheduler tick hitting a task of our scheduling class.
2621 *
2622 * NOTE: This function can be called remotely by the tick offload that
2623 * goes along full dynticks. Therefore no local assumption can be made
2624 * and everything must be accessed through the @rq and @curr passed in
2625 * parameters.
2626 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2627 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2628 {
2629 update_curr_dl(rq);
2630
2631 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2632 /*
2633 * Even when we have runtime, update_curr_dl() might have resulted in us
2634 * not being the leftmost task anymore. In that case NEED_RESCHED will
2635 * be set and schedule() will start a new hrtick for the next task.
2636 */
2637 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2638 is_leftmost(&p->dl, &rq->dl))
2639 start_hrtick_dl(rq, &p->dl);
2640 }
2641
task_fork_dl(struct task_struct * p)2642 static void task_fork_dl(struct task_struct *p)
2643 {
2644 /*
2645 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2646 * sched_fork()
2647 */
2648 }
2649
2650 /* Only try algorithms three times */
2651 #define DL_MAX_TRIES 3
2652
2653 /*
2654 * Return the earliest pushable rq's task, which is suitable to be executed
2655 * on the CPU, NULL otherwise:
2656 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2657 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2658 {
2659 struct task_struct *p = NULL;
2660 struct rb_node *next_node;
2661
2662 if (!has_pushable_dl_tasks(rq))
2663 return NULL;
2664
2665 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2666 while (next_node) {
2667 p = __node_2_pdl(next_node);
2668
2669 if (task_is_pushable(rq, p, cpu))
2670 return p;
2671
2672 next_node = rb_next(next_node);
2673 }
2674
2675 return NULL;
2676 }
2677
2678 /* Access rule: must be called on local CPU with preemption disabled */
2679 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2680
find_later_rq(struct task_struct * task)2681 static int find_later_rq(struct task_struct *task)
2682 {
2683 struct sched_domain *sd;
2684 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2685 int this_cpu = smp_processor_id();
2686 int cpu = task_cpu(task);
2687
2688 /* Make sure the mask is initialized first */
2689 if (unlikely(!later_mask))
2690 return -1;
2691
2692 if (task->nr_cpus_allowed == 1)
2693 return -1;
2694
2695 /*
2696 * We have to consider system topology and task affinity
2697 * first, then we can look for a suitable CPU.
2698 */
2699 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2700 return -1;
2701
2702 /*
2703 * If we are here, some targets have been found, including
2704 * the most suitable which is, among the runqueues where the
2705 * current tasks have later deadlines than the task's one, the
2706 * rq with the latest possible one.
2707 *
2708 * Now we check how well this matches with task's
2709 * affinity and system topology.
2710 *
2711 * The last CPU where the task run is our first
2712 * guess, since it is most likely cache-hot there.
2713 */
2714 if (cpumask_test_cpu(cpu, later_mask))
2715 return cpu;
2716 /*
2717 * Check if this_cpu is to be skipped (i.e., it is
2718 * not in the mask) or not.
2719 */
2720 if (!cpumask_test_cpu(this_cpu, later_mask))
2721 this_cpu = -1;
2722
2723 rcu_read_lock();
2724 for_each_domain(cpu, sd) {
2725 if (sd->flags & SD_WAKE_AFFINE) {
2726 int best_cpu;
2727
2728 /*
2729 * If possible, preempting this_cpu is
2730 * cheaper than migrating.
2731 */
2732 if (this_cpu != -1 &&
2733 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2734 rcu_read_unlock();
2735 return this_cpu;
2736 }
2737
2738 best_cpu = cpumask_any_and_distribute(later_mask,
2739 sched_domain_span(sd));
2740 /*
2741 * Last chance: if a CPU being in both later_mask
2742 * and current sd span is valid, that becomes our
2743 * choice. Of course, the latest possible CPU is
2744 * already under consideration through later_mask.
2745 */
2746 if (best_cpu < nr_cpu_ids) {
2747 rcu_read_unlock();
2748 return best_cpu;
2749 }
2750 }
2751 }
2752 rcu_read_unlock();
2753
2754 /*
2755 * At this point, all our guesses failed, we just return
2756 * 'something', and let the caller sort the things out.
2757 */
2758 if (this_cpu != -1)
2759 return this_cpu;
2760
2761 cpu = cpumask_any_distribute(later_mask);
2762 if (cpu < nr_cpu_ids)
2763 return cpu;
2764
2765 return -1;
2766 }
2767
pick_next_pushable_dl_task(struct rq * rq)2768 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2769 {
2770 struct task_struct *p;
2771
2772 if (!has_pushable_dl_tasks(rq))
2773 return NULL;
2774
2775 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2776
2777 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2778 WARN_ON_ONCE(task_current(rq, p));
2779 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2780
2781 WARN_ON_ONCE(!task_on_rq_queued(p));
2782 WARN_ON_ONCE(!dl_task(p));
2783
2784 return p;
2785 }
2786
2787 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2788 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2789 {
2790 struct rq *later_rq = NULL;
2791 int tries;
2792 int cpu;
2793
2794 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2795 cpu = find_later_rq(task);
2796
2797 if ((cpu == -1) || (cpu == rq->cpu))
2798 break;
2799
2800 later_rq = cpu_rq(cpu);
2801
2802 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2803 /*
2804 * Target rq has tasks of equal or earlier deadline,
2805 * retrying does not release any lock and is unlikely
2806 * to yield a different result.
2807 */
2808 later_rq = NULL;
2809 break;
2810 }
2811
2812 /* Retry if something changed. */
2813 if (double_lock_balance(rq, later_rq)) {
2814 /*
2815 * double_lock_balance had to release rq->lock, in the
2816 * meantime, task may no longer be fit to be migrated.
2817 * Check the following to ensure that the task is
2818 * still suitable for migration:
2819 * 1. It is possible the task was scheduled,
2820 * migrate_disabled was set and then got preempted,
2821 * so we must check the task migration disable
2822 * flag.
2823 * 2. The CPU picked is in the task's affinity.
2824 * 3. For throttled task (dl_task_offline_migration),
2825 * check the following:
2826 * - the task is not on the rq anymore (it was
2827 * migrated)
2828 * - the task is not on CPU anymore
2829 * - the task is still a dl task
2830 * - the task is not queued on the rq anymore
2831 * 4. For the non-throttled task (push_dl_task), the
2832 * check to ensure that this task is still at the
2833 * head of the pushable tasks list is enough.
2834 */
2835 if (unlikely(is_migration_disabled(task) ||
2836 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2837 (task->dl.dl_throttled &&
2838 (task_rq(task) != rq ||
2839 task_on_cpu(rq, task) ||
2840 !dl_task(task) ||
2841 !task_on_rq_queued(task))) ||
2842 (!task->dl.dl_throttled &&
2843 task != pick_next_pushable_dl_task(rq)))) {
2844
2845 double_unlock_balance(rq, later_rq);
2846 later_rq = NULL;
2847 break;
2848 }
2849 }
2850
2851 /*
2852 * If the rq we found has no -deadline task, or
2853 * its earliest one has a later deadline than our
2854 * task, the rq is a good one.
2855 */
2856 if (dl_task_is_earliest_deadline(task, later_rq))
2857 break;
2858
2859 /* Otherwise we try again. */
2860 double_unlock_balance(rq, later_rq);
2861 later_rq = NULL;
2862 }
2863
2864 return later_rq;
2865 }
2866
2867 /*
2868 * See if the non running -deadline tasks on this rq
2869 * can be sent to some other CPU where they can preempt
2870 * and start executing.
2871 */
push_dl_task(struct rq * rq)2872 static int push_dl_task(struct rq *rq)
2873 {
2874 struct task_struct *next_task;
2875 struct rq *later_rq;
2876 int ret = 0;
2877
2878 next_task = pick_next_pushable_dl_task(rq);
2879 if (!next_task)
2880 return 0;
2881
2882 retry:
2883 /*
2884 * If next_task preempts rq->curr, and rq->curr
2885 * can move away, it makes sense to just reschedule
2886 * without going further in pushing next_task.
2887 */
2888 if (dl_task(rq->donor) &&
2889 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2890 rq->curr->nr_cpus_allowed > 1) {
2891 resched_curr(rq);
2892 return 0;
2893 }
2894
2895 if (is_migration_disabled(next_task))
2896 return 0;
2897
2898 if (WARN_ON(next_task == rq->curr))
2899 return 0;
2900
2901 /* We might release rq lock */
2902 get_task_struct(next_task);
2903
2904 /* Will lock the rq it'll find */
2905 later_rq = find_lock_later_rq(next_task, rq);
2906 if (!later_rq) {
2907 struct task_struct *task;
2908
2909 /*
2910 * We must check all this again, since
2911 * find_lock_later_rq releases rq->lock and it is
2912 * then possible that next_task has migrated.
2913 */
2914 task = pick_next_pushable_dl_task(rq);
2915 if (task == next_task) {
2916 /*
2917 * The task is still there. We don't try
2918 * again, some other CPU will pull it when ready.
2919 */
2920 goto out;
2921 }
2922
2923 if (!task)
2924 /* No more tasks */
2925 goto out;
2926
2927 put_task_struct(next_task);
2928 next_task = task;
2929 goto retry;
2930 }
2931
2932 move_queued_task_locked(rq, later_rq, next_task);
2933 ret = 1;
2934
2935 resched_curr(later_rq);
2936
2937 double_unlock_balance(rq, later_rq);
2938
2939 out:
2940 put_task_struct(next_task);
2941
2942 return ret;
2943 }
2944
push_dl_tasks(struct rq * rq)2945 static void push_dl_tasks(struct rq *rq)
2946 {
2947 /* push_dl_task() will return true if it moved a -deadline task */
2948 while (push_dl_task(rq))
2949 ;
2950 }
2951
pull_dl_task(struct rq * this_rq)2952 static void pull_dl_task(struct rq *this_rq)
2953 {
2954 int this_cpu = this_rq->cpu, cpu;
2955 struct task_struct *p, *push_task;
2956 bool resched = false;
2957 struct rq *src_rq;
2958 u64 dmin = LONG_MAX;
2959
2960 if (likely(!dl_overloaded(this_rq)))
2961 return;
2962
2963 /*
2964 * Match the barrier from dl_set_overloaded; this guarantees that if we
2965 * see overloaded we must also see the dlo_mask bit.
2966 */
2967 smp_rmb();
2968
2969 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2970 if (this_cpu == cpu)
2971 continue;
2972
2973 src_rq = cpu_rq(cpu);
2974
2975 /*
2976 * It looks racy, and it is! However, as in sched_rt.c,
2977 * we are fine with this.
2978 */
2979 if (this_rq->dl.dl_nr_running &&
2980 dl_time_before(this_rq->dl.earliest_dl.curr,
2981 src_rq->dl.earliest_dl.next))
2982 continue;
2983
2984 /* Might drop this_rq->lock */
2985 push_task = NULL;
2986 double_lock_balance(this_rq, src_rq);
2987
2988 /*
2989 * If there are no more pullable tasks on the
2990 * rq, we're done with it.
2991 */
2992 if (src_rq->dl.dl_nr_running <= 1)
2993 goto skip;
2994
2995 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2996
2997 /*
2998 * We found a task to be pulled if:
2999 * - it preempts our current (if there's one),
3000 * - it will preempt the last one we pulled (if any).
3001 */
3002 if (p && dl_time_before(p->dl.deadline, dmin) &&
3003 dl_task_is_earliest_deadline(p, this_rq)) {
3004 WARN_ON(p == src_rq->curr);
3005 WARN_ON(!task_on_rq_queued(p));
3006
3007 /*
3008 * Then we pull iff p has actually an earlier
3009 * deadline than the current task of its runqueue.
3010 */
3011 if (dl_time_before(p->dl.deadline,
3012 src_rq->donor->dl.deadline))
3013 goto skip;
3014
3015 if (is_migration_disabled(p)) {
3016 push_task = get_push_task(src_rq);
3017 } else {
3018 move_queued_task_locked(src_rq, this_rq, p);
3019 dmin = p->dl.deadline;
3020 resched = true;
3021 }
3022
3023 /* Is there any other task even earlier? */
3024 }
3025 skip:
3026 double_unlock_balance(this_rq, src_rq);
3027
3028 if (push_task) {
3029 preempt_disable();
3030 raw_spin_rq_unlock(this_rq);
3031 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
3032 push_task, &src_rq->push_work);
3033 preempt_enable();
3034 raw_spin_rq_lock(this_rq);
3035 }
3036 }
3037
3038 if (resched)
3039 resched_curr(this_rq);
3040 }
3041
3042 /*
3043 * Since the task is not running and a reschedule is not going to happen
3044 * anytime soon on its runqueue, we try pushing it away now.
3045 */
task_woken_dl(struct rq * rq,struct task_struct * p)3046 static void task_woken_dl(struct rq *rq, struct task_struct *p)
3047 {
3048 if (!task_on_cpu(rq, p) &&
3049 !test_tsk_need_resched(rq->curr) &&
3050 p->nr_cpus_allowed > 1 &&
3051 dl_task(rq->donor) &&
3052 (rq->curr->nr_cpus_allowed < 2 ||
3053 !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
3054 push_dl_tasks(rq);
3055 }
3056 }
3057
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)3058 static void set_cpus_allowed_dl(struct task_struct *p,
3059 struct affinity_context *ctx)
3060 {
3061 struct root_domain *src_rd;
3062 struct rq *rq;
3063
3064 WARN_ON_ONCE(!dl_task(p));
3065
3066 rq = task_rq(p);
3067 src_rd = rq->rd;
3068 /*
3069 * Migrating a SCHED_DEADLINE task between exclusive
3070 * cpusets (different root_domains) entails a bandwidth
3071 * update. We already made space for us in the destination
3072 * domain (see cpuset_can_attach()).
3073 */
3074 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
3075 struct dl_bw *src_dl_b;
3076
3077 src_dl_b = dl_bw_of(cpu_of(rq));
3078 /*
3079 * We now free resources of the root_domain we are migrating
3080 * off. In the worst case, sched_setattr() may temporary fail
3081 * until we complete the update.
3082 */
3083 raw_spin_lock(&src_dl_b->lock);
3084 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
3085 raw_spin_unlock(&src_dl_b->lock);
3086 }
3087
3088 set_cpus_allowed_common(p, ctx);
3089 }
3090
3091 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)3092 static void rq_online_dl(struct rq *rq)
3093 {
3094 if (rq->dl.overloaded)
3095 dl_set_overload(rq);
3096
3097 if (rq->dl.dl_nr_running > 0)
3098 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
3099 else
3100 cpudl_clear(&rq->rd->cpudl, rq->cpu, true);
3101 }
3102
3103 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)3104 static void rq_offline_dl(struct rq *rq)
3105 {
3106 if (rq->dl.overloaded)
3107 dl_clear_overload(rq);
3108
3109 cpudl_clear(&rq->rd->cpudl, rq->cpu, false);
3110 }
3111
init_sched_dl_class(void)3112 void __init init_sched_dl_class(void)
3113 {
3114 unsigned int i;
3115
3116 for_each_possible_cpu(i)
3117 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
3118 GFP_KERNEL, cpu_to_node(i));
3119 }
3120
3121 /*
3122 * This function always returns a non-empty bitmap in @cpus. This is because
3123 * if a root domain has reserved bandwidth for DL tasks, the DL bandwidth
3124 * check will prevent CPU hotplug from deactivating all CPUs in that domain.
3125 */
dl_get_task_effective_cpus(struct task_struct * p,struct cpumask * cpus)3126 static void dl_get_task_effective_cpus(struct task_struct *p, struct cpumask *cpus)
3127 {
3128 const struct cpumask *hk_msk;
3129
3130 hk_msk = housekeeping_cpumask(HK_TYPE_DOMAIN);
3131 if (housekeeping_enabled(HK_TYPE_DOMAIN)) {
3132 if (!cpumask_intersects(p->cpus_ptr, hk_msk)) {
3133 /*
3134 * CPUs isolated by isolcpu="domain" always belong to
3135 * def_root_domain.
3136 */
3137 cpumask_andnot(cpus, cpu_active_mask, hk_msk);
3138 return;
3139 }
3140 }
3141
3142 /*
3143 * If a root domain holds a DL task, it must have active CPUs. So
3144 * active CPUs can always be found by walking up the task's cpuset
3145 * hierarchy up to the partition root.
3146 */
3147 cpuset_cpus_allowed_locked(p, cpus);
3148 }
3149
3150 /* The caller should hold cpuset_mutex */
dl_add_task_root_domain(struct task_struct * p)3151 void dl_add_task_root_domain(struct task_struct *p)
3152 {
3153 struct rq_flags rf;
3154 struct rq *rq;
3155 struct dl_bw *dl_b;
3156 unsigned int cpu;
3157 struct cpumask *msk = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
3158
3159 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3160 if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
3161 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3162 return;
3163 }
3164
3165 /*
3166 * Get an active rq, whose rq->rd traces the correct root
3167 * domain.
3168 * Ideally this would be under cpuset reader lock until rq->rd is
3169 * fetched. However, sleepable locks cannot nest inside pi_lock, so we
3170 * rely on the caller of dl_add_task_root_domain() holds 'cpuset_mutex'
3171 * to guarantee the CPU stays in the cpuset.
3172 */
3173 dl_get_task_effective_cpus(p, msk);
3174 cpu = cpumask_first_and(cpu_active_mask, msk);
3175 BUG_ON(cpu >= nr_cpu_ids);
3176 rq = cpu_rq(cpu);
3177 dl_b = &rq->rd->dl_bw;
3178 /* End of fetching rd */
3179
3180 raw_spin_lock(&dl_b->lock);
3181 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
3182 raw_spin_unlock(&dl_b->lock);
3183 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3184 }
3185
dl_clear_root_domain(struct root_domain * rd)3186 void dl_clear_root_domain(struct root_domain *rd)
3187 {
3188 int i;
3189
3190 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
3191
3192 /*
3193 * Reset total_bw to zero and extra_bw to max_bw so that next
3194 * loop will add dl-servers contributions back properly,
3195 */
3196 rd->dl_bw.total_bw = 0;
3197 for_each_cpu(i, rd->span)
3198 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
3199
3200 /*
3201 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
3202 * them, we need to account for them here explicitly.
3203 */
3204 for_each_cpu(i, rd->span) {
3205 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
3206
3207 if (dl_server(dl_se) && cpu_active(i))
3208 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
3209 }
3210 }
3211
dl_clear_root_domain_cpu(int cpu)3212 void dl_clear_root_domain_cpu(int cpu)
3213 {
3214 dl_clear_root_domain(cpu_rq(cpu)->rd);
3215 }
3216
switched_from_dl(struct rq * rq,struct task_struct * p)3217 static void switched_from_dl(struct rq *rq, struct task_struct *p)
3218 {
3219 /*
3220 * task_non_contending() can start the "inactive timer" (if the 0-lag
3221 * time is in the future). If the task switches back to dl before
3222 * the "inactive timer" fires, it can continue to consume its current
3223 * runtime using its current deadline. If it stays outside of
3224 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
3225 * will reset the task parameters.
3226 */
3227 if (task_on_rq_queued(p) && p->dl.dl_runtime)
3228 task_non_contending(&p->dl, false);
3229
3230 /*
3231 * In case a task is setscheduled out from SCHED_DEADLINE we need to
3232 * keep track of that on its cpuset (for correct bandwidth tracking).
3233 */
3234 dec_dl_tasks_cs(p);
3235
3236 if (!task_on_rq_queued(p)) {
3237 /*
3238 * Inactive timer is armed. However, p is leaving DEADLINE and
3239 * might migrate away from this rq while continuing to run on
3240 * some other class. We need to remove its contribution from
3241 * this rq running_bw now, or sub_rq_bw (below) will complain.
3242 */
3243 if (p->dl.dl_non_contending)
3244 sub_running_bw(&p->dl, &rq->dl);
3245 sub_rq_bw(&p->dl, &rq->dl);
3246 }
3247
3248 /*
3249 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3250 * at the 0-lag time, because the task could have been migrated
3251 * while SCHED_OTHER in the meanwhile.
3252 */
3253 if (p->dl.dl_non_contending)
3254 p->dl.dl_non_contending = 0;
3255
3256 /*
3257 * Since this might be the only -deadline task on the rq,
3258 * this is the right place to try to pull some other one
3259 * from an overloaded CPU, if any.
3260 */
3261 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3262 return;
3263
3264 deadline_queue_pull_task(rq);
3265 }
3266
3267 /*
3268 * When switching to -deadline, we may overload the rq, then
3269 * we try to push someone off, if possible.
3270 */
switched_to_dl(struct rq * rq,struct task_struct * p)3271 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3272 {
3273 cancel_inactive_timer(&p->dl);
3274
3275 /*
3276 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3277 * track of that on its cpuset (for correct bandwidth tracking).
3278 */
3279 inc_dl_tasks_cs(p);
3280
3281 /* If p is not queued we will update its parameters at next wakeup. */
3282 if (!task_on_rq_queued(p)) {
3283 add_rq_bw(&p->dl, &rq->dl);
3284
3285 return;
3286 }
3287
3288 if (rq->donor != p) {
3289 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3290 deadline_queue_push_tasks(rq);
3291 if (dl_task(rq->donor))
3292 wakeup_preempt_dl(rq, p, 0);
3293 else
3294 resched_curr(rq);
3295 } else {
3296 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3297 }
3298 }
3299
get_prio_dl(struct rq * rq,struct task_struct * p)3300 static u64 get_prio_dl(struct rq *rq, struct task_struct *p)
3301 {
3302 return p->dl.deadline;
3303 }
3304
3305 /*
3306 * If the scheduling parameters of a -deadline task changed,
3307 * a push or pull operation might be needed.
3308 */
prio_changed_dl(struct rq * rq,struct task_struct * p,u64 old_deadline)3309 static void prio_changed_dl(struct rq *rq, struct task_struct *p, u64 old_deadline)
3310 {
3311 if (!task_on_rq_queued(p))
3312 return;
3313
3314 if (p->dl.deadline == old_deadline)
3315 return;
3316
3317 if (dl_time_before(old_deadline, p->dl.deadline))
3318 deadline_queue_pull_task(rq);
3319
3320 if (task_current_donor(rq, p)) {
3321 /*
3322 * If we now have a earlier deadline task than p,
3323 * then reschedule, provided p is still on this
3324 * runqueue.
3325 */
3326 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3327 resched_curr(rq);
3328 } else {
3329 /*
3330 * Current may not be deadline in case p was throttled but we
3331 * have just replenished it (e.g. rt_mutex_setprio()).
3332 *
3333 * Otherwise, if p was given an earlier deadline, reschedule.
3334 */
3335 if (!dl_task(rq->curr) ||
3336 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3337 resched_curr(rq);
3338 }
3339 }
3340
3341 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3342 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3343 {
3344 return p->dl.dl_throttled;
3345 }
3346 #endif
3347
3348 DEFINE_SCHED_CLASS(dl) = {
3349
3350 .queue_mask = 8,
3351
3352 .enqueue_task = enqueue_task_dl,
3353 .dequeue_task = dequeue_task_dl,
3354 .yield_task = yield_task_dl,
3355
3356 .wakeup_preempt = wakeup_preempt_dl,
3357
3358 .pick_task = pick_task_dl,
3359 .put_prev_task = put_prev_task_dl,
3360 .set_next_task = set_next_task_dl,
3361
3362 .balance = balance_dl,
3363 .select_task_rq = select_task_rq_dl,
3364 .migrate_task_rq = migrate_task_rq_dl,
3365 .set_cpus_allowed = set_cpus_allowed_dl,
3366 .rq_online = rq_online_dl,
3367 .rq_offline = rq_offline_dl,
3368 .task_woken = task_woken_dl,
3369 .find_lock_rq = find_lock_later_rq,
3370
3371 .task_tick = task_tick_dl,
3372 .task_fork = task_fork_dl,
3373
3374 .get_prio = get_prio_dl,
3375 .prio_changed = prio_changed_dl,
3376 .switched_from = switched_from_dl,
3377 .switched_to = switched_to_dl,
3378
3379 .update_curr = update_curr_dl,
3380 #ifdef CONFIG_SCHED_CORE
3381 .task_is_throttled = task_is_throttled_dl,
3382 #endif
3383 };
3384
3385 /*
3386 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3387 * sched_domains_mutex.
3388 */
3389 u64 dl_cookie;
3390
sched_dl_global_validate(void)3391 int sched_dl_global_validate(void)
3392 {
3393 u64 runtime = global_rt_runtime();
3394 u64 period = global_rt_period();
3395 u64 new_bw = to_ratio(period, runtime);
3396 u64 cookie = ++dl_cookie;
3397 struct dl_bw *dl_b;
3398 int cpu, cpus, ret = 0;
3399 unsigned long flags;
3400
3401 /*
3402 * Here we want to check the bandwidth not being set to some
3403 * value smaller than the currently allocated bandwidth in
3404 * any of the root_domains.
3405 */
3406 for_each_online_cpu(cpu) {
3407 rcu_read_lock_sched();
3408
3409 if (dl_bw_visited(cpu, cookie))
3410 goto next;
3411
3412 dl_b = dl_bw_of(cpu);
3413 cpus = dl_bw_cpus(cpu);
3414
3415 raw_spin_lock_irqsave(&dl_b->lock, flags);
3416 if (new_bw * cpus < dl_b->total_bw)
3417 ret = -EBUSY;
3418 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3419
3420 next:
3421 rcu_read_unlock_sched();
3422
3423 if (ret)
3424 break;
3425 }
3426
3427 return ret;
3428 }
3429
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3430 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3431 {
3432 if (global_rt_runtime() == RUNTIME_INF) {
3433 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3434 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3435 } else {
3436 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3437 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3438 dl_rq->max_bw = dl_rq->extra_bw =
3439 to_ratio(global_rt_period(), global_rt_runtime());
3440 }
3441 }
3442
sched_dl_do_global(void)3443 void sched_dl_do_global(void)
3444 {
3445 u64 new_bw = -1;
3446 u64 cookie = ++dl_cookie;
3447 struct dl_bw *dl_b;
3448 int cpu;
3449 unsigned long flags;
3450
3451 if (global_rt_runtime() != RUNTIME_INF)
3452 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3453
3454 for_each_possible_cpu(cpu)
3455 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3456
3457 for_each_possible_cpu(cpu) {
3458 rcu_read_lock_sched();
3459
3460 if (dl_bw_visited(cpu, cookie)) {
3461 rcu_read_unlock_sched();
3462 continue;
3463 }
3464
3465 dl_b = dl_bw_of(cpu);
3466
3467 raw_spin_lock_irqsave(&dl_b->lock, flags);
3468 dl_b->bw = new_bw;
3469 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3470
3471 rcu_read_unlock_sched();
3472 }
3473 }
3474
3475 /*
3476 * We must be sure that accepting a new task (or allowing changing the
3477 * parameters of an existing one) is consistent with the bandwidth
3478 * constraints. If yes, this function also accordingly updates the currently
3479 * allocated bandwidth to reflect the new situation.
3480 *
3481 * This function is called while holding p's rq->lock.
3482 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3483 int sched_dl_overflow(struct task_struct *p, int policy,
3484 const struct sched_attr *attr)
3485 {
3486 u64 period = attr->sched_period ?: attr->sched_deadline;
3487 u64 runtime = attr->sched_runtime;
3488 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3489 int cpus, err = -1, cpu = task_cpu(p);
3490 struct dl_bw *dl_b = dl_bw_of(cpu);
3491 unsigned long cap;
3492
3493 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3494 return 0;
3495
3496 /* !deadline task may carry old deadline bandwidth */
3497 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3498 return 0;
3499
3500 /*
3501 * Either if a task, enters, leave, or stays -deadline but changes
3502 * its parameters, we may need to update accordingly the total
3503 * allocated bandwidth of the container.
3504 */
3505 raw_spin_lock(&dl_b->lock);
3506 cpus = dl_bw_cpus(cpu);
3507 cap = dl_bw_capacity(cpu);
3508
3509 if (dl_policy(policy) && !task_has_dl_policy(p) &&
3510 !__dl_overflow(dl_b, cap, 0, new_bw)) {
3511 if (hrtimer_active(&p->dl.inactive_timer))
3512 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3513 __dl_add(dl_b, new_bw, cpus);
3514 err = 0;
3515 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
3516 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3517 /*
3518 * XXX this is slightly incorrect: when the task
3519 * utilization decreases, we should delay the total
3520 * utilization change until the task's 0-lag point.
3521 * But this would require to set the task's "inactive
3522 * timer" when the task is not inactive.
3523 */
3524 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3525 __dl_add(dl_b, new_bw, cpus);
3526 dl_change_utilization(p, new_bw);
3527 err = 0;
3528 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3529 /*
3530 * Do not decrease the total deadline utilization here,
3531 * switched_from_dl() will take care to do it at the correct
3532 * (0-lag) time.
3533 */
3534 err = 0;
3535 }
3536 raw_spin_unlock(&dl_b->lock);
3537
3538 return err;
3539 }
3540
3541 /*
3542 * This function initializes the sched_dl_entity of a newly becoming
3543 * SCHED_DEADLINE task.
3544 *
3545 * Only the static values are considered here, the actual runtime and the
3546 * absolute deadline will be properly calculated when the task is enqueued
3547 * for the first time with its new policy.
3548 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3549 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3550 {
3551 struct sched_dl_entity *dl_se = &p->dl;
3552
3553 dl_se->dl_runtime = attr->sched_runtime;
3554 dl_se->dl_deadline = attr->sched_deadline;
3555 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3556 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3557 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3558 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3559 }
3560
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3561 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3562 {
3563 struct sched_dl_entity *dl_se = &p->dl;
3564
3565 attr->sched_priority = p->rt_priority;
3566 attr->sched_runtime = dl_se->dl_runtime;
3567 attr->sched_deadline = dl_se->dl_deadline;
3568 attr->sched_period = dl_se->dl_period;
3569 attr->sched_flags &= ~SCHED_DL_FLAGS;
3570 attr->sched_flags |= dl_se->flags;
3571 }
3572
3573 /*
3574 * This function validates the new parameters of a -deadline task.
3575 * We ask for the deadline not being zero, and greater or equal
3576 * than the runtime, as well as the period of being zero or
3577 * greater than deadline. Furthermore, we have to be sure that
3578 * user parameters are above the internal resolution of 1us (we
3579 * check sched_runtime only since it is always the smaller one) and
3580 * below 2^63 ns (we have to check both sched_deadline and
3581 * sched_period, as the latter can be zero).
3582 */
__checkparam_dl(const struct sched_attr * attr)3583 bool __checkparam_dl(const struct sched_attr *attr)
3584 {
3585 u64 period, max, min;
3586
3587 /* special dl tasks don't actually use any parameter */
3588 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3589 return true;
3590
3591 /* deadline != 0 */
3592 if (attr->sched_deadline == 0)
3593 return false;
3594
3595 /*
3596 * Since we truncate DL_SCALE bits, make sure we're at least
3597 * that big.
3598 */
3599 if (attr->sched_runtime < (1ULL << DL_SCALE))
3600 return false;
3601
3602 /*
3603 * Since we use the MSB for wrap-around and sign issues, make
3604 * sure it's not set (mind that period can be equal to zero).
3605 */
3606 if (attr->sched_deadline & (1ULL << 63) ||
3607 attr->sched_period & (1ULL << 63))
3608 return false;
3609
3610 period = attr->sched_period;
3611 if (!period)
3612 period = attr->sched_deadline;
3613
3614 /* runtime <= deadline <= period (if period != 0) */
3615 if (period < attr->sched_deadline ||
3616 attr->sched_deadline < attr->sched_runtime)
3617 return false;
3618
3619 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3620 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3621
3622 if (period < min || period > max)
3623 return false;
3624
3625 return true;
3626 }
3627
3628 /*
3629 * This function clears the sched_dl_entity static params.
3630 */
__dl_clear_params(struct sched_dl_entity * dl_se)3631 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3632 {
3633 dl_se->dl_runtime = 0;
3634 dl_se->dl_deadline = 0;
3635 dl_se->dl_period = 0;
3636 dl_se->flags = 0;
3637 dl_se->dl_bw = 0;
3638 dl_se->dl_density = 0;
3639
3640 dl_se->dl_throttled = 0;
3641 dl_se->dl_yielded = 0;
3642 dl_se->dl_non_contending = 0;
3643 dl_se->dl_overrun = 0;
3644 dl_se->dl_server = 0;
3645
3646 #ifdef CONFIG_RT_MUTEXES
3647 dl_se->pi_se = dl_se;
3648 #endif
3649 }
3650
init_dl_entity(struct sched_dl_entity * dl_se)3651 void init_dl_entity(struct sched_dl_entity *dl_se)
3652 {
3653 RB_CLEAR_NODE(&dl_se->rb_node);
3654 init_dl_task_timer(dl_se);
3655 init_dl_inactive_task_timer(dl_se);
3656 __dl_clear_params(dl_se);
3657 }
3658
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3659 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3660 {
3661 struct sched_dl_entity *dl_se = &p->dl;
3662
3663 if (dl_se->dl_runtime != attr->sched_runtime ||
3664 dl_se->dl_deadline != attr->sched_deadline ||
3665 dl_se->dl_period != attr->sched_period ||
3666 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3667 return true;
3668
3669 return false;
3670 }
3671
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3672 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3673 const struct cpumask *trial)
3674 {
3675 unsigned long flags, cap;
3676 struct dl_bw *cur_dl_b;
3677 int ret = 1;
3678
3679 rcu_read_lock_sched();
3680 cur_dl_b = dl_bw_of(cpumask_any(cur));
3681 cap = __dl_bw_capacity(trial);
3682 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3683 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3684 ret = 0;
3685 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3686 rcu_read_unlock_sched();
3687
3688 return ret;
3689 }
3690
3691 enum dl_bw_request {
3692 dl_bw_req_deactivate = 0,
3693 dl_bw_req_alloc,
3694 dl_bw_req_free
3695 };
3696
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3697 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3698 {
3699 unsigned long flags, cap;
3700 struct dl_bw *dl_b;
3701 bool overflow = 0;
3702 u64 fair_server_bw = 0;
3703
3704 rcu_read_lock_sched();
3705 dl_b = dl_bw_of(cpu);
3706 raw_spin_lock_irqsave(&dl_b->lock, flags);
3707
3708 cap = dl_bw_capacity(cpu);
3709 switch (req) {
3710 case dl_bw_req_free:
3711 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3712 break;
3713 case dl_bw_req_alloc:
3714 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3715
3716 if (!overflow) {
3717 /*
3718 * We reserve space in the destination
3719 * root_domain, as we can't fail after this point.
3720 * We will free resources in the source root_domain
3721 * later on (see set_cpus_allowed_dl()).
3722 */
3723 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3724 }
3725 break;
3726 case dl_bw_req_deactivate:
3727 /*
3728 * cpu is not off yet, but we need to do the math by
3729 * considering it off already (i.e., what would happen if we
3730 * turn cpu off?).
3731 */
3732 cap -= arch_scale_cpu_capacity(cpu);
3733
3734 /*
3735 * cpu is going offline and NORMAL tasks will be moved away
3736 * from it. We can thus discount dl_server bandwidth
3737 * contribution as it won't need to be servicing tasks after
3738 * the cpu is off.
3739 */
3740 if (cpu_rq(cpu)->fair_server.dl_server)
3741 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3742
3743 /*
3744 * Not much to check if no DEADLINE bandwidth is present.
3745 * dl_servers we can discount, as tasks will be moved out the
3746 * offlined CPUs anyway.
3747 */
3748 if (dl_b->total_bw - fair_server_bw > 0) {
3749 /*
3750 * Leaving at least one CPU for DEADLINE tasks seems a
3751 * wise thing to do. As said above, cpu is not offline
3752 * yet, so account for that.
3753 */
3754 if (dl_bw_cpus(cpu) - 1)
3755 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3756 else
3757 overflow = 1;
3758 }
3759
3760 break;
3761 }
3762
3763 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3764 rcu_read_unlock_sched();
3765
3766 return overflow ? -EBUSY : 0;
3767 }
3768
dl_bw_deactivate(int cpu)3769 int dl_bw_deactivate(int cpu)
3770 {
3771 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3772 }
3773
dl_bw_alloc(int cpu,u64 dl_bw)3774 int dl_bw_alloc(int cpu, u64 dl_bw)
3775 {
3776 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3777 }
3778
dl_bw_free(int cpu,u64 dl_bw)3779 void dl_bw_free(int cpu, u64 dl_bw)
3780 {
3781 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3782 }
3783
print_dl_stats(struct seq_file * m,int cpu)3784 void print_dl_stats(struct seq_file *m, int cpu)
3785 {
3786 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3787 }
3788